New Unbounded Verifiable Data Streaming for
Batch Query with Almost Optimal Overhead

Jiaojiao Wu'*2, Jianfeng Wang!'?, Xinwei Yong', Xinyi Huang®*, and Xiaofeng
Chen

1 School of Cyber Engineering, Xidian University,

Xi’an, China
{jiaojiaowujj,xwyong}@stu.xidian.edu.cn, {jfwang,xfchen}@xidian.edu.cn
2 State Key Laboratory of Cryptology, P. O. Box 5159,

Beijing, China
3 Zhengzhou Xinda Institute of Advanced Technology,

Zhengzhou, China
4 Fujian Provincial Key Laboratory of Network Security and Cryptology, College of
Computer and Cyber Security, Fujian Normal University,

Fuzhou, China
xyhuang81@gmail.com

Abstract. Verifiable Data Streaming (VDS) enables a resource-limited
client to continuously outsource data to an untrusted server in a sequen-
tial manner while supporting public integrity verification and efficient
update. However, most existing VDS schemes require the client to gen-
erate all proofs in advance and store them at the server, which leads to a
heavy computational burden on the client. In addition, all the previous
VDS schemes can perform batch query (i.e., retrieving multiple data en-
tries at once), but are subject to linear communication cost I, where [is
the number of queried data. In this paper, we first introduce a new cryp-
tographic primitive named Double-trapdoor Chameleon Vector Commit-
ment (DCVC), and then present an unbounded VDS scheme VDS; with
optimal communication cost in the random oracle model from aggregat-
able cross-commitment variant of DCVC. Furthermore, we propose, to
our best knowledge, the first unbounded VDS scheme VDS2 with optimal
communication and storage overhead in the standard model by integrat-
ing Double-trapdoor Chameleon Hash Function (DCH) and Key-Value
Commitment (KVC). Both of our schemes enjoy constant-size public key.
Finally, we demonstrate the efficiency of our two VDS schemes with a
comprehensive performance evaluation.

Keywords: Verifiable data streaming - Data integrity - Batch query -
Optimal overhead.

1 Introduction

With the rapid development of IoT, 5G and cloud computing, a growing num-
ber of devices collect continuous and never-ending data streams and tend to

2 Wu et al.

outsource massive data streams to cloud servers. While it brings in inherent ad-
vantages such as ease of maintenance, convenient access, and lower costs, data
outsourcing also results in data integrity concerns due to the untrusted cloud
servers. Traditional solutions, such as Merkle Hash Tree (MHT) and Verifiable
Database (VDB), can guarantee the integrity of the outsourced database and
support data updates. However, these approaches either require frequent up-
dates to the public verification key as data is appended or have an upper bound
on the size of the database.

Verifiable Data Streaming (VDS), initiated by Schréder and Schréoder [12],
enables a resource-limited client to outsource a (potentially unbounded) data
stream D = (dy,ds,...) to an untrusted server while supporting public integrity
verification and efficient update. In particular, the public verification key remains
unchanged as data is continuously appended to the database. However, their
VDS scheme sets a prior upper bound on the database size.

Recently, a line of research works [9,12,13,17] got rid of the upper bound
and these schemes can be categorized into two different types: tree-based un-
bounded VDS scheme [9,12,13] and signature-based unbounded VDS scheme
[9,17]. However, most practical scenarios require databases to support batch
query that retrieves multiple data entries at once. The first type of unbounded
VDS schemes [9,12,13], constructed by tree-based authentication data structures,
can perform batch query, but are subject to linear communication cost [, where
[is the number of queried data. The second type of unbounded VDS scheme
[17] significantly reduces the query communication cost by using BLS signature
and RSA accumulator. Concretely, this scheme can aggregate signatures to a
single value relying on homomorphic properties of BLS signature and generate
a constant-size non-membership witness for these signatures using a batching
technique of RSA accumulator [3]. Nevertheless, the size of the auxiliary proof
information (i.e., signature identifiers) is linear with the size of a batch query,
which cause high communication cost. In addition, most existing VDS schemes
[9,12,13,17] require that the client generates all proofs in advance and stores
them at the server for subsequent integrity verification, which leads to a heavy
computational burden on the client and huge storage overhead on the server,
respectively. To this end, A naive solution is to transfer the proof generation
from the client to the server. However, this approach may suffer from a key ex-
posure problem or even fail to support the integrity verification of the database.
Therefore, it is still challenging to design a secure and efficient unbounded VDS
scheme supporting batch queries.

Our Contributions. In this paper, we put forward two new unbounded VDS
schemes VDS; and VDS, for batch query with almost optimal overhead in ran-
dom oracle model and standard model, respectively. Both of our schemes enjoy
constant-size public key. A comprehensive comparison of our schemes with previ-
ous works is shown in Table 1. In detail, our main contributions are summarized
as follows.

e We introduce a new cryptographic primitive, named Doubled-trapdoor Cha-
meleon Vector Commitment (DCVC), which allows us to transfer the compu-

New Unbounded VDS for Batch Query with Almost Optimal Overhead 3

Table 1. Comparison with existing VDS schemes

Scheme [12] [13] CVC [9] |ACC [9]|VADS [17]| VDS: VDS,
Unbounded X v v v v v v
Standard Model v X v v X X v
Size of Public Key o(1) 0(1) 0(q?) O(u) 0(1) o(1) | o(1)
Server Storage O(m) O(n) O(gn) |O(n+4u)| O(n+u) O(n) O(1)
com | _Inl_|OClogym) | Ollogym) | Ollog,m) | 0() | _0() | o) | o
|7p| |O(1-logam)|O(I-logan)| O(l-log,n)| O(1) o(l) o(1) O(1)
Append| O(logom) | O(logyn) ot O(1) Oo(1) O(1) Oo(1)
Computation Query | O(logom) | O(logyn) | O(log,n) | O(u) o(1)* O(log,n)| O(n)
Verify | O(logoym) | O(logan) | O(log,n) O(1) O(1) O(log,n)| O(1)
Update | O(log,m) | O(logyn) |O(g-log,n)| O(1) O(1) O(log,n)| O(1)
Note: m denotes the maximum database size. n is the current database size. uw is the number of
updates. [is the number of queried data in a batch query. ¢ denotes the number of branches of a

g-ary tree. |m| is the proof size of a single query. |m,| denotes the proof size of a batch query. : In
the CVC-based scheme [9], the server is required to perform an additional proof update with O(1)
computational complexity after the client appends a data entry. I: In the recently proposed scheme
[17], the query process contains an extended Euclidean algorithm with logarithmic time complexity.

tation of proof generation from the client to the server without key exposure
to reduce client computation and server storage. Then we present an un-
bounded VDS scheme VDS, with optimal communication cost in the random
oracle model from a variant of DCVC with aggregatable cross-commitment.

e We explore a new approach to construct an efficient unbounded VDS scheme
VDS, by leveraging Double-trapdoor Chameleon Hash Function (DCH) and
Key-Value Commitment (KVC). To the best of our knowledge, our VDS,
is the first unbounded VDS scheme with optimal communication cost and
server storage in the standard model .

e We implement our schemes VDS; and VDS, and perform a comprehensive
evaluation and comparison. The results show that VDS; and VDS; are effi-
cient in terms of communication cost, storage cost, and computation cost.

1.1 Related Work

Schréder and Schroder [12] introduced Verifiable Data Streaming (VDS) and pre-
sented the first VDS scheme based on Chameleon Authentication Tree (CAT).
Their proposed scheme sets a fixed upper bound m on the database size, and
the query communication and computation are logarithmic in this upper bound
m. After that, Schréder and Simkin [13] put forward the first unbounded VDS
scheme in the random oracle model to break the upper bound. Subsequently,
Krupp et al. [9] proposed two unbounded VDS schemes in the standard model.
The first scheme is constructed on Chameleon Vector Commitment (CVC) and
a tree structure with logarithmic query communication. The second scheme is
based on bilinear-map accumulator and signature scheme with constant-size
query communication, but the query computation is linear in the number of
updates. However, all the previous VDS schemes are evaluated in a single query,
and for batch query, the query communication of these scheme is linearly increas-
ing with the number of queried data. Very recently, Wei et al. [17] presented an

4 Wu et al.

Table 2. Summary of notations

Notation Meaning
A The security parameter
negl(\) A negligible function
q The branching number of the tree
pp The public parameter
tdq, tdo The double trapdoors of DCVC
cnt The data append counter
f A pseudorandom function
C The commitment value
mi The i-th message of the vector (m1,...,my)
mr The subvector of the vector (mq,...,my)
d; The i-th data entry of data streaming
d_} The queried data entries in a batch query
I The position set of queried data entries in a batch query
|1 The number of queried data entries in a batch query
Ch The double-trapdoor chameleon hash value

unbounded VDS scheme with data integrity auditing (VADS) in the random
oracle model by using BLS signature and RSA accumulator. This scheme sig-
nificantly reduces the batch query communication, but it is still not optimal for
batch query.

In addition, other works to extend VDS, explore many practical applications,
such as integrity preservation and range query. Xu et al. [19] and Sun et al. [15]
considered privacy-preserving data integrity verification in VDS, while Chen et
al. [6] and Miao et al. [11] proposed efficient integrity preservation schemes for
data streaming. Tsai et al. [16] and Xu et al. [18] developed verifiable range query
in data streaming. Most VDS schemes and their extensions require the client to
generate all proofs in advance and store them at the server, which leads to heavy
computational and storage burdens on the client and server, respectively.

In this paper, we will explore new approaches to designing unbounded VDS
scheme for batch query with optimal query communication and server storage
in the standard model.

2 Preliminaries

In this section, we first introduce the notations used in the following (as shown
in Table 2) and briefly review the hardness assumptions and cryptography tools
used in this work.

2.1 Hardness Assumption

Definition 1 (Strong RSA Problem). Given a RSA modulus N = pq and a
random value g € Z3;, where p and q are two distinct prime number. The strong
RSA assumption holds, if for any probabilistic polynomial-time (PPT) adversary
A and a security parameter X the probability of outputting a tuple (y,e) s.t. y¢ =g

New Unbounded VDS for Batch Query with Almost Optimal Overhead 5

mod N is negligible, namely,
Pr[A(N,g) = (y,e) : y° = g mod N] < negl(A).

2.2 Shamir’s Trick

Shamir’s trick [14] is a method to compute the zy-root of g € Z%, without know-
ing the group order ¢(N), where z,y € Z with ged(z,y) = 1. Concretely, given an
z-root and a y-root of g € Z}y, i.e., g"* mod N and ¢g'/¥ mod N, one can com-
pute u, v s.t. ur +vy = 1 using the extended Euclidean algorithm and then com-

uzfvy w

pute the zy-root of g as gV/*¥ = g~ e = gvTs = (¢1/¥)%(¢*/*)" mod N. We
often denote performing a Shamir’s trick as g'/#¥ <— ShamirTrick(¢*/*, g'/¥, x, y).

2.3 Double-trapdoor Chameleon Hash Function

A Double-trapdoor Chameleon Hash Function (DCH) [7] is a probabilistic hash
function with collision resistance, which allows one holding hash trapdoors to find
collisions. In particular, a DCH has double hash trapdoors including the long-
term and one-time trapdoors, and the long-term trapdoor is never exposed. The
DCH in [7] consists of the following algorithms DCH = (DCHKGen, DCHT Gen,
DCH, DCHCol):

e DCHKGen(1*): It takes a security parameters A as input, chooses at random
a A\-bit safe prime p s.t. ¢ def % is also a prime, picks @ €g Z; and g € Z
with prime order ¢, and computes ¥ = ¢* mod p. Finally, it outputs the
public parameters pp = (p,q,g) and a long-term hash/trapdoor pair (Y, x).
The message space is M = Z,.

e DCHTGen(pp): It chooses at random k € Ly, computes K = ¢* mod p, and
outputs a one-time hash/trapdoor key pair (K, k).

e DCHp (Y, K, m,r): It takes a message m, a random element r € Z, and
the long-term/one-time public hash keys (Y, K), and outputs a hash value
DCh(m,r) = (KY)™g" mod p.

e DCHColyp(x, k,m,r,m’): It takes a message m, a random element r, another
message m’ and the long-term/one-time trapdoors (z, k), and finally outputs
a collision ' = r 4+ (k+ z)(m —m’) mod ¢, s.t. DCh(m,r) = DCh(m/,r").

2.4 Key-Value Commitment

A Key-Value Commitment (KVC) [1] is a cryptographic primitive, which allows
one to commit key-value tuples {(ki,v2), (k2,v2),...} and to later open the
commitment at any key, and supports adding new key-value tuples and updating
the old value to a new one at an existing key. The commitment size and the proof
size is independent of the number of the tuples °. The KVC in [1] consists of the
following algorithms KVC = (KGen, KAppend, KUpdate, KOpen, KVer):

® In this work, we simply consider that the keys are integers {1,2,...}.

6 Wu et al.

e KGen(1*,1): It takes a security parameter A and an integer [€ N as in-
put, and chooses two A/2-bit primes p; and ps at random, sets N = p1po,
picks g € Z}, determines a deterministic collision resistant function PrimeGen
that maps integers to [+ 1-bit primes, initials the commitment C <+ (1, g)
and the auxiliary information aux < (). Finally, it outputs (pp,C,aux) =
((N, g, PrimeGen), (1, g),). The message space is M = {0, 1}.

e KAppend,,(C,i,m;,aux): It takes C'=(C1, C2), a new message m;, its posi-
tion ¢ and the auxiliary information aux, updates C + (C1% - C5™* mod N,
(3% mod N) where e; < PrimeGen(i), and appends (i,m;) into aux, i.e.,
aux < aux U {(¢,m;)}. Finally, it outputs the updated C' and aux.

e KUpdate,,(C,i,m;, m;,aux): It takes C' = (C1,C2), the old message m;, a
new message m,, the position 7 and the auxiliary information aux, updates
C+(Cy- Y/Cy™ ™™ mod N, Cy) where e; < PrimeGen(i), and replaces the
i-th message m; with m} in aux. Finally, it outputs the updated C and aux.

e KOpen,,(i,m;,aux): It takes the position i and aux = (my,...,m,), com-

|J S mod N, and
finally outputs a proof m; := (S;, 4;) that m; is the i-th committed message.

o KVery,(C,1,m;, m;): It takes C' = (Cq,C3), the message m;, its proof m; =
(Si, 4;) and its position ¢, and checks if

putes S; « gn;l:W#i ¢ mod N and A; < %

SieiZCQ mod N A Cl ZSimi Afl mod N

where e; < PrimeGen(i). If true, it outputs 1, else outputs 0.

Batch Opening: Next, we show that the above KVC supports batch openings
(also called subvector openings [3,4,10]).

e KBatchOpen, (1,7, aux): It takes an ordered position set I = {i1,..., i1} C
[n] of the message vector 1y = (my,,...,m;,) and the auxiliary infor-

mation aux = (mi,ma,...,m,), computes Sy < gH?:LJ'&I ¢ and A «
e H;'Z:1 jer S;nj mod N, and finally outputs a proof m; := (Sr, Ar) that

my is the I-subvector of the committed message.
o KBatchVery,(C, I, 7y, mr): It takes C'=(Ch, C2), the message subvector iy,
its proof m; = (S5, Ar) and its position set I, and checks if

Sr’=Cy mod N A Cy=]]8™ Ay mod N
i€l
where ey < [[,c;e; and S; <= S\ for every i € I. If true, it outputs 1,
else outputs 0.

2.5 Verifiable Data Streaming

A Verifiable Data Streaming (VDS) [9] is a protocol between a client and a
server, which consists of the following algorithms VDS = (Setup, Append, Query,
Verify, Update).

New Unbounded VDS for Batch Query with Almost Optimal Overhead 7

e Setup(1*): It takes a security parameter as input and generates a key pair
(pk, sk). It outputs the public verification key pk to the server and the secret
key sk to the client.

e Append(sk,d): It takes the secret key sk and a data entry d as inputs. Then
the client sends an append request to the server and the server stores this
new data entry d in DB. Finally, it may output an updated secret key sk’
to the client, but the public verification key does not change.

e Query(pk,DB,4): It takes the public verification key pk, the database DB
and a queried index i. Finally, it outputs the i-th data entry (i,d) along
with a proof m; to the client.

e Verify(pk,i,d,m;): It takes the public verification key pk and the query re-
sponse (4,d, ;) as inputs. If d is the i-th data entry in DB according to ;,
it outputs d, otherwise it outputs L.

e Update(pk, sk, DB, i,d’): It runs between the server and the client. Finally,
the server updates the i-th data entry d with a new data entry d’ and the
client updates the public verification key to pk’ as well as the secret key to
sk’.

Security. Informally, the security of VDS schemes ensures that an attacker
should not be able to modify stored data entries, append further data entries
to the database, and pass the verification with an old data. We describe the
security of VDS scheme by the following experiment VDSsechs()\).

Setup: The challenger runs (sk, pk) < Setup(1*), sets up an empty database
DB, and sends the public verification key pk to the adversary A.

Challenge: When the adversary A appends a new data entry d, the chal-
lenger runs (sk’,i,m;)<Append(sk,d) to append d to its database, and then
returns (4, 7;) to the adversary. When the adversary A updates the i-th data en-
try giving a new data entry d’, the challenger runs Update(pk, DB, sk, i,d’) with
the adversary A and then returns (é,7;) to the adversary. The challenger will
always keep the latest public key pk* and an ordered sequence of the database
Q= {(Ldl)a) (q(/\)7dq()\))}

Guess: The adversary A outputs a guess (i*,d*,7*), and the experiment
outputs 1 if d* < Verify(pk*,i*,d*, n*), d* # L and (¢*,d*) ¢ Q.

Definition 2 (VDS Security). A VDS scheme is secure if for all A € N and
any PPT adversary A, its advantage Pr[VDSsec'® (\) =1] <negl()\) is negligible.

3 Double-trapdoor Chameleon Vector Commitment

In this section, we first introduce a new cryptographic primitive, Double-trapdoor
Chameleon Vector Commitment (DCVC). Then we present a DCVC construc-
tion based on RSA and a variant of it with cross-commitment aggregation.

3.1 Definition of DCVC

DCVC is an enhancement of Chameleon Vector Commitment (CVC) [9]. Both
of them allow one to commit a vector (mq, ..., m,) and to open the commitment
at any position, and one holding trapdoors can find a collision without changing

8 Wu et al.

the commitment. In particular, CVC provides a single trapdoor and may suffer
from key exposure [2], while DCVC enjoys double trapdoors, master trapdoor
and specific trapdoor, which may be key-exposure free. A DCVC scheme consists
of the following algorithms:

e DCGen(1*,¢q): Tt takes a security parameter A and the size of a vector g,
then outputs a public parameter pp, a master trapdoor td; and a specific
trapdoor tds.

e DCCompy(my, ..., my): It takes g ordered message vector (m,...,m,), and
outputs a commitment C' and the auxiliary information aux.

e DCOpen,,(i,m,aux): It takes the index 4, the corresponding message m, and
aux, outputs a proof 7 that m is the i-th message in the committed vector.

o DCVerp,(C, i, m,m): It takes the commitment C, the i-th message m and
the corresponding proof m, and outputs 1 iff 7 is a valid proof that C was
generated for (mq,...,my) s.t. m; = m.

e DCColy, (i, m, m’, td1, tds, aux): It takes the trapdoors td; and tds, the index
1, a message m, another message m’, and aux, then outputs an updated aux’
after finding a collision s.t. (C,aux’) is indistinguishable from the output of
CCompp(ma,...,m',...,my).

e DCUpdate,,(C,i,m,m'): It takes the old commitment C, the old message
m, a new message m’, and the corresponding index ¢, then outputs a new
commitment C’ and an update information U.

e DCProofUpdate,,(C, m;,j,U): It takes the commitment C, the old proof 7;
at the position j, and the update information U, then outputs an updated
proof 7} that is valid with regard to the new commitment C”.

Definition 3 (Concise). A DCVC scheme is concise if the commitment size
and the proof size are independent of the vector size q.

Definition 4 (Correctness). A DCVC scheme is correct if for all A € N, any
vector size q, a vector (ma,...,mq) and any index i € {1,...,q}, we have

(pp, td1, td2) +~ DCGen(1*, q)
Pr | DCVeryp(C, 4, m,7) =1 : (C,aux) + DCCompp(m,...,mq) | = 1.
7 < DCOpen,, (i, m, aux)

Definition 5 (Position Binding). A DCVC scheme is position-binding if for
any PPT adversary A, the probability generating two valid proofs for different
messages (m,m') at the same position i is negligible. Formally, for all A € N

and any PPT adversary A, the advantage of A winning the below experiment
Pr[PosBdgh ™V (\) = 1] < negl()\) is negligible.

Definition 6 (Indistinguishable Collisions). A DCVC scheme has indistin-
guishable collisions if for all \eéN and any stateful PPT adversary A=(Ap, A1),
its advantage of winning the below experiment Pr[Collnd3™VC(\) = 1] < negl()\)
1s negligible.

New Unbounded VDS for Batch Query with Almost Optimal Overhead 9

Experiment PosBdg)“~V()\) Experiment Collnd%*¢()\)

(pp, td1, td2) < DCGen(1*, q) (pp, td1, tda) < DCGen(1*, q)

(C,i,m,m',m, ') « AP (pp) b+ {0,1}

store (C, i) queried to DCCol in Q ((m1,...,myg), (i,m})) + Ao(pp,tdi, tda)

ifm#£m A(C)i) ¢ Q (Co,aux™) < DCComgyp(ma, ..., M4, ..., mq)
A DCVerp, (C, i, m,) auxo + DCColyp(Co, i, m;i, m;, tdy, tda, aux™)
A DCVerpo(C 3, m/, 7') (C1,aux1) < DCCompp((ma, ..., mi, ..., mq)
output 1 b < A1(Cp, auxy)

else output 0 if b=1b' output 1 else output 0

3.2 DCVC based on RSA

We present a DCVC scheme based on RSA, which exquisitely combines RSA-
based vector commitment [5] with chameleon hash without key exposure [2,8].
Furthermore, we develop a variant with cross-commitment aggregation. The de-
tails of our scheme DCVC is described as follows:

e DCGen(1%,1,q): It takes a security parameter A and two integer [, ¢ € N as in-
puts, chooses two A/2-bit primes p; and py at random, sets N = p;pa, picks
g € Z) randomly, determines a deterministic collision-resistant function
PrimeGen that maps integers to primes with length [4+ 1 bits. Then it com-
putes ¢ primes ey, . .., e, that are relatively prime to ¢(N) = (p1 —1)(p2—1),
where e; = PrimeGen(i) for i = 1,...,¢q. Finally, it outputs the public pa-
rameter pp = (N, g,PrimeGen), the master trapdoor td; = {p1,p2}, and
the specific trapdoor tds = {d;}i=1,... n, where d; is computed s.t. e;d; = 1
mod #(N). The message space is M = {0, 1}!.

o DCCompy(my,...,my): It takes a message vector (mi,...,m4) as input,
chooses r < Z}, randomly, and computes S; <+ gl_I_?:l,#,;ej for i=1,...,q.
Finally, it outputs C'<S7"*.. .S;nqrngzl ¢ mod N and aux<—(my,...,mg;7).

e DCOpen,,, (i, m,aux): It computes S;/e"’ + g®aniiar for each j € [q] \ {3},

and outputs 7 + ?:1,;‘# S;-nj cpIli=152:% mod N.

o DCVerpo(C,i,m,m): If C =8, - 7% mod N output 1, else output 0.

e DCColy,(C,i,m, m/,tdg, aux): It computes r’ < 7 - (g%)™~™" and outputs
aux’ < (ma,...,m'.. mg;r’).

e DCUpdate,,(C,i,m,m'): It computes C" <— C-S;" ™™ mod N, then outputs
C"and U = (i,m,m’).

e DCProofUpdate, (C,m;, j,U): If j # i, it computes 7} < m; - (S;" —myt/e;
mod N, else 7} < ;.

X3

Cross-Commitment Aggregation. Now we show that our scheme DCVC is
aggregatable across multiple commitments, which means that different openings
from different commitments (e.g., m; x, and 7 x, at the position k; and k; of the
commitments C; and Cj, respectively) can be merged into a single concise open-
ing 7. Moreover, this aggregated proof can be further aggregated, namely cross-
commitment incremental aggregation. Assume that 7 is already an aggregated
proof of I — 1 commitments {Cj, kj, m; x,,Tjk; }jen—1]- The cross-commitment
aggregation and verification algorithms are shown as follows:

10 Wu et al.

[DCAggCrosspp({k‘j}je[l,u, ﬁ', (Cl, k‘l, mi K, 71'171%)):
Case 1: If ky & {k;}jen—1), compute

prc = 7 (mp) 4/ mod N and py = 7K/ - ()" mod N,

and then generate an aggregated proof m <— ShamirTrick(px, p1, €x, ek,) [14].
Case 2: If kye{k;} cn—1), compute 7 < 7 - ﬂl,kl“e’“l/e’(.
Note that t; « H(l, Cy, kl,m”ﬂ) and e Hje[l—l] €k, -

e DCAggVer,,({C}, kj, mjk, }jep, 7): If the following equation holds output 1,
else output 0. Note that t; < H(j,Cj, kj,mjx,).

tym; Hsen <k

H Cjtj = H Sy PR peedCew) mod N.
J

Jel] Jel

Concise. It is obvious that the commitment size and the proof size are inde-
pendent of the vector size q.

Correctness. The correctness of DCVC is straightforward and the correctness of
cross-commitment aggregation comes from the correctness of DCVC and Shamir’s
trick [14]. More details are shown in Appendix A.

Security. Our scheme DCVC is secure. The proofs of position binding, indistin-
guishable collisions and key exposure freeness are detailed in Appendix B.

4 Verifiable Data Streaming from DCVC

In this section, we propose our first scheme VDS; with optimal query communi-
cation from our scheme DCVC, and show it is secure in the random model.

4.1 High-level Description

Our first scheme VDS; follows the same framework as Krupp et al. CVC-based
VDS scheme [9] which combines a g-ary tree with the cryptographic primitive
CVC. However, CVC-based VDS scheme [9] requires the client to generate all
proofs in advance and store them at the server, which leads to a heavy compu-
tational burden on the client and a large storage overhead on the server respec-
tively. To reduce the client computation and server storage, our intuition is to
transfer the proof generation from the client to the server. Unfortunately, this
approach from our intuition may suffer from an inherent key exposure problem
due to the CVC construction [2]. In addition, the query communication for a
single query and a batch query is 2log,n — 1 and [- (2log, n — 1) respectively,
where ¢ is the maximum number of g-ary tree children nodes, n is the size of
the database, and [is the number of queried data in a batch query. To opti-
mize query communication, a perfect solution is aggregating all CVC proofs on
the authentication path to a constant-size value. However, this does not work
because CVC does not support cross-commitment aggregation. Thus, our main

New Unbounded VDS for Batch Query with Almost Optimal Overhead 11

Append new data d, Update data d, to d, , 7y
c=[ofc]e] ———— c=[oe]e] ————— ¢/=[o]c]c]

Ty 3
c=EIe[o] c-[E[0To] c=[E[G[C] c.~[E[o]0] c=[dlefe) c=[@[o]o]
731 ey
c,=[d;[0]0] c;=[d[o]o] c.=[q]0]0] c/=[a]6]0] c,=[d]o]0]
Aggeregate proofs Aggeregate proofs
single query 02 12 e T T gy query o2 e e
¢ ;¢ W heeeweommine ooogld, g ¢ c, lSEresecommimens,

Fig. 1. Overview of VDS;

task is to design a secure VDS scheme with optimal query communication and
better client computation and server storage efficiency.

To this end, we combine a g-ary tree and an aggregatable cross-commitment
variant of our proposed DCVC without key exposure. Concretely, we first build a
g-ary tree, as shown in Fig. 1, where every node is a DCVC of a g+ 1-size vector.
The first element of each vector is the data entry, and the ¢ remaining elements
are the node’s ¢ children (or 0 when the children do not exist). The root node
of the tree is initialized to a DCVC of a zero vector and a new node is inserted
into the tree by finding a collision in its parent node. Note that the nodes are
appended to the tree from left to right and the tree grows from top to bottom.
When appending a data entry, the client appends a node corresponding to this
data entry into the tree. When querying a data entry, the server generates proofs
of data along the authentication path without requiring the client to generate
proofs in advance. Furthermore, we aggregate proofs on the authentication path
into a constant-size value by using the feature of cross-commitment aggregation
of DCVC. Thus we get an unbounded VDS scheme in the random model with
optimal query communication O(1) and better server storage O(n).

4.2 Our Construction

Our scheme VDS; consists of five algorithms VDS; = (Setup, Append, Query,
Verify, Update), which is based on our scheme DCVC and a g-ary tree. For sake
of readability, we briefly describe the construction of the g-ary tree. In a g-ary
tree, every node is a DCVC of a ¢+ 1-size vector. The first element of each vector
is the data entry, and the ¢ remaining elements are g children nodes (or 0 when
children nodes do not exist). Particularly, the root node of the tree is initialized
to a DCVC of a zero vector and a new node is appended into the tree by finding
a collision in its parent node. Note that the nodes are appended to the tree from
left to right and the tree grows from top to bottom. According to the structure
of g-ary tree, we have three functions as following:

e parent(i) = Liglj is the index of the parent of the node i.

e #child(i) = ((— 1) mod ¢q) + 2 is the position that the node ¢ is inserted

into its parent.

12 Wu et al.

Algorithm 1 VDS from DCVC (VDS;)

Setup(1*,1,q) > Client Verify(pk,i,d, 7, C) > Client
1: (pp,tdy, tda) «+ DCGen(lA, l,g+1) l: ee;,8«1 > e1 « PrimeGen(1)
2: ent « 0, k « {0,1}* 2: L + level(i) »

3: 1o + f(k,0) . L g tidg mir; i1 %)

4: (Co,auxg) + DCCompy (0, ..., 0;570) i 5:15 51 > S g I
5: sk + (td1, tdo, cnt 15 20 = (0,0, 0570) 50 h parent(s)
6+ ok 1’0 2, 6: for h € [L — 1,0] do

: Pk < (pp, Co) T: ¢« #child(a)
7: return (sk, pk) ot
It e
Append(pk, sk, d) > Client 8 S« 8-S > Se < g J=LiFe I
- L o 9: if gcd(e,ec) =1 then
%: i+ ent + 1, 11’ <« parent(i), j < #child(i) 10: e e ec > e. + PrimeGen(c)
. cent < cnt + 11: end if
3: vy <+ f(k,d) 12: a<+b
4: (Cy,aux;) + DCCompy (0, ..., 0;7;) 13: b <« parent(b)
>aux; = (0,0,...,0;7;) 14: end for
5 auxj < DCColy (Cy, 1,0, d,/td17td27auxl) , 15: if C - Cp'0 = S - 7° then return d
) > aux; = (d,0,...,0;7;) 16: else return L
6: rp « f(k,p) 17: end if
7: (Cp,auxp) + DCComyy(0, ..., 057p)
, P auxy = (0,..50,...,057mp) Update(pk, DB, i,d") > Client & Server
8: aux;, += DCColpp (Cp, 5,0, Ci, td1, tda, aux;,) —_—
> aux, = (0,...,Cy,...,0;7,) Client:
. ; i 1: send (i,d’) to server
9: return (i,d, C;, 7}, rp)
Query(pk, DB,) > Server Server:
1: Pos < 0.C « 1 2: (i,d, 7) + Query(pk, DB, i)

2: L + level(i) Client:

3: 7,1 + DCOpen,, (1, d, aux;) 3: d/L <+ Verify(pk, i, d, #)

4: 7+ Ti,1 .

5: Pos « Pos U {1} C’lze'nt & Servfzr:) :

6: a< i 4: if d - Verify(pk, i, d, 7) then ,
7+ b+ parent(i) 5. (C,U;) < DCUpdate,, (C;,1,d,d’)

8: for h € [L — 1,0] do 6: a<+ i
9: ¢ + #child(a) T b < parent(3)

10: Tp,e < DCOpen,, (¢, Ca, auxy) 8: for h € [L -1, 0] do
11: 7+ DCAggCross,, (Pos,m,(Cy,c,Ca,me.c)) 1901. e a#[é]chlld(al)3CU ; P
122 C«C-C,te > tq « H(a) : (Cp, Us) pdatey, (Co, ¢, Ca, Cg)
13: Pos «— Pos U {c} 11: a<b
14: @b 12: b < parent(b)

15: b < parent(b) %i end for
16: end for 1 : end if , ,

17: return (i,d, w, C) 5: return (Cp, ..., Cp)

e level(i) = [log,((¢—1)(i+1)+1)—1] is the level that the node 7 is appended
in the tree.

e Setup(1*,1,q): The client generates (pp,td;,tds) +~ DCGen(1*,1,q + 1), ini-
tializes a counter cnt < 0, and picks a random key k < {0,1}* for a secure
pseudorandom function f. Then the client computes ro < f(k,0) and the
tree root (Cop,auxg) <~ DCComy,(0, ..., 0;79). Finally, it outputs the secret
and public keys sk < (tdy,tds, ent, k) and pk < (pp, Co).

e Append(pk, sk,d): When appending a new data entry d, the client first parses
sk=(td1,tds, cnt, k) and obtains the index of the new data entry i< cnt+1,
the index of its parent node p < parent(i), the position j < #child(7) that
this data entry will be inserted into its parent, and cnt < cnt + 1. Next,

New Unbounded VDS for Batch Query with Almost Optimal Overhead 13

Algorithm 2 Batch Query and Verify

BatchQuery(pk, DB, I) > Server 23: return (I, d}, w, C)
1: Pos < 0,C « 1 BatchVerify(pk, I, dr, 7, C) > Client
% for[i/ieé g\?el(i) 1: e (—.61,5 —1 > ey < PrimeGen(1)
4: m;,1 + DCOpen,,(1,d;, auz;) 2 for i € I do)
5: if Pos = () then 3: L; + level(2) at1
6: T T 4: S §.8,tidi > S — gnjzl,j;ﬁl €j
7: else 5: a<+i
8: 7 < DCAggCross,, (Pos,,(Ci,1,di,mi,1)) 6: b < parent(i)
9: end if .)
10: Pos +— Pos U {1} g: for Chﬁ %gﬁ.?j(jf
11: a <+ 1 ' q+1
12: b+ parent(d) 9: S 55,00 b5, glli=1,c
13: for h € [L; —1,0] do 10: if gcd(e,e.) = 1 then
14: ¢ < #child(a) 11: e+ e-ec > ec < PrimeGen(c)
15: Ty,c DCOpean(c, Cq, auxyp) 12: end if
16: 7+ DCAggCross,,, (Pos,,(Cp,c,Ca, T) 13: a<b
17: C+ C-C,le >ty < H(a) 143 b < parent(b)
18: p 15: end for
: os < Pos U {c} 16
19: @b . end for
20: b < parent(b) 17: if ¢ - (Coto)/l = 5. 7° then return d;
21 end for 18: else return L
22: end for 19: end if
the client computes a new node (Cj, aux;) < DCCompy,(0,. . .,0;7;) where
r; < f(k,i). To insert a new data entry d into the new node C;, the client
finds a collision by computing aux] < DCCol,,(C;, 1,0, d, tdq, td2, aux;). To
append the new node C; in the tree, the client recomputes the parent node
(Cp,aux,) < DCComy,(0,...,0;7,) where 1, « f(k,p) and runs aux;, «
DCColpp(Cy, 4,0, Ci, td1, tde, aux,) to insert C; as the j-th element of C,.
Finally, the client sends (i,d, C;, r},7,) to the server.
e Query(pk,DB,i): When querying the i-th data entry, the server first obtains
the level L < level(7) of the node ¢, and then generates an aggregated proof
(m, C) along the authentication path by running algorithm (see Algorithm 1
for details), finally sends the data and its proof (i,d,w, C) to the client.
o Verify(pk,i,d, m, C): The verifier (including the client) parses pk = (pp, Co),

verifies (i,d, 7, C) (see Algorithm 1). If v = 1 output d, otherwise output L.

e Update(pk, DB, i,d’): The client and the server perform the update protocol.

1. To update the data entry d to d’ with the index 4, the client first re-
trieves the data entry d. Concretely, the client sends the index ¢ and
a new data entry d’ to the server. Then the server and the client run
Query(pk, DB, i)—(i,d, m,C) and Verify(pk,i,d, 7, C')—d/ L respectively.

2. When the query is validated, the client determines the level L < level(7)
of the updated node and then computes a new root C{; as shown in
Algorithm 1. Finally, it updates the public key pk = (pp, C}).

3. The server writes the new data entry d’ into DB and runs the same
algorithm to update all commitments (C7,...,C}) along the path.

Batch Query: Now, we show that VDS, supports batch query and verifying.

14 Wu et al.

e BatchQuery(pk, DB, I'): When performing query on the index set I = {i1,...,%}
sent from the client, the server obtains the level L; < level(i) of the node
i € I and then generates an aggregated proof by running Algorithm 2. Fi-
nally, the server sends the data and its proof (I, cf[, m,C) to the client.

e BatchVerify(pk, I, dr,m, C): The verifier (anyone including the client) parses
pk = (pp, Cp) and verifies the proof as Algorithm 2. If the equation holds
then output aTI, otherwise output L.

4.3 Security Analysis

Theorem 1 (Secure VDS). If f is a pseudorandom function and DCVC is
position binding, then our scheme VDS; is secure.

Proof. The proof of the theorem proceeds through hybrid games [9]. It starts
with the real game VDSsecxDSl (M) and ends with a hybrid game where the pseu-
dorandom function f is replaced by a random function, then these two games
are computationally indistinguishable.

Game Gq: This is the real VDS security game VDSsec\Jf‘DSl (A), so we have
Pr[VDSsec’>%' (\) = 1] = Pr[Gy = 1].

Game G;p: This game is identical to Gy except the pseudorandom function
f is replaced with a random function. By assuming f is pseudorandom, we
immediately get that Pr[Gy = 1] — Pr[G; = 1] = negl()\).

In this game, we proceed by the contradiction. Assume there exists an ad-
versary 4 that can win with non-negligible advantage in the game G;. Then we
can construct an efficient reduction B that uses A to break the security of the
DCVC scheme. The algorithm B proceeds in two case.

Let (i*,d*,) be the tuple returned by the adversary at end of the game. If
the game G; outputs 1, then it must hold that Verify(pk,i*, d*, #;) = d*, d* # L
and d* # d, where d is the value with index i* currently stored in the database.
The honest authentication path of (i*,d) computed by B is 7. Observe that
both authentication paths 7 and 7 must end up at the public root and they
must deviate at some node in the path from ¢* up to the root. Then, we define
the event Diffdata that the two authentication path deviate exactly at ¢*, which
means Cj« = C}.. Obviously, Diffdata means that the adversary may return a
valid authentication path that deviates from the correct path at the internal
node. Thus, we have

Pr[G; = 1] = Pr[G; = 1 A Diffdata] + Pr[G; = 1 A Diffdata].

We show that Pr[G; = 1ADiffdata] and Pr[G; = 1ADiffdata] are negligible in two
cases Diffdata and Diffdata respectively if our DCVC scheme is position-binding.

Case Diffdata: In this case, the authentication path 7 returned by the adversary
deviates from the correct authentication path 7 at ¢*, which means Cj« = C}..
The reduction B takes as input pp, computes the root (Cy, auzg) - DCComyp,
(0,...,0;79) by sampling a randomness, and sets the counter cnt < 0. Then, it
sets pk + (pp, Cp) and runs A(pk) by simulating the game G;.
To answer the append queries of A, e.g., appending a data entry d, B runs
Append(pk, sk, d) algorithm except that pseudorandom values are replaced by

New Unbounded VDS for Batch Query with Almost Optimal Overhead 15

random values by sampling. Note that B does not know the trapdoors of DCVC,
but it can directly compute the new node (C;, auz;) < DCComy, (d,...,0;7;)
for the data entry d instead of performing collision at the first position of the
vector and use its collision oracle to append new nodes into the tree only when
necessary. Note that B never uses its collision oracle at the position 1 in Case
Diffdata.

To answer the update queries of A, e.g., updating the data entry d at position
i to a new entry d’, B simply runs Update algorithm. Note that this not require
the trapdoors of DCVC.

The adversary outputs the tuple (i*,d*,#) at the end of the game. B com-
putes the honest proof 7 for the data entry d at the position ¢*, parses @ =
(75, Ch,...) and T = (m,Cy,...), and outputs (Cy=,1,d,d*, m, 7). We
know that C;« = C% when Diffdata happens, and 7). must pass the verifica-
tion correctly for d* since A wins in this game. Therefore, one can see that the
tuple (Ci«, 1,d, d*, m;«, 7%) breaks the position binding of DCVC. Thus,

Pr[G; = 1 A Diffdata] < Pr[PosBdgB“V“(\) = 1] = negl(\).

Case Diffdata: In this case, the authentication path 7 returned by the adversary
deviates from the correct authentication path 7 at the internal node.

The reduction B takes as input pp. It then chooses the tree depth [= A to
set an upper limit on the number of data entry and builds an [size DCVC tree
from bottom to up, where in each DCVC every position which does not point to
a child (especially the first position in the internal node or all the positions in
the leaf node) is set to 0. Let Cy be the root. Then, B sets the counter ent + 0,
sets pk « (pp, Co), and runs A(pk) by simulating the game Gj.

To answer the append queries of A, e.g., appending a data entry d, B obtains
the index i < cnt 4+ 1 for the new data entry, sets cnt < cnt + 1, and inserts the
new data entry into the tree by finding a collision in the position 1 of node n;
using collision oracle. Note that B never uses its collision oracle at the position
j > 1in Case Diffdata. If the adversary A exceeds the upper limit of the number
of data entries, B stops the adversary and starts again by setting [< [- A.

To answer the update queries of A, e.g., updating the data entry d at position
7 to a new entry d’, B simply runs Update algorithm.

At the end of the game the adversary returns the tuple (i*,d*, 7). B parses
7= (...,mf,Cy,m§,C;) and finds the largest k such that C} = Cj, that is,
the authentication path 7 is still equal to the actual tree from C} to the root.
B computes the honest authentication path # = (..., w1, C, 7, Cp) from i* to
the root if 4* is in the tree (i.e., i* does not exceed the upper limit), otherwise
computes one from the deepest ancestor of i* to the root.

If Cf is the deepest node in the honest path © computed by B, the j-th
element committed in Cy by B is 0. Thus, B can compute an honest proof 7y
that 0 is the j-th element committed in C}, and output (Cy, 5,0, Cjy, Tk, T5)-

If C} is not the deepest node in 7, there exists a node C; = Cj and a
proof 7 that Cyyq is the j-th element committed in Cj. Thus, B outputs
(Ck, Jy Crt1, Cpyrs Ty).

16 Wu et al.

Key-value commitment Chameleon hash
C= ¢ f Ch

- Single quer: '
C= L Ch gle query d,

C= r, Ch Cc=
‘c= [d[d,Jd] r ch

Append ...m Batch query d’,d,
C= d1 dz d3 s Ch

ate C= |d,|d,|d,]|d
=

r, Ch’ Ton

Append

Append

Append

Fig. 2. Overview of VDS2

Therefore, the tuple (Cy, 4,0, C; 1, Tk, 7%) o (Ck, §, Cry1, Cf .y, Tk, ;) breaks
the position binding of DCVC. Thus,

Pr[G, = 1 A Diffdata] < Pr[PosBdgB“/“(\) = 1] = negl(\).

In conclusion, the overall advantage of the adversary winning the game is
negligible because it is negligible in both cases. Thus, our scheme VDS; is secure.

5 Verifiable Data Streaming from KVC

In this section, we propose our second scheme VDS, with optimal query com-
munication and server storage overhead in the standard model from KVC and
DCH. In the following, we will describe this scheme in detail.

5.1 High-level Description

Our second scheme VDS, explores a new approach to construct the unbounded
VDS scheme with optimal query communication and server storage overhead in
the standard model. Our main idea is to use KVC to guarantee the verifiabil-
ity of the database in the standard model, and use DCH to make the public
verification key unchanged when data is appended continuously. Concretely, as
shown in Fig.2, the client first initialize a key-value commitment C' for an empty
database and a DCH hash value Ch of a pair (0,#), and make this hash value
Ch serve as the public verification key. When appending a new data entry d;,
the client appends this data entry to the key-value commitment by updating the
commitment C' and finding a collision (C,r;) s.t. DCh(0,#) = DCh(C, ;). Natu-
rally, when updating a data entry d; to dj, the client updates the commitment
and the public verification key. For single query (or batch query), the server
can generate a constant-size proof that d; (or dy) is the i-th (or I-subvector)
committed data entry in the database.

5.2 Our Construction

In the following, we give a brief description of our scheme VDSo = (Setup, Append,
Query, Verify, Update), the details of which are shown in Algorithm 3.

New Unbounded VDS for Batch Query with Almost Optimal Overhead 17

e Setup(1*,1): The client generates (pp;,C) + KGen(1*,1) and (ppy,Y,)
DCHKGen(1?*), sets the counter cnt < 0. Then the client generates the one-
time hash/trapdoor (k, l;:) + DCHTGen(pp,), picks a random number # <
{0,1}*, and computes the hash value Ch < DCHpp, (Y, K,0,7). Finally,
the algorithm outputs the secret key sk < (ent,z,#,C) and the public key
pk < (pp1, P2, Y, Ch).

e Append(sk,d): When appending a new data entry d, the client first parse
sk = (cnt, x,7,C'), obtains the index i < cnt + 1 of the new data entry d,
updates the commitment C' < KAppendppl (C,i,d), determines a one-time
hash/trapdoor key pair (K, k)<« DCHTGen(pp,), finds a collision (C,r) s.t.
DCh(C,r) = DCh(0,#) by running r < DCHColp,, (¢, k,0,7,C), and then
increases the counter cnt<—cnt + 1. Finally, the client sends (¢,d, C, K,) to
the server and the server stores (i,d) in DB as well as updates (C, K, r).

e Query(pk, DB,): When performing query on the index i sent from the client,
the server computes a proof m; < KOpenppl (i,d,DB) that d is i-th data entry
in DB, and sends the data and its proofs (z,d, 7;) and (C, K,) to the client.

o Verify(pk,i,d, m;, C, K,r): The verifier (including the client) parses pk «
(PPy; PP2, Y, Ch), and then verify the correctness of (C, K, r) and (i,d, ;) by
checking Ch= DCHp,, (Y,K,C,r) and running the algorithm KVer,, (Cid,m;).
If both are true, then output d, otherwise output L.

e Update(pk, sk, DB, i, d’): The update protocol is run by the client and server.

1. To update the data entry d to d’ with the index 4, the client first retrieves
d with the index ¢ from the server. Concretely, the client sends the index
+ and the new data entry d’ to the server. Then the server and the client
runs Query(pk,DB, i) — (i,d,m;) and Verify(pk,i,d,m;,C,K,r) — d/L
respectively.

2. When the query is validated, the client first updates the commitment C’
by replacing d to d’. Then the client choose a randomness 7 «+ {0, 1}*,
produces the new hash value Ch’, generates a one-time hash/trapdoor
pair (K’, k'), and finds a collision ’ for the updated commitment C".
Finally, the client updates the secret and public keys sk < (ent, z,#',C)
and pk < (ppy, ppy, Y, Ch') and sends (C’, K',r') to the server.

3. The server writes the new data d’ into DB and updates (C, K,r) to
(C",K',r").

Batch Query: We show that VDS, supports batch query and verifying.

e BatchQuery(pk, DB, I): The client sends the query inde{set I to the server.
The server computes a proof m; <+ KBatchOpen,, (I,d;,DB) for the data
entry set d;, and sends the proof (I,d,m;) and (C, K,r) to the client.

. BatchVerify(pk,I,zi_},m,C’, K,r): The verifier (including the client) parses
pk < (ppy, pPps, Y, Ch), and then verifies v + Ch . DCHpp, (Y, K, C, 1) A
KBatchVerp, (C,I,dr,nr). If v = 1, then output dj, otherwise output L.

18 Wu et al.

Algorithm 3 VDS from KVC (VDS,)

Setup(1*,1)

: (ppy, C) « KGen(1*,1)

: (ppy, Y, x) < DCHKGen(1*)
cnt <— 0

. (K, k) < DCHTGen(pp,)
7+ {0,1}*

Ch « DCHyp, (Y, K, 0,7)
sk + (ent,z, 7, C)

: pk < (ppy,PPs, Y, Ch)

. return (sk, pk)

> Client

LR D TBwW =

Append(sk, d) > Client

Li+—cnt+1

D C o+ KAppendppl (C,i,4d)

. (K, k) < DCHTGen(pp,)

1 7 <= DCHColyp, (2, K, 0,7, C)
cent<+—cent+1

. return (i,d,C, K, r)

DU B W

Query(pk, DB, i) > Server
1 m « KOpen,,, (i,d, DB)

2: return ((i,d, n;), (C, K, 1))

Verify(pk,i,d, m;,C, K, r) > Client

1: v« Ch £ DCHpp, (Y, K, C, 1)
2: A KVerp, (Cyi, d, ;)
3: if v = 0 then return L

4: else return d
5: end if

Update(pk, sk, DB, i,d’) > Client & Server

Client:

1: send (i,d’) to server

Server:

2: (i,d, m;) < Query(pk, DB, 1)
Client:

3: v « Verify(pk,i,d, 7;, C, K, r)
Client:

4: if v = 0 then return L

5: else

6: C’ KUpdate,,,, (C,,d, d’)
(K', k") < DCHTGen(pp,)
7« {0,1}*

: Ch’ « DCHyp, (Y, K',0,7)
10: (K', k") + DCHTGen(pp,)
11: r’ DCHCOIPPQ(m,k',O,W,C')
12: return (C’,#,Ch/, K’ ,r")
13: end if

© %y

BatchQuery(pk, DB, I) > Server
1: 7r « KBatchOpen,,,,, (1,dr,DB)

2: return (I,dr, wr)

BatchVerify(pk, I, d, nr, C, K,) > Client

1: v« ChZLDCHy,, (Y, K, C, 1)
A KBatchVery,, (C, I,d7,7r)
¢ if v = 0 then return L

. else return dy
. end if

TUBR O D

5.3 Security Analysis

Theorem 2 (Secure VDS). If KVC is a key-binding key-value commitment
and DCH is a collision-resistant double-trapdoor chameleon hash, then our VDSq

scheme is secure.

Proof. The proof of the theorem is conducted by executing the game VDSsecxDSZ (N).
The adversary A may win the game in two ways, either by finding a collision
in the double-trapdoor chameleon hash, or by breaking the key-binding of the
key-value commitment. We will show that the advantage of the adversary in

both case is negligible.

The proof is proceeded by contradiction. Let ((i*,d*,n*), (C*, K*,r*)) is
the tuple returned by the adversary A at end of the game VDSsecX‘DSZ(A). If
the adversary wins in this game, recall that Ch = DCH,,, (Y, K*,C*,r*), 1 «+

KVery, (C*,i*,d*,7*), d* # L and (i*

,d*) ¢ DB. Consider the correct tuple

((i*,d,m),(C,K,r)) with index ¢*. Then we define DCHcol as the event that
C* # C such (C*, K*,r*) # (C, K, r). Obviously, we have

Pr[VDSsec\JleSZ (N =1]

=1
= Pr[VDSsechlD&(/\) =1 A chcol] + Pr[VDSsechSQ()\) = 1 A chcol].

New Unbounded VDS for Batch Query with Almost Optimal Overhead 19

Case chcol: In this case, Pr[VDSseciDSZ()\) = 1 A chcol] is negligible under
the assumption that the DCH scheme DCH is collision-resistant. To this end,
we construct an efficient reduction Bpcy that uses A to break the collision-
resistance of the double-trapdoor chameleon hash scheme DCH. The reduction
Bpch proceeds as follows.

On input a hash public parameter pp,, a hash key Y, and a hash value Ch, the
reduction Bpcn computes (pp;, C) + KGen(1*,1) and sets the counter cnt < 0.
Then, the reduction Bpcy runs A(pk) on the public key pk < (ppy, pps, Y, Ch)
by simulating the game VDSsecP%(\). Note that Bpcn does not know the full
secret key sk, i.e., it does not know the trapdoors of DCH, therefore it has to
access to a collision oracle.

To answer the append queries of A, e.g., appending a data entry d, Bpcu
sets 1 < cnt + 1, computes the commitment C' <+ KAppendppl(C,i,d) and the
proof m; + KOpenppl (i,d,DB), sends C' to its collision oracle, and forwards the
response (K, r) together with the opening proof 7; of (i,d) to the adversary A.

To answer the update queries of A, e.g., updating the data entry d at position
7 to a new entry d’, Bpcy runs Update algorithm by accessing to its collision
oracle, which is similar to the append queries.

The adversary outputs the tuple ((3*,d*,7*), (C*, K*,r*)) at the end of the
game. Bpcy computes the honest proof ((i*,d, 7), (C, K,r)) for the data entry d
at the position ¢* after the T' queries, and outputs (C, C*,r, r*).

Observe that Bpcy perfectly simulates the view of A as in the game VDSsecﬂDS (N).
We know that (C,C*) # (r,r*) when chcol happens. Since A wins in this game
Ch=DCH,, (Y, K*,C*,r*) = DCHyy, (Y, K, C,). Therefore, one can see that

Pr[VDSsec%2(\) = 1 A cheol] < Pr[Hashcol2cH (A) = 1] = negl()\).

Bocn

Case chcol: In this case, Pr[VDSsec\ADSZ(/\) = 1 A chcol] is negligible under the
assumption that the KVC scheme KVC is key-binding. To this end, we construct
an efficient reduction Bgyc that uses A to break the key-binding of the key-value
commitment scheme KVC. The reduction Bkyc proceeds as follows.

On input the public parameter pp; and the initialed commitment C, the
reduction Bgkyc computes (pp,,Y,z) + DCHKGen(1*) and a chameleon hash
value Ch for (0,7) where # < {0,1}*, and sets the counter cnt < 0. Then, the
reduction Bey, runs A(pk) on the public key pk < (ppy, pps, Y, Ch) by simulating
the game VDSseciDSz()\).

To answer the append queries of A, e.g., appending a data entry d, Bkyc sets
i <= cnt + 1, computes the commitment C' < KAppend, (C,i,d) and the proof
m; < KOpen,, (i,d, DB), and finds a collision (C,r) with respect to the hash
value Ch by using the chameleon-hash trapdoors. The reduction Bgkyc sends
((i,d,m;), (C, K,7)) to the adversary A.

To answer the update queries of A, e.g., updating the data entry d at position
1 to a new entry d’, Bkyc runs Update algorithm, which is similar to the append
queries.

20 Wu et al.

The adversary outputs the tuple ((i*,d*,7*), (C*, K*,r*)) at the end of the
game. Byyc computes the honest proof ((i*,d, 7), (C, K, r)) for the data entry d
at the position i* after the T' queries, and outputs (i,d, d*, m, 7*).

Observe that Bkyc perfectly simulates the view of A as in the game VDSsec\JflDSZ (N).
We know that (C,C*) = (r,r*) when chcol happens. Since A wins in this game,
KVery, (C,i*,d*, m*) = KVery, (C,i*,d,) = 1. Therefore, one can see that

Pr[VDSsec’?%?(\) = 1 A cheol] < Pr[Kedegngcc()\) = 1] = negl(\).
Therefore, the overall advantage of the adversary winning the game is negli-
gible. Thus, our scheme VDS, is secure.

6 Performance Evaluation

In this section, we report a comprehensive evaluation of our proposed two schemes
VDS; and VDSs. In the following, we first provide the description of experiment
environment and parameter setting, and then discuss the comparison on commu-
nication, storage and time overhead between our two schemes with CVC/ACC-
based VDS schemes [9], and VADS scheme [17].

6.1 Implementation Setup

We implement in Python 5 VDS schemes including our two schemes VDS; (Sec-
tion 4) and VDS (Section 5), two VDS schemes in [9], and scheme [17]. We use
PBC-0.5.14 library with a type A elliptic curve for pairing-based and RSA-based
cryptographic primitives, and SHA-256 as hash function. We deploy our exper-
iments on the machine with Intel(R) Core(TM) i9-11900K @ 3.50 GHz RAM
128GB and Ubuntu 20.04 LTS.

In the following experiment, we first determine the security parameter to
128 bits. To evaluate the time cost of five schemes, we set the database size to
n = 4096, 2048, 1024, the branching number of the tree to ¢ = 32, 64, 128,
256, the block size (i.e., the size of a data entry) to 256 bits, 512 bits and
1024bits, the number of queried data in batch query to I = 10, 50, 100. To
completely quantify the query communication and server storage overhead, we
perform separate experiments by setting the database size to n = 210, 212, 214,
216 218 920 and the batch query size to I = 10, 50, 100, 500, 1000, 2000.

6.2 Evaluation

Time Cost. We evaluate the time cost of five schemes in terms of the append
time, the query time, the verify time, the update time, the batch query time,
and the batch verify time. The experiment results show that, as detailed in Fig.
3, our two schemes are efficient but not optimal. First, we can observe from Fig.
3(a) and 3(d) that our scheme VDS; has better append and update time cost
than CVC-based VDS scheme [9] which is also based on a tree structure. This
result reveals that transferring proof generation from the client to the server not

New Unbounded VDS for Batch Query with Almost Optimal Overhead 21

Block size
- 256 bits
- 512 bits
1024 bits

Block size
- 256 bits
512 bits
1024 bits

Verify time cost (ms)

Append time cost (ms)
Query time cost (ms)

10

cve acc VADS vos; s, s, ove Acc VADS. s, s,

DS, VDS, VDS, Vs,
@=32 (@=64) (a=128) (q=256)

(a) Append time cost (b) Query time cost (¢) Verify time cost

Batch query time cost (ms)

Update time cost (ms)
Batch verify time cost (ms)

100 100
cve acc VADS vos; s, VDS, VDS, VDS, VDS, VDS VDS, VDS, VDS, VDS, VDS, VDS VDS,
(=10) (=50 (=100 (=10} (=50) (=100) (=10) (=50 (=100) (=10) (=50) (=100)

(d) Update time cost (e) Batch query time cost (f) Batch verify time cost

Fig. 3. Time cost comparison

only optimizes server storage but also improves client and server computation
efficiency. Then we review Table 1 in Section 1 and further observe Fig. 3(a),
3(c), and 3(d). Although our scheme VDS has constant client-side append time,
verify time and update time independent of the size of the database, the block
size plays a significant role in the computational overhead. The reason is that
in our scheme VDS, the time cost is dominated by the length of the prime
determined by the block size. In addition, we show the time cost of single query,
batch query, and batch verify in Fig. 3(b), 3(e), and 3(f). The query time cost
of our two schemes is determined by server-side proof computation. According
to Fig. 3(b) and 3(e), both single query and batch query time increase with the
block size. Specially, Fig. 3(e) illustrates that the cost of batch query of VDS, is
independent of the number of queried data [, while that of VDS; increases linearly
in I. Fig. 3(f) shows that the cost of batch verify is dominated by block size
and batch size [. Generally speaking, it is necessary to sacrifice computational
efficiency to achieve better query communication and server storage overhead as
well as stronger security. Therefore, our results also encourage us to improve the
overall performance of our schemes in the future.

Communication Overhead. The communication overhead is mainly incurred
by retrieving a data entry or multiple data entries in a single query or batch
query. As shown in Fig. 4(a) and 4(b), both our two schemes VDS; and VDS,
reach the optimal communication overhead O(1) in single query and batch query
and are superior to all existing scheme. Particularly, the query communication
of VDS; and VDS; consists of only two elements and three elements respectively.
Storage Overhead. The server storage overhead in a VDS scheme mainly stems
from proofs guaranteeing the data integrity. The server storage of most existing

22 Wu et al.

e
- AcC - acc

§5a2

tht

1000 - VDS,
— VDS,

\,

Communication overhead (bit)

Communication overhead (bit)

Server storage overhead (KB)

e

——

.

2710 2712 2720 0

27 6 0
The size of database (n) The number of queried data in a batch query (1)

2710 2712 2718 2720

2714 2716
The size of database (n)

(a) Single query (b) Batch query

Fig. 4. Communication overhead comparison Fig. 5. Storage comparison

VDS schemes is at least O(n), where n is the database size. The ideal server
storage is constant O(1). Our scheme VDS, reduces the storage overhead to O(n),
and even our scheme VDSs achieves the optimal server storage overhead O(1)
by eliminating the proof storage and maintaining only constant-size auxiliary
information (consisting of just three elements). As shown in Fig. 5, the server
storage of our proposed scheme VDS, outperforms that of the other four schemes.

7 Conclusion

In this paper, we explore new approaches to build unbounded VDS schemes for
batch query with optimal query communication and server storage. To this end,
we first introduce a new cryptographic primitive DCVC. Then, we propose an
unbounded VDS scheme VDS; in the random oracle model from an aggregatable
cross-commitment variant of our DCVC, which has optimal communication cost
O(1) and better server storage O(n). Further, we present the first unbounded
VDS scheme VDS, with optimal communication overhead O(1) and storage over-
head O(1) in the standard model. Both of our schemes enjoy constant-size public
key. Compared with the state-of-the-art [9,17], our two schemes reach optimal
communication and storage overhead, however, the computational performance
is not optimal, so we leave constructing an overall optimal VDS scheme for batch
query to be the future work.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (Nos. 6196020601, 62072357, 62121001), the Key Research
and Development Program of Shaanxi (No. 2022KWZ-01), the Fundamental Re-
search Funds for the Central Universities (Nos. YJS2212, JB211503, ZDRC2204),
and the Open Foundation of Henan Key Laboratory of Cyberspace Situation
Awareness (No. HNTS2022012).

References

1. Agrawal, S., Raghuraman, S.: Kvac: Key-value commitments for blockchains and
beyond. In: ASTACRYPT 2020, Daejeon, South Korea, December 7-11, 2020.
LNCS, vol. 12493, pp. 839-869. Springer (2020)

10.

11.

12.

13.

14.

15.

16.

17.

New Unbounded VDS for Batch Query with Almost Optimal Overhead 23

. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.

In: SCN 2004, Amalfi, Italy, September 8-10, 2004. LNCS, vol. 3352, pp. 165-179.
Springer (2004)

Boneh, D., Biinz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to iops and stateless blockchains. In: CRYPTO 2019, Santa Barbara, CA,
USA, August 18-22, 2019. LNCS, vol. 11692, pp. 561-586. Springer (2019)
Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally
aggregatable vector commitments and applications to verifiable decentralized stor-
age. In: ASTACRYPT 2020, Daejeon, South Korea, December 7-11, 2020. LNCS,
vol. 12492, pp. 3-35. Springer (2020)

Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC 2013,
Nara, Japan, February 26 - March 1, 2013. LNCS, vol. 7778, pp. 55—72. Springer
(2013)

Chen, C.;, Wu, H., Wang, L., Yu, C.: Practical integrity preservation for data
streaming in cloud-assisted healthcare sensor systems. Computer Networks 129,
472-480 (2017)

Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic on-line/off-line signatures
without key exposure. In: ACNS 2007, Zhuhai, China, June 5-8, 2007. LNCS,
vol. 4521, pp. 18-30. Springer (2007)

Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of
knowledge secure under concurrent man-in-the-middle attacks. In: CRYPTO 2004,
Santa Barbara, California, USA, August 15-19, 2004. LNCS, vol. 3152, pp. 220—
236. Springer (2004)

Krupp, J., Schréder, D., Simkin, M., Fiore, D., Ateniese, G., Niirnberger, S.: Nearly
optimal verifiable data streaming. In: PKC 2016, Taipei, Taiwan, March 6-9, 2016.
LNCS, vol. 9614, pp. 417-445. Springer (2016)

Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: CRYPTO 2019, Santa Barbara, CA, USA, August 18-22, 2019.
LNCS, vol. 11692, pp. 530-560. Springer (2019)

Miao, M., Wei, J., Wu, J., Li, K., Susilo, W.: Verifiable data streaming with effi-
cient update for intelligent automation systems. International Journal of Intelligent
Systems 37(2), 1322-1338 (2022)

Schroder, D., Schroder, H.: Verifiable data streaming. In: CCS 2012, Raleigh, NC,
USA, October 16-18, 2012. pp. 953-964 (2012)

Schroder, D., Simkin, M.: Veristream - A framework for verifiable data streaming.
In: FC 2015, San Juan, Puerto Rico, January 26-30, 2015. pp. 548-566. Springer
(2015)

Shamir, A.: On the generation of cryptographically strong pseudorandom se-
quences. ACM Transactions on Computer Systems 1(1), 38-44 (1983)

Sun, Y., Liu, Q., Chen, X., Du, X.: An adaptive authenticated data structure with
privacy-preserving for big data stream in cloud. IEEE Transactions on Information
Forensics and Security 15, 3295-3310 (2020)

Tsai, 1., Yu, C., Yokota, H., Kuo, S.: VENUS: verifiable range query in data stream-
ing. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications
Workshops, INFOCOM Workshops 2018, Honolulu, HI, USA, April 15-19, 2018.
pp. 160-165. IEEE (2018)

Wei, J., Tian, G., Shen, J., Chen, X., Susilo, W.: Optimal verifiable data streaming
protocol with data auditing. In: ESORICS 2021, Darmstadt, Germany, October 4-
8, 2021. LNCS, vol. 12973, pp. 296-312. Springer (2021)

24 Wu et al.

18. Xu, J., Meng, Q., Wu, J., Zheng, J.X., Zhang, X., Sharma, S.: Efficient and
lightweight data streaming authentication in industrial control and automation
systems. IEEE Transactions on Industrial Informatics 17(6), 42794287 (2021)

19. Xu, J., Wei, L., Wu, W., Wang, A., Zhang, Y., Zhou, F.: Privacy-preserving data
integrity verification by using lightweight streaming authenticated data structures
for healthcare cyber-physical system. Future Generation Computer Systems 108,
1287-1296 (2020)

A Correctness of DCVC

Correctness. The correctness of our scheme DCVC can be verified as follows.

€4

q
Syt =S (IT s -rH3=m'#ieJ‘>

j=1,j#i

q
=g I sy erlli=ee
1 J

=1
q
= H S]m’J . rH?:l €j
j=1
=C mod N

The correctness after updates also holds. Similarly, C’ = S;™7 - 7r§.ej for the

commitment ¢’ = C' - S;”/_m and proofs 7} = m; - K/ S;"l_m after the message
m at position ¢ is updated to m’.

Cross-Commitment Aggregation Correctness. The correctness of cross-
commitment aggregation follows from the correctness of DCVC and Shamir’s
trick.

— Casel: When ki ¢ {k}hjep—n, sed(en,, - ren) = 1 and i —

ged(eky ,--ner;)

Hje[l] €kj = €K€kl.

prc = i+ (g) 1Mo = (765 () 19) S mod N

pu= FORL () = (R ()) mod N

New Unbounded VDS for Batch Query with Almost Optimal Overhead 25

t;
H S Al lewe

tim ‘ ek
H Skjjm"””f .S,?lm“‘l . (ShamirTrick(PmPl,eK,ekz))njem o

Jel-1]
Stjmjakj Stlmz,kl ~ex tie, 1/exer, e ek
IT s s (G ()
Jel-1]
Limg,k; Umig, ae tie
- H Skj 'Skz SR (T,)M
Jel-1]
= H Stjm]]C . GEK . St’m“w (ﬂ.l’kl)tuﬂkl
jE[l-1]
IT ¢v-an
Jel-1]
= H Cjtj mod N
Jell]

e e

ged(eky - ,ekl) B

— Case2: When k; € {k;j}jcp—1), ged(er,, ..., ex) = ex, and

Hje[lfl] €k; = €K-

t;
||Sm]k Ijen—nyex;

JE
tim; kj t m “] €k

= II s s R T

JEl-1]

JE[I-1]

H Stgmjk . HEK Stlml kg (ﬂ_l’k‘l)tlekl

JE[l-1]
= I ¢%-an

Jel-1]

= H Cjtj mod N

B Security Proof of DCVC

Lemma 1 (Position Binding). If the strong RSA assumption holds, the Double-
Trapdoor Chameleon Vector Commitment scheme is position binding.

Proof. Suppose there exist an efficient adversary A who wins the game PosBdg
by producing two valid proofs to two different messages at the same position.
We build a simulator B that breaks the strong RSA assumption. The simulator

26 Wu et al.

B takes a strong RSA problem instance (N, z) as input. The simulator B will
use A to compute a value (y,e) s.t. z=y° mod N as follows.

First, B selects a random i < {1,...,¢q} as a guess for the index ¢ on which
A will break the position binding.

Next, B sets e; = PrimeGen(i) and g = z. For j = 1,..., ¢, # i the rest of the
public parameters and trapdoors is computed as described by DCGen algorithm.

The adversary A is supposed to output (C,m,m’, j,m, 7’) such that m # m/
and both 7, 7" are valid proofs at position j. If j # 7, the simulator B aborts the
simulation. Otherwise B proceeds as follows. Indeed,

SMert =8 e = T = (n)
Let A =m —m’ and A =7’ /m, the equation above can be rewritten as
g Thwces = (A)e.
Clearly, the absolute value of A is smaller than [bits and ey, ..., e4 are (I41)-bit
primes, it follows that ged(A H#i ej,e;) = 1. We can get an e;-root of g by use

the Shamir’s trick. Concretely, we can compute two integers o and S such that
aA Hj# ej + Be; = 1 using the extended Euclidean algorithm. Thus,

g =g lzieather = (gAllzicaye . ghes = (poyei . (gF)er = (A~gP)er.

Therefore, if A succeeds in the game PosBdg with probability €, then B
successfully breaks the Strong RSA assumption with probability €/q.

Lemma 2 (Indistinguishable Collisions). The Double-Trapdoor Chameleon
Vector Commitment scheme has indistinguishable collisions.

Proof. According to the definition of indistinguishable collisions, any PPT ad-
versary cannot distinguish between a random value and the output of DCCol.
Concretely, in the game Collnd23“V“()\) it holds:

(1) The case of collision finding:

Co= S ... S ... Sarliz e
0 =01 -0 -9y 0 s

K3
*_ .
auz™ = (My,...,My, ..., Mg;To),

and
’ q
. my m, m /H': €;
Co—Sl Sz Sq argt =
_ / o
auzg = (M1, ..., M5, ..., Mg;T(),
!’
my;—m.;
where r{ = rq - te, ‘
(2) The case of no collision finding:

’ q
m m} mg, 11i=1 €
Cr=81" .87 S =,

K3

/)
auxy = (M1, ..., M5, ..., Mg;T1).

New Unbounded VDS for Batch Query with Almost Optimal Overhead 27

The auzy and auz; consist of all messages and r{, and 71 respectively. Since
7o is a uniformaly random element in Z,, 7{ is also a uniformaly random element
in Z,. Thus, r{, and r; are both uniformly random element in Z,. Therefore, the
probability of any adversary winning the game Collndacvc()\) is exactly 1/2.

Lemma 3 (Key Exposure Freeness). The Double-Trapdoor Chameleon Vec-
tor Commitment scheme based on RSA is key exposure freeness.

Proof. Given a collision (m1,...,m;,...,mg;r) and (mq,...,m}, ... ,mg;1r"), we
can get
m; e; m/ re; di\m;—m/ __ /I
St = 8™ = (¢g™) i=7r'/r
From the equation above, the information of g% may be recovered. However, it
is impossible for anyone to compute the trapdoor d; from g%. Therefore, our

scheme DCVC based on RSA is key exposure freeness.

	New Unbounded Verifiable Data Streaming for Batch Query with Almost Optimal Overhead

