
Oblivious Extractors and Improved Security
in Biometric-based Authentication Systems

Ivan De Oliveira Nunes

Rochester Institute of Technology

Rochester, NY, USA

Peter Rindal

Visa Research

Palo Alto, CA, USA

Maliheh Shirvanian

Visa Research

Palo Alto, CA, USA

ABSTRACT

We study the problem of biometric-based authentication with tem-

plate privacy. Typical schemes addressing this problem, such as

Fuzzy Vaults (FV) and Fuzzy Extractors (FE), allow a server, aka
Authenticator, to store “random looking” Helper Data (HD) instead
of biometric templates in clear.HD hides information about the cor-

responding biometric while still enabling secure biometric-based

authentication. Even though these schemes reduce the risk of stor-

ing biometric data, their correspondent authentication procedures

typically require sending the HD (stored by the Authenticator) to a
client who claims a given identity. The premise here is that only the

identity owner – i.e., the person whose biometric was sampled to

originally generate theHD– is able to provide the same biometric to

reconstruct the proper cryptographic key from HD. As a side effect,
the ability to freely retrieveHD, by simply claiming a given identity,

allows invested adversaries to perform offline statistical attacks (a

biometric analog for dictionary attacks on hashed passwords) or

re-usability attacks (if the FE scheme is not reusable) on the HD to

eventually recover the user’s biometric.

In this work we develop Oblivious Extractors: a new construction

that allows an Authenticator to authenticate a user without requir-

ing neither the user to send a biometric to the Authenticator, nor
the server to send theHD to the client. Oblivious Extractors provide

concrete security advantages for biometric-based authentication

systems. From the perspective of secure storage, an oblivious extrac-

tor is (provably) as secure as its non-oblivious fuzzy extractor coun-

terpart. In addition, it enhances security against aforementioned

statistical and re-usability attacks. To demonstrate the construc-

tion’s practicality, we implement and evaluate a biometric-based

authentication prototype using Oblivious Extractors.

KEYWORDS

Biometrics, Authentication, Fuzzy Extractors, Fuzzy Vault

1 INTRODUCTION

Biometric-based authentication systems have grown in popular-

ity especially due to their ease of use and potential for increased

security. In contrast with other traditional modes/factors of au-

thentication, such as passwords/PINs (“something you know”) and

physical authentication tokens (“something you have”), biometrics

do not require additional burden (e.g., to memorize a password or

carry an authentication token around) on the users. Biometrics are

a reasonably unique part of the user (“something you are”) and

therefore their usage for authentication is convenient.

Despite its tangible advantages, the use of biometrics for authen-

tication also introduces unique security challenges. The storage of

stable biometrics (stable refers to not changing much through the

life-span of an individual – e.g., fingerprints, iris scans) also repre-

sent a privacy and security risk. In contrast with passwords/PINs or

authentication tokens, stable biometrics cannot be changed. There-

fore, leakage of biometric templates is a serious threat which un-

fortunately has already happened in large scale [1, 2]. In addition,

typical measures used to protect the confidentiality of password-

s/PINs, such as salted hashing, are not applicable to biometrics.

This is because biometric samples are always slightly different from

each other, due to noise and imperfections in the biometric sen-

sor hardware and sensing process. Consequently, even with small

noises, cryptographic hashes applied to biometrics result is com-

pletely different digests, making the matching of hashed templates

infeasible.

Fuzzy Extractors (FE) [3] are cryptographic constructions that
allow provably secure biometric storage and matching of noisy sam-

ples, thus enabling secure biometric-based authentication with bio-

metric template confidentiality (we overview a concrete construc-

tion for a Fuzzy Extractor in Section 2.3). In a nutshell, an FE embeds

a reference Biometric Template (BT) and a cryptographic key (K)
into random looking helper data (HD). Given that BT has sufficient

entropy, then computation of K from HD is intractable. However,

during authentication, if one is able to provide BT′ such that BT′ is
“close enough” (within some configurable distance threshold) to BT,
BT′ can be used in conjunction with HD to reconstruct K , i.e., the
same cryptographic key chosen during HD’s generation. This prop-
erty, in turn, allows a client and a server to agree upon a common

secret if and only if the client is able to provide the same biometric

registered to the server during user enrollment. Figure 1 depicts a

typical user authentication procedure utilizing FE-generated HD.

User/client

BT Sensor
Authenticator

HD
Secret K

BT
HD

Chall(K)

BT + HD K
Resp(K)

Figure 1: Typical authentication using FE

As shown in Figure 1, a user who wishes to authenticate starts by

claiming an identity (e.g., a user ID). Authenticator then sends back

to the user theHD corresponding to this identity. To reconstruct the

authentication key (K) from HD, the user provides a new sample

of its own biometric. If the matching succeeds, K is reconstructed

and can be used in a standard challenge-response authentication

protocol. By authenticating in this way, the user’sBT is never visible
to the Authenticator.

We argue that this authentication approach has an intrinsic

problem: anyone is able to retrieve HD by simply claiming an

identity. The ability to retrieve HD allows invested attackers to

perform offline attacks on HD to recover K and/or BT, e.g., [4,
5]. These attacks are analogous to a password-server sending the

hashed password to a client which in turn would allow them to

mount an offline dictionary attack.

Another possible attack is based on the lack re-usability of several

practical FE schemes [6–9]. If an FE is not reusable, anyone able to

obtain two (or more) instances of the scheme, i.e, HD1 and HD2,

generated using the same template BT, is able to reconstruct BT in

clear. In this case, an attacker can simply claim the user’s identity at

two different service providers, Authenticator1 and Authenticator2,
to learn BT.

Considering these problems, in this work we propose a construc-

tion for Oblivious Extractors (OEs). OEs enjoy the same security

guarantees as typical fuzzy extractors with respect to secure stor-

age of biometric templates. However, the HD generation algorithm

is constructed such that the corresponding authentication phase

does not require the Authenticator to send the HD to the client nor

the client to send the BT to the Authenticator. In such a setting,

offline statistical attacks are not possible and online attacks can be

throttled by having Authenticator to limit the maximum number

of authentication attempts per user per time interval. Conversely,

re-usability attacks are only possible if two or more enterprise

databases (that store two or more HD for the same user) are si-

multaneously breached, given that the HD is no longer revealed

during authentication. As it will become clear in Section 2.3, generic

secure 2-party computation techniques (e.g., garbled circuits) are

too heavyweight for authentication using FE. Instead, we propose a
protocol, specific to FE-based authentication, based on cheaper and

widely used primitives, namely oblivious programmable PRFs [10]

and polynomial secret-sharing [11]. In summary we make the fol-

lowing contributions:

• We define a primitive called Oblivious Extractor (OE) along
with a corresponding definition for its ideal functionality

FOE.
• We present an OE construction and analyze it, showing that

it fulfills FOE. In our construction, security of the HD to be

persistently stored by the Authenticator is equivalent to that
of a standard (non-oblivious) fuzzy extractor construction. In

addition, our OE construction does not reveal any informa-

tion about HD to passively corrupt clients. Against actively

malicious clients – that deviate from the OE protocol speci-

fication – we show that leakage about HD is minimal and,

whenever it happens, adversarial behavior on the client’s

part can be detected by theAuthenticatorwith high probabil-
ity. Upon detection,Authenticator can take furthermeasures,

e.g., reporting and blacklisting the malicious client.

• We implement an OE-based biometric authentication sys-

tem using human fingerprints. We evaluate our prototype

considering computation and communication requirements.

Furthermore, we show that our scheme does not affect the

accuracy of the underlying biometric matching.

1.1 Design Principles

In addition to the principal goal of providing better security via

oblivious evaluation of the authentication function, our construc-

tion and system are designed with a set of secondary goals in mind.

We believe that, by attaining this goals, our construction will have

better usability and deployability, in addition to increased security:

(1) Biometric agnostic: While some FE constructions work

for specific distance functions (these are used to compare

the features extracted from the biometrics), our scheme can

be used with any distance function. Compatibility with any

distance function makes the scheme flexible and applicable

to different types of biometrics, as long as the their features

can be encoded into a metric space. This encoding has been

demonstrated for several popular types of biometric [12–14]

with high matching accuracy.

(2) No trusted hardware requirements: Several commercial

biometric-based authentication systems, especially those de-

ployed on smart-phones (e.g. FIDO [15]), rely on secure Hard-

ware to perform the biometric matching. In these systems,

the reference BT is stored in clear by the secure Hardware

module and the matching is performed also in clear during

authentication. The assumption is that the secure Hardware

can not be breached and that its manufacturer can be trusted

not to violate the user’s privacy. We emphasize that, in a

setting where this assumption is acceptable, our scheme can

be used seamlessly as an additional layer of security. Addi-

tionally, hardware-based approaches do not scale to settings

with multiple users and multiple authentication entry points,

such as enterprise settings (see below). In these settings our

construction might be especially applicable.

(3) Stateless authentication terminals: Ideally, the system

should not require that users always use the same (or a

restricted set of) device(s) to authenticate. Consider, for ex-

ample, the setting where Authenticator is a company that

uses biometric-based authentication to grant physical access

to its buildings and the users are the employees. Users must

be able to authenticate from different physical entry points.

This requires authentication terminals (i.e, the sensor devices

that sample the biometric during authentication) to be state-

less. Otherwise, only the terminal storing the authentication

meta-data would be able to authenticate the corresponding

user.

2 PRELIMINARIES

This section overviews the building-blocks used in this paper and

introduces corresponding notation.

2.1 Biometric Template Matching

A Biometric Template (BT) is composed of features identifying

the individual. In biometric matching applications (e.g., biometric-

based authentication), first a BT is sampled and stored. This initial

process is referred to as enrollment. Later, when a matching is

required, the same feature extraction procedure is applied to collect

a second BT′. This new BT′ is compared to the one stored and,

if their similarity exceeds a pre-defined threshold, the matching

2

succeeds. We represent a BT corresponding to a user as a vector:

BT = (𝑏1, ..., 𝑏𝑚) ∈ D𝑚 (1)

where 𝑏1, ..., 𝑏𝑚 ∈ D are data points in some set D representing

details of𝑈 ’s biometric. For instance, in fingerprints, each 𝑏𝑖 ∈ BT
typically represents the location and orientation of one of the fin-

gerprint’sminutiae.Minutiae, in turn, are regions in the fingerprint

image in which fingerprint lines merge and/or split. In turn, each

minutiae point is encoded as:

𝑏𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖) , (2)

where, D = Z3, 𝑥𝑖 , 𝑦𝑖 ∈ Z are Cartesian coordinates and 𝜃𝑖 ∈ Z is
the angle representing the orientation of the minutiae 𝑏𝑖 . Similar

encoding techniques can be used for other biometric modalities [12–

14], such as iris scans and faces. We note that other representations

are possible, for example, BT could be an embedding output by an

appropriately trained neural network.

Fuzzy Vaults (FV) and more generally Fuzzy Extractors (FE) are
cryptographic schemes that use an input BT to generate Helper

Data (HD). HD encodes a secret 𝑘 . It is hard to recover the secret 𝑘

or BT from HD, unless prompted with BT′ close/similar enough to

the original BT used to generate the HD. It then follows that even

if the HD is leaked or made public, the BT is also hard to recover.

Section 2.3 overviews a concrete example of such a construction

and discusses its shortcoming against offline attacks.

2.2 Shamir’s Secret Sharing

Shamir’s 𝐾-out-of-𝑁 secret sharing [11] allows a dealer to split a

secret in 𝑁 shares such that subsets of at least 𝐾 such shares enable

recovering the original secret. Given a secret 𝑋 , [𝑋] 𝑗 denotes the
𝑗-th secret share of 𝑋 . Also, denote generation of 𝑁 shares of 𝑋 by:

{[𝑋]1, ..., [𝑋]𝑁 } ← 𝑋 . (3)

Conversely, denote reconstruction of secret 𝑋 from 𝐾 shares by:

𝑋 ← {[𝑋]1, ..., [𝑋]𝐾 } . (4)

Such a scheme is implemented by selecting a polynomial (defined

over a finite field) of degree 𝐾 − 1, i.e,:

𝑃𝑋 (𝑥) =
(𝐾−1)∑︁
𝑖=0

𝑎𝑖 × 𝑥𝑖 , (5)

where 𝑎0 = 𝑋 (the secret) and all other 𝑎𝑖 are random numbers in

the field. Each share [𝑋] is a point in 𝑃𝑋 , i.e, (𝑠, 𝑃𝑋 (𝑠)) for some

𝑠 . With 𝑁 or more shares one can interpolate 𝑃𝑋 (𝑥) (i.e., solving
a linear system of equations) and find 𝑎0 = 𝑋 . Less than 𝑁 shares

reveal no information about secret 𝑋 . Notably, shares (𝑠, 𝑃𝑋 (𝑠))
where 𝑠 is chosen as a random number are indistinguishable from

a point (𝑟𝑥 , 𝑟𝑦) where both 𝑟𝑥 and 𝑟𝑦 are chosen randomly.

2.3 Fuzzy Vault Scheme

A Fuzzy Vault (FV) [16] is a practical construction for a Fuzzy

Extractor (FE– defined in [17])
1
. It is designed to work with BTs

that are represented as unordered sets of data points as shown

earlier, in Equation 1. The scheme has two components:

1
We note, however, that the original fuzzy vault scheme [16] was proposed before the

formalization of the concept of a fuzzy extractor in [17].

(1) the points BT = (𝑏1, ..., 𝑏𝑚) are obfuscated by shuffling them

with 𝑛 random points, 𝑟1, ..., 𝑟𝑛 ∈ D. The security of the

scheme relies on the difficulty of identify the 𝑏𝑖 points given

the set {𝑏1, ..., 𝑏𝑚, 𝑟1, ..., 𝑟𝑛} (in random order). For this to

hold it is critical that the 𝑟𝑖 values are sampled from the

same distribution as the 𝑏𝑖 values.

(2) amechanism to recover a hidden key𝑘 if the user can identify

exactly 𝑑 + 1 of 𝑏𝑖 points (see the definition of parameter 𝑑

below).

Inmore detail, the FV scheme consists of two algorithms, (FV𝐺𝐸𝑁 ,

FV𝑂𝑃𝐸𝑁). The former is defined as a randomized algorithm

FV𝐺𝐸𝑁 (BT, 𝑘) : D𝑚 × F𝑝 →H (6)

which takes𝑈 ’s biometric template BT as input, along with a key

𝑘 sampled from large prime field F𝑝 . It outputs an instance of the

helper data HD ∈ H . The scheme is further parameterized by

some public parameters 𝑚,𝑛,𝑑,𝑤, 𝑝 ∈ Z and requires that ∀𝑖, 𝑗 :

dist(𝑏𝑖 , 𝑏 𝑗) > 𝑤 for distinct 𝑖, 𝑗 ∈ [𝑚] where dist is some distance

function (i.e., some metric). This is because points within distance

𝑤 are in some sense considered to be the same across different

impressions of the same biometric.

The generation algorithm samples 𝑛 so called “chaff points”

𝑟1, ..., 𝑟𝑛 ∈ D from the same distribution
2
as 𝑏𝑖 ∈ BT. Let B̃T =

(˜𝑏1, ..., ˜𝑏𝑚+𝑛) ∈ D𝑚+𝑛 consist of the 𝑏𝑖 , 𝑟𝑖 points in a random or-

der. As with the 𝑏𝑖 values, the 𝑟𝑖 values are sampled such that

∀𝑖, 𝑗 : dist(˜𝑏𝑖 , ˜𝑏 𝑗) > 𝑤 for distinct 𝑖, 𝑗 .

The algorithm then samples a random polynomial 𝑃 ∈ F[𝑥] of
degree 𝑑 < 𝑚 such that 𝑃 (0) = 𝑘 , similar to the polynomial in

a Shamir secret sharing scheme (see Section 2.2), where 𝑘 is the

secret being shared. For
˜𝑏𝑖 ∈ B̃T, if ˜𝑏𝑖 ∈ BT then let

3 𝑣𝑖 = 𝑃 (˜𝑏𝑖) and
otherwise uniformly sample 𝑣𝑖 ← F. Finally, the algorithm outputs

the helper data as HD = ((˜𝑏1, 𝑣1), ..., (˜𝑏𝑚+𝑛, 𝑣𝑚+𝑛), 𝐻 (𝑘)) ∈ H
where H = (D × F)𝑚+𝑛 × {0, 1}𝜅 and 𝐻 : {0, 1}∗ → {0, 1}𝜅 is a

random oracle.

The FV𝑂𝑃𝐸𝑁 algorithm can then recover the key 𝑘 ∈ F𝑝 given a

close enough biometric BT′ and HD:

FV𝑂𝑃𝐸𝑁 (BT′,HD) : F𝑝 (7)

Close enough here means that more than 𝑑 points (where 𝑑 is

the polynomial degree) in BT’s are less than𝑤 apart from points in

the original BT, i.e.:

|{𝑏 ′𝑖 ∈ BT
′, 𝑠 .𝑡 .∃[𝑏 𝑗 ∈ BT ∧ dist(𝑏 ′𝑖 , 𝑏 𝑗) ≤ 𝑤]}| > 𝑑. (8)

As such, the parameters𝑤,𝑑 control how similar the two biomet-

rics must be for it to be considered a match and therefore also

control the trade-off between false positive/negative rates during

authentication.

In FV𝑂𝑃𝐸𝑁 , first the set 𝑆 = {(𝑏 ′
𝑖
, 𝑣𝑖) ∈ HD s.t. ∃[𝑏 𝑗 ∈ BT′ ∧

dist(𝑏 ′
𝑖
, 𝑏 𝑗) ≤ 𝑤]} is computed. Then for each subset 𝑆 ′ of 𝑆 s.t.

|𝑆 ′ | = 𝑑 + 1, the algorithm interpolates the points (˜𝑏𝑖 , 𝑣𝑖) ∈ 𝑆 ′ to
obtain the polynomial 𝑃 (𝑥). If 𝐻 (𝑃 (0)) = 𝐻 (𝑘), then the algorithm

2FVs/FEs typically assume that each 𝑏𝑖 is iid and sampled from some distribution D,

enabling a proof of security. In practice, this assumption may not hold and proper

sampling is an ongoing research challenge [4, 5].

3
Here, we assume that

˜𝑏𝑖 ∈ D can be interpreted as an element of F. This can be

achieved by defining an injective or random function 𝜙 : D → F and defining

𝑣𝑖 = 𝑃 (𝜙 (˜𝑏𝑖)) .
3

will output 𝑃 (0). If no such subset 𝑆 ′ exists, then the algorithm

outputs ⊥.
If we apply this scheme in the traditional manner, the overall

protocol then consists of:

(1) Enrollment – the user 𝑈 enrolls by interacting with a

trusted enrollment device. The enrollment device generates

fresh 𝑘 ← F𝑝 and HD from 𝑈 ’s BT and sends 𝑘 ← F𝑝 and

HD ← FV𝐺𝐸𝑁 (BT, 𝑘) to the Authenticator. Authenticator
persistently stores this data associated with the newly cre-

ated user identity.

(2) Authentication –Later, when a client wishes to authenticate

as𝑈 , the Authenticator will send the associated HD back to

the client. The authentication will succeed if the client can

successfully answer a challengewhich requires knowledge of

the key 𝑘 , e.g., standard challenge-response protocols based

on the encryption of nonces.

Ideally, this protocol would achieve the following security guar-

antees. When the user 𝑈 enrolls, the helper data HD reveals no

information about BT to Authenticator (nor any other entities aside
from the trusted enrollment device itself – e.g., a biometric sensor).

Similarly, the online authentication procedure would not reveal in-

formation about the newly supplied biometric BT′ toAuthenticator,
apart from whether it matched or not.

One method of formalizing this is with an indistinguishably

based security definition. For example, given two distinct biometrics

(BT1,BT2), the adversary should not be able to distinguish the dis-

tribution of HD1 ← FV𝐺𝐸𝑁 (BT1, 𝑘) from HD2 ← FV𝐺𝐸𝑁 (BT2, 𝑘).
However, these two are trivial to distinguish since the FV𝑂𝑃𝐸𝑁
algorithm must be efficient. Moreover, BT1,BT2 are directly con-

tained in HD1,HD2 respectively. And yet, given that there are suf-

ficiently many chaff points, HD does to some extent obfuscate

the original biometric BT. In particular, this allows a weaker secu-

rity notion. Let us assume that all BT = (𝑏1, ..., 𝑏𝑚) are generated
such that each 𝑏𝑖 is sampled iid from some distribution D over

D. Then it follows that the adversary has a negligible in 𝑘 prob-

ability of outputting 𝑘 given HD alone. To see why, recall that

HD = ((˜𝑏1, 𝑣1), ..., (˜𝑏𝑚+𝑛, 𝑣𝑚+𝑛), 𝐻 (𝑘)) and since all 𝑏𝑖 , 𝑟 𝑗 are iid

(by assumption), so are all of the
˜𝑏𝑖 values. As such, the adversary

is tasked with identifying a set of𝑚-out-of-(𝑚 + 𝑛) points (˜𝑏𝑖 , 𝑣𝑖)
which lay on a degree-𝑑 polynomial where each

˜𝑏𝑖 ← D and all but

𝑚 − 𝑑 𝑣𝑖 values are uniform in F. For appropriately set parameters,

this problem is conjectured to be intractable [16].

We note however that, in practical deployments, biometrics

might have significantly less entropy than the computational secu-

rity parameter 𝑘 [4, 5]. As such, statistical guessing of the biometric

template BT could allow for an adversary to recover 𝑘 from HD
with noticeable probability. Moreover, since HD contains a hash of

the 𝑘 (and𝑚 > 𝑑+1 points that lie in the polynomial), the adversary

can perform such an attack in an offline setting (after receiving

HD in clear) and check whether or not the correct 𝑘 (or the correct

polynomial) was obtained.

Looking forward, we will mitigate this attack by not sending

the helper data HD to the each user 𝑈 ′ that claims an identity

and requests to authenticate. This limits the exposure of HD to

only the Authenticator. Since in many cases we can assume the

Authenticator is honest, they will not perform such brute force

attacks (this assumption is equivalent to that in current password-

based authentication servers storing salted hashes). However, in the

unlikely event that they do become corrupted, e.g. hacked, then the

adversary is still tasked with performing a potentially expensive

offline attack in order to recover the underlying biometric BT and

key 𝑘 . This can give the organization the crucial amount of time to

mitigate the potential fallout.

The syntax for the FV construction and respective notation are

summarized in Definition 1. Definitions 2 and 3 state FV’s com-

pleteness and security guarantees.

Definition 1 (Fuzzy Vault (FV) Syntax).
A Fuzzy Vault is defined as FV = (FV𝐺𝐸𝑁 , FV𝑂𝑃𝐸𝑁 ,Φ), where
Φ is a set of parameters Φ = (𝑚,𝑛,𝑑, F,M, dist, w):
-𝑚 is the number of biometric features, referred to asminutiae
points.
- 𝑛 is the number of randomizing features, referred to as chaff
points.
- 𝑑 is a polynomial degree;
- F𝑝 is a prime field with size 𝑝 − 1;
-M is a metric space;
- dist is some distance function defined overM;
- w is a distance threshold;
FV𝐺𝐸𝑁 and FV𝑂𝑃𝐸𝑁 are algorithms:
• FV𝐺𝐸𝑁 :
– Inputs: 𝑘 and BT, s.t., 𝑘 ∈ F𝑝 .
– Output: HD
• FV𝑂𝑃𝐸𝑁 :
– Inputs: HD and BT′

𝑈
– Output: 𝑘 ′ ∈ F𝑝 .

Definition 2 (FV-Completeness).
FV = (FV𝐺𝐸𝑁 , FV𝑂𝑃𝐸𝑁 ,Φ) is complete with (𝑤,𝑑)-fuzziness
if for every possible 𝑘 and every pair BT, BT′ such that,

|{𝑏 ′𝑖 ∈ BT
′, 𝑠 .𝑡 .∃[𝑏 𝑗 ∈ BT ∧ dist(𝑏 ′𝑖 , 𝑏 𝑗) ≤ 𝑤]}| > 𝑑, (9)

it holds that:

FV𝑂𝑃𝐸𝑁 (FV𝐺𝐸𝑁 (𝑘,BT),BT′) = 𝑘 (10)

with overwhelming probability.

Definition 3 (FV-Security).
FV = (FV𝐺𝐸𝑁 , FV𝑂𝑃𝐸𝑁 ,Φ) is 𝑝-secure if a Probabilistic Poly-
nomial Time (P.P.T.) adversary with access to HD, where:

HD = FV𝐺𝐸𝑁 (𝑘,BT) (11)

is able to guess either, BT or 𝑘 , with success probability of at
most 𝑝 .

2.4 Oblivious Programmable PRF

An Oblivious Programmable PRF (OPPRF) is a two party functional-

ity consisting of a sender and receiver. The functionality is shown in

Figure 2. The sender has a set of input pairs (𝑦1, 𝑧1), ..., (𝑦𝑛, 𝑧𝑛) with
distinct 𝑦𝑖 . The functionality samples a key 𝑘 such that 𝐹𝑘 (𝑦𝑖) = 𝑧𝑖
and at all other input points it outputs a random value. The receiver

on input points 𝑥1, ..., 𝑥𝑛 then obtains 𝐹𝑘 (𝑥𝑖) for all 𝑖 .

4

Parameters: There are two parties, a sender with input 𝐿 = {(𝑦1, 𝑦1), ..., (𝑦𝑛y , 𝑦𝑛y)} where 𝑦𝑖 ∈ F, 𝑦 ∈ {0, 1}out and a receiver

with a set 𝑋 ⊆ F where |𝑋 | = 𝑛x.
Functionality: Upon input (sender, sid, 𝐿) from the sender and (receiver, sid, 𝑋) from the receiver, the functionality samples

a random function 𝐹 : F→ {0, 1}out such that 𝐹𝑘 (𝑦) = 𝑦 for each (𝑦,𝑦) ∈ 𝐿 and sends 𝑋 ′ := {𝐹𝑘 (𝑥) | 𝑥 ∈ 𝑋 } to the receiver.

Subsequently, upon input (sender, sid, 𝑦) from the sender, the functionality returns 𝐹 (𝑦) to the sender.

Figure 2: Ideal functionality Fopprf of Oblivious Programmable PRF.

This functionality can be realized from a standard OPRF along

with polynomial interpolation or a similar encodingmethod. Loosely

speaking, the sender samples a normal OPRF key 𝑘 and sends the

minimum degree polynomial 𝑃 such that 𝑃 (𝑦𝑖) = 𝑧𝑖 − 𝐹𝑘 (𝑦𝑖). The
parities compute the final output as 𝐹𝑘 (𝑥) + 𝑃 (𝑥) where 𝐹𝑘 is eval-

uated via the OPRF protocol. See [10] for efficient constructions.

As we explain in Section 3, our OE construction leverages OP-

PRFs to enable efficient oblivious computation of FV𝑂𝑃𝐸𝑁 while

keeping input BT’ private to the Client and input HD private to

Authenticator.

3 OBLIVIOUS EXTRACTOR: INTUITION

Our Oblivious Extractor (OE) construction is based on a few simple

observations that we discuss through the rest of this section. This

section omits some protocol details in order to convey the general

idea. Detailed specifications are presented in Section 4.

First, we note that checking if two points are within a certain
distance threshold from each other is equivalent to generating the set
of all points that are within a certain threshold from the first point
and checking for existence of the second point in the generated set.
More formally, for any distance function dist and two elements 𝑎

and 𝑏 in F:

dist(𝑎, 𝑏) < 𝑤 ≡ |{𝑏} ∩𝐴| = 1 where

𝐴 = {𝑎𝑖 | dist(𝑎, 𝑎𝑖) < 𝑤}
(12)

This is because set 𝐴 contains all points in F that are sufficiently

close (given threshold 𝑤 and metric dist) to 𝑎, therefore, 𝑏 must

exist in set𝐴 if it is within this proximity.We note that this approach

works because F is discrete (as opposed continuous spaces such as

real numbers in R), and |𝐴| = 𝑂 (poly(𝑘)) is reasonably small for

our application.

This observation allows us to use an oblivious set membership

operation to obliviously perform distance-based matching of each

𝑏 ′
1
, ..., 𝑏 ′𝑚 in BT′ to each

˜𝑏1, ..., ˜𝑏𝑚+𝑛 in HD. This matching is equiv-

alent to the one performed in clear by the regular FV. More impor-

tantly, equation 12 is independent of the particular dist used for

the feature matching. Thus, distance matching based on oblivious

set membership testing can in principle be used to match biometric

features of multiple biometric modalities, e.g., iris scans, faces, etc.

In addition to minutiae-to-minutiae matching, the regular FV
also verifies if at least 𝑑 minutiae are matched correctly, where 𝑑

is the threshold defined by the polynomial degree (see Section 2

for details). To achieve the same property, our scheme relies on

Shamir’s secret sharing.

In a nutshell, the modified HD is generated by OE𝐺𝐸𝑁 (BT, 𝑘)
via the following process:

(1) OE𝐺𝐸𝑁 generates B̃T = (˜𝑏1, ..., ˜𝑏𝑛+𝑚) where a random sub-

set of B̃T is in BT while the remainder are random chaff

points. As such, it obfuscates the original BT in the exact

same way as in the original FV scheme.

(2) For each chaff point, uniformly sample an associated random

pair (𝑥𝑖 , 𝑦𝑖) ← F2. For each ˜𝑏 𝑗 ∈ B̃T that is a real minutiae
in BT, sample a random point that lies on a 𝑑 − 1 degree

polynomial 𝑃 (i.e. 𝑃 (𝑥 𝑗) = 𝑦 𝑗 for all 𝑗 such that
˜𝑏 𝑗 ∈ BT) and

require that 𝑃 (0) = 𝑘 .
That is, every pair (𝑥 𝑗 , 𝑦 𝑗) that is associated with a real

biometric point from BT forms one Shamir secret share of 𝑘 .

(3) Output HD = (B̃T, 𝑋,𝑌 , 𝐻 (𝑘)) as the helper data, where

B̃T = (˜𝑏1, ..., ˜𝑏𝑛+𝑚),𝑋 = [𝑥1, ..., 𝑥𝑛+𝑚] and𝑌 = [𝑦1, ..., 𝑦𝑛+𝑚].
By construction, it holds that for all 𝑗 ∈ [𝑛 +𝑚] such that

˜𝑏 𝑗 ∈ BT, 𝑦 𝑗 = 𝑃 (𝑥 𝑗). In other words, every position 𝑗 that

is associated with a real minutiae is also associated with a

secret share of 𝑘 . On the other hand, positions that contain

chaff points are associated to random (𝑥 ′, 𝑦′) pairs that do
not lie in the polynomial 𝑃 .

Given HD and a sufficiently similar biometric BT′ = {𝑏 ′
1
, ..., 𝑏 ′𝑚},

𝑘 can be recovered by interpolating the correct (𝑥 𝑗 , 𝑦 𝑗) pairs which
are identified based on the condition that dist(𝑏 ′

𝑗
, ˜𝑏𝑖) < 𝑤 for some

𝑏 ′
𝑗
∈ BT′. Given that there may be several degree at most 𝑑 − 1

polynomials which fit this criteria, the correct one can be identified

by requiring 𝐻 (𝑃 (0)) = 𝐻 (𝑘).
We note, however, that there are several challenges when con-

verting this basic idea into an oblivious protocol. First is how to

evaluate the distance function. A naïve method would be for all

𝑂 (𝑚2) possible 𝑖, 𝑗 to check if dist(𝑏 ′
𝑗
, ˜𝑏𝑖) < 𝑤 either using a generic

2PC scheme or via the idea of directly turning
˜𝑏𝑖 into a set 𝐴 and

performing a set membership test (e.g., using off-the-shelf protocols

for private set operations, e.g., [18–22], which often use OPRFs in

some form). Though possible, this would be very inefficient.

Secondly, it is critical that the Client does not learn if the binary

result of dist(𝑏 ′
𝑗
, ˜𝑏𝑖) < 𝑤 since this would leak if some informa-

tion about each
˜𝑏𝑖 in HD. For example, a Client could query the

Authenticator many times and enumerate all elements in 𝐴 = {𝑎 𝑗 |
dist(𝑎 𝑗 , ˜𝑏𝑖) < 𝑤} and therefore learn a

˜𝑏𝑖 exactly.

We address both of these issues simultaneously with the use of an

OPPRF. The idea is that, during authentication, Authenticator will
sample an OPPRF key 𝑘 ′ such that for all 𝑖 ∈ [𝑛 +𝑚] and 𝑎 𝑗 ∈ {𝑎 𝑗 |
dist(𝑎 𝑗 , ˜𝑏𝑖) < 𝑤}, the OPPRF outputs 𝐹𝑘′ (𝑎 𝑗) = (𝑥𝑖 , 𝑦𝑖). Recall that
when the Client evaluates the OPPRF, they will receive either the

programmed (𝑥𝑖 , 𝑦𝑖) value if they input one of the corresponding

𝑎 𝑗 values or they will receive a uniformly random (𝑥 ′, 𝑦′) pair.
5

Let us assume that BT,BT′ are not similar. Therefore the Client
learns at most 𝑑 pairs (𝑥𝑖 , 𝑦𝑖) which correspond to the actual bio-

metric BT. These (𝑥𝑖 , 𝑦𝑖) pairs lay on the degree 𝑑 polynomial 𝑃

while all others are uniformly random. Recall that it takes 𝑑 + 1
pairs to reconstruct 𝑃 and therefore the key 𝑘 = 𝑃 (0) remains uni-

formly distributed in the view of the Client, since they are lacking

at least one pair. Moreover, the Client can not distinguish if they

obtained a programmed point (𝑥𝑖 , 𝑦𝑖) or a uniformly random point

(𝑥 ′, 𝑦′) since both are distributed uniformly random. Critically, we

require that the Client only inputs 𝑏 ′
𝑗
∈ BT′ values which are at

least distance 2𝑤 apart to ensure that no two 𝑏 ′
𝑗
fall into the same

set 𝐴 = {𝑎 𝑗 | dist(𝑎 𝑗 , ˜𝑏𝑖) < 𝑤}.
Now consider the case in which BT,BT′ are similar. From the

OPPRF evaluation, the Client will learn at least 𝑑 + 1 pairs (𝑥𝑖 , 𝑦𝑖)
which do lay on the degree 𝑑 polynomial 𝑃 (in addition to possibly

some points that do not lay in P, because theremight a small number

of chaff points that are coincidentally close to some of the points

in BT′). As such, the client can use the obtained set of points to

try to interpolate all subsets of 𝑑 + 1 points, resulting in a degree 𝑑

polynomial 𝑃 ′ at each attempt. For each interpolation, the client

checks if 𝐻 (𝑃 ′(0)) = 𝐻 (𝑘). If so, it learns that 𝑃 = 𝑃 ′ and outputs

𝑘 = 𝑃 ′(0).

4 OBLIVIOUS EXTRACTOR IN DETAIL

4.1 Definitions

OE consists of two sub-protocols: Enroll and Auth. Each sub-

protocol instance involves a Client and an Authenticator. Figure 4
presents OE ideal functionality FOE. It answers to two queries,

modeling the ideal behavior of sub-protocols Enroll and Auth.

A query to Enroll is accompanied by a reference biometric

template BT (obtained securely during initial user enrollment) and

parameter 𝑐 , determining the maximum number of authentication

attempts possible within the life-time of the particular HD to be

generated. It outputs a user ID 𝑖 to Client and generates a user cre-

dential in the system, represented by the Client’s ID 𝑖 , an associated

HD and 𝑐 , to be stored by Authenticator. The ideal functionality
records 𝐵𝑇 , and HD and 𝑘 , computed using FV′.Gen(BT).

A query to Auth is initiated by Client and must contain a

claimed user ID 𝑖 and corresponding input biometric template BT′.
The functionality verifies if there exists a registered user with ID 𝑖

and if the limit 𝑐 ′ of authentication attempts for that particular user

has not been exceeded. If these checks succeed, the query returns

𝑘 if 𝐵𝑇 ′ is sufficiently close to the reference 𝐵𝑇 and ⊥ otherwise. 𝑘

and 𝐵𝑇 used in this step are the same recorded during Enroll for ID

𝑖 . Every Auth query decrements associated 𝑐 to record the authen-

tication attempt. Figure 3 shows illustrates the OE authentication

protocol, with a detailed construction in Figure 5.

4.2 Construction

This section presents anOE construction fulfilling FOE (Figure 4) in
the honest-but-curious model. The protocol is specified in Figure 5.

Public parameters include two random oracles H and H’ and the

FV scheme described in Section 2.3, including the FV parameters

themselves (e.g., a metric dist, a distance threshold𝑤 , polynomial

degree 𝑑 , etc). Before any sub-protocol interactions, Authenticator

initializes a monotonically increasing counter 𝑖𝑑 := 0 representing

unique IDs assigned to users upon successful enrollment.

Enroll:

The first part of the enrollment protocol (up to the generation

of B̃T) remains similar to the regular FV scheme, discussed in Sec-

tion 2.3. BT is sampled from the user yielding 𝑚 biometric data

points, sufficiently distant from each other by threshold 2𝑤 for

chosen metric dist. A set of 𝑛 chaff points are randomly sampled

following the same distribution as real biometric points and also

obeying the sparsity restriction (for threshold 2𝑤 and dist). The set
of real biometric data points and chaffs are shuffled according to

permutation 𝜋 selected uniformly at random. The resulting shuffled

list of pairs is denoted B̃T.
Following generation of B̃T, Enroll will sample randomness

𝑟 ←$F and 𝑐 random polynomials defined over F. The indepen-

dent/constant term in all 𝑐 random polynomials is set to 𝑟 (i.e., for

𝑗 ∈ [𝑐], 𝑃 𝑗 (0) = 𝑟). Each 𝑃 𝑗 is used as an independent instance

of a Shamir secret sharing scheme to sample𝑚 shares of 𝑟 (in the

form (𝑥 ←$F, 𝑃 𝑗 (𝑥))). For each 𝑃 𝑗 , two lists 𝑋 𝑗 and 𝑌𝑗 are created

using the𝑚 shares. 𝑋 𝑗 and 𝑌𝑗 are constructed such that if index

𝑖 of B̃T (after shuffling) contains a real biometric data point (i.e.,

˜𝑏𝑖 ∈ BT), then 𝑌𝑗,𝑖 = 𝑃 𝑗 (𝑋 𝑗,𝑖) – where 𝑋 𝑗,𝑖 and 𝑌𝑗,𝑖 are used to

denote the 𝑖-th element of 𝑋 𝑗 and 𝑌𝑗 , respectively. For all other in-

dices, elements of 𝑋 𝑗 and 𝑌𝑗 are selected independently, uniformly

at random. The HD is then given to (and persistently stored by)

Authenticator composed of B̃T, 𝑋 := (𝑋1, ..., 𝑋𝑐), 𝑌 := (𝑌1, ..., 𝑌𝑐),
ℎ := H(𝑟), 𝑒 := H′(𝑟) ⊕ 𝑘 . As it will become clear, a pair of lists 𝑋𝑐′ ,

𝑌𝑐′ is consumed on each Auth interaction.

Given random shuffling of B̃T, sufficiently large number of chaff

points, and indistinguishability between Shamir secret shares and

random elements in F × F (present in 𝑋 and 𝑌), HD produced by

OE hides BT and 𝑘 from Authenticator. More formally, FV security

can be reduced to OE security.

Auth:

To authenticate, a user initiates an interactionwithAuthenticator
by claiming an identity 𝑖𝑑 ′ and locally sampling BT′ := (𝑏 ′

1
, ..., 𝑏 ′𝑚)

at theClientmachine. Authenticator looks upHD based on claimed

𝑖𝑑 ′. Authenticator also checks if the maximum number of authen-

tication attempts allowed for the lifetime of the associated HD has

not been exceeded, aborting otherwise. In practical systems that

employ throttling to prevent online guessing, an additional check

should occur to determine if the maximum number of attempts

within a pre-defined time-window (e.g., 10 attempts per day) has

been exceeded. This step is omitted from the protocol for simplicity.

If the aforementioned checks succeed, Authenticator will initiate
an instance of the oblivious biometric matching phase, based on

BT′ (in possession of Client) and HD𝑖𝑑′ = (B̃T, 𝑋,𝑌 , ℎ, 𝑒) (stored by
Authenticator associated to 𝑖𝑑 ′).

The 𝑐 ′-th instance of Auth consumes list 𝑋 ′𝑐 ∈ 𝑋 and list 𝑌 ′𝑐 ∈
𝑌 . To prevent information leakage across multiple executions of

Auth, each 𝑋 ′𝑐 and 𝑌 ′𝑐 pair is only used once, hence the cap 𝑐

on the number of Auth interactions per HD. For each element

6

Client Authenticator

HD = {�BT, [X1, …, Xc], [Y1, …, Yc], h, e}
�BT = shuffle(BT, Chaffs)

where |BT| = m; |Chaffs| = n
For all i in [C]:
Xi = x1, ... xm+n, Yi = y1,…, ym+n

such that, for all index j in [m+n]:
bj in BT => Pi(xj) = yj
and Pi(0) = r

h = H(r); e = H’(r) k✕
BT’ = {b’1,..,b’m}

- Consume c-th entry:
Xc = {x1, … , xm+n}
Yc = {y1, … , ym+n}

- Update: c = c-1
- For each bj in �BT, create a set Bj
(Bj are all points close to bj)

- For each set Bj program OPPRF so that
all points in Bj evaluate to (xj,yj)

- Evaluate OPPRF on m client inputs

OPPRF
BT’ = {b’1,..,b’m}

X’={x’1, … , x’m}
Y’={y’1, … , y’m}
h,e

- Interpolate P’ chosing d+1 of the
(x’j,y’j) points (where j in [m])
- If H(P’(0))=h:

Output k = e H’(P’(0))
- Otherwise, try again for distinct

set of d+1 out of m points until
there are no distinct sets left.

AUTH, id

For each id, ENROLL generates:

✕

Figure 3: Illustration of OE authentication combining HD, oblivious set membership testing via OPPRF, and secret sharing.

Parameters: An Authenticator and one or more clients, each generically denoted as Client. A FV scheme described in

Section 2.3.

Functionality: Initialize id := 0. The functionality answers the following queries.

(1) Upon receiving (Enroll,BT,HD, 𝑘, 𝑐) from Client, where (HD, 𝑘) ← FV′.Gen(BT, 𝑘, 𝑐), record the tuple

(id, 𝑐,BT,HD, 𝑘). FV′ is defined as the procedure which computes HD in Figure 5 (step f of Enroll).

Output (𝑖) to Client and (𝑖, 𝑐,HD) to Authenticator. Update id as id := id + 1.
(2) Upon receiving (Auth, 𝑖,BT′) from Client and (Auth, 𝑖) from Authenticator, if there exists a tuple (𝑖, 𝑐,BT,HD, 𝑘) for

𝑖 such that

𝑐 > 0 ∧ |{𝑏 ′𝑖 ∈ BT
′, 𝑠 .𝑡 .∃[𝑏 𝑗 ∈ BT ∧ dist(𝑏 ′𝑖 , 𝑏 𝑗) ≤ 𝑤]}| > 𝑑, where 𝑑 is the polynomial degree of HD,

then output (𝑘,BT∗) to Client where BT∗ are these 𝑑 ′ points in BT′ which are similar to BT. Otherwise output ⊥ to

Client. Update 𝑐 = 𝑐 − 1.

Figure 4: Ideal oblivious extractor functionality FOE.

˜𝑏𝑖 ∈ B̃T – including both chaff and real biometric points (recall that

Authenticator cannot distinguish between them) – Authenticator
generates the set of all points in F that are sufficiently close to

˜𝑏𝑖 , i.e., all 𝑏 ∈ F such that dist(𝑏, ˜𝑏𝑖) < 𝑤 . All such 𝑏 close to
˜𝑏𝑖

are associated to the same pair (𝑋𝑐′,𝑖 , 𝑌𝑐′,𝑖) and added to a list 𝐿,

where each 𝑙 ∈ 𝐿 is in the form (𝑏, (𝑋𝑐′,𝑖 , 𝑌𝑐′,𝑖)), i.e., 𝑙 ∈ (F, F2). As
a result, 𝐿 contains all points b in F that are sufficiently close to any

˜𝑏𝑖 ∈ B̃T. By construction (recall Enroll sub-protocol), all
˜𝑏𝑖 ∈ BT

and close enough points appear in 𝐿 associated to a secret share of

randomness 𝑟 . On the other hand, all
˜𝑏𝑖 ∉ BT (i.e., chaff points) and

close enough points are associated to random pairs in (F × F).
To perform oblivious authentication, Client and Authenticator

invoke FOPPRF on their respective inputs: BT′ = (𝑏 ′
1
, ..., 𝑏 ′𝑚) and 𝐿.

For each 𝑏 ′𝑢 ∈ BT′, if 𝑏 ′𝑢 is sufficiently close to any point in B̃T (real

or chaff), it also exists in 𝐿, thus Client receives an associated pair

(𝑋𝑐′,𝑣, 𝑌𝑐′,𝑣), for some index 𝑣 ∈ [𝑚 + 𝑛]. If 𝑏 ′𝑢 is in fact close to a

real biometric data point from BT (the reference template used to

construct HD in Enroll), it is also the case that 𝑌𝑐′,𝑣 = 𝑃
′
𝑐 (𝑋𝑐′,𝑣),

i.e., Client receives a secret share of randomness 𝑟 (recall from

Enroll that 𝑃 ′𝑐 (0) = 𝑟). If 𝑏 ′𝑢 does not exist in 𝐿 (𝑏 ′𝑢 is close neither

to real biometric data points nor chaff points), FOPPRF returns a

random element from (F × F).
Given the degree 𝑑 of 𝑃 ′𝑐 , if at least 𝑑 + 1 points in BT′ are

sufficiently close to points in BT, Client retrieves enough shares

of 𝑟 to reconstruct 𝑘 . Most importantly, if less than 𝑑 + 1 points

are sufficiently close to points in the original BT, Client cannot
distinguish any of the received elements from random in (F × F),
irrespective of whether each element was generated as a share of 𝑟 ,

as random pair during construction of 𝑋𝑐′ and 𝑌𝑐′) (see Enroll),
or as a result of FOPPRF evaluation on an element that does not

exist in 𝐿 and thus has not been programmed by the OPPRF. It

follows that, if Client fails to authenticate, nothing is learned by

Client about BT or HD. At the same time, BT and BT’ are hidden
from Authenticator.

Upon completion of Auth, Authenticator decrements 𝑐 ′. This
assures that fresh 𝑋𝑐′ and 𝑌𝑐′ are used in different Auth sessions

7

Parameters: An Authenticator and one or more clients, each generically denoted as Client. An FV scheme described in

Section 2.3 (and associated parameters, e.g., dist,𝑚, 𝑛,𝑤 , 𝑑 , etc). Two random oracles H : F→ {0, 1}𝜅 ,H′ : F→ {0, 1}𝜅 .

Protocol: Authenticator will initialize id := 0.

[Enroll] Upon the command (Enroll,BT, 𝑘, 𝑐) from Client, the Client performs

(a) [Parse] Parse (𝑏1, ..., 𝑏𝑚) = BT where 𝑏𝑖 ∈ D. Abort if for distinct 𝑖, 𝑖 ′ ∈ [𝑚], dist(𝑏𝑖 , 𝑏𝑖′) > 𝑤 .

(b) [Add Chaff] Sample 𝑏𝑚+1, ..., 𝑏𝑚+𝑛 ← D s.t. for all distinct 𝑖, 𝑖 ′ ∈ [𝑚 + 𝑛], dist(𝑏𝑖 , 𝑏𝑖′) > 𝑤 .

(c) [Shuffle] Sample a random permutation 𝜋 : [𝑚 + 𝑛] → [𝑚 + 𝑛] and define B̃T := (˜𝑏1, ..., ˜𝑏𝑚+𝑛) where ˜𝑏𝑖 := 𝑏𝜋 (𝑖) .
(d) [Secret Share] Sample 𝑟 ← F. For 𝑗 ∈ [𝑐], sample a random degree 𝑑 polynomial 𝑃 𝑗 ∈ F[𝑥] such that 𝑃 𝑗 (0) = 𝑟 .
(e) [Shares] Sample 𝑋 𝑗 ← F𝑛+𝑚 and define (𝑥 𝑗,1, ..., 𝑥 𝑗,𝑚+𝑛) := 𝑋 𝑗 . For 𝑗 ∈ [𝑐], 𝑖 ∈ [𝑛 +𝑚], if ˜𝑏𝑖 ∈ BT then define

𝑦 𝑗,𝑖 := 𝑃 𝑗 (𝑥 𝑗,𝑖). Otherwise define 𝑦 𝑗,𝑖 ← F. Let 𝑌𝑗 := (𝑦 𝑗,1, ..., 𝑦 𝑗,𝑚+𝑛). Define 𝑋 := (𝑋1, ..., 𝑋𝑐) and 𝑌 := (𝑌1, ..., 𝑌𝑐).
(f) [Output] Send HD := (B̃T, 𝑋,𝑌 , ℎ, 𝑒) to Authenticator where ℎ := H(𝑟), 𝑒 := H′(𝑟) ⊕ 𝑘 .
Authenticator receivesHD and sends id back. Authenticator records the tuple (id, 𝑐,HD) and increments id as id := id+1.

[Auth] Upon the command (Auth, id′,BT′) from Client, Authenticator looks up the tuple (id′, 𝑐 ′,HD). If none exists,
Authenticator sends back ⊥. Otherwise let (B̃T, 𝑋,𝑌 , ℎ, 𝑒) := HD and 𝑋,𝑌 ∈ F𝑐′×(𝑚+𝑛) . If 𝑐 ′ = 0, send ⊥ to Client and
abort. Otherwise:

(a) [Program OPPRF] Let (˜𝑏1, ..., ˜𝑏𝑚+𝑛) := B̃T. Define 𝐿 ∈ (F × F2) where for each 𝑖 ∈ [𝑚 + 𝑛] and 𝑏 ∈ {𝑏 ∈ D |
dist(˜𝑏𝑖 , 𝑏) < 𝑤}, it holds that (𝑏, (𝑋𝑐′,𝑖 , 𝑌𝑐′,𝑖)) ∈ 𝐿.

(b) [Invoke OPPRF] Authenticator and Client invoke FOPPRF where Authenticator is the sender with input 𝐿. The

Client inputs BT′ = (𝑏 ′
1
, ..., 𝑏 ′𝑚), restricted that for distinct 𝑖, 𝑖 ′ ∈ [𝑚], dist(𝑏 ′𝑖 , 𝑏

′
𝑖′) > 𝑤 , and receives (𝑥 ′

𝑖
, 𝑦′
𝑖
) = 𝐹 (𝑏 ′

𝑖
) ∈

F2 for 𝑖 ∈ [𝑚].
(c) [Remove Row] Authenticator updates 𝑋,𝑌 by removing rows 𝑋𝑐′, 𝑌𝑐′ and 𝑐

′
:= 𝑐 ′ − 1.

(d) [Interpolate] Authenticator sends ℎ and 𝑒 to Client. For each 𝑆 𝑗 ⊂ [𝑚] of size 𝑑 + 1, Client defines the degree 𝑑
polynomial 𝑃𝑆 𝑗 ∈ F𝑝 [𝑥] s.t. 𝑃𝑆 (𝑥 ′𝑖) = 𝑦

′
𝑖
for all 𝑖 ∈ 𝑆 𝑗 .

(e) [Output] If there exists a 𝑆 𝑗 s.t. H(𝑃𝑆 𝑗 (0)) = ℎ, then Client outputs 𝑘 := H′(𝑃𝑆 𝑗 (0)) ⊕ 𝑒 . Otherwise Client outputs
⊥.

Figure 5: Oblivious extractor protocol ΠOE.

even with the same HD, preventing leakage/linkability across mul-

tiple/successive authentication attempts.

5 SECURITY ANALYSIS

Our OE construction does not affect the FV-Completeness and

FV-Security guarantees provided by the original FV scheme. For

completeness, this follows from the equivalence in Eq. 12 (implying

that the accuracy of the distance-based matching of individual

elements in BT and BT′ is not affected) and the fact that secret

shares used in our scheme are generated with the same polynomial

degree (therefore, the number of individual matches required to

reconstruct 𝑘 is the same). For security, we note that the only

difference in the HD stored by Authenticator in OEs versus that
stored by Authenticator in FVs is that the polynomial is evaluated

on additional randomly generated points during enrollment. The

obfuscation of BT, by shuffling minutiae and chaff points, which

yields FV security notion (per analysis in [16]) is still performed in

the exact same way as in the original scheme.

Therefore, in the remainder of this section, we stress to prove that

our ΠOE protocol securely realizes the FOE functionality of Figure 4
in the semi-honest UCmodel [23]. In practical terms this means that

the messages received during the protocol can be simulated given

only the input of that party and the output of the ideal functionality

FOE.

Proof. Corrupt Authenticator.
First, we consider a semi-honest Authenticator. When interact-

ing with the ideal functionality, Authenticator receives (𝑖, 𝑐,HD)
each time a Client enrolls. By definition this is effectively the same

information that Authenticator receives from the Client in the real

interaction, i.e. the simulator outputs HD to Authenticator.
As discussed in Section 2.3, it is the case that HD reveals some

information about BT. However, the functionality explicitly allows

Authenticator to learn this information. Moreover, this leakage is

inherently required for this type of functionality due to the possi-

bility of Authenticator running the Auth protocol with themselves

and thereby learn information about BT.
In the ideal world Authenticator participates in the Auth proto-

col by sending (Auth, 𝑖) to the ideal functionality. They receive

no output from the functionality. In the real protocol the view of

Authenticator consists of the FOPPRF query, which they also receive
no output from. Therefore the simulation follows directly. □

Proof. Corrupt Client.
For a corrupt Client, the view of the Enroll protocol is trivial

to simulate. Effectively, it consists of the Client receiving their

identifier id. This is also provided by the ideal functionality which

the simulator can forward to the Client.
For proving the security of the Auth protocol we consider two

cases. The first is the corrupt Client is authenticating on a id which

8

they registered or one which an honest party registered. In the for-

mer, the simulation is to simply run the real protocol. Observe that

this is secure due to the adversary already knowing the underlying

HD value.

The most interesting case is the latter, when a corrupt Client
requests to authenticate on an idwhich was registered by an honest

user. The view of the Client in the ideal worlds is either 𝑘 if their

biometric BT′ matches and otherwise ⊥.
Let us assume that the biometric does not match and therefore

the simulator obtained ⊥ from FOE. In the real protocol recall that

𝑋𝑐′, 𝑌𝑐′ consists of𝑚 + 𝑛 values in 𝐹 . Out of these a random set of

𝑚 lay on a degree 𝑑 − 1 polynomial. Since the functionality would

have output ⊥, the Client would have received at most 𝑑 − 1 of the
points which lay on the degree 𝑑 − 1 polynomial. Critically, the

distribution of these points (and all others) are uniformly random.

Therefore, the simulator will simply sample a uniformly random set

of points and use these in place of 𝑋𝑐′, 𝑌𝑐′ . The view of the Client
is identical when modeled in the FOPPRF-hybrid.

In the case that there is a match, the simulator learns the key 𝑘

and the 𝑑 ′ ≥ 𝑑 biometric points BT∗ which matched from the func-

tionality. With this the simulator can identify which of the 𝑋𝑐′, 𝑌𝑐′

points should lay on a degree 𝑑 − 1 polynomial. Since there was a

match there are 𝑑 ′ ≥ 𝑑 such points. The simulator samples 𝑋𝑐′, 𝑌𝑐′

such that these points lay on a random degree 𝑑 − 1 polynomial 𝑃

which has 𝑃 (0) = 𝑘 while all other points are uniform. The Client
will then reconstruct 𝑘 as described by the protocol. □

5.1 Active Malicious Authenticator
We argue that an actively malicious Authenticator does not gain
any advantage. To see why, note that no message sent by Client
depends on Authenticator behavior. Hence, an actively malicious

Authenticator does not learn Client’s inputs that an honest-but-

curious Authenticator would not.

The remaining possibility is to deviate from the protocol to

tamper with Client’s output (i.e., 𝑘). At best, this case prevents

Client from authenticating itself to Authenticator, hence causing
Authenticator to refuse access/service to Client. However, a mali-

cious Authenticator can always refuse service to a Client, irrespec-
tive of the OE scheme (e.g., by simply ignoring Client’s request to
authenticate).

5.2 Active Malicious Client
Leakage in the case where Client may deviate from the protocol

is due to the fact that a malicious Client may not respect the re-

striction that, for a new biometric sample provided for authenti-

cation (𝑏 ′
1
, ..., 𝑏 ′𝑚) = BT′, it must hold that for distinct 𝑖, 𝑖 ′ ∈ [𝑚],

dist(𝑏 ′
𝑖
, 𝑏 ′
𝑖′) > 𝑤 . As a consequence, different instance of the OPPRF

for different 𝑏 ′
𝑖
and 𝑏 ′

𝑖′ in the same BT′ may yield the same result if

both points lie close enough to the same point in B̃T. In turn, this al-

lows Client to learn whether or not a point close to 𝑏 ′
𝑖
and 𝑏 ′

𝑗
(either

real biometric point or chaff point) exists in B̃T. Though strictly

better than sending HD as a whole to Client, this still reveals some

small amount of information about HD’s structure, which may be

undesirable.

To prevent this, the Client should always be required to prove to
Authenticator usage of sufficiently distant 𝑏 ′

𝑖
and 𝑏 ′

𝑖′ for all distinct

𝑖, 𝑖 ′. Importantly, this proof should not reveal anything about 𝑏 ′
𝑖
and

𝑏 ′
𝑖′ to Authenticator, which can be hard and expensive to achieve

in practice and may significantly complicate the protocol.

Instead, we suggest a simpler approach based on a slightly mod-

ified version of the protocol presented in Section 4.2. Instead of

preventing, it allows Authenticator to detect Client’s malicious be-

havior whenever a Client learns that small piece of information

about HD. Upon detection, a malicious Client device can be black-

listed and banned from the system. This modified version of the

protocol works as follows:

(1) Let S be the set of all points that are not sufficiently close to

any point in B̃T, i.e., if (𝑏, (𝑋,𝑌)) ∉ 𝐿 for some 𝑋 and 𝑌 (see

𝐿 in [Program OPPRF] step in Figure 5), then 𝑏 ∈ S.
(2) Before the start of the protocol Authenticator generates an

additional key 𝐾𝑚 and produces |S| +𝑚 + 𝑛 shares of 𝐾𝑚 in

an𝑚 out of (|S| +𝑚 + 𝑛) Shamir secret sharing scheme.

(3) 𝐿 in [Program OPPRF] step of Figure 5 is augmented to

also include every element in S. Each 𝑏 ∈ S is programmed

with a distinct random pair (𝑋,𝑌) ∈ F2.
(4) All elements in the new augmented 𝐿 are also programmed

with a secret share of 𝐾𝑚 restricted that: for all (𝑏𝑖 , (𝑋𝑖 , 𝑌𝑖))
and (𝑏𝑖′, (𝑋𝑖′, 𝑌𝑖′)) in 𝐿, if (𝑋𝑖 , 𝑌𝑖) = (𝑋𝑖′, 𝑌𝑖′), then 𝑏𝑖 and 𝑏𝑖′
are programmed to yield the same share of 𝐾𝑚 .

(5) Conversely, for all (𝑏𝑖 , (𝑋𝑖 , 𝑌𝑖)) and (𝑏𝑖′, (𝑋𝑖′, 𝑌𝑖′)) in 𝐿, if
(𝑋𝑖 , 𝑌𝑖) ≠ (𝑋𝑖′, 𝑌𝑖′), then 𝑏𝑖 and 𝑏𝑖′ are programmed to yield

different shares of 𝐾𝑚 .

The basic idea behind this approach is that any honest Client
authentication terminal that follows the protocol will always re-

ceive𝑚 secret shares [𝐾𝑚] and will be able to reconstruct it and

prove knowledge of 𝐾𝑚 to Authenticator irrespective of whether
the user succeeded in authenticating herself using the biometric.

On the other hand, a Client authentication terminal that cheats

by selecting 𝑏 ′
𝑖
and 𝑏 ′

𝑗
close to each other and learns that in fact

a corresponding point exists in B̃T (because both of them return

the same (𝑋,𝑌) pair) will also be unable to reconstruct 𝐾𝑚 . This

client will obtain at most𝑚 − 1 shares of 𝐾𝑚 , because at least one

of the shares will be repeated. Hence, the Client will fail to prove

knowledge of𝐾𝑚 . Therefore,Authenticator is able to detect this ma-

licious behavior and block/ban the malicious Client authentication
terminal accordingly.

6 IMPLEMENTATION AND EVALUATION

To evaluate OE’s practicality, we implement a prototype of an

OE-based authentication system using fingerprint biometrics. This

section describes this implementation and respective evaluation.

6.1 Fingerprint Pre-Processing & Parameters

Pre-processing and extraction procedures generate a biometric tem-

plate BT from a fingerprint image. As discussed in Section 2, each

data point in BT is the position and orientation (𝑥𝑖 , 𝑦𝑖 , 𝜃) of a fin-
gerprint minutiae. To extract the BT we use NIST Biometric Image

Software (NBIS) [24]. NBIS returns a set of identified minutiae

points with corresponding confidence levels. From NBIS output,

we select 20 points with the highest confidence and encode them

as data points in F. Following the FV implementation guidelines

9

Figure 6: Fingerprint pre-processing and feature extraction

examples highlighting identified minutiae points in white

squares.

.

from [25] and [26], in our prototype, we implement OE using the

following set of public parameters Φ = (𝑚,𝑛,𝑑, F,M, dist, w):

• Number of minutiae𝑚 = 20;

• Number of chaff points 𝑛 = 200;

• Polynomial degree 𝑑 = 9;

• F is a prime field with prime of at least 128 bits;

• Distance threshold𝑤 = 20;

• The distance function used to compare fingerprint features

(based on the empirical characterization from [26]) and gen-

erate the sets is given by:

𝐷 (𝑏𝑖 , 𝑏 𝑗) =
√︃
(𝑥𝑖 − 𝑥 𝑗)2 + (𝑦𝑖 − 𝑦 𝑗)2+

0.2 ×𝑚𝑖𝑛(|𝜃𝑖 − 𝜃 𝑗 |, 360 − |𝜃𝑖 − 𝜃 𝑗 |)
(13)

The OE polynomial degree is set to 9 (also based on [26]). Finite

field polynomial operations were implemented using the Number

Theory Library (NTL) [27].

In Auth, points are matched from HD based on their distance

to minutiae points in the new template BT′ sampled from the user.

Similar to [26], we the distance function between 𝑝𝑖 ∈ HD and

𝑝 ′
𝑗
∈ BT′ defined as in Equation 13. These parameters must be

empirically calibrated to yield the best accuracy results. We rely

on these parameters based the work by Nandakumar et al. [26],

that focuses on biometric matching accuracy with FVs. To improve

accuracy results for noisy fingerprint readings before extracting the

template, during the biometric sampling, we also run the fingerprint

pre-alignment algorithm from [28]. Figure 6 illustrates the result

of the template extraction for two pre-aligned fingerprint images.

White squares highlight the 𝑛 = 20 minutiae points detected in

these fingerprints.

Remark 4:We implement our own BT extraction for the sake of
completeness, so as to have a fully working prototype and report on

its accuracy. We stress that there is no difference in the accuracy of
oblivious versus regular FVs, which is determined by the underlying
biometric pre-processing techniques. These techniques are orthogonal
and not affected by our work.

6.2 Performance Analysis

Setup: Results presented in this section reflect measurements per-

formed on an Intel Core i7-3770 octa-core CPU @3.40GHz, with

16GB of RAM, running Linux (Ubuntu 18.04LTS).Client andAuthenticator
were implemented as independent processes communicating though

TCP sockets. An artificial delay of 10 milliseconds is introduced in

order to simulate a typical communication delay for a local area

network (LAN).

Protocol Avg. Time Std. Dev.

OE𝐺𝐸𝑁 (User Enrollment) 945.9 ms 24.1 ms

OE𝑂𝑃𝐸𝑁 (User Authentication) 1.2 s 0.1 s

Table 1: Total execution times for OE protocols.

Operation Avg. Time Std. Dev.

OPPRF (Authenticator) 340 ms 71 ms

Network delay (2 LAN RTTs) 20 ms none

Poly. Interpolations (Client) 876 ms 26.2 ms

Table 2: Break-down of operations inOE𝑂𝑃𝐸𝑁 for parameters

specified in Section 6.1.

Our protocol has two main costs, the OPPRF and the Client
performing interpolation. We implement the OPPRF based on the

protocol of [29] with optimizations provided by [30, 31]. The re-

sulting overhead is that a OPPRF with 𝑛 programmed points has

communication overhead of 32 ∗ 1.3 ∗ 𝑛 bytes plus a small setup

cost of [31]. Using the parameter specified above this results in

programming approximately 𝑛 = 154000 points with an overhead

5.6MB per authentication and requires 0.34 seconds. The successive

interpolation operations to reconstruct 𝑘 take on average 876ms

for the selected parameters.

Accuracy of the underlying biometric matching is not affected

by our use-case. Improving its accuracy is an orthogonal effort.

Nonetheless, for completeness, we report on the accuracy consid-

ering the implementation used in our prototype. Similar accuracy

analysis for biometric matching using fuzzy vaults (also considering

other biometrics modalities) can be found in [12, 25, 26]. We report

on our prototype’s accuracy considering metrics for:

• Genuine Acceptance Rate (GAR): Percentage of biometric

samples correctly matched to other samples acquired from

the same biometric.

• False Acceptance Rate (FAR): Percentage of biometric

samples incorrectly matched to any sample not acquired

from the same biometric.

We conducted accuracy experiments using FVC2000 publicly avail-

able
4
fingerprint database. FVC2000 includes multiple fingerprint

4
Database and further information available at: http://bias.csr.unibo.it/fvc2000/.

10

http://bias.csr.unibo.it/fvc2000/

images (10 different noisy images of each fingerprint) acquired

using 4 types of low-cost biometric sensors. As discussed in Sec-

tion 2.3, the polynomial degree allows configuring the number of

matching data points in two biometric samples necessary to con-

sider that the samples belong to the same user. Therefore, accuracy

results are presented as a function of FV polynomial degree in

Table 3.

Polynomial Degree (d) GAR FAR

5 97.70% 21.93%

6 93.96% 11.48%

7 89.65% 4.84%

8 86.20% 2.04%

9 80.17% 0

10 70.68% 0

Table 3:OE𝑂𝑃𝐸𝑁 accuracy as a function of polynomial degree

According to the results in Table 3, for a security-critical task

such as authentication, an ideal choice would be degree 9 with zero

false acceptances. The same degree results in GAR of 80%, meaning

that 1 out of 5 times a genuine user would be rejected and required

to attempt authentication again.

7 RELATEDWORK

Confidentiality of biometrics has been widely studied over the last

decade. These works resulted in cryptographic schemes that can

be used as building blocks in systems utilizing biometrics. Fuzzy

Vaults (FVs) [16] were developed (and implemented in [32]) to

ensure privacy of reference biometric templates (BTs). An FV gen-

erates random looking data from BTs, only storing such data (HD)
in the backends, and is still able to authenticate users from HD.
Subsequently, the notion of Fuzzy Extractors (FE) was formalized,

and derived from secure sketches [17], and also applied to biomet-

rics [33]. Most FV/FE provide statistical security. Computational

FE schemes were only recently introduced [34]. These computa-

tional FE schemes rely on hardness of the Learning With Errors

(LWE) problem. FE re-usability was identified as an important is-

sue to ensure security for repeated usage with the same biometric.

Re-usability enables one to extract multiple HD from the same

biometric without leaking any additional information. Not every

FE/FV can be reused and still ensure security (illustrated in [8, 9]).

In fact, from the two Helper Data HD-1 and HD-2, created with

two instances of the scheme on the same biometric, an attacker

can learn the original biometric inputs. New (indistinguishability

based) definitions for re-usability were presented [35] and theoret-

ical analysis demonstrated that the computational FE scheme in

[34] is not (weakly or strongly) reusable.

Secure two/multi-party computation (2PC/MPC) protocols en-

able mutually distrusting parties to compute functions of their

private inputs, while guaranteeing output correctness and input

privacy, against misbehaving parties. 2PC/MPC has become in-

creasingly practical over the past three decades [36–47] with both,

generic (that allow evaluation of any computable function) and

function-specific methods. SNUSE [25] used MPC in the context

of biometric-based authentication to address the FV re-enrollment

issue, i.e., how to refresh users’ cryptographic keys without requir-

ing active user participation to re-sample the BT. In SNUSE secret

sharing and MPC, in the honest-but-curious model, are used to en-

able non-interactive re-enrollment in biometric authentication sys-

tems based on FV/FE. It focuses on biometric template privacy and

non-interactive re-enrollment, hence, it does not target oblivious

authentication using FE, which is the core focus of this paper. Other
approaches [48–50] use 2PC/MPC to verify whether a biometric

(e.g., a face) exists in a database, a problem commonly referred to as

“identification”. We target the related yet different problem of oblivi-

ous authentication with template privacy “vis-a-vis” Authenticator,
which demands not only oblivious fuzzy matching of templates,

but also subsequent key agreement for cryptographic operations

(e.g.,challenge-response protocols, decryption).

The problem of strengthening password-based user authenti-

cation has also been well-studied under the common umbrella of

Password-Authenticated Key Agreement (PAKE) protocols [51–55].

Since they work with passwords, PAKE protocols typically rely on

Client and Authenticator sharing and storing the exact same secret

(either in clear or hashed form). Therefore, they are not appropriate

for authentication using biometrics, in which Authenticator and
Client inputs are always slightly different. To enable authentication
from noisy versions of a common secret, as in the case of biometric-

based authentication, the notion of fuzzy PAKE (fPAKE) protocols

was introduced in [56]. However, fPAKE protocols do not handle

the case where the reference secret (e.g., the biometric) must also be

cryptographically protected when stored at the Authenticator. We

believe OE bridges this gap by enabling oblivious biometric-based

authentication from HD, instead of requiring a reference BT to be

stored in clear by Authenticator.

8 CONCLUSION

In this work we defined a new primitive called Oblivious Extractor

(OE). We argued that OEs could be used to enhance the security

of existing biometric-based authentication systems and provide

examples of such applications. Finally we proposed, implemented,

and evaluated a concrete construction for OEs.
There remain several possibilities for future work. Specifically,

we believe that further improving the computation and communica-

tion costs of our scheme is a relevant direction, that would increase

the chances of practical adoption. We also highlight the possibil-

ity of proposing OEs that are provably secure from other fuzzy

extractor assumptions (e.g., computational). Our security analysis

focused on passive adversaries with covert security against mali-

cious clients. While we believe this adversary model covers security

requirements of many practical biometric-based authentication set-

tings, developing a protocol secure in the malicious model would

be interesting from a theoretical perspective, and a promising fu-

ture direction. Finally, it would be interesting to study the different

practical settings in which oblivious extractors may be useful.

REFERENCES

[1] W. Post, “5.6 million fingerprints stolen in cyberattack.” https:

//www.washingtonpost.com/news/the-switch/wp/2015/09/23/

opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches/

?noredirect=on&utm_term=.669777a1e5ce (accessed 2018-12-03).

11

https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches/?noredirect=on&utm_term=.669777a1e5ce
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches/?noredirect=on&utm_term=.669777a1e5ce
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches/?noredirect=on&utm_term=.669777a1e5ce
https://www.washingtonpost.com/news/the-switch/wp/2015/09/23/opm-now-says-more-than-five-million-fingerprints-compromised-in-breaches/?noredirect=on&utm_term=.669777a1e5ce

[2] CNN, “Alleged breach of india’s biometric database could put

1.2bn users at risk.” https://www.cnn.com/2018/01/11/asia/

india-security-breach-biometric-database-intl/index.html (accessed 2018-

12-03).

[3] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong

keys from biometrics and other noisy data,” in International conference on the
theory and applications of cryptographic techniques, pp. 523–540, Springer, 2004.

[4] C. Rathgeb and A. Uhl, “Statistical attack against iris-biometric fuzzy commitment

schemes,” in CVPR 2011 WORKSHOPS, pp. 23–30, IEEE, 2011.
[5] B. Tams, P. Mihăilescu, and A. Munk, “Security considerations in minutiae-based

fuzzy vaults,” IEEE Transactions on Information Forensics and Security, vol. 10,
no. 5, pp. 985–998, 2015.

[6] D. Apon, C. Cho, K. Eldefrawy, and J. Katz, “Efficient, reusable fuzzy extrac-

tors from lwe,” in International Conference on Cyber Security Cryptography and
Machine Learning, pp. 1–18, Springer, 2017.

[7] X. Boyen, “Reusable cryptographic fuzzy extractors,” in Proceedings of the 11th
ACM Conference on Computer and Communications Security, CCS ’04, (New York,

NY, USA), pp. 82–91, ACM, 2004.

[8] M. Blanton and M. Aliasgari, “On the (non-)reusability of fuzzy sketches and

extractors and security in the computational setting,” in Proceedings of the Inter-
national Conference on Security and Cryptography, pp. 68–77, July 2011.

[9] M. Blanton and M. Aliasgari, “Analysis of reusability of secure sketches and

fuzzy extractors,” IEEE Transactions on Information Forensics and Security, vol. 8,
pp. 1433–1445, Sept 2013.

[10] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu, “Practical multi-

party private set intersection from symmetric-key techniques,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1257–1272, 2017.

[11] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,

pp. 612–613, 1979.

[12] Y. J. Lee, K. Bae, S. J. Lee, K. R. Park, and J. Kim, “Biometric key binding: Fuzzy

vault based on iris images,” in International Conference on Biometrics, pp. 800–808,
Springer, 2007.

[13] A. Kumar and A. Kumar, “Development of a new cryptographic construct using

palmprint-based fuzzy vault,” EURASIP Journal on Advances in Signal Processing,
vol. 2009, pp. 1–11, 2009.

[14] Y. Wang and K. N. Plataniotis, “Fuzzy vault for face based cryptographic key

generation,” in 2007 Biometrics Symposium, pp. 1–6, IEEE, 2007.

[15] https://fidoalliance.org/ (accessed 2020-01-10).

[16] A. Juels and M. Sudan, “A fuzzy vault scheme,” Des. Codes Cryptography, vol. 38,
pp. 237–257, Feb. 2006.

[17] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How to gener-

ate strong keys from biometrics and other noisy data,” SIAM journal on computing,
vol. 38, no. 1, pp. 97–139, 2008.

[18] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and set inter-

section,” in International conference on the theory and applications of cryptographic
techniques, pp. 1–19, Springer, 2004.

[19] C. Hazay and Y. Lindell, “Efficient protocols for set intersection and pattern

matching with security against malicious and covert adversaries,” in Theory of
Cryptography Conference, pp. 155–175, Springer, 2008.

[20] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function with applica-

tions to adaptive ot and secure computation of set intersection,” in Theory of
Cryptography Conference, pp. 577–594, Springer, 2009.

[21] E. De Cristofaro, J. Kim, and G. Tsudik, “Linear-complexity private set intersection

protocols secure in malicious model,” in International Conference on the Theory
and Application of Cryptology and Information Security, pp. 213–231, Springer,
2010.

[22] E. De Cristofaro, P. Gasti, and G. Tsudik, “Fast and private computation of cardi-

nality of set intersection and union,” in International Conference on Cryptology
and Network Security, pp. 218–231, Springer, 2012.

[23] Y. Lindell, “How to simulate it–a tutorial on the simulation proof technique,”

Tutorials on the Foundations of Cryptography, pp. 277–346, 2017.
[24] K. Ko, “User’s guide to nist biometric image software (nbis),” NIST Interagency/In-

ternal Report (NISTIR)-7392, 2007.
[25] I. D. O. Nunes, K. Eldefrawy, and T. Lepoint, “Snuse: A secure computation

approach for large-scale user re-enrollment in biometric authentication systems,”

Future Generation Computer Systems, 2019.
[26] K. Nandakumar, A. K. Jain, and S. Pankanti, “Fingerprint-based fuzzy vault:

Implementation and performance,” IEEE transactions on information forensics and
security, vol. 2, no. 4, pp. 744–757, 2007.

[27] V. Shoup, “Ntl: A library for doing number theory,” www.shoup.net/ntl/, 2001.
[28] B. Tams, “Absolute fingerprint pre-alignment in minutiae-based cryptosystems,”

in 2013 International Conference of the BIOSIG Special Interest Group (BIOSIG),
pp. 1–12, Sept 2013.

[29] P. Rindal and P. Schoppmann, “VOLE-PSI: fast OPRF and circuit-psi from vector-

ole,” Eurocrypt, vol. 2021.
[30] M. R. N. T. Gayathri Garimella, Benny Pinkas and A. Yanai, “Oblivious key-value

stores and amplification for privateset intersection,” Crypto, vol. 2021.

[31] S. R. Geoffroy Couteau and P. Rindal, “Silver: Silent vole and oblivious transfer

from hardness of decoding structured ldpc codes,” Crypto, vol. 2021.
[32] K. Nandakumar, A. K. Jain, and S. Pankanti, “Fingerprint-based fuzzy vault:

Implementation and performance,” IEEE Transactions on Information Forensics
and Security, vol. 2, pp. 744–757, Dec 2007.

[33] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith, “Secure remote authenti-

cation using biometric data,” in Proceedings of the 24th Annual International Con-
ference on Theory and Applications of Cryptographic Techniques, EUROCRYPT’05,
(Berlin, Heidelberg), pp. 147–163, Springer-Verlag, 2005.

[34] B. Fuller, X. Meng, and L. Reyzin, “Computational fuzzy extractors,” in Advances
in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and
Application of Cryptology and Information Security, Bengaluru, India, December
1-5, 2013, Proceedings, Part I, pp. 174–193, 2013.

[35] D. Apon, C. Cho, K. Eldefrawy, and J. Katz, “Efficient, reusable fuzzy extractors

from LWE,” in Cyber Security Cryptography and Machine Learning - First Interna-
tional Conference, CSCML 2017, Beer-Sheva, Israel, June 29-30, 2017, Proceedings,
pp. 1–18, 2017.

[36] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” in

Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pp. 218–229, ACM, 1987.

[37] A. C.-C. Yao, “How to generate and exchange secrets,” in Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, SFCS ’86, (Washington,

DC, USA), pp. 162–167, IEEE Computer Society, 1986.

[38] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-

cryptographic fault-tolerant distributed computation,” in Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC ’88, (New York, NY,

USA), pp. 1–10, ACM, 1988.

[39] D. Chaum, C. Crépeau, and I. Damgard, “Multiparty unconditionally secure

protocols,” in Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, (New York, NY, USA), pp. 11–19, ACM, 1988.

[40] D. Beaver, Foundations of Secure Interactive Computing, pp. 377–391. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1992.

[41] G. Asharov, Y. Lindell, and T. Rabin, Perfectly-Secure Multiplication for Any t < n/3,
pp. 240–258. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[42] Z. Beerliová-Trubíniová and M. Hirt, Perfectly-Secure MPC with Linear Communi-
cation Complexity, pp. 213–230. Berlin, Heidelberg: Springer Berlin Heidelberg,

2008.

[43] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure multi-party

computation,” in Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’96, (New York, NY, USA), pp. 639–648, ACM, 1996.

[44] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally composable two-

party and multi-party secure computation,” in Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing, STOC ’02, (New York, NY,

USA), pp. 494–503, ACM, 2002.

[45] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from

somewhat homomorphic encryption,” in Proceedings of the 32Nd Annual Cryptol-
ogy Conference on Advances in Cryptology — CRYPTO 2012 - Volume 7417, (New
York, NY, USA), pp. 643–662, Springer-Verlag New York, Inc., 2012.

[46] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, Practical
Covertly Secure MPC for Dishonest Majority – Or: Breaking the SPDZ Limits, pp. 1–
18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[47] D.W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen, “Maturity and performance

of programmable secure computation,” IEEE Security & Privacy, vol. 14, no. 5,
pp. 48–56, 2016.

[48] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft, “Privacy-

preserving face recognition,” in International symposium on privacy enhancing
technologies symposium, pp. 235–253, Springer, 2009.

[49] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-preserving face

recognition,” in International Conference on Information Security and Cryptology,
pp. 229–244, Springer, 2009.

[50] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “Scifi-a system for secure

face identification,” in 2010 IEEE Symposium on Security and Privacy, pp. 239–254,
IEEE, 2010.

[51] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key exchange se-

cure against dictionary attacks,” in International conference on the theory and
applications of cryptographic techniques, pp. 139–155, Springer, 2000.

[52] S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-based proto-

cols secure against dictionary attacks,” 1992.

[53] V. Boyko, P. MacKenzie, and S. Patel, “Provably secure password-authenticated

key exchange using diffie-hellman,” in International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 156–171, Springer, 2000.

[54] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P.MacKenzie, “Universally composable

password-based key exchange,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 404–421, Springer, 2005.

[55] R. Gennaro, “Faster and shorter password-authenticated key exchange,” in Theory
of Cryptography Conference, pp. 589–606, Springer, 2008.

[56] P.-A. Dupont et al., “Fuzzy password-authenticated key exchange,” in EURO-
CRYPT, pp. 393–424, Springer, 2018.

12

https://www.cnn.com/2018/01/11/asia/india-security-breach-biometric-database-intl/index.html
https://www.cnn.com/2018/01/11/asia/india-security-breach-biometric-database-intl/index.html
https://fidoalliance.org/

	Abstract
	1 Introduction
	1.1 Design Principles

	2 Preliminaries
	2.1 Biometric Template Matching
	2.2 Shamir's Secret Sharing
	2.3 Fuzzy Vault Scheme
	2.4 Oblivious Programmable PRF

	3 Oblivious Extractor: Intuition
	4 Oblivious Extractor in Detail
	4.1 Definitions
	4.2 Construction

	5 Security Analysis
	5.1 Active Malicious Authenticator
	5.2 Active Malicious Client

	6 Implementation and Evaluation
	6.1 Fingerprint Pre-Processing & Parameters
	6.2 Performance Analysis

	7 Related Work
	8 Conclusion
	References

