
SIM: Secure Interval Membership Testing and
Applications to Secure Comparison

Albert Yu
Purdue University

yu646@purdue.edu

Donghang Lu
Purdue University
lu562@purdue.edu

Aniket Kate
Purdue University
aniket@purdue.edu

Hemanta K. Maji
Purdue University
hmaji@purdue.edu

Abstract—The offline-online model is a leading paradigm
for practical secure multi-party computation (MPC) protocol
design that has successfully reduced the overhead for several
prevalent privacy-preserving computation functionalities common
to diverse application domains. However, the prohibitive over-
heads associated with secure comparison – one of these vital
functionalities – often bottlenecks current and envisioned MPC
solutions. Indeed, an efficient secure comparison solution has
the potential for significant real-world impact through its broad
applications.

This work identifies and presents SIM, a secure protocol
for the functionality of interval membership testing. This security
functionality, in particular, facilitates secure less-than-zero testing
and, in turn, secure comparison. A key technical challenge is to
support a fast online protocol for testing in large rings while keep-
ing the precomputation tractable. Motivated by the map-reduce
paradigm, this work introduces the innovation of (1) computing a
sequence of intermediate functionalities on a partition of the input
into input blocks and (2) securely aggregating the output from
these intermediate outputs. This innovation allows controlling
the size of the precomputation through a granularity parameter
representing these input blocks’ size – enabling application-
specific automated compiler optimizations.

To demonstrate our protocols’ efficiency, we implement and
test their performance in a high-demand application: privacy-
preserving machine learning. The benchmark results show that
switching to our protocols yields significant performance improve-
ment, which indicates that using our protocol in a plug-and-
play fashion can improve the performance of various security
applications. Our new paradigm of protocol design may be of
independent interest because of its potential for extensions to
other functionalities of practical interest.

I. INTRODUCTION

Privacy-enhancing technologies, such as secure multi-party
computation (MPC), are essential for bridging the data utility
and privacy chasm. MPC [20], [46] allows mutually distrusting
parties to compute over their private data without revealing any
non-essential information. From initial conceptual prototypes
in calculating prices of Danish sugar beet market [7], evaluat-
ing gender pay disparities in Boston [29], detecting tax fraud in
Estonia [5], and preventing satellite collisions [22], advances in
computer hardware have inspired a recent revolution in MPC
research and technologies (see [18]).

As more memory and high-end processors become more
available, a leading paradigm for practical MPC protocol
design is the offline-online model [4], [9], [12], [13], [21],
[25], [32], [33], [39], which offloads most computationally

and cryptographically complex operations to an offline pre-
computation step. The online phase is a fast protocol that
uses the output of the precomputation to perform the intended
computation securely. Protocol design in this model proceeds
by identifying essential atomic functionalities prevalent across
diverse high-impact application domains. For example, atomic
functionalities like multiplication, (multi-variate) polynomial
evaluation, inner product, and comparison have representative
applications in arithmetic circuit evaluation [32], decision-
tree evaluation [19], [42], [43], private set intersection [14],
[23], [38], and neural network training [1], [26], [34], [39],
respectively. Individually, each of these atomic functionalities
is sufficient to emulate any computation, especially any other
atomic functionality listed above. However, in some cases,
custom-built precomputations for individual atomic functional-
ities have demonstrated the possibility of reducing the security
overhead of MPC technologies.

The secure comparison functionality, which compares
whether one secret value is greater than another or not, is
essential in various privacy-sensitive domains like machine
learning [35], [44], [45], data analytics [6], and auctions [2],
[7]. Furthermore, it is also essential for domains relying on
linear programming and dynamic programming – prospective
applications include, for example, optimization and biomedical
research, respectively. Practical solutions for secure compari-
son shall create exciting collaborative opportunities in these
application domains by meeting the privacy expectations of
the actors. Therefore, it is not surprising that there are many
works that present secure comparison as a key building block,
such as ABY [16], ABY2.0 [36], ABY3 [34], FALCON [45],
AriaNN [39], and SecureNN [44], or focus solely on the
secure comparison, such as [10], [8], and [33]. This paper
presents a versatile framework for designing secure com-
parison protocols in the offline-online model – allowing for
performance optimizations in light of network quality (for
example, latency, bandwidth, and throughput) and application-
specific considerations.

Ishai et al. [25] offer a simple MPC approach that em-
ploys function tables to achieve an efficient online phase by
precomputing the function for all possible inputs in the offline
phase, such that the online phase is simply a table-lookup.
This approach pushes as much computation as possible to
the offline phase, resulting in a highly efficient online phase
but exponentially high precomputation for typical input sizes.
This idea may work for small input sizes, but the size of
the function table grows exponentially with the input size,
thus making many applications unpractical. Applying the map-

reduce framework [15] to [25], this work presents SIM, a
general framework to construct efficient secure computation
protocols for secure interval membership testing functionality,
in turn, leading to efficient secure protocols for the “less than
zero” testing and “greater than” functionalities.

This work explores a construction that leverages problem
size reduction to shift many but not all computations to the
offline phase, which significantly improves the performance of
the online phase compared to other traditional methods while
keeping the size of function tables computationally tractable
and practical. In our secure comparison protocol, we divide
the original input into multiple blocks, perform membership
testing on each block, and combine block results into the final
answer. These steps significantly reduce the size of function
tables, thus making them practical and efficient. To the best
of our knowledge, this is the first work that brings the use of
precomputed function tables into the realm of practical MPC.

Our construction is in the offline-online model, where a
third (offline) party prepares a suitable (input-independent)
precomputation for two or more online parties (say) Alice and
Bob in the offline phase (as in [40], [41], [47]). Online parties
Alice and Bob respectively have private inputs [x]1 and [x]2
for the online phase of the secure computation protocol, which
are additive secret shares of the input x (i.e., x = [x]1 + [x]2).
At the end of the online protocol between Alice and Bob,
they obtain the additive secret shares of the output (bit) of
interval testing. Our construction is secure against semi-honest
(honest-but-curious) adversaries in a two-online-party setting.
Further, we achieve malicious security efficiently by extending
our system setting to three or more online parties.

For an n-bit input, we divide the input into k blocks of
`-bits each such that n = k · `. Our online phase of secure
membership testing has three communication rounds, and its
communication cost is k · `+ 2k+ 1 bits. The precomputation
results in the memory requirement of around k(2` + `3k) bits
per input. We compare our work with various state-of-the-
art comparison protocols, including ABY [16], ABY2.0 [36],
ABY3 [34], BLAZE [37], and FALCON [45]. Overall, our
work has lower communication complexity and outperforms
most works with respect to round complexity.

To demonstrate the performance of our protocols, we
implement our protocols on the state-of-the-art Falcon frame-
work [45]. The performance benchmark illustrates that our
secure comparison is about 2× faster than Falcon’s secure
comparison protocol, with 4× cheaper communication. In a
semi-honest setting, by only replacing Falcon’s secure compar-
ison protocol with ours, the neural network training efficiency
has improved to around 1.3× for a network with ReLU activa-
tion function and around 1.25× for a network with MaxPool
activation function. In the malicious setting, we achieve an
even larger performance improvement (1.35× faster and 5×
cheaper communication for Network A).

A. Structure of the paper

In Section II, we provide a general picture of our protocols
and explain how it works with a concrete example. In Sec-
tion III, we introduce the background and the system setting
of our protocols. Then we formalize the use of function tables
in MPC in Section IV.

We formalize and provide the detailed construction of
our protocol in Section V, which is followed by the cost
analysis and security analysis (Section VI). In Section VII,
we show how to achieve malicious security efficiently. Then
in Section VIII, we illustrate how our protocol can help with
building high-level applications such as privacy-preserving
neural network training/inference. Meanwhile we provide our
implementation details and the benchmark results there. In
Section IX, we show the potential of our protocols to be
generalized in multiple ways. Finally, we cover the related
works in Section X.

II. SOLUTION OVERVIEW

We consider computations over a ring Z2n that represents
the set of integers

{
−2n−1, . . . ,−1, 0, 1, . . . , 2n−1 − 1

}
along

with integer addition and multiplication modulo 2n as the
operators. Here, a subset I ⊆ Z2n is an interval if there
are i, j ∈ Z2n such that I = {i, i+ 1, . . . , j}.1 Let indicator
function 1I : Z2n → {0, 1} represent the membership func-
tionality for interval I . For any x ∈ Z2n , we have 1I(x) = 1
if x ∈ I; otherwise, 1I(x) = 0. In particular, when I = N
is the set of all “negative elements” for an n-bit value, where
N :=

{
−2n−1,−

(
2n−1 − 1

)
, . . . ,−1

}
, the functionality 1N

tests whether x ∈ Z2n is “less than zero” or not.

A. An Illustrative Example for Secure Less-Than-Zero Com-
putation

Towards illustrating the solution strategy, we first present
a simplified example of secure less-than-zero functionality
for two parties (Alice and Bob) for n = 6-bit inputs. (See
Figure 1.) For ease of exposition, assume that the objective of
the parties is to determine the answer s = 1N (x) in the clear
for secret shared input x.

With a uniformly random key r ← Z2n that is hidden from
both parties, parties reconstruct the corresponding masked
secret y = (x + r). In the example, we consider x = 33 and
r = 1, which results in y = 33 + 1 = 34 in the clear. Next,
we equivalently need to compute bit s indicating whether the
blinded output y = (x+r) is an element of the interval N +r
(whether y is in the interval [33, . . . , 63, 0]).

Let −→y represent the n = 6-bit (two’s complement) binary
representation of the element y (100010). For illustrative
purposes, consider the number of blocks k = 3 and each block
length ` = n/k = 6/3 = 2. For brevity, let y1 = −→y 1,` (the
most significant ` bits of −→y), y2 = −→y `+1,2` (the middle `-bits
of −→y), and y3 = −→y 2`+1,3` (the least significant ` bits of −→y).
For this example, y1 = 10, y2 = 00, y3 = 10.

Level 1 search. We use the first block to perform a level 1
search. Consider the interval J(y1) =

{
y1‖02`, . . . , y1‖12`

}
⊂

Z2n (J(10) = {100000, . . . , 101111}). Intuitively, this interval
contains all values that begin with y1. Let f1 : {0, 1}` → F3

be the function defined as follows. If the interval J(y1) ⊆

1Note that, with respect to the +1 operator, the elements of Z2n embed on
a size-2n circle 0 → 1 →· · · → 2n−1 − 1 → −2n−1 →· · · → −1 → 0,
a one-dimensional torus (informally, a cycle). The mentioned intervals are
defined over such a one-dimensional torus. Therefore, if i = −1 and j = 1,
then the corresponding interval is I = {−1, 0, 1}. For i = 1 and j = −1, the
corresponding interval is I = {1, 2, . . . , 2n−1− 1,−2n−1, . . . ,−2,−1} =
Z2n \ {0}.

2

Fig. 1. An example of problem size reduction where λ = 6, k = 3, ` = 2. The left-hand side is the overall function table before problem size reduction. The
right-hand side is the function table structure used in our protocol. ”U” means Undetermined, ”P” means Positive, and ”N” means negative. The red lines in
the original function tables indicate the gaps when numbers change the sign bit. If any row in function tables includes the gaps, its result is “Undetermined”.
A significant observation is that there could be at most 2 such gaps, which is the reason why we only need two tables for all the blocks except the first block.

N + r then y ∈ N , we define f1(y1) = 1. If the interval
J(y1) ⊆ Z2n \ (N + r) then y 6∈ N + r and we define
f1(y1) = 0. However, it is also possible that J(y1) has non-
empty intersections with both N + r and Z2n \ (N + r), in
which case it is uncertain whether x ∈ N+r or not. We define
f1(y1) = 2 indicating this uncertainty. Intuitively, the function
f1 is a coarse-grained membership testing functionality (and
the granularity parameter ` determines the granularity of this
search). In this example, we can see that if y1 is 11 then
f1(y1) = 1, since all values of y starting with 11 are Negative.
If y1 is 01 then f1(y1) = 0, otherwise f1(y1) = 2.

Alice and Bob compute the output a1 = f1(y1) securely
using the precomputed function table. However, there is a
subtlety. Obtaining the answer a1 in the clear reveals addi-
tional information about x, rendering the protocol insecure. In
particular, if x is close to either of the end-points of N , then
the probability of a1 = 2 is high. However, if x is far from
both the end-points of N , then the probability of a1 = 2 is
low. Therefore, parties obtain ã1 ∈ F3 instead, the masking of
a1 using a random shared r1 that is hidden from them. In the
concrete example, we omit this subtlety, and instead directly
present the answering using P, N, and U for Positive, Negative,
and Undetermined, respectively.

Observe that there can be at most two values of y1 such
that f1(y1) = 2. The function f1(y1) also needs to produce
an auxiliary information b ∈ {0, 1}, representing whether the
uncertainty stems from the inclusion of the starting point of
the interval or the end point of the interval. Note that this
auxiliary information is masked in our protocol, but we omit
the masking in this example for ease of understanding. The
utility of this auxiliary information shall become apparent in
the discussion below.

Level 2 search. Next, parties need to perform a finer-

grained search if f1(y1) = 2 using the second block of inputs.
Alice and Bob continue to the second level of the search
while being oblivious to whether f1(y1) = 2 or not. They test
whether the interval J(y1‖y2) =

{
y1‖y2‖0`, . . . , y1‖y2‖1`

}
is

entirely inside the interval N + r, entirely outside the interval
N + r, or partially intersecting both these sets, indicating
uncertainty. We define a2 = f2(y2, b) to be this function. We
emphasize that one needs b to reconstruct y1. Again, parties
use precomputed function tables to securely compute ã2, the
masking of a2 with a random share r2.

In this example, we assume b = 1. The parties then
look up the entry for y2 = 00 in the table for the sec-
ond block with b = 1. This is testing whether the inter-
val {100000, 100001, . . . 100011} is entirely negative, entirely
positive, or partially negative and partially positive.

Observe that in this search, irrespective of whether b = 0
or b = 1, there can be at most one y2 such that f2(y2) = 2.
This property is essential to ensure that we do not need to
generate any additional auxiliary information for this search;
otherwise, the domain of auxiliary information would have
increased exponentially in k (the total number of search levels).

Level 3 search. Alice and Bob continue with their final
search, oblivious to the fact whether their previous searches
are uncertain or not. They test whether the (singleton) interval
J(y1‖y2‖y3) = {y1‖y2‖y3} is inside of outside N + r or
not. These cases are exhaustive because a singleton interval
cannot be uncertain. Define the function a3 = f3(y3, b) to
be this function. Parties securely compute the encryption ã3
(using the secret key r3) of the output a3 using precomputed
function tables. Note that although we describe these searches
in multiple levels, one can perform all k block searches in
parallel as long as the auxiliary information b is known.

Reconstruction of answer. Given the (masked) answers

3

ã1, ã2, ã3, and using built-in r1, r2, and r3, the aggregation
function g, finds the smallest index i ∈ {1, 2, 3} such that
ai 6= 2 and aj = 2, for all j ∈ {1, . . . , i − 1}. Finally,
the output of g is s = ai. Parties compute this aggregation
function securely using another precomputed function table to
obtain the output s.

Intuitively, the reconstruction function inherently accounts
for the masking of the intermediate outputs and outputs the
first value that is not Undetermined.

Efficiency. Through our approach, the number of rows
in all the function tables is 24. As a comparison, if we
directly use one single function table, the number of rows is
26 = 64. Therefore, our approach significantly reduces the size
of precomputed function table. This effect is larger with the
increase of n. (e.g. when n = 64, our approach requires 15×28

rows, while one single function table requires 264 rows)

B. Protocol Steps of SIM

The above discussed technique extends to any interval I
that satisfies |I| > 2n−`. 2 We conclude the procedures of
secure interval-membership testing below:

1) As 1I(x) = 1I+r(y = x + r), for any r ∈ Z2n , where
I + r is the interval {x+ r : x ∈ I}, the precomputation
samples an element r ← Z2n uniformly random, hidden
from Alice and Bob. Alice and Bob reconstruct y = x+r
during the online phase.

2) Let −→y ∈ {0, 1}n represent the (two’s complement) binary
representation of the element y ∈ Z2n . Let −→y1, . . . ,−→yk ∈
{0, 1}` represent the partition of −→y into k blocks of `-
bit strings, i.e., −→y = −→y1‖· · · ‖−→yk . For i ∈ {1, . . . , k},
we determine special functions fi : {0, 1}` → F3, and
Alice and Bob interactively obtain the encryption of the
output ai = fi (−→yi) using the secret key ri, which is
unknown to them. The precomputation step establishes
the keys (r1, . . . , rk) and appropriate precomputations
(c.f., [25]) that help in the secure computation of the
functions f1, . . . , fk.

3) Let ã1, . . . , ãk represent the encryptions of the interme-
diate outputs a1, . . . , ak, respectively, mentioned above.
Alice and Bob interactively aggregate the answer s =
g (ã1, . . . , ãk) (in a secret-shared manner), where the
function g : F k3 → {0, 1} depends on the secret keys
r1, . . . , rk, and satisfies the identity g (ã1, . . . , ãk) =
1I(x). At the end of the online phase, Alice and Bob,
respectively, obtain the additive secret shares [s]1 and [s]2
of the secret s.

III. PRELIMINARIES

A. System Model

We consider an asymmetric three-party setting where three
parties P1, P2, P3 perform different tasks for the protocol. P3

is only involved in the offline phase and does not participate
in the online phase, similar to [40], [41], [47].

2If |I| is smaller, then both of its endpoints may fall within one uncertain
interval of the level 1 search. Given this possibility, one needs to generate
auxiliary information in level 2 search because parties are oblivious to whether
this event has already occurred or not. This generation of auxiliary information
in every level of the search increases the input domains of the search functions
and the aggregation function exponentially in k.

We assume point-to-point authenticated and secure com-
munication channels between the parties. The communication
channels are assumed to be bounded-synchronous [3], meaning
that the protocol operates in rounds. In each round, parties can
perform local computations and send messages. By the end of
the round, all parties are guaranteed to receive the messages
sent to them in this round. Our protocol also works in the
standard offline/online model.

SIM tolerates a semi-honest adversary who can corrupt at
most one party. We emphasize that the adversary can corrupt
any one of the parties, in particular, the adversary is allowed
to corrupt P3, who is only involved in the offline phase of
the protocol. We extend our protocol against the malicious
adversary in Section VII.

B. Two-Party Secret Sharing Based MPC

We use a three-party MPC (3PC) setting where two parties
participate in the online phase while the third party only
produces the offline data and is absent from the online phase.
Therefore, our construction closely follows two-party MPC
(2PC) protocols for the online phase, and we summarize the
relevant 2PC concepts below.

1) Linear Two-Party Secret Sharing: A linear secret-
sharing scheme is a secret-sharing scheme where parties only
need to perform local operations on their shares to perform
linear operations on the secret-shared value. In this work, we
use a specific linear secret-sharing scheme, known as additive
secret sharing. To share a secret s, the first share [s]1 is
generated uniformly at random, and the second share is set
such that the sum of the two shares is the secret. To reconstruct
the secret s, the two parties add their respective shares together.
We can see that additive secret sharing indeed has the linear
property. For example, to add two secrets s and t, parties
simply need to locally add their share of s to their share of t.

Formally, the dealer shares a secret s ∈ Z2n to two parties
P1, P2 by generating shares [s]1, [s]2 ∈ Z2n such that each
party Pi holds [s]i and [s]1 + [s]2 = s. We use [s] to denote
the secret sharing of s. Here, for public constants a, b ∈ Z2n

and secret shared values [s], [u], the following identity holds:
[a · s+ b · u] = a · [s] + b · [u].

2) MPC based on secret sharing: In two-party secret-
sharing-based MPC, the function inputs are secret-shared to
the two parties P1, P2, where operations are then carried out on
the secret shares. When using a linear secret-sharing scheme,
the addition of two secret shared values becomes the local
addition of the respective shares.

When we need to multiply two values, we can use state-
of-the-art techniques [4], [16], which require the parties to
communicate with each other to perform the multiplication of
two secret shared values.

C. Offline-Online Model and Secure Precomputed Function
(SPF) Tables

For our secure comparison construction, we follow the
standard offline-online model of MPC, where the computation
is separated into an (input-independent) offline phase and an
online phase. In the offline phase, input-independent correlated

4

secret sharings are generated that are consumed during the
online phase.

As the communication and round complexity of the online
phase are critical for the performance of an MPC protocol,
our goal is to optimize the online phase and try to push more
cryptographically expensive operations to the offline phase.
In particular, we build upon the secure precomputed function
(SPF) table approach introduced by Ishai et al. [25], which
offers a very efficient online MPC phase for computing any
function.

The intuition behind the SPF protocol is to precompute
the function output for all possible inputs to generate function
tables in the offline phase, which allows the online phase to
be simple function lookups (which is highly efficient). (We
formalize the original Ishai et al.’s protocol in Section IV.)

This approach manages the small input domains well;
however, the size of the SPF table increases exponentially with
the input size, and it is not practical to use for applications
using moderate-sized input domains. While our construction
uses SPF tables to achieve a highly efficient online phase, as
a key novelty, we significantly reduce the function table size.

IV. FORMALIZING AND EXTENDING SPF COMPILER

To illustrate how the function table is used in MPC, We
first formalize the original (input-hiding) SPF protocol [25]
as a compiler. We then introduce our (function-hiding) SPF
compiler.

A. Original (Input-Hiding) SPF Compiler

Consider a 2PC with two parties P1 and P2 holding inputs
x and y respectively, and the parties want to jointly compute
f(x, y) for some function f . Here, function f : X1×X2 → Y ,
where (X1,+), (X2,+), and (Y,+) are groups.

The input-hiding SPF compiler [25] takes function f as
the input and outputs an MPC protocol that securely real-
izes the function. In particular, the compiler takes a matrix
{f(x1, x2)}(x1,x2)∈X1×X2

as input and outputs (i) a 2-party
correlation Qf (so-called the precomputation/offline phase),
and (ii) a 2-party online protocol Φf . Notice that the compiler
depends only on the input-output behavior of the function,
and it is independent of how the functionality f is realized.
To emphasize this property, we use f to mean the input-output
behavior of f .

Figure 2 describes the generation of the precomputation
Qf and the online protocol Φf . In the offline phase, the offline
party prepares a random element r, then it constructs function
tables of the input x+r for all x in the input domain. Finally, it
secret-shares the SPF table and sends the shared table together
with [r] to online parties. In the online phase, online parties
add the input [x] and [r] locally, then reconstruct x+r. Finally,
online parties check the SPF table using x+ r to get the final
output.

B. Function-Hiding SPF Compiler

Towards developing our efficient protocol, we formalize
a variant of the input-hiding compiler [25]. Compared to the
input-hiding compiler, our function-hiding compiler also takes

Description of the correlation Qf .
1) Pick uniformly random offsets α1 ∈ X1 and α2 ∈ X2

2) Generate F (1) =
{
f (1)(x1, x2)

}
(x1,x2)∈X1×X2

, where each

element f (1)(x1, x2) is uniformly and independently chosen
from the group Y .

3) Let F (2) =
{
f (2)(x1, x2)

}
(x1,x2)∈X1×X2

be the unique

matrix defined by the identity f(x1, x2) = f (1)(x1+α1, x2+
α2) + f (2)(x1 + α1, x2 + α2), for every element (x1, x2) ∈
X1 ×X2.

4) Send (α1, F
(1)) to Party 1 and (α2, F

(2)) to Party 2.

Description of the 2-party protocol Φf .
Private inputs. For i ∈ {1, 2}, Party i has private input xi ∈ Xi.
Correlated private randomness. For i ∈ {1, 2}, Party i has
correlated private randomness (αi, F

(i)) given by the correlation
Qf .
Description of the protocol.

1) For i ∈ {1, 2}, party i broadcasts x′i = xi + αi. (Round 1)
2) For i ∈ {1, 2}, party i outputs yi = F (i)(x′1, x

′
2).

Fig. 2. The original compiler’s procedure to generate the offline precompu-
tation Qf and the online protocol Φf .

one round and has a lower communication cost. This variant
takes as input a function from a family of functions, and
outputs a secure protocol that does not hide the input to the
function, but instead hides the function within the family of
functions. We call it the function-hiding compiler and use this
variant to construct our secure comparison protocol.

Consider a function f : X → Y , where (Y,+) is a group.
Our variant takes the matrix {f(x)}(x)∈X as input and outputs
(i) a 2-party correlation Pf , and (ii) a 2-party online protocol
Πf .

Description of the correlation Pf .
1) Generate F (1) =

{
f (1)(x)

}
(x)∈X

, where each element

f (1)(x) is uniformly and independently chosen from the group
Y .

2) Let F (2) =
{
f (2)(x)

}
(x)∈X

be the unique matrix defined

by the identity f(x) = f (1)(x) + f (2)(x), for every element
(x) ∈ X .

3) Send (F (1)) to party 1 and (F (2)) to party 2.

Description of the 2-party protocol Πf .
Public inputs. There is a public input x ∈ X known by all parties.
Correlated private randomness. For i ∈ {1, 2}, party i has corre-
lated private randomness (F (i)) given by the correlation Pf .
Description of the protocol.

1) For i ∈ {1, 2}, party i broadcasts yi = F (i)(x). (Round 1)
2) For i ∈ {1, 2}, party i outputs y = y1 + y2.

Fig. 3. Our variant’s procedure to generate the offline protocol Pf and the
online protocol Πf .

The generation of the precomputation Pf and the online
protocol Πf is defined in Figure 3. In the offline phase, the
offline party prepares the SPF tables for all possible plaintext
input x, then secret-shares it to online parties. In the online
phases, the online parties simply check the SPF table using
the plaintext input, then reconstruct the final output.

5

V. SECURE COMPARISON PROTOCOL USING
PRECOMPUTED FUNCTION TABLE

As a showcase of SIM, we introduce our protocol of secure
comparison in the form of less-than-zero (LTZ) operation. The
protocol takes secret shares [x] as the input, and outputs [s]
such that s = fLTZ(x).

A. Protocol Overview

The goal of the protocol is to compute the fLTZ(·) for
a secret-shared [x] ∈ Z2n . First, both online parties compute
[x+ r] and open it, where r is a random mask generated during
the offline phase. Second, they divide the binary representation
of x + r into k blocks, where each block has ` bits such
that k · ` = n.3Third, the online parties perform membership
testing functions for all the blocks, and get the intermediate
outputs, labeled a1, a2, . . . ak. The intermediate outputs can
either be Positive(P), Negative(N), or Undetermined(U)4. As
the membership testing function has small input domains, the
offline party can precompute the function tables for it such that
the online phase of the block membership testing is extremely
fast. Finally, the parties open the intermediate outputs and
use the intermediate outputs as inputs to the recombination
function table to produce the final output.

In the offline phase, the offline party P3 generates the
precomputation and function tables needed for the protocol,
and secret shares them to two online parties P1 and P2. We
have designed multiple sub-functionalities to collaboratively
achieve fLTZ(·), and they are explained in detail below.

B. Building Blocks

We start by introducing the building blocks used in our
protocol. Then we explain how to use these functions to
construct a full protocol.

We use superscripts to denote public parameters of func-
tions, while subscripts denote secret parameters that need to
be kept hidden from the online parties. The secret parameters
set during the offline phase are r ∈ Z2n , r1, r2, . . . , rk ∈ F3,
and β ∈ {0, 1}. r is used to mask the input x, ri is used to
mask the i-th intermediate result, and β is used to mask the
selection bit.

The functions SLTZiri,r,β are the coarse-grained member-
ship testing functions that test if a block of input can directly
tell us the overall output. SLTZiri,r,β takes public parameter
i ∈ {1, 2, . . . , k}, which represents which of the k block this
function is for, and it is defined as a family of functions over
the secret parameters r, ri, and β.

We start from the first block, the block result is positive if
all values that depend on this block (has this block input as
prefix) are positive. It is negative if all values that depend on
this block are negative, and it is undetermined if some values
are positive and some are negative. When the block result of

3If n is not a multiple of k, then one chooses the k block-lengths such
that any two block-lengths are either identical or differ by one. For example,
if n = 8 and k = 3 then block-lengths are 3, 3, and 2. For the simplicity
of the presentation, this minor detail is omitted; however, our implementation
addresses this subtlety while creating the partitions.

4The reconstructed intermediate values are randomly masked such that the
actual values are kept secret.

the first block is undetermined, we take the first two blocks
as the prefix and check the second block. Since revealing this
intermediate result could reveal information on the input, we
mask them using the secret parameter ri.

Formally, we define a function SLTZiri,r,β(y1y2 . . . y`, b̃) :

{0, 1}` × {0, 1} → F3 such that

SLTZiri,r,β(y1 . . . y`, b̃) =



0 + ri, if z0 /∈ N + r and

z1 /∈ N + r

1 + ri, if z0 ∈ N + r and

z1 ∈ N + r

2 + ri, otherwise.

where −→z0 = prefixi,r,β⊕b̃‖y1y2 . . . y`‖00 . . . 0︸ ︷︷ ︸
n-bits

and −→z1 = prefixi,r,β⊕b̃‖y1y2 . . . y`‖11 . . . 1︸ ︷︷ ︸
n-bits

, and

prefixi,r,β,̃b ∈ {0, 1}
`·(i−1).

Additionally, if z0 ∈ N + r and z1 /∈ N + r, then
prefixi+1,r,0 = prefixi,r,0‖y1y2 . . . y`. If z0 /∈ N + r and
z1 ∈ N + r, then prefixi+1,r,1 = prefixi,r,1‖y1y2 . . . y`.
Besides, we use value 0 in the output above to indicate
”Positive”, 1 as ”Negative”, and 2 as ”Undetermined”.

Next, we explain the function BLTZr,β , and the use of
the selection bit b̃ in SLTZiri,r,β(y1y2 . . . y`, b̃). We note that
the result of Undetermined can only appear in at most two
rows of the function table of the first block. The reason is that
the block result is Undetermined if and only if the numbers
represented by that row contain both positive numbers and
negative numbers. As the numbers in the function table are
consecutive and in ascending order, we only have two such
cases: When a block contains both 0 and −1, and when a
block contains both 2n−1 − 1 and −2n−1.

Since there are at most two uncertain rows in the first
block, we build two function tables for the second block (and
all the following blocks), one table for each uncertain row in
the first block. The input b̃ of SLTZiri,r,β(y1y2 . . . y`, b̃) is
used to indicate if the first group of the tables are used or the
second. The goal of BLTZr,β is to determine b̃ given the first
block of the input, such that b can be available for following
SLTZiri,r,β executions. We use b̃ to represent the randomly
masked version of b, and b̃ will be reconstructed during the
online phase.

Formally, we define a function BLTZr,β(y1y2 . . . y`) :
{0, 1}` → {0, 1} such that

BLTZr,β(y1y2 . . . y`) =

{
0⊕ β, if z0 ∈ N + r, z1 /∈ N + r

1⊕ β, otherwise.

Where −→z0 = y1y2 . . . y`‖00 . . . 0︸ ︷︷ ︸
n-bits

and −→z1 = y1y2 . . . y`‖11 . . . 1︸ ︷︷ ︸
n-bits

.

The RECOMBr1,r2,...rk function takes the intermediate
outputs produced by SLTZi,̃bri,r,β and combines them to pro-
duce the final output. Intuitively, RECOMBr1,r2,...rk outputs
the first intermediate output that is not undetermined.

6

Algorithm 1: Less Than Zero LTZ([x])
Input : [x]
Output : [s]

Pre-computation: , [r], PBLTZr,β ,
{
PSLTZiri,r,β

}
i∈{1,2,...,k}

,

PRECOMB
r1,r2,...rk,b̃

1 [y] = [x] + [r]
2 y = Open([y]) // Round 1

3 [̃b] = ΠBLTZr,β (−→y 1,`)

4 b̃ = Open([̃b]) // Round 2
5 for i← 1 to k do
6 [ãi] = ΠSLTZir,β,ri

(−→y (i−1)·`+1 , i·`, b̃
)

7 (ã1, ã2, . . . ãk) = Open([ã1], [ã2], . . . [ãk])
// Round 3

8 [s] = ΠRECOMBr1,r2,...rk
(ã1, ã2, . . . ãk)

9 return [s]

Formally, function RECOMBr1,r2,...rk(ã1, ã2, . . . ãk) :
F k3 → {0, 1} offers

RECOMBr1,...rk(ã1, . . . ãk) =


0, if ∃i such that

∀j < i, (ãj − rj) = 2

and (ãi − ri) = 0

1, otherwise.

C. Protocol Details

We now present how to use the compiler presented in
Section IV-B and the functions presented in Section V-B to
build a complete protocol for Less Than Zero (LTZ).

1) Online Phase: Algorithm 1 describes the online phase
of the protocol. During the online phase, our protocol proceeds
in three rounds. In the first round, the online parties P1 and
P2 compute and open y = x + r. Next, online parties divide
the binary representation of y into k pieces of ` bits each.
Parties use the first ` bits of y as input to evaluate ΠBLTZr,β

and get the result [̃b]. In the second round, the parties open
[̃b]. Then the parties use b̃ and the ith blocks of y as inputs
to evaluate ΠSLTZir,β,ri

for all i ∈ {1, 2, . . . , k} and receive
shares of the k outputs ã1, ã2, . . . , ãk. In the third round, the
parties open all the intermediate results [ãi]. Using them as
inputs, the parties run the online phase ΠRECOMBr1,r2,...,rk
to receive secret shares of the final output [s].

2) Offline Phase: During the offline phase, P3 generates in-
dependent and uniformly random values r ∈ Z2n , β ∈ {0, 1},
and ri for i ∈ {1, 2, . . . , k}. Using those values, P3 selects the
corresponding functions from the family of functions. Specif-
ically, P3 selects BLTZr,β , SLTZiri,r for i ∈ {1, 2, . . . , n},
and RECOMBr1,r2,...rk . P3 then acts as our variant of the
SPF compiler with those functions as inputs and generates the
offline correlated randomness specified by the compiler. P3

then sends the offline correlated randomness to P1 and P2,
as well as generates secret shares of r to send to P1 and P2.
Specifically, the offline correlated randomness are PBLTZr,β ,
PSLTZiri,r

for i ∈ {1, 2, . . . , k}, and PRECOMBr1,r2,...rk
.

The correctness of our protocol comes from the way the
function tables are defined. We highlight a few things related
to the correctness of our protocol. Firstly, while some of the
intermediate results can be Undetermined, our protocol always
outputs a correct result at the end. Due to the structure of the
Less Than Zero problem, there are always at most two possible
Undetermined values for the first block. Since we account for
that by creating two sets of tables for the second block onward,
we are essentially dealing with one Undetermined value. For
that one Undetermined value of the first block, there can be
at most one Undetermined value in the second block since
it contains only one point where the values change between
positive and negative. Since there is only one point of change,
once we reach the last block, we are always able to determine
if the value is positive or negative.

VI. PROTOCOL ANALYSIS

A. Cost Analysis and Comparison

Our protocol is technically a 3PC protocol, but the online
phase works as a pure 2PC protocol, we present comparisons
with state-of-the-art 3PC comparison protocols as well as 2PC
protocols.

1) Three-party Computation Protocols: We first present
a fully parameterized theoretical performance comparison in
Table I, then present a few selected parameters to provide
concrete performance numbers in Table II. For our work, the
offline phase communication cost consists of three parts: the
block function tables (SLTZ), the selection bit table (BLTZ),
and the recombination table (RECOMB). BLTZ has 2` = 2

n
k

rows5, where each row has a one-bit element. Each SLTZ table
has 2` = 2

n
k rows with two-bit elements, and we have in total

2k − 1 of them (the first block has one SLTZ table, and all
following blocks have two SLTZ tables each.). Thus the size
of all the SLTZ tables is (2k− 1) · 2nk · 2. RECOMB table has
3k rows, and each row contains a, n-bit secret sharing. The
overall offline precomputation communication/storage cost is
given by the summation of the three parts above. As for the
online communication cost, the reconstruction of x+ r in the
first round requires the communication of one n-bit share. The
reconstruction of k SLTZ results requires k ·2 communication.
Besides, the reconstruction of the selection bit takes one-bit
communication.

In general, our protocol has the least online communication
cost among all recent works. Besides, our protocol has con-
stant round complexity, whereas most recent works required
O(log n) rounds.

To make the numbers concrete in Table II, we present the
performance numbers for when inputs are n = 32 bits, and for
our protocol, we divide the input into k = 4 blocks of ` = 8
bits each. We also assume OT takes 2 rounds. We chose these
numbers because they provide the most balanced values.

2) Two-Party Computation Protocols: Similarly, we
present a fully parameterized theoretical performance compar-
ison in Table III, then select a group of parameters to provide
concrete performance numbers in Table IV for various two-
party protocols, since our online protocol is designed for two

5For simplicity, we replace ` with n
k

to keep the number of variables to
two.

7

TABLE I. COMPARISON OF PERFORMANCE FOR VARIOUS THREE-PARTY PROTOCOLS (ASSUMING INPUTS ARE n-BIT RING ELEMENTS, AND ARE
DIVIDED INTO k BLOCKS IN OUR PROTOCOL. κ IS THE SECURITY PARAMETER OF OT USED IN GARBLE CIRCUIT PROTOCOLS)

This Work ABY3* [34]
BLAZE* [37]
(arithmetic
circuit)

BLAZE* [37]
(garbled circuit) FALCON [45]

(Precomputation) Offline
Communication (bits)

(4k − 1)2n/k +
n3k

24n 9n (5κ+ 2) · n O(n)
(Estimated)

Online Communication
(bits) n+ 2k + 1 18 · n 9n κn 28n

Online Round 3 1 + log(n) 1 + log(n) 2 1 + log(n)
* The output of ABY3 [34] and BLAZE [37] are not arithmetic sharing. Therefore some additional sharing conversion (costing one or more
rounds) is required if their secure comparison results are used in arithmetic circuits.

TABLE II. COMPARISON OF PERFORMANCE FOR VARIOUS THREE-PARTY PROTOCOLS (WITH n = 32, k = 4, ` = 8, κ = 128)

This Work ABY3 [34] BLAZE (arithmetic
circuit) [37]

BLAZE (garbled cir-
cuit) [37] FALCON [45]

(Precomputation) Offline
Communication (bits) 6432 768 288 20544 ×

Online Communication
(bits) 41 576 288 4096 896

Online Round 3 6 6 2 6
* The offline cost of Falcon is omitted as we could not obtain concrete numbers.

online parties. In general, we outperform the recent works in
terms of communication cost and achieve the same constant
round complexity as all other works.

3) Offline Phase Cost: We also explain the theoretical
computation complexity and actual execution time for our
offline phase below. As each row of all function tables only
requires O(1) computation, the computation cost of the offline
phase can be counted by the number of rows of all the
function tables. Therefore, we have the computation cost and
communication cost to be O(k · 2` + 3k).

B. Security Analysis

We consider a static semi-honest adversary that can corrupt
at most one party. Therefore, either the offline party or one of
the online parties could be corrupted.

The ideal functionality FLTZ is defined as follows: FLTZ
receives input x1 from P1 and input x2 from P2. FLTZ
calculates x = x1 + x2. FLTZ computes s such that s = 1 if
x is less than zero (in the set

{
−2n−1,−(2n−1 − 1), . . .− 1

}
,

and s = 0 otherwise. FLTZ sends s to P1 and P2. 6

Theorem 1. Our LTZ protocol securely realizes the ideal
functionality FLTZ in the presence of a PPT adversary A
who can corrupt at most one party as semi-honest.

Proof: To prove this, it suffices to prove Lemma 2 and
Lemma 1.

Lemma 1. Our LTZ protocol is secure in the presence of a
PPT adversary A who corrupts P3 as semi-honest.

Proof: Since P3 is only involved in the input-independent
offline phase, adversary A gains no information.

6For the purpose of the proof, let us assume that Party 1 and Party 2 open the
secret-sharing of the output s immediately. Note that this ensures that even the
output distribution is indistinguishable between the simulated execution and
real execution, and the proof still holds if the parties do not open the output
and the ideal functionality sends the secret shares to the parties.

Lemma 2. There exists a PPT Simulator S that can simulate
the adversary A’s view in LTZ when A corrupts either P1 or
P2 such that the simulated view is indistinguishable from the
view of the real execution.

Without loss of generality, let A be a probabilistic polyno-
mial time (PPT) adversary who corrupts P1 (since P1 and P2

are symmetric). We construct a PPT simulator S that simulates
the adversary A’s view.

To simulate the offline phase, the simulator S generates
uniformly random values as entries for P1’s share of the
various function tables as well as for P1’s share of r and sends
them to A. Note that S records P1’s share of r as r′.

To simulate the online phase, in the first round, S samples
a uniformly random value as [y]2 and sends it to A to simulate
opening [y = x+ r]. At the same time, S receives [y]1. S can
recover the input [x]1 of P1 by computing [x]1 = [y]1 − r′
where r′ is recorded from the precomputation step. In the sec-
ond round, S samples a uniformly random bit as [̃b]2 and sends
it to A to simulate opening [̃b]. In the third round, S samples
k uniformly random element from F3 as [ã1]2, [ã2]2, . . . [ãk]2
and records and sends them to A to simulate opening [ãi]. At
the same time, S receives [ã1]1, [ã2]1, . . . [ãk]1.

Using [ã1]1, [ã2]1, . . . , [ãk]1 and [ã1]2, [ã2]2, . . . [ãk]2, S
computes a1 = [ã1]1 + [ã1]2, a2 = [ã2]1 + [ã2]2, . . . ãk =
[ãk]1 + [ãk]2. S now looks at the function table RECOMB
it sent to A during the offline phase and locates the output of
ã1, ã2, . . . ãk in the function table, labeling it as [s]1.

To simulate opening [s], S first sends the input [x]1 of P1

to the ideal functionality, and receives the output s∗. S can
then calculate [s]2 such that [s]2 = s∗− [s]1, and send it to A
to simulate opening [s].

We now show that this simulation is indistinguishable from
the real protocol execution. Since the precomputation that P1

receives in the real execution are all secret shares of values,
they are all independent and uniformly random, which has
identical distribution to what S generates for precomputation.

8

TABLE III. COMPARISON OF PERFORMANCE FOR VARIOUS TWO-PARTY PROTOCOLS (ASSUMING INPUTS ARE n-BIT RING ELEMENTS, AND ARE
DIVIDED INTO k BLOCKS WITH EACH BLOCK BEING ` BITS IN OUR PROTOCOL. κ IS THE SECURITY PARAMETER OF OBLIVIOUS TRANSFER USED IN GARBLE

CIRCUIT PROTOCOLS)

This Work Garbled Circuit [24] ABY [16] ABY2.0 [36]
(Precomputation) Offline Communication (4k − 1)2n/k + n3k κ 4nκ 4nκ+ n

Communication n+ 2k + 1 nκ 2nκ+ n 2nκ
Round 3 2 2 2

* The output of ABY [16] and ABY2.0 [36] are not arithmetic sharing. Therefore some additional sharing conversion (costing
one or more rounds) is required if their secure comparison results are used in arithmetic circuits.

TABLE IV. COMPARISON OF PERFORMANCE FOR VARIOUS TWO-PARTY PROTOCOLS (WITH n = 32, k = 4, ` = 8, κ = 128)

This Work Garbled Circuit [24] ABY [16] ABY2.0 [36]

(Precomputation) Memory Usage 6432 128 16384 16416

Communication 41 4096 8224 8192

Round 3 2 2 2

In the first round, since r is generated uniformly at random
in the real execution, x + r is also uniformly at random,
and the simulated view has identical distribution to the real
execution. In the second round, since β is generated uniformly
at random in the real execution, b̃ is uniformly random, and the
simulated view has identical distribution to the real execution.
We highlight the nontriviality that since only one value b̃ is
opened from the function tables of BLTZr,β , the value of b̃ is
independent of anything in the transcript prior to opening b̃. In
the third round, since ris are generated uniformly at random
in the real execution, each ãi is also uniformly at random,
and the simulated view has identical distribution to the real
execution. We once again highlight the nontriviality that only
one value from each SLTZir,β,ri is opened, ensuring that each
ri is effectively only used once, making all ãi independent
and uniformly random, which is indistinguishable for the real
execution and the simulated view.

Since the final output [s] is a secret share, it is indistinguish-
able from a value sampled from the uniform distribution. Note
that the S is able to simulate the correct output with random
shares, which means the joint distribution of the output and
the view is identical for the real execution and the simulation.

We note that this proof is not limited to only LTZ, and can
be generalized to other functions mentioned in Section IX-A.

VII. MALICIOUS SECURITY

We now present how we can extend our protocol to achieve
malicious security.

A. System Model

Malicious security can be achieved in a two-online-party
setting if we apply the same methods provided in [25],
however, it requires a decent amount of additional cost because
of the usage of message authentication code (MAC). Therefore,
to achieve a highly-efficient malicious secure protocol, we
require a different system model, where one offline party and
three online parties are needed. We assume there exists an
adversary that can control up to one party. In this honest-
majority setting, we can directly use replicated secret sharing
to achieve secure-with-abort online phase at no additional cost.
This model can be extended such that there are n > 3 servers
and t < n

2 corrupted servers.

B. Offline Phase

The offline phase of our protocol can be converted to mali-
ciously secure using the standard cut-and-choose method [30],
[31]. Essentially, the offline party prepares µ sets of precom-
putations, where µ is the statistical security parameter. As an
additional step to the offline phase, the online parties randomly
choose µ−1 sets of precomputation and open them by sending
all values and tables from those µ− 1 sets to each other. The
online parties can then locally verify that the function tables
and values are generated according to protocol specifications.
If any of the sets of precomputation fails the check, the online
parties abort and potentially issue punishments towards the
offline party. The probability that the offline party can generate
an inconsistent offline phase and not be detected is 2−µ−1.

C. Online Phase

With the offline phase with the cut-and-choose procedure,
we assume that we have one set of precomputed values and
that all precomputation is performed according to the protocol
specifications.

Since our protocol is in the honest majority setting, it can
easily be transformed to tolerate a malicious adversary that
controls at most 1 party. For example, we can use the same
replicated secret sharing scheme used in FALCON [45], which
will provide security with abort against malicious adversaries.
The parties can simply check if the replicated shares sent by
the other two parties are consistent or not. If not, the parties
simply abort. Such a transformation does not affect the cost
of our protocol beyond the natural increase in cost due to the
maliciously secure framework. For example, replicated secret
sharing will require two shares to be sent instead of one during
reconstruction but does not otherwise affect our protocol’s
performance.

We implement our protocols using FALCON. We refer
the readers to Section VIII-C for detailed benchmark and
performance analysis.

D. Security Analysis

In this section, we informally argue about the security
against the malicious adversary.

9

Theorem 2. Assuming the existence of a malicious-secure
replicated secret sharing scheme, Our LTZ protocol securely
realizes the ideal functionality FLTZ in the presence of a PPT
adversary A who can corrupt at most one party as malicious
under the secure-with-abort setting.

Following the same idea mentioned in Ishai et al. [25],
we need to ensure that a malicious party does not choose
to report a secret share from a wrong entry in the function
table. By using the malicious-secure replicated secret sharing
scheme, the honest parties can detect malicious behavior by
reporting inconsistencies between the secret shares of the
malicious party and the honest parties. At which point the
honest parties can abort the protocol. Then a similar proof to
the semi-honest security proof (Theorem 1) applies. Together,
our protocol achieves malicious security under the secure-with-
abort setting.

VIII. HIGH LEVEL APPLICATION: PRIVACY-PRESERVING
NEURAL NETWORK TRAINING/INFERENCE

To illustrate the performance of our protocols, we develop
prototypes for our secure comparison protocols. Additionally,
to demonstrate the effect of our protocol in a real-world appli-
cation, we choose to implement our protocol for the privacy-
preserving neural network training/inference application.

The state-of-the-art works in this area are Falcon [45]
and SecureNN [44]. We observe that the main bottleneck
is the evaluation of the ReLU activation function, where
the secure comparison protocol is the core building block.
In addition to ReLU, the Division and Maxpool functions
have high costs, and the secure comparison is also the main
reason. Therefore, we think the secure comparison is one of
the main bottlenecks, meaning that the use of our protocol
should provide a significant performance improvement. We
choose to implement our protocol in C++ and embed it into
the Falcon [45] framework by replacing the derivative of
ReLU (Falcon’s secure comparison implementation) with our
protocol.

A. Implementation details

As our protocol has two online parties whereas Falcon
has three online parties, we need to properly embed our
protocol into the Falcon framework. To begin with, Falcon
uses replicated secret sharing. If we only consider the first
two parties P1 and P2, they actually hold a two-party additive
secret sharing of the input. Therefore, we can run our secure
comparison on P1 and P2 without any other changes. However,
we still need to make sure the final output s is a three-party
replicated share (e.g. s = s1⊕s2⊕s3, and each party Pi holds
si and si+1). To achieve this, we allow the offline party P3

to generate s3 and s1 in advance and take them as the final
shares of P3. In the offline phase, P3 sends s1 to P1 and s3
to P2. In the final recombination table, the shares of s2 are
stored instead of the shares of the final output in our original
protocol. Therefore, P1 and P2 need an additional round to
reconstruct s2 using the shares.

We can think of the LTZ as a black box, Falcon provides
3-party replicated secret sharings as the input to LTZ. Inside
the box, LTZ operates with 2-party additive secret sharing,

and the output of LTZ is a 3-party replicated secret sharing
again. The security of this construction is straightforward in a
semi-honest setting.

B. Evaluation Results

To compare our protocol against the secure comparison
used by Falcon, we choose to evaluate the performances on
Network A and Network C from Falcon. Network A is a
3 layer fully connected network with the ReLU activation
function after each layer. Network C is a 4 layer network with
2 convolutional and 2 fully-connected layers. This network
also uses both Max Pooling and ReLU.

To begin with, we run the micro-benchmark that only con-
siders the performance of the secure comparison. The micro-
benchmark is launched in AWS clusters using three t3.2xlarge
instances (8 cores and 32GB RAM). The three instances are
located in different regions and have an average round trip
time of around 130ms. We call this testing environment the
distributed setting” for the rest of the paper. The experiments
show that our LTZ takes 0.790 seconds and 0.163MB of
data transmission per party to do 128 secure comparisons.
Meanwhile, falcon’s secure comparison takes 1.353 seconds
and 0.606MB bandwidth. So we can expect a 1.7× efficiency
improvement in running time and 4× improvements in com-
munication here.

Then we run some neural network tests in the distributed
setting. We tested two versions of the codebase: the first
one is the original Falcon codebase, and the other is the
Falcon codebase only with the LTZ function replaced by our
protocol. Therefore all the performance difference is caused by
the replacement of the LTZ function. For the neural network
training, we run 15 forward-backward pass iterations just to
show the performance difference. The benchmark result is
available in Table V. In general, the neural network training
time with our LTZ is around 30% more efficient. For the
inference, the running time is improved at around 1.4×. The
communication of our protocol is also significantly cheaper
than Falcon.

We also provide the execution time and communication of
the offline phase in Table VI. The result shows that the cost
is acceptable for neural network use cases.

a) Tuning Parameters for Better Performance: Our
protocol is highly flexible since the parameters such as k and `
are all flexible to change, and different parameter combinations
lead to different offline/online performances. Therefore, the
users of our protocol can pick the proper parameters to fit
into their application. As an illustrative example, we test the
offline/online performance of different k, ` combinations using
the same testing environment. Notice that when we fix k, the
best offline phase performance can be achieved if the size of all
the blocks are the same (or closer to each other). The reason is
that the size of the recombination table is fixed with k, and the
offline phase performance is bottlenecked by the largest block
table. The size of the largest block table is most optimized if
we set the sizes of all blocks to be the same. We follow this
setting in our experiments and only include parameter k in the
benchmark figure.

Figure 4 shows the offline phase performance with different
parameter settings. When k is very small, the size of each

10

TABLE V. ONLINE PHASE BENCHMARK: PRIVACY-PRESERVING NEURAL NETWORK TRAINING/INFERENCE WITH OUR LTZ VS FALCON’S LTZ. THE
EXPERIMENTS ARE RUN USING AWS T3.2XLARGE INSTANCES WITH 130MS PING. COMMUNICATION IS MEASURED BY THE TOTAL MB SENT PER PARTY.

PARAMETER SETTING: n = 32, k = 4, ` = 8.

Network Mode Online time(s) Communication (MB)
This work Falcon This work Falcon

Network A training 6.21s 10.14s 22.61MB 33.98MB
inference 1.83s 3.16s 0.65MB 1.57MB

Network C training 22.45s 38.94s 584.21MB 1123.35MB
inference 11.45s 22.39s 79.392MB 199.949MB

TABLE VI. OFFLINE PHASE BENCHMARK FOR n = 32, k = 4, ` = 8.
(ASSUMING INPUTS ARE n-BIT RING ELEMENTS, AND ARE DIVIDED INTO

k BLOCKS WITH EACH BLOCK BEING ` BITS IN OUR PROTOCOL.)

Network Mode #Compari-
sons

Execution
Time

Commu-
nication

Network A training 606720 780s 488 MB

inference 34048 44s 28 MB

Network C training 19968000 7.16 hr 16.1 GB
inference 1324800 1688s 1.1 GB

* The benchmark is executed in AWS clusters with t3.2xlarge instances.

Fig. 4. Offline phase benchmark with different parameter settings (n = 32,
k is the number of blocks). The experiments are run using AWS t3.2xlarge
instances with 130ms ping.

block function table is large, thus the offline phase is costly.
Similarly, when k is very large, the size of the recombination
table is large, leading to an expensive offline phase. Therefore,
if the users pursue a more efficient offline phase, an inter-
mediate k is a good option. Figure 5 illustrates the online
phase performance. It can be seen that the online performance
increases linearly with k. The reason is that the communication
complexity and computation complexity of our protocol are
both linear with k. Therefore, the users can pick the smallest
k that they can afford (in terms of the offline phase) to get the
best online phase performance. As for the overall performance
including both the online and offline phases, the pattern is
almost the same as the offline phase since the offline phase is
the main bottleneck taking around 90% to 95% of the overall
cost.

C. Implementation and Evaluation of the Malicious Secure
Version of Our Protocol

We implement the malicious secure version of our protocol
using FALCON [45] in a three-online-party setting. As we only

Fig. 5. Online phase benchmark with different parameter settings (n = 32,
k is the number of blocks). The experiments are run using AWS t3.2xlarge
instances with 130ms ping.

need share reconstructions in the online phase, we directly use
the replicated secret sharing and the corresponding malicious-
secure share reconstruction functions provided by FALCON.
Accordingly, the offline party generates function tables with
replicated secret sharing as the function table output.

We test the performance of the protocols in AWS, where
three servers are instantiated as c5.9xlarge (36 cores and 72GB
RAM) instances in the same region. For illustrative purposes,
we test the performance of both training and inference with
Network A. The benchmark result is shown in Table VII.
Compared with the semi-honest case, the main difference is
the communication cost, which increases significantly in both
our protocols and Falcons protocols. However, we see that our
protocol achieves a larger performance gain than the semi-
honest case. The communication cost of our protocol is around
5× cheaper than FALCON in a malicious setting, while in
the semi-honest case it is only around 2×. The reason is that
the malicious building block significantly increases the cost
of secure comparison, and because our secure comparison
protocol requires less reconstruction, the performance gain
becomes inherently larger. To conclude, as the MPC building
blocks (e.g. malicious secure share reconstruction) become
more expensive, the advantage of our protocols will be more
obvious.

IX. GENERALIZATION

A. General Functions

The idea of problem size reduction could be generalized
to solve more problems beyond less-than-zero. Since we are

11

TABLE VII. MALICIOUS-SECURITY BENCHMARK: PRIVACY-PRESERVING NEURAL NETWORK TRAINING/INFERENCE WITH OUR LTZ VS FALCON’S
LTZ. THE EXPERIMENTS ARE RUN USING AWS C5.9XLARGE INSTANCES LOCATED IN THE SAME REGION. COMMUNICATION IS MEASURED BY THE TOTAL

MB SENT PER PARTY. PARAMETER SETTING: n = 32, k = 4, ` = 8.

Network Mode Online time(s) Communication (MB)
This work Falcon This work Falcon

Network A training 3.83s 5.18s 58MB 216MB
inference 0.218s 0.298s 1.6MB 10.5MB

using function tables for blocks of input, our protocol can be
generalized to a class of functions, which we define as block
determinable functions.

We define block determinable functions as functions
where the overall output of the function is determined by
first examining the inputs block by block. More formally,
it satisfies the following identity : f(x1‖x2‖· · · ‖xk) =
h (g1(x1), g2(x2), . . . , gk(xk)).

Furthermore, to achieve better performance, the function
should have an additional property where either the functions
gis have small ranges (preferably one to two bits), or the
function h can be performed efficiently through MPC, e.g.
secure addition. In addition to Less Than Zero, Hamming
distance and parity are also block determinable functions
with significant potential for impact through their privacy-
preserving applications.

Note that the above block determinable functions follow a
strategy similar to the map-reduce paradigm, where functions
gis resembles mapping and function h resembles reduction
operation.

We elaborate on two example functions that can be solved
by our protocols, secure hamming distance evaluation and
secure equal to zero evaluation.

1) Secure Hamming Distance: Consider a setting when
online parties P1 and P2 hold two secret shared bit strings
of the same length X = (x1x2 · · ·xn) and Y = (y1y2 · · · yn).
These two strings are represented as ring elements in Z2n . The
hamming distance is defined as h(X,Y) =

∑n
i=1 xi

⊕
yi.

If we build up one precomputed function table to solve
this problem, the size of function table is 2n × 2n since the
function h(X,Y) has two inputs of size 2n. The size of this
table is too large to be used in practice when n is large.

This efficiency problem can be solved by applying the
problem size reduction here. Similarly, in the online phase,
we can reconstruct randomly masked X and Y and divide
them into k pieces where each piece is ` bit, such that
n = k × `. Then we build function tables for each piece so
that each function table returns the hamming distance of the
corresponding piece. The size of each table is 2l and there are
in total k function tables.

For hamming distance, there is no need to build up a
recombination table to combine block results, since the re-
combination steps can be done by easily summing up all the
block results.

If we set k = ` =
√
n, then the problem size reduction re-

duces the offline cost from O(2n) to O(
√
n×2

√
n). Assuming

n = 64, this is a 253× improvement.

2) Secure Equal to Zero: Equal to Zero can be seen as a
special case of the Less Than Zero function. Instead of having
3 possible intermediate outputs (Positive, Negative, Unknown),
EQZ will have two possible intermediate outputs (True and
False). If a block directly determines that the value is not equal
to zero, the intermediate output will be False. A value is overall
equal to zero if all blocks return True. While we may still need
a recombination table, since the intermediate output space is
reduced, our recombination table will only have 2k instead of
3k rows.

B. Going Beyond Two Online Parties

In this section, we describe how to turn our protocol from
a 3-PC protocol to include more online parties. In the original
protocol, both online parties execute the same computations,
the only difference is that the contents of their function tables
are different. Therefore, we can leverage it to extend our
protocol to accommodate more online parties. If we consider
n-online parties, the offline party will generate function tables
for each online party, the only difference is that the output of
function tables will be (n, n) additive secret sharing instead
of 2-party secret sharing7. The online parties will follow the
same online phase, and the only difference is that they will
use (n, n) secret sharing scheme to reconstruct the secrets. In
this case, the offline party becomes a single point of failure, as
the privacy is broken if the adversary knows the randomness
generated by the offline party. Therefore, we can only use this
idea when there is a trustworthy third party who is willing to
take care of the offline phase.

As an alternative, in some applications, we can also let the
clients who provide private inputs generate the precomputation.
If the clients don’t generate correct precomputation or leak
it to the adversary, the privacy/correctness of their own data
will be broken, thus they have no motivation to become a
”corrupted offline party”. In this setting, we don’t need an
offline party anymore and the precomputation will be taken as
part of the inputs of the MPC protocol. For instance, this idea
could be used in a case where the online parties hold a neural
network model privately in the form of secret sharing, and
clients want their private input to be evaluated on the private
neural network.

X. RELATED WORKS

In [17], Escudero et al. present an efficient secure compar-
ison protocol through the use of novel precomputation values
called edabits. The communication complexity of the protocol
is O(n), and in our case, we only need to reconstruct ap-
proximately two n-bit ring elements. Additionally, their round
complexity is logarithmic while our protocol is constant round.
An alternate way of using edabits is briefly mentioned, in

7(n, t) ring-based secret sharing could also be used.

12

which edabits are used to convert an arithmetic secret sharing
to a garbled circuit setting. While this reduces the round
complexity, it greatly increases the communication complexity
due to the use of garbled circuits.

In [33], Makri et al. uses an adaptation of the BIT-LT
protocol by Damgård et al. [11] and edaBits [17] to compare
a secret-shared value with a public value (Less Than Constant
protocol). Such a comparison protocol requires log n+2 rounds
when our protocol requires only constant rounds. Additionally,
Makri et al. presented an optimized protocol for LTZ (pre-
sented as ReLU). However, the optimized LTZ protocol still
requires log n rounds.

Ryffel et al. [39] extend [9] to perform secure compari-
son with similar performance using function secret sharing.
Compared with them, our protocol provides both the semi-
honest version and the malicious secure version while AriaNN
only realizes solutions for the semi-honest setting. Besides,
their construction achieves computational security while our
solution is perfectly secure. Additionally, their protocol has a
non-zero error rate. Although in their setting, the error rate
is low enough to not significantly affect their application,
the error rate may be larger and more significant for other
applications and settings. In comparison, our protocol always
outputs a correct answer.

There are also plenty of research focusing on privacy-
preserving machine learning, thus the secure comparison pro-
tocol is one of the key building blocks in these works. For
instance, ABY3 [34] uses bit extraction to get the most signifi-
cant bit of an element, which costs O(log(n)) rounds and O(n)
reconstructions. Many works afterward such as SWIFT [27]
follow this method to do secure comparison. Additionally,
SWIFT reports an amortized online communication cost of
9n− 6 bits, which is also higher than our protocol.

ABY [16] and ABY2.0 [36] make use of a parallel prefix
adder (PPA) to achieve the extraction of the most significant
bit. The circuit itself has O(log n) depth, thus constant round
complexity can only be achieved through the garble circuit
method. As a result, ABY2.0 designs efficient protocols to
transfer secret sharing from arithmetic form and garble circuit
form efficiently. However, this secure comparison requires
more communication than our protocol due to the use of the
garble circuits. Besides, our protocol works only in the arith-
metic world, therefore it can be easily generalized to include
more online servers. This generalization is not straightforward
for ABY2.0.

Damgård et al. [13] present some efficient building blocks
for privacy-preserving machine learning. Their secure compar-
ison protocol follows a similar idea as edabits [17], where a
random share and its bit-wise shares are used to accelerate the
computation. Their protocol has O(log(n)) round complexity
as a bit-wise less than operation is required. Compared to their
work, our protocol only takes three rounds for arbitrary size
inputs.

Most relevant to our work, SecureNN achieves secure
comparison through the use of share conversion between the
original even ring to an odd ring in order to extract the most
significant bit (MSB) of a value, which directly determines its
sign. This construction requires opening O(n) secret sharings
in the online phase, thus it is outperformed by our protocol

in communication cost. Falcon performs secure comparison
(called Derivative of ReLU in their paper) through the use of
wrap functions and local computations. The wrap function is
essentially a function that computes the carry bit when shares
are added together. For a n bit input, both SecureNN and Fal-
con require O (log n) rounds and O (n) bits of communication.

Tetrad [28] follows the direction of ABY2.0, where they
construct a mixed-protocol framework and use a garble cir-
cuit to extract the most significant bit. Compared with their
solution, our protocol is built in pure arithmetic circuits, thus
no share transfer is needed. Meanwhile, our protocol can be
generalized to n parties much more easily.

XI. CONCLUSION

In this work, we have proposed SIM, a secure interval
testing protocol that leverages function tables to achieve
both an efficient online phase and a practical offline phase.
As the first step, we introduced the abstract functionality
of testing membership in an interval. Similar to the map-
reduce methodology, we have presented a solution approach
for partitioning input into input blocks, computing a sequence
of intermediate functionalities on those input blocks, and
finally securely aggregating the output from these intermediate
outputs. We have illustrated that our protocol significantly
improves the performance of high-level applications such as
privacy-preserving machine learning.

As a step towards generalization, we have defined a notion
of block determinable functions and also proposed an approach
for going beyond two online parties. We believe the proposed
techniques have the potential to be applied to other MPC
problems as well as generalized to further settings and may
be of interest independent of the less-than-zero function.

REFERENCES

[1] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adrià
Gascón. QUOTIENT: Two-party secure neural network training and
prediction. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Com-
puter and Communications Security, pages 1231–1247. ACM Press,
November 11–15, 2019. 1

[2] Abdelrahaman Aly and Sara Cleemput. An improved protocol for
securely solving the shortest path problem and its application to
combinatorial auctions. Cryptology ePrint Archive, Report 2017/971,
2017. https://eprint.iacr.org/2017/971. 1

[3] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifi-
able secret sharing revisited. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073
of Lecture Notes in Computer Science, pages 590–609, Seoul, South
Korea, December 4–8, 2011. Springer, Heidelberg, Germany. 4

[4] Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Annual International Cryptology Conference, pages 420–432.
Springer, 1991. 1, 4

[5] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How
the estonian tax and customs board evaluated a tax fraud detection
system based on secure multi-party computation. In Rainer Böhme and
Tatsuaki Okamoto, editors, FC 2015: 19th International Conference on
Financial Cryptography and Data Security, volume 8975 of Lecture
Notes in Computer Science, pages 227–234, San Juan, Puerto Rico,
January 26–30, 2015. Springer, Heidelberg, Germany. 1

[6] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure
multi-party computation for financial data analysis. In International
Conference on Financial Cryptography and Data Security, pages 57–
64. Springer, 2012. 1

13

https://eprint.iacr.org/2017/971

[7] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and
Tomas Toft. Secure multiparty computation goes live. In Roger
Dingledine and Philippe Golle, editors, FC 2009: 13th International
Conference on Financial Cryptography and Data Security, volume 5628
of Lecture Notes in Computer Science, pages 325–343, Accra Beach,
Barbados, February 23–26, 2009. Springer, Heidelberg, Germany. 1

[8] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval
Ishai, Nishant Kumar, and Mayank Rathee. Function secret sharing
for mixed-mode and fixed-point secure computation. In Anne Can-
teaut and François-Xavier Standaert, editors, Advances in Cryptology
– EUROCRYPT 2021, Part II, volume 12697 of Lecture Notes in
Computer Science, pages 871–900, Zagreb, Croatia, October 17–21,
2021. Springer, Heidelberg, Germany. 1

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with
preprocessing via function secret sharing. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference,
Part I, volume 11891 of Lecture Notes in Computer Science, pages 341–
371, Nuremberg, Germany, December 1–5, 2019. Springer, Heidelberg,
Germany. 1, 13

[10] Geoffroy Couteau. New protocols for secure equality test and com-
parison. In Bart Preneel and Frederik Vercauteren, editors, ACNS 18:
16th International Conference on Applied Cryptography and Network
Security, volume 10892 of Lecture Notes in Computer Science, pages
303–320, Leuven, Belgium, July 2–4, 2018. Springer, Heidelberg,
Germany. 1

[11] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and
Tomas Toft. Unconditionally secure constant-rounds multi-party com-
putation for equality, comparison, bits and exponentiation. In Theory
of Cryptography Conference, pages 285–304. Springer, 2006. 13

[12] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS 2013: 18th European
Symposium on Research in Computer Security, volume 8134 of Lecture
Notes in Computer Science, pages 1–18, Egham, UK, September 9–13,
2013. Springer, Heidelberg, Germany. 1

[13] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter
Scholl, and Nikolaj Volgushev. New primitives for actively-secure mpc
over rings with applications to private machine learning. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1102–1120, 2019. 1,
13

[14] Emiliano De Cristofaro and Gene Tsudik. Practical private set inter-
section protocols with linear complexity. In Radu Sion, editor, FC
2010: 14th International Conference on Financial Cryptography and
Data Security, volume 6052 of Lecture Notes in Computer Science,
pages 143–159, Tenerife, Canary Islands, Spain, January 25–28, 2010.
Springer, Heidelberg, Germany. 1

[15] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, 2008. 2

[16] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY -
A framework for efficient mixed-protocol secure two-party computa-
tion. In ISOC Network and Distributed System Security Symposium –
NDSS 2015, San Diego, CA, USA, February 8–11, 2015. The Internet
Society. 1, 2, 4, 9, 13

[17] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and
Peter Scholl. Improved primitives for mpc over mixed arithmetic-
binary circuits. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, pages 823–852, Cham, 2020.
Springer International Publishing. 12, 13

[18] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. 1

[19] Irene Giacomelli, Somesh Jha, Ross Kleiman, David Page, and Kyongh-
wan Yoon. Privacy-preserving collaborative prediction using random
forests. CoRR, abs/1811.08695, 2018. 1

[20] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Alfred Aho, editor, 19th Annual ACM Symposium on
Theory of Computing, pages 218–229, New York City, NY, USA,
May 25–27, 1987. ACM Press. 1

[21] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. Concretely efficient large-scale MPC with active security
(or, TinyKeys for TinyOT). In Thomas Peyrin and Steven Galbraith,
editors, Advances in Cryptology – ASIACRYPT 2018, Part III, volume
11274 of Lecture Notes in Computer Science, pages 86–117, Brisbane,
Queensland, Australia, December 2–6, 2018. Springer, Heidelberg,
Germany. 1

[22] Brett Hemenway, Steve Lu, Rafail Ostrovsky, and William Welser IV.
High-precision secure computation of satellite collision probabilities.
In Vassilis Zikas and Roberto De Prisco, editors, SCN 16: 10th Inter-
national Conference on Security in Communication Networks, volume
9841 of Lecture Notes in Computer Science, pages 169–187, Amalfi,
Italy, August 31 – September 2, 2016. Springer, Heidelberg, Germany.
1

[23] Yan Huang, David Evans, and Jonathan Katz. Private set intersection:
Are garbled circuits better than custom protocols? In ISOC Network
and Distributed System Security Symposium – NDSS 2012, San Diego,
CA, USA, February 5–8, 2012. The Internet Society. 1

[24] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure
two-party computation using garbled circuits. In USENIX Security
2011: 20th USENIX Security Symposium, San Francisco, CA, USA,
August 8–12, 2011. USENIX Association. 9

[25] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and
Anat Paskin-Cherniavsky. On the power of correlated randomness in
secure computation. In Amit Sahai, editor, TCC 2013: 10th Theory of
Cryptography Conference, volume 7785 of Lecture Notes in Computer
Science, pages 600–620, Tokyo, Japan, March 3–6, 2013. Springer,
Heidelberg, Germany. 1, 2, 4, 5, 9, 10

[26] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A low latency framework for secure neural network in-
ference. In William Enck and Adrienne Porter Felt, editors, USENIX
Security 2018: 27th USENIX Security Symposium, pages 1651–1669,
Baltimore, MD, USA, August 15–17, 2018. USENIX Association. 1

[27] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT:
Super-fast and robust privacy-preserving machine learning. Cryptology
ePrint Archive, Report 2020/592, 2020. https://eprint.iacr.org/2020/592.
13

[28] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. Tetrad:
Actively secure 4pc for secure training and inference. In Proceedings
2022 Network and Distributed System Security Symposium. Internet
Society, 2022. 13

[29] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros, Frederick Jansen,
and Mayank Varia. Secure mpc for analytics as a web application. In
2016 IEEE Cybersecurity Development (SecDev), pages 73–74, 2016.
1

[30] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and
covert adversaries. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes
in Computer Science, pages 1–17, Santa Barbara, CA, USA, August 18–
22, 2013. Springer, Heidelberg, Germany. 9

[31] Yehuda Lindell and Benny Pinkas. Secure two-party computation via
cut-and-choose oblivious transfer. Journal of Cryptology, 25(4):680–
722, October 2012. 9

[32] Donghang Lu, Albert Yu, Aniket Kate, and Hemanta Maji. Polymath:
Low-latency mpc via secure polynomial evaluations and its applications.
Proceedings on Privacy Enhancing Technologies, 2022(1):396–416,
2022. 1

[33] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer
Wagh. Rabbit: Efficient comparison for secure multi-party computation.
In FC 2021: 25th International Conference on Financial Cryptography
and Data Security, Virtual, March 1–5, 2021. Springer, Heidelberg,
Germany. 1, 13

[34] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol frame-
work for machine learning. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference
on Computer and Communications Security, pages 35–52, Toronto, ON,
Canada, October 15–19, 2018. ACM Press. 1, 2, 8, 13

[35] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on
Security and Privacy, pages 19–38, San Jose, CA, USA, May 22–26,
2017. IEEE Computer Society Press. 1

14

https://eprint.iacr.org/2020/592

[36] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame.
ABY2.0: Improved mixed-protocol secure two-party computation.
Cryptology ePrint Archive, Report 2020/1225, 2020. https://eprint.iacr.
org/2020/1225. 1, 2, 9, 13

[37] Arpita Patra and Ajith Suresh. BLAZE: Blazing fast privacy-preserving
machine learning. In ISOC Network and Distributed System Security
Symposium – NDSS 2020, San Diego, CA, USA, February 23-26, 2020.
The Internet Society. 2, 8

[38] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private
set intersection based on OT extension. In Kevin Fu and Jaeyeon Jung,
editors, USENIX Security 2014: 23rd USENIX Security Symposium,
pages 797–812, San Diego, CA, USA, August 20–22, 2014. USENIX
Association. 1

[39] Theo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis R. Bach.
Ariann: Low-interaction privacy-preserving deep learning via function
secret sharing. Proceedings on Privacy Enhancing Technologies,
2022:291 – 316, 2022. 1, 13

[40] Peter Scholl, Nigel P. Smart, and Tim Wood. When it’s all just too
much: Outsourcing MPC-preprocessing. In Máire O’Neill, editor, 16th
IMA International Conference on Cryptography and Coding, volume
10655 of Lecture Notes in Computer Science, pages 77–99, Oxford,
UK, December 12–14, 2017. Springer, Heidelberg, Germany. 2, 4

[41] Nigel P. Smart and Titouan Tanguy. TaaS: Commodity MPC via triples-
as-a-service. Cryptology ePrint Archive, Report 2019/957, 2019. https:
//eprint.iacr.org/2019/957. 2, 4

[42] Raymond K. H. Tai, Jack P. K. Ma, Yongjun Zhao, and Sherman S. M.
Chow. Privacy-preserving decision trees evaluation via linear functions.
In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors,
ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Part II, volume 10493 of Lecture Notes in Computer Science,
pages 494–512, Oslo, Norway, September 11–15, 2017. Springer,
Heidelberg, Germany. 1

[43] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, and Lei Yu. Privacy-
preserving inductive learning with decision trees. In 2017 IEEE
International Congress on Big Data (BigData Congress), pages 57–64,
2017. 1

[44] Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-
party secure computation for neural network training. Proceedings on
Privacy Enhancing Technologies, 2019(3):26–49, July 2019. 1, 10

[45] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz,
Prateek Mittal, and Tal Rabin. FALCON: honest-majority maliciously
secure framework for private deep learning. CoRR, abs/2004.02229,
2020. 1, 2, 8, 9, 10, 11

[46] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In 23rd Annual Symposium on Foundations of Computer
Science, pages 160–164, Chicago, Illinois, November 3–5, 1982. IEEE
Computer Society Press. 1

[47] Qizhi Zhang, Lichun Li, Shan Yin, and Juanjuan Sun. Mpc protocol
for g-module and its application in secure compare and relu, 2021. 2,
4

APPENDIX A
SECURITY PROOF FOR GENERAL FUNCTION

We now provide the security proof for a general function
f with the form f(x) = h(g1(x1), g2(x2), . . . , gk(xk)).

Theorem 3. Our protocol securely realizes the ideal func-
tionality Ff in the presence of a PPT adversary A who can
corrupt at most one party as semi-honest.

Proof: To prove this, it suffices to prove Lemma 4 and
Lemma 3.

Lemma 3. Our protocol is secure in the presence of a PPT
adversary A who corrupts P3 as semi-honest.

Proof: Since P3 is only involved in the input-independent
offline phase, adversary A gains no information.

Lemma 4. There exists a PPT Simulator S that can simulate
the adversary A’s view in our protocol when A corrupts either
P1 or P2 such that the simulated view is indistinguishable from
the view of the real execution.

Without loss of generality, let A be a probabilistic polyno-
mial time (PPT) adversary who corrupts P1 (since P1 and P2

are symmetric). We construct a PPT simulator S that simulates
the adversary A’s view.

To simulate the offline phase, the simulator S generates
uniformly random values as entries for P1’s share of the
various function tables as well as for P1’s share of r and sends
them to A. Note that S records P1’s share of r as r′.

To simulate the online phase, S samples a uniformly
random values as [y]2 and sends it to A to simulate opening
[y = x+ r]. At the same time, S receives [y]1. S can recover
the input [x]1 of P1 by computing [x]1 = [y]1 − r′ where r′
is recorded from the precomputation step. Next, S samples
k uniformly random elements as [ã1]2, [ã2]2, . . . [ãk]2 and
records and sends them to A to simulate opening [ãi]. At the
same time, S receives [ã1]1, [ã2]1, . . . [ãk]1.

Using [ã1]1, [ã2]1, . . . , [ãk]1 and [ã1]2, [ã2]2, . . . [ãk]2, S
computes ã1 = [ã1]1 + [ã1]2, ã2 = [ã2]1 + [ã2]2, . . . ãk =
[ãk]1 + [ãk]2. S now looks at the function table for h(·) it
sent to A during the offline phase, and locates the output of
ã1, ã2, . . . ãk in the function table, labels it [s]1.

To simulate opening of [s], S first sends the input [x]1 of
P1 to the ideal functionality, and receive the output s∗. S can
then calculate [s]2 such that [s]2 = s∗− [s]1, and send it to A
to simulate opening s.

We now show that this simulation is indistinguishable from
the real protocol execution.

Since the precomputation that P1 receives in the real execu-
tion are all secret shares of values, they are all independent and
uniformly random, which has identical distribution as what S
generates for precomputation. Since r is generated uniformly
at random in the real execution, x + r is also uniformly at
random, the simulated view has identical distribution to the
real execution. Since ris are generated uniformly at random
in the real execution, each ãi is also uniformly at random, the
simulated view has identical distribution to the real execution.
We highlight the nontriviality that only one value from each
g(·) is opened, ensuring that each ri is effectively only
used once, making all ãi independent and uniformly random,
which is indistinguishable between the real execution and the
simulated view.

Since the final output [s] is a secret share, it is indistinguish-
able from a value sampled from the uniform distribution. Note
that the S is able to simulate the correct output with random
shares, which means the joint distribution of the output and
the view is identical for the real execution and the simulation.

15

https://eprint.iacr.org/2020/1225
https://eprint.iacr.org/2020/1225
https://eprint.iacr.org/2019/957
https://eprint.iacr.org/2019/957

	Introduction
	Structure of the paper

	Solution Overview
	An Illustrative Example for Secure Less-Than-Zero Computation
	Protocol Steps of SIM

	Preliminaries
	System Model
	Two-Party Secret Sharing Based MPC
	Linear Two-Party Secret Sharing
	MPC based on secret sharing

	Offline-Online Model and Secure Precomputed Function (SPF) Tables

	Formalizing and Extending SPF Compiler
	Original (Input-Hiding) SPF Compiler
	Function-Hiding SPF Compiler

	Secure Comparison Protocol using Precomputed Function Table
	Protocol Overview
	Building Blocks
	Protocol Details
	Online Phase
	Offline Phase

	Protocol Analysis
	Cost Analysis and Comparison
	Three-party Computation Protocols
	Two-Party Computation Protocols
	Offline Phase Cost

	Security Analysis

	Malicious Security
	System Model
	Offline Phase
	Online Phase
	Security Analysis

	High Level Application: Privacy-preserving Neural Network Training/Inference
	Implementation details
	Evaluation Results
	Implementation and Evaluation of the Malicious Secure Version of Our Protocol

	Generalization
	General Functions
	Secure Hamming Distance
	Secure Equal to Zero

	Going Beyond Two Online Parties

	Related Works
	Conclusion
	References
	Appendix A: Security Proof for General Function

