
Uncle Maker: (Time)Stamping Out The Competition in
Ethereum
AVIV YAISH, The Hebrew University, Israel
GILAD STERN, The Hebrew University, Israel
AVIV ZOHAR, The Hebrew University, Israel

We present an attack on Ethereum’s consensus mechanism which can be used by miners to obtain consistently
higher mining rewards compared to the honest protocol. This attack is novel in that it does not entail
withholding blocks or any behavior which has a non-zero probability of earning less than mining honestly, in
contrast with the existing literature.

This risk-less attack relies instead on manipulating block timestamps, and carefully choosing whether and
when to do so. We present this attack as an algorithm, which we then analyze to evaluate the revenue a miner
obtains from it, and its effect on a miner’s absolute and relative share of the main-chain blocks.

The attack allows an attacker to replace competitors’ main-chain blocks after the fact with a block of its
own, thus causing the replaced block’s miner to lose all fees for the transactions contained within the block,
which will be demoted from the main-chain. This block, although “kicked-out” of the main-chain, will still be
eligible to be referred to by other main-chain blocks, thus becoming what is commonly called in Ethereum an
uncle.

We proceed by defining multiple variants of this attack, and assessing whether any of these attacks has been
performed in the wild. Surprisingly, we find that this is indeed true, making this the first case of a confirmed
consensus-level manipulation performed on a major cryptocurrency.

Additionally, we implement a variant of this attack as a patch for Go Ethereum (geth), Ethereum’s most
popular client, making it the first consensus-level attack on Ethereum which is implemented as a patch. Finally,
we suggest concrete fixes for Ethereum’s protocol and implemented them as a patch for geth which can be
adopted quickly and mitigate the attack and its variants.

CCS Concepts: • Applied computing→ Digital cash; • Security and privacy→ Economics of security and
privacy; Distributed systems security.

Additional Key Words and Phrases: cryptocurrency, blockchain, proof of work, consensus, security

ACM Reference Format:
Aviv Yaish, Gilad Stern, and Aviv Zohar. 2022. Uncle Maker: (Time)Stamping Out The Competition in Ethereum.
1, 1 (July 2022), 66 pages. https://ia.cr/2022/1020

Authors’ addresses: Aviv Yaish, aviv.yaish@mail.huji.ac.il, The Hebrew University, Jerusalem, Israel; Gilad Stern, Gilad.
Stern@mail.huji.ac.il, The Hebrew University, Jerusalem, Israel; Aviv Zohar, avivz@cs.huji.ac.il, The Hebrew University,
Jerusalem, Israel.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).

https://ia.cr/2022/1020

Publication date: July 2022.

HTTPS://ORCID.ORG/0000-0002-7971-2494
HTTPS://ORCID.ORG/0000-0002-0358-2689
HTTPS://ORCID.ORG/0000-0001-8539-9222
https://ia.cr/2022/1020
https://orcid.org/0000-0002-7971-2494
https://orcid.org/0000-0002-0358-2689
https://orcid.org/0000-0001-8539-9222
https://ia.cr/2022/1020

2 Aviv Yaish, Gilad Stern, and Aviv Zohar

1 INTRODUCTION
Cryptocurrencies such as Bitcoin [89] and Ethereum [15] rely on an elaborate incentive system to
encourage users to participate in operating the decentralized mechanism which underlies them and
maintain the mechanism’s integrity in the face of adversaries. Such participants are called miners.
Thus, a cryptocurrency’s incentive mechanism is inherent to its security. Indeed, among the

myriad cryptocurrencies and theoretical protocols which have arrived after Bitcoin, some have
dedicated considerable efforts in order to analyze existing mechanisms or design new ones to
make sure miners will not have an incentive to foul-play and game the system for their advantage
[70, 78, 92, 111, 127].

Ethereum, in particular, is known for adopting changes rapidly, without always carefully exam-
ining them and the effect they might have on the incentives of miners [103, 104]. Thus, changes
which were designed to mitigate one attack [14], open the door for multiple new ones [98, 126].

On the eve of the transition of Ethereum to a completely new mechanism, also known as
The Merge [39], we present a new incentive-driven attack on the current Ethereum mechanism.
Informally, the attack entails setting block timestamps to be relatively low, thereby increasing their
difficulty and allowing them to replace previous blocks.
This attack is novel not only in that it relies on the new, unexplored foundations of timestamp

manipulations, but also because it is always more profitable than following the “honest” rules laid
down by the protocol’s designers, meaning that our attack strategy strictly dominates the honest
strategy.
Previously, Ethereum miners were mostly known to manipulate Ethereum’s application layer,

for example by exploiting vulnerabilities in smart contracts, which are applications built on top of
blockchains [17], while attacks on the underlying consensus were either entirely theoretical yet
practically infeasible, or targeted small implementation bugs which were quickly fixed [5, 126].
In our work, we introduce the first consensus-level attack which is actually feasible to execute.

Additionally, we provide the first proof that a consensus-level attack was performed in the wild.

Our Contributions. We make the following contributions:
• We introduce a novel attack vector on proof-of-work (PoW) cryptocurrencies which relies
on timestamp manipulations, instead of traditional ones such as block withholding [50, 102].
• We provide a thorough description of a concrete attack called the riskless uncle maker (RUM)
attack which relies on this new attack technique.
• We prove that the RUM attack is riskless in Ethereum in the sense that an attacker which
utilizes it is guaranteed to make at least the same absolute and relative profits when compared
to mining according to the honest protocol.
• We describe multiple variants of the attack.
• We investigate the Ethereum blockchain and prove the attack was executed in the wild, thus
providing the first conclusive evidence of consensus tampering in a major cryptocurrency.
• We have written a fully-functioning implementation of a variant of the attack as a patch for
geth, Ethereum’s most popular client.
• We provide several techniques to mitigate the attack and its variants, including a patch for
geth which prevents the attack altogether.

A summary of our contributions is given in Table 1.

Paper structure. The paper is structured as follows: we begin by going over some implications
arising from our work in Section 2. Then, we review the relevant background information required
for this work in Section 3, and proceed to describe the paper’s model in Section 4. We utilize the
model to give an algorithmic description of the attack in Section 5, and then theoretically prove

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 3

Table 1. A comparison of our attack and previous ones.

Uncle Selfish Stubborn Coin Energy Stretch &
Maker Mining Mining Hopping Equilibria Squeeze

Analyzed on
✓ ✓ ✓ - - ✓Ethereum

Doesn’t require
✓ - - ✓ ✓ ✓block withholding

Always more
✓ - - - - -profitable than

mining honestly

Has a patch for
✓ - - - - -Ethereum clients

that the attack is riskless and guaranteed to be more profitable than mining honestly in Section 6.
We describe the fingerprints which a successful execution of the attack leaves on the blockchain
and prove that indeed such attacks have been performed in the wild in Section 7. We suggest
mitigations for the attack in Section 8. We review related works in Section 9, and finally conclude
in Section 10.

2 IMPLICATIONS
In this section, we would like to discuss some important implications arising from our work.

2.1 Reducing Mechanism Attack Surface
In Ethereum, miners have quite a lot of “wiggle-room” when setting timestamps. Users then partially
use their local clock in order to verify them, instead of using some consensus-achieved notion of
time.
We argue that when consensus mechanisms allows such user decisions, their attack surface

grows. One natural conclusion is to design mechanisms such that users have the bare minimum
of choice in setting certain parameters, like timestamps. If users have some choice, the protocol’s
designers must make sure that this choice has the minimal possible effect on the protocol’s safety.

Timestamps, in particular, affect the difficulty of mining and thus the consensus mechanism. As
we will show in our paper, this allows miners to use timestamps which do not correspond to the
actual real-world time in order to gain an upper-hand over their competitors.
In spite of this, previous academic research has only made a cursory attempt at examining the

potential use of timestamp manipulations to attack the consensus layer of cryptocurrency systems
[13, 108, 126], focusing instead on the application layer [2, 17, 24, 84, 105].

2.2 Ethereum-like Mechanisms
In this work, we mainly focus on Ethereum. However, our work has major implications for any
mechanism which relies on timestamps in a similar manner.
Among the notable protocols that belong to this category we can list Ethereum Classic (which

has publicly committed to continue using the standard Ethereum-like PoW protocol “indefinitely”
[19, 20]) and EthereumPoW (a planned fork of Ethereumwhich is planned to go live when Ethereum
finally transitions to its new mechanism [42, 97]).

Publication date: July 2022.

4 Aviv Yaish, Gilad Stern, and Aviv Zohar

2.3 Traceable Safety
In this work, we used publicly available on-chain data to retroactively discover an attack on the
Ethereum blockchain, making this the first such real-world consensus-level attack discovered on
a major cryptocurrency. This is in spite of previous works attempting to do so, even using very
sophisticated means such as setting up multiple nodes in various geographical locations, collecting
data and analyzing it [79, 80, 82].
These works have specifically attempted to find instances of block-withholding attacks, which

requires being online and finding out about the attacks as they happen. That is to say, block
withholding does not leave clear fingerprints in publicly available transcripts of the underlying
mechanisms, e.g. it is not immediately apparent from the actual blockchain. Thus, such attacks
cannot be retroactively traced using on-chain data.

We would like to crystallize the above insight into the following property:

Definition 1 (A-Traceability). Given a mechanism Π and attack on it A, we will say Π is
A-traceable if the attack is detectable from the public transcript of Π, up to some negligible probability.

Mechanisms preferably should be designed to make sure there is a public record of potential
malfeasance; ideally, to allow post-fact identification of attacks, even those which the mechanism’s
creators haven’t conceived when designing the system. This can be compared to the traditional
cryptographic notion of public verifiability, which allows actors to check the correctness of protocol
transcripts even after the fact, and even if they did not originally participate in the protocol. This is
in contrast to traditional distributed systems in which real-time participation is required in order
to attest to the validity of its execution at the time.

3 BACKGROUND
We will now briefly go over the background knowledge required for understanding our work.

3.1 Proof-of-Work Cryptocurrencies
The mechanism utilized by both Ethereum and Bitcoin is called PoW. It requires entities called
miners to collect user-made transactions into blocks. As blocks are limited in capacity, users can
incentivize miners to prefer their transactions over competing ones by paying them transaction
fees [27, 76, 83, 101].
In order to create a block which will be considered valid under the PoW mechanism, miners

must expend tremendous computational resources to find a solution to a cryptographic puzzle,
a process which is also called mining. The solution for the puzzle is defined to be an input to a
cryptographic hash function such that the corresponding output will be lower than some target
value. The currently known best method for finding such an input is to perform a brute-force
search [26, 69, 112]. Once this solution is found, it is included in the block and broadcasted to the
network, with each user validating the solution to ensure it is indeed correct.
In order to make sure that the difficulty of the cryptographic puzzle is neither too easy for

the network nor does it exceed the computational resources of the network, cryptocurrencies
employ a difficulty-adjustment algorithm (DAA) [23, 126] which periodically attempts to gauge the
amount of computational resources currently available on the network and adjust mining difficulty
accordingly.

3.2 Economics of Mining
To compensate miners for their efforts, the mechanism allocates a certain amount of tokens to the
creator of each valid block. These tokens are commonly called the block rewards. Cryptocurrencies
commonly pursue a notion of giving miners a fair share of the rewards, meaning that the fraction

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 5

of the all rewards which they earn should be equal to the fraction of computation which they
contribute to upholding the underlying mechanism [50, 92].
PoW cryptocurrencies are known for their unsteady revenue flow, leading miners to usually

team-up and form mining pools. Participants in the pool split profits among themselves using a
variety of schemes, often-times doing so according to each participant’s relative contribution to
the pool. This contribution is measured by counting the amount of shares which each user submits;
these are blocks which are below the protocol’s real difficulty threshold, but above some inner one
set by the pool [58, 77, 100, 107].

3.3 Blockchains and Block-DAGs
In Bitcoin-esque cryptocurrencies, each block must reference at least one previous block, which
is called the block’s parent. Thus, a chain of blocks is formed, also known as a blockchain. The
first and last blockchain blocks are usually respectively nicknamed the genesis and the tip of the
blockchain, while the currently mined block is commonly called the pending block.
As the blockchain contains all user-made transactions, it in essence provides some notion of

“history”. Thus, the entire network must agree on some specific history in order to facilitate money
transfers between users in a way which preserves the system’s integrity. A race or tie occurs if
there are multiple possible chains, e.g. when a miner hears of two blocks at the same time. Usually,
protocols define a tie-breaking rule to pick between the different options. The chain which is picked
is referred to as the main-chain.

In Ethereum, blocks which are mined after a tie can pick, in addition to a parent, up to two uncle
blocks. Ethereum’s mechanism was designed to take such uncle blocks into consideration when
deciding on the network’s main-chain in the hopes that doing so would increase the mechanism’s
security [78]. The resulting structure is no longer a blockchain but rather a block directed-acyclic-
graph (block-DAG) [78, 109]. Although Ethereum relies on uncle blocks and thus on a block directed-
acyclic-graph (block-DAG), for brevity we will refer to the resulting data structure as a block-chain.

3.4 Ethereum Clients
In order to participate in the Ethereum protocol, one must use an Ethereum client, meaning a
program which implements the protocol’s rules. The most popular client is Go Ethereum (geth)
[38, 40, 43, 73], which is officially endorsed by the Ethereum Foundation. Communication with
a local client and with other nodes is performed using a standardized protocol based on remote
procedure calls [121].

Additional Background. For more details on cryptocurrencies see [3, 7, 90, 120].

4 MODEL
We proceed to formally define the model used in the paper.

4.1 Cryptocurrency System
We will begin our model description by giving precise definitions for Ethereum’s consensus and
reward mechanisms. All notations and acronyms used in this section (and throughout the paper)
are detailed in Appendix G.

Block-DAG Structure. In Ethereum, each block must reference a parent block, and can reference
up to two uncle blocks; these are blocks that share a common ancestor with it (up to a depth of
8 blocks), but were not referenced by any main-chain block [35, 124]. Uncles are also sometimes
called ommer blocks by the Ethereum Foundation [124]. An ommer is the equivalent gender-neutral
term for the same familial relation.

Publication date: July 2022.

6 Aviv Yaish, Gilad Stern, and Aviv Zohar

BlockTimestamps. Ethereum blocks store timestamps in theUNIX time format, whichmeasures
time by counting the number of seconds elapsed since January 1st, 1970 [66]. Timestamps are
saved as integer values and thus do not have a resolution of less than one second. Using these
timestamps, miners check the time that has passed between blocks and adjust mining difficulty if
the time exceeds some predefined window.
Ethereum enforces relatively strict requirements on timestamps compared to other cryptocur-

rencies: a newly heard-of block’s timestamp cannot be more than 15 seconds in the future when
compared to the local clock, and it must be at least one second after its parent’s timestamp
[29, 35, 124].

Mining Difficulty. Ethereum’s difficulty-adjustment algorithm (DAA) strives to keep a rate
of one block per 12 − 14 seconds [31, 54, 124]. It does so by lowering the difficulty of the block
which is currently mined if too much time has passed, according to the block’s and its parent’s
timestamps. Ostensibly, the mechanism’s designers hoped that this would prevent long stretches of
time wherein no new block is mined. Unfortunately, as we will show, such DAAs are susceptible to
manipulations.

Formally, each block’s difficulty depends on:
• Its parent’s difficulty, which we denote by 𝑑 .
• The timestamp difference from its parent, denoted as 𝑡 .
• If it references uncles or not: 𝑢 def= 1 iff has uncles.

Using these, the difficulty of the block is defined as the maximum between 217 and the following
term [32, 36, 124]:

𝑑 + max
(
1 + 𝑢 − ⌊ 𝑡

9
⌋,−99

)
· ⌊ 𝑑

2048
⌋ (1)

For posterity, the difficulty of the genesis block is 234. As Ethereum’s difficulty has skyrocketed
compared to 217 and was above 234 since block 15, meaning that the difficulty was higher for at
least 15 · 106 blocks. Consequently, we use Eq. (1) as-is for conciseness. Additionally, to facilitate
Ethereum’s long-delayed migration to a new mechanism which does not rely on PoW, the DAA
increases difficulty exponentially every 105 blocks [103, 104]. This is irrelevant in our setting and
thus omitted.

Tie Breaking. In Ethereum, a block can have just a single parent. There might be cases where
multiple blocks can serve this role, for example if a miner sees multiple blocks at the same height.
In such a scenario, it can only choose one of those blocks as a parent for its currently mined block,
while the other blocks will be picked as uncles. We will term such events ties.

As mining difficulty determines the amount of work invested in each block, Ethereum relies
on the notion of the total difficulty (TD) of a block to break ties. The TD of a block is defined as
the simple sum of the difficulties of the block itself and all of its main-chain ancestors [34]. In
case of ties between blocks, the one with a higher TD is chosen as the parent, and if blocks have
equal TDs miners will prefer the one they received earlier [30, 33]. Ethereum’s mechanism is an
approximation of the one defined by [78] and is an attempt at incentivize publishing newly mined
blocks quickly, thus discouraging withholding them [15].

Mining Rewards. We denote the reward received for mining a main-chain block as 𝑅 ETH. The
miner of a block which references an uncle receives 1

32𝑅. The miner of the referenced uncle receives
a reward too, according to the depth of the most recent common shared ancestor of the two: if it
is two blocks deep, the uncle’s miner gets 7

8𝑅. The reward diminishes by 1
8𝑅 for each increase in

depth, until reaching 0 ETH [35, 103, 124].

Publication date: July 2022.

https://etherscan.io/block/0
https://etherscan.io/block/15
https://etherscan.io/block/15226042

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 7

Example 1 provides an example of a block-DAG which is structured according to the aforemen-
tioned consensus rules.
Example 1. We will now go over four blocks and use them to illustrate the various definitions given
in Section 4.1. These blocks and their relations are depicted visually in Fig. 1.

Parent

UncleParent

Timestamp 32
Difficulty 4096
Reward 2.0625 ETH

Timestamp 27
Difficulty 4092
Reward 1.75 ETH

Timestamp 26
Difficulty 4094
Reward 2 ETH

Timestamp 0
Difficulty 4096
Reward 2 ETH

Parent

Fig. 1. A graphical depiction of the blocks of Example 1.

Let block 𝑏0 be the parent of blocks 𝑏1 and 𝑢1, and let block 𝑏2 point to 𝑏1 as its parent, and 𝑢1 as its
uncle. Let 𝑏0’s timestamp be 0, 𝑏1’s timestamp be equal to 26, 𝑢1’s timestamp be 27, and 𝑏2 be 32.
If 𝑏0 has a difficulty of 4096, then according to Eq. (1) the difficulties of 𝑏1 and 𝑢1 should be 4094

and 4092, correspondingly. Consequently, according to the same equation 𝑏2’s difficulty is 4096.
The standard block-reward for a main-chain Ethereum block which did not refer to uncles is 2 ETH

[124], so the miners of 𝑏0 and 𝑏1 earned 2 ETH each, while the miner of 𝑏2 earned 2 ETH, plus 1
32 ·2 ETH

for referencing 𝑢1 as its uncle, making the total reward earned by the 𝑏2’s miner 2.065 ETH. Because
𝑢1 is parallel to 𝑏2’s parent, the reward earned by 𝑢1’s miner is 7

8 · 2 ETH, which amounts to 1.75 ETH.
For an example of real Ethereum blocks which share the same relations as the blocks described here,

see Example 2.

4.2 Threat Model
We will now describe the actors that interact with the cryptocurrency and the range of actions
available for each one.

Actors. We model the network as being comprised of two parties, an honest miner who has a
total hash-rate of𝐻 hashes-per-second, and an attacker that has a hash-rate of𝐴 hashes-per-second.
We will call the attacker’s fraction of the total hash-rate as its hash-ratio, and define it as follows:
𝛼

def= 𝐴
𝐴+𝐻 .

Note that the honest miner need not necessarily be a single entity, but can be a mining pool or
even a number of mining pools, though for the sake of brevity we will mostly refer to it as a single
miner. Similarly, the attacker can be a mining pool, or a coalition of mining pools.
Our attack and its analysis do not require looking at more than two consecutive blocks, which

according to historical data lasts an average of roughly 13 seconds (see Appendix F). Thus, we
follow the literature by assuming that miners cannot obtain or lose hash-power, no new miners
enter the network, mining hardware is bought by actors in advance, and all associated costs (such
as electricity) are prepaid [50, 59, 67, 102, 110, 131–133]. Indeed, historical data shows that the total
hash-rate active on the network does not change by much over such short periods [9].

Attacker Objective. Ethereum, similarly to other cryptocurrencies, has a notion of fairness
which stipulates that in expectation a miner with a 𝛾 fraction of the hash-rate should mine 𝛾 of the
blocks and obtain a 𝛾 fraction of all mining rewards [50, 92, 124].
Our attacker’s objective will be to mine more than its fair share of the blocks, e.g. more than 𝛼

of the blocks. As we will show, this will increase its rewards to be above the fair amount, too.

Publication date: July 2022.

8 Aviv Yaish, Gilad Stern, and Aviv Zohar

Honest Mining. We define the honest mining protocol similarly to other blockchain papers
[50, 59, 110, 126, 127]: our honest miner follows the rules laid down in Ethereum’s yellow paper
[124]. Thus, the honest miner will always mine on top of the block with highest TD, and will not
withhold blocks or manipulate block timestamps.

Allowed Attacker Deviations. Our attacker can rationally deviate from the honest protocol,
as long as blocks it produces are indeed valid according to Ethereum’s consensus rules [35, 124].
Specifically, the attacker is free to manipulate the timestamps of blocks that it mines to be within
the valid range defined in Section 4.1, and can mine on top whichever block it chooses. In order to
create a clean separation between our attack and the previous literature [3, 12, 50, 59, 102, 133], we
limit our attacker by forbidding it from withholding blocks.

5 THE UNCLE MAKER ATTACK
We will now describe our attack. Conceptually, the attack manipulates Ethereum’s DAA to create
blocks which retroactively replace existing main-chain blocks, thus increasing an attacker’s share
of main-chain blocks beyond its fair share. Honest blocks that were “sidelined” in this manner can
later be referred to by main-chain blocks as uncles, thus we will term blocks created by our attacker
as Uncle Makers.

A major novelty of our attack is that it replaces blocks without using block withholding, which
is the common method used in the literature [50, 59, 67, 131–133].

Recall that in case of ties between different chains, Ethereum’s protocol dictates that the one with
a higher TD is picked as the main chain. As Ethereum’s DAA assigns mining difficulty according
to a block’s timestamp, an attacker can set the timestamp for the currently mined block to be low
enough to win in case of ties, whether as a preemptive defense mechanism, or to actively replace
existing main-chain blocks. Unfortunately, as the block has a higher difficulty, it is harder to mine.
We will soon show that this can be avoided.

5.1 Riskless Uncle Making
By carefully picking when to execute the attack, we can make sure that the attacker’s blocks will
have a higher difficulty when compared to the current tip of the blockchain, and thus will replace
it, but still will not have a higher difficulty compared to the block which the attacker would’ve
mined had it been following the honest protocol.
By doing so, we will allow our attacker to execute the attack without incurring any additional

mining “risk” when compared to mining honestly: the probability that mining the attack block will
succeed will be at least the probability of the attacker successfully mining an honest block, while
the attacker’s share of the rewards will be higher than its fair portion. We call this attack a riskless
uncle maker (RUM) attack.
Let the tip of the blockchain be block 𝑏1 with a 𝑡1 time difference relative to its parent 𝑏0, and

denote the number of seconds that have passed since 𝑏1’s timestamp by 𝑡𝐻 . According to the
honest protocol, the honest miner mines a block, which we will denote by 𝑏𝐻 , and sets the block’s
parent to be 𝑏1, and its timestamp difference to be 𝑡𝐻 . See Fig. 2 for a graphical depiction of the
aforementioned blockchain state.
If 𝑡1 ∈ [9, 18), then as long as the honest miners still haven’t successfully mined a block and

𝑡𝐻 < 9, an attacker who wishes to execute the RUM attack should mine a block on top of 𝑏0, and
set the block’s time difference to be some value strictly lower than 9 seconds, for example 𝑡𝐴

def= 8
seconds. If the attacker succeeds in mining this block in time, it should be published immediately.
In any other case, the attacker should mine according to the honest protocol.

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 9

Parent

Parent

Parent

Fig. 2. The blockchain’s state when executing a
RUM attack.

Parent

Parent

Uncle
Parent

Fig. 3. The blockchain’s state after a successful
RUM attack.

Observe that the time we picked for 𝑡𝐴 increases𝑏𝐴’s difficulty compared to𝑏1. Due to Ethereum’s
tie-breaking mechanism, if it is indeed mined successfully, it will take 𝑏1’s place as the new tip of
the main-chain. Thus, the honest miner will pick 𝑏𝐴 as the parent of its currently mined block, and
𝑏1 as its uncle, leading the current blockchain state to be as depicted in Fig. 3.

Note that our attack replaced an honest main-chain block with an attacker block without relying
on withholding blocks. Instead, the attack actually requires the attacker to immediately publish its
blocks, standing in stark contrast to other attacks which rely on withholding blocks.

An algorithmic description of the attack is presented in Algorithm 1. The algorithm follows the
event-driven model which was used by other works in the field, such as [50, 52].

6 THEORETICAL ANALYSIS
We will now theoretically analyze the RUM attack using a series of theorems, relegating all proofs
to Appendix D. Afterwards, we will analyze the block and reward share of an attacker which
executes the attack using a Markov decision process (MDP), similarly to other works in the field
[50, 59, 63, 67, 102, 126, 132, 133].

In Theorem 1 we prove that the conditions specified in Section 5 for executing a RUM attack are
necessary, and that an attacker’s probability of successfully mining the attack block is equal to the
that of successfully mining an honest block.

Theorem 1. Let the current tip of the main-chain be block 𝑏1. Denote its parent as 𝑏0, the parent’s
difficulty as 𝑑0, the timestamp difference between them as 𝑡1, and the difference between the current
time and 𝑏1’s timestamp as 𝑡𝐻 .
If the following conditions hold, then a rational attacker can execute a RUM attack:

⌊ 𝑡𝐻
9
⌋ = 0, ⌊ 𝑡1

9
⌋ = 1

Moreso, if 𝑑0 ≥ 222, these are the only values for which a RUM attack is possible.

Remark 1. Any node active on the network, for example our attacker, can learn the values of 𝑡1 and
𝑡𝐻 .

The former, 𝑡1, is publicly available on the blockchain, as valid blocks must include their timestamps
[124]. The latter, 𝑡𝐻 , can be obtained by sending a standard Ethereum remote procedure call (RPC)
request to the honest miner, as responses contain the local time of the responder.

The proof is detailed in full in Appendix D. Briefly, we break the attack down to its different
constituents: the blocks generated by the attacker should be valid according to the system’s
consensus rules, the attacker should successfully replace honest blocks with the attacker’s blocks,

Publication date: July 2022.

10 Aviv Yaish, Gilad Stern, and Aviv Zohar

and mining these blocks should be riskless, meaning that it should not be harder when compared
to mining honestly. Each constituent is handled via a series of claims which are then combined,
culminating with Theorem 1.
The proof of Theorem 1 shows that if the last block’s difficulty is lower than 222, an attacker

might have additional timeframes within which an attack is feasible. Remark 2 elaborates on this.

Remark 2. Although a difficulty of 222 is permitted by Ethereum’s DAA, which places the lower
difficulty limit at 217, no block has ever had such a difficulty, the closest being block number 6, which
has a difficulty of 232.

We proceed to show in Theorem 2 that an attacker’s relative share of mainchain blocks exceeds
the fair share that can be obtained honestly.

Theorem 2. Let there be some block 𝑏0. If the attacker uses the RUM mining strategy, its expected
relative share of main-chain blocks will be larger than mining honestly, while the absolute number
will remain the same.

As before, the proof is given in Appendix D. The proof relies on analyzing a MDP of the attack,
which we describe in Appendix D.3.

In Theorem 3 we prove the corresponding claim regarding an attacker’s share of the rewards.

Theorem 3. For any block 𝑏0, an attacker can increase its expected absolute and relative rewards by
using the RUM mining strategy instead of mining honestly.

The proof for Theorem 3 is similar to that of Theorem 2. Again, it is given in full in Appendix D.

Corollary 1. As Theorems 2 and 3 show, both the relative and absolute share of blocks and rewards
obtained by the attacker are higher when compared to mining honestly, thus a direct consequence
is that the relative and absolute share of honest miners are lower, meaning that the attack not only
benefits the attacker, but also harms its competitors.
As Theorem 1 shows, the attack is riskless, meaning that the probability of successfully mining an

attack block is equal to that of mining an honest block. By combining all of these results, one can
obtain that the RUM mining strategy dominates the honest one.

7 IN SEARCH OF LOST TIME: UNCLE MAKING IN THEWILD
We will now attempt to give a conclusive answer to a long-standing question: do miners attack the
consensus layer of major cryptocurrencies? The surprising answer is a resounding yes!

To reach this affirmative answer, we crawled Ethereum’s blockchain using a standard Ethereum
full node and collected relevant data for all main-chain and uncle blocks starting from block
15, 226, 042, down to 12, 000, 000. All the data we collected, and the code used to collect this data
and generate all the graphs presented in this section are provided in Appendix F.
Most previous works usually only attempted to find evidence for block withholding attacks,

and have tried doing so by planting many nodes throughout the network, collecting data and
then analyzing it using various statistical methods. On the other hand, we show that the evidence
proving that miners attack the consensus layer is hiding in plain sight and can be obtained using a
single node and closely inspecting publicly available on-chain data. We cover these related works
and provide a more in-depth comparison with the current paper in Section 9.

7.1 Ethereum Mining Pools
Using the previously mentioned data, we identified Ethermine as the largest mining pool currently
active in Ethereum, consistently mining at least 22% of all main-chain blocks, more than any other
mining pool in the past 3 years.

Publication date: July 2022.

https://etherscan.io/block/6
https://etherscan.io/block/15226042
https://etherscan.io/block/12000000

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 11

According to our analysis, the second largest mining pool for the same time-frame is F2Pool,
which roughly amounts to about half as many main-chain blocks as Ethermine. Notably, F2Pool
has a considerable amount of hash-rate active on other cryptocurrencies, such as Bitcoin [82]. The
pool’s founder has made a relatively well publicized condemnation of competing mining pools,
blaming them for attacking his own mining pool, but without providing any concrete proof [114].
This is in stark contrast to the evidence that we uncover in this work which shows that, in fact,
F2Pool are attacking other mining pools.

7.2 Identifying Uncle Maker Attacks
Before we examine real-world data, we would like to first crystallize a few insights which will
allow us to identify uncle maker-esque attacks.

Miners that execute uncle maker attacks should have a higher than expected main-
chain block share and lower than expected uncle block share. Recall that the RUM attack
allows an attacker to replace main-chain blocks mined by other miners with a block of its own.
Thus, it follows that miners which perform the attack will have fewer uncles and more main-chain
blocks when compared to honest miners.

Uncle maker attacks can be observed from block timestamps. As our attack relies on
manipulating block timestamps, one can attempt to uncover blocks which were created as part of
such an attack by carefully analyzing the timestamps of historical Ethereum blocks.
By definition, the RUM attack requires an attacker to falsely set block timestamps to be earlier

than they are. Thus, it is reasonable to expect that main-chain blocks created by an attacker will
have an over-representation of low timestamp differences relative to their parents.
In comparison, timestamp differences between honest blocks and their parents should be dis-

tributed according to the exponential distribution [8, 13, 49, 50, 106, 109], with a slight under-
representation of low timestamp differences due to propagation delay in the network [57, 72].

Miners usually use a publicly identifiable coinbase address. In order for a miner to receive
the rewards for the blocks that it mines, the miner must include an address to transfer the reward
to within a mined block, also called a coinbase address. Large mining pools commonly use a specific
address for their block-rewards and advertise it, in the hopes it might attract new participants or
help assert “political” control over the mined cryptocurrency [57].

In spite of this, there is no mechanism in place to force mining pools to stick to a single address
throughout their lifespan, and pools are free to change their address to a new secret one at will.
For example, mining pools might do so when executing an attack, in order to cover their tracks.

Still, it is common for works in the field to assume that mining pools do identify themselves in a
truthful manner [57, 72, 91, 107, 119, 129]. Indeed, a large percentage of all Ethereum blocks belong
to miners who identify their addresses using sites such as [44, 88].

7.3 Block Shares
We will now attempt to apply our previous insights to real-world Ethereum data, starting with the
main-chain and uncle shares of the 4 largest mining pools in Ethereum, given in Fig. 4 and Fig. 5,
respectively. Note that these top 4 pools have mined a combined share of more than 50% of both
main-chain and uncle blocks.

Previous works have shown that larger pools such as Ethermine have a “size-advantage” leading
them to win in cases of ties more often when compared to smaller pool like F2Pool. This leads them
to having a higher share of main-chain blocks and a lower share of uncle blocks when compared to
smaller mining pools, solely due to having more computational resources at their behest [79, 82].

Publication date: July 2022.

12 Aviv Yaish, Gilad Stern, and Aviv Zohar

Ethermine

25%

F2Pool

13%
0x5a...4c

10%

Hiveon
8%

Others

43%

Fig. 4. The 4 largest mining pools’ share of main-
chain blocks.

Ethermine

17%

Nanopool

15%

0x5a...4c

10%

F2Pool
9%

Others

49%

Fig. 5. The 4 largest mining pools’ share of uncle
blocks.

By comparing Figs. 4 and 5, it is apparent that F2Pool has considerably fewer uncles than
is expected for a mining pool of their size: Ethermine and 0𝑥5𝑎 . . . 4𝑐 maintain their respective
positions with regards to both mainchain blocks and uncles, with Ethermine having the largest
share of both, and 0𝑥5𝑎 . . . 4𝑐 having the third largest share. On the other hand, F2Pool has the
second largest share of mainchain blocks, but drops to the fourth place when it comes to uncle
blocks.

A metric which is commonly used to compare mining pools is the uncle rate, defined per-miner
as the ratio between the number of uncles which the miner has mined for some time period, and the
total amount of blocks of all kinds (uncle and main-chain) it mined during the same period. A lower
rate is better due to main-chain blocks receiving a higher block-reward and earning the fees for all
transactions contained within them. Fig. 7 depicts this metric over time for both Ethermine and
F2Pool. Although both were relatively comparable in the year between July 2019 and September
2020, F2Pool took the lead starting in October 2020.

One could argue that F2Pool might have achieved this feat by investing in good network connec-
tivity to other nodes, thus propagating its blocks faster, leading its blocks to win ties by virtue of
arriving to peers earlier. Indeed, at the end of October 2020, roughly when F2Pool’s uncle rate has
started improving, a company called bloXroute has published a blog-post describing how it helped
reduce F2Pool’s uncle rate by improving it’s networking layer [18].

In order to rule out this possibility, we will now turn to analyzing the timestamps of blocks over
this period.

7.4 Block Timestamps
Recall that according to Ethereum’s documentation [31, 54, 124], the target time-difference between
the mining of two blocks is 12− 14 seconds. Indeed, the average time difference between mainchain
blocks and their parents is 13.45 seconds, with the same comparison between uncle blocks and
their parents yielding another reasonable average of 13.81 seconds.

The average difference might obscure more minute details, leading us to plot a histogram of the
timestamp differences between main-chain blocks and their parents in Fig. 8, and between uncles
and their parents in Fig. 9. Both histograms were truncated at 18 seconds to maintain readability.

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 13

Jul '19 Dec '19 May '20 Oct '20 Apr '21 Sep '21
Date

0

500

1000

1500

2000

2500

3000

3500

4000

Am
ou

nt
 o

f b
lo

ck
s

w
ith

 ti
m

es
ta

m
p

di
ff.

 d
iv

is
ib

le
 b

y
9

Ethermine
F2Pool
0x99...e3

Fig. 6. The monthly amount of main-chain blocks
with a timestamp difference from their parent
which is divisible by 9. Note that both F2Pool
and 0𝑥99 . . . 𝑒3 stop mining such blocks starting
October ’20, while Ethermine continues doing so.

Jul '19 Dec '19 May '20 Oct '20 Apr '21 Sep '21
Date

3%

4%

5%

6%

M
on

th
ly

 u
nc

le
 ra

te

Ethermine
F2Pool
0x99...e3

Fig. 7. The monthly uncle rate for Ethermine,
F2Pool and 0𝑥99 . . . 𝑒3, defined per-miner as the
ratio between the number of uncle blocks it mined
in some month and the total amount of blocks it
mined that month.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Timestamp difference from parent, in seconds

0

25000

50000

75000

100000

125000

150000

175000

200000

N
um

be
r o

f b
lo

ck
s

Fig. 8. Total number of main-chain blocks with
a given timestamp difference from their parent,
since block 12, 000, 000.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Timestamp difference from parent, in seconds

0

2000

4000

6000

8000

10000

N
um

be
r o

f u
nc

le
s

Fig. 9. Total number of uncle blocks with a given
timestamp difference from their parent, since
block 12, 000, 000.

Fig. 9 looks precisely as predicted in Section 7.2 with regards to the honest scenario: it has a slight
under-representation at the 1 second mark, and its trend seems to fit the expected exponential
distribution.

On the other hand, Fig. 8 has quite a sizable under-representation of timestamp differences which
are divisible by 9, and an over-representation at seconds 8 and 17. This seems to match the expected
fingerprint of an uncle maker-style attack.

7.5 Catching F2Pool Red-handed
In order to get to the bottom of the anomalies we observed so far, we created more detailed
histograms which separate blocks according to the identity of their miner. Specifically, in Fig. 10
we plot the per-miner histogram for the timestamp difference between main-chain blocks and their
parents, and in Fig. 11 we do the same for uncles.

Figs. 10 and 11 explain the reason for F2Pool’s advantage very clearly: F2Pool did not mine even
a single main-chain block or uncle with a timestamp difference which is divisible by 9 since block

Publication date: July 2022.

14 Aviv Yaish, Gilad Stern, and Aviv Zohar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Timestamp difference from parent, in seconds

0

10000

20000

30000

40000

50000

N
um

be
r o

f b
lo

ck
s

Miners
Ethermine
F2Pool
0x5a...4c
Hiveon

Fig. 10. Number of main-chain blocks with a
given timestamp difference from their parent,
separated by mining pool, for the 4 largest min-
ing pools. Note that F2Pool has no blocks with
timestamp differences divisible by 9, and an over-
representation for a difference of 8 seconds.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Timestamp difference from parent, in seconds

0

500

1000

1500

2000

N
um

be
r o

f u
nc

le
s

Miners
Ethermine
F2Pool
Hiveon
0x5a...4c

Fig. 11. Number of uncle blocks with a given
timestamp difference from their parent, sepa-
rated by mining pool, for the 4 largest mining
pools. Note that pools except F2Pool have an over-
representation of blocks with timestamp differ-
ences divisible by 9, due to F2Pool’s attack.

11, 064, 754, which was mined almost two years ago. Whenever the honest timestamp difference
should have been 9 seconds, they instead have falsely set it to be 8, as required to execute an uncle
maker attack. We provide an example of a suspected uncle maker block by F2Pool in Example 2.

Fig. 11 shows that F2Pool’s foolhardy behavior harms other mining pools, as can be deduced by
looking at the larger-than-expected number of uncles with a timestamp difference of 9 seconds
mined by Ethermine, Hiveon and an unnamed pool which uses the address 0𝑥5𝑎 . . . 4𝑐 . This is
due to F2Pool using a timestamp manipulation tactic which precisely targets this time difference
window, while they mine honestly at all other windows.

7.6 F2Pool’s Attack is not Riskless
We proved in Section 6 that in order for an uncle maker attack to be riskless, very specific conditions
must hold. These conditions preclude the possibility of executing a riskless attack in certain time
windows, for example if the time since the last valid block was observed is at least 18 seconds. Yet,
as Fig. 12 shows, F2Pool do not shy from executing uncle maker-style attacks even at later periods
but only for time differences which are divisible by 9, leading us to believe they employ a variant
of the attack.

7.6.1 Risky Uncle Maker Attack. One possibility is that F2Pool executes the attack if the expected
profit from it is higher when compared to mining honestly, even if it incurs additional risk. E.g. even
if the probability of mining the attack block is lower than the probability of mining an honest one.
Due to this, we call this variant the risky uncle maker attack.
Such a risky uncle maker attack can be profitable in expectation under certain scenarios, for

example if another miner “snatched” transactions which pay exuberantly high fees and included
them in its block before the attacker, or if the attacker has a sufficiently high hash-rate and good
network connectivity.

7.6.2 Preemptive Uncle Maker Attack. Another option is that F2Pool, instead of actively trying to
replace existing blocks, actually attempts to preemptively assure their blocks will win in case of
ties by setting block timestamps to be within an earlier 9 second window when compared to the
honest timestamps. This increases mining difficulty and makes sure their blocks have a higher TD,

Publication date: July 2022.

https://etherscan.io/block/11064754

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Timestamp difference from parent, in seconds

0

5000

10000

15000

20000

25000

30000

N
um

be
r o

f b
lo

ck
s

m
in

ed
 b

y
F2

Po
ol

Fig. 12. Number of main-chain blocks mined
solely by the F2Pool mining pool, with a given
timestamp difference from their parent, since
block 12, 000, 000.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Timestamp difference from parent, in seconds

0

5000

10000

15000

20000

25000

30000

N
um

be
r o

f b
lo

ck
s

Miners
F2Pool
0x99...e3
0xbc...8e
0xf2...04

Fig. 13. Number ofmain-chainwith a given times-
tamp difference from their parent, separated by
mining pool, for mining pools suspected to ma-
nipulate timestamps.

meaning that their blocks will be picked as main-chain blocks over competing honest blocks. We
term this variant of the attack as a preemptive uncle maker attack.

This type of attacks allows miners not to waste computation resources by mining on top of a tip
that has been made “stale” by another block mined on top of it, but which has not been received yet.
If that is the case, attackers setting their clock to a second earlier can be assured that their mined
block will replace any block honestly mined in specific time intervals, which might be disseminated
through the network currently, but hasn’t reached the attackers yet.

7.6.3 RUM is Hard to Implement. Lastly, we would like to raise the possibility that F2Pool chose
to implement the attack which we observe in the wild simply because it was easier to implement
than any other attack, including RUM. In fact, we implemented an arguably less outrageously
apparent variant of the observed attack as a patch for geth. In this patch we set geth’s clock to be
late by exactly one second. This achieves the same effect as F2Pool’s attack, while producing a
more natural-looking timestamp difference curve. We provide additional details in Appendix F.

7.7 Other Attackers
Although F2Pool is the largest mining pool which is currently engaging in uncle maker-esque
attacks, it is not the only one; Fig. 13 shows the timestamp histogram of three additional miners
which use the same exact attack, meaning that they abstain from using timestamp differences
which are divisible by 9.

The second largest such attacker after F2Pool is 0𝑥99 . . . 𝑒3. This miner did not have a name in
Etherscan’s database, and thus we will call it Sneezy. Sneezy’s histogram spikes at the 8 seconds
mark to be almost twice as high than the corresponding bin at the 1 second mark, while F2Pool’s
8 second bin is only roughly 20% taller, suggesting that Sneezy executes the attack over longer
periods of time.
Indeed, as Fig. 7 shows, this aggressive attack is worthwhile, and has decreased Sneezy’s uncle

rate considerably, even moreso than it has benefited F2Pool. Fig. 6 shows the monthly amount
of blocks with a timestamp difference which is divisible by 9 for Ethermine, F2Pool and Sneezy.
While Ethermine’s graph looks relatively uneventful, F2Pool’s and Sneezy’s drop to 0 at almost the
same time. A closer inspection of the blockchain reveals that Sneezy started the attack at block
11, 080, 310, meaning slightly more than two days after F2Pool.

Publication date: July 2022.

https://etherscan.io/block/11080310

16 Aviv Yaish, Gilad Stern, and Aviv Zohar

8 MITIGATION
We will now go over mitigation techniques that arise from the previously discussed results. It is
well known that cryptocurrencies are leary of making changes to their consensus mechanisms,
oftentimes forking the blockchain and thus creating two communities, one which abides to the
previous consensus rules and rejects the change, and another which adopts it [71, 74]. Thus, we
would like to focus on solutions which are reasonable in scope, e.g. similar to previously adopted
Ethereum improvement proposals (EIPs) [37].

8.1 Minimize attacker flexibility by increasing the minimal difficulty
In the proofs given in Section 6, we have shown that if the minimal difficulty is strictly less than
20482, then an attacker could execute a riskless attack in less restrictive conditions than those
described in Theorem 1.
As we have mentioned in the same section, mining difficulty did not come close to such a

difficulty in the seven years since Ethereum was launched, but the fix is worthwhile for any small
cryptocurrency which is based on Ethereum’s mechanism and might reach such low levels of
mining difficulty.

The above mitigation was implemented in Appendix F.

8.2 Reject competing chains more aggressively
The RUM attack and the variants which we observe in the wild can be mitigated completely by
rejecting competing chains in a more aggressive manner.

More concretely, denote the tip of the competing chain by 𝑏 ′ and of the local chain by 𝑏. A miner
should reject it if all of the following conditions hold:

(1) If 𝑏 and 𝑏 ′ share a parent
(2) If 𝑏 has at least the same number of uncles as 𝑏 ′
(3) If the timestamp of 𝑏 ′ is less than the miner’s local clock by one second or more

If at least one of these conditions do not hold, the miner should adhere to Ethereum’s existing
protocols.
Notice that an attack block for either RUM or the variant which we observe in the wild must

fulfill all of these conditions, thus if all honest miners would reject competing chains based on this
criteria, the attack will be prevented.

We would like to mention that the third condition is actually not as strict as it appears. Accord-
ing to [72], 85% of blocks are propagated in less than 100 milliseconds, while in recent history
propagation time did not exceed 650 milliseconds [6, 10, 48].
Additionally, although this mitigation is similar to already existing Ethereum consensus rules

which use a node’s local clock to reject blocks in some cases, we emphasize that such considerations
might open the door for various attacks. Specifically, we have not analyzed the implications of this
mitigation with regards to any other attack besides the RUM attacks and the variations which we
have covered in this work.

We have implemented this mitigation in Appendix F.

8.3 Migrate to Other Mechanisms
An obvious mitigation technique which will solve both this attack, and any other PoW-related one,
is to migrate Ethereum’s consensus mechanism to proof-of-stake (PoS). This transition, which is also
called The Merge [39], is scheduled to happen by the end of 2022 (though it has been scheduled to
happen since 2017 and has been postponed multiple times by now [16]). Alternatively, it is possible

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 17

to other protocols with theoretical guarantees, like [56, 92], and even [109], which Ethereum’s
current mechanism is based on.

Other solutions which might be smaller in scope and thus easier to implement are to adopt better
fork-choosing rules [130, 131], use reliable timestamps [1, 4, 28, 75] or avoid using timestamps for
difficulty adjustments altogether [108].

9 RELATEDWORK
We will now review the major related works of the field and compare these to our paper, when
appropriate. A summary is provided in Table 1. Additionally, in order to paint a complete picture
of the current research landscape, we surveyed a few additional related papers in Appendix E.

Withholding Attacks. Most consensus-level attacks rely on block withholding and on an
attacker’s ability to both immediately hear about new blocks, and broadcast withheld blocks to
some fraction of the network before this fraction hears of these new blocks. Usually, such attacks
theoretically allow miners to increase expected profits, although they do have a non-zero probability
of failing and causing a loss. As far as we know, there is currently no software in place to facilitate
this attack.
In contrast, we do not require such assumptions, instead relying on an attacker’s ability to

manipulate timestamps. This is indeed feasible, as seen in our empirical evaluation and by the geth
patch we provide which implements the attack.
Examples of such attacks include the celebrated Selfish Mining attack [50], which increases an

attacker’s share of the blocks beyond its share of the mining power. This is achieved by mining
blocks and withholding them. Withheld blocks are published in a manner which discards blocks
mined by honest parties. Variants of the attack were further explored in Bitcoin by [23, 59, 102]
and in Ethereum by [52, 61, 62, 98]. A notable extension of selfish mining is the Stubborn Mining
attack, in which attackers continue mining on selfish forks even if these trail behind the honest
chain [81, 91, 122].

As both selfish and stubborn mining are not proven to be optimal mining strategies, several works
have attempted creating general frameworks for mining attacks which rely on block withholding,
such as [67, 131–133], which employ machine learning (ML) techniques to recreate classic results
and derive new ones. These have the same pitfalls as the selfish-mining papers.

Manipulating DAAs Without Withholding Blocks or Manipulating Timestamps. A
strand of research focused on directly manipulating DAAs to increase mining profits, thus avoiding
block withholding. All such attacks are not currently known to be implemented in software. In
contrast, our attack can be executed by applying a simple software patch.

For example, in Coin Hopping attacks miners “hop” between cryptocurrencies and mine the one
which is currently the most profitable [86]. Certain DAAs are susceptible to cyclical mining difficul-
ties, which can be exploited by miners that join when the difficulty is low and leave when it is high
[123]. These attacks assume miners can indeed “hop” between mining different cryptocurrencies in
a minute’s notice and fixed exchange-rates between the attacked cryptocurrencies, but these are
known to be extremely volatile and do not always move in unison [68, 127].
Similarly but in the scope of just a single cryptocurrency, Energy Equilibria attacks show that

Bitcoin miners can both minimize operational costs and manipulate mining difficulty to increase
the average amount of rewards per unit of time by repeatedly turning their mining hardware on
and off, but the profitability of this mining strategy for a specific miner depends on the fraction of
mining expenses which it dedicates to electricity and whether this electricity is bought in advance
or not [53, 60].

Publication date: July 2022.

18 Aviv Yaish, Gilad Stern, and Aviv Zohar

On the other hand, the Stretch & Squeeze attack presented in [126] focuses on increasing and
decreasing Bitcoin’s and Ethereum’s block-rates, and then using this to create interest-rate arbitrage
between decentralized finance (DeFi) lending platforms, which can be exploited to make a profit
by taking a large collateralized loan from one platform and depositing it in another. The market’s
response to such an attack has not been explored, and it is reasonable to assume that such arbitrage
will be closed by other players, thus voiding potential gains from being made.

Timestamp Attacks. In Ethereum, timestamps have been mostly used to attack smart contracts
[17]. An exception is the Stretch & Squeeze paper [126], that found two timestamp weaknesses
in geth’s code. The first is a simple bug that was quickly fixed. The second weakness is inherent
to Ethereum’s consensus and still remains; it allows miners to intentionally mine uncles with a
difficulty which is lower by 5% compared to the honest one. This can be used to increase mining
difficulty and slow-down the blockrate, but was not included in the analysis performed in the paper.
The Difficulty Raising attack presented by [5] is an attack on Bitcoin’s DAA. Similarly to our

attack, it relies on manipulating timestamps in order to increase mining difficulty and replace
existing blocks. In contrast, it focuses on Bitcoin, and as claimed by the work, the attack is infeasible
and entirely theoretical. A framework for Bitcoin that allows deriving conditions which eliminate
the theoretical possibility of such an attack is analyzed in [56].

Real-world Evidence of Attacks. Many have wondered why selfish mining and related attacks
are not observed in the wild [67, 91], with one glaring reason being the lack of concrete software
implementations to facilitate such attacks [116]. Some previous works relied on statistical methods
to detect abnormalities such as a large amount of blocks consecutively mined by a single miner,
or a high number of forks, but have not found any conclusive evidence of a major attack [79, 80],
while [82] found that one Bitcoin mining pool performs coin-hopping, specifically between Bitcoin
and Bitcoin Cash, the latter of which is a fork of Bitcoin [74].
Two exceptions are [82, 126]. The former used data from Ethereum nodes to compare block

timestamps with the actual block arrival times, and has concluded that the two are roughly similar.
The latter claims that the last three years of Ethereum blocks do not bear the mark of timestamp
manipulations, and has done so by looking at basic metrics such as the mean and median differences
between blocks and their direct ancestors, which indeed are not indicative of any apparent manip-
ulation. As we’ve shown, by looking at the histogram of timestamp differences, it becomes clear
that, in fact, miners disregard the honest protocol and set timestamps to gain an unfair advantage.

10 CONCLUSIONS
In this work, we have presented a novel attack on Ethereum’s consensus mechanism and multiple
variations on it, including an implementation of one such variation as a patch for geth, Ethereum’s
most popular client.
We have analyzed this attack and have proved that miners can execute it in a risk-less manner,

thereby increasing both their relative share of blocks and their absolute and relative share of block
rewards.
We have shown that this attack has been executed by Ethereum’s second largest mining pool,

F2Pool, for over two years, thereby finding the first-ever proof of an attack on the consensus
mechanism of a major cryptocurrency.
Finally, we have suggested concrete mitigation techniques which can be quickly implemented

until Ethereum’s migration to PoS is finalized.

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 19

AVAILABILITY
To maintain anonymity, all code and data used in this paper were uploaded to a Google Drive
account which was opened under the pseudonym Uncle Maker. This account can be accessed using
the following link.

Details about our data sources, installation and usage instructions are provided in Appendix F.

ACKNOWLEDGMENTS
The authors are partially supported by grants from the Ministry of Science & Technology, Israel, the
Israel Science Foundation (grants 1504/17 & 1443/21) and by a grant from the Hebrew University of
Jerusalem, Israel (HUJI) Federmann Cyber Security Research Center in conjunction with the Israel
National Cyber Directorate.

REFERENCES
[1] Aydin Abadi, Michele Ciampi, Aggelos Kiayias, and Vassilis Zikas. 2020. Timed Signatures and Zero-Knowledge

Proofs—Timestamping in the Blockchain Era—. In International Conference on Applied Cryptography and Network
Security (2020). Springer, Springer International Publishing, 335–354. https://doi.org/10.1007/978-3-030-57808-4_17

[2] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks on Ethereum Smart Contracts (SoK).
In Principles of Security and Trust, Matteo Maffei and Mark Ryan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
164–186.

[3] Sarah Azouvi and Alexander Hicks. 2020. SoK: Tools for Game Theoretic Models of Security for Cryptocurrencies.
https://doi.org/10.21428/58320208.8e7f4fab arXiv:1905.08595 [cs.CR]

[4] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. 2019. Ouroboros Chronos:
Permissionless Clock Synchronization via Proof-of-Stake. IACR Cryptol. ePrint Arch. 2019 (2019), 838. https:
//eprint.iacr.org/2019/838

[5] Lear Bahack. 2013. Theoretical Bitcoin Attacks with less than Half of the Computational Power (draft). https:
//doi.org/10.48550/ARXIV.1312.7013

[6] BDN. 2022. Blockchain Distribution Network. https://www.bdn-explorer.com/
[7] Matthew Bernhard, Andrea Bracciali, Lewis Gudgeon, Thomas Haines, Ariah Klages-Mundt, Shiníchiro Matsuo,

Daniel Perez, Massimiliano Sala, and Sam Werner. 2021. SoK: Algorithmic Incentive Manipulation Attacks on
Permissionless PoW Cryptocurrencies. In Financial Cryptography and Data Security. FC 2021 International Workshops
- CoDecFin, DeFi, VOTING, and WTSC, Virtual Event, March 5, 2021, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 12676). Springer, 507–532. https://doi.org/10.1007/978-3-662-63958-0

[8] George Bissias and Brian N Levine. 2020. Bobtail: Improved Blockchain Security with Low-Variance Mining. In ISOC
Network and Distributed System Security Symposium (2020). Internet Society. https://doi.org/10.14722/ndss.2020.23095

[9] BitInfoCharts. 2022. Bitcoin, Ethereum, Dogecoin, XRP, Ethereum Classic, Litecoin, Monero, Bitcoin Cash, Zcash,
Bitcoin Gold Hashrate historical chart. https://web.archive.org/web/20220522122528/https://bitinfocharts.com/
comparison/hashrate-btc-eth-doge-xrp-etc-ltc-xmr-bch-zec-btg.html#3y

[10] BLOCKCYPHER. 2022. Blockchain Web Services. https://www.blockcypher.com
[11] Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems Review 49,

1 (2015), 71–79.
[12] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll, and Edward W Felten. 2015. Sok:

Research perspectives and challenges for bitcoin and cryptocurrencies. In 2015 IEEE symposium on security and
privacy. IEEE, IEEE, 104–121. https://doi.org/10.1109/SP.2015.14

[13] R. Bowden, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. 2018. Block arrivals in the Bitcoin blockchain. ArXiv
e-prints (Jan. 2018). arXiv:1801.07447 [cs.CR]

[14] Vitalik Buterin. 2016. EIP-100: Change difficulty adjustment to target mean block time including uncles. https:
//eips.ethereum.org/EIPS/eip-100

[15] Vitalik Buterin. 2022. Ethereum Whitepaper. https://web.archive.org/web/20220728020709/https://ethereum.org/en/
whitepaper/

[16] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437 (Oct.
2017). arXiv:1710.09437 [cs.CR]

[17] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2019. A Survey on Ethereum Systems Security:
Vulnerabilities, Attacks and Defenses. https://doi.org/10.1145/3391195 arXiv:1908.04507 [cs.CR]

Publication date: July 2022.

https://drive.google.com/drive/folders/12MupjY-DRWMDDQ4X6RwK01v-HWyORAkT?usp=sharing
https://doi.org/10.1007/978-3-030-57808-4_17
https://doi.org/10.21428/58320208.8e7f4fab
https://arxiv.org/abs/1905.08595
https://eprint.iacr.org/2019/838
https://eprint.iacr.org/2019/838
https://doi.org/10.48550/ARXIV.1312.7013
https://doi.org/10.48550/ARXIV.1312.7013
https://www.bdn-explorer.com/
https://doi.org/10.1007/978-3-662-63958-0
https://doi.org/10.14722/ndss.2020.23095
https://web.archive.org/web/20220522122528/https://bitinfocharts.com/comparison/hashrate-btc-eth-doge-xrp-etc-ltc-xmr-bch-zec-btg.html#3y
https://web.archive.org/web/20220522122528/https://bitinfocharts.com/comparison/hashrate-btc-eth-doge-xrp-etc-ltc-xmr-bch-zec-btg.html#3y
https://www.blockcypher.com
https://doi.org/10.1109/SP.2015.14
https://arxiv.org/abs/1801.07447
https://eips.ethereum.org/EIPS/eip-100
https://eips.ethereum.org/EIPS/eip-100
https://web.archive.org/web/20220728020709/https://ethereum.org/en/whitepaper/
https://web.archive.org/web/20220728020709/https://ethereum.org/en/whitepaper/
https://arxiv.org/abs/1710.09437
https://doi.org/10.1145/3391195
https://arxiv.org/abs/1908.04507

20 Aviv Yaish, Gilad Stern, and Aviv Zohar

[18] Shen Chen. 2020. The Secret Weapon F2Pool Used to Tackle Its Uncle Rate. https://web.archive.org/
web/20220806080656/https://medium.com/bloxroute/the-secret-weapon-f2pool-used-to-tackle-its-uncle-rate-
1ecb6fe47ef8

[19] Ethereum Classic. 2017. Ethereum Classic. Ethereum Classic (accessed 16 October 2017) https://ethereumclassic. github.
io (2017).

[20] Ethereum Classic. 2022. Proof of Work. https://web.archive.org/web/20220519111931/https://ethereumclassic.org/
why-classic/proof-of-work/

[21] Nicolas T Courtois and Lear Bahack. 2014. On subversive miner strategies and block withholding attack in bitcoin
digital currency. arXiv preprint arXiv:1402.1718 (2014).

[22] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels.
2020. Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner Extractable Value, and Consensus Instability.
In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 910–927.
https://doi.org/10.1109/SP40000.2020.00040

[23] Michael Davidson, Tyler Diamond, et al. 2020. On the Profitability of Selfish Mining Against Multiple Difficulty
Adjustment Algorithms. IACR Cryptol. ePrint Arch. 2020 (2020), 94.

[24] Monika Di Angelo and Gernot Salzer. 2019. A survey of tools for analyzing ethereum smart contracts. In 2019 IEEE
international conference on decentralized applications and infrastructures (DAPPCON). IEEE, 69–78.

[25] Docker. 2022. Get Started with Docker. https://www.docker.com/get-started/
[26] Maya Dotan and Saar Tochner. 2021. Proofs of Useless Work – Positive and Negative Results for Wasteless Mining

Systems. arXiv:2007.01046 [cs.CR]
[27] David Easley, Maureen O’Hara, and Soumya Basu. 2019. From mining to markets: The evolution of bitcoin transaction

fees. Journal of Financial Economics 134, 1 (2019), 91–109.
[28] Gabriel Estevam, Lucas M. Palma, Luan R. Silva, Jean E. Martina, and Martín Vigil. 2021. Accurate and decentralized

timestamping using smart contracts on the Ethereum blockchain. Information Processing & Management 58, 3 (2021),
102471. https://doi.org/10.1016/j.ipm.2020.102471

[29] Ethereum. 2020. Block timestamps. https://git.io/JLQVd
[30] Ethereum. 2021. forkchoice.go. https://github.com/ethereum/go-ethereum/blob/

be9742721f56eb8bb7ebf4f6a03fb01b13a05408/core/forkchoice.go#L43
[31] Ethereum. 2021. Geth’s difficulty adjustment code. https://git.io/JXuhA
[32] Ethereum. 2021. protocol_params.go. https://github.com/ethereum/go-ethereum/blob/

377c7d799ff62c6060939a4f95532df93a345f63/params/protocol_params.go#L168
[33] Ethereum. 2022. backend.shouldPreserve. https://github.com/ethereum/go-ethereum/blob/

ecae8e4f655775bf6935543e3e9136566f4823a2/eth/backend.go#L404
[34] Ethereum. 2022. blockchain.writeBlockWithState. https://github.com/ethereum/go-ethereum/blob/

be9742721f56eb8bb7ebf4f6a03fb01b13a05408/core/blockchain.go#L1219
[35] Ethereum. 2022. consensus.go. https://github.com/ethereum/go-ethereum/blob/

a52bcccfe1fd9b10d27bff1121a8465982af7714/consensus/ethash/consensus.go#L44
[36] Ethereum. 2022. consensus.makeDifficultyCalculator. https://github.com/ethereum/go-ethereum/blob/

377c7d799ff62c6060939a4f95532df93a345f63/consensus/ethash/consensus.go#L404
[37] Ethereum. 2022. Ethereum Improvement Proposals. https://web.archive.org/web/20220710202618/https://eips.

ethereum.org/
[38] Ethereum. 2022. Go Ethereum. https://web.archive.org/web/20220512071235/https://geth.ethereum.org/
[39] Ethereum. 2022. The Merge. https://ethereum.org/en/upgrades/merge/
[40] Ethereum. 2022. Nodes and clients. https://github.com/ethereum/ethereum-org-website/blob/

35c262525ae69bdcfee7e35ad6bc3046d282fc56/src/content/developers/docs/nodes-and-clients/index.md?plain=1#L1
[41] ethereum/devp2p. 2017. DEV’s p2p network protocol & framework. https://web.archive.org/web/20220729125908/

https://gitter.im/ethereum/devp2p?at=59bea341614889d4750c29ac
[42] EthereumPoW. 2022. EthereumPoW. https://web.archive.org/web/20220806223601/https://ethereumpow.org/
[43] Ethernodes. 2021. The popularity of Ethereum clients. ethernodes.org.
[44] Etherscan. 2021. Top 25 Miners by Blocks. https://web.archive.org/web/20210930170721/https://etherscan.io/stat/

miner/
[45] Etherscan. 2022. Blocks. https://etherscan.io/blocks
[46] Etherscan. 2022. Ethereum Network Transaction Fee Chart. https://etherscan.io/chart/transactionfee
[47] Etherscan. 2022. Uncles. https://etherscan.io/uncles
[48] ethstats. 2022. Ethereum Network Status. https://ethstats.net/
[49] Ittay Eyal. 2015. The Miner’s Dilemma. In 2015 IEEE Symposium on Security and Privacy. 89–103. https://doi.org/10.

1109/SP.2015.13

Publication date: July 2022.

https://web.archive.org/web/20220806080656/https://medium.com/bloxroute/the-secret-weapon-f2pool-used-to-tackle-its-uncle-rate-1ecb6fe47ef8
https://web.archive.org/web/20220806080656/https://medium.com/bloxroute/the-secret-weapon-f2pool-used-to-tackle-its-uncle-rate-1ecb6fe47ef8
https://web.archive.org/web/20220806080656/https://medium.com/bloxroute/the-secret-weapon-f2pool-used-to-tackle-its-uncle-rate-1ecb6fe47ef8
https://web.archive.org/web/20220519111931/https://ethereumclassic.org/why-classic/proof-of-work/
https://web.archive.org/web/20220519111931/https://ethereumclassic.org/why-classic/proof-of-work/
https://doi.org/10.1109/SP40000.2020.00040
https://www.docker.com/get-started/
https://arxiv.org/abs/2007.01046
https://doi.org/10.1016/j.ipm.2020.102471
https://git.io/JLQVd
https://github.com/ethereum/go-ethereum/blob/be9742721f56eb8bb7ebf4f6a03fb01b13a05408/core/forkchoice.go#L43
https://github.com/ethereum/go-ethereum/blob/be9742721f56eb8bb7ebf4f6a03fb01b13a05408/core/forkchoice.go#L43
https://git.io/JXuhA
https://github.com/ethereum/go-ethereum/blob/377c7d799ff62c6060939a4f95532df93a345f63/params/protocol_params.go#L168
https://github.com/ethereum/go-ethereum/blob/377c7d799ff62c6060939a4f95532df93a345f63/params/protocol_params.go#L168
https://github.com/ethereum/go-ethereum/blob/ecae8e4f655775bf6935543e3e9136566f4823a2/eth/backend.go#L404
https://github.com/ethereum/go-ethereum/blob/ecae8e4f655775bf6935543e3e9136566f4823a2/eth/backend.go#L404
https://github.com/ethereum/go-ethereum/blob/be9742721f56eb8bb7ebf4f6a03fb01b13a05408/core/blockchain.go#L1219
https://github.com/ethereum/go-ethereum/blob/be9742721f56eb8bb7ebf4f6a03fb01b13a05408/core/blockchain.go#L1219
https://github.com/ethereum/go-ethereum/blob/a52bcccfe1fd9b10d27bff1121a8465982af7714/consensus/ethash/consensus.go#L44
https://github.com/ethereum/go-ethereum/blob/a52bcccfe1fd9b10d27bff1121a8465982af7714/consensus/ethash/consensus.go#L44
https://github.com/ethereum/go-ethereum/blob/377c7d799ff62c6060939a4f95532df93a345f63/consensus/ethash/consensus.go#L404
https://github.com/ethereum/go-ethereum/blob/377c7d799ff62c6060939a4f95532df93a345f63/consensus/ethash/consensus.go#L404
https://web.archive.org/web/20220710202618/https://eips.ethereum.org/
https://web.archive.org/web/20220710202618/https://eips.ethereum.org/
https://web.archive.org/web/20220512071235/https://geth.ethereum.org/
https://ethereum.org/en/upgrades/merge/
https://github.com/ethereum/ethereum-org-website/blob/35c262525ae69bdcfee7e35ad6bc3046d282fc56/src/content/developers/docs/nodes-and-clients/index.md?plain=1#L1
https://github.com/ethereum/ethereum-org-website/blob/35c262525ae69bdcfee7e35ad6bc3046d282fc56/src/content/developers/docs/nodes-and-clients/index.md?plain=1#L1
https://web.archive.org/web/20220729125908/https://gitter.im/ethereum/devp2p?at=59bea341614889d4750c29ac
https://web.archive.org/web/20220729125908/https://gitter.im/ethereum/devp2p?at=59bea341614889d4750c29ac
https://web.archive.org/web/20220806223601/https://ethereumpow.org/
https://web.archive.org/web/20210930170721/https://etherscan.io/stat/miner/
https://web.archive.org/web/20210930170721/https://etherscan.io/stat/miner/
https://etherscan.io/blocks
https://etherscan.io/chart/transactionfee
https://etherscan.io/uncles
https://ethstats.net/
https://doi.org/10.1109/SP.2015.13
https://doi.org/10.1109/SP.2015.13

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 21

[50] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is vulnerable, In International conference
on financial cryptography and data security. Commun. ACM 61, 436–454. https://doi.org/10.1145/3212998

[51] Eugene A Feinberg and Adam Shwartz. 2012. Handbook of Markov decision processes: methods and applications. Vol. 40.
Springer Science & Business Media.

[52] Chen Feng and Jianyu Niu. 2019. Selfish Mining in Ethereum. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). 1306–1316. https://doi.org/10.1109/ICDCS.2019.00131

[53] Amos Fiat, Anna Karlin, Elias Koutsoupias, and Christos Papadimitriou. 2019. Energy Equilibria in Proof-of-Work
Mining. In Proceedings of the 2019 ACM Conference on Economics and Computation (Phoenix, AZ, USA) (EC ’19).
Association for Computing Machinery, New York, NY, USA, 489–502. https://doi.org/10.1145/3328526.3329630

[54] Ethereum Foundation. 2022. Blocks. https://github.com/ethereum/ethereum-org-website/blob/
e98c23119c1514f46b2bcdcc8b2ea59154069bbd/src/content/developers/docs/blocks/index.md?plain=1#L57

[55] Mark Friedenbach. 2018. Forward Blocks.
[56] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2017. The bitcoin backbone protocol with chains of variable

difficulty. In Annual International Cryptology Conference. Springer, 291–323.
[57] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün Sirer. 2018. Decentralization in

Bitcoin and Ethereum Networks. In Financial Cryptography and Data Security, Sarah Meiklejohn and Kazue Sako
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 439–457.

[58] A. Gervais, G. O. Karame, V. Capkun, and S. Capkun. 2014. Is Bitcoin a Decentralized Currency? IEEE Security Privacy
12, 3 (May 2014), 54–60. https://doi.org/10.1109/MSP.2014.49

[59] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. 2016. On
the Security and Performance of Proof of Work Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 3–16. https://doi.org/10.1145/2976749.2978341

[60] Guy Goren and Alexander Spiegelman. 2019. Mind the mining. In Proceedings of the 2019 ACM Conference on Economics
and Computation. ACM, 475–487. https://doi.org/10.1145/3328526.3329566 arXiv:1902.03899

[61] Cyril Grunspan and Ricardo Pérez-Marco. 2019. Selfish Mining and Dyck Words in Bitcoin and Ethereum Networks.
https://doi.org/10.48550/ARXIV.1904.07675

[62] Cyril Grunspan and Ricardo Pérez-Marco. 2019. Selfish Mining in Ethereum. https://doi.org/10.48550/ARXIV.1904.
13330

[63] Runchao Han, Zhimei Sui, Jiangshan Yu, Joseph Liu, and Shiping Chen. 2021. Fact and fiction: Challenging the honest
majority assumption of permissionless blockchains. In Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security. 817–831.

[64] Timo Hanke. 2016. AsicBoost - A Speedup for Bitcoin Mining. arXiv e-prints, Article arXiv:1604.00575 (Apr 2016),
arXiv:1604.00575 pages. arXiv:1604.00575 [cs.CR]

[65] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, WarrenWeckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
2020. Array programming with NumPy. Nature 585 (2020), 357–362. https://doi.org/10.1038/s41586-020-2649-2

[66] Jerry R Hobbs and Feng Pan. 2006. Time ontology in OWL. W3C working draft 27, 133 (2006), 3–36.
[67] Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian Tramer, Giulia Fanti, and Ari Juels. 2021. SquirRL: Automating

Attack Analysis on Blockchain Incentive Mechanisms with Deep Reinforcement Learning. In 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet Society. https:
//doi.org/10.14722/ndss.2021.24188

[68] Paraskevi Katsiampa, Shaen Corbet, and Brian Lucey. 2019. High frequency volatility co-movements in cryptocurrency
markets. Journal of International Financial Markets, Institutions and Money 62 (2019), 35–52. https://doi.org/10.1016/j.
intfin.2019.05.003

[69] Jonathan Katz and Yehuda Lindell. 2020. Introduction to modern cryptography. CRC press. https://doi.org/10.1201/
9781351133036

[70] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Annual International Cryptology Conference. Springer, 357–388. https://doi.
org/10.1007/978-3-319-63688-7_12

[71] Lucianna Kiffer, Dave Levin, and Alan Mislove. 2017. Stick a fork in it: Analyzing the Ethereum network partition. In
Proceedings of the 16th ACM Workshop on Hot Topics in Networks. 94–100.

[72] Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mislove, and Cristina Nita-Rotaru. 2021. Under the hood of the
ethereum gossip protocol. In International Conference on Financial Cryptography and Data Security. Springer, 437–456.

Publication date: July 2022.

https://doi.org/10.1145/3212998
https://doi.org/10.1109/ICDCS.2019.00131
https://doi.org/10.1145/3328526.3329630
https://github.com/ethereum/ethereum-org-website/blob/e98c23119c1514f46b2bcdcc8b2ea59154069bbd/src/content/developers/docs/blocks/index.md?plain=1#L57
https://github.com/ethereum/ethereum-org-website/blob/e98c23119c1514f46b2bcdcc8b2ea59154069bbd/src/content/developers/docs/blocks/index.md?plain=1#L57
https://doi.org/10.1109/MSP.2014.49
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/3328526.3329566
https://arxiv.org/abs/1902.03899
https://doi.org/10.48550/ARXIV.1904.07675
https://doi.org/10.48550/ARXIV.1904.13330
https://doi.org/10.48550/ARXIV.1904.13330
https://arxiv.org/abs/1604.00575
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.14722/ndss.2021.24188
https://doi.org/10.14722/ndss.2021.24188
https://doi.org/10.1016/j.intfin.2019.05.003
https://doi.org/10.1016/j.intfin.2019.05.003
https://doi.org/10.1201/9781351133036
https://doi.org/10.1201/9781351133036
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

22 Aviv Yaish, Gilad Stern, and Aviv Zohar

[73] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller, and Michael Bailey. 2018. Measuring
ethereum network peers. In Proceedings of the Internet Measurement Conference 2018. 91–104.

[74] Yujin Kwon, Hyoungshick Kim, Jinwoo Shin, and Yongdae Kim. 2019. Bitcoin vs. Bitcoin cash: Coexistence or downfall
of bitcoin cash?. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 935–951.

[75] Esteban Landerreche, Marc Stevens, and Christian Schaffner. 2020. Non-interactive cryptographic timestamping
based on verifiable delay functions. In International Conference on Financial Cryptography and Data Security. Springer,
Springer International Publishing, 541–558. https://doi.org/10.1007/978-3-030-51280-4_29

[76] Ron Lavi, Or Sattath, and Aviv Zohar. 2019. Redesigning Bitcoin’s Fee Market. In The World Wide Web Conference
(San Francisco, CA, USA) (WWW ’19). Association for Computing Machinery, New York, NY, USA, 2950–2956.
https://doi.org/10.1145/3308558.3313454

[77] Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jeffrey S. Rosenschein. 2015. Bitcoin Mining
Pools: A Cooperative Game Theoretic Analysis. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems (Istanbul, Turkey) (AAMAS ’15). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 919–927. http://dl.acm.org/citation.cfm?id=2772879.2773270

[78] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive Block Chain Protocols. In Financial Cryptog-
raphy and Data Security, Rainer Bohme and Tatsuaki Okamoto (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
528–547. https://doi.org/10.1007/978-3-662-47854-7_33 arXiv:https://doi.org/10.1007/978-3-662-47854-7_33

[79] Sheng-Nan Li, Zhao Yang, and Claudio J. Tessone. 2020. Mining blocks in a row: A statistical study of fairness in
Bitcoin mining. In IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2020, Toronto, ON, Canada,
May 2-6, 2020. IEEE, 1–4. https://doi.org/10.1109/ICBC48266.2020.9169436

[80] Sheng-Nan Li, Zhao Yang, and Claudio J. Tessone. 2020. Proof-of-Work cryptocurrency mining: a statistical approach
to fairness. In 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops). IEEE. https:
//doi.org/10.1109/icccworkshops49972.2020.9209934

[81] Yizhong Liu, Yiming Hei, Tongge Xu, and Jianwei Liu. 2020. An Evaluation of Uncle Block Mechanism Effect
on Ethereum Selfish and Stubborn Mining Combined With an Eclipse Attack. IEEE Access PP (01 2020), 1–1.
https://doi.org/10.1109/ACCESS.2020.2967861

[82] Sishan Long, Soumya Basu, and EminGün Sirer. 2022. MeasuringMiner Decentralization in Proof-of-Work Blockchains.
https://doi.org/10.48550/ARXIV.2203.16058

[83] Ayelet Lotem, Sarah Azouvi, PatrickMcCorry, and Aviv Zohar. 2022. SlidingWindowChallenge Process for Congestion
Detection. https://doi.org/10.48550/ARXIV.2201.09009

[84] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[85] Wes McKinney et al. 2011. pandas: a foundational Python library for data analysis and statistics. Python for high
performance and scientific computing 14, 9 (2011), 1–9.

[86] Dmitry Meshkov, Alexander Chepurnoy, and Marc Jansen. 2017. Short paper: Revisiting difficulty control for
blockchain systems. In Data Privacy Management, Cryptocurrencies and Blockchain Technology. Springer, 429–436.
https://doi.org/10.1007/978-3-319-67816-0_25

[87] Johnnatan Messias, Mohamed Alzayat, Balakrishnan Chandrasekaran, Krishna P. Gummadi, Patrick Loiseau, and
Alan Mislove. 2021. Selfish & Opaque Transaction Ordering in the Bitcoin Blockchain: The Case for Chain Neutrality.
In Proceedings of the 21st ACM Internet Measurement Conference (Virtual Event) (IMC ’21). Association for Computing
Machinery, New York, NY, USA, 320–335. https://doi.org/10.1145/3487552.3487823

[88] Miningpoolstats. 2022. Ethereum Mining Pools. https://miningpoolstats.stream/ethereum
[89] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
[90] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. 2016. Bitcoin and cryp-

tocurrency technologies: a comprehensive introduction. Princeton University Press.
[91] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016. Stubborn Mining: Generalizing Selfish Mining and

Combining with an Eclipse Attack. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P). 305–320.
https://doi.org/10.1109/EuroSP.2016.32

[92] Rafael Pass and Elaine Shi. 2017. Fruitchains: A fair blockchain. In Proceedings of the ACM symposium on principles of
distributed computing. 315–324.

[93] Julien Piet, Jaiden Fairoze, and Nicholas Weaver. 2022. Extracting Godl [sic] from the Salt Mines: Ethereum Miners
Extracting Value. arXiv preprint arXiv:2203.15930 (2022).

[94] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.
[95] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2021. Quantifying Blockchain Extractable Value: How dark is the forest?

arXiv:2101.05511 [cs.CR]

Publication date: July 2022.

https://doi.org/10.1007/978-3-030-51280-4_29
https://doi.org/10.1145/3308558.3313454
http://dl.acm.org/citation.cfm?id=2772879.2773270
https://doi.org/10.1007/978-3-662-47854-7_33
https://arxiv.org/abs/https://doi.org/10.1007/978-3-662-47854-7_33
https://doi.org/10.1109/ICBC48266.2020.9169436
https://doi.org/10.1109/icccworkshops49972.2020.9209934
https://doi.org/10.1109/icccworkshops49972.2020.9209934
https://doi.org/10.1109/ACCESS.2020.2967861
https://doi.org/10.48550/ARXIV.2203.16058
https://doi.org/10.48550/ARXIV.2201.09009
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1007/978-3-319-67816-0_25
https://doi.org/10.1145/3487552.3487823
https://miningpoolstats.stream/ethereum
https://doi.org/10.1109/EuroSP.2016.32
https://arxiv.org/abs/2101.05511

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 23

[96] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2020. Attacking the DeFi Ecosystem with Flash Loans
for Fun and Profit. https://doi.org/10.1007/978-3-662-64322-8_1 arXiv:2003.03810 [cs.CR]

[97] BitMEX Research. 2022. ETHPoW vsETH2. https://web.archive.org/web/20220805155642/https://blog.bitmex.com/
ethpow-vs-eth2/

[98] F. Ritz and A. Zugenmaier. 2018. The Impact of Uncle Rewards on Selfish Mining in Ethereum. In 2018 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). IEEE Computer Society, Los Alamitos, CA, USA, 50–57.
https://doi.org/10.1109/EuroSPW.2018.00013

[99] Matteo Romiti, Aljosha Judmayer, Alexei Zamyatin, and Bernhard Haslhofer. 2019. A deep dive into bitcoin mining
pools: An empirical analysis of mining shares. arXiv preprint arXiv:1905.05999 (2019).

[100] M. Rosenfeld. 2011. Analysis of Bitcoin Pooled Mining Reward Systems. ArXiv e-prints (Dec. 2011).
arXiv:1112.4980 [cs.DC]

[101] Tim Roughgarden. 2020. Transaction Fee Mechanism Design for the Ethereum Blockchain: An Economic Analysis of
EIP-1559. CoRR abs/2012.00854 (2020). arXiv:2012.00854 https://arxiv.org/abs/2012.00854

[102] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal selfish mining strategies in bitcoin. In
International Conference on Financial Cryptography and Data Security. Springer, 515–532. https://doi.org/10.1007/978-
3-662-54970-4_30 arXiv:1507.06183

[103] Afri Schoedon. 2018. EIP-1234: Constantinople Difficulty Bomb Delay and Block Reward Adjustment. https:
//eips.ethereum.org/EIPS/eip-1234

[104] Afri Schoedon and Vitalik Buterin. 2017. EIP-649: Metropolis Difficulty Bomb Delay and Block Reward Reduction.
https://eips.ethereum.org/EIPS/eip-649

[105] Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. 2018. Writing Safe Smart Contracts in Flint. In
Conference Companion of the 2nd International Conference on Art, Science, and Engineering of Programming (Nice,
France) (Programming’18 Companion). Association for Computing Machinery, New York, NY, USA, 218–219. https:
//doi.org/10.1145/3191697.3213790

[106] Ning Shi. 2016. A new proof-of-work mechanism for bitcoin. Financial Innovation 2, 1 (2016), 31. https://doi.org/10.
1186/s40854-016-0045-6

[107] Paulo Silva, David Vavricka, João Barreto, and Miguel Matos. 2020. Impact of Geo-Distribution and Mining Pools on
Blockchains: A Study of Ethereum. In 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 245–252. https://doi.org/10.1109/DSN48063.2020.00041

[108] Siamak Solat and Maria Potop-Butucaru. 2017. Brief Announcement: ZeroBlock: Timestamp-Free Prevention of
Block-Withholding Attack in Bitcoin. In Stabilization, Safety, and Security of Distributed Systems, Paul Spirakis and
Philippas Tsigas (Eds.). Springer International Publishing, Cham, 356–360.

[109] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction Processing in Bitcoin. In Financial
Cryptography.

[110] Yonatan Sompolinsky and Aviv Zohar. 2016. Bitcoin’s Security Model Revisited. arXiv:1605.09193 [cs.CR]
[111] Yonatan Sompolinsky and Aviv Zohar. 2018. Bitcoin’s underlying incentives. Commun. ACM 61 (02 2018), 46–53.

https://doi.org/10.1145/3152481
[112] Douglas R Stinson. 2005. Cryptography: theory and practice. Chapman and Hall/CRC.
[113] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
[114] Lylian Teng. 2019. F2Pool Founder Condemns Block Withholding Attacks Performed by Some Chinese Mining Pools

on Its Competitors. https://web.archive.org/web/20220214222028/https://news.8btc.com/f2pool-founder-condemns-
block-withholding-attacks-performed-by-some-chinese-mining-pools-on-its-competitors

[115] The SageMath Developers. 2022. SageMath. https://doi.org/10.5281/zenodo.593563
[116] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. 2020. MAD-HTLC: Because HTLC is Crazy-Cheap to

Attack. https://doi.org/10.48550/ARXIV.2006.12031
[117] Guido Van Rossum et al. 2007. Python Programming language.. In USENIX annual technical conference, Vol. 41. 1–36.
[118] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu
Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261–272. https://doi.org/10.1038/s41592-019-0686-2

[119] LuqinWang and Yong Liu. 2015. Exploring Miner Evolution in Bitcoin Network. 290–302. https://doi.org/10.1007/978-
3-319-15509-8_22

[120] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping Wang, Yonggang Wen, and Dong In
Kim. 2019. A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE 7

Publication date: July 2022.

https://doi.org/10.1007/978-3-662-64322-8_1
https://arxiv.org/abs/2003.03810
https://web.archive.org/web/20220805155642/https://blog.bitmex.com/ethpow-vs-eth2/
https://web.archive.org/web/20220805155642/https://blog.bitmex.com/ethpow-vs-eth2/
https://doi.org/10.1109/EuroSPW.2018.00013
https://arxiv.org/abs/1112.4980
https://arxiv.org/abs/2012.00854
https://arxiv.org/abs/2012.00854
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_30
https://arxiv.org/abs/1507.06183
https://eips.ethereum.org/EIPS/eip-1234
https://eips.ethereum.org/EIPS/eip-1234
https://eips.ethereum.org/EIPS/eip-649
https://doi.org/10.1145/3191697.3213790
https://doi.org/10.1145/3191697.3213790
https://doi.org/10.1186/s40854-016-0045-6
https://doi.org/10.1186/s40854-016-0045-6
https://doi.org/10.1109/DSN48063.2020.00041
https://arxiv.org/abs/1605.09193
https://doi.org/10.1145/3152481
https://web.archive.org/web/20220214222028/https://news.8btc.com/f2pool-founder-condemns-block-withholding-attacks-performed-by-some-chinese-mining-pools-on-its-competitors
https://web.archive.org/web/20220214222028/https://news.8btc.com/f2pool-founder-condemns-block-withholding-attacks-performed-by-some-chinese-mining-pools-on-its-competitors
https://doi.org/10.5281/zenodo.593563
https://doi.org/10.48550/ARXIV.2006.12031
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-319-15509-8_22
https://doi.org/10.1007/978-3-319-15509-8_22

24 Aviv Yaish, Gilad Stern, and Aviv Zohar

(2019), 22328–22370. https://doi.org/10.1109/ACCESS.2019.2896108 arXiv:1805.02707
[121] Xu Wang, Xuan Zha, Guangsheng Yu, Wei Ni, Ren Ping Liu, Y Jay Guo, Xinxin Niu, and Kangfeng Zheng. 2018.

Attack and defence of ethereum remote apis. In 2018 IEEE Globecom Workshops (GC Wkshps). IEEE, 1–6.
[122] Ziyu Wang, Jianwei Liu, Qianhong Wu, Yanting Zhang, Hui Yu, and Ziyu Zhou. 2019. An Analytic Evaluation for the

Impact of Uncle Blocks by Selfish and Stubborn Mining in an Imperfect Ethereum Network. Comput. Secur. 87, C (nov
2019), 10 pages. https://doi.org/10.1016/j.cose.2019.101581

[123] Sam M. Werner, Dragos I. Ilie, Iain Stewart, and William J. Knottenbelt. 2020. Unstable Throughput: When the
Difficulty Algorithm Breaks. https://doi.org/10.1109/icbc51069.2021.9461086 arXiv:2006.03044 [cs.CR]

[124] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow
paper 151, 2014 (2014), 1–32.

[125] Aviv Yaish. 2022. Ethereum Scraper. https://doi.org/10.6084/m9.figshare.20408058
[126] Aviv Yaish, Saar Tochner, and Aviv Zohar. 2022. Blockchain Stretching & Squeezing: Manipulating Time for Your

Best Interest. In Proceedings of the 23rd ACM Conference on Economics and Computation (Boulder, CO, USA) (EC ’22).
Association for Computing Machinery, New York, NY, USA, 65–88. https://doi.org/10.1145/3490486.3538250

[127] Aviv Yaish and Aviv Zohar. 2020. Pricing ASICs for Cryptocurrency Mining. arXiv:2002.11064
[128] Youngseok Yang, Taesoo Kim, and Byung-Gon Chun. 2021. Finding Consensus Bugs in Ethereum via Multi-transaction

Differential Fuzzing. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21). USENIX
Association, 349–365. https://www.usenix.org/conference/osdi21/presentation/yang

[129] Liyi Zeng, Yang Chen, Shuo Chen, Xian Zhang, Zhongxin Guo, Wei Xu, and Thomas Moscibroda. 2021. Characterizing
Ethereum’s Mining Power Decentralization at a Deeper Level. In IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications (Vancouver, BC, Canada). IEEE Press, 1–10. https://doi.org/10.1109/INFOCOM42981.2021.9488812

[130] Ren Zhang and Bart Preneel. 2017. Publish or perish: A backward-compatible defense against selfish mining in
bitcoin. In Cryptographers’ Track at the RSA Conference. Springer, 277–292.

[131] Ren Zhang and Bart Preneel. 2019. Lay down the common metrics: Evaluating proof-of-work consensus protocols’
security. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, IEEE, 175–192. https://doi.org/10.1109/sp.2019.
00086

[132] Roi Bar Zur, Ameer Abu-Hanna, Ittay Eyal, and Aviv Tamar. 2022. WeRLman: To Tackle Whale (Transactions), Go
Deep (RL). IACR Cryptol. ePrint Arch. (2022), 175. https://eprint.iacr.org/2022/175

[133] Roi Bar Zur, Ittay Eyal, and Aviv Tamar. 2020. EfficientMDP analysis for selfish-mining in blockchains. In Proceedings of
the 2nd ACMConference on Advances in Financial Technologies. ACM, 113–131. https://doi.org/10.1145/3419614.3423264

Publication date: July 2022.

https://doi.org/10.1109/ACCESS.2019.2896108
https://arxiv.org/abs/1805.02707
https://doi.org/10.1016/j.cose.2019.101581
https://doi.org/10.1109/icbc51069.2021.9461086
https://arxiv.org/abs/2006.03044
https://doi.org/10.6084/m9.figshare.20408058
https://doi.org/10.1145/3490486.3538250
https://arxiv.org/abs/2002.11064
https://www.usenix.org/conference/osdi21/presentation/yang
https://doi.org/10.1109/INFOCOM42981.2021.9488812
https://doi.org/10.1109/sp.2019.00086
https://doi.org/10.1109/sp.2019.00086
https://eprint.iacr.org/2022/175
https://doi.org/10.1145/3419614.3423264

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 25

A APPENDICES STRUCTURE
Due to a lack of space, we have omitted examples, proofs, extensions of our attack and various
other details from the main body of the paper, but included them as appendices.

The appendices are structure as follows: in Appendix B we provide an algorithmic description of
the RUM attack, and then in Appendix C we go over a real-world series of blocks which we suspect
to be a real-life attempt at executing the attack. Appendix D contains the proofs for our theoretical
analysis of the RUM attack. Appendix E attempts to paint a bigger picture of the current research
landscape by going over papers which were not included in Section 9. In Appendix F we provide
all necessary information in order to reproduce our work, such as the code we used to extract data
from the blockchain and create the various graphs included in the paper, a link to an anonymous
website which contains a copy of our data and alternative sources of data. Finally, Appendix G is a
glossary of the various notations and acronyms used throughout the paper.

B ALGORITHM
We provide an algorithmic description of the RUM attack in Algorithm 1.

C REAL-WORLD EXAMPLE
Example 2. Wewill go over a real-world counterpart for Example 1. We follow Ethereum’s conventions
and use the hexadecimal numeral system when referring to various values such as block hashes and
difficulties.

Block #14772898
Hash 0x099...448

Timestamp 1652521673
Difficulty 30dd72c69aa5a1
Reward 2 ETH

Uncle #14772899
Hash 0xd87...cd5

Timestamp 1652521700
Difficulty 30d17b69e8fef9
Reward 1.75 ETH

Block #14772899
Hash 0xb11...e84

Timestamp 1652521699
Difficulty 30d7971841d24d
Reward 2 ETH

Block #14772900
Hash 0x716...2e7

Timestamp 1652521705
Difficulty 30ddf20b24da87
Reward 2.0625 ETH

ParentParent

UncleParent

Fig. 14. A depiction of the blocks of Example 2.

Fig. 14 depicts four real blocks. The block with hash 0𝑥716...2𝑒7 (abbreviated for brevity) has a depth
of 14772900 blocks relative to the genesis. This block references the block with hash 0𝑥𝑏11...𝑒84 as its
parent, and the block with hash 0𝑥𝑑87...𝑐𝑑5 as its uncle. Both the parent and the uncle reference block
number 14772898 as their parent, which we will refer to as the grandparent, for clarity.

The timestamp difference between the parent and the grandparent is 26 seconds, while the difference
between the uncle and the grandparent is 27 seconds. Thus, according to Ethereum’s DAA, the parent
was mined at a higher difficulty.

The grandparent has a TD of 𝑎5𝑐𝑑3𝑒87𝑑79𝑏𝑐358𝑐2𝑑 . As the TD is a simple sum of the each block’s
difficulty and its direct ancestor’s TD, the parent’s TD is 𝑎5𝑐𝑑4195510𝑑4775𝑒7𝑎, while the uncle’s is
lower at 𝑎5𝑐𝑑4194𝑒 𝑓 5261𝑒8𝑏26. So, according to Ethereum’s tie breaking rule, the former must be the
current block’s parent.

Notice that block 0𝑥𝑏11...𝑒84 was mined by F2Pool.

Publication date: July 2022.

https://etherscan.io/block/14772900
https://etherscan.io/block/14772899
https://etherscan.io/uncle/0xd871a0ae183d1a9ccdc27f963e85f005f0bbd0794a86e3d5696507d14cff6cd5
https://etherscan.io/block/14772898

26 Aviv Yaish, Gilad Stern, and Aviv Zohar

Algorithm 1: Riskless uncle maker attack
1 on event initialize:
2 𝑐ℎ𝑎𝑖𝑛 ← publicly known blocks ;
3 do: mine honestly on top of the tip of 𝑐ℎ𝑎𝑖𝑛 ;
4 end
5 on event we mined a block 𝑏:
6 do: publish 𝑏 and append it to 𝑐ℎ𝑎𝑖𝑛 ;
7 do: mine honestly on top of the tip of 𝑐ℎ𝑎𝑖𝑛 ;
8 end
9 on event others mined a block 𝑏:
10 if 𝑡𝑏 ∈ [9, 18) then
11 trigger event: attack against 𝑏 ;
12 else
13 do: append 𝑏 to 𝑐ℎ𝑎𝑖𝑛 ;
14 do: mine honestly on top of the tip of 𝑐ℎ𝑎𝑖𝑛 ;
15 end
16 end
17 on event attack against 𝑏:
18 𝑡𝐻 ← 0 ;
19 while 𝑡𝐻 < 9 & no-one mined a new block do
20 mine 𝑏𝐴 with 𝑡𝑏𝐴 = 8 on top of 𝑏.𝑝𝑎𝑟𝑒𝑛𝑡 ;
21 𝑡𝐻 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑏.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ;
22 end
23 if honest miners mined a new block 𝑏 ′ then
24 do: append 𝑏 to 𝑐ℎ𝑎𝑖𝑛 ;
25 trigger event: others mined a block 𝑏 ′ ;
26 else if we mined 𝑏𝐴 then
27 trigger event: we mined a block 𝑏𝐴 ;
28 else
29 do: append 𝑏 to 𝑐ℎ𝑎𝑖𝑛 ;
30 do: mine honestly on top of the tip of 𝑐ℎ𝑎𝑖𝑛 ;
31 end
32 end

D PROOFS
D.1 Conditions For a Riskless Uncle Maker Attack
We will now characterize the conditions in which a RUM attack is feasible.

By executing the attack, the attacker increases its share of the total rewards and of the total
main-chain blocks in the network, above its fair share. In addition, the attack yields the same
number of block rewards as honest mining would.

Theorem 1. Let the current tip of the main-chain be block 𝑏1. Denote its parent as 𝑏0, the parent’s
difficulty as 𝑑0, the timestamp difference between them as 𝑡1, and the difference between the current
time and 𝑏1’s timestamp as 𝑡𝐻 .

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 27

If the following conditions hold, then a rational attacker can execute a RUM attack:

⌊ 𝑡𝐻
9
⌋ = 0, ⌊ 𝑡1

9
⌋ = 1

Moreso, if 𝑑0 ≥ 222, these are the only values for which a RUM attack is possible.

An attacker needs to know all the parameters required by Theorem 1 in order to evaluate whether
a riskless attack is currently possible. Remark 1 explains how these values can be obtained.
In order to prove Theorem 1, we break the attack down to its different constituents: the blocks

generated by the attacker should be valid according to the system’s consensus rules, the attacker
should successfully replace honest blocks with the attacker’s blocks, and mining these blocks
should be riskless, meaning that it should not be harder when compared to mining honestly. Each
constituent will be handled via a series of claims.
Given the setting of Theorem 1, the honest miner is currently mining a block on top of 𝑏1, per

the honest protocol. Denote this pending block as 𝑏𝐻 , and its relative timestamp difference as 𝑡𝐻 .
In order to “kick-out” 𝑏1 from the main-chain, the attacker needs to mine a block on top of some

main-chain block which precedes 𝑏1. The latest block which fulfills this criterion is 𝑏0. According
to our threat model, the attacker can mine on top of 𝑏0, and can also set the timestamp arbitrarily,
as long as it’s valid. Denote the attacker’s pending block by 𝑏𝐴, define its parent as 𝑏0, and set its
timestamp difference to be 𝑡𝐴, which we will soon define.
A visual depiction of the current state of the blockchain and all pending blocks is provided in

Fig. 2.
All the conditions that the attacker’s block must fulfil are:
(1) The block should be valid. Concretely, the timestamp difference between 𝑏𝐴 and 𝑏0 should

be valid:
𝑡𝐴 ≥ 1 (2)

(2) The block should win ties with 𝑏1.
(3) Mining the block should not be harder when compared to mining honestly: 𝑑𝐴 ≤ 𝑑𝐻 .
Note that the third condition is only required for riskless attacks. We will now use a series of

claims to find timestamps that answer these requirements.

Claim 1. Block 𝑏𝐴 will win ties against 𝑏1 if:

⌊ 𝑡𝐴
9
⌋ < min

(
⌊ 𝑡1

9
⌋, 100

)
Proof. According to Ethereum’s tie-breaking mechanism, in case of ties, blocks with a higher

TD are preferred. As both blocks have the same parent, and because TD is a simple sum of a block’s
difficulty and its parent’s difficulty, this requirement boils down to:

𝑑𝐴 > 𝑑1 (3)

Thus, by plugging in Eq. (1):

𝑑0 + max
(
1 + 0 − ⌊ 𝑡𝐴

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ > 𝑑0 + max

(
1 + 0 − ⌊ 𝑡1

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ (4)

Slight algebraic manipulations give us:

max
(
1 − ⌊ 𝑡𝐴

9
⌋,−99

)
> max

(
1 − ⌊ 𝑡1

9
⌋,−99

)
(5)

Publication date: July 2022.

28 Aviv Yaish, Gilad Stern, and Aviv Zohar

Note that by assumption ⌊ 𝑡𝐴9 ⌋ < 100, and thus it is always the case that 1− ⌊ 𝑡𝐴9 ⌋ > −99. This means
that the above condition is equivalent to:

1 − ⌊ 𝑡𝐴
9
⌋ > max

(
1 − ⌊ 𝑡1

9
⌋,−99

)
(6)

First, we handle the case where the right term obtains a maximum at −99. This is equivalent to:

1 − ⌊ 𝑡𝐴
9
⌋ > −99 (7)

As noted above, this is always true, meaning that the adversary will win ties in this case.
In the other case, if the right term of Eq. (6) obtains a maximum at 1 − ⌊ 𝑡1

9 ⌋, we can rewrite the
equation like so:

1 − ⌊ 𝑡𝐴
9
⌋ > 1 − ⌊ 𝑡1

9
⌋ (8)

By simplifying this equation, we get:

⌊ 𝑡𝐴
9
⌋ < ⌊ 𝑡1

9
⌋ (9)

This inequality also holds by assumption, meaning that the adversary wins ties in this case as
well. □

Now, we will analyze the opposite scenario.

Claim 2. Block 𝑏𝐴 will lose ties against 𝑏1 if:

⌊ 𝑡𝐴
9
⌋ ≥ min

(
⌊ 𝑡1

9
⌋, 100

)
Proof. The difficulties of the blocks are:

𝑑𝐴
def= 𝑑0 + max

(
1 + 0 − ⌊ 𝑡𝐴

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ (10)

𝑑1
def= 𝑑0 + max

(
1 + 0 − ⌊ 𝑡1

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ (11)

By our assumption that ⌊ 𝑡𝐴9 ⌋ ≥ min
(
⌊ 𝑡1

9 ⌋, 100
)
, we get:

𝑑𝐴 = 𝑑0 + max
(
1 + 0 − ⌊ 𝑡𝐴

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ ≤

𝑑0 + max
(
1 + 0 −min

(
⌊ 𝑡1

9
⌋, 100

)
,−99

)
· ⌊ 𝑑0

2048
⌋ =

𝑑0 + max
(
1 −min

(
⌊ 𝑡1

9
⌋, 100

)
,−99

)
· ⌊ 𝑑0

2048
⌋ =

𝑑0 + max
(
1 − ⌊ 𝑡1

9
⌋, 1 − 100,−99

)
· ⌊ 𝑑0

2048
⌋ =

𝑑0 + max
(
1 − ⌊ 𝑡1

9
⌋,−99,−99

)
· ⌊ 𝑑0

2048
⌋ =

𝑑0 + max
(
1 + 0 − ⌊ 𝑡1

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ = 𝑑1 (12)

As the attacker will start mining 𝑏𝐴 only after the honest miner has published 𝑏1, by definition
it is impossible for the honest miner to hear about 𝑏𝐴 before 𝑏1.

Following Ethereum’s consensus rules as defined in Section 4.1, this means that the honest miner
will prefer 𝑏𝐴 only if its difficulty is higher than 𝑏1. As Eq. (12) shows, this is not the case. □

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 29

Claims 1 and 2 allow us to rule out the possibility of performing a successful attack in certain
cases.

Corollary 2. A RUM attack cannot be performed if 𝑡1 < 9.

Proof. We know from Claims 1 and 2 that 𝑏1 can be replaced iff:

⌊ 𝑡𝐴
9
⌋ < min

(
⌊ 𝑡1

9
⌋, 100

)
(13)

But, the attacker’s timestamp must be valid, e.g. must satisfy Eq. (2):

1 ≤ ⌊ 𝑡𝐴
9
⌋ < min

(
⌊ 𝑡1

9
⌋, 100

)
(14)

If 𝑡1 < 9, then:
1 ≤ ⌊ 𝑡𝐴

9
⌋ < min

(
⌊ 𝑡1

9
⌋, 100

)
= 0 (15)

And we’ve reached a contradiction. □

Now, in order to guarantee that the attack is indeed “riskless”, we must make sure that the
probability of the attacker successfully mining on top of 𝑏0 is not lower than if it were following
the honest protocol and mining on top of 𝑏1. This is taken care of by Claim 3.

Claim 3. Assuming ⌊ 𝑡𝐴9 ⌋ < min
(
⌊ 𝑡1

9 ⌋, 100
)
and 𝑡1 ≥ 9, block 𝑏𝐴 incurs no additional mining risk

compared to mining honestly on top of 𝑏1 if:

⌊ 𝑡𝐴
9
⌋ ≥ min

(
⌊ 𝑡1

9
⌋, 100

)
+ min

(
⌊ 𝑡𝐻

9
⌋ − 1, 99

) ⌊ 𝑑1
2048 ⌋
⌊ 𝑑0

2048 ⌋
Proof. In order to guarantee that the attack is riskless, we must make sure that the difficulty

that corresponds to the attacker’s time difference is not higher than the one used by the honest
miner’s pending block:

𝑑𝐴 ≤ 𝑑𝐻 (16)
By plugging in Eq. (1):

𝑑0 + max
(
1 + 0 − ⌊ 𝑡𝐴

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ ≤ 𝑑1 + max

(
1 + 0 − ⌊ 𝑡𝐻

9
⌋,−99

)
· ⌊ 𝑑1

2048
⌋ (17)

From our assumptions, we know that:

−min
(
⌊ 𝑡1

9
⌋, 100

)
< −⌊ 𝑡𝐴

9
⌋ (18)

So:
1 −min

(
⌊ 𝑡1

9
⌋, 100

)
< 1 − ⌊ 𝑡𝐴

9
⌋ (19)

According to the consensus rules defined in Section 4, we know that 𝑡1 ≥ 1. By plugging the
maximal value of 100 into the previous equation, we can deduce:

1 − 100 = −99 < 1 − ⌊ 𝑡𝐴
9
⌋ (20)

This allows us to simplify Eq. (17) to:

𝑑0 +
(
1 − ⌊ 𝑡𝐴

9
⌋
)
· ⌊ 𝑑0

2048
⌋ ≤ 𝑑1 + max

(
1 − ⌊ 𝑡𝐻

9
⌋,−99

)
· ⌊ 𝑑1

2048
⌋ (21)

By plugging in 𝑑1 according to the definition given in Eq. (1):

𝑑0 +
(
1 − ⌊ 𝑡𝐴

9
⌋
)
· ⌊ 𝑑0

2048
⌋ ≤ 𝑑0 +max

(
1 − ⌊ 𝑡1

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ +max

(
1 − ⌊ 𝑡𝐻

9
⌋,−99

)
· ⌊ 𝑑1

2048
⌋ (22)

Publication date: July 2022.

30 Aviv Yaish, Gilad Stern, and Aviv Zohar

Slightly rearranging, we get:(
1 − ⌊ 𝑡𝐴

9
⌋ −max

(
1 − ⌊ 𝑡1

9
⌋,−99

))
· ⌊ 𝑑0

2048
⌋ ≤ max

(
1 − ⌊ 𝑡𝐻

9
⌋,−99

)
· ⌊ 𝑑1

2048
⌋ (23)

By applying simple algebra:

max
(
1 − ⌊ 𝑡𝐻

9
⌋,−99

)
·
⌊ 𝑑1

2048 ⌋
⌊ 𝑑0

2048 ⌋
≥ 1 − ⌊ 𝑡𝐴

9
⌋ −max

(
1 − ⌊ 𝑡1

9
⌋,−99

)
(24)

We would like to isolate ⌊ 𝑡𝐴9 ⌋:

⌊ 𝑡𝐴
9
⌋ ≥ 1 −max

(
1 − ⌊ 𝑡1

9
⌋,−99

)
−max

(
1 − ⌊ 𝑡𝐻

9
⌋,−99

)
·
⌊ 𝑑1

2048 ⌋
⌊ 𝑑0

2048 ⌋
(25)

Finally:

⌊ 𝑡𝐴
9
⌋ ≥ min

(
⌊ 𝑡1

9
⌋, 100

)
+ min

(
⌊ 𝑡𝐻

9
⌋ − 1, 99

) ⌊ 𝑑1
2048 ⌋
⌊ 𝑑0

2048 ⌋
(26)

□

In Example 3 we will show a specific setting in which the mining difficulties of 𝑏𝐴 and 𝑏𝐻 are
equal.

Example 3. Let 𝑡1 ∈ [9, 18) and 𝑡𝐻 < 9. According to Claims 1 to 3, an attacker can attempt to
perform a RUM attack by mining 𝑏𝐴 with a timestamp difference which satisfies 𝑡𝐴 ∈ [1, 9).

By plugging these values in Eq. (1), we get that the mining difficulties of 𝑏1 and 𝑏0 are equal:

(27)

𝑑1 = 𝑑0 +
(
1 − ⌊ 𝑡1

9
⌋
)
· ⌊ 𝑑0

2048
⌋

= 𝑑0 + (1 − 1) · ⌊ 𝑑0

2048
⌋

= 𝑑0 + 0 · ⌊ 𝑑0

2048
⌋

= 𝑑0

Thus, the mining difficulties of 𝑏𝐴 and 𝑏𝐻 are equal too:

(28)

𝑑𝐴 = 𝑑0 +
(
1 − ⌊ 𝑡𝐴

9
⌋
)
· ⌊ 𝑑0

2048
⌋

= 𝑑0 + (1 − 0) · ⌊ 𝑑0

2048
⌋

= 𝑑1 + (1 − 0) · ⌊ 𝑑1

2048
⌋

= 𝑑1 + max
(
1 − ⌊ 𝑡𝐻

9
⌋,−99

)
· ⌊ 𝑑1

2048
⌋

= 𝑑𝐻

This example proves the first part of Theorem 1, showing that a rational attacker can execute a
RUM attack if ⌊ 𝑡𝐴9 ⌋ = 0, ⌊ 𝑡1

9 ⌋ = 1. The proof of the theorem is concluded using Claims 1 to 3.

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 31

Theorem 1. Let the current tip of the main-chain be block 𝑏1. Denote its parent as 𝑏0, the parent’s
difficulty as 𝑑0, the timestamp difference between them as 𝑡1, and the difference between the current
time and 𝑏1’s timestamp as 𝑡𝐻 .
If the following conditions hold, then a rational attacker can execute a RUM attack:

⌊ 𝑡𝐻
9
⌋ = 0, ⌊ 𝑡1

9
⌋ = 1

Moreso, if 𝑑0 ≥ 222, these are the only values for which a RUM attack is possible.

Proof. By combining Claims 1 to 3, we get:

min
(
⌊ 𝑡1

9
⌋, 100

)
+ min

(
⌊ 𝑡𝐻

9
⌋ − 1, 99

) ⌊ 𝑑1
2048 ⌋
⌊ 𝑑0

2048 ⌋
≤ ⌊ 𝑡𝐴

9
⌋ < min

(
⌊ 𝑡1

9
⌋, 100

)
(29)

Note that when ⌊ 𝑡𝐻9 ⌋ > 0, we get min
(
⌊ 𝑡𝐻9 ⌋ − 1, 99

)
≥ 0, meaning that:

min
(
⌊ 𝑡1

9
⌋, 100

)
+ min

(
⌊ 𝑡𝐻

9
⌋ − 1, 99

) ⌊ 𝑑1
2048 ⌋
⌊ 𝑑0

2048 ⌋
≥ min

(
⌊ 𝑡1

9
⌋, 100

)
(30)

This means that no 𝑡𝐴 exists which can satisfy Eq. (29). Therefore, a suitable 𝑡𝐴 can only exist when
⌊ 𝑡𝐻9 ⌋ = 0, and thus 𝑡𝐻 < 9. Assuming that this holds, we get:

min
(
⌊ 𝑡1

9
⌋, 100

)
−
⌊ 𝑑1

2048 ⌋
⌊ 𝑑0

2048 ⌋
≤ ⌊ 𝑡𝐴

9
⌋ < min

(
⌊ 𝑡1

9
⌋, 100

)
(31)

In order for there to be an integer between the two bounds, the following must hold as well:

⌊ 𝑑1

2048
⌋ ≥ ⌊ 𝑑0

2048
⌋ (32)

According to Eq. (1), this can only hold if:

⌊
𝑑0 + max

(
1 + 0 − ⌊ 𝑡1

9 ⌋,−99
)
· ⌊ 𝑑0

2048 ⌋
2048

⌋ ≥ ⌊ 𝑑0

2048
⌋ (33)

This equation holds when ⌊ 𝑡1
9 ⌋ ∈ {0, 1}.

We would now like to show that these conditions are necessary when 𝑑0 ≥ 222 = 20482. If
⌊ 𝑡1

9 ⌋ ≥ 2 and 𝑑0 ≥ 20482, then we get:

(34)

⌊ 𝑑1

2048
⌋ = ⌊

𝑑0 + max
(
1 + 0 − ⌊ 𝑡1

9 ⌋,−99
)
· ⌊ 𝑑0

2048 ⌋
2048

⌋

≤ ⌊
𝑑0 − ⌊ 20482

2048 ⌋
2048

⌋

= ⌊𝑑0 − 2048
2048

⌋

= ⌊ 𝑑0

2048
⌋ − 1

Finally, a contradiction is reached when substituting the above into Eq. (32):

⌊ 𝑑0

2048
⌋ ≤ ⌊ 𝑑1

2048
⌋ ≤ ⌊ 𝑑0

2048
⌋ − 1 (35)

As shown in Corollary 2, the attack is not possible when ⌊ 𝑡1
9 ⌋ = 0, meaning that attack is only

possible when ⌊ 𝑡1
9 ⌋ = 1, as required. □

Publication date: July 2022.

32 Aviv Yaish, Gilad Stern, and Aviv Zohar

D.2 Absolute Profits of a Riskless Attack
Our analysis follows the notations laid in Section 5. Let 𝑏1 be the tip of of the main chain with
difficulty 𝑑1 and 𝑏0 be its parent with difficulty 𝑑0. In addition, let 𝑡1 be the difference between 𝑏1
and 𝑏0’s timestamps. Finally, define 𝑝𝑡<9 to be the probability that a block is mined on top of 𝑏0
with time difference 𝑡 < 9 in 9 seconds with the entire compute-power of the network. Similarly,
let 𝑝9≤𝑡<18 to be the probability that a block is mined on top of 𝑏0 with time difference 9 ≤ 𝑡 < 18
in 9 seconds with the entire compute-power of the network.

If 9 ≤ 𝑡1 < 18, then according to Ethereum’s DAA, given in Eq. (1): 𝑑1 = 𝑑0 − (1 − 1)
⌊

𝑑0
2048

⌋
= 𝑑0.

Therefore, the probabilities 𝑝𝑡<9, 𝑝9≤𝑡<18 associated with mining on top of either 𝑏0 or 𝑏1 are
identical, as shown in the proof of Theorem 1.

In the described case, the attacker tries to mine on top of 𝑏0, setting its timestamp to be between 1
and 8 seconds later than 𝑏0’s. In other words, if we define 𝑏𝐴 to be the block currently mined by the
attacker, and 𝑡𝐴 to be the difference between 𝑏0’s timestamp and 𝑏𝐴’s timestamp, then 0 < 𝑡𝐴 < 9.
Computing the attacker’s difficulty in the first 9 seconds of the attack we get:

𝑑𝐴 = 𝑑0 + max
(
1 + 0 − ⌊ 𝑡𝐴

9
⌋,−99

)
· ⌊ 𝑑0

2048
⌋ = 𝑑0 + ⌊ 𝑑0

2048
⌋ (36)

On the other hand, mining honestly on top of 𝑏1 for the first 9 seconds after it was mined, i.e. with
0 < 𝑡𝐻 < 9, yields a difficulty of:

𝑑𝐻 = 𝑑1 + max
(
1 + 0 − ⌊ 𝑡𝐻

9
⌋,−99

)
· ⌊ 𝑑1

2048
⌋ = 𝑑0 + ⌊ 𝑑0

2048
⌋ (37)

This means that the attacker mining on top of 𝑏0 and the honest network mining on top of 𝑏1,
mine with the same difficulty for the first 9 seconds. As shown above, this difficulty is exactly
the difficulty of mining on top of 𝑏0 in the first 9 seconds. In terms of the probability 𝑝𝑡<9, the
adversary’s probability of successfully mining a block during the attack is 𝑝𝑡<9𝛼 .

Since the adversary’s behaviour is identical in all cases but the 9 seconds in which it perform the
attack, all of its rewards would be identical all of those cases. However, if the adversary manages to
mine honestly on top of 𝑏1, it would receive a single block reward 𝑅 for its efforts. On the other
hand, if its attack succeeds and it mines on top of 𝑏0 instead, it would receive a single block reward,
and all honest nodes would mine on top of the adversary’s block, possibly including 𝑏1 as an uncle.

This leads us to formulating a theorem, showing that the adversary can receive a larger share of
the rewards, while not reducing the absolute amount rewards.
Theorem 3. For any block 𝑏0, an attacker can increase its expected absolute and relative rewards by
using the RUM mining strategy instead of mining honestly.

Proof. Let𝐴 be the amount of ETH the adversary has before performing the attack and𝐻 be the
amount of ETH the honest network has at that time. If the adversary acts honestly and manages to
mine on top of 𝑏1 it receives 𝑅 ETH and 𝐹 ETH in fees, and the honest network receives 𝑅 ETH and
𝐹 ETH as well for mining 𝑏1. On the other hand, if the adversary performs the attack and manages
to mine on top of 𝑏0 in fewer than 9 seconds, it receives 𝑅 ETH as well as 𝐹 ETH in fees, and the
honest network receives at most 7

8𝑅 ETH as a result of 𝑏1 being added as an uncle. Note that in
both cases, the attacker has 𝐴 + 𝑅 + 𝐹 ETH after successfully performing the attack. This means
that with probability 𝑝𝑡<9𝛼 , 𝐴 can increase its share of the total ETH from 𝐴+𝑅+𝐹

𝐴+𝐻+2𝑅+2𝐹 to at least
𝐴+𝑅+𝐹

𝐴+𝐻+(1+ 7
8)𝑅+𝐹 . Since in all other cases, the attacker mines honestly, it receives the same rewards and

has the same share of the total ETH in the network. □

We can also formulate a similar theorem, describing the adversary’s share and total number of
main-chain blocks.

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 33

Theorem 4. For any block 𝑏0, the attacker mines the same number of main-chain blocks when
performing the attack as it would mining honestly. Furthermore, the attacker mines a larger share of
the number of main-chain blocks than it would mining honestly.

Proof. Using similar analysis, now define 𝐴 to be the number of total main-chain blocks con-
trolled by the adversary before performing the attack and 𝐻 to be the number of total main-chain
blocks controlled by the honest network. If the attacker mines a block honestly on top of 𝑏1, then its
share of the total number of main-chain blocks would be 𝐴+1

𝐴+𝐻+2 . On the other hand, if the attacker
performs the attack and mines successfully on top of 𝑏0 instead, it would increase its share of the
total number of main-chain blocks to 𝐴+1

𝐴+𝐻+1 , because 𝑏1 would be relegated to an uncle instead of a
main-chain block. This event takes place with probability 𝑝𝑡<9𝛼 . In all other events, the attacker
acts honestly and receives the same number and share of total main-chain blocks in the system. □

A more formal analysis of the expected share of the rewards is provided in Appendix D.5 and an
analysis of the expected share of main-chain blocks is provided in Appendix D.4.

D.3 Markov Decision Process for the Riskless Uncle Maker Attack
Our next proofs rely on analyzing MDPs, thus we will first define what MDPs are.

D.3.1 Markov Decision Processes. Multi-agent stochastic processes in discrete time are commonly
modeled in the blockchain literature using Markov decision processes [50, 59, 67, 102, 126, 132, 133].
We, too, will use this technique to analyze our attack.

A MDP can be defined using a tuple of four elements:

(𝑆,𝐴𝑠 , 𝑃𝑎 (·, ·) , 𝑅𝑎 (·, ·))
With these elements in turn defined as follows [94]:

(1) 𝑆 is the set of all possible world states.
(2) 𝐴𝑠 is the set of actions which can be taken in state 𝑠 .
(3) 𝑃𝑎 (𝑠, 𝑠 ′) is the probability of transitioning from state 𝑠 ∈ 𝑆 to 𝑠 ′ ∈ 𝑆 given that the action

𝑎 ∈ 𝐴𝑠 was taken at state 𝑠 ∈ 𝑆 .
(4) 𝑅𝑎 (𝑠, 𝑠 ′) is the reward earned by taking action 𝑎 ∈ 𝐴𝑠 in state 𝑠 ∈ 𝑆 and transitioning to 𝑠 ′.
In order to model a discrete-time random process which is memoryless, e.g. the next state 𝑠𝑡+1

relies only on the current state 𝑠𝑡 and current action 𝑎𝑡 , one can define 𝑃𝑎 like so:

𝑃𝑎 (𝑠, 𝑠 ′)
def= 𝑃 (𝑠𝑡+1 = 𝑠 ′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

This memoryless-ness is also known as the Markov property.
Finding a mapping between states and reward-maximizing actions for some specific MDP is

commonly called solving the MDP. Although we will use MDPs throughout our work, solving them
constitutes an academic field in itself and is not the main focus of our work. We would like to turn
diligent readers wishing to deepen their knowledge on MDPs to classic texts such as [51, 94, 113].

D.3.2 A Markov Decision Process for the Attack. We now proceed to describe the MDP we will
use to analyze the expected profits that a RUM attack can produce. A state-diagram of this MDP is
provided in Fig. 15, and a tabular description is given in Table 2.

D.3.3 State Space and Actions. The MDP has two possible states:
(1) Normal. In this state, the conditions for a RUM attack, as defined in Theorem 1, are not

fulfilled. Thus, the attacker mines normally, e.g. using the honest protocol.
(2) Attack. This state corresponds to a world-state at which the conditions for the RUM attack

are present. In this state, the attacker mines according to the strategy specified in Section 5.

Publication date: July 2022.

34 Aviv Yaish, Gilad Stern, and Aviv Zohar

Table 2. The MDP for the theoretical analysis of our attack, in tabular form.

State Transition Destination Probability Blocks
Attacker Honest

Normal

Attacker at any time Normal 𝛼 1 0
Honest 𝑡 < 9 Normal 𝑝𝑡<9 · (1 − 𝛼) 0 1
Honest 𝑡 ≥ 18 Normal (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼) 0 1
Honest 9 ≤ 𝑡 < 18 Attack (1 − 𝑝𝑡<9) · 𝑝9≤𝑡<18 · (1 − 𝛼) 0 0

Attack

Attacker 𝑡 < 9 Normal 𝑝𝑡<9 · 𝛼 1 0
Attacker 𝑡 ≥ 9 Normal (1 − 𝑝𝑡<9)𝛼 1 1
Honest 𝑡 < 9 or 18 ≤ 𝑡 Normal 𝑝𝑡<9 · (1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼) 0 2
Honest 9 ≤ 𝑡 < 18 Attack (1 − 𝑝𝑡<9) · 𝑝9≤𝑡<18 · (1 − 𝛼) 0 1

Normal Attack

Attacker at
any time

Honest
𝑡 < 9

Honest 𝑡 ≥ 18
Honest 9 ≤ 𝑡 < 18

Attacker 𝑡 < 9

Attacker 𝑡 ≥ 9

Honest 𝑡 < 9 or 18 ≤ 𝑡

Honest
9 ≤ 𝑡 < 18

Fig. 15. The MDP for the theoretical analysis of our attack, as a state diagram.

D.3.4 State Transitions. Transitions from the Normal state to Attack occur when the conditions
specified in Theorem 1 are present. Due to Remark 2, these conditions boil down to a single
possibility: an attacker can execute the RUM attack if the tip of the blockchain was mined by the
honest party, and has a timestamp difference 𝑡 from the preceding block such that 9 ≤ 𝑡 < 18. Thus,
we will call this transition Honest 9 ≤ 𝑡 < 18.

If we denote by 𝑝𝑡<9 the probability that a block was mined in less than 9 seconds after its parent,
and the probability that a block was mined between 9 (inclusive) and 18 seconds after its parent as
𝑝9≤𝑡<18, then the probability of transitioning from the Normal state to the Attack state is equal to:

(1 − 𝑝𝑡<9) · 𝑝9≤𝑡<18 · (1 − 𝛼) (38)

Note that in all other cases, transitions exiting the Normal state will lead back to the Normal
state:
(1) If the honest miner succeeded in mining a new block before the attacker, and the block’s

timestamp difference is not between 9 and 18. We will call the two possible transitions Honest
𝑡 < 9 and Honest 𝑡 ≥ 18.

(2) If the attacker mined a new block before the honest miner. We will call this transition Attacker
at any time.

We will now examine transitions that exit the Attack state by splitting them to the two possible
cases:

A. The attack succeeded.
This can only happen if the attacker mines the attack block before the honest miner and in less

than 9 seconds since starting the attack. We will call this transition Attacker 𝑡 < 9.

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 35

B. The attack failed.
This case has multiple possibilities:
(1) The honest miner succeeded in mining another block before the attacker successfully mined

the attack block.
If this new block has a timestamp difference which is between 9 and 18, the attacker can
execute a new attack. So, although the current attack has failed, we remain in the Attack state.
We will call this case Honest 9 ≤ 𝑡 < 18, similarly to the corresponding transition which exits
the Normal state.
We are left with two other possibilities: either the new block’s timestamp difference is lower
than 9, or higher than 18, leading us to call this transition Honest 𝑡 < 9 or 18 ≤ 𝑡 .

(2) The attacker succeeded in mining a block before the honest miner, but after the attack’s 9
second time window has ended.

D.3.5 Transition Rewards. In order to analyze the attack’s effect on both the amount of main-chain
blocks and rewards, we used almost-identical MDPs which differ solely by the transition rewards.

In one, the rewards for transitioning between states are the number of blocks which each actor
has mined, while in the other the rewards are the block-rewards earned by miners. For brevity, we
will only go over the former.

The rewards are relatively straightforward for all transitions that start from Normal and move to
Normal, as both the attacker and honest miner mine honestly. For example, when the transition
Attacker at any time occurs, the attacker mines a single block and thus receives a reward of 1, while
the honest miner receives 0.

Note that in the sole transition from Normal to Attack, both miners receive a reward of 0 although
the honest miner did mine a block. This is done because if the attack succeeds, this block will be
replaced by an attacker block. Thus, we account for the honest miner’s block only in transitions
which correspond to the attack failing:

(1) Attacker 𝑡 ≥ 9. In this transition, the attacker succeeded in mining a block after the attack’s 9
second time window has ended, but did so before the honest miner had succeeded in mining
an additional block.
Recall that our attack instructs the attacker to mine honestly after the attack’s time window
has ended, and thus the attacker’s block was mined on top of the block it previously attempted
to replace. So, we reward both the attacker and the honest miner with a single block.

(2) Honest 𝑡 < 9 or 18 ≤ 𝑡 . In both of these cases, the honest miner has succeeded in mining before
the attacker, meaning that the attack has failed. Thus, the honest miner already accumulated
two blocks which we have to account for, while the attacker did not mine even a single one.

(3) Honest 9 ≤ 𝑡 < 18. In this case, the honest miner mined an additional block before the
attacker, and this block has a timestamp difference (relative to its ancestor) which allows the
attacker to execute a new RUM attack. Thus, we remain in the Attack state, but reward the
honest miner for its previous block.

D.4 Expected Block Share
We will now show that the attacker’s expected share of the blocks is larger than its fair share.

Theorem 2. Let there be some block 𝑏0. If the attacker uses the RUM mining strategy, its expected
relative share of main-chain blocks will be larger than mining honestly, while the absolute number
will remain the same.

To prove this, we will solve the MDP.

Publication date: July 2022.

36 Aviv Yaish, Gilad Stern, and Aviv Zohar

Claim 4. The stationary distribution is:

𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) = (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)
𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) = 1 − 𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘)

Proof. According to the MDP:

𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) = (𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) · (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)) + (𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) · (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼))
(39)

Using simple algebra:

𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) = (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼) · (𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) + 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙)) (40)

As our only two state are Attack and Normal, we get:

𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) + 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) = 1 (41)

By combining Eqs. (40) and (41):

𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) = (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼) · 1 (42)

Finally, using Eqs. (41) and (42):

𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) = 1 − 𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) (43)

And we’re done. □

We will use the stationary distribution to calculate the attacker’s expected share of blocks.

Claim 5. The attacker’s expected number of blocks is:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 𝛼

Proof. The attacker mines a single block in each of the following transitions:
(1) Started at the Normal state, and the event Attacker at any time occurred.
(2) Started at the Attack state, and any of the events Attacker 𝑡 < 9, Attacker 𝑡 ≥ 9 occurred.
Thus its expected number of main-chain blocks is:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) · 𝛼 + 𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) · (𝑝𝑡<9𝛼 + (1 − 𝑝𝑡<9) 𝛼) (44)

Using algebra and substituting for the state probabilities we get:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 𝛼 (45)

□

We will now do the same for the honest miner.

Claim 6. The honest miner’s expected number of blocks is:

𝐻𝑜𝑛𝑒𝑠𝑡 = (1 − 𝛼) − (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

Proof. It mines two blocks when starting at the Attack state and the event Honest 𝑡 < 9 or
18 ≤ 𝑡 occurred, and mines a single block at each of the following transitions:

(1) When starting at the Normal state and either Honest 𝑡 < 9 or Honest 𝑡 ≥ 18 occurred.
(2) When starting at the Attack state and Honest 9 ≤ 𝑡 < 18 occurred.

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 37

After tallying up all events, we arrive at the following expected number of blocks:

𝐻𝑜𝑛𝑒𝑠𝑡 = 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) · 𝑝𝑡<9 (1 − 𝛼) + 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) · (1 − 𝑝𝑡<9) (1 − 𝑝9≤𝑡<18) (1 − 𝛼) +
𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) · 2 (1 − 𝛼) (𝑝𝑡<9 + (1 − 𝑝𝑡<9) (1 − 𝑝9≤𝑡<18)) +

𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) ((1 − 𝑝𝑡<9) 𝛼 + (1 − 𝑝𝑡<9) 𝑝9≤𝑡<18 (1 − 𝛼)) (46)

We begin by plugging-in both state probabilities:

(47)
𝐻𝑜𝑛𝑒𝑠𝑡 = ((1 − (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)) · (𝑝𝑡<9(1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼)))

+ (2(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼) · (𝑝𝑡<9(1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼)))
+ ((1 − 𝑝𝑡<9)𝑝9≤𝑡<18 · (1 − 𝛼)((1 − 𝑝𝑡<9)𝛼 + (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)))

We proceed with simplifying the previous equation; the following is not for the faint of heart:

(48)
𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑝𝑡<9(1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼)) + ((1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼) ·

((1 − 𝑝𝑡<9)𝛼 + (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼))) + ((1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼) ·
(𝑝𝑡<9(1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼)))

Using some algebra:
𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑝𝑡<9(1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼)) +

(1−𝑝𝑡<9)𝑝9≤𝑡<18(1−𝛼)((1−𝑝𝑡<9)𝛼 + (1−𝑝𝑡<9)(1−𝛼)) + (1−𝑝𝑡<9)𝑝9≤𝑡<18(1−𝛼)(𝑝𝑡<9(1−𝛼))
(49)

By grouping together equal terms, we get:

(50)𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑝𝑡<9(1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼)) +
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)((1 − 𝑝𝑡<9) + 𝑝𝑡<9(1 − 𝛼))

We will now add and remove the term (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼), this will help later on:
𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑝𝑡<9(1−𝛼)+(1−𝑝𝑡<9)(1−𝑝9≤𝑡<18)(1−𝛼))+(1−𝑝𝑡<9)𝑝9≤𝑡<18(1−𝛼)((1−𝑝𝑡<9)+𝑝𝑡<9(1−𝛼))+

(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼) − (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)
(51)

Using the previously added term, we can simplify the equation to:
𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑝𝑡<9(1−𝛼) + (1− 𝑝𝑡<9)(1− 𝑝9≤𝑡<18)(1−𝛼)) + (1− 𝑝𝑡<9)𝑝9≤𝑡<18(1−𝛼)((1− 𝑝𝑡<9) + 𝑝𝑡<9)−

(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)
(52)

Now, we will group together some terms:

(53)𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑝𝑡<9(1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝑝9≤𝑡<18)(1 − 𝛼)) + (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼) −
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

By grouping additional terms, we get:
(54)𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑝𝑡<9(1 − 𝛼) + (1 − 𝑝𝑡<9)(1 − 𝛼)) − (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

Finally:
𝐻𝑜𝑛𝑒𝑠𝑡 = (1 − 𝛼) − (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼) (55)

□

In order to prove Theorem 2, we will need to calculate the expected block number for each of
the parties under the setting where there is not attack.

Publication date: July 2022.

38 Aviv Yaish, Gilad Stern, and Aviv Zohar

Corollary 3. The only difference between our attack and the normal scenario is that in the latter the
honest miner earns an additional block when starting at the Attack state and the event Attacker 𝑡 < 9
occurs.

Recall that in our MDP we postponed counting an honest block when transitioning to the Attack state,
thus whenever we encounter an event which returns us to the Normal state, we count an additional
block towards the honest miner:

𝐻𝑜𝑛𝑒𝑠𝑡𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘 = 𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) · 𝑝𝑡<9𝛼 + 𝐻𝑜𝑛𝑒𝑠𝑡 (56)

Indeed, when the above is substituted into the honest miner’s share of the rewards, and when the
difference between the honest and attack scenarios is taken care of, one can see that the standard fair
share is obtained:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘 + 𝐻𝑜𝑛𝑒𝑠𝑡𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘
= 𝛼 (57)

We will now prove Theorem 2.

Theorem 2. Let there be some block 𝑏0. If the attacker uses the RUM mining strategy, its expected
relative share of main-chain blocks will be larger than mining honestly, while the absolute number
will remain the same.

Proof. The fair share is defined as 𝛼 , while in our attack the actual share is:
𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡
(58)

We’re interested in the gains that the attack gives over the honest scenario. In order to find the
improvement in main-chain block-share the attacker gains by adopting the RUM attack, we will
calculate the ratio between its share when executing the attack and its share when mining honestly:

(59)
𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡
· 𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘 + 𝐻𝑜𝑛𝑒𝑠𝑡𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘

By substituting the right multiplicand with the fair share, we get:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡
· 1
𝛼

(60)

Now, by using Claim 6:
𝛼

𝛼 + (1 − 𝛼) − (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)
· 1
𝛼

(61)

We will now simplify this to:
1

𝛼 + (1 − 𝛼) − (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)
(62)

Slightly rearranging:
1

1 − 𝛼𝑝𝑡<9𝑝9≤𝑡<18 (1 − 𝑝𝑡<9) (1 − 𝛼)
(63)

By definition, 𝛼 ∈ (0, 1) and 𝑝𝑡<9, 𝑝9≤𝑡<18 ∈ (0, 1), thus:

𝛼𝑝𝑡<9𝑝9≤𝑡<18 (1 − 𝑝𝑡<9) (1 − 𝛼) ∈ (0, 1) (64)

And similarly:
1 − 𝛼𝑝𝑡<9𝑝9≤𝑡<18 (1 − 𝑝𝑡<9) (1 − 𝛼) ∈ (0, 1) (65)

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 39

Finally:

(66)
𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡
· 1
𝛼

=
1

1 − 𝛼𝑝𝑡<9𝑝9≤𝑡<18 (1 − 𝑝𝑡<9) (1 − 𝛼)
> 1

So, we can conclude that indeed the yields a larger share of main-chain blocks than mining
honestly. □

D.5 Expected ETH Share
We will now show that the attacker’s expected share of the ETH is larger than its fair share.

Theorem 5. Let there be some block 𝑏0. If the attacker uses RUM, its share of expected profits will be
larger than mining honestly.

To prove this, we will solve the MDP. First note that the MDP is identical, so as shown in Claim 4,
the stationary distribution is:

𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) = (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) = 1 − 𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘)

Claim 7. The attacker’s expected received ETH is:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 𝛼(𝑅 + 𝐹)

Proof. The attacker mines a single block in each of the following transitions:
(1) Started at the Normal state, and the event Attacker at any time occurred.
(2) Started at the Attack state, and any of the events Attacker 𝑡 < 9, Attacker 𝑡 ≥ 9 occurred.

In both cases it receives 𝑅 + 𝐹 ETH.
Thus its expected received ETH is:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) · 𝛼 · (𝑅 + 𝐹) + 𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) · (𝑝𝑡<9𝛼 + (1 − 𝑝𝑡<9) 𝛼) · (𝑅 + 𝐹) (67)

Using algebra and substituting for the state probabilities we get:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 𝛼(𝑅 + 𝐹) (68)

□

We will now do the same for the honest miner. In this analysis we assume the best case for the
honest miner, in which it is immediately added as an uncle, receiving 7

8𝑅 ETH as a reward, and no
fees. This is the worst case for the attacker, as it decreases the attacker’s share.

Claim 8. The honest miner’s expected received ETH is:

𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑅 + 𝐹)
(
(1 − 𝛼) − 1

8
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
Proof. It mines two blocks when starting at the Attack state and the event Honest 𝑡 < 9 or

18 ≤ 𝑡 occurred, and mines a single block at each of the following transitions:
(1) When starting at the Normal state and either Honest 𝑡 < 9 or Honest 𝑡 ≥ 18 occurred.
(2) When starting at the Attack state and Honest 9 ≤ 𝑡 < 18 occurred.

In all of those cases, it receives 𝑅 + 𝐹 per mined block. On the other hand, in the event that the
adversary succeeds in its attack, i.e. starting in the Attack state and Attacker 𝑡 < 9 has occurred, it
receives at most 7

8𝑅 ETH.

Publication date: July 2022.

40 Aviv Yaish, Gilad Stern, and Aviv Zohar

After tallying up all events, we arrive at the following expected received ETH:

𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑅 + 𝐹) ·
(
𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) · 𝑝𝑡<9 (1 − 𝛼) + 𝑃 (𝑁𝑜𝑟𝑚𝑎𝑙) · (1 − 𝑝𝑡<9) (1 − 𝑝9≤𝑡<18) (1 − 𝛼) +
𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) · 2 (1 − 𝛼) (𝑝𝑡<9 + (1 − 𝑝𝑡<9) (1 − 𝑝9≤𝑡<18)) +

𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) ((1 − 𝑝𝑡<9) 𝛼 + (1 − 𝑝𝑡<9) 𝑝9≤𝑡<18 (1 − 𝛼))
)

+
7
8

(𝑅) ·
(
𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘)(𝑝𝑡<9𝛼)

)
(69)

Notice that the terms multiplied by (𝑅 + 𝐹) are exactly the ones analyzed in Claim 6. Therefore,
following the exact same calculation and plugging in the remaining 𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) term, we get:

(70)
𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑅 + 𝐹)

(
(1 − 𝛼) − (1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
+

7
8

(𝑅)((1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼))

Combining the terms we get:

(71)𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑅 + 𝐹)(1 − 𝛼) − (
1
8
𝑅 + 𝐹)

(
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
□

Corollary 4. Similarly to Corollary 3, the only difference between our attack and the normal scenario
is that in the latter the honest miner earns an additional 1

8𝑅 for mining a main-chain block as well as
𝐹 in fees when starting at the Attack state and the event Attacker 𝑡 < 9 occurs.

Recall that in our MDP we postponed counting an honest block when transitioning to the Attack state,
thus whenever we encounter an event which returns us to the Normal state, we count an additional
block towards the honest miner:

𝐻𝑜𝑛𝑒𝑠𝑡𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘 = 𝑃 (𝐴𝑡𝑡𝑎𝑐𝑘) · 𝑝𝑡<9𝛼(
1
8
𝑅 + 𝐹) + 𝐻𝑜𝑛𝑒𝑠𝑡 (72)

Indeed, when the above is substituted into the honest miner’s share of the rewards, and when the
difference between the honest and attack scenarios is taken care of, one can see that the standard fair
share is obtained:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘 + 𝐻𝑜𝑛𝑒𝑠𝑡𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘
= 𝛼 (73)

We will now prove the theorem.

Proof. The fair share is defined as 𝛼 , while in our attack the actual share is:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡
(74)

We’re interested in the gains that the attack gives over the honest scenario. In order to find the
improvement in main-chain block-share the attacker gains by adopting the RUM attack, we will
calculate the ratio between its share when executing the attack and its share when mining honestly:

(75)
𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡
· 𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘 + 𝐻𝑜𝑛𝑒𝑠𝑡𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑁𝑜𝐴𝑡𝑡𝑎𝑐𝑘

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡
· 1
𝛼

(76)

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 41

Using Claim 8, we first compute 𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡 :

(77)
𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡 = (𝑅 + 𝐹)𝛼 + (𝑅 + 𝐹)(1 − 𝛼) − (

1
8
𝑅 + 𝐹)

(
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
= (𝑅 + 𝐹) − (

1
8
𝑅 + 𝐹)

(
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
Plugging that value into the previous equation we get:

𝛼(𝑅 + 𝐹)

(𝑅 + 𝐹) − (1
8𝑅 + 𝐹)

(
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

) · 1
𝛼

(78)

We will now simplify this to:

(79)

(𝑅 + 𝐹)

(𝑅 + 𝐹) − (1
8𝑅 + 𝐹)

(
(1 − 𝑝𝑡<9)𝑝9 ≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
= 1 +

(1
8𝑅 + 𝐹)

(
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
(𝑅 + 𝐹) − (1

8𝑅 + 𝐹)
(
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
As noted previously, 𝛼 ∈ (0, 1) and 𝑝𝑡<9, 𝑝9≤𝑡<18 ∈ (0, 1), so:

(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼) ∈ (0, 1) (80)

In addition, 𝑅, 𝐹 > 0, so the numerator in the above term is positive. Furthermore:

(81)(
1
8
𝑅 + 𝐹)

(
(1 − 𝑝𝑡<9)𝑝9 ≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
<

1
8
𝑅 + 𝐹

< 𝑅 + 𝐹

So the denominator is positive as well. This means that:

(82)𝑐 =
(1

8𝑅 + 𝐹)
(
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
(𝑅 + 𝐹) − (1

8𝑅 + 𝐹)
(
(1 − 𝑝𝑡<9)𝑝9≤𝑡<18(1 − 𝛼)(𝑝𝑡<9𝛼)

)
> 0

The following inequality holds:

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝐻𝑜𝑛𝑒𝑠𝑡
· 1
𝛼

= 1 + 𝑐 > 1 (83)

So, we can conclude that indeed the attack is more profitable than mining honestly. □

E ADDITIONAL RELATEDWORK
In this section we will go over some additional related papers which were not mentioned in
Section 9.

Publication date: July 2022.

42 Aviv Yaish, Gilad Stern, and Aviv Zohar

Increasing Mining Profits. In our paper, we have presented an attack which allows Ethereum
miners to increase their relative share of the profits beyond their actual relative share of the hash-
power, in spite of Ethereum’s purported goal of giving miners rewards in a “fair” manner, e.g.
according to their hash-rate.

Other works have attempted to do this, too. While not an attack, the AsicBoost mining technique
allows faster Bitcoin mining using hardware optimizations tailored specifically for Bitcoin mining
hardware [64]. Such hardware is also called an application specific integrated circuit (ASIC) [127].
AsicBoost increases mining profits in a riskless manner too, but it relies on special hardware to do
so.

Increasing the Block-rate. In our work, we manipulate timestamps in order to increase mining
difficulty and thus obtain blocks which always win ties. The opposite manipulation, modifying
timestamps to decrease difficulty, is also known as the Timewarp attack, and has been suggested by
[55] not as an attack, but as a possible method to increase Bitcoin’s block-rate without performing
major protocol modifications. The lower difficulty precludes the possibility of using this attack to
replace existing blocks and making a profit.

Similarly, the Stretch & Squeeze attack attempted to increase and decrease the block-rate in both
Bitcoin and Ethereum, but without manipulating timestamps. This work has already been covered
in Section 9.

Other Attacks. Some works have attempted to find evidence of other kinds of attacks, too. For
example, block-withholding attacks which are performed by mining pool members, against the
mining pool itself [77, 99]. This entails sharing valid mining shares which do not pass the block
validity threshold and withholding shares that do. This attack reduces the attacked pool’s profits
while still maintaining the attacker’s profits for the shares that were revealed. Such attacks have
been seen in the wild in Bitcoin [21].
Our work has focused on attacking Ethereum’s underlying PoW layer. Notably, miners have at

their disposal other means to either attack the consensus mechanism or earn excessive profits.
For example, [128] provides a fuzzing framework that can create valid Ethereum transactions

which break the consensus in various ways, for example by causing targeted miners to fork the
block-DAG.
A strand of works have formulated exploits which are broadly termed miner-extractable value

(MEV) exploits. These allow miners to profit by manipulating the application layer, e.g. the smart-
contracts running on top of Ethereum’s blockchain [17]. Malicious transaction-ordering, front-
running and back-running transactions are examples of such attacks, and have been observed in
Ethereum [22, 87, 93, 95, 96]. Such exploits are outside the scope of our paper.

Attacks on Smaller Cryptocurrencies. PoW-consensus was designed to prevent Double Spending
attacks from being performed by an attacker controlling a majoring of the hash-power active on the
network. Such attacks broadly follow this recipe: an attacker broadcasts a transaction in return for
some good (e.g. the transaction was used by the attacker to buy coffee), while mining a secret fork
of the blockchain, starting from the last block which did not include the transmitted transaction.
Then, after receiving goods for which the transaction paid, the attacker reveals the secret fork, if it
indeed contains enough work to be considered as the main-chain [89, 111].
For example, in Bitcoin the rule-of-thumb is that one should wait until a transaction is at least

6 blocks deep before accepting the transaction, as classic analysis shows that at such depth it is
improbable for an attacker with less than 50% of the hash-rate to succeed in forking the chain at a
block which is an ancestor of the block that included the transaction.

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 43

As can be seen by this attack, the security of cryptocurrencies heavily depends on the amount of
honest hash-rate actively mining them, and cryptocurrencies with less active hash-power can be
more easily attacked.
Ethereum Classic is a considerably less popular fork of Ethereum, both according to the total

active hash-power and when considering economic metrics such as the exchange-rate between the
two and the number of transactions [71]. As the two cryptocurrencies share the same consensus
mechanism and rely on the same hash-function, even small Ethereum miners can use their hash-
power to perform a majority attack on Ethereum Classic, and [63] covers a suspected case of such
an attack.

F REPRODUCIBILITY
All code and data used in this paper are available in the following Google Drive link:

https://drive.google.com/drive/folders/12MupjY-DRWMDDQ4X6RwK01v-HWyORAkT
To maintain anonymity, the account in which these files are stored was opened under the

pseudonym Uncle Maker.
In order for our work to be fully reproducible, we have packaged our code as a standalone Python

package which obtains all required data from a full Ethereum node, and then produces all the
figures used in the paper.
As extracting and processing all this data requires considerable time and resources, the afore-

mentioned link contains compressed copies of the processed data.

F.1 Data
All the data used in our paper is included in the ./data/ folder, available in the previous Google
Drive link. Almost all of this data can be obtained by running the code we provide in Appendix F.8
on a full Ethereum node; such nodes retain all main-chain blocks, starting from the genesis [40]. In
addition, we have made our data extraction code available as an open-source python library [125].
This library communicates with an Ethereum node, such as geth, using the standard Ethereum RPC
interface.
The only data which was not obtained using this method is miners.csv, which contains a list of

mining pool addresses and the name of the mining pool they are associated with. This was obtained
from [44], and is not inherent to our work (besides giving us the possibility to point fingers at
F2Pool and other misbehaving miners).

F.2 Alternative Sources of Data
Although Ethereum main-chain data is widely available, it is not necessarily easily accessible, with
a full synchronization of a performance-oriented client such as Erigon requiring at least 3 days and
a solid state drive (SSD) with 3TB of free space [40]. To that end, we would like to suggest multiple
alternative data sources:

Free-Access Nodes. archivenode.io provides free access to an Ethereum archive node, but requires
applying for the service, with applications going through a review process. infura.io provides
limited free access which requires registration too.

Block Distribution Times and Timestamps. Block distribution times and timestamps are available
on [6, 10, 48]. These sources affirm works such as [57, 72], which claim that the latency between
miners is extremely small. Specifically, [72], the more recent one, gathered data which showed that
85% of blocks propagate in less than 100 milliseconds.

Publication date: July 2022.

https://drive.google.com/drive/folders/12MupjY-DRWMDDQ4X6RwK01v-HWyORAkT
archivenode.io
infura.io

44 Aviv Yaish, Gilad Stern, and Aviv Zohar

Transaction Fees. Fees are available on [10, 45–47]. Etherscan’s daily transaction fees were saved
in transaction_fees.csv, and the number of blocks mined per day in block_count_rewards.csv. Both
can be used to assess the average amount of transaction fees earned per-block.

F.3 Running Our Code
We will now go over the installation and usage instructions for the code we used when writing this
paper, and the hardware which we used to run it.

Software. All the code used for the paper is contained in the ./code/ folder, and can be executed
in the following manner:

(1) Download and install Python 3.9.12.
(2) Open a command-line shell, and change the current directory to this paper’s code directory.
(3) Our code requires Python 3.9.12 [117], matplotlib 3.5.2, numpy 1.22.4 [65], scipy 1.8.1 [118],

pandas 1.4.2 [85] and sagemath 9.6 [115]. To install all prerequisites, run:
python setup.py install

(4) Given a full Ethereum node can be accessed using the uniform resource locator (URL)
<FullEthereumNodeURL>, the code can be executed following command:
python main.py <FullEthereumNodeURL>

Hardware. All graphs used in the paper were generated using the aforementioned code on a laptop
equipped with an Intel Core i7-11370H central processing unit (CPU) and 64GB of random-access
memory (RAM), running Windows 11.

F.4 Go-Ethereum Patch
Go-Ethereum, also called geth, is the most popular Ethereum client in use today [38, 40, 43, 73].
We will now describe how to modify the current time for a geth instance running in a Docker

container [25]. This allows miners to mine blocks with timestamps which are not taken from their
system’s clock. Surprisingly, this was not an easy task.
Modifying the local clock for a UNIX-like operating system can usually be achieved using the

date command. Unfortunately, this approach changes the local time for all Docker containers, even
if they use different images.

Luckily, there are two software packages, libfaketime and datefudge which allow setting different
local times for each Docker instance. But, this approach does not work with Go’s time.Now()
function, because Go is a statically-linked language, and these packages rely on changing dynamic
links at runtime. This is in spite of some discussions in the Ethereum community, which hint
that miners did use libfaketime in the past, specifically a user called Cody Burns (with username
@realcodywburns) posted on September 17th, 2017 at 19:30 [41]: The dirty secret in mining is that
most use libfaketime to avoid uncles. Miners are alowed to report their own block time, and so long as
it is within reasonable tolerance.

Thus, we attempted using various Go packages which allow replacing Go functions by “monkey-
patching” these functions, and replacing their bodies with calls to the functions which replace them.
This, too, has failed, as currently-available monkey-patching methods in Go are not thread-safe,
leading to runtime errors.
Finally, we modified Go’s standard library, specifically the time.go file. Additionally, we opted

to use libfaketime just in case. We provide a Dockerfile that performs all these modifications
automatically.

In order to install our patch, follow these instructions:

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 45

(1) Download, install and run Docker [11]. Detailed instructions are provided on their web-site
[25].

(2) In some path <path>, create a file called Dockerfile. The file’s contents should be identical to
our supplied Dockerfile.

(3) Open a command-line shell, and change the current directory to <path>.
(4) Run the following command to create a Docker image which holds a version of geth which

was patched to execute the attack:
docker build -t unclemaker/geth .

(5) Use the following command to run the patched version of geth:
run --rm -it unclemaker/geth

F.5 Ethereum’s Documentation and Code
Ethereum has changed considerably since its inception, as evident by the Ethereum improvement
proposals (EIPs) which have been approved over its lifetime [37], with some changes in its DAA
[14].
Specifically, Ethereum’s white paper hasn’t been updated with some of these changes, with

Ethereum’s official documentation advising users to follow their yellow paper instead [15, 124].
Additionally, it is well known that sometimes, the actual implementation of cryptocurrencies might
differ from the protocol specifications given in their documentations.
In the context of our paper, we have found no such discrepancies. Still, throughout this paper

we referred to both the yellow paper and geth’s source code, wherever relevant. In both cases, we
used permanent links to the most recent versions at the time of writing to make sure that even if
changes are made after the publication of this paper, our links will still point to the versions which
our paper relied on.

GETH PATCHES
F.6 Geth Patch to Execute the Preemptive Uncle Maker Attack

1 # To build this docker image:
2 # - Do: install docker, see: https://www.docker.com/get-started/
3 # - Do: open a terminal
4 # - Do: change the current directory to the directory of this Dockerfile
5 # - Run: docker build -t unclemaker/geth .
6 # Now, you can run it like so:
7 # - Run: docker run --rm -it unclemaker/geth
8

9 # Support setting various labels on the final image
10 ARG COMMIT=""
11 ARG VERSION=""
12 ARG BUILDNUM=""
13

14 # Build Geth in a stock Go builder container
15 FROM golang:1.18-alpine as builder
16

17 # Install some prerequisites
18 RUN apk add --no-cache gcc musl-dev linux-headers git
19

20 # Start: libfaketime

Publication date: July 2022.

46 Aviv Yaish, Gilad Stern, and Aviv Zohar

21 RUN apk add --no-cache make
22 RUN git clone https://github.com/wolfcw/libfaketime.git /libfaketime
23 RUN cd /libfaketime && make
24 # End
25 # Start: modifying Golang's time library
26 RUN sed -i 's/sec += unixToInternal - minWall/sec += -1 + unixToInternal -

minWall/g' /usr/local/go/src/time/time.go↩→

27 RUN go clean --cache
28 # End
29

30 # Start: geth
31 RUN git clone https://github.com/ethereum/go-ethereum.git /go-ethereum
32 RUN cd /go-ethereum && go run build/ci.go install ./cmd/geth
33 # End
34

35 # Pull Geth into a second stage deploy alpine container
36 FROM alpine:latest
37

38 RUN apk add --no-cache ca-certificates
39 COPY --from=builder /go-ethereum/build/bin/geth /usr/local/bin/
40

41 # Start: libfaketime
42 # The FAKETIME parameter sets the time delta: FAKETIME="-1"
43 # The FAKETIME_DONT_RESET parameter makes sure time will increment for new
44 # processes, instead of each new process reverting back to the originally
45 # set time (see example 4c in wolfcw/libfaketime for more info).
46 # The LD_PRELOAD parameter sets the location of the library.
47 ENV FAKETIME="-1"
48 ENV FAKETIME_DONT_RESET=1
49 ENV LD_PRELOAD=/usr/local/lib/libfaketime.so.1
50 COPY --from=builder /libfaketime/src/libfaketime.so.1 /usr/local/lib
51 # End
52

53 # Start: geth
54 EXPOSE 8545 8546 30303 30303/udp
55 ENTRYPOINT ["geth"]
56 # End
57

58 # Add some metadata labels to help programatic image consumption
59 ARG COMMIT=""
60 ARG VERSION=""
61 ARG BUILDNUM=""
62

63 LABEL commit="$COMMIT" version="$VERSION" buildnum="$BUILDNUM"

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 47

F.7 Geth Patch to Mitigate Uncle Maker Attacks
1 # To build this docker image:
2 # - Do: install docker, see: https://www.docker.com/get-started/
3 # - Do: open a terminal
4 # - Do: change the current directory to the directory of this Dockerfile
5 # - Run: docker build -t unclemaker/geth .
6 # Now, you can run it like so:
7 # - Run: docker run --rm -it unclemaker/geth
8

9 # Support setting various labels on the final image
10 ARG COMMIT=""
11 ARG VERSION=""
12 ARG BUILDNUM=""
13

14 # Build Geth in a stock Go builder container
15 FROM golang:1.18-alpine as builder
16

17 # Install some prerequisites
18 RUN apk add --no-cache gcc musl-dev linux-headers git
19 RUN apk add sd

--repository=http://dl-cdn.alpinelinux.org/alpine/edge/testing/↩→

20

21 # Start: geth
22 RUN git clone https://github.com/ethereum/go-ethereum.git /go-ethereum
23 # The following line fixes the 3 cases
24 RUN sd 'reorg := externTd.Cmp(localTD) > 0' 'if header.UncleHash ==

types.EmptyUncleHash && header.ParentHash == current.ParentHash &&
header.Time <= time.Now().Unix()-1 {\nreturn false, nil\n}\nreorg :=
externTd.Cmp(localTD) > 0' /go-ethereum/core/forkchoice.go

↩→

↩→

↩→

25 # The following line fixes the min. diff issue
26 RUN sd 'MinimumDifficulty = big.NewInt(131072)' 'MinimumDifficulty =

big.NewInt(4194304)' /go-ethereum/params/protocol_params.go↩→

27 RUN cd /go-ethereum && go run build/ci.go install ./cmd/geth
28 # End
29

30 # Pull Geth into a second stage deploy alpine container
31 FROM alpine:latest
32

33 RUN apk add --no-cache ca-certificates
34 COPY --from=builder /go-ethereum/build/bin/geth /usr/local/bin/
35

36 # Start: geth
37 EXPOSE 8545 8546 30303 30303/udp
38 ENTRYPOINT ["geth"]
39 # End
40

41 # Add some metadata labels to help programatic image consumption

Publication date: July 2022.

48 Aviv Yaish, Gilad Stern, and Aviv Zohar

42 ARG COMMIT=""
43 ARG VERSION=""
44 ARG BUILDNUM=""
45

46 LABEL commit="$COMMIT" version="$VERSION" buildnum="$BUILDNUM"

DATA EXTRACTION AND GRAPHS
F.8 Code Requirements

1 argon2-cffi==21.3.0
2 argon2-cffi-bindings==21.2.0
3 asttokens==2.0.5
4 attrs==21.4.0
5 backcall==0.2.0
6 beautifulsoup4==4.11.1
7 bleach==5.0.0
8 certifi==2022.5.18.1
9 cffi==1.15.0
10 charset-normalizer==2.0.12
11 colorama==0.4.4
12 cycler==0.11.0
13 debugpy==1.6.0
14 decorator==5.1.1
15 defusedxml==0.7.1
16 entrypoints==0.4
17 executing==0.8.3
18 fastjsonschema==2.15.3
19 fonttools==4.33.3
20 idna==3.3
21 ipykernel==6.13.1
22 ipython==8.4.0
23 ipython-genutils==0.2.0
24 ipywidgets==7.7.0
25 jedi==0.18.1
26 Jinja2==3.1.2
27 jsonschema==4.6.0
28 jupyter==1.0.0
29 jupyter-client==7.3.4
30 jupyter-console==6.4.3
31 jupyter-core==4.10.0
32 jupyterlab-pygments==0.2.2
33 jupyterlab-widgets==1.1.0
34 kiwisolver==1.4.2
35 MarkupSafe==2.1.1
36 matplotlib==3.5.2
37 matplotlib-inline==0.1.3
38 mistune==0.8.4
39 mpmath==1.2.1

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 49

40 nbclient==0.6.4
41 nbconvert==6.5.0
42 nbformat==5.4.0
43 nest-asyncio==1.5.5
44 notebook==6.4.12
45 numpy==1.22.4
46 packaging==21.3
47 pandas==1.4.2
48 pandocfilters==1.5.0
49 parso==0.8.3
50 pickleshare==0.7.5
51 Pillow==9.1.1
52 prometheus-client==0.14.1
53 prompt-toolkit==3.0.29
54 psutil==5.9.1
55 pure-eval==0.2.2
56 pycparser==2.21
57 Pygments==2.12.0
58 pyparsing==3.0.9
59 pyrsistent==0.18.1
60 python-dateutil==2.8.2
61 pytz==2022.1
62 pywin32==304
63 pywinpty==2.0.5
64 pyzmq==23.1.0
65 qtconsole==5.3.1
66 QtPy==2.1.0
67 requests==2.27.1
68 scipy==1.8.1
69 seaborn==0.11.2
70 Send2Trash==1.8.0
71 six==1.16.0
72 soupsieve==2.3.2.post1
73 stack-data==0.2.0
74 sympy==1.10.1
75 terminado==0.15.0
76 tinycss2==1.1.1
77 tornado==6.1
78 traitlets==5.2.2.post1
79 urllib3==1.26.9
80 wcwidth==0.2.5
81 webencodings==0.5.1
82 widgetsnbextension==3.6.0

F.9 setup.py
1 from setuptools import setup
2

3

Publication date: July 2022.

50 Aviv Yaish, Gilad Stern, and Aviv Zohar

4 def readme():
5 with open("README.md") as f:
6 return f.read()
7

8

9 with open("requirements.txt") as f:
10 requirements = f.read().splitlines()
11

12 setup(
13 name="unclemaker",
14 version="0.0.1",
15 description="All code used in the UncleMaker paper.",
16 url="https://github.com/UncleMaker/UncleMaker",
17 author="Uncle Maker Authors",
18 packages=["unclemaker"],
19 long_description=readme(),
20 python_requires=">=3.9",
21 install_requires=requirements,
22)

F.10 main.py
1 """The main file for the Uncle Maker paper.
2 """
3 import sys
4 import obtain_data
5 import paper_stuff
6 import generate_graphs
7

8 if __name__ == "__main__":
9 arguments = sys.argv[1:]
10 if len(arguments) != 1:
11 print("Usage: python main.py <FullEthereumNodeURL>")
12 exit()
13

14 mainchain_bodies, uncle_bodies = obtain_data.request_from_node(
15 sys.argv[1:].pop(), 15226042
16)
17 mainchain_bodies_df, uncle_bodies_df = obtain_data.process_data(
18 mainchain_bodies, uncle_bodies, "miners.csv"
19)
20 obtain_data.save(mainchain_bodies_df, uncle_bodies_df)
21

22 paper_stuff.find_f2pool_uncle_makers(mainchain_bodies_df,

uncle_bodies_df)↩→

23 paper_stuff.verify_mdp()
24 generate_graphs.generate()

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 51

F.11 obtain_data.py
1 import pandas as pd
2 import requests
3 import json
4 from typing import Union
5

6 MainchainBlocks = dict[int, dict[str, Union[int, str]]]
7 UncleBlocks = dict[str, dict[str, dict[str, Union[int, str]]]]
8

9

10 def request_from_node(url: str, start_from: int) -> tuple[MainchainBlocks,

UncleBlocks]:↩→

11 """Obtains relevant data from the given full Ethereum node.
12

13 :param url: the full node's URL.
14 :type url: str
15 :param start_from: the block to start obtaining data from.
16 :type start_from: int
17 :return: the timestamps and miners of main and uncle blocks.
18 :rtype: tuple[dict[int, dict[str, Union[int, str]]], dict[str, dict[str,

dict[str, Union[int, str]]]]]↩→

19 """
20 mainchain_bodies: MainchainBlocks = {}
21 uncle_bodies: UncleBlocks = {}
22 session = requests.Session()
23 headers = {"Content-type": "application/json"}
24

25 # Create multiple batch requests to get the relevant blockchain data
26 batch_size: int = 7 * 6466 # Week's worth of blocks
27 batches: int = 4 * 12 * 7 # Get the last seven years' worth of data
28 for i in range(batches):
29 print(start_from, int(100 * i / batches))
30 if start_from <= 0:
31 break
32 uncle_count = {}
33 response = session.post(
34 url,
35 headers=headers,
36 data=json.dumps(
37 [
38 {
39 "jsonrpc": "2.0",
40 "method": "eth_getBlockByNumber",
41 "params": [hex(idx), False],
42 "id": idx,
43 }
44 for idx in range(

Publication date: July 2022.

52 Aviv Yaish, Gilad Stern, and Aviv Zohar

45 max(start_from - batch_size, 0), max(start_from, 0)
46)
47]
48),
49)
50 for cur_block in response.json():
51 # To save space, only keep timestamps, miner addresses, and uncles
52 mainchain_bodies[int(cur_block["result"]["number"], 16)] = {
53 "timestamp": int(cur_block["result"]["timestamp"], 16),
54 "miner": cur_block["result"]["miner"],
55 "uncles": cur_block["result"]["uncles"],
56 }
57 if cur_block["result"]["uncles"] != []:
58 uncle_count[cur_block["id"]] =

len(cur_block["result"]["uncles"])↩→

59

60 # Get uncles, if count > 0
61 if len(uncle_count) == 0:
62 continue
63 response = session.post(
64 url,
65 headers=headers,
66 data=json.dumps(
67 [
68 {
69 "jsonrpc": "2.0",
70 "method": "eth_getUncleByBlockNumberAndIndex",
71 "params": [hex(block_num), hex(idx)],
72 "id": block_num,
73 }
74 for block_num, count in uncle_count.items()
75 for idx in range(0, count)
76]
77),
78)
79 for cur_block in response.json():
80 cur_num = int(cur_block["result"]["number"], 16)
81 uncle_bodies[cur_block["result"]["hash"]] = {
82 "number": cur_num,
83 "timestamp": int(cur_block["result"]["timestamp"], 16),
84 "miner": cur_block["result"]["miner"],
85 }
86

87 start_from -= batch_size
88 return mainchain_bodies, uncle_bodies
89

90

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 53

91 def process_data(
92 mainchain_bodies: MainchainBlocks, uncle_bodies: UncleBlocks,

miner_names_file: str↩→

93):
94 """Processes the inputs and converts them to pandas DataFrames.
95

96 :return: the processed DataFrames.
97 """
98 # This assumes that all files should be read from and saved to '../data/'
99 # Load data
100 miner_names = {
101 row["address"]: row["name"]
102 for _, row in pd.read_csv(f"../data/{miner_names_file}").iterrows()
103 }
104

105 # Convert to pandas DFs, sort by timestamps for ease-of-use
106 mainchain_bodies_df = pd.DataFrame.from_dict(
107 mainchain_bodies, orient="index", columns=["timestamp", "miner",

"uncles"]↩→

108).sort_index()
109 uncle_bodies_df = pd.DataFrame.from_dict(
110 uncle_bodies, orient="index", columns=["number", "timestamp", "miner"]
111).sort_values(["number", "timestamp"])
112

113 # Associate blocks with siblings
114 uncle_count = uncle_bodies_df.value_counts("number")
115 mainchain_bodies_df["sibling_number"] = mainchain_bodies_df.apply(
116 lambda row: uncle_count.get(row.name, 0), axis=1
117)
118

119 # Associate blocks with miners and time differences
120 mainchain_bodies_df["miner_name"] = mainchain_bodies_df["miner"].apply(
121 lambda key: miner_names.get(key, key[:4] + "..." + key[-2:])
122)
123 uncle_bodies_df["miner_name"] = uncle_bodies_df["miner"].apply(
124 lambda key: miner_names.get(key, key[:4] + "..." + key[-2:])
125)
126 mainchain_bodies_df["timediff"] = mainchain_bodies_df[
127 "timestamp"
128] - mainchain_bodies_df["timestamp"].shift(1)
129 uncle_bodies_df["timediff_sibling"] = uncle_bodies_df.apply(
130 lambda row: row["timestamp"]
131 - mainchain_bodies_df["timestamp"].loc[row["number"]],
132 axis=1,
133)
134 uncle_bodies_df["timediff_parent"] = uncle_bodies_df.apply(
135 lambda row: row["timestamp"]

Publication date: July 2022.

54 Aviv Yaish, Gilad Stern, and Aviv Zohar

136 - mainchain_bodies_df["timestamp"].loc[row["number"] - 1],
137 axis=1,
138)
139

140 return mainchain_bodies_df, uncle_bodies_df
141

142

143 def save(mainchain_bodies_df, uncle_bodies_df) -> None:
144 """Saves the inputs to '../data/'.
145 """
146 mainchain_bodies_df.to_pickle(
147 f"../data/mainchain_{mainchain_bodies_df.index[0]}_{mainchain_bodies ⌋

_df.index[-1]}.pickle",↩→

148 compression="bz2",
149)
150 uncle_bodies_df.to_pickle(
151 f"../data/uncle_{uncle_bodies_df.iloc[0]['number']}_{uncle_bodies_df ⌋

.iloc[-1]['number']}.pickle",↩→

152 compression="bz2",
153)

F.12 generate_graphs.py
1 import matplotlib.ticker as mtick
2 import matplotlib.dates as mdates
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 import pandas as pd
6 import numpy as np
7

8

9 def generate():
10 # Avoid type 3 fonts in pdf figures
11 plt.rcParams["pdf.fonttype"] = 42
12 plt.rcParams["ps.fonttype"] = 42
13

14 # Seaborn styling
15 plt.style.use("seaborn-deep")
16 sns.set_style("whitegrid")
17 palette = "hls"
18

19 # Load data
20 mainchain_bodies_df = pd.read_pickle(
21 "../data/mainchain_0_14816570.pickle", compression="bz2"
22)
23 uncle_bodies_df = pd.read_pickle(
24 "../data/uncle_1_14816569.pickle", compression="bz2"
25)

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 55

26

27 # Limit the blocks we're looking at
28 start_block: int = 12 * (10 ** 6)
29 timediff_limit = 18
30

31 selected_blocks = mainchain_bodies_df[
32 (mainchain_bodies_df.index >= start_block)
33 & (mainchain_bodies_df["timediff"] <= timediff_limit)
34]
35 selected_uncles = uncle_bodies_df[uncle_bodies_df["number"] >=

start_block]↩→

36

37 # Calculate timestamp differences
38 # Note: the genesis block and its children distort everything because the
39 # genesis has a timestamp of 0, so better to start afterwards
40 print(
41 f"All data is since block {start_block}.\n",
42 "Mean and median timestamp diffs between mainchain blocks and

parents:",↩→

43 np.mean(mainchain_bodies_df[start_block:]["timediff"]),
44 np.median(mainchain_bodies_df[start_block:]["timediff"]),
45 "\n",
46 "Mean and median diffs between uncles and parents:",
47 np.mean(selected_uncles["timediff_parent"]),
48 np.median(selected_uncles["timediff_parent"]),
49 "\n",
50 "Mean and median diffs between uncles and siblings:",
51 np.mean(selected_uncles["timediff_sibling"]),
52 np.median(selected_uncles["timediff_sibling"]),
53)
54

55 # Associate timestamp differences with miners
56 counts = pd.DataFrame(
57 data=0,
58 columns=range(1, timediff_limit + 1),
59 index=set(selected_blocks["miner_name"]),
60)
61 for (miner, tdiff), val in selected_blocks.value_counts(
62 ["miner_name", "timediff"]
63).iteritems():
64 counts.loc[miner][tdiff] = val
65 counts = counts.iloc[counts.sum(axis=1).argsort()[::-1]] # Sort by total

blocks↩→

66 top4 = counts[:4]
67

68 # Plot a histogram of blocktimes for all miners
69 all_miners = counts.sum(axis=0)

Publication date: July 2022.

56 Aviv Yaish, Gilad Stern, and Aviv Zohar

70 p = sns.barplot(
71 x=all_miners.index, y=all_miners, color=sns.color_palette(palette,

100)[62],↩→

72)
73 p.set_xlabel("Timestamp difference from parent, in seconds")
74 p.set_ylabel("Number of blocks")
75 plt.savefig(
76 "../images/timestampDiffAllMiners.pdf", bbox_inches="tight",

pad_inches=0↩→

77)
78 plt.show()
79 plt.close()
80

81 # Associate uncle timestamp differences with miners
82 uncle_counts = pd.DataFrame(
83 data=0,
84 columns=range(1, timediff_limit + 1),
85 index=set(selected_uncles["miner_name"]),
86)
87 for (miner, tdiff), val in selected_uncles.value_counts(
88 ["miner_name", "timediff_parent"]
89).iteritems():
90 uncle_counts.loc[miner][tdiff] = val
91 uncle_counts = uncle_counts.iloc[
92 uncle_counts.sum(axis=1).argsort()[::-1]
93] # Sort by total blocks
94 uncle_top4 = uncle_counts[:4]
95

96 # Plot a histogram of uncletimes for all miners
97 all_miners = uncle_counts.sum(axis=0)
98 p = sns.barplot(
99 x=all_miners.index, y=all_miners, color=sns.color_palette(palette,

100)[62],↩→

100)
101 p.set_xlabel("Timestamp difference from parent, in seconds")
102 p.set_ylabel("Number of uncles")
103 plt.savefig(
104 "../images/timestampDiffAllMinersUncles.pdf", bbox_inches="tight",

pad_inches=0↩→

105)
106 plt.show()
107 plt.close()
108

109 # Plot a histogram of blocktimes per miner, for the top 5 miners
110 p = sns.barplot(
111 x="TimestampDiff",
112 y="value",

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 57

113 hue="index",
114 palette=palette,
115 data=top4.reset_index().melt(id_vars="index",

var_name="TimestampDiff"),↩→

116)
117 p.set_xlabel("Timestamp difference from parent, in seconds")
118 p.set_ylabel("Number of blocks")
119 p.legend(title="Miners", loc="best")
120 plt.savefig(
121 "../images/timestampDiff12000000.pdf", bbox_inches="tight",

pad_inches=0↩→

122)
123 plt.show()
124 plt.close()
125

126 # Plot a histogram of uncletimes per miner, for the top 5 miners
127 p = sns.barplot(
128 x="TimestampDiff",
129 y="value",
130 hue="index",
131 palette=palette,
132 data=uncle_top4.reset_index().melt(id_vars="index",

var_name="TimestampDiff"),↩→

133)
134 p.set_xlabel("Timestamp difference from parent, in seconds")
135 p.set_ylabel("Number of uncles")
136 p.legend(title="Miners", loc="best")
137 plt.savefig(
138 "../images/timestampDiff12000000Uncles.pdf", bbox_inches="tight",

pad_inches=0↩→

139)
140 plt.show()
141 plt.close()
142

143 # Plot a histogram of blocktimes for F2Pool
144 F2Pool = (
145 mainchain_bodies_df[
146 (mainchain_bodies_df["miner_name"] == "F2Pool")
147 & (mainchain_bodies_df.index >= 12000000)
148]
149 .groupby("timediff")
150 .count()["miner_name"]
151 .append(pd.Series([0 for _ in range(1, 5)], index=[9 * i for i in

range(1, 5)]))↩→

152 .sort_index()
153) # Note that pandas cannot count 0 occurences of something, so we add

them just to make the empty places obvious!↩→

Publication date: July 2022.

58 Aviv Yaish, Gilad Stern, and Aviv Zohar

154 _, ax = plt.subplots(figsize=(11.7, 8.27))
155 p = sns.barplot(
156 ax=ax,
157 x=F2Pool.index[:37].astype(int),
158 y=F2Pool.values[:37],
159 color=sns.color_palette(palette, 100)[62],
160)
161 p.set_xlabel("Timestamp difference from parent, in seconds")
162 p.set_ylabel("Number of blocks mined by F2Pool")
163 plt.savefig("../images/timestampDiff12000000F2Pool.pdf", pad_inches=0)
164 plt.show()
165 plt.close()
166

167 # Find pools that avoid timestamps divisible by 9
168 uncle_makers = counts[
169 np.all(
170 [counts[timediff] == 0 for timediff in counts.columns if timediff

% 9 == 0],↩→

171 axis=0,
172)
173]
174

175 # When did the top 5 uncle makers start avoiding such blocks?
176 for miner in uncle_makers.index[:5]:
177 print(
178 f"Miner {miner} stopped mining blocks with a time-diff divisible

by 9 since block:",↩→

179 mainchain_bodies_df[mainchain_bodies_df["miner_name"] ==

miner]["timediff"][↩→

180 ::-1
181]
182 .eq(9)
183 .idxmax()
184 + 1,
185)
186

187 # Plot a histogram of blocktimes per miner, for the top 4 uncle makers
188 p = sns.barplot(
189 x="TimestampDiff",
190 y="value",
191 hue="index",
192 data=uncle_makers[:4]
193 .reset_index()
194 .melt(id_vars="index", var_name="TimestampDiff"),
195 palette=palette,
196)
197 p.set_xlabel("Timestamp difference from parent, in seconds")

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 59

198 p.set_ylabel("Number of blocks")
199 p.legend(title="Miners", loc="best")
200 plt.savefig(
201 "../images/timestampDiffUncleMakers.pdf", bbox_inches="tight",

pad_inches=0↩→

202)
203 plt.show()
204 plt.close()
205

206 # Pie chart for miner portion, for the top 5 miners
207 slice_num = 4
208 miner_mainchain_count = counts.sum(axis=1)
209 data = list(miner_mainchain_count[:slice_num]) + [
210 sum(miner_mainchain_count[slice_num:])
211]
212 labels = list(miner_mainchain_count[:slice_num].index) + ["Others"]
213 cur_color = iter(
214 sns.color_palette(palette, slice_num + 2)
215) # Make sure we have enough colors for the next pie chart
216 colors = {label: next(cur_color) for label in labels}
217 p = plt.pie(
218 data,
219 labels=labels,
220 colors=[colors[label] for label in labels],
221 autopct="%.0f%%",
222)
223 plt.savefig("../images/mainchainPortion.pdf", bbox_inches="tight",

pad_inches=0)↩→

224 plt.show()
225 plt.close()
226

227 # Pie chart for miner portion, for the top 5 miners
228 miner_uncle_count = uncle_bodies_df["miner_name"].value_counts()
229 data = list(miner_uncle_count[:slice_num]) +

[sum(miner_uncle_count[slice_num:])]↩→

230 labels = list(miner_uncle_count[:slice_num].index) + ["Others"]
231 colors |= {label: next(cur_color) for label in labels if label not in

colors}↩→

232 p = plt.pie(
233 data,
234 labels=labels,
235 colors=[colors[label] for label in labels],
236 autopct="%.0f%%",
237)
238 plt.savefig("../images/unclePortion.pdf", bbox_inches="tight",

pad_inches=0)↩→

239 plt.show()

Publication date: July 2022.

60 Aviv Yaish, Gilad Stern, and Aviv Zohar

240 plt.close()
241

242 # Create date columns, for ease of use
243 mainchain_bodies_df["date"] = pd.DatetimeIndex(
244 pd.to_datetime(mainchain_bodies_df["timestamp"], unit="s")
245)
246 mainchain_bodies_df["year"] =

pd.DatetimeIndex(mainchain_bodies_df["date"]).year↩→

247 mainchain_bodies_df["month"] =

pd.DatetimeIndex(mainchain_bodies_df["date"]).month↩→

248 uncle_bodies_df["date"] = pd.DatetimeIndex(
249 pd.to_datetime(uncle_bodies_df["timestamp"], unit="s")
250)
251 uncle_bodies_df["year"] = pd.DatetimeIndex(uncle_bodies_df["date"]).year
252 uncle_bodies_df["month"] =

pd.DatetimeIndex(uncle_bodies_df["date"]).month↩→

253

254 # Create an easy-to-use DF for timestamp diffs which are divisble by 9
255 diffs_divisible_by_nine_per_month = (
256 mainchain_bodies_df[
257 mainchain_bodies_df["miner_name"].isin(
258 np.concatenate([np.array(top4.index), uncle_makers.index[:5]])
259)
260 & (mainchain_bodies_df["timediff"] % 9 == 0)
261]
262 .groupby(["year", "month", "miner_name"])
263 .count()
264 .sort_values(["year", "month", "miner_name"])
265)
266 to_drop = diffs_divisible_by_nine_per_month.columns
267 diffs_divisible_by_nine_per_month["count"] =

diffs_divisible_by_nine_per_month[↩→

268 "timestamp"
269]
270 diffs_divisible_by_nine_per_month.drop(to_drop, axis=1, inplace=True)
271 flat_diffs_divisible =

diffs_divisible_by_nine_per_month.index.to_frame(index=False)↩→

272 flat_diffs_divisible["count"] =

np.array(diffs_divisible_by_nine_per_month["count"])↩→

273 flat_diffs_divisible["date"] = pd.to_datetime(
274 flat_diffs_divisible["year"].astype(str)
275 + "-"
276 + flat_diffs_divisible["month"].astype(str).map(lambda month:

month.zfill(2)),↩→

277 format="%Y-%m",
278)
279 flat_diffs_divisible = flat_diffs_divisible.pivot(

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 61

280 index="date", columns="miner_name", values="count"
281).fillna(0)
282

283 # Plot a graph of the amount of blocks with timestamp diff. divisible by 9

by date↩→

284 fig, ax = plt.subplots()
285

286 plt.ylabel("Amount of blocks with timestamp diff. divisible by 9")
287 plt.xlabel("Date")
288 ax.xaxis.set_major_formatter(mdates.DateFormatter("%b '%y"))
289 ax.xaxis.set_major_locator(mtick.MultipleLocator(160))
290

291 relevant_dates = flat_diffs_divisible[
292 (flat_diffs_divisible.index >= "2019-08-01")
293 & (flat_diffs_divisible.index <= "2021-09-01")
294]
295 for miner, marker in [("Ethermine", "o"), ("F2Pool", "x"), ("0x99...e3",

"|")]:↩→

296 plt.plot(
297 relevant_dates.index,
298 relevant_dates[miner],
299 marker=marker,
300 markersize=5,
301 label=miner,
302)
303

304 ax.legend(loc="best")
305 plt.tight_layout()
306 plt.savefig(
307 "../images/timestampDivisbleBy9OverTime.pdf", bbox_inches="tight",

pad_inches=0↩→

308)
309 plt.show()
310 plt.close()
311

312 # Calculate the monthly "uncle rate" for certain miners (# of uncles / #

of all blocks)↩→

313 mainchain_monthly_count = (
314 mainchain_bodies_df[
315 mainchain_bodies_df["miner_name"].isin(
316 np.concatenate([np.array(top4.index), uncle_makers.index[:5]])
317)
318]
319 .groupby(["year", "month", "miner_name"])
320 .count()
321 .sort_values(["year", "month", "miner_name"])
322)

Publication date: July 2022.

62 Aviv Yaish, Gilad Stern, and Aviv Zohar

323 to_drop = mainchain_monthly_count.columns
324 mainchain_monthly_count["count"] = mainchain_monthly_count["timestamp"]
325 mainchain_monthly_count.drop(to_drop, axis=1, inplace=True)
326 flat_mainchain_monthly_count =

mainchain_monthly_count.index.to_frame(index=False)↩→

327 flat_mainchain_monthly_count["count"] =

np.array(mainchain_monthly_count["count"])↩→

328 flat_mainchain_monthly_count["date"] = pd.to_datetime(
329 flat_mainchain_monthly_count["year"].astype(str)
330 + "-"
331 + flat_mainchain_monthly_count["month"]
332 .astype(str)
333 .map(lambda month: month.zfill(2)),
334 format="%Y-%m",
335)
336 flat_mainchain_monthly_count = flat_mainchain_monthly_count.pivot(
337 index="date", columns="miner_name", values="count"
338).fillna(0)
339

340 uncle_monthly_count = (
341 uncle_bodies_df[
342 uncle_bodies_df["miner_name"].isin(
343 np.concatenate([np.array(top4.index), uncle_makers.index[:5]])
344)
345]
346 .groupby(["year", "month", "miner_name"])
347 .count()
348 .sort_values(["year", "month", "miner_name"])
349)
350 to_drop = uncle_monthly_count.columns
351 uncle_monthly_count["count"] = uncle_monthly_count["timestamp"]
352 uncle_monthly_count.drop(to_drop, axis=1, inplace=True)
353 flat_uncle_monthly_count =

uncle_monthly_count.index.to_frame(index=False)↩→

354 flat_uncle_monthly_count["count"] =

np.array(uncle_monthly_count["count"])↩→

355 flat_uncle_monthly_count["date"] = pd.to_datetime(
356 flat_uncle_monthly_count["year"].astype(str)
357 + "-"
358 + flat_uncle_monthly_count["month"]
359 .astype(str)
360 .map(lambda month: month.zfill(2)),
361 format="%Y-%m",
362)
363 flat_uncle_monthly_count = flat_uncle_monthly_count.pivot(
364 index="date", columns="miner_name", values="count"
365).fillna(0)

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 63

366

367 # Plot a graph of the monthly uncle rate
368 fig, ax = plt.subplots()
369

370 plt.ylabel("Monthly uncle rate")
371 ax.yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
372

373 plt.xlabel("Date")
374 ax.xaxis.set_major_formatter(mdates.DateFormatter("%b '%y"))
375 ax.xaxis.set_major_locator(mtick.MultipleLocator(160))
376

377 uncle_relevant_dates = flat_uncle_monthly_count.iloc[42:-7]
378 mainchain_relevant_dates = flat_mainchain_monthly_count.iloc[42:-7]
379 for miner, marker in [("Ethermine", "o"), ("F2Pool", "x"), ("0x99...e3",

"|")]:↩→

380 uncle_rate = (
381 100
382 * uncle_relevant_dates[miner]
383 / (uncle_relevant_dates[miner] + mainchain_relevant_dates[miner])
384)
385 plt.plot(uncle_rate.index, uncle_rate, marker=marker, markersize=5,

label=miner)↩→

386

387 ax.legend(loc="best")
388 plt.tight_layout()
389 plt.savefig("../images/monthlyUncleRate.pdf", bbox_inches="tight",

pad_inches=0)↩→

390 plt.show()
391 plt.close()

F.13 paper_stuff.py
1 from sympy import *
2

3

4 def find_f2pool_uncle_makers(mainchain_bodies_df, uncle_bodies_df) -> None:
5 """ Find concrete examples of Uncle Maker blocks by F2Pool.
6 """
7 # The code found a main chain block with number 14772899
8 for _, uncle in uncle_bodies_df[::-1].iterrows():
9 number = uncle["number"]
10 if (
11 (uncle["timediff_sibling"] == 1)
12 and (mainchain_bodies_df.loc[number]["miner_name"] == "F2Pool")
13 and (
14 mainchain_bodies_df.loc[number]["timediff"] // 9
15 < uncle["timediff_parent"] // 9
16)

Publication date: July 2022.

64 Aviv Yaish, Gilad Stern, and Aviv Zohar

17):
18 print(
19 f"""
20 We're looking for a concrete Uncle Maker block mined by F2Pool.
21 We're interested in a series of four blocks:
22 Grandparent <- parent <- child
23 <- uncle <-
24 Where the parent and uncle have:
25 - A timestamp diff. of 1 second,
26 - Their timestamps are in diff. 9 sec windows,
27 - The parent was mined by F2Pool
28 The code found the following example:
29 Uncle: {uncle}.
30 Grandparent: {mainchain_bodies_df.loc[number - 1]}.
31 Parent: {mainchain_bodies_df.loc[number]}.
32 Child: {mainchain_bodies_df.loc[number + 1]}.
33 """
34)
35 break
36 print("Couldn't find any Uncle Makers by F2Pool.")
37

38

39 def verify_mdp() -> None:
40 """Verify the various MDP calculations done in the paper.
41 """
42 # Declare variables, 'a' is alpha (the attacker's share)
43 a, p0, p1 = symbols("a p0 p1")
44

45 # Stationary distribution
46 p_attack = (1 - p0) * p1 * (1 - a)
47 p_normal = 1 - p_attack
48

49 # The attacker's expected number of blocks
50 attacker = simplify((p_normal * a) + (p_attack * ((p0 * a) + ((1 - p0) *

a))))↩→

51

52 # The honest's expected number of blocks
53 honest = simplify(
54 (p_normal * p0 * (1 - a))
55 + (p_normal * (1 - p0) * (1 - p1) * (1 - a))
56 + (p_attack * (1 - p0) * a)
57 + (p_attack * 2 * (1 - a) * (p0 + ((1 - p0) * (1 - p1))))
58 + (p_attack * (1 - p0) * p1 * (1 - a))
59)
60 honest_no_attack = simplify((p_attack * p0 * a) + honest)
61

62 # Attacker's share of the blocks

Publication date: July 2022.

Uncle Maker: (Time)Stamping Out The Competition in Ethereum 65

63 share_attack = simplify(attacker / (attacker + honest))
64 share_no_attack = simplify(attacker / (attacker + honest_no_attack))
65

66 print(
67 f"""
68 Expected number of honest blocks, no attack: {honest_no_attack}.
69 Expected number of honest blocks, attack: {honest}.
70 Expected attacker share, no attack: {share_no_attack}.
71 Expected attacker share, attack: {share_attack}.
72 Expected attacker improvement: {share_attack / share_no_attack}.
73 """
74)

G GLOSSARY
All symbols and acronyms used in the paper are summarized in this section.

SYMBOLS
𝐴 Attacker’s hash-rate, in hashes-per-second.
𝛼 Attacker’s hash-ratio, as a fraction: 𝐴

𝐻+𝐴 .
𝑏 A single block.
𝑅 The reward received for mining a block, in tokens.
𝑑 Mining difficulty.
𝐻 Total honest hash-rate, in hashes-per-second.
𝑡 The difference between the timestamp of some block and its direct main-chain ancestor, in

seconds.
𝐹 The transaction fees earned when mining a block, in tokens.
𝑢 A bit which is equal to True iff the current tip of the main-chain has at least one uncle.

ACRONYMS
ASIC application specific integrated circuit
block-DAG block directed-acyclic-graph
CPU central processing unit
DAA difficulty-adjustment algorithm
DeFi decentralized finance
EIP Ethereum improvement proposal
geth Go Ethereum
HUJI Hebrew University of Jerusalem, Israel
MDP Markov decision process
MEV miner-extractable value
ML machine learning
PoS proof-of-stake
PoW proof-of-work
PUM preemptive uncle maker
RAM random-access memory
RPC remote procedure call
RUM riskless uncle maker
SSD solid state drive

Publication date: July 2022.

66 Aviv Yaish, Gilad Stern, and Aviv Zohar

TD total difficulty
URL uniform resource locator

Publication date: July 2022.

	Abstract
	1 Introduction
	2 Implications
	2.1 Reducing Mechanism Attack Surface
	2.2 Ethereum-like Mechanisms
	2.3 Traceable Safety

	3 Background
	3.1 Proof-of-Work Cryptocurrencies
	3.2 Economics of Mining
	3.3 Blockchains and Block-DAGs
	3.4 Ethereum Clients

	4 Model
	4.1 Cryptocurrency System
	4.2 Threat Model

	5 The Uncle Maker Attack
	5.1 Riskless Uncle Making

	6 Theoretical Analysis
	7 In Search of Lost Time: Uncle Making in the Wild
	7.1 Ethereum Mining Pools
	7.2 Identifying Uncle Maker Attacks
	7.3 Block Shares
	7.4 Block Timestamps
	7.5 Catching F2Pool Red-handed
	7.6 F2Pool's Attack is not Riskless
	7.7 Other Attackers

	8 Mitigation
	8.1 Minimize attacker flexibility by increasing the minimal difficulty
	8.2 Reject competing chains more aggressively
	8.3 Migrate to Other Mechanisms

	9 Related Work
	10 Conclusions
	References
	A Appendices Structure
	B Algorithm
	C Real-World Example
	D Proofs
	D.1 Conditions For a Riskless Uncle Maker Attack
	D.2 Absolute Profits of a Riskless Attack
	D.3 Markov Decision Process for the Riskless Uncle Maker Attack
	D.4 Expected Block Share
	D.5 Expected ETH Share

	E Additional Related Work
	F Reproducibility
	F.1 Data
	F.2 Alternative Sources of Data
	F.3 Running Our Code
	F.4 Go-Ethereum Patch
	F.5 Ethereum's Documentation and Code
	F.6 Geth Patch to Execute the Preemptive Uncle Maker Attack
	F.7 Geth Patch to Mitigate Uncle Maker Attacks
	F.8 Code Requirements
	F.9 setup.py
	F.10 main.py
	F.11 obtain_data.py
	F.12 generate_graphs.py
	F.13 paper_stuff.py

	G Glossary
	Symbols
	Acronyms

