
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.46586/tosc.v0.i0.0-0

New Low-Memory Algebraic Attacks on LowMC
in the Picnic Setting

Fukang Liu1, Willi Meier4, Santanu Sarkar5, Takanori Isobe1,2,3

1 University of Hyogo, Hyogo, Japan
liufukangs@gmail.com,takanori.isobe@ai.u-hyogo.ac.jp

2 NICT, Tokyo, Japan
3 PRESTO, Japan Science and Technology Agency, Tokyo, Japan

4 FHNW, Windisch, Switzerland
willimeier48@gmail.com

5 Indian Institute of Technology Madras, Chennai, India
santanu@iitm.ac.in

Abstract. The security of the post-quantum signature scheme Picnic is highly related to
the difficulty of recovering the secret key of LowMC from a single plaintext-ciphertext
pair. Since Picnic is one of the alternate third-round candidates in NIST post-quantum
cryptography standardization process, it has become urgent and important to evaluate
the security of LowMC in the Picnic setting. The best attacks on LowMC with full
S-box layers used in Picnic3 were achieved with Dinur’s algorithm. For LowMC with
partial nonlinear layers, e.g. 10 S-boxes per round adopted in Picnic2, the best attacks
on LowMC were published by Banik et al. with the meet-in-the-middle (MITM)
method.

In this paper, we improve the attacks on LowMC in a model where memory
consumption is costly. First, a new attack on 3-round LowMC with full S-box layers
with negligible memory complexity is found, which can outperform Bouillaguet et
al.’s fast exhaustive search attack and can achieve better time-memory tradeoffs than
Dinur’s algorithm. Second, we extend the 3-round attack to 4 rounds to significantly
reduce the memory complexity of Dinur’s algorithm at the sacrifice of a small factor
of time complexity. For LowMC instances with 1 S-box per round, our attacks are
shown to be much faster than the MITM attacks. For LowMC instances with 10
S-boxes per round, we can reduce the memory complexity from 32GB (238 bits) to
only 256KB (221 bits) using our new algebraic attacks rather than the MITM attacks,
while the time complexity of our attacks is about 23.2 ∼ 25 times higher than that of
the MITM attacks. A notable feature of our new attacks (apart from the 4-round
attack) is their simplicity. Specifically, only some basic linear algebra is required to
understand them and they can be easily implemented.
Keywords: LowMC · Picnic · polynomial method · algebraic attack · crossbred
algorithm · low memory

1 Introduction
The LowMC block cipher [ARS+15] is the first dedicated symmetric-key primitive designed
for MPC/FHE/ZK protocols. An important application of LowMC is the Picnic signature
scheme [CDG+17,KZ20], which is one of the alternate third-round candidates in NIST
post-quantum cryptography (PQC) standardization process. Especially, the security of
Picnic is directly related to the difficulty of recovering the secret key of LowMC from a
single known plaintext-ciphertext pair.

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/10.46586/tosc.v0.i0.0-0
mailto:liufukangs@gmail.com,takanori.isobe@ai.u-hyogo.ac.jp
mailto:willimeier48@gmail.com
mailto:santanu@iitm.ac.in
http://creativecommons.org/licenses/by/4.0/

Due to its novel design strategy and its importance, the LowMC block cipher has
attracted lots of attention since its publication at EUROCRYPT 2015. However, the
security of this novel design is not well-understood and the secure number of rounds of
LowMC has been updated several times to resist state-of-the-art attacks [DEM15,DLMW15,
RST18]. The latest version is called LowMC v3 and we simply use LowMC to refer to LowMC
v3 in the following. Although many powerful attack vectors have been taken into account to
determine the secure parameters of LowMC, the recent progress [LIM21,LWM+22,Din21]
in the cryptanalysis of LowMC indicates that some latest parameters are still insecure.
However, the attacks described in [DEM15,DLMW15,RST18,LIM21,LWM+22] cannot
directly threaten the security of Picnic because the required data complexity is larger than
1.

To understand the security of LowMC in the Picnic setting, the LowMC team launched
a public competition1 in 2019 and some major progress has been made since then. The
first important step was made by Banik et al. who found an efficient method [BBDV20] to
linearize the 3-bit S-box used in LowMC. Up until now, the best attacks on LowMC with
full S-box layers were achieved by Dinur’s algorithm from [Din21] applying the polynomial
method [LPT+17], which is an advanced method to solve multivariate equation systems
over GF(2). However, this technique always requires huge memory and it currently cannot
exploit the feature of the well-overdefined equation system. For LowMC with partial
nonlinear layers, the best attacks on LowMC were obtained by Banik et al. with the
MITM technique [BBVY21]. We notice that the memory complexity of the MITM attacks
on LowMC with 10 S-boxes per round is still somewhat high, i.e. 238 bits. Moreover,
we observe that the guessed information of the key bits is not exploited at the phase
to compute the full key in the MITM attacks. Hence, we are motivated to devise new
low-memory attacks on LowMC with a single known plaintext-ciphertext pair.

Our contributions. The contributions of this paper are summarized below:

1. We observe that Banik et al.’s guess strategy [BBDV20] to linearize the LowMC S-box
is not always optimal for LowMC with full S-box layers. Specifically, to linearize
one LowMC S-box, instead of guessing 1 quadratic polynomial in its input, naively
guessing 2 linear polynomials in its input can significantly improve the attacks. This
is counter-intuitive because guessing 2 bits for each S-box is very costly to linearize 1
round of LowMC compared with guessing only 1 bit.

2. By utilizing a simple version of the crossbred algorithm [JV17] proposed in [BDT22]
to solve an overdefined quadratic equation system, our attacks on 3-round LowMC
require negligible memory and can achieve better time-memory tradeoffs than Dinur’s
algorithm [Din21].

3. To show the effectiveness of our new guess strategy for LowMC with full S-box
layers, we also describe attacks on 4-round (full-round) LowMC building upon Dinur’s
algorithm. Specifically, we can utilize Dinur’s critical observation [Din21] on the
attacks on an odd number of rounds of LowMC to improve the generic complexity of
the Dinur’s algorithm. In this way, better time-memory tradeoffs are again achieved,
as detailed at the end of Section 3.

4. For Banik et al.’s guess strategy to linearize the S-box [BBDV20], we describe how to
construct a well-overdefined system of quadratic equations in key bits to efficiently
recover the full key. The new method is especially efficient for LowMC with partial
nonlinear layers. The major difference in our new attacks is that we make full use of
the guessed quadratic polynomials in key bits while these are not used in Banik et

1https://lowmcchallenge.github.io/

1

https://lowmcchallenge.github.io/

al.’s attacks [BBDV20,BBVY21] to recover the key. It can be found that our attacks
are much faster than the MITM attacks [BBVY21] for some LowMC parameters.

Our new results for LowMC are shown in Table 1 and Table 2. Note that for attacks on
LowMC with partial nonlinear layers, the fast exhaustive search attack [BCC+10] cannot
work because constructing the polynomial equations is too costly for their high degree.
Moreover, the MITM attacks [BBVY21] on 3-round LowMC are slower than the fast
exhaustive search attack [BCC+10].

Organization. In Section 2, we describe the LowMC cipher, introduce how to efficiently
evaluate a polynomial for all possible assignments to the variables, and explain a simple
version of the crossbred algorithm and Dinur’s algorithm. In Section 3 and Section 4,
we demonstrate the new low-memory attacks on LowMC with full S-box layers and with
partial nonlinear layers, respectively. Then, in Section 5, we provide the details of our
experiments to verify our attacks. Finally, the paper is concluded in Section 6.

Table 1: Summary of the best attacks on LowMC with full S-box layers in the Picnic setting,
where the time complexity is estimated in bit operations and the memory complexity is
estimated in bits.

Methods n k s r Time Memory
Fast exhaustive search [BCC+10]

129 129 43 3
2134.8 221

Dinur’s algorithm [Din21] 2125 2104

Section 3.2 2127.2 216.9

Fast exhaustive search [BCC+10]
192 192 64 3

2197.9 222.7

Dinur’s algorithm [Din21] 2180 2150

Section 3.2 2186.2 218.6

Fast exhaustive search [BCC+10]
255 255 85 3

2261 224

Dinur’s algorithm [Din21] 2235 2197

Section 3.2 2246.8 219.8

Fast exhaustive search [BCC+10]
129 129 43 4

2134.8 221

Dinur’s algorithm [Din21] 2130 2113

Section 3.3 2133.8 236.7

Fast exhaustive search [BCC+10]
192 192 64 4

2197.9 222.7

Dinur’s algorithm [Din21] 2188 2164

Section 3.3 2195.0 253.4

Fast exhaustive search [BCC+10]
255 255 85 4

2261 224

Dinur’s algorithm [Din21] 2245 2218

Section 3.3 2255.8 268.0

2 Preliminaries
2.1 Description of LowMC
LowMC allows users to choose parameters in a flexible way. Specifically, depending on
different scenarios, the users can choose different numbers of rounds, block sizes, key sizes,
round constants, linear layers, key schedule functions and the number of S-boxes per round.
For convenience, we denote the number of rounds, block size, key size and the number of
S-boxes per round by r, n, k and s, respectively. The round function of LowMC is formally

2

Table 2: Summary of the best attacks for r = ⌊ n
s ⌋ rounds of LowMC with s S-boxes per

round in the Picnic setting, where we estimate one call of r rounds of LowMC encryption
as 2rn2 bit operations as in [BBVY21]

Methods n k s r
Time Time Memory

(#bit operations) (#calls) (in bits)
MITM [BBVY21] 128 128 1 128 2147 2125 222

Section 4 2142.3 2120.3 218.9

MITM [BBVY21] 192 192 1 192 2212.8 2189 222

Section 4 2205.8 2182.1 219.9

MITM [BBVY21] 256 256 1 256 2278 2253 222

Section 4 2268.7 2243.7 220.5

MITM [BBVY21] 128 128 10 12 2129.6 2111 238

Our attack 2134.6 2116.0 218.8

MITM [BBVY21] 192 192 10 19 2199.4 2179 238

Section 4 2203.7 2183.2 220.0

MITM [BBVY21] 256 256 10 25 2259.6 2238 238

Section 4 2262.8 2241.2 220.6

described below:

Ai+1 = Li · S(Ai) ⊕ RCi ⊕ Mi · K,

where Ai is the input state of the i−th round, K is the k-bit key, RCi is the used n−bit
round constant, Mi is a full-rank matrix of size n × k, Li is a full-rank matrix of size n × n
and S is the nonlinear operation by applying s 3-bit S-boxes to the first 3s bits of Ai in
parallel.

Denote the plaintext and ciphertext by p and c, respectively. Then, we have

A1 = p ⊕ M0 · K, c = Ar+1,

where M0 is also a full rank matrix of size n × k. Note that M0 · K is the whitening key.
For LowMC, RCi, Li and Mj (1 ≤ i ≤ r, 0 ≤ j ≤ r) are all randomly generated, i.e.

they are not fixed as in many other block ciphers. Specifically, before encrypting p, we need
to compute the parameters for (RCi, Li, Mj) with a pseudorandom number generator.

The 3-bit S-box S(a1, a2, a3) = (a4, a5, a6) of LowMC is defined as below:

a4 = a1 ⊕ a2a3, a5 = a1 ⊕ a2 ⊕ a1a3, a6 = a1 ⊕ a2 ⊕ a3 ⊕ a1a2,

where (a1, a2, a3) ∈ F3
2 and (a4, a5, a6) ∈ F3

2 denote the input and output, respectively.
Note that the inverse of this S-box can be easily deduced, as shown below:

a1 = a4 ⊕ a5 ⊕ a5a6, a2 = a5 ⊕ a4a6, a3 = a4 ⊕ a5 ⊕ a6 ⊕ a4a5.

2.2 Evaluating a Polynomial of Degree d in u Variables
Given a polynomial f(x) ∈ F2[x1, x2, . . . , xu] of degree d, we aim to evaluate f(x) over
all x = (x1, x2, . . . , xu) ∈ Fu

2 . A naive algorithm is to evaluate each term of f(x) for each
assignment to x, which results in a time complexity upper bounded by about 2u ·

(
u
≤d

)
bit operations, where

(
u
≤d

)
=

∑d
i=0

(
u
i

)
. By simply utilizing the Möbius transform, it is

possible to achieve this purpose with u · 2u bit operations. For simplicity, we also write a
function f(x) as f in the following.

3

To see how it works, it is necessary to realize that the Möbius transform is an involution
on the set of Boolean functions. For any such f , we can write its algebraic normal form
(ANF) as follows:

f(x) =
⊕

b=(b1,b2,...,bu)∈Fu
2

g(b1, b2, . . . , bu)
u∏

i=1
xbi

i ,

where g : Fu
2 → F2 is a Boolean function and g(b1, b2, . . . , bu) is the coefficient of the term∏u

i=1 xbi
i .

Recall the common usage of the Möbius transform. Given a blackbox access to the
polynomial f , we can construct the truth table denoted by TAB_F of (x, f) by exhausting
2u possible values of x. Based on this truth table, we can then determine the accurate
ANF of f with u · 2u bit operations, i.e. we obtain a truth table denoted by TAB_B of
(b, g). Indeed, the Möbius transform is just to apply a butterfly-style algorithm to the
table TAB_F to obtain a new table TAB_B. If we again apply the Möbius transform to the
table TAB_B, we will obtain the table TAB_F, which is why we say it is an involution.

To see the reasons, let us first focus on the relation between g(b) and f(x). For any b,
we introduce a set of indices J = {i1, i2, . . . , ij} ⊆ {1, 2, . . . , u} such that bi = 1 (i ∈ J)
and bi′ = 0 (i′ /∈ J). Then, we have

g(b) =
⊕

(xi1 ,xi2 ,...,xij
)∈Fj

2,xi′←0

f(x). (1)

The Möbius transform is indeed to compute g(b) for all b ∈ Fu
2 with the above formula

based on TAB_F in only u · 2u bit operations.
Indeed, based on the ANF of f , for any x with xi = 1 (i ∈ J) and xi′ = 0 (i′ /∈ J), we

also have

f(x) =
⊕

(bi1 ,bi2 ,...,bij
)∈Fj

2,bi′←0

g(b). (2)

Therefore, if we apply the Möbius transform to the table TAB_B, we will obtain the table
TAB_F.

In a word, given any concrete f , we can evaluate f over all x ∈ Fu
2 in u·2u bit operations

and with 2u memory in bits because the truth table of (b, g) can be directly extracted from
the expression of f . With some extra efforts in the procedure to do the Möbius transform,
the time complexity can be reduced to d · 2u, as shown in [DS11].

In Dinur’s algorithm [Din21], the memory complexity of the above standard Möbius
transform is further reduced to about u ·

(
u
≤d

)
bits and the time complexity is almost kept

the same, i.e. d · 2u bit operations.

Using Gray code for the case d = 2. For most of our new attacks on LowMC, we need
to handle the case d = 2. Therefore, we use a very simple yet efficient method [BCC+10,
BDT22] to evaluate a quadratic polynomial based on Gray code. The idea is based on the
fact that when only one variable changes, the values of at most u terms in f will change.

When d = 2, f can be represented as

f = c ⊕
u⊕

i=1

u⊕
j=i

ai,jxixj ,

where c, ai,j ∈ F2. Let ei ∈ Fu
2 denote the unit vector which is zero everywhere except on

the i−th coordinate. Then, we have

f(x) ⊕ f(x ⊕ ei) =
i−1⊕
j=1

aj,ixj ⊕
u⊕

j=i

ai,jxj .

4

Hence, we can enumerate all the 2u values of x using Gray code so that only a single
bit of x changes at each iteration. In this way, evaluating f over x ∈ Fu

2 only takes u · 2u

bit operations and the memory complexity is negligible. It is now easy to observe that
when d = 1, evaluating f over x ∈ Fu

2 with Gray code only takes 2u bit operations.

2.3 A Simple Version of Crossbred Algorithm for Quadratic Equations
In our attacks, we will adopt a simple version of the crossbred algorithm [JV17] to solve an
overdefined system of quadratic equations, which is described in [BDT22]. This algorithm
fits very well with our attacks on LowMC for its simplicity to bound the time complexity
and to implement in practice.

Consider a system of m quadratic Boolean equations ft(x) = 0 (1 ≤ t ≤ m) in
u variables x = (x1, x2, . . . , xu) ∈ Fu

2 . First, split these u variables into two parts
y ∈ Fu−u1

2 and z ∈ Fu1
2 , where y = (y1, y2, . . . , yu−u1) = (xu1+1, xu1+2, . . . , xu) and

z = (z1, z2, . . . , zu1) = (x1, x2, . . . , xu1). Then, we write each quadratic polynomial ft

(1 ≤ t ≤ m) as follows:

ft =
u1⊕

i=1

u1⊕
j=i+1

αi,jzizj ⊕
u1⊕

i=1
li(y)zi ⊕ qt(y),

where αi,j ∈ F2 and both li(y) and qt(y) are polynomials in y with Deg(li) = 1 and
Deg(qt) = 2. Throughout this paper, we denote the degree of a polynomial f by Deg(f).

For example, consider the case when (u, u1) = (6, 3) and

ft = z1z2 ⊕ z1z3 ⊕ y1z2 ⊕ y2z2 ⊕ y1z3 ⊕ y1y2 ⊕ y3.

We can rewrite the above ft as

ft = (1, 1, 0, 0, y1 ⊕ y2, y1) · (z1z2, z1z3, z2z3, z1, z2, z3)T ⊕ (y1y2 ⊕ y3),

where

(α1,2, α1,3, α2,3) = (1, 1, 0), (l1, l2, l3) = (0, y1 ⊕ y2, y1), qt = y1y2 ⊕ y3.

In other words, the system of m quadratic equations can be expressed as follows:

A · (z1z2, z1z3, . . . , zu1−1zu1 , z1, z2, . . . , zu1)T = B, (3)

where A is the coefficient matrix of size m × (u1(u1 − 1)/2 + u1) and B is a vector of
size m. Moreover, for the elements in the first u1(u1 − 1)/2 columns of A, all of them
take constant values from {0, 1} according to ft (1 ≤ t ≤ m). For the elements in last u1
columns of A, each of them is written as a linear polynomial in y, i.e. the coefficient of zi

(1 ≤ i ≤ u1) in each ft (1 ≤ t ≤ m) is a linear polynomial in y. For the vector B, each
element is written as a quadratic polynomial in y.

For example, consider the following system of quadratic equations in (z1, z2, z3, y1, y2, y3):

f1 = z1z2 ⊕ z1z3 ⊕ y1z2 ⊕ y2z2 ⊕ y1z3 ⊕ y1y2 ⊕ y3 = 0,

f2 = z1z3 ⊕ z2z3 ⊕ y1z1 ⊕ y2z2 ⊕ y2z3 ⊕ y1y3 ⊕ y3 = 0,

f3 = z1z2 ⊕ y1y2 ⊕ y2y3 ⊕ y3 ⊕ 1 = 0.

Then, we can rewrite it in the form shown in Equation 3, as specified below:

1 1 0 0 y1 ⊕ y2 y1
0 1 1 y1 y2 y2
1 0 0 0 0 0

 ·

z1z2
z1z3
z2z3
z1
z2
z3

 =

 y1y2 ⊕ y3
y1y3 ⊕ y3

y1y2 ⊕ y2y3 ⊕ y3 ⊕ 1

 (4)

5

With the representation described in Equation 3 in mind, it is easy to understand the
simple algorithm to solve m quadratic equations in u variables. The overall procedure can
be described as follows:

1. Apply the Gaussian elimination on the augmented matrix A|B such that the first
u1(u1 −1)/2 columns of the matrix A|B are in the reduced row echelon form. Denote
the matrix after this Gaussian elimination operation by A′|B′.

2. From the last m−u1(u1 − 1)/2 rows of the matrix A′|B′, we can deduce m−u1(u1 −
1)/2 equations of the form

A′′ · (z1, z2, . . . , zu1)T = B′′, (5)

where each element in A′′ is a linear polynomial in y and each element in B′′ is a
quadratic polynomial in y.

3. Using Gray code to exhaust all the 2u−u1 possible values of y. For each value
of y, update A′′ and B′′ and solve the linear equation system Equation 5 using
Gaussian elimination. If there is a solution, check its correctness against the original
m equations2. If there is no solution, try another value of y.

Complexity analysis. To efficiently solve the quadratic equations with the above method,
it is required that the equation system Equation 5 is slightly overdefined, i.e. for each guess
of y, there is at most one solution of z. Another reason to make it slightly overdefined is
to amortize the cost to check the solutions. Let

ϵ + u1 = m − u1(u1 − 1)/2, ϵ > 0.

The time complexity of Step 1 − 2 can be estimated as

m2 ·
(

u

≤ 2

)
bit operations as we need to perform the addition operation for quadratic polynomials in
u variables for each row operation.

The time complexity of Step 3 can be estimated as the sum of the time complexity
to update (A′′, B′′), the time complexity to solve Equation 5 and the time complexity to
check the original m equations. We assume that Equation 5 is slightly overdefined and the
cost to check the correctness of the solutions is negligible3. Then, the time complexity of
Step 3 can be estimated as

(ϵ + u1)((u − u1) + u1) · 2u−u1 + (ϵ + u1)2 · u1 · 2u−u1 = 2u−u1 · (u1 + ϵ) · (u2
1 + u1 · ϵ + u)

bit operations. Therefore, the total time complexity is estimated as

m2 ·
(

u

≤ 2

)
+ 2u−u1 · (u1 + ϵ) · (u2

1 + u1 · ϵ + u)

bit operations.
2A better way is to choose the quadratic equations from A′|B′ that are not included in A′′|B′′ for

verification.
3To check the correctness of a solution, we can randomly pick a quadratic equation not included in

A′′|B′′ to check its correctness. For the wrong solution, we expect each such equation holds with probability
2−1. Thus, we estimate the time complexity to check 2ω solutions as

(
u

≤2

)
·
∑ω

i=0 2ω−i ≈ 2ω+1 ·
(

u
≤2

)
bit operations. The value of ω can be estimated as ω = u − u1 − ϵ, thus resulting in a complexity to
check the solutions of 2u−u1−ϵ+1 ·

(
u

≤2

)
bit operations. This complexity in most cases will be smaller than

2u−u1 · (u1 + ϵ) · (u2
1 + u1ϵ + u), i.e. 2−ϵ+1 ·

(
u

≤2

)
< (u1 + ϵ) · (u2

1 + u1 · ϵ + u). We have checked that this
holds for all our attacks.

6

2.4 On Dinur’s Algorithm
In our attacks on full-round (4-round) LowMC with full S-box layers, we will use Dinur’s
algorithm [Din21] to solve a system of nonlinear equations of degree 4, which is based
on the polynomial method originally proposed in [LPT+17]. Similar to Dinur’s attack
on LowMC of an odd number of rounds, we can optimize the generic time complexity
given in [Din21] for such an equation system by taking the structure of equations into
account. Therefore, it is necessary to understand how Dinur’s algorithm works and how
the complexity is computed. In the following, we will describe a simplified version of
Dinur’s algorithm.

Similarly, we consider the system of m equations denoted by E(x) as shown below:

E(x) : P1(x) = P2(x) = · · · = Pm(x) = 0, (6)

where Deg(Pi) = d (1 ≤ i ≤ m) and x = (x1, x2, . . . , xu) ∈ Fu
2 . First, split the u variables

into y ∈ Fu−u1
2 and z ∈ Fu1

2 , where y = (y1, y2, . . . , yu−u1) = (xu1+1, xu1+2, . . . , xu) and
z = (z1, z2, . . . , zu1) = (x1, x2, . . . , xu1). Then, Pi(x) can also be written as Pi(y, z).

Next, we randomly take ℓ = u1 +1 different equations from the m equations Pi(y, z) = 0
and we denote the new system of equations by Ẽ(y, z) as shown below:

Ẽ(y, z) : R1(y, z) = R2(y, z) = · · · = Rℓ(y, z) = 0. (7)

It is easy to observe that a solution to Equation 6 must be a solution to Equation 7.
However, a solution to Equation 7 is not necessarily a solution to Equation 6. The general
idea of Dinur’s algorithm is to efficiently enumerate all the solutions to Equation 7 and
then test their correctness against Equation 6.

Assumption. We assume that when the value of y is specified, there is at most 1 solution
of z satisfying Equation 7, and the corresponding (y, z) is called the isolated solution to
Ẽ(y, z).

Definition 1. [Din21] If x̂ = (ŷ, ẑ) is a solution to Ẽ(y, z) and for any z′ ≠ ẑ, (ŷ, z′)
cannot be a solution to Ẽ(y, z), then x̂ = (ŷ, ẑ) is called the isolated solution to Ẽ(y, z).

Let us elaborate more on the isolated solution. According to its definition, for each
specified value of y denoted by ŷ, there is at most 1 solution of z denoted by ẑ satisfying
Ẽ(y, z) and if such a ẑ exists, (ŷ, ẑ) is an isolated solution to Ẽ(y, z). Hence, it is indeed
equivalent to the assumption made above.

The above assumption is reasonable because once y is specified, we get ℓ = u1 + 1
equations in u1 variables. Hence, we can expect that there is at most 1 solution of z. We
emphasize here that we have checked the probability of this assumption in our 4-round
attacks on LowMC, as detailed in Section 5.

Now suppose we have a blackbox function denoted by U(y) : Fu−u1
2 → Fu1

2 which can
efficiently output the value of ẑ for each given ŷ such that (ŷ, ẑ) is an isolated solution
to Ẽ(y, z). In this way, the time complexity to enumerate all the solutions to Ẽ(y, z) is
identical to the time complexity to evaluate the function U(y) over Fu−u1

2 , which can be
efficiently finished via Möbius transform once the explicit Algebraic Normal Forms (ANFs)
of U(y) are known.

Finding the blackbox function U(y). The core idea of Dinur’s algorithm is indeed to
find the above blackbox function U(y) with time complexity less than 2u. To achieve this,
let us consider an equivalent representation of the equation system Ẽ(y, z) as below:

F̃ (y, z) = (R1(y, z) ⊕ 1)(R2(y, z) ⊕ 1) . . . (Rℓ(y, z) ⊕ 1).

7

In this way, the set of solutions to Ẽ(y, z) is identical to the set of solutions to the equation:

F̃ (y, z) = 1.

This is because F̃ (y, z) = 1 is equivalent to Ri(y, z) = 0 for 1 ≤ i ≤ ℓ.
Since Deg(Ri) = d, we have dF̃ = Deg(F̃) ≤ ℓ · d. Then, we rewrite F̃ (y, z) in different

forms as shown below:

F̃ (y, z) = z1z2 . . . zu1U0(y) ⊕ Q0(y, z),
F̃ (y, z) = z1z2 . . . zi−1zi+1 . . . zu1Ui(y) ⊕ Qi(y, z) where zi = 0.

Similar to the cube attack [DS09], there is no term in Q0(y, z) which is divisible by
z1z2 . . . zu1 and there is no term in Qi(y, z) which is divisible by z1z2 . . . zi−1zi+1 . . . zu1 .
Moreover, we also have

U0(y) =
⊕

z∈Fu1
2

F̃ (y, z),

Ui(y) =
⊕

(z1,z2,...,zi−1,zi+1,...,zu1)∈Fu1−1
2 ,zi=0

F̃ (y, z) where 1 ≤ i ≤ u1,

dU0 = Deg(U0) ≤ dF̃ − u1,

dUi
= Deg(Ui) ≤ dF̃ − u1 + 1 where 1 ≤ i ≤ u1.

Relations between Ui(y) and the isolated solutions. Supposing (ŷ, ẑ) is an isolated
solution to Ẽ(y, z), we can trivially have

U0(ŷ) = 1

because there is only 1 value z = ẑ which can make F̃ (ŷ, z) = 1. If there is no solution to
Ẽ(y, z) for the given y = ŷ, there will be U0(ŷ) = 0 because for each z ∈ Fu1

2 , F̃ (ŷ, z) = 0.
Note that we make an assumption that there is either no solution or 1 solution to Ẽ(y, z)
for a given y. Hence, U0(ŷ) can help determine whether there is a solution to Ẽ(y, z) for a
given y = ŷ. Once it is determined that there is 1 solution to z, the remaining work is to
deduce this solution ẑ under the given y = ŷ.

To deduce ẑ once U0(ŷ) = 1, it is necessary to observe that

ẑi = Ui(y) ⊕ 1 where 1 ≤ i ≤ u1.

This can be verified and proved under the above mentioned assumption [Din21]. Hence,
for a given y = ŷ, computing the solution to Ẽ(ŷ, z) can be described as follows:

1. Compute Ui(y) for all 0 ≤ i ≤ u1.

2. If U0(y) = 0, there is no solution and exit.

3. If U0(y) = 1, make ẑi = Ui(y) ⊕ 1. Then, (ŷ, ẑ) is a solution to Ẽ(y, z).

Therefore, the last task is to recover the explicit formula of Ui(y) (0 ≤ i ≤ u1). Note
that dU0 ≤ dF̃ − u1 = w and dUi ≤ dF̃ − u1 + 1 = w + 1 for 1 ≤ i ≤ u1.

Recovering (U0(y), U1(y), . . . , Uu1(y)). U0(y) can be interpolated from its value set
W u−u1

w , where W u−u1
w = {a|HW (a) ≤ w} and HW (a) is the Hamming weight of a. To

compute each value for such a set, we need to do 2u1 evaluations of F̃ (y, z). Similarly,
Ui(y) (1 ≤ i ≤ u1) can be interpolated from its value set W u−u1

w+1 , where the computation
of each such value requires 2u1−1 evaluations of F̃ (y, z). In other words, to interpolate

8

U0(y), we need a list of F̃ (y, z) of size
(

u−u1
≤w

)
× 2u1 , i.e. we need to exhaust the solutions

of Ẽ(y, z) from the constrained space (y, z) ∈ W u−u1
w × {0, 1}u1 . Similarly, to interpolate

Ui(y) (1 ≤ i ≤ u1), we need to exhaust the solutions of Ẽ(y, z) from the constrained space
(y, z) ∈ W u−u1

w+1 × {0, 1}i−1 × {0} × {0, 1}u1−i. Hence, we only need to exhaust all the
solutions to Ẽ(y, z) in the constrained space (y, z) ∈ W u−u1

w+1 × {0, 1}u1 , which is sufficient
to compute all the required lists. Exhausting the solutions to Ẽ(y, z) in the constrained
space (y, z) ∈ W u−u1

w+1 × {0, 1}u1 requires

2d · log2u · 2u1 ·
(

u − u1

≤ w + 1

)
(8)

bit operations using the fast exhaustive search algorithm [BCC+10].
Note that we only record those (y, z) such that F̃ (y, z) = 1, i.e. we only care about

those (y, z) which are solutions to Ẽ(y, z). In this way, we will obtain a list of (y, z) of
size of about 1

2 ·
(

u−u1
≤w+1

)
. After obtaining the list, we need to construct an array of size(

u−u1
≤w

)
for U0(y) according to its definition. We also need to construct u1 other arrays

of size
(

u−u1
≤w+1

)
for Ui(y) (1 ≤ i ≤ u1) according their definitions. The time complexity

of this phase is slightly larger than (u1 + 1) · 1
2 ·

(
u−u1
≤w+1

)
but is still negligible compared

with Equation 8. Then, with these arrays, we can interpolate (U0(y), U1(y), . . . , Uu1(y))
with the Möbius transform, which requires less than (u1 + 1) ·

(
u−u1
≤w+1

)
bit operations

and is negligible compared with Equation 8. Hence, the time complexity to recover
(U0(y), U1(y), . . . , Uu1(y)) is dominated by Equation 8, i.e. it is

2d · log2u · 2u1 ·
(

u − u1

≤ w + 1

)
= 2d · log2u · 2u1 ·

(
u − u1

≤ dF̃ − u1 + 1

)
.

We refer the interested readers to [Din21] for more details of this procedure as it is the core
of Dinur’s algorithm and explaining the full details in such a short paragraph is infeasible.

The total time complexity. To reduce the overload to check the correctness of solutions
and to efficiently identify the isolated solution, we may prepare four different choices for
the equation system Ẽ(y, z) and we perform the above procedure for each of 4 equation
systems. Then, the time complexity can be estimated as

4 · (2d · log2u · 2u1 ·
(

u − u1

≤ dF̃ − u1 + 1

)
) + 4 · (u1 + 1) · (u − u1) · 2u−u1

bit operations, where the second term accounts for evaluating u1 + 1 polynomials on the
space {0, 1}u−u1 for four times.

The total memory complexity. At the phase to recover all Ui(y), it is required to
construct a table of size of about 4 · 1

2 ·
(

u−u1
≤dF̃−u1+1

)
bits so that the Möbius transform

can work. At the phase to evaluate (u1 + 1) polynomials over the space {0, 1}u−u1 , with
the standard Möbius transform, the memory complexity is about 4 · (u1 + 1) · 2u−u1 bits.
If using Dinur’s memory-efficient Möbius transform, the memory complexity is about
4 · (u1 + 1) ·

(
u−u1

≤dF̃−u1+1
)
.

3 New Algebraic Attacks on LowMC
In this section, we will first demonstrate 3 different attacks on LowMC with full S-box
layers. The first attack is a new and simple guess-and-determine (GnD) attack on 3-round
LowMC by using Banik et al.’s strategy [BBDV20] to linearize the 3-bit S-box, where we

9

solve a system of quadratic equations with the standard linearization technique. The
second attack is a much simpler yet more efficient GnD attack on 3-round LowMC by using
a naive guess strategy to linearize the 3-bit S-box, where we solve quadratic equations
with the simplified version of the crossbred algorithm [BDT22]. The third attack is for
full-round (4-round) LowMC, where we still adopt the naive guess strategy but use Dinur’s
algorithm [Din21] to solve equations of degree 4.

3.1 The First Attack on LowMC
The first attack is essentially based on the strategy to linearize the 3-bit S-box by guessing
a quadratic relation, as first proposed in [BBDV20]. Specifically, consider the definition of
the S-box as shown below:

a4 = a1 ⊕ a2a3, a5 = a1 ⊕ a2 ⊕ a1a3, a6 = a1 ⊕ a2 ⊕ a3 ⊕ a1a2.

If we guess a4 = a⋆
4, i.e. the value of the quadratic polynomial a1 ⊕ a2a3 is a⋆

4, then
(a4, a5, a6) can be expressed as linear expressions in terms of (a1, a2, a3):

a4 = a⋆
4

a5 = a1 ⊕ a2 ⊕ (a⋆
4 ⊕ a2a3)a3 = a⋆

4 ⊕ a2 ⊕ a3a⋆
4,

a6 = a1 ⊕ a2 ⊕ a3 ⊕ (a⋆
4 ⊕ a2a3)a2 = a⋆

4 ⊕ a2 ⊕ a3 ⊕ a2a⋆
4,

Indeed, guessing any 1 non-zero linear polynomial in (a4, a5, a6) can help linearize the 3-bit
S-box, i.e. (a4, a5, a6) can then be expressed as linear expressions in terms of (a1, a2, a3).
This property also applies to its inverse due to the similar formulas for its inverse:

a1 = a4 ⊕ a5 ⊕ a5a6, a2 = a5 ⊕ a4a6, a3 = a4 ⊕ a5 ⊕ a6 ⊕ a4a5.

In other words, guessing any 1 non-zero linear polynomial in (a1, a2, a3) can make (a1, a2, a3)
linear in (a4, a5, a6) [BBDV20].

An overdefined system of equations for the 3-bit S-box. Since the algebraic attack
on AES was published [CP02], though it is commonly believed the attack cannot work
as expected, it has been well-known that one can find an overdefined system of linearly
independent quadratic equations for the used S-box. For the 3-bit S-box of LowMC, we
can find at most 14 linearly independent quadratic equations, as shown below:

a4 = a1 ⊕ a2a3, a5 = a1 ⊕ a2 ⊕ a1a3, a6 = a1 ⊕ a2 ⊕ a3 ⊕ a1a2,

a1 = a4 ⊕ a5 ⊕ a5a6, a2 = a5 ⊕ a4a6, a3 = a4 ⊕ a5 ⊕ a6 ⊕ a4a5,

a4a2 = a1a2 ⊕ a2a3, a4a3 = a1a3 ⊕ a2a3, a5a1 = a1 ⊕ a1a2 ⊕ a1a3,

a5a3 = a2a3, a6a1 = a1 ⊕ a1a3, a6a2 = a2 ⊕ a2a3,

a4a1 ⊕ a1 = a5a2 ⊕ a1a2 ⊕ a2, a5a2 ⊕ a1a2 ⊕ a2 = a6a3 ⊕ a1a3 ⊕ a2a3 ⊕ a3.

The GnD attack by solving quadratic equations. We noticed that in Banik et al.’s
attacks [BBDV20, BBVY21] on LowMC, the guessed quadratic polynomials in key bits
are not used to recover the key and they are only used to linearize the S-box. In this
attack, we will make full use of all the guessed polynomials and the overdefined system
of quadratic equations for the 3-bit S-box. First, we show that at each time we guess
a quadratic polynomial for the 3-bit S-box, we indeed can obtain 3 quadratic equations
rather than only 1 quadratic equation.

Let us take the guess a4 = a⋆
4 for an instance. In this case, we have the following 3

linearly independent quadratic equations in (a1, a2, a3):

a⋆
4 = a1 ⊕ a2a3, a⋆

4a2 = a1a2 ⊕ a2a3, a⋆
4a3 = a1a3 ⊕ a2a3.

10

Indeed, if we guess any 1 linear equation in (a4, a5, a6), we can always obtain 3 quadratic
equations in terms of (a1, a2, a3) from such a guess, which can be easily derived based on
a similar strategy.

S

S

S

S

S

L1

S

S

S

S

S

L2

S

S

S

S

L3

A3 (linear in K)A2 (linear in K)A1 (linear in K) A4 (linear in K)

Guessed
· · ·

· · ·· · ·· · ·

Figure 1: Illustration of the first attack on 3-round LowMC

With the above observations in mind, it is now easy to understand our first GnD attack.
As shown in Fig. 1, for each S-box in the first 2 rounds, we linearize it by guessing 1 output
bit. In this way, each input state bit of the S-box at the first 3 rounds can be written as
linear expressions in the n-bit key K = (K1, K2, . . . , Kn). In addition, for such a guess
strategy, we can obtain 3 · 2s = 6s quadratic equations in K because we guess 2s quadratic
equations for the 2s S-boxes in the first 2 rounds to linearize them. Finally, we deal with
the third round to attack 3-round LowMC.

For the s S-boxes in the third round, we only linearize s − u1 (0 < u1 < s) S-boxes
by guessing s − u1 output bits. Note that the output of the S-box in the third round is
linear in K. In this way, we obtain 3(s − u1) linear equations in K because s − u1 S-boxes
are linearized. Moreover, as mentioned above, such a guess for these s − u1 S-boxes also
allows us to deduce 3(s − u1) quadratic equations in K. For the remaining u1 S-boxes, we
can derive 14u1 quadratic equations in K. In summary, we now obtain 3(s − u1) linear
equations in K and 6s + 3(s − u1) + 14u1 = 9s + 11u1 quadratic equations in K.

To solve these equations, we first apply Gaussian elimination to the 3(s − u1) linear
equations to obtain 3s − (3s − 3u1) = 3u1 free variables. Then, we write the 9s + 11u1
quadratic equations in these 3u1 free variables. To solve these 9s+11u1 equations efficiently
with the linearization technique, we constrain that

9s + 11u1 ≥ 3u1 + 3u1(3u1 − 1)/2

i.e. the number of equations is larger than the number of variables after renaming the
quadratic terms as new variables. The time complexity can therefore be estimated as

T1 = 22s+s−u1 · (3(s − u1))2 · 3s + 22s+s−u1 · (9s + 11u1)2 · (3u1 + 3u1(3u1 − 1)/2) (9)

bit operations, where the term (3(s − u1))2 · 3s represents the cost to apply Gaussian
elimination to the 3(s − u1) linear equations in 3s variables and the term (9s + 11u1)2 ·
(3u1 + 3u1(3u1 − 1)/2) represents the cost to solve the 9s + 11u1 quadratic equations with
the linearization technique. In Table 3, we show the optimal values of (s, u1, T1) to attack
3-round LowMC with full S-box layers. The memory complexity of this attack is very small,
i.e. we only need to store the equation system, which costs about (9s + 11u1) · (3u1 +
3u1(3u1 − 1)/2) bits.

It can be found that the first attack is much slower than the generic fast exhaustive
search attack using Gray code proposed in [BCC+10]. In the following, we will describe
how to use a different guess strategy to make the attacks greatly outperform the fast
exhaustive search attack. Moreover, it can be found later that the idea in the first attack
will be used for LowMC with partial nonlinear layers, which allows to devise attacks more
efficient than the MITM attacks [BBVY21].

11

Table 3: Results for 3-round LowMC with full S-box layers
n k s r u1 T1 Memory

129 129 43 3 10 2145.8 217.9

192 192 64 3 12 2208.3 218.9

255 255 85 3 14 2270.5 219.7

3.2 The Second Attack on LowMC
In the second attack, we use a rather naive guess strategy to linearize the 3-bit S-box.
Specifically, we guess two input bits of the S-box rather than 1 output bit of the S-
box to linearize it in the forward direction. However, different from Banik’s et al.’s
attacks [BBDV20,BBVY21], we only apply this guess strategy for the first round.

For such a guess strategy, we directly obtain 2s linear equations in K = (K1, K2, . . . , Kn).
After applying Gaussian elimination to these linear equations, we obtain s free variables
v = (v1, v2, . . . , vs) because n − 2s = 3s − 2s = s when LowMC uses the full S-box layers.
Then, for the input state of S-box in the third round, it can be expressed as quadratic
expressions in v. For the output state of the S-box in the third round, it is linear in K
and thus can also be expressed as linear expressions in v. This can be seen from Fig. 2.

S

S

S

S

S

L1

S

S

S

S

S

L2

S

S

S

S

L3

A3 (quadratic in v)A2 (linear in v)A1 (linear in K) A4 (linear in v)

Guessed
· · ·

· · ·· · ·· · ·

Figure 2: Illustration of the second attack on 3-round LowMC

At last, we consider the inverse of the S-box and obtain 3s quadratic equations in
these s variables v = (v1, v2, . . . , vs). We emphasize here that we should not consider the
overdefined system of equations for the S-box here because 11 out of such 14 equations in
v will be of degree higher than 2. The main reason is that the input bits are quadratic in
v while the output bits are linear in v.

Therefore, the problem is reduced to solving 3s quadratic equations in s variables. With
the simple linearization technique, we can solve this system by guessing s − u1 variables
and solve the 3s quadratic equations in s − (s − u1) = u1 variables with the linearization
technique. This will require

3s ≥ u1 + u1(u1 − 1)/2.

The time complexity of the attack is then estimated as

T2 = 22s · 2s−u1 · (3s)2 · (u1 + u1(u1 − 1)/2) = 23s−u1 · (3s)2 · (u1 + u1(u1 − 1)/2) (10)

bit operations, i.e. updating the 3s quadratic equations for each guess costs less time than
solving 3s quadratic equations in u1 variables.

In Table 4, we give the optimal values of (s, u1, T2) to attack 3-round LowMC. The
memory complexity of this attack can be simply estimated as 3s · (s + s(s − 1)/2) bits,
which is the cost to store the 3s quadratic equations in s variables.

12

Table 4: Results for 3-round LowMC with full S-box layers
n k s r u1 T2 Memory

129 129 43 3 15 2134.9 216.9

192 192 64 3 19 2195.7 218.6

255 255 85 3 22 2257.0 219.8

Improving the time complexity with the crossbred-like algorithm [BDT22]. In the above
attack, the problem is reduced to solving 3s quadratic equations in s variables. We now
show that we can use the crossbred-like algorithm for this system of quadratic equations to
slightly improve the time complexity. First, we split the s variables v = (v1, v2, . . . , vs) into
y = (y1, y1, . . . , ys−u1) = (vu1+1, vu1+2, . . . , vs) and z = (z1, z2, . . . , zu1) = (v1, v2, . . . , vu1).
Then, as discussed in Subsection 2.3, we can rewrite the 3s quadratic equations in the
following form:

A · (z1z2, z1z3, . . . , zu1−1zu1 , z1, z2, . . . , zu1)T = B.

We choose u1 such that

3s − u1(u1 − 1)/2 = u1 + ϵ, ϵ > 0.

To optimize the time complexity, we choose u1 such that ϵ is minimized. According to
the complexity analysis described in Subsection 2.3, the time complexity to solve the 3s
quadratic equation in s variables with this method is estimated as about

(3s)2 ·
(

s

≤ 2

)
+ 2s−u1 · (u1 + ϵ) · (u2

1 + u1 · ϵ + s)

bit operations.
The time complexity of our attack on 3-round LowMC is thus estimated as

T3 = 22s · (3s)2 ·
(

s

≤ 2

)
+ 23s−u1 · (u1 + ϵ) · (u2

1 + u1 · ϵ + s)

bit operations. The optimal values of (s, u1, ϵ, T3) are given in Table 5. The memory
complexity of this attack can be simply estimated as 3s ·

(
s
≤2

)
bits, which is the cost to

store the 3s quadratic equations in s variables.

Table 5: Results for 3-round LowMC with full S-box layers
n k s r (u1, ϵ) T3 Memory

129 129 43 3 (15, 9) 2127.2 216.9

192 192 64 3 (19, 2) 2186.2 218.6

255 255 85 3 (22, 2) 2246.8 219.8

3.3 The Third Attack on LowMC
In this part, we discuss the attacks on 4-round LowMC by combining the GnD technique
and Dinur’s algorithm [Din21] to solve nonlinear Boolean equations. As already shown
above, if we linearize the round function of LowMC with Banik et al.’s guess strategy, we
can only obtain quadratic equations in the key variables from the guess and these equations
cannot be used to reduce the number of variables in the equation system. Moreover,
linearizing 1 round of LowMC in this way requires to guess s bits and the problem is still

13

to solve nonlinear equations in 3s variables. However, we can easily check that the time
complexity to solve nonlinear equations in 3s (s ∈ {43, 64, 85}) variables with Dinur’s
algorithm is much larger than 22s and thus the total time complexity will be much larger
than 23s. In other words, Banik et al.’s guess strategy is not suitable when we want to
combine the GnD technique with Dinur’s algorithm to improve the attacks.

Therefore, we use the naive guess strategy to linearize 1-round LowMC by guessing two
input bits of each S-box. Specifically, for the first round, we guess 2s input bits to linearize
it. Then, apply Gaussian elimination on the 2s linear equations in K = (K1, K2, . . . , Kn)
to obtain n − 2s = 3s − 2s = s free variables v = (v1, v2, . . . , vs). In this way, we can write
the input state of the S-box in the third round as quadratic expressions in v and write the
output state of the S-box in the third round as quadratic expression in v as well.

Consider the i−th S-box (0 ≤ i < s) in the third round and we denote the polynomials in
v to represent its input and output by p3i+1(v), p3i+2(v), p3i+3(v), p3i+4(v), p3i+5(v), p3i+6(v),
respectively. Note that all these polynomials are of degree 2. According to the definition
of the S-box, we can construct the following 3 degree-4 polynomials in v denoted by
q3i+1(v), q3i+2(v), q3i+3(v), respectively:

q3i+1(v) = p3i+4(v) ⊕ p3i+1(v) ⊕ p3i+2(v)p3i+3(v),
q3i+2(v) = p3i+5(v) ⊕ p3i+1(v) ⊕ p3i+2(v) ⊕ p3i+1(v)p3i+3(v),
q3i+3(v) = p3i+6(v) ⊕ p3i+1(v) ⊕ p3i+2(v) ⊕ p3i+3(v) ⊕ p3i+1(v)p3i+2(v).

A naive upper bound for Deg(q3i+1 ⊕ 1)(q3i+2 ⊕ 1)(q3i+3 ⊕ 1) is 3 · 4 = 12. However, a
detailed look suggests that Deg(q3i+1 ⊕ 1)(q3i+2 ⊕ 1)(q3i+3 ⊕ 1) ≤ 2 · 4 = 8, which has
been exploited in Dinur’s attacks on an odd number of rounds of LowMC [Din21].

In total, we can construct 3s such degree-4 polynomials in v. The problem is reduced
to solving these 3s degree-4 equations in s variables v = (v1, v2, . . . , vs). Due to the high
degree, our strategies in the first 2 attacks are not useful because the cost is very high.
Hence, we consider Dinur’s algorithm for this system of equations.

Similar to Dinur’s attacks [Din21] on an odd number of rounds of LowMC, we consider
the equations imposed by ⌈ ℓ

3 ⌉ S-boxes in the third round. For convenience, let

ℓ = 3ℓ0 + ε, 0 ≤ ε < 3.

In this way, we consider the 3ℓ0 equations {qi(v) = 0, 1 ≤ i ≤ 3ℓ0} imposed by ℓ0 S-boxes
among the ⌈ ℓ

3 ⌉ S-boxes and ε equations {qi(v) = 0, 3ℓ0 + 1 ≤ i ≤ ℓ} imposed by the
remaining ⌈ ℓ

3 ⌉ − ℓ0 S-box, where Deg(qi) = 4 for 1 ≤ i ≤ ℓ.
Let

F̃ (v) = (q1(v) ⊕ 1)(q2(v) ⊕ 1) · · · (qℓ(v) + 1).

Due to the structure of equations discussed above, we have that

dF̃ = Deg(F̃) = 8ℓ0 + 4ε.

To utilize Dinur’s algorithm [Din21], we need to split the s variables v = (v1, v2, . . . , vs)
into y = (y1, y1, . . . , ys−u1) = (vu1+1, vu1+2, . . . , vs) and z = (z1, z2, . . . , zu1) = (v1, v2, . . . , vu1),
where u1 = ℓ − 1.

The assumption to correctly recover v becomes that for the correct guess4 of y, there
is at most 1 solution of z satisfying {Pi(v) = Pi(y, z) = 0, 1 ≤ i ≤ ℓ}. Note that for each
specified y, we are considering ℓ = u1 + 1 equations in u1 variables. Hence, this assumption
holds with a high probability. Later, we will use experiments to verify this assumption.

4For the wrong guess, we indeed do not care about the correctness of the assumption because the
solution is always invalid. We only need to ensure when y is exactly the correct value, the assumption
holds so that we can correctly compute z.

14

Moreover, similar to Dinur’s attacks [Din21], we prepare 4 different sets of ℓ polynomials,
each set of polynomials is constructed in the above way to exploit the structure of the
equations caused by the S-box. This is used to amortize the cost to check the solution
(y, z) against the 3s equations. Specifically, for each guessed y = ŷ, we compute the
corresponding z = ẑ if there is for each of the 4 sets. Then, when the same (ŷ, ẑ) appears
more than twice, we treat (ŷ, ẑ) as a potential solution and check its correctness against
the 3s equations5. Otherwise, we simply abandon all the suggested (ŷ, ẑ). Later, we will
use experiments to simulate its success probability.

According to the complexity analysis described in Subsection 2.4, the time complexity
of our attack is estimated as

T4 = 22s · 4 · (2 · 4 · log2s · 2u1 ·
(

s − u1

≤ dF̃ − u1 + 1

)
+ (u1 + 1) · (s − u1) · 2s−u1)

bit operations. The memory complexity is estimated as

M0 = 4 · (1
2 ·

(
s − u1

≤ dF̃ − u1 + 1

)
+ (u1 + 1) · 2s−u1)

bits if we use the standard Möbius transform. If using Dinur’s memory-efficient Möbius
transform, the memory complexity is estimated as

M ′
0 = 4 · (1

2 ·
(

s − u1

≤ dF̃ − u1 + 1

)
+ (u1 + 1) ·

(
s − u1

≤ dF̃ − u1 + 1

)
).

The values of (s, u1, ℓ, dF̃ , T4, M0, M ′
0) are given in Table 6 to optimize the attacks on

4-round LowMC.

Table 6: Results for 4-round LowMC with full S-box layers
n k s r (u1, ℓ, dF̃) T4 M0 M ′

0

129 129 43 4 (5, 6, 16) 2133.8 242.6 236.7

192 192 64 4 (8, 9, 24) 2195.0 261.2 253.4

255 255 85 4 (11, 12, 32) 2255.8 279.6 268.0

Remark. We note that there is a trivial time-memory tradeoff for Dinur’s algorithm
by guessing variables. Specifically, to solve equations of degree d in u variables, Dinur’s
algorithm generally requires u2 · 2(1−1/2.7d)u bit operations and u2 · 2(1−1/1.35d)u bits of
memory. For attacks on 4-round LowMC, d = 4 and u = k. For the naive guess strategy, we
guess u−u1 variables and use Dinur’s algorithm to solve degree-4 equations in u1 variables,
whose time and memory complexity become 2u−u1 · u2

1 · 2(1−1/2.7d)u1 and u2
1 · 2(1−1/1.35d)u1 ,

respectively. To obtain time complexity not higher than that of our attacks, we find that
the required memory complexity is larger than 284.6, 2108.2 and 2134.2 for the parameters
k = 129, k = 192 and k = 255, respectively. Hence, our attacks can achieve much better
tradeoffs. The main reason is that by guessing 2s key variables to linearize the first
round, the generic complexity of Dinur’s algorithm can be optimized by taking some useful
properties of the equations into account. However, by randomly choosing 2s key variables
for guess, no properties of the degree-4 equations can be exploited.

5We can choose 4 different sets of equation systems in the way that the used S-boxes for one equation
system are not repeatedly used in other 3 equation systems. In this way, for a wrong guess of the 2s key
bits to linearize the first round, it hardly appears that more than 2 systems will suggest the same isolated
solution.

15

4 Attacks on LowMC with Partial Nonlinear Layers
In this part, attacks on LowMC with parameters s = {1, 10}, r = ⌊ n

s ⌋ and n = k ∈
{128, 192, 256} will be taken into account, which are the targets listed in the LowMC
competition. The best attacks on these parameters are achieved with the MITM tech-
nique [BBVY21]. The main idea of our attacks is very simple, i.e. we exploit the overdefined
system of equations for the 3-bit S-box as we do in the first attack on LowMC.

For r rounds of LowMC, there are in total s(r − 1) S-boxes in the first r − 1 rounds.
First, we linearize the first λ S-boxes by guessing 1 output bit of each of these S-boxes in
the forward direction. For the remaining s(r − 1) − λ S-boxes in the first r − 1 rounds,
for each of its three output bits, we introduce 3 intermediate variables to represent them.
Hence, there are in total 3s(r − 1) − 3λ intermediate variables and they are denoted by
µ = (µ1, µ2, . . . , µ3s(r−1)−3λ). In this way, each input state of each round is linear in
(µ, K), as shown in Fig. 3.

S

S

S L1 L2

Lr−1

Ai (linear in K)A2 (linear in K)A1 (linear in K)

Ar−1 (linear in (K,µ))

Guessed

· · ·

S

S

S

· · ·

· · ·

S

S

S

· · ·

Li

S

S

S

· · ·

Ai+1 (linear in (K,µ))

· · ·

S

S

S

· · ·

Lr

Ar (linear in (K,µ))

S

S

S

· · ·

Intermediate variables (µ)

Ar+1 (linear in K)

Figure 3: Illustration of the attacks on LowMC with partial nonlinear layers

Hence, for the input and output states of the last nonlinear layer, they can be written
as linear expressions in n + 3s(r − 1) − 3λ variables

(µ, K) = (µ1, µ2, . . . , µ3s(r−1)−3λ, K1, K2, . . . , Kn),

respectively. By first ignoring the s S-boxes in the last nonlinear layer, we can construct
n − 3s linear equations in these n + 3s(r − 1) − 3λ variables (µ, K). Applying Gaussian
elimination to this linear equation system will allow us to obtain

n + 3s(r − 1) − 3λ − (n − 3s) = 3(sr − λ)

free variables. Denote these free variables by v = (v1, v2, . . . , v3(sr−λ)). The time complexity
of this Gaussian elimination is estimated as

T5 = (n − 3s)2 · (n + 3s(r − 1) − 3λ)

bit operations.

16

Now, we count the number of quadratic equations in v. As already mentioned at the
first attack on LowMC, if we linearize 1 S-box by guessing an output bit, we can obtain 3
quadratic equations in its input. Hence, for our guess of λ bits, 3λ quadratic equations in
v can be constructed. Moreover, for the remaining s(r − 1) − λ + s = sr − λ S-boxes in r
rounds of LowMC, we can construct 14(sr − λ) quadratic equations in v. In other words
the problem now is reduced to solving 14(sr − λ) + 3λ = 14sr − 11λ quadratic equations
in 3(sr − λ) variables.

Using the crossbred-like algorithm. We use the crossbred-like algorithm for this prob-
lem. Specifically, we first split v into z = (z1, z2, . . . , zu1) = (v1, v2, . . . , vu1) and y =
(y0, y1, . . . , y3(sr−λ)−u1) = (vu1+1, vu1+2, . . . , v3(sr−λ)). Then, we find the minimal positive
integer ϵ such that

14sr − 11λ − u1(u1 − 1)/2 = u1 + ϵ, ϵ > 0

Then, we iterate all values of y with Gray code and compute the corresponding z with
Gaussian elimination, which will take

T6 = (14sr − 11λ)2 ·
(

3(sr − λ)
≤ 2

)
+ 23(sr−λ)−u1 · (u1 + ϵ) · (u2

1 + u1 · ϵ + 3(sr − λ))

bit operations. The total time complexity of our attacks on r rounds of LowMC is thus
estimated as

T7 = 2λ · (T5 + T6)

bit operations. The memory complexity is negligible, which is dominated by storing the
quadratic equations. Hence, the memory complexity is estimated as

M1 = (14sr − 11λ) ·
(

3(sr − λ)
≤ 2

)
The values of (λ, u1, ϵ, T7, M1) to optimize the attacks on LowMC with different param-

eters are given in Table 7.

Table 7: Results for r = ⌊ n
s ⌋ rounds of LowMC with s S-boxes per round

n k s r (λ, u1, ϵ) T7 M1

128 128 1 128 (114, 32, 10) 2142.3 218.9

192 192 1 192 (175, 38, 22) 2205.8 219.9

256 256 1 256 (238, 43, 20) 2268.7 220.5

128 128 10 12 (106, 31, 18) 2134.6 218.8

192 192 10 19 (173, 38, 16) 2203.7 220.0

256 256 10 25 (231, 43, 13) 2262.8 220.6

5 Experiments
We conduct 3 different experiments to verify the correctness of our attacks.

The first experiment is to verify our best attacks on 3-round LowMC. We choose the
LowMC instance with the parameter (n, k, r) = (129, 129, 3) as the target. The main concern
in our best 3-round attack is whether the crossbred-like algorithm can correctly work.
Experiments have shown that it works as expected, and after guessing 2×43+(43−15) = 96

17

key bits, we can always reduce the problem to solving 15 + 9 = 24 linear equations in 15
variables z. Among 10000 random guesses, we find that only 21 solutions of z are suggested,
thus resulting in a filtering probability of 0.0021 ≈ 2−8.9, which is almost the same as
the expected filtering probability 2−9. As already mentioned, checking the suggested
solution is cheap by evaluating randomly picked quadratic equations not included in the
24 equations. For the correct guess, we find that the key can be correctly recovered.

The second experiment is to verify the assumptions used in our attacks on 4-round
LowMC. Specifically, for the chosen 4 different sets of equation systems, when the key
bits are correctly guessed, how many sets will suggest the correct isolated solution (the
correct full key)? Moreover, when the key bits are wrongly guessed, how many sets will
suggest the same isolated solution? We choose the LowMC instance with the parameter
(n, s, r) = (129, 43, 4) as the target. For this target, we need to consider 4 different equation
systems derived from 8 different S-boxes, where each equation system has 6 degree-4
equations in 5 variables and it corresponds to the equations deduced from 2 S-boxes. We
performed 20000 random guesses by considering 4 equation systems simultaneously, i.e.
there will be in total 80000 different equation systems. We find that there is at most 1
solution for 72000 equation systems, thus indicating that the assumption for the isolated
solution holds with probability of about 0.9. In addition, among these 20000 random
guesses, there are only 339 guesses such that more than 2 equation systems can suggest the
same unique solution, thus resulting in a filtering probability of about 339/20000 = 2−6.2.
We also perform 20000 experiments by always correctly guessing the key bits. It is found
that there are about 16700 experiments such that more than 2 equation systems can
suggest the same unique solution (the correct key). All in all, the attack succeeds with
probability of about 16700/20000 = 0.83 and the filtering probability is low enough to
amortize the time complexity to check the suggested solutions. Indeed, according to the
experiments, if we check the solution only when more than 3 equation systems suggest the
same isolated solution, the filtering probability becomes about 1/20000 and the success
probability becomes about 0.5.

The last experiment is to verify the correctness of our attacks on LowMC with partial
nonlinear layers. As the correctness of the crossbred-like algorithm has been verified in
our 3-round attack, the main concern in this attack is whether we can obtain the expected
number of linearly independent quadratic equations. We choose the LowMC instance with
the parameter (n, s, r) = (128, 1, 128) as the target. In this attack, we expect that after
guessing λ = 114 bits, we can obtain 14sr − 11λ = 14 × 128 − 11 × 114 = 538 linearly
independent quadratic equations in 3(sr − λ) = 3 × (128 − 114) = 42 variables. Then,
we solve these equations with the crossbred-like algorithm using the splitting parameter
u1 = 32, i.e. solving u1 + ϵ = 32 + 10 = 42 linear equations in 32 variables for each guess of
the 42 − 32 = 10 variables. Experiments show that the 538 quadratic equations are always
linearly independent and we can always construct 42 linear equations in 32 variables for
each guess of the 10 variables. For the correct guess, the key can be correctly recovered.
Hence, the correctness of our attacks is verified.

6 Conclusion
While intuitively linearizing one LowMC S-box by guessing only one quadratic polynomial
seems efficient, we show that naively guessing two linear polynomials to achieve the
linearization can make the attacks on LowMC with full S-box layers much better. The main
advantage of this naive guess strategy comes from the great reduction in the number of
unknowns because guessing 1 linear polynomial directly reduces the number of unknowns
by 1. Based on this new guess strategy, we can improve the key-recovery attacks on 3 and
4 rounds of LowMC using better time-memory tradeoffs than Dinur’s algorithm.

Another contribution is to take advantage of the guessed quadratic polynomials and

18

the overdefined system of quadratic equations for the LowMC S-box to devise more efficient
attacks on LowMC with partial nonlinear layers. In this way, recovering the full key is
reduced to solving a much overdefined system of quadratic equations with the crossbred-like
algorithm.

In conclusion, we have significantly improved the attacks on LowMC by using better
time-memory tradeoffs and we expect this work further advances the understanding of the
security of LowMC in the Picnic setting.

Acknowledgement. We thank the reviewers of ToSC 2022 Issue 3 for providing many
useful comments to improve the quality of this paper. Especially, we thank André Schrotten-
loher for shepherding this paper. We also thank Itai Dinur for providing some useful advice
on the preliminary version of this paper. Takanori Isobe is supported by JST, PRESTO
Grant Number JPMJPR2031 and Grant-in-Aid for Scientific Research (B)(KAKENHI
19H02141). This research was in part conducted under a contract of “Research and
development on new generation cryptography for secure wireless communication service”
among “Research and Development for Expansion of Radio Wave Resources (JPJ000254)”,
which was supported by the Ministry of Internal Affairs and Communications, Japan.

References
[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,

and Michael Zohner. Ciphers for MPC and FHE. In EUROCRYPT (1), volume
9056 of Lecture Notes in Computer Science, pages 430–454. Springer, 2015.

[BBDV20] Subhadeep Banik, Khashayar Barooti, F. Betül Durak, and Serge Vaudenay.
Cryptanalysis of LowMC instances using single plaintext/ciphertext pair. IACR
Trans. Symmetric Cryptol., 2020(4):130–146, 2020.

[BBVY21] Subhadeep Banik, Khashayar Barooti, Serge Vaudenay, and Hailun Yan. New
Attacks on LowMC Instances with a Single Plaintext/Ciphertext Pair. In
ASIACRYPT (1), volume 13090 of Lecture Notes in Computer Science, pages
303–331. Springer, 2021.

[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben
Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast Exhaustive Search for
Polynomial Systems in F2. In CHES, volume 6225 of Lecture Notes in Computer
Science, pages 203–218. Springer, 2010.

[BDT22] Charles Bouillaguet, Claire Delaplace, and Monika Trimoska. A Simple
Deterministic Algorithm for Systems of Quadratic Polynomials over F2. In
SOSA, pages 285–296. SIAM, 2022.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In
CCS, pages 1825–1842. ACM, 2017.

[CP02] Nicolas T. Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations. In ASIACRYPT, volume 2501 of Lecture
Notes in Computer Science, pages 267–287. Springer, 2002.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-Order
Cryptanalysis of LowMC. In ICISC, volume 9558 of Lecture Notes in Computer
Science, pages 87–101. Springer, 2015.

19

[Din21] Itai Dinur. Cryptanalytic Applications of the Polynomial Method for Solving
Multivariate Equation Systems over GF(2). In EUROCRYPT (1), volume
12696 of Lecture Notes in Computer Science, pages 374–403. Springer, 2021.

[DLMW15] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized Interpola-
tion Attacks on LowMC. In ASIACRYPT (2), volume 9453 of Lecture Notes
in Computer Science, pages 535–560. Springer, 2015.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials.
In EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages
278–299. Springer, 2009.

[DS11] Itai Dinur and Adi Shamir. An Improved Algebraic Attack on Hamsi-256.
In FSE, volume 6733 of Lecture Notes in Computer Science, pages 88–106.
Springer, 2011.

[JV17] Antoine Joux and Vanessa Vitse. A Crossbred Algorithm for Solving Boolean
Polynomial Systems. In NuTMiC, volume 10737 of Lecture Notes in Computer
Science, pages 3–21. Springer, 2017.

[KZ20] Daniel Kales and Greg Zaverucha. Improving the Performance of the Picnic
Signature Scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):154–
188, 2020.

[LIM21] Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of Full LowMC
and LowMC-M with Algebraic Techniques. In CRYPTO (3), volume 12827 of
Lecture Notes in Computer Science, pages 368–401. Springer, 2021.

[LPT+17] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams,
and Huacheng Yu. Beating Brute Force for Systems of Polynomial Equations
over Finite Fields. In SODA, pages 2190–2202. SIAM, 2017.

[LWM+22] Fukang Liu, Gaoli Wang, Willi Meier, Santanu Sarkar, and Takanori Isobe.
Algebraic Meet-in-the-Middle Attack on LowMC. IACR Cryptol. ePrint Arch.,
page 19, 2022.

[RST18] Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis of
Low-Data Instances of Full LowMCv2. IACR Trans. Symmetric Cryptol.,
2018(3):163–181, 2018.

20

	Introduction
	Preliminaries
	Description of LowMC
	Evaluating a Polynomial of Degree d in u Variables
	A Simple Version of Crossbred Algorithm for Quadratic Equations
	On Dinur's Algorithm

	New Algebraic Attacks on LowMC
	The First Attack on LowMC
	The Second Attack on LowMC
	The Third Attack on LowMC

	Attacks on LowMC with Partial Nonlinear Layers
	Experiments
	Conclusion

