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Abstract. Public key encryption with keyword search (PEKS) inher-
ently suffers from the inside keyword guessing attack. To resist against
this attack, Huang et al. proposed the public key authenticated encryp-
tion with keyword search (PAEKS), where the sender not only encrypts
a keyword, but also authenticates it. To further resist against quantum
attacks, Liu et al. proposed a generic construction of PAEKS and the
first quantum-resistant PAEKS instantiation based on lattices. Later,
Emura pointed out some issues in Liu et al.’s construction and proposed
a new generic construction of PAEKS. The basic construction methodol-
ogy of Liu et al. and Emura is the same, i.e., each keyword is converted
into an extended keyword using the shared key calculated by a word-
independent smooth projective hash functions (SPHF), and PEKS is
used for the extended keyword.
In this paper, we first analyze the schemes of Liu et al. and Emura, and
point out some issues regarding their construction and security model.
In short, in their lattice-based instantiations, the sender and receiver use
a lattice-based word independent SPHF to compute the same shared key
to authenticate keywords, leading to a super-polynomial modulus q; their
generic constructions need a trusted setup assumption or the designated-
receiver setting; Liu et al. failed to provide convincing evidence that their
scheme satisfies their claimed security.
Then, we propose two new lattice-based PAEKS schemes with totally
different construction methodology from Liu et al. and Emura. Specifi-
cally, in our PAEKS schemes, instead of using the shared key calculated
by SPHF, the sender and receiver achieve keyword authentication by us-
ing their own secret key to sample a set of short vectors related to the
keyword. In this way, the modulus q in our schemes could be of polyno-
mial size, which results in much smaller size of the public key, ciphertext
and trapdoor. In addition, our schemes need neither a trusted setup as-
sumption nor the designated-receiver setting. Finally, our schemes can
be proven secure in stronger security model, and thus provide stronger
security guarantee for both ciphertext privacy and trapdoor privacy.
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1 Introduction

Boneh et al. [7] proposed the first public key encryption with keyword search
(PEKS) scheme. In PEKS, the sender encrypts ciphertext keyword ck as cipher-
text Ct and uploads Ct along with encrypted files to the cloud server; to retrieve
encrypted files containing the specific target keyword tk, the receiver generates
the trapdoor Tr of tk and submits Tr to the server; For each Ct in the cloud,
the server runs the test algorithm to check whether Ct and Tr embed with the
same keyword. If so, it returns the encrypted files corresponding to Ct to the
receiver. The security of the PEKS system [7] requires that an attacker cannot
derive any information of the ciphertext keyword from the ciphertext.

Later, Byun et al. [8] showed the inherent weakness of PEKS, that is, the
information of target keyword in trapdoor could be extracted by the keyword
guessing attack (KGA). In detail, given a trapdoor Tr, an attacker launches
this attack as follows: (1) It picks a guessing keyword gk and encrypts gk as
ciphertext Ctgk; (2) It runs the test algorithm to check whether Tr and Ctgk
contain the same keyword. If so, it returns gk; otherwise, it returns to step
(1). As discussed in [8], in practical applications, the keyword space usually has
low entropy. For example, there are only 225,000 words in Merriam-Webster’s
collegiate dictionary [26]. Hence, KGA is feasible in real-world scenarios. If the
KGA is launched by the server itself, we call it inside KGA (IKGA).

To resist against the IKGA, Huang et al. [15] proposed the public key au-
thenticated encryption with keyword search (PAEKS). In the PAEKS system,
the sender (resp., receiver) encrypts and authenticates the ciphertext keyword
ck (resp., target keyword tk) with the public key of both parties and its own
secret key to obtain the ciphertext Ct (resp., trapdoor Tr). The server runs
the test algorithm to check if Ct and Tr embed with the same keyword and
if so, returns the encrypted file indexed by Ct to the receiver. The novelty of
the PAEKS system is that the sender not only encrypts the ciphertext keyword
but also uses his own secret key SKS to authenticate it, so that the server is
unable to generate a valid ciphertext to issue IKGA. The basic security model
of the PAEKS scheme [15] requires ciphertext indistinguishability (CI security)
and trapdoor indistinguishability (TI security).

However, some recent results have shown that this basic security model can
be enhanced. In specific, Noroozi et al. [20] found that [15] is insecure in the
multi-user setting; Qin et al. [22] found that [15] does not satisfy the multi-
ciphertext indistinguishability (MCI security). Pan et al. [21] claimed that they
propose a PAEKS scheme with both MCI security and multi-trapdoor indistin-
guishability (MTI security) in the one-user setting. However, Cheng et al. [10]
found that Pan et al.’s MCI security is broken and the proof of MTI security
has a serious mistake. Later, Qin et al. [23] proposed a PAEKS scheme with TI
security and cipher-keyword indistinguishability against fully chosen keyword to
cipher-keyword attacks (fully CI security). In general, for ciphertext privacy, the
security model of PAEKS has been enhanced from the CI security to MCI securi-
ty, and further to fully CI security. However, when it comes to trapdoor privacy,
it is still stagnant, failing to achieve any improvement beyond TI security.
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All aforementioned PAEKS schemes are vulnerable to quantum attacks [25].
Recently, Zhang et al. [27, 28] proposed two lattice-based PEKS schemes and
claimed that these schemes are resistant to IKGA. Liu et al. [16] proposed a
generic construction of PAEKS scheme. But Liu et al. [17] found that neither
[27] nor [28] is resistant to IKGA, and that [16] does not follow the syntax of
PAEKS since it needs a trusted authority to help users generate their secret
keys. Besides, Liu et al. [17] introduced a new generic construction of PAEKS
by adopting a word-independent smooth project hash function (SPHF) [12] and
a PEKS as building blocks. Furthermore, they proposed a lattice-based PAEKS
instantiation by employing the SPHF [6] and PEKS [5], claiming that it was
the first quantum-resistant PAEKS scheme with MCI and MTI security. Later,
Emura [13] proposed another generic construction of PAEKS scheme. The con-
struction methodology of Liu et al. [17] and Emura [13] is the same, i.e., each
keyword is converted into an extended keyword using the shared key calculated
by word-independent SPHF, and PEKS is used for the extended keyword.

1.1 Our Contributions

In this paper, we propose two lattice-based PAEKS schemes. Our contributions
are reflected in the following three aspects:

– We use totally different techniques to authenticate keyword in the construc-
tion of lattice-based PAEKS scheme. Specifically, in previous lattice-based
PAEKS schemes [17, 13], the sender and receiver need to calculate the same
shared key using word independent SPHF to authenticate keywords, which
leads to a super-polynomial modulus q (see Sect.4). Instead, in our PAEKS
schemes, the secret key of the sender (resp., receiver) is a short basis, and the
sender (resp., receiver) uses his own short basis to sample a set of short vec-
tors related to the keyword to achieve keyword authentication. In this way,
q = poly(λ) suffices for the correctness and security analysis of our schemes,
which results in much smaller size of public key, ciphertext and trapdoor.

– Our schemes do not require a trusted setup assumption to ensure security.
Furthermore, our schemes do not need to apply the designated-receiver set-
ting, where the sender needs to generate a unique public/secret key pair for
each designated receiver and the computational and storage burden of the
sender scales linearly with the total number of designated-receivers. There-
fore, in our schemes, the sender avoids heavy key storage burden.

– Our schemes can be proven secure in stronger security models (see Sect.3.2).
Specifically, our first scheme achieves the selective version of fully CI se-
curity and target-keyword indistinguishability against fully chosen keyword
to target-keyword attacks (fully TI security) in the one-user setting under
the standard model; our second scheme can be proven fully CI and fully TI
secure in multi-user setting under the random oracle model. Compare with
existing PAEKS schemes, our schemes provide stronger security guarantee
for both ciphertext privacy and trapdoor privacy.
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1.2 Technical Overview

In a PAEKS system, the sender (resp., receiver) not only encrypts a cipher-
text keyword (resp., target keyword), but also authenticates it. In the previous
PAEKS schemes [22, 23, 17, 13], the sender and receiver would implicitly run
an one-round key exchange protocol to calculate the shared key K (using both
parties’ public keys and their own secret key) for keyword authentication and en-
cryption. Specifically, for those pairing-based PAEKS schemes [22, 23], the sender
and receiver compute the shared key K using the well-known Diffie-Hellman key
exchange, and then directly use K to encrypt and authenticate the keyword. For
those lattice-based PAEKS instantiations [13, 17], the sender and receiver use the
word independent SPHF [6] to calculate the same shared key K, and authenti-
cate the keyword by expanding the keyword with K, then PEKS [5] is used for
the expanded keyword. Unfortunately, computing the shard key via lattice-based
SPHF leads to a super-polynomial modulus q (see Sect.4 for details).

Technically speaking, our new lattice-based PAEKS schemes use totally dif-
ferent construction methodology from previous PAEKS schemes [22, 23, 17, 13].
In our scheme, the sender and receiver no longer calculate the shared key to en-
crypt and authenticate keywords. Our intuition is to use a variant of the lattice-
based anonymous identity-based encryption (IBE) [1] to achieve encryption and
authentication. In detail, for keyword encryption, we treat the keyword as an
identity and encrypt it by running the encryption algorithm of the IBE scheme.
For keyword authentication, we take the user’s secret key and keyword as the
master secret key and identity in IBE, respectively, then authenticate the key-
word by running the key generation algorithm of the IBE scheme. Consequently,
the modulus q in our schemes could be of polynomial size.

Following the above methodology, we construct our lattice-based PAEKS
scheme as follows. First of all, the sender and receiver respectively run the setup
algorithm of IBE to generate the sender’s public/secret key pair as PKS =
(A,Aw,US)/SKS = TA and the receiver’s public/secret key pair as PKR =
(B,Bw)/SKR = TB, where A,Aw,B,Bw ← Zn×mq , US ← Zn×nq , TA and TB

are short bases. Then, the PAEKS, Trapdoor and Test algorithms are as follows:

PAEKS. Given PKR, PKS , SKS and a ciphertext keyword ck, the sender does

1. Ciphertext keyword encryption.

Cu = U>SSS + errorS , Cck = (A‖B‖Aw +H(ck)G)>SS + error′S .

2. Ciphertext keyword authentication. Use the sender’s secret key TA to
generate a matrix ES such that each column of ES is a short vector and
[A‖B‖Bw +H(ck)G]ES = US .

Finally, output the PAEKS ciphertext as Ct = (Cu,Cck,ES).
Trapdoor. Given PKR, PKS , SKR and a target keyword tk, the receiver does

1. Target keyword encryption.

Tu = U>SSR + errorR, Ttk = (A‖B‖Bw +H(tk)G)>SR + error′R.
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2. Target keyword authentication. Use the receiver’s secret key TB to gen-
erate a matrix ER such that each column of ER is a short vector and
[A‖B‖Aw +H(tk)G]ER = US .

Finally, output the PAEKS trapdoor as Tr = (TU ,Ttk,ER).
Test. Given Ct = (Cu,Cck,ES) and Tr = (Tu,Ttk,ER), if ck = tk, then the

server can check that each entry in Cu (resp., Tu) is close to the correspond-
ing entry in E>RCck (resp., E>STtk), i.e.,

(Cu = U>SSS + errorS) ≈ (E>RCck = U>SSS + E>R · error′S),

(Tu = U>SSR + errorR) ≈ (E>STtk = U>RSS + E>R · error′R).

Unfortunately, so far, the above PAEKS construction can provide neither
ciphertext privacy nor trapdoor privacy. In details, given Ct = (Cu,Cck,ES),
(Cu,Cck) will not leak the information of ck, since the underlying IBE [1] satis-
fies ciphertext anonymity, i.e., an attacker cannot extract the id from the cipher-
text without the secret key corresponding to id. However, ES cannot hide ck,
since [1] doesn’t achieve secret key anonymity. In other words, an attacker can
extract the id from the corresponding secret key. Specifically, the attacker picks
a guessing keyword ck′, then decides whether the guess is correct by checking if

[A‖B‖Bw +H(ck′)G]ES
?
= US . (1)

For the same reason, ER in trapdoor Tr cannot hide the target keyword tk.
It seems that if the underlying lattice-based IBE achieves both ciphertext

anonymity and secret key anonymity, then ES (resp., ER) will not expose ck
(resp., tk). Unfortunately, we are not aware of any lattice-based IBE provid-
ing both properties. In fact, there is an inherent conflict between secret key
anonymity of IBE and the public key setting: given an IBE secret key skid of
id, an attacker can pick a guessing identity id′ and generate the guessing IBE
ciphertext ctid′ under id′ using public parameter, then decrypt ctid′ by using
skid. If the decryption succeeds, then the attacker knows that id = id′.

Now, in order to hide ck (resp., tk) in ES (resp., ER), we try to make the
attacker lose the ability to guess keywords using Equ.(1), as shown below:

PAEKS. The sender generates Cu,Cck as above, then samples ES such that
[A‖B‖Bw+H(ck)G]ES = Cu. Finally, it erases Cu and outputs the PAEKS
ciphertext as Ct = (Cck,ES).

Trapdoor. The receiver generates Tu,Ttk as above, then samples ER such that
[A‖B‖Aw+H(tk)G]ER = Tu. Finally, it erases Tu and outputs the PAEKS
trapdoor as Tr = (Ttk,ER).

Test. Given Ct = (Cck,ES) and Tr = (Ttk,ER), if ck = tk, the server can check
that each entry in E>RCck is close to the corresponding entry in T>tkES , since

E>RCck ≈ET
R · (A‖B‖Aw +H(ck)G)>SS ≈

(
S>RU>S

)
· SS ,

T>tkES ≈S>R(A‖B‖Bw +H(tk)G) ·ES ≈ S>R ·
(
U>SSS

)
.
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In this way, because Cu (resp., Tu) is kept secret from the attacker, he/she
can no longer extract ck (resp., tk) from ES (resp., ER) by picking a guessing
ciphertext keyword ck′ (resp., guessing target keyword tk′) and checking whether

[A‖B‖Bw +H(ck′)G]ES
?
= Cu

(
resp., [A‖B‖Bw +H(tk′)G]ER

?
= Tu

)
.

So far, we have introduced the main idea of our lattice-based PAEKS schemes.
In our concrete PAEKS schemes in Sect.5 and Sect.6, we will choose two ma-
trices DA,DB ∈ Zn×mq additionally, and add DA into PKS and DB into PKR

respectively. Meanwhile, the ciphertext and trapdoor will be modified accord-
ingly. These additional matrices serve for the security proof of our schemes.

2 Preliminaries

For a vector t, let ‖t‖ denote its `2 norm. For a matrix T ∈ Zn×m, let T[i, j]
denote its (i, j)-th entry, let ‖T‖ denote the maximum length of its column

vectors, let T̃ denote its Gram-Schmidt orthogonalization, and let s1(T) :=
sup‖u‖=1 ‖Tu‖. Let [A‖B] and [A; B] denote horizontal and vertical concate-
nation of vector and/or matrices, respectively. Let DΛ,σ represent the standard
discrete Gaussian distribution over Λ with Gaussian parameter σ.

Background on lattices. Let B = {b1 · · · bm} ⊂ Rm consist of m linearly in-
dependent vectors. The m-dimensional full-rank lattice Λ generated by the basis
B is the set Λ = L(B) := {

∑m
i=1 xibi | xi∈Z}. For any integers n,m and q ≥ 2, a

matrix A ∈ Zn×mq and a vector u ∈ Znq , we define L⊥q (A) := {z ∈ Zm : A·z = 0n
mod q} and Lu

q (A) := {z ∈ Zm : A · z = u mod q}.

Discrete Gaussian Distribution. Let DΛ,σ represent the standard discrete
Gaussian distribution over Λ with Gaussian parameter σ. We recall some proper-
ties of the discrete Gaussian distribution. Let Λ be an m-dimensional lattice. For
any vector c ∈ Rm and any parameter σ ∈ R>0, define ρσ,c(x) = exp(−π ‖x−c‖

2

σ2 )
and ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). The discrete Gaussian distribution over Λ with

center c and Gaussian parameter σ is DΛ,σ,c =
ρσ,c(y)

ρσ,c(Λ) for ∀y ∈ Λ. If c = 0, we

conveniently use ρσ and DΛ,σ. We recall some properties of the discrete Gaussian
distribution.

Lemma 1 ([14]). Let n,m, q > 0 denote integers with q a prime, m ≥ 2ndlog qe.
Let σ denote a real with σ ≥ ω(

√
logm). For A ← Zn×mq and e ← DZm,σ, the

distribution of u = Ae mod q is statistically close to uniform over Znq . For a
fixed u ∈ Znq , the conditional distribution of e ← DZm,σ, given Ae = u mod q
for an A← Zn×mq is DΛu

q (A),σ with all but a negligible probability.

Lemma 2 ([14]). Λ is an m-dimensional lattice and T is its basis. Assume

σ ≥ ‖T̃‖ · ω(
√

logm), then Pr[‖x‖ > σ
√
m : x← DΛ,σ] ≤ negl(m).



PAEKS from LWE 7

Sampling Algorithms. We review some trapdoor generation algorithms and
sampling algorithms in the following lemmas.

Lemma 3. Let n,m, q > 0 be positive integers with q a prime,

– [3, 19, 2] there’s a PPT algorithm TrapGen that when m ≥ 6ndlog qe, outputs
a pair (A,TA)∈Zn×mq ×Zm×m such that A is full rank and statistically close

to uniform and TA is a basis for Λ⊥q (A) satisfying ‖T̃A‖ = O(
√
n log q).

– [19] when m ≥ ndlog qe, there exists a fixed full rank matrix G ∈ Zn×mq such

that the lattice Λ⊥q (G) has a basis TG ∈ Zm×m with ‖T̃G‖ ≤
√

5.

The algorithms in the following lemma can be extended from a vector u to a
matrix U by processing each column of U separately then combining the results.

Lemma 4. Let integers q > 2 and m > n, then we have

– [14] a PPT algorithm SamplePre(A,TA,u, σ) that inputs a full rank matrix
A ∈ Zn×mq , a basis TA ∈ Zm×m of Λ⊥q (A), a vector u ∈ Znq , and a Gaus-

sian parameter σ > ‖T̃A‖ · ω(
√

logm), outputs a vector e ∈ Zm distributed
statistically close to DΛu

q (A),σ.

– [1] a PPT algorithm SampleLeft(A,B,u,TA, σ) that inputs a full rank ma-
trix A ∈ Zn×mq , a matrix B ∈ Zn×m̄q , a vector u ∈ Znq , a basis TA ∈ Zm×m

of Λ⊥q (A), and a Gaussian parameter σ > ‖T̃A‖ ·ω(
√

log(m+ m̄)), outputs
a vector e ∈ Zm+m̄ distributed statistically close to DΛu

q ([A‖B]),σ.

– [1] a PPT algorithm SampleRight(A,B,R,u,TB, σ) that inputs matrices
A,B ∈ Zn×mq , where B is full rank, a matrix R ∈ Zm×mq , a vector u ∈ Znq , a

basis TB of Λ⊥q (B), and a Gaussian parameter σ>‖T̃B‖·s1(R)·ω(
√

logm),
outputs e ∈ Z2m distributed statistically close to DΛu

q ([A‖AR+B]),σ.

In this paper, we set σr =
√
n log q ·ω(

√
logm), let Dm×m denote the distribution

on matrices in Zm×m defined as (DZm,σr )
m, conditioned on the resulting matrix

being Zq-invertible. For a m-dimension lattice Λ⊥q (A) and i = 1, 2, . . . ,m, sample
c ← DΛ⊥q (A),σ repeatedly until c is linearly independent of {c1, · · · , ci−1} and

set ci ← c, then transform {c1, · · · , cm} into a basis TA of Λ⊥q (A) using Lemma

7.1 in [18]. The distribution of this TA is denoted as D(Λ⊥q (A), σ).

Lemma 5 ([9]). There is an efficient algorithm SampleRwithBasis(A, σ) →
(R,TA·R−1) that takes as input a full rank matrix A ∈ Zn×mq and a Gaussian

parameter σ ≥
√
n log q ·ω(

√
logm), outputs an Zq-invertible matrix R ∈ Zm×m

sampled from a distribution statistically close to Dm×m, and a basis TA·R−1 ∈
Zm×m distributed statistically close to D(Λ⊥q (A ·R−1), σ).

The following lemma can be obtained by generalizing Lemma 13 in [1].
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Lemma 6 (leftover hash lemma [1]). Let H = {h : X → Y }h∈H be a univer-
sal hash family. Let f : X → Z be some function. Let T1, . . . , Tk be independent
random variables taking values in X, let γ := maxki=1(maxti Pr[Ti = ti]), then
4 ((h, h(T ), f(T )); (h, UY , f(T ))) ≤ 1

2 ·
√
γ(T ) · |Y | · |Z|. Specifically, suppose q

is prime, m > (n + n̄) log q + ω(log n), k = poly(n). Let A, B, R be matri-
ces chosen uniformly from Zn×mq , Zn×kq , {−1, 1}m×k mod q, respectively. For all

matrices W in Zm×n̄q , the distribution (A,AR,R>W) is statistically close to

the distribution (A,B,R>W).

Lemma 7. Let R be a m× k matrix chosen at random from {−1, 1}m×k, then
there exists a universal constant C such that Pr[s1(R) > C

√
m+ k] < e−m.

Full Rank Difference Encoding (FRD) We use an encoding function to map
keywords in Znq to matrices in Zn×nq .

Definition 1 ([1, 11]). Let q be a prime and n a positive integer. A function
H : Znq → Zn×nq is a full-rank difference (FRD) map if: for all distinct x,y ∈ Znq ,
the matrix H(x)−H(y) is full rank and H is computable in polynomial time.

Learning with Errors (LWE) Assumption. In security proof, we need the
LWE assumption as follows, which can be obtained by combining [24, 4]. For an
α∈ (0, 1) and a prime q, let Ψ̄α denote the distribution over Zq of the random
variable bqXe mod q, where X is a normal random variable with mean 0 and
standard deviation α√

2π
.

Assumption 1 ([24, 4]) Consider a prime q, integers n, n̄,m, a real α ∈ (0, 1)
such that αq > 2

√
n, and a PPT algorithm A, the advantage for the LWE prob-

lem LWEn,n̄,m,q,α of A is defined as |Pr[A(A,A>S+E) = 1]−Pr[A(A,V) = 1]|,
where A ← Zn×mq , S ← Ψ̄n×n̄α , E ← Ψ̄m×n̄α , V ← Zm×n̄q . The LWE assumption
holds if the above advantage is negligible for all PPT A.

Lemma 8 ([1]). Let t be some vector in Zm and let x← Ψ̄mα , then the quantity
t>x treated as an integer in [0, q−1] satisfies |t>x| ≤ ‖t‖qαω(logm)+‖t‖

√
m/2

with all but negligible probability in m.

3 System and Security Models of PAEKS

3.1 System Model of PAEKS

There are three entities (sender, receiver, server) in the PAEKS system.

– Setup(1λ)→ PP : Given a security parameter λ, the algorithm generates the
global public parameter PP .

– KeyGenS(PP )→ (PKS , SKS): Given PP , the sender runs this algorithm to
generate its public/secret key pair (PKS , SKS).
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– KeyGenR(PP )→ (PKR, SKR): Given PP , the receiver runs this algorithm
to generate its public/secret key pair (PKR, SKR).

– PAEKS(PKR, PKS , SKS , ck)→ Ct: Given PKR, PKS , SKS and a cipher-
text keyword ck, the sender generates the ciphertext Ct embedded with ck.

– Trapdoor(PKR, PKS , SKR, tk)→Tr: Given PKR, PKS , SKR and a target
keyword tk, the receiver generates the trapdoor Tr of tk.

– Test(Ct, Tr)→ 0 or 1: Given Ct, Tr, the server runs this algorithm to check
whether Ct and Tr embed with the same keyword. If so, it outputs 1; oth-
erwise 0.

3.2 Security Model of PAEKS

We introduce two security models for PAEKS. The first model that captures
ciphertext privacy, i.e., the ciphertext indistinguishability against fully chosen
keyword to cipher-keyword attacks (fully CI security), is defined by [23]. The
second model that captures trapdoor privacy, i.e., the trapdoor indistinguisha-
bility against fully chosen keyword to target-keyword attacks (fully TI security),
was roughly mentioned in [23], and here we formally define it.

Fully CI security.

– Setup: Given a security parameter, the challenger C runs the Setup algo-
rithm to generate PP , then runs KeyGenS,KeyGenR to generate the chal-
lenge sender’s key pair (PKS , SKS) and the challenge receiver’s key pair
(PKR, SKR) respectively, finally sends PP , PKS , PKR to A.

– Phase 1: A can submit polynomial queries to the ciphertext oracle OC and
the trapdoor oracle OT as follows.

OC : Given a receiver’s public key P̃KR (not necessarily the challenge re-
ceiver’s public key PKR) and a ciphertext keyword ck, C returns to A
with the ciphertext Ct← PAEKS(P̃KR, PKS , SKS , ck).

OT : Given a sender’s public key P̃KS (not necessarily the challenge sender’s
public key PKS) and a target keyword tk, C returns to A with the

trapdoor Tr ← Trapdoor(PKR, P̃KS , SKR, tk).

– Challenge: A chooses two challenge ciphertext keywords ck∗0 and ck∗1 with
the restriction that neither (PKS , ck

∗
0) nor (PKS , ck

∗
1) has been queried on

OT . Then, C picks a bit θ ∈ {0, 1} randomly, and returns to A with the
challenge ciphertext Ct∗ ← PAEKS(PKR, PKS , SKS , ck

∗
θ).

– Phase 2: It is the same as Phase 1 with the restriction mentioned in the
Challenge phase.

– Output: A outputs a guess bit θ′ for θ. If θ′ = θ, then A wins. A’s advantage

in winning the game is defined as AdvFullyCIA (λ) =
∣∣∣Pr[θ′ = θ]− 1

2

∣∣∣.
Definition 2. If no PPT adversary can win the above fully CI security game
with a non-negligible advantage, then the PAEKS scheme is fully CI secure.
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Fully TI security.

– Setup: It is the same as Setup phase in the fully CI security game.
– Phase 1: It is the same as Phase 1 in the fully CI security game.
– Challenge: The adversary A chooses two challenge keywords tk∗0 and tk∗1

with the restriction that neither (PKR, tk
∗
0) nor (PKR, tk

∗
1) has been queried

on OC . Then, the challenger C picks a bit θ ∈ {0, 1} randomly, and sends to
A the challenge trapdoor Tr∗θ ← Trapdoor(PKR, PKS , SKR, tk

∗
θ).

– Phase 2: It is the same as Phase 1 with the restriction mentioned in the
Challenge phase.

– Output: A outputs a guess bit θ′ for θ. If θ′ = θ, then A wins. A’s advantage

in winning the game is defined as AdvFullyTIA (λ) =
∣∣∣Pr[θ′ = θ]− 1

2

∣∣∣.
Definition 3. If no PPT adversary can win the above fully TI security game
with a non-negligible advantage, then the PAEKS scheme is fully TI secure.

One/Multi-User Setting. If we limit P̃KR = PKR and P̃KS = PKS in the
above security games, i.e., the adversary can only obtain ciphertexts from the
challenge sender to the challenge receiver by oracle OC and trapdoors from the
challenge receiver to the challenge sender by oracle OT , then we call it the one-
user setting ; Otherwise, we call it the multi-user setting.
Selectively Fully CI/TI Security. If the adversary A has to initiate the
challenge ciphertext keywords ck∗0 and ck∗1 (resp., challenge target keywords tk∗0
and tk∗1) in the setup phase before being given PP in the fully CI (resp., fully TI)
security game, we call it selectively fully CI (resp.,selectively fully TI) security.
CI/TI, MCI/MTI Security. The CI security is similar to the fully CI security,
except that the adversary can submit neither (PKR, ck

∗
0) nor (PKR, ck

∗
1) to the

oracle OC . If the adversary is allowed to submit two challenge keyword tuples
(ck∗0,i)i∈[1,I] and (ck∗1,i)i∈[1,I] instead of two challenge keywords ck∗0 , ck

∗
1 in the

CI security model, then it is called the MCI security. Similarly, the TI security
and MTI security can be defined.
Relation between fully CI/fully TI and MCI/MTI security. As it was
shown in [23], the fully CI security implies the MCI security. Similarly, we can
prove that the fully TI security implies the MTI security and we omit the proof
due to space limitations.

4 Analysis of Liu et al. [17] and Emura [13]

Both Liu et al. [17] and Emura [13] provided generic constructions for the
PAEKS scheme. The basic methodology of [17] and [13] is the same, i.e., each
keyword is converted into an extended keyword using the shared key calculated
by the word-independent SPHF, and PEKS is used for the extended keyword1.
In this section, we analyze the issues in [17] and [13] from the perspective of the

1
The difference is that Liu et al. use SPHF twice, while Emura uses SPHF once.
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modulus q in the lattice-based instantiations, system model, and security model.

Modulus q in the lattice-based instantiations. In the lattice-based instan-
tiations of Liu et al. [17] and Emura [13], in order for the sender and receiver
to correctly compute the same shared key using word-independent SPHF, the
modulus q should be super-polynomial. The details are as follows.

In [17], the instantiation uses the word-independent SPHF (with approximate
correctness) based on LWE in [6] to compute the shared key. Specifically, let
R(x) = b2x/qe mod 2 be a deterministic rounding function, let m=O(n log q),
let Au ∈ Zn×mq , let t =

√
mn · ω(

√
log n), let s ≥ ηε(Λ

⊥(Au)) for some ε =
negl(n), take s = O(

√
n) (see Lemma 2.11 [6]). The sender picks kS ← DmZ,s,

sS,i ← Znq , eS,i ← DmZ,t, and computes part of its public/secret key pair as

pkS =
(
pS = AT

ukS , {cS,i = Au · sS,i + eS,i}i
)
, skS = (kS , {sS,i}i) .

The receiver picks kR ← DmZ,s, sR,i ← Znq , eR,i ← DmZ,t, and computes part of
its public/secret key pair as

pkR=
(
pR = AukR, {cR,i=AT

u · sR,i + eR,i}i
)
, skR=(kR, {sR,i}i) .

Then, in the PAEKS algorithm, for i = 1, . . . , κ, the sender computes

hS,i ← R(c>R,i · kS mod q), pS,i ← R(s>S,i · pR mod q),

and yS,i = hS,i · pS,i, then sets yS = yS,1yS,2 · · · yS,κ ∈ {0, 1}κ as the shared key.
In the Trapdoor algorithm, for i = 1, . . . , κ, the receiver computes

hR,i ← R(c>S,i · kR mod q) and pR,i ← R(s>R,i · pS mod q).

and yR,i = hR,i · pR,i, then sets yR=yR,1yR,2 · · · yR,κ∈{0, 1}κ as the shared key.
Note that

c>R,i · kS =(s>R,iAu + e>R,i) · kS = s>R,i · pS + e>R,i · kS ≈ s>R,i · pS ,
c>S,i · kR =(s>S,iAu + e>S,i) · kR = s>S,i · pR + e>S,i · kR ≈ s>S,i · pR,

where kR, kS , eS,i, eS,i are short vectors, s>R,i·pS and s>S,i·pR are almost uniform
over Zq. Therefore, hS,i = pR,i and hR,i = pS,i hold except with probability
≈2|e>R,i · kS |/q and≈2|e>S,i · kR|/q, respectively. Here

|e>R,i · kS |, |e>S,i · kR| ≤ 2t
√
m · s

√
m ≤ O(m1.5n · ω(

√
log n)).

The sender and receiver must calculate the same shared key with overwhelming
probability, otherwise the correctness of the scheme fails. Therefore, it requires
that hS,i = pR,i and pS,i = hR,i for each i ∈ [1, κ], except with negligible
probability (i.e., 2−n̂ for some n̂ = Θ(λ)). That is,

2|e>R,i · kS |
q

,
2|e>S,i · kR|

q
≤ O(m1.5n · ω(

√
log n))

q
≤ 2−n̂.
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Hence, [17]’s instantiation requires an extra parameter constraint

q ≥ 2n̂ ·O(m1.5n · ω(
√

log n)). (2)

Therefore, q is super-polynomial in the security parameter λ because n̂ = Θ(λ).
Emura [13] didn’t give a specific instantiation, but claimed that it’s feasible

to initiate with the word-independent SPHF (with statistical correctness) based
on LWE in [6] to compute the shared-key correctly2. However, as it was claimed
in [6],“We remark that our word-independent SPHF uses a super-polynomial
modulus q to get statistical correctness. It seems hard to construct such an SPH-
F for a polynomial modulus, as a word-independent SPHF for an IND-CPA
encryption scheme directly yields a one-round key exchange and we do not know
of any lattice-based one-round key exchange using a polynomial modulus”.

System model. In the previous PAEKS system model [15, 20, 22, 23], the Setup
algorithm is defined by inputting a security parameter, and outputting the pub-
lic parameter PP . The key generation algorithm GenKeyS (resp., GenKeyR),
which takes PP as input, is defined to generate sender’s (resp., receiver’s)
key pair. However, as shown in [13], [17] needs a completely trusted Setup to
run the key generation algorithm of a public key encryption (pkPKE, dkPKE) ←
PKE.KeyGen(1λ), then only outputs pkPKE and “erases” dkPKE, otherwise dkPKE
can be used to break the underlying membership problem. To avoid the trusted
setup assumption, Emura [13] adopted the designated-receiver setting, where the
sender inputs a receiver’s public key to generate its own public/secret key pair.
In this case, the sender needs to generate and store a corresponding public/secret
key pair for each designated receiver. Thus, the computation and storage burden
of the sender scales linearly with the number of designated receivers.

Security Model. In Theorem 3.3 of Liu et al. [17], they claimed that a PAEKS
with CI and TI security achieves MCI (resp. MTI) security if its PAEKS (resp.
Trapdoor) algorithm is probabilistic.

However, Emura [13] showed that probabilistic Trapdoor algorithm is not
sufficient to support MTI security and hence Liu et al. [17] did not provide a
convincing proof to the MTI security of their scheme. This is because proba-
bilistic Trapdoor algorithm does not guarantee trapdoor unlinkability that hides
information whether two trapdoors contain the same keyword or not.

In fact, Liu et al. [17] failed to provide a convincing proof for the MCI securi-
ty as well. Similarly, probabilistic PAEKS algorithm is only a necessary condition
for achieving MCI security, but not a sufficient condition, since it cannot sup-
port ciphertext unlinkability that hides the information whether two ciphertexts
contain the same keyword or not. For example, the PAEKS scheme [15] with
CI security has a probabilistic PAEKS algorithm, but [22] has proved that [15]
cannot achieve MCI security.

2
As shown by Theorems 2 and 3 in [13], the security of their generic construction requires the word-
independent SPHF to satisfy both (statistical) correctness and adaptive smoothness. However,
the word-independent SPHF in [6] cannot satisfy both properties at the same time. Hence, the
instantiation in Emura [13] cannot be proven secure.
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5 Our First PAEKS Scheme

Now, we construct our first lattice-based PAEKS scheme that can be proven
selectively fully CI/TI secure under the one-user setting in the standard model.

Setup(λ): On input a security parameter λ, this algorithm sets the primitive
matrix G with the public trapdoor TG (see Lemma 3), chooses a full-rank
difference map H : Znq → Zn×nq , sets the parameters n,m, q, α, σ as specified
in Sect.5.2. Then, it returns PP = {n,m, q, α, σ,H,G}.

KeyGenS(PP )→ (PKS , SKS): On input PP , the sender goes as follows.

1. Run (A,TA)← TrapGen(n,m, q).

2. Choose US ← Zn×nq and DA,Aw ← Zn×mq .

3. Return PKS = (A,US ,DA,Aw) and SKS = TA.

KeyGenR(PP )→ (PKR, SKR): On input PP , the receiver goes as follows.

1. Run (B,TB)← TrapGen(n,m, q).

2. Choose DB ,Bw ← Zn×mq .

3. Return PKR = (B,DB ,Bw) and SKR = TB.

PAEKS(PKR, PKS , SKS , ck)→ Ct: On input PKR, PKS , SKS and a cipher-
text keyword ck, the sender picks SS ← Ψ̄n×lSα and works as follows.

1. Compute Ca = A>SS + EA, where EA ← Ψ̄m×lSα .

2. Compute Cb = B>SS + R>BEA, where RB ← {−1, 1}m×m.

3. Compute Cd = D>ASS + R>DEA, where RD ← {−1, 1}m×m.

4. Compute Cw = [Aw +H(ck)G]
>

SS+R>A,wEA, where RA,w ← {−1, 1}m×m.

5. Compute Cu = U>SSS + EU , where EU ← Ψ̄n×lSα .

6. Sample ES ← SampleLeft(A,B‖DB‖[Bw + H(ck)G],Cu,TA, σ) such
that ES ∈ Z4m×lS and [A‖B‖DB‖Bw +H(ck)G]ES = Cu.

7. Return Ct = (Ca,Cb,Cd,Cw,ES) as the ciphertext.

Trapdoor(PKR, PKS , SKR, tk)→ Tr: Given PKR, PKS , SKR and a trapdoor
keyword tk, the receiver picks SR ← Ψ̄n×lRα , then works as follows.

1. Compute Ta = A>SR + E′A, where E′A ← Ψ̄m×lRα .

2. Compute Tb = B>SR + R′>B E′A, where R′B ← {−1, 1}m×m.

3. Compute Td = D>BSR + R′>D E′A, where R′D ← {−1, 1}m×m.

4. Compute Tw = [Bw +H(tk)G]
>

SR+R>B,wE′A, where RB,w ← {−1, 1}m×m.

5. Compute Tu = USSR + E′U , where E′U ← Ψ̄n×lRα .

6. Sample ER ← SampleLeft(B,A‖DA‖[Aw + H(tk)G],TU ,TB, σ) such
that ER ∈ Z4m×lR and [B‖A‖DA‖Aw +H(tk)G]ER = Tu.

7. Return Tr = (Ta,Tb,Td,Tw,ER) as the trapdoor.

Test(Ct, Tr): Given Ct and Tr, the server computes R = E>R[Cb; Ca; Cd; Cw]−
[T>a ‖T>b ‖T>d ‖T>w ]ES and checks whether |R[i, j]| < bq/4c for each i ∈ [1, lR],
j ∈ [1, lS ]. If so, it returns 1, otherwise 0.
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Correctness. If ck = tk, then we have

R =E>R[Cb; Ca; Cd; Cw]− [T>a ‖T>b ‖T>d ‖T>w ]ES

=E>R [B‖A‖DA‖Aw +H(ck)G]>SS + E>R [RB‖I‖RD‖RA,w]>EA

− S>R [A‖B‖DB‖Bw +H(tk)G]ES −E′>A [I‖R′B‖R′D‖RB,w]ES

=T>u SS − S>RCu + E>R [RB‖I‖RD‖RA,w]>EA −E′>A [I‖R′B‖R′D‖RB,w]ES

=S>RU>SSS − S>RU>SSS + error = error,

error=E>R [RB‖I‖RD‖RA,w]>EA−E′>A [I‖R′B‖R′D‖RB,w]ES+E′>U SS−S>REU .
By Lemmas 2, 4, 7, 8, we have | (E′>U SS)[i, j] |, | (S>REU )[i, j] | ≤

√
n(αq)2ω(log n),

and |
(
E>R [RB‖I‖RD‖RA,w]>EA

)
[i, j]|, |

(
E′>A [I‖R′B‖R′D‖RB,w]ES

)
[i, j]| ≤ σ ·

mqαω(logm) +O(σm3/2). Therefore, |error[i, j]| ≤ σmqαω(logm) +O(σm3/2)
for every i ∈ [1, lR], j ∈ [1, lS ].

5.1 Security proof

Intuitively, during the selectively fully CI security proof, the simulator will
choose A randomly, run (DB ,TDB

)← TrapGen(n,m, q) and set Aw=AR∗A,w−
H(ck∗)G. For a ciphertext query of keyword ck (even the challenge keyword
ck∗), the simulator can compute ES using TDB

, and answer any ciphertext query
successfully. For a trapdoor query of keyword tk 6= ck∗, note that Aw+H(tk)G =
AR∗B,w + (H(tk)−H(ck∗))G, so the simulator can use TG to compute ER and
answer the trapdoor query. Therefore, our first scheme can be proven selectively
fully CI secure. The details are as follows.

Theorem 1. If the decisional-LWE problem is hard, then our first PAEKS
scheme is selectively fully CI secure in one-user setting in the standard model.

Proof. We define a series of games between a simulator B and an adversary A
who plays the selectively fully CI security game. At the beginning of each game,
A chooses two challenge cipher-keywords ck∗0 and ck∗1 . The first and last games
are the real security game with challenge ciphertext PAEKS(PKR, PKS , SKS , ck

∗
0)

and PAEKS(PKR, PKS , SKS , ck
∗
1), respectively. In other games, we use algo-

rithms K̂eyGenS , K̂eyGenR, P̂AEKS
∗
, P̂AEKS and ̂Trapdoor alternatively. During

these games, the adversary A can query neither ck∗0 nor ck∗1 on OT .

Game0: B runs the Setup, KeyGenS , KeyGenR algorithms to setup the system,
answers A’s ciphertext queries and trapdoor queries using the PAEKS and
Trapdoor algorithms respectively, generates the challenge ciphertext using
the PAEKS algorithm with ck∗0 .

Game1: Let ck∗ = ck∗0 , B runs the Setup, K̂eyGenS , K̂eyGenR to setup the system,

and answers ciphertext queries and trapdoor queries using the P̂AEKS and
̂Trapdoor algorithms respectively. Then B generates the challenge ciphertext

using the P̂AEKS
∗

algorithm.
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Game2: Let ck∗ = ck∗0 , B runs the Setup, K̂eyGenS , K̂eyGenR to setup the system,

and answers ciphertext queries and trapdoor queries using the P̂AEKS and
̂Trapdoor algorithms respectively. Then B generates the challenge cipher-

text by selecting Ca,Cb,Cw,Cu uniformly random and samples ES from
DΛCu

q ([A‖B‖DB‖Bw+H(ck∗0 )G]),σ.

Game3: Let ck∗ = ck∗1 , B runs the Setup, K̂eyGenS , K̂eyGenR to setup the sys-

tem, and answers ciphertext queries and trapdoor queries using P̂AEKS and
̂Trapdoor algorithms respectively. Then B generates the challenge cipher-

text by selecting Ca,Cb,Cw,Cu uniformly random and samples ES from
DΛCu

q ([A‖B‖DB‖Bw+H(ck∗1 )G]),σ.

Game4: Let ck∗ = ck∗1 , B runs Setup, K̂eyGenS , K̂eyGenR to setup the sys-

tem, and answers ciphertext queries and trapdoor queries using P̂AEKS and
̂Trapdoor algorithms respectively. Then B generates the challenge ciphertext

using the P̂AEKS
∗

algorithm.
Game5: B runs the Setup, KeyGenS , KeyGenR algorithms to setup the system,

answers A’s ciphertext queries and trapdoor queries using the PAEKS and
Trapdoor algorithms respectively, generates the challenge ciphertext using
the PAEKS algorithm with ck∗1 .

Now, we define the algorithms K̂eyGenS , K̂eyGenR, P̂AEKS
∗
, P̂AEKS, ̂Trapdoor.

K̂eyGenS(PP, ck∗): On input PP and ck∗,

1. Choose A← Zn×mq and US ← Zn×nq .
2. Choose R∗D,R

∗
A,w←{−1, 1}m×m, set DA=AR∗D, Aw=AR∗A,w−H(ck∗)G.

3. Return PKS = (A,US ,DA,Aw), SKS = (R∗D,R
∗
A,w).

K̂eyGenR(PP, PKS , ck
∗): On input PP, PKS and ck∗,

1. Run (DB ,TDB
)← TrapGen(n,m, q).

2. Choose R∗B ,R
∗
B,w←{−1, 1}m×m, set B=AR∗B , Bw=AR∗B,w−H(ck∗)G.

3. Return PKR = (B,DB ,Bw), SKR = (R∗B ,R
∗
B,w,TDB

).

̂PAEKS∗(PKR, PKS , SKR, SKS , ck
∗): On input PKR, PKS , SKR, SKS and ck∗,

pick SS ← Ψ̄n×lSα , do the following

1. Compute Ca = A>SS + EA, where EA ← Ψ̄m×lSα .
2. Compute Cb = B>SS + R∗TB EA = R∗TB (A>SS + EA).
3. Compute Cd = D>ASS + R∗TD EA = R∗TD (A>SS + EA).

4. Compute Cw = [Aw +H(ck∗)G]
>

SS + R∗TA,wEA = R∗TA,w(A>SS + EA).

5. Compute Cu = U>SSS + EU , where EU ← Ψ̄n×lSα .
6. Sample ĒS ← SampleLeft(DB ,A‖B‖[Bw + H(ck∗)G],Cu,TDB

, σ) such
that [DB‖A‖B‖Bw+H(ck∗)G]ĒS = [DB‖A‖B‖AR∗B,w]ĒS = Cu. Parse

ĒS = (ES,2; ES,3; ES,1; ES,4) and set ES = (ES,1; ES,2; ES,3; ES,4).
7. Return the ciphertext Ct∗ = (Ca,Cb,Cd,Cw,ES).

P̂AEKS(PKR, PKS , SKR, SKS , ck): Given PKR, PKS , SKR, SKS and ck, com-
pute Ca,Cb,Cd,Cw,Cu as in the PAEKS algorithm, then
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1. Sample ĒS ← SampleLeft(DB ,A‖B‖[Bw + H(ck)G],Cu,TDB
, σ) such

that ĒS ∈ Z4m×lS and [DB‖A‖B‖Bw +H(ck)G]ĒS = Cu. Parse ĒS =
(ES,3; ES,1; ES,2; ES,4) and set ES = (ES,1; ES,2; ES,3; ES,4).

2. Return the ciphertext Ct = (Ca,Cb,Cd,Cw,ES).

̂Trapdoor(PKR, PKS , SKR, SKS , tk): On input PKR, PKS , SKR, SKS and tk,
if tk ∈ {ck∗0 , ck∗1}, return⊥; else compute Ta,Tb,Td,Tw,Tu as in the Trapdoor
algorithm. Observe that Aw +H(tk) = AR∗A,w + (H(tk)−H(ck∗))G, do the
following

1. Sample (ER,1; ER,3)←DZ2m×lR ,σ, compute T′u=Tu−[B‖DA]·(ER,1; ER,3),
sample (ER,2; ER,4)←SampleRight(A, (H(ck∗)−H(tk))G,R∗A,w,T

′
u,TG, σ)

and set ER = (ER,1; ER,2; ER,3; ER,4).
2. Return trapdoor Tr = (Ta,Tb,Td,Tw,ER).

Next, we gradually prove that games (Gamei,Gamei+1) are indistinguishable for
i = 0, 1, 2, 3, 4.

Lemma 9. For i = 0, 4, Gamei and Gamei+1 are statistically indistinguishable.

Proof. We only proof the case when i = 0, the proof for i = 4 is similar. First,

we prove that PKS , PKR and challenge ciphertext returned by the K̂eyGenS ,

K̂eyGenR and P̂AEKS
∗

are statistically close to those returned by the KeyGenS ,
KeyGenR and PAEKS. Specifically, by Lemma 3, the distribution of A,DB in
Game0 and Game1 are statistically indistinguishable. By Lemmas 3 and 6, the
distribution of

(
A, (DA,Aw,B,Bw), (R∗TD ,R∗TA,w,R

∗T
B ,R∗TB,w)EA

)
in Game0 and

Game1 are statistically indistinguishable. Therefore, the distributions of PKS

and PKR in these two games are indistinguishable. By Lemma 4, the distribution
of ES in Game0 and Game1 are statistically indistinguishable. Therefore, the
distributions of challenge ciphertext in these two games are indistinguishable.

Next, we only need to show that ciphertexts and trapdoors output by the

P̂AEKS and ̂Trapdoor are statistically close to those returned by the PAEKS and
Trapdoor. By Lemma 4, the distributions of ES and ER in Game0 and Game1

are statistically indistinguishable, which concludes the proof. ut

Lemma 10. Assume the decision LWE problem is hard, then Gamei and Gamei+1

are computationally indistinguishable, for i = 1, 3.

Proof. We proof the case when i=1. The proof for i=3 is similar.

– Setup: The adversaryA chooses challenge sender/receiver and two challenge
ciphertext keywords ck∗0 , ck

∗
1 . The simulator B runs Setup, returns PP to

its challenger, who gives (A′‖U′,V′A‖VU ′) ∈ Zn×(m+n)
q × Z(m+n)×n

q to B.

Let A = A′, US = U′, the simulator B runs K̂eyGenS and K̂eyGenR with
ck∗ = ck∗0 and returns PP , PKS/PKR of challenge sender/receiver to A.

– Phase 1 and 2: Run algorithms P̂AEKS and ̂Trapdoor to answer queries on
ciphertext oracle OC and trapdoor oracle OT , respectively.
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– Challenge: Let Ca = VA′ , Cb = R∗TB VA′ , Cd = R∗TD VA′ , Cw = R∗TA,wVA′ ,

Cu = VU ′ (using R∗TB ∈SKR, R∗TD ,R∗TA,w∈SKS), then work as in P̂AEKS
∗

to
generate ES and output the challenge ciphertext Ct∗=(Ca,Cb,Cd,Cw,ES).

If (A′,V′A) and (U′,VU ′) are real LWE tuples, B simulates Game1. Otherwise,
we claim that B simulates Game2, which concludes the proof. This is because the
quantities A(R∗TB ‖R∗TD ‖R∗TA,w‖R∗TB,w) and (R∗TB ‖R∗TD ‖R∗TA,w)Ca are independent
uniformly random samples by Lemma 6. Besides, the distribution of ES in Game2

is indistinguishable from DΛCu
q ([A‖B‖DB‖Bw+H(ck∗0 )G]),σ by Lemma 1. ut

Lemma 11. Game2 and Game3 are statistically indistinguishable.

Proof. Game2 and Game3 differ in two places: (1) Aw = AR∗A,w −H(ck∗0) ·G,
Bw = AR∗B,w −H(ck∗0) ·G in Game2 while Aw = AR∗A,w −H(ck∗1) ·G, Bw =
AR∗B,w −H(ck∗1) ·G in Game3. By Lemma 6, the distributions of Aw and Bw

are statistically indistinguishable in these two games; (2) ES is chosen from
DΛCu

q ([A‖B‖DB‖Bw+H(ck∗0 )G]),σ = DΛCu
q ([A‖B‖DB‖AR∗B,w]),σ in Game2, while from

DΛCu
q ([A‖B‖DB‖Bw+H(ck∗1 )G]),σ = DΛCu

q ([A‖B‖DB‖AR∗B,w]),σ in Game3. Obviously,

the distribution of ES is statistically indistinguishable in these two games, which
concludes the proof. ut

Proof of Theorem 1. If there is a PPT adversary A wins the selectively fully
CI security game with a non-negligible advantage, then A can distinguish Gamei
and Gamei+1 for some i ∈ [0, 4]. By Lemma 9 and 11, i 6= 0, 4 and i 6= 2. Thus,
by Lemma 10, A can be used to solve the LWE problem. ut

Theorem 2. If the decisional-LWE problem is hard, then our first PAEKS
scheme is selectively fully TI secure in one-user setting in the standard model.

Proof. This proof is similar to that of Theorem 1, since the constructions of
algorithms PAEKS and Trapdoor are almost symmetric. ut

5.2 Parameter Selection of Our First PAEKS Scheme

Now, to satisfy the correctness and make the security proof work, we need that

(1) σmqαω(logm) +O(σm3/2) ≤ bq/4c for correctness,
(2) m ≥ 6ndlog qe to ensure TrapGen works and TG exists (Lemma 3),
(3) αq > 2

√
n for the hardness of LWE (Assumption 1),

(4) σ > O(ndlog qe) · ω(
√

log 4m) for SampleLeft,SampleRight (Lemma 4),
(5) m > (n+ 1) log q + ω(log n) for the leftover hash lemma (Lemma 6).

Let δ be a real such that nδ > dlog qe = O(log n), then we set

m = 6n1+δ, σ = m·ω(
√

log n), q = m2.5·ω(
√

log n), α = [m2·ω(
√

log n)]−1.
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6 Our Second PAEKS Scheme

Now, we construct our second lattice-based PAEKS scheme that can be proven
fully CI/TI secure under the multi-user setting in the random oracle model.

Setup(λ): On input a security parameter λ, this algorithm chooses a hash func-
tion H : {0, 1}∗ → Zm×mq modeled as the random oracle, sets parameters
n,m, q, α, σ as specified in Sect.6.2, then outputs PP = {n,m, q, α, σ,H}.

KeyGenS(PP )→ (PKS , SKS): On input PP , the sender goes as follows.
1. Run (A,TA)← TrapGen(n,m, q).
2. Choose US ← Zn×nq and DA,Aw ← Zn×mq .
3. Return PKS = (A,US ,DA,Aw) and SKS = TA.

KeyGenR(PP )→ (PKR, SKR): On input PP , the receiver goes as follows.
1. Run (B,TB)← TrapGen(n,m, q).
2. Choose DB ,Bw ← Zn×mq .
3. Return PKR = (B,DB ,Bw) and SKR = TB.

PAEKS(PKR, PKS , SKS , ck)→ Ct: On input PKR, PKS , SKS and a cipher-
text keyword ck, the sender picks SS ← Ψ̄n×lSα and works as follows.
1. Compute Cw = [Aw ·H(PKS , PKR, ck)−1]

>
SS + Ew, Ew ← Ψ̄m×lSα .

2. Compute Ca = A>SS + R>AEw, where RA ← {−1, 1}m×m.
3. Compute Cb = B>SS + R>BEw, where RB ← {−1, 1}m×m.
4. Compute Cd = D>ASS + R>DEw, where RD ← {−1, 1}m×m.
5. Compute Cu = U>SSS + EU , where EU ← Ψ̄n×lSα .
6. Sample ES←SampleLeft(A,B‖DB‖[Bw·H(PKS , PKR, ck)−1],Cu,TA, σ)

such that [A‖B‖DB‖Bw ·H(PKS , PKR, ck)−1] ·ES = Cu.
7. Return Ct = (Ca,Cb,Cd,Cw,ES) as the ciphertext.

Trapdoor(PKR, PKS , SKR, tk)→ Tr: On input PKR, PKS , SKR and a target
keyword tk, the receiver picks SR ← Ψ̄n×lRα , then works as follows.
1. Compute Tw = [Bw ·H(PKS , PKR, tk)−1]

>
SR + E′w, E′w ← Ψ̄m×lRα .

2. Compute Ta = A>SR + R′TA E′w, where R′A ← {−1, 1}m×m.
3. Compute Tb = B>SR + R′TB E′w, where R′B ← {−1, 1}m×m.
4. Compute Td = D>BSR + R′TDE′w, where R′D ← {−1, 1}m×m.
5. Compute Tu = USSR + E′U , where E′U ← Ψ̄n×lRα .
6. Sample ER←SampleLeft(B,A‖DA‖[Aw·H(PKS , PKR, tk)−1],Tu,TB, σ)

such that [B‖A‖DA‖Aw ·H(PKS , PKR, tk)−1] ·ER = Tu.
7. Return Tr = (Ta,Tb,Td,Tw,ER) as the trapdoor.

Test(Ct, Tr): Given Ct and Tr, the server computes R = E>R[Cb; Ca; Cd; Cw]−
[T>a ‖T>b ‖T>d ‖T>w ]ES and checks whether |R[i, j]| < bq/4c for each i ∈ [1, lR],
j ∈ [1, lS ]. If so, it returns 1, otherwise 0.

Correctness. If ck = tk, then we have

R =E>R[Cb; Ca; Cd; Cw]− [T>a ‖T>b ‖T>d ‖T>w ]ES

=E>R [B‖A‖DA‖Aw ·H(PKS , PKR, ck)−1]>SS + E>R [RB‖RA‖RD‖I]>Ew

− S>R [A‖B‖DB‖Bw ·H(PKS , PKR, tk)−1]ES −E′>w [R′A‖R′B‖R′D‖I]ES

=T>u SS − S>RCu + E>R [RB‖RA‖RD‖I]>Ew −E′>w [R′A‖R′B‖R′D‖I]ES

=S>RU>SSS − S>RU>SSS + error = error,
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error = E>R [RB‖RA‖RD‖I]>Ew − E′>w [R′A‖R′B‖R′D‖I]ES + E′>U SS−S>REU .
Similar to the analysis in Sect.5, we have |error[i, j]| ≤ σmqαω(logm)+O(σm3/2).

6.1 Security proof

Intuitively, in the fully CI security proof, the simulator will run the algorithm
(DB ,TDB

)← TrapGen(n,m, q), and answers any ciphertext query as in Sect.5.1.
For a trapdoor query of tk 6= ck∗, the simulator will run (R1,j ,TAw·R−1

1,j
)←

SampleRwithBasis(Aw, σ) and set H(PKS , PKR, kwj)=R1,j . In this case, since
Aw · H(PKS , PKR, kwj)

−1 = Aw · R−1
1,j , the simulator can use TAw·R−1

1,j
to

compute ER and answer the trapdoor query. Therefore, our second scheme can
be proven fully CI secure. The details are as follows.

Theorem 3. If the decisional-LWE problem is hard, then our second PAEKS
scheme is fully CI secure in multi-user setting under random oracle model.

Proof. If there’s a PPT adversary A that breaks the fully CI security of our
second scheme with a non-negligible advantage, then we can construct a PPT
algorithm B that solves the LWE problem with a non-negligible probability.

Setup: The adversary A chooses the challenge sender/receiver and send them
to B. B runs the Setup algorithm, returns PP to its challenger, who gives

samples (A0‖U,V0‖V) ∈ Zn×(m+n)
q × Z(m+n)×n

q back to B. Then B picks
B0 ← Zn×mq , R∗A,R

∗
B ,R

∗
D ← {−1, 1}m×m, R∗A,w ← Dm×m, a hash function

H : {0, 1}∗ → Zm×mq , runs (DB ,TDB ) ← TrapGen(n,m, q), sets US = U,
A = A0 ·R∗A, DA = A0 ·R∗D, Aw = A0R

∗
A,w, B = A0R

∗
B , Bw = B0R

∗
A,w,

sends PP , PKS=(A,US ,DA,Aw), PKR=(B,DB ,Bw) to A.

Phase 1: A is allowed to submit polynomial queries to the hash oracle OH , the
ciphertext oracle OC and the trapdoor oracle OT . For simplicity, we assume
that (1) A doesn’t submit a query to OH repeatedly; (2) before submitting

a query (P̃KR, kwj) to OC (resp. (P̃KS , kwj) to OT ), A must have submit

(PKS , P̃KR, kwj) (resp. (P̃KS , PKR, kwj) to OH . In response to A’s queries,
B does as follows:

OH : B maintains lists L1 of tuples (PKS , PKR, kwj ,R1,j ,TAw·R−1
1,j

) and L2

of tuples (̃PKS , P̃KR, kwj ,R2,j ,TAw·R−1
2,j

), which are initially empty. As-

sume A submits q1 times of queries in form of (PKS , PKR, kw) to hash ora-

cleOH . B randomly selects j∗ ∈ [1, q1]. For aOH query of (P̃KS , P̃KR, kwj),

1. If (P̃KS , P̃KR) = (PKS , PKR), then if this is the j∗’th query, B sets
H(PKS , PKR, kwj∗) = R∗A,w and adds (PKS , PKR, kwj∗ ,R

∗
A,w,⊥) in-

to L1; else B runs (R1,j ,TAw·R−1
1,j

) ← SampleRwithBasis(Aw, σ), sets

H(PKS , PKR, kwj) = R1,j and adds (PKS , PKR, kwj ,R1,j ,TAw·R−1
1,j

)

into L1, returns H(PKS , PKR, kwj) to A.
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2. Else (P̃KS , P̃KR) 6=(PKS , PKR), B runs algorithm (R2,j ,TÃw·R−1
2,j

)←

SampleRwithBasis(Ãw, σ), sets H(P̃KS , P̃KR, kwj) = R2,j , then adds

(P̃KS , P̃KR, kwj ,R2,j ,TÃw·R−1
2,j

) into L2, sends R2,j to A.

OC : For OC query of (P̃KR, kwj), B retrieves H(PKS , P̃KR, kwj) from list
L1∪L2, then computes Cw,Ca,Cb,Cd,Cu as in the PAEKS algorithm, and
does as follows:
1. Sample ĒS ← SampleLeft(DB ,A‖B‖[Bw+H(kwj)G],Cu,TDB

, σ) such
that ĒS ∈ Z4m×lS and [DB‖A‖B‖Bw + H(kwj)G]ĒS = Cu. Parse
ĒS = (ES,3; ES,1; ES,2; ES,4) and set ES = (ES,1; ES,2; ES,3; ES,4).

2. Return the ciphertext Ct = (Ca,Cb,Cd,Cw,ES).

OT : For OT query of (P̃KS , kwj), B firstly retrieves H(P̃KS , PKR, kwj) and

T
Ãw·H(P̃KS ,PKR,kwj)

−1 from list L1 ∪ L2. If H(P̃KS , PKR, kwj) = R∗A,w,

then B aborts; Else, it computes Tw,Ta,Tb,Td,Tu as in the Trapdoor
algorithm, then does as follows:
1. Sample (ER,1; ER,2; ER,3) ← DZ3m×lR ,σ, then compute T′u = Tu −

[B‖A‖DA] · (ER,1; ER,2; ER,3), then sample ER,4 ← SamplePre(Ãw ·
H(P̃KS , PKR, kwj)

−1,T′u,TÃw·H(P̃KS ,PKR,kwj)−1 , σ) and set ER =

(ER,1; ER,2; ER,3; ER,4).
2. Return trapdoor Tr = (Ta,Tb,Td,Tw,ER).

Challenge: A selects two challenge cipher-keywords ck∗0 and ck∗1 with the re-
striction that none of (PKS , ck

∗
0) and (PKS , ck

∗
1) have been queried on OT .

B retrieves H(PKS , PKR, ck
∗
0) and H(PKS , PKR, ck

∗
1) from list L1. Then, if

H(PKS , PKR, ck
∗
i ) 6= R∗A,w for i ∈ {0, 1}, B aborts. Otherwise, there is a ck∗β ,

β ∈ {0, 1}, such that H(PKS , PKR, ck
∗
β) = R∗A,w. B generates the challenge

ciphertext corresponding with ck∗β as follows:

1. Set C∗w=V0, compute C∗a=(R∗A)>V0, C∗b =(R∗B)>V0, C∗d=(R∗D)>V0.
2. Set C∗u = V.
3. Sample (E∗S,1; E∗S,2; E∗S,4)← DZ3m×lS ,σ, then compute V′ = V−[A‖B‖B0]·

(E∗S,1; E∗S,2; E∗S,4), sample E∗S,3 ← SamplePre(DB ,V
′,TDB

, σ), then set
E∗S = (E∗S,1; E∗S,2; E∗S,3; E∗S,4).

4. Return the challenge ciphertext Ct∗ = (C∗a,C
∗
b ,C

∗
d,C

∗
w,E

∗
S).

Phase2: This phase is the same as Phase 1 with the same restriction defined
in the challenge phase.

Output: A outputs a guess bit β′ of β. If A’s guess is correct, then B claims
that he is given the real LWE samples; Otherwise, random samples.

Since A0,B0 are uniform, R∗A,w ← Dm×m, by Lemma 6, Aw,Bw are statisti-
cally close to uniform. By Lemma 3, the distribution of DB is statistical to that
in the real game. Since R∗A,R

∗
B ,R

∗
D ← {−1, 1}m×m, by Lemma 6, A,B,DA

are statistically close to uniform even given R∗>A Ew,R
∗>
B Ew,R

∗>
D Ew. There-

fore, the distribution of public keys in the simulation is statistical to that in the
real game.

According to Lemma 1, 4 and 5, the output distributions of the ciphertext
oracle OC and trapdoor oracle OT are statistical to those in the real game.
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If (A0‖U,V0‖V) are real LWE samples, then C∗w = V0 = A>0 SS + Ew =
(Aw ·H(PKS , PKR, ck

∗
β)−1)>SS + Ew, C∗u = V = U>SS + EU = U>SSS + EU .

Along the way, it is easy to check that C∗a,C
∗
b ,C

∗
d are the same as A’s view in

the real game. By Lemma 4, the distribution of ES is the same as A’s view in the
real game. Else if (A0‖U,V0‖V) are random, then C∗w,C

∗
u are uniform. Since

ES is distributed statistically close toD
Λ

C∗u
q ([A‖B‖DB‖B0]),σ

, A’s probability in

guessing β successfully is 1/2. Hence, if A breaks the fully-CI security with a
non-negligible advantage ε, then B can solve the decisional-LWE problem with
advantage ε/2q1. ut

Theorem 4. If decisional-LWE problem is hard, then our second PAEKS scheme
is fully TI secure in multi-user setting under random oracle model.

Proof. This proof is similar to that of Theorem 3, since the constructions of
algorithms PAEKS and Trapdoor are almost symmetric.

6.2 Parameter Selection of Our Second PAEKS Scheme

Now, to satisfy the correctness and make the security proof work, we need that

– σmqαω(logm) +O(σm3/2) ≤ bq/4c for correctness,
– m ≥ 6ndlog qe to ensure TrapGen works (Lemma 3),
– αq > 2

√
n for the hardness of LWE (Assumption 1),

– σ>O(ndlog qe)ω(
√

log 4m) for SampleLeft,SamplePre, security (Lemma 4,5),
– m > 2n log q + ω(log n) for the leftover hash lemma (Lemma 6).

Let δ be a real such that nδ > dlog qe = O(log n), then we set m = 6n1+δ,
σ = m · ω(

√
log n), q = m2.5 · ω(

√
log n), α = [m2 · ω(

√
log n)]−1.

7 Comparison

In this section, we compare our lattice-based PAEKS schemes with other PAEKS
schemes in terms of security properties, parameters and communication cost.

In Table 1, we discuss the security properties of various PAEKS schemes.
Among them, PAEKS schemes [15, 20, 22, 23] cannot resist quantum attacks; [17]
relies on the trusted Setup assumption and fails to provide convincing evidence
for their MTI security and MCI security, while [13] relies on the designated-
receiver setting, as shown in Sect.4. Our first PAEKS scheme can be proven
selectively fully CI and selectively fully TI secure in the one-user setting, and
our second scheme can be proven fully CI and fully TI secure in the multi-
user setting. In a nutshell, our schemes provide stronger security guarantee for
ciphertext privacy and trapdoor privacy than previous PAEKS schemes.

In Table 2, we compare the parameter selection for the LWE-based PAEKS
instantiation in [17] with those in our schemes, subject to security and correct-
ness3. Note that LTT+22 [17]’s instantiation needs to satisfy an extra parameter

3
We omit the comparison with Eumra22 [13] for the following reasons: (1) [13]’s instantiation
cannot be proven secure as shown in Sect.4. (2) even if we ignore the security, the parameter
selection of Eumra22 [13]’s instantiation is almost the same as that of LTT+22 [17]’s instantiation.
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Table 1. Comparison of security properties for various PAEKS schemes.

Schemes CI TI MCI MTI
Fully Fully Multi-user Neither trusted Setup nor

QR
CI TI setting designated-user setting

HL17 [15]
√ √

× × × × ×
√

×
NE19 [20]

√ √
× × × ×

√ √
×

QCH+20 [22]
√ √ √

× × × ×
√

×
QCZ+21 [23]

√ √ √
×

√
×

√ √
×

LTT+22 [17]
√ √

× × × × × ×
√

Eumra22 [13]
√ √ √

×
√

×
√

×
√

Ours1
√ √ √ √ √ √

×
√ √

Ours2
√ √ √ √ √ √ √ √ √

Note that “Ours1” is proved in the selective version as described in Sect.3.2.
QR: quantum resistance.

Table 2. Comparison of parameters selection of lattice-based PAEKS schemes

Schemes m σ α modulus q

LTT+22 [17] 6n1+δ m · l · ω(
√

logn) [2n̂ ·m2 · ω(
√

logn)]−1 2n̂ ·m2.5 · ω(
√

logn)

Ours1 6n1+δ m · ω(
√

logn) [m2 · ω(
√

logn)]−1 m2.5 · ω(
√

logn)

Ours2 6n1+δ m · ω(
√

logn) [m2 · ω(
√

logn)]−1 m2.5 · ω(
√

logn)

δ is a real such that nδ > dlog qe; l is the output length of a secure hash function;
2−n̂ is the failure probability to compute the shared key as described in Sect.4.

Table 3. Comparison of communication costs of lattice-based PAEKS schemes

Schemes PKS Size PKR Size Ct Size Tr Size

LTT+22 [17] (n+ κm) log q (2n+ κm+ (l + 2)nm) log q ρ((1 + 2m) log q + 1) 2m log q
Ours1 (3mn+ n2) log q 3mn log q 8mls log q 8mlr log q
Ours2 (3mn+ n2) log q 3mn log q 8mls log q 8mlr log q

The underlying lattice-based PEKS [5] used by [17] provides ρ-bit security. κ is the
length of the shared key generated by the SPHF [6] as described in Sect.4.

constraint q ≥ 2n̂ ·O(m1.5n·ω(
√

log n)) (see Equ.(2) in Sect.4), while our schemes
don’t require this, so the modulus q in our schemes could be of polynomial size.
By contrast, the modulus q in our schemes is polynomial. Specifically, in [17],
set n = 256, n̂ = 128 and l = 256, then m ≈ 218, σ ≈ 226, α ≈ 2−164, q ≈ 2173.
In our schemes, set n = 256, then m ≈ 216, σ ≈ 216, α ≈ 2−35, q ≈ 243.

In Table 3, we compare the communication cost of our schemes and the LWE-
based PAEKS instantiation in [17]. For [17], set n = 256, m = 218, q = 2173,
ρ = 128, κ = 128, l = 256, then the size of public key of sender/receiver
is about 708614(Kb)/366350347(Kb), and the size of ciphertext/trapdoor is
about 1417219(Kb)/11072(Kb). For our schemes, set n = 256, m = 216, q =
243, ls = 32, lr = 4, then the size of the public key of sender/receiver is
about 264536(Kb)/264192(Kb), and the size of ciphertext/trapdoor is about
88064(Kb)/11008(Kb). Hence, the communication overhead of our schemes is
much smaller than that of [17].
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8 Conclusion

In this paper, we propose two lattice-based PAEKS schemes, with totally differ-
ent construction methodology from previous lattice-based PAEKS schemes. Our
first scheme satisfies selectively fully CI/TI security in one-user setting under
the standard model. Our second scheme can be proven fully CI/TI secure in
multi-user setting under the random oracle model. Compared with the existing
lattice-based PAEKS schemes, our schemes not only provide stronger security
guarantee for ciphertext privacy and trapdoor privacy, but also greatly reduce
the communication overhead.
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