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Abstract

Secure multiparty computation can often utilize a trusted source of correlated random-
ness to achieve better efficiency. A recent line of work, initiated by Boyle et al. (CCS 2018,
Crypto 2019), showed how useful forms of correlated randomness can be generated using a
cheap, one-time interaction, followed by only “silent” local computation. This is achieved via
a pseudorandom correlation generator (PCG), a deterministic function that stretches short
correlated seeds into long instances of a target correlation. Previous works constructed con-
cretely efficient PCGs for simple but useful correlations, including random oblivious transfer
and vector-OLE, together with efficient protocols to distribute the PCG seed generation.
Most of these constructions were based on variants of the Learning Parity with Noise (LPN)
assumption. PCGs for other useful correlations had poor asymptotic and concrete efficiency.

In this work, we design a new class of efficient PCGs based on different flavors of the
ring-LPN assumption. Our new PCGs can generate OLE correlations, authenticated multi-
plication triples, matrix product correlations, and other types of useful correlations over large
fields. These PCGs are more efficient by orders of magnitude than the previous constructions
and can be used to improve the preprocessing phase of many existing MPC protocols.
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1 Introduction

Correlated secret randomness is a commonly used resource for secure multi-party computation
(MPC) protocols. Indeed, simple kinds of correlations enable lightweight MPC protocols even
when there is no honest majority. For instance, an oblivious transfer (OT) correlation supports
MPC for Boolean circuits [GMW87,Kil88,IPS08,NNOB12], while oblivious linear-function eval-
uation1 (OLE), an arithmetic variant of OT, supports MPC for arithmetic circuits [NP99,IPS09].
Other useful types of correlations include multiplication triples [Bea91] and truth-table correla-
tions [IKM+13,DNNR17,Cou19]. Finally, authenticatedmultiplication triples serve as a powerful
resource for achieving security against malicious parties [BDOZ11,DPSZ12].

A common paradigm in modern MPC protocols is to utilize the above kinds of correlations
in the following way. In a preprocessing phase, before the inputs are known, the parties use an
offline protocol to generate many instances of the correlation. These instances are then consumed
by an online protocol to securely compute a function of the secret inputs. This approach is
appealing because of the high efficiency of the online protocol. Indeed, with the above simple
correlations, the online communication and computation costs are comparable to the size of the
circuit being evaluated. The price one pays for the fast online protocol is a much slower and
higher-bandwidth offline protocol. Even simple types of correlated randomness are expensive to
generate in a secure way. This high cost becomes even higher when aiming for security against
malicious parties.

Recently, a promising approach for instantiating the preprocessing phase of MPC protocols
was suggested in [BCGI18,BCG+19b], relying on a new primitive called a pseudorandom corre-
lation generator (PCG). Consider a target two-party correlation C, typically consisting of many
independent instances of a simple correlation as above. A PCG for C consists of two algorithms:
Gen(1λ), which given a security parameter λ generates a pair of short, correlated seeds (k0, k1),
and Expand(kσ), which deterministically stretches a seed kσ to a long output Rσ. The intuitive
security requirement is that the joint outputs (R0, R1) of the above process cannot be distin-
guished from C not only by an outsider, but also by an insider who learns one of the two seeds.
PCGs naturally lead to protocols with an appealing silent preprocessing feature, by breaking
the offline phase into two parts:

1. Setup. The parties run a secure protocol to distribute the seed generation of Gen. Since
Gen has low computational cost and short outputs, this protocol only involves a small
amount of communication, much smaller than the output of C. Each party stores its own
short seed kσ for later use.

2. Silent expansion. Shortly before the online phase, the parties use Expand to generate
long pseudorandom correlated strings (R0, R1) to be consumed by the online protocol.
This part is referred to as silent, since it involves no communication.

Beyond the potential improvement in the total offline communication and computation, this
blueprint has two additional advantages. First, it can substantially reduce the storage cost
of correlated randomness by enabling efficient compression. Indeed, the parties can afford to
generate and store many correlated seeds, possibly with different sets of parties, and expand
them just before they are needed. Second, the cost of protecting the offline protocol against
malicious parties is “amortized away,” since it is only the small setup part that needs to be
protected. A malicious execution of Expand is harmless.

The work of Boyle et al. [BCG+19b] constructed efficient PCGs for several kinds of useful
correlations based on different assumptions that include variants of Learning Parity with Noise
(LPN) [BFKL94] and Learning With Errors (LWE) [Reg05]. While the LPN-based PCG for OT

1An OLE correlation over a finite field F is a two-party correlation (r0, r1) where r0 = (a, b) is uniform over
F2 and r1 = (x, ax+ b) for x ∈R F.
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from [BCG+19b] has very good concrete efficiency, making it a practically appealing approach
for generating many OTs [BCG+19a], this is not the case for other useful correlations such as
OLE or authenticated multiplication triples. For these correlations, two different constructions
were proposed in [BCG+19a]. Both are “practically feasible” but quite inefficient. In the first
construction, based on homomorphic secret sharing from ring-LWE [BGI16a,BGI17,BCG+17,
BKS19], the seed expansion can be at most quadratic due to the use of a pseudorandom generator
with algebraic degree 2. In concrete terms, the seeds are several GBs long and can only be
expanded by around 6x, giving far too much overhead for most applications. Their second
construction is based directly on LPN, and has computational cost of at least Ω(N2) for output
length N , which is impractical for large N .

1.1 Our contributions

In this work, we present efficient new PCG constructions for several widely used correlations for
which previous techniques had poor concrete efficiency.

Silent OLE and multiplication triple generation. Our main construction gives the first
concretely efficient PCG for OLE over big finite fields F. This PCG is based on a variant of
the ring-LPN assumption over F, makes a black-box use of F, and has poly(λ) · logN seed size
and poly(λ) · Õ(N) computational cost for expanding the seeds into N instances of OLE. This
PCG gives both an asymptotic and concrete improvement over the LPN-based construction
from [BCG+19b].

We also show how to modify our PCG for OLE to produce multiplication triples and authen-
ticated triples, used in maliciously secure MPC protocols like SPDZ [DPSZ12]. This incurs an
extra overhead of only around a factor of two in seed size, seed generation, and silent expansion
time. Finally, we extend the main construction to other types of useful correlations, including
matrix products and circuit-dependent correlations.

Technically, one of our main innovations here is showing how to avoid the Ω(N2) blowup
from the previous LPN-based PCG for OLE from [BCG+19b]. Our method of doing this requires
switching from unstructured LPN to ring-LPN over a certain kind of polynomial rings. This is
analogous to early fully homomorphic encryption schemes, where switching from a construction
based on LWE [BV11a] to one based on ring-LWE [BV11b] reduced the ciphertext expansion in
multiplication from quadratic to linear. A key difference between LWE-based constructions and
LPN-based constructions over a big field F is the noise distribution: Gaussian in the former and
low Hamming weight noise in the latter. With LPN-style noise distribution more care is needed,
and some natural PCG candidates based on Reed-Solomon codes can indeed be broken.

Concrete efficiency. Our PCGs have attractive concrete efficiency features. To give a couple
of data points, in the case of OLE the parties can store a pair of seeds of size 1.25MB each, and
expand them on demand to produce over a million OLEs (of size 32MB, 26x larger than the
seeds) in Zq, where q is the product of two 62-bit primes,2 with 128-bit security. When running
on a single core of a modern laptop, we estimate this takes under 10 seconds, resulting in a
throughput of over 100 thousand OLEs per second. To produce authenticated triples instead
of OLE, the expansion cost roughly doubles, giving 50 thousand triples per second, while the
seed size increases to 2.6MB. For comparison, estimates from [BCG+19b] for their PCG for
producing authenticated triples gave a throughput of up to 7 thousand per second, but this was
only possible when generating an enormous batch of 17GB worth of triples, with 3GB seeds.
See below for comparison with non-silent correlation generation techniques.

2Our construction works in any sufficiently large finite field, or modulus that is a product of primes via the
CRT. We estimated costs with a product of two primes due to better software support.
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Efficient setup protocols. Recall that to avoid a trusted setup, one typically needs a setup
protocol to securely distribute the PCG seed generation. We present concretely efficient setup
protocols for OLE and authenticated triples, with both semi-honest and malicious security. The
protocols make black-box use of lightweight cryptographic primitives, as well as of generic MPC
protocols for performing binary and arithmetic computations on secret-shared values.

In practice, our PCGs and setup protocols can be used in a bootstrapping mode, where a
portion of the PCG outputs are reserved to be used as correlated randomness for the setup
procedure of the next PCG seeds. This means that the vast majority of the setup cost is
amortized away over multiple instances. Concretely, we estimate that when bootstrapped in this
way, the setup phase for a PCG of one million authenticated triples requires only around 4.2MB
of communication per party, to produce 32MB worth of triples. The initial setup protocol for
the first PCG (before bootstrapping can take place) requires around 25000 authenticated triples,
plus some additional correlated randomness (OT and VOLE). This should be feasible to produce
in under a minute (although with high communication cost) using standard protocols such as
MASCOT [KOS16] or Overdrive [KPR18], and previous PCG protocols for OT and VOLE with
malicious security [BCG+19a].

Compared with non-silent secure correlation generation protocols, we expect the overall
computational cost of our approach to be comparable with state-of-the-art protocols based on
homomorphic encryption [KPR18,JVC18,HIMV19], but with much lower communication costs.
For instance, in the case of authenticated multiplication triples, the Overdrive protocol [KPR18]
can produce around 30 thousand triples per second with malicious security. This is similar to our
PCG expansion phase (modulo different hardware, environment, and so on), with the significant
difference that Overdrive requires almost 2GB of communication to produce the triples. In
comparison, our amortized 4.2MB communication complexity is over two orders of magnitude
smaller, with the additional benefit that our short correlated seeds can be easily stored for
on-demand silent expansion.

Extension to other correlations and multiple parties. Beyond multiplication triples,
it can be useful to have more general “degree-two” correlations, such as inner-product triples,
matrix-multiplication triples, or circuit-dependent multiplication triples [Cou19,BNO19,BGI19].
We use our PCG for OLE to obtain PCGs for these kinds of correlations, by exploiting a
special “programmability” feature that enables reusing the same PCG output in multiple in-
stances [BCG+19b]. This gives us a way to produce many independent instances of any degree-
two correlation (a vast generalization of OLE and multiplication triples), with seed size that
grows sublinearly with the total number of instances. Useful special cases include the types
of correlations mentioned above. This construction has a bigger overhead than our PCG for
OLE, and in practice seems mainly suited for small correlations such as low-dimensional matrix
products. However, these can still be useful in larger computations which involve a lot of linear
algebra or other repeated sub-computations.

We can also use same programmability feature of our 2-party PCGs to extend them to
the multi-party setting. This yields practical multi-party PCGs for multiplication triples that
enable an online passively-secure MPC protocol for arithmetic circuits whose cost scales linearly
(rather than quadratically) with the number of parties. This transformation to the multi-party
case, which originates from [BCG+19b], does not scale well to correlations with degree higher
than 2. As a result, we do not get a multi-party PCG for authenticated triples (a degree-three
correlation) with the same level of efficiency.

Security of ring-LPN. Our constructions rely on variants of the ring-LPN assumption over
non-binary fields. Binary ring-LPN [HKL+12] is a fairly standard assumption that withstood a
significant amount of cryptanalysis. However, since we also use relatively unexplored variants
over different rings, we give a thorough survey of known attacks, and analyze the best strategies
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that apply to our setting. We find that there are only one or two additional attack possibilities
from the additional structure we introduce, and these are easily countered with a small increase
in the number of errors.

More precisely, settling for a PCG that generates a single OLE instance over a large ring
of degree-N polynomials, our construction can be based on a conservative variant of ring-LPN
where the modulus is irreducible. A big ring-OLE correlation can then be converted into N
independent instances of standard OLE by communicating O(N) field elements. For generating
silent OLE over Fp, we instead rely on a variant of ring-LPN where the modulus splits completely
into N linear factors. In practice, this requires using larger parameters and increases the cost of
our protocols by around a factor of two, compared with irreducible ring-LPN.

1.2 Changes Since Publication at CRYPTO 2020

This article has undergone a major revision since its original publication. As well as various
minor improvements and clarifications, there are the following major changes.

• The maliciously secure DPF setup protocol in Section 5.3 has changed, since the original
security proof was flawed, as pointed out by Damiano Abram. The protocol now uses a
different consistency check to fix the issue.

• The DPF setup protocol has also been generalized to work over any (sufficiently large)
finite field, it no longer uses the random oracle model, and the Fc-SUV functionality it
realizes no longer allows the adversary to guess β.

• The cost analysis has been updated to reflect the new protocol. The resulting efficiency
estimates have not changed significantly.

• Some of the security analysis of the ring-LPN assumption has been revised due to minor
bugs. We point out that much of this analysis is based on cost estimates for attacks
that were recently shown in [LWYY22] to be overly conservative. We did not adjust our
parameters to reflect [LWYY22], however, according to their cost models (combined with
our optimizations for exploiting the structure of cyclotomic ring-LPN), our parameter sets
for 80-bit security have between 92–112 bits of security, while our 128-bit parameter sets
have 133–171 bits of security. It therefore seems that our parameters have a comfortable
security margin.

1.3 Technical Overview

Construction from [BCG+19b]. Before describing our PCG for OLE, it is instructive to
recall the PCG for general degree-two correlations by Boyle et al. [BCG+19b], based on LPN.
The goal is to build a PCG for the correlation which gives each party a random vector ~xi,
together with an additive secret share of the tensor product ~x0 ⊗ ~x1. They used the dual form
of LPN over a ring Zp, which states that the distribution{

H,H · ~e
∣∣∣H $← Zm×np , ~e

$← Znp s.t. wt(~e) = t
}

is computationally indistinguishable from uniform, where ~e is a sparse random vector with only
t non-zero coordinates, for some t� n, and m < n.

The idea of the construction is that the setup algorithm gives each party a random sparse
~e0 or ~e1, and computes the tensor product ~e0 ⊗ ~e1, which has at most t2 non-zero coordinates.
This product is then distributed to the parties via function secret sharing (FSS), by generating a
pair of FSS keys for the function that outputs each entry of the product on its respective inputs
from 1 to n2. This function can be written as a sum of t2 point functions, allowing practical
FSS schemes based on distributed point functions [GI14,BGI15,BGI16b]. Note that unlike the
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case of PCGs for OT or Vector-OLE [BCG+19a, SGRR19], here we cannot replace FSS by the
simpler punctured PRF primitive.

Given shares of ~e0⊗~e1 and either ~e0 or ~e1, the parties expand these using LPN, computing:

~x0 = H · ~e0, ~x1 = H · ~e1, ~z = (H · ~e0)⊗ (H · ~e1) = (H ⊗H) · (~e0 ⊗ ~e1)

where ~xi is computed by party Pi, while ~z is computed in secret-shared form, using the shares
of ~e0 ⊗ ~e1 and the formula on the right-hand side.

Notice that both ~x0 and ~x1 are pseudorandom under LPN, which gives the desired correlation.

Optimizations and additional applications. Boyle et al. state the computational com-
plexity of the above as O(n4) operations, due to the tensor product of H with itself. We observe
that the value of (H ·~e0)⊗(H ·~e1) can be read directly from H ·(~e0 ·~eᵀ1) ·Hᵀ, which requires much
less computation and can be made even more efficient if H is a structured matrix, reducing the
computational complexity to Õ(n2). We also describe two variants of the PCG which allow pro-
ducing large matrix multiplication correlations with different parameter tradeoffs. While much
less practical than our main constructions, we present these in Section 10 for completeness.

A first attempt. The problem with the above construction is that it produces an entire
tensor product correlation, which inherently requires Ω(n2) computation. Even if we only want
to compute the diagonal entries of the tensor product output (that is, n OLEs), we do not see
a way to do this any more efficiently.

The bottleneck is computing the n2 entries of ~e0 ⊗ ~e1 to obtain ~z. A natural idea to reduce
the computational complexity is to replace ~e0 and ~e1 by degree-n sparse polynomials e0 and
e1, and ~x0 and ~x1 by, say, n/2 evaluations of e0 and e1 respectively. Then, ~z is computable in
quasilinear time as evaluations of the polynomial product e0 · e1 of degree 2n. This approach
does not give a secure PCG candidate, though, because ~x0 and ~x1 can be efficiently distinguished
from random using algebraic decoding techniques.

An efficient PCG for OLE. Our actual approach follows the same idea, but with the under-
lying code chosen more carefully. Namely, let Rp = Zp[X]/F (X) for some degree N polynomial
F (X), and let e, f be two sparse polynomials in Rp. For a random polynomial a ∈ Rp, the pair

(a, a · e+ f mod F (X))

is pseudorandom under the ring-LPN assumption [HKL+12].
Now, given two pairs of sparse polynomials (e0, e1) and (f0, f1), each product ei ·fj (without

reduction modulo F ) has degree < 2N and only t2 non-zero coefficients. These can again be
distributed to two parties using FSS, but this time the expanded FSS outputs can be computed
in linear time in N , instead of quadratic, since the domain size of the function being shared is
only 2N .

Given shares of ei · fj , similarly to the LPN case, the parties compute expanded outputs by
defining

x0 = a · e0 + f0, x1 = a · e1 + f1, z = ((1, a)⊗ (1, a)) · ((e0, f0)⊗ (e1, f1))

The main difference here is that each tensor product is only of length 2, and can be computed
in Õ(N) time using fast polynomial multiplication algorithms.

This gives a PCG that compresses a single OLE over the ring Rp. To obtain a PCG for OLE
over Zp, we again take inspiration from the fully homomorphic encryption literature, by using
ciphertext-packing techniques [SV14]. We can carefully choose p and F (X) such that F (X)
splits into N distinct, linear factors modulo p. Then Rp is isomorphic to N copies of Zp, and
we can immediately convert a random OLE over Rp into N random OLEs over Zp. This works
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particularly well with cyclotomic rings as used in ring-LWE [LPR13], where we can e.g. use N
a power of two and easily exploit FFTs for polynomial arithmetic.

Extending to authenticated multiplication triples. We show that our construction ex-
tends from OLE to authenticated multiplication triples, as used in the SPDZ protocol for ma-
liciously secure MPC [DPSZ12,DKL+13]. This follows from a simple trick, where we modify
the FSS scheme to additionally multiply its outputs by a random MAC key α ∈ Zp. Since this
preserves sparsity of the underlying shared vector, it adds only at most a factor of two overhead
on top of the basic scheme.

Distributed setup. We focus on the case of OLE correlations over Rp (the setup for authen-
ticated triples is very similar). Recall that the seed of the PCG for OLE consists of t-sparse
degree-N “error” polynomials e0, e1 and f0, f1, and FSS keys for secret-shares of the products
ei ·fj , each represented as a coefficient vector via the sum of t2 point functions fα,β : [2N ]→ Zp.
Each point function corresponds to a single monomial product from ei and fj . The index
α ∈ [2N ] of the nonzero position is the sum of the corresponding nonzero indices, and the
payload β ∈ Zp is the product of the corresponding payloads in ei and fj .

In the semi-honest setting, secure computation of this PCG generation procedure can be
attained directly, using generic 2-PC for simple operations on the α and β values, as well as
black-box use of a protocol for secure computation of FSS key generation, such as the efficient
protocol of Doerner and shelat [Ds17].

For the malicious setting, we would wish to mimic the same protocol structure with underly-
ing 2-PC components replaced with maliciously secure counterparts. The simple 2-PCs on α, β
can be converted to malicious security with relatively minor overhead. The problem is the FSS
key generation, for which efficient maliciously secure protocols currently do not exist. Generic
2-PC of the FSS key generation functionality would require expensive secure evaluations of cry-
tographic pseudorandom generators (PRG). The semi-honest protocol of [Ds17] is black-box in
a PRG; but, precisely this fact makes it difficult to ensure consistency between different steps
in the face of a malicious party.

Note that this is similar to the problem that Boyle et al. faced in [BCG+19a] for silent
OT generation, but their setting was conceptually simpler: There, one party always knew the
position α of the non-zero value of the distributed point function (indeed, for their purpose the
simpler building block of a puncturable pseudorandom function sufficed). Further, they did not
have to assume any correlation between path values, whereas in our setting we require that the
parties behave consistently regarding the path positions and payloads across several instances.

In this work we show how to extend the approach of [BCG+19a] to the context of distributed
point functions, further addressing the mentioned issues.

Our protocol realizes a PCG-type functionality for a scaled unit vector3 with leakage: Given
authenticated values for the location of the non-zero position α ∈ [0..N) and the non-zero payload
β ∈ Zp, the functionality allows a corrupt party to choose its output vector ~y ∈ ZNp and delivers
to the honest party the correct corresponding output ~y− (0, . . . , β, . . . , 0), where β is in the α-th
position. The leakage on α can be captured by allowing the adversary a predicate guess on α.4

In the setting of noise generation for (ring-)LPN, as is the case for our PCG constructions (and
likely future constructions), such leakage is tolerable as, intuitively, this can be accounted for by
slightly increasing the noise rate. Indeed, we prove that this functionality suffices to implement
a protocol securely realizing PCG functionalities, such as the corruptible functionality for OLE

3Note that this corresponds to a distributed point function where we do not require the key setup on its own
to be secure, but only require the protocol to securely implement the FSS functionality including expansion, as
this suffices for using PCGs in the context of secure computation (see also [BCG+19a]).

4In fact, the leakage can be characterized by predicates corresponding to bit-matching with wildcards.
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and authenticated multiplication triples, based on a variant of the ring-LPN assumption that
allows small amount of leakage (only 1 bit on average).

Extensions. A downside of the above construction, compared with the one from LPN, is that
it is restricted to multiplication triples or OLE. It can be useful to obtain other degree-two
correlations such as matrix multiplication triples, which allow multiplying two secret matrices
with only O(n2) communication, instead of O(n3) from naively using individual triples. Another
technique is preprocessing multiplications in a way that depends on the structure of the circuit,
which allows reducing the online cost of 2-PC down to communicating just one field element per
party, instead of two from multiplication triples [Bea92,DNNR17,Cou19,BNO19,BGI19]. This
type of circuit-dependent preprocessing can also be expressed as a degree two correlation.

Our PCG for OLE satisfies a useful “programmability” feature, introduced by Boyle et
al. [BCG+19b], allowing certain parts of the PCG output to be reused across multiple instances.
This is simply due to the fact that we can reuse the polynomials e0, e1 or f0, f1 in the PCG,
without harming security. This allows us to extend the PCG to build more general correla-
tions, by using multiple programmed instances to perform every multiplication in the general
correlation.

We in fact present a more general construction, which, loosely speaking, achieves the fol-
lowing. Given a programmable PCG for some bilinear correlation g, let f be another bilinear
correlation that is computable using linear combinations of outputs of g applied to its input.
Then, we can construct a PCG for f using several copies of the PCG for g, where the number
of instances is given by the complexity of f written as a function of g. This gives a general way
of combining PCGs to obtain correlations of increasing complexity, while allowing for different
complexity tradeoffs by varying the “base” bilinear correlation f .

Multi-party PCGs. As discussed earlier, the programmability feature also immediately al-
lows us to extend our PCGs for OLE and degree-two correlations to the multi-party setting, using
the construction from [BCG+19b]. This does not apply to the PCG for authenticated multi-
plication triples; in Section 7.6, we sketch a possible alternative solution based on three-party
distributed point functions, but these are much less efficient than the two-party setting.

Security analysis of ring-LPN. We use the ring Rp = Zp[X]/F (X), for some degree N
polynomial F (X). There are two main ring-LPN variants we consider, depending on how the
parameters are instantiated. The more conservative is when F (X) is either irreducible in Rp
(hence, Rp is isomorphic to a finite field), or at least when F (X) has only very few low-degree
factors, so Rp has a large subring that is a field. This type of instantiation is similar to previous
recommendations for ring-LPN [HKL+12,GJL15] and post-quantum encryption schemes from
quasi-cyclic codes [MBD+18]. The best known attacks are to solve the underlying syndrome
decoding problem, and the additional ring structure does not seem to give much advantage.
One exception is when a very large number of samples are available, when the ring structure
can in some cases be exploited [BL12]. This does not apply to our setting, however, since our
constructions only rely on ring-LPN with one sample5.

The second variant, which is needed for silent OLE in Fp, is when F (X) splits modulo p into
many distinct factors of low degree. Here, the main attack vector that needs to be considered is
that if fi is some degree-d factor of F (X), then reducing a ring-LPN instance modulo fi gives
a new instance in smaller dimension d, albeit with a different noise distribution. The best case
for the adversary is when fi is of the form Xd + ci, when this reduction does not increase the
Hamming weight of the noise (although, the corresponding error rate goes up). If such sparse
factors exist, then, we must also ensure that the underlying ring-LPN instance in dimension d,
with new noise weight, is hard to solve.

5Or, two samples if security is based on ring-LPN with a uniform (not sparse) secret.
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One way to counter this attack is to choose F (X) to be a product of N random linear factors,
ensuring that any factors of F an adversary can find are likely to be very dense. However, to
improve computational efficiency, it is better to use a cyclotomic polynomial such as F (X) =
XN + 1 with N a power of two, as is common in the ring-LWE setting. In this case, there are
many sparse factors of the form X2i + ci which can be exploited, and we must take these into
account when choosing parameters. The main advantage of performing this reduction is the
vector operations in attacks such as information-set decoding become cheaper, since they are all
in a smaller dimension. This only has a small overall effect on attack complexity, though, since
these algorithms are all exponential in the noise weight. Therefore, to counter the attack, it
suffices to ensure there are enough noisy coordinates in a reduced instance, which requires only
a small increase in noise weight.

Note that for p = 2, this strategy was also considered in Lapin [HKL+12], and it was later
shown that an optimized version of this over F2 reduces security of some Lapin parameter sets
by ≈ 10 bits [GJL15]. Our analysis over Fp is roughly consistent with this.

2 Preliminaries

2.1 Notation

We let λ denote a security parameter, and use the standard definitions of negligible functions,
computational indistinguishability (with respect to nonuniform distinguishers), and pseudoran-
dom generators. We use [0..n) to denote the index set {0, · · · , n−1}, as well as [0..n] = {0, . . . , n}
and [n] = {1, . . . , n}.

Vectors, outer sum and outer product. We use column vectors by default. For two vectors
~u = (u1, . . . , ut), ~v = (v1, . . . , vt) ∈ Rt, for some ring R, we write ~u � ~v to mean the outer sum
given by the length t2 vector (ui + vj)i∈[t],j∈[t]. Similarly, we define the flattened outer product
(or tensor product) to be ~u ⊗ ~v = (ui · vj)i∈[t],j∈[t], that is, the vector (v1 · ~u, . . . , vn · ~u). We
denote the inner product of two vectors by 〈~u,~v〉.

2.2 Function Secret Sharing

Function secret sharing [BGI15,BGI16b] (FSS) is a succinct secret sharing of functions. More
concretely, an FSS scheme randomly splits a secret function f : I → G, where G is some Abelian
group, into two or more functions fi, each represented by a key Ki, such that: (1) the sum of all
function shares fi is equal to f (namely,

∑
i fi(x) = f(x) for every input x ∈ I), and (2) each

subset of the keys Ki hides f . In this work we will use 2-party FSS that we formalize below.

Definition 2.1 (Function Secret Sharing) Let C = {f : I → G} be a class of function
descriptions, where the description of each f specifies the input domain I and an Abelian group
(G,+) as the output domain. A (2-party) function secret sharing (FSS) scheme for C is a pair
of algorithms FSS = (FSS.Gen,FSS.Eval) with the following syntax:

• FSS.Gen(1λ, f) is a PPT algorithm that given security parameter λ and description of
f ∈ C outputs a pair of keys (K0,K1). We assume that the keys specify I and G.

• FSS.Eval(b,Kb, x) is a polynomial-time algorithm that, given a key Kb for party b ∈ {0, 1},
and an input x ∈ I, outputs a group element yb ∈ G.

The scheme should satisfy the following requirements:

• Correctness: For any f ∈ C and x ∈ I, we have Pr[(K0,K1)
$← FSS.Gen(1λ, f) :∑

b∈{0,1} FSS.Eval(b,Kb, x) = f(x)] = 1.

11



• Security: For any b ∈ {0, 1}, there exists a PPT simulator Sim such that for any
polynomial-size function sequence fλ ∈ C, the distributions {(K0,K1)

$← FSS.Gen(1λ, fλ) :

Kb} and {Kb
$← Sim(1λ, Leak(fλ))} are computationally indistinguishable.

In the constructions we use, the leakage function Leak : {0, 1}∗ → {0, 1}∗ is given by Leak(fλ) =
(I,G), namely it outputs a description of the input and output domains of f .

We also define a full-domain evaluation algorithm, FSS.FullEval(b,Kb), which outputs a vec-
tor of |I| group elements, corresponding to running Eval on every element x in the domain I.
For the type of FSS we consider, FSS.FullEval is significantly faster than the generic solution of
running |I instances of Eval.

We will use FSS for point functions and sums of point functions, as defined below.

Definition 2.2 (Distributed Point Function (DPF) [GI14,BGI15]) For an Abelian group
G, α ∈ [n], and β ∈ G, the point function fα,β is the function fα,β : [n] → G defined by
fα,β(x) = 0 whenever x 6= α, and fα,β(x) = β if x = α. A distributed point function (DPF) is
an FSS scheme for the class of point functions {fα,β : [n]→ G | α ∈ [n], β ∈ G}.

The best known DPF construction [BGI16b] can use any pseudorandom generator (PRG)
G : {0, 1}λ → {0, 1}2λ+2 and has the following efficiency features. For m = d log|G|λ+2 e, the key
generation algorithm Gen invokes G at most 2(dlog ne+m) times, the evaluation algorithm Eval
invokes G at most dlog ne+m times, and the full-domain evaluation algorithm FullEval invokes
G at most n · (1 +m) times. The size of each key is at most dlog ne · (λ+ 2) +λ+ dlog2 |G|e bits.

We will use a simple and generic extension of DPF to sums of point functions.

Definition 2.3 (FSS for sum of point functions (SPFSS)) For S = (s1, . . . , st) ∈ [n]t

and ~y = (y1, . . . , yt) ∈ Gt, define the sum of point functions fS,~y : [n]→ G by

fS,~y(x) =

t∑
i=1

fsi,yi(x).

An SPFSS scheme is an FSS scheme for the class of sums of point functions fS,~y.

Note that for S = (s1, . . . , st), the function fS,~y non-zero on at most t points. If the ele-
ments of S are distinct, fS,~y coincides with a multi-point function for the set of points in S;
however, in our usage we can have repeated elements in S. A simple realization of SPFSS is by
summing t independent instances of DPF. This will typically be good enough for our purposes.
Alternatively, asymptotically better constructions for full-domain evaluation can be obtained
using hash functions or (probabilistic) batch codes [IKOS04, BCGI18, ACLS18, SGRR19]. To
simplify notation, when generating keys for a scheme SPFSS = (SPFSS.Gen,SPFSS.Eval), we
write SPFSS.Gen(1λ, S, ~y), instead of explicitly writing fS,~y.

2.3 Pseudorandom Correlation Generators

A pseudorandom correlation generator (PCG) [BCGI18,BCG+19b] is a primitive with a setup
algorithm that generates a pair of seeds, which can then be locally expanded to produce correlated
pseudorandomness. To define security, we use the notions of correlation generators, and reverse-
sampleable correlation generators, from [BCG+19b].

Definition 2.4 (Correlation generator) A PPT algorithm C is called a correlation genera-
tor, if C on input 1λ outputs a pair of elements in {0, 1}n × {0, 1}n for n ∈ poly(λ).
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Definition 2.5 (Reverse-sampleable correlation generator) Let C be a correlation gener-
ator. We say C is reverse sampleable if there exists a PPT algorithm RSample such that for
σ ∈ {0, 1} the correlation obtained via:

{(R′0, R′1) |(R0, R1)
$← C(1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

The following definition of pseudorandom correlation generators can be viewed as a general-
ization of the definition of the pseudorandom VOLE generator in [BCGI18].

Definition 2.6 (Pseudorandom Correlation Generator (PCG)) Let C be a reverse-sam-
pleable correlation generator. A pseudorandom correlation generator (PCG) for C is a pair of
algorithms (PCG.Gen,PCG.Expand) with the following syntax:

• PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of seeds
(k0, k1);

• PCG.Expand(σ, kσ) is a polynomial-time algorithm that given a party index σ ∈ {0, 1} and
a seed kσ, outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

• Correctness. The correlation obtained via:

{(R0, R1) | (k0, k1) $← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).

• Security. For any σ ∈ {0, 1}, the following two distributions are computationally indis-
tinguishable:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

Note that to avoid the trivial solution where PCG.Gen simply outputs a sample from C, we
are only interested in constructions where the seed size is significantly shorter than the output
size.

3 The Ring-LPN Assumption

In this section, we recall the ring-LPN assumption, which was first introduced (over Z2) in [HKL+12]
to build efficient authentication protocols. Since then, it has received some attention from the
cryptography community [BL12,DP12,LP15,GJL15], due to its appealing combination of LPN-
like structure, compact parameters, and short runtimes. Below, we provide a definition of
module-LPN, which generalizes ring-LPN in the same way that the more well-known module-
LWE generalizes ring-LWE. We also discuss several variants depending on the choice of ring,
including cyclotomic rings over Zp, which have previously been used for ring-LWE.
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3.1 Ring-LPN

Definition 3.1 (Ring-LPN) Let R = Zp[X]/F (X) for a prime p and degree-N polynomial
F (X) ∈ Zp[X]. (We will write Rp when we want to highlight the modulus p.) For t ∈ N,
let HWR,t denote the distribution of “sparse polynomials” over R obtained by sampling t noise
positions A ← [0..N)t and t payloads ~b ← (Z∗p)t uniformly at random, and outputting e(X) :=∑t−1

j=0
~b[j] · XA[j]. (We write HWt when R is clear from the context.) For R = R(λ),m =

m(λ), t = t(λ), we say that the ring-LPN problem R-LPNR,m,t is hard if for every nonuniform
polynomial-time distinguishher A, it holds that∣∣∣Pr[A((a(i), a(i) · e+ f (i))mi=1) = 1]− Pr[A((a(i), u(i))mi=1) = 1]

∣∣∣ ≤ negl(λ)

where the probabilities are taken over a(1), . . . , a(m), u(1), . . . , u(m) ← R(λ) and e, f (1), . . . , f (m) ←
HWR,t.

We will also use the regular variant of R-LPNR,m,t, which is defined in the same way as above
except that HWR,t is obtained by letting A include a single random position from each block of
size N/t (where here we assume that t|N).

Remark 3.1 (Useful parameters) Our constructions will only use Definition 3.1 withm = 1,
namely one sample. Bigger values of m will be used for reducing security in this case to a variant
where the secret e is uniform (see Lemma 3.4 below). The sparsity parameter t will roughly
correspond to a concrete security parameter, the degree N to the length of the target correlation
(or number of instances of an atomic correlation), and p to a modulus over which this correlation
is defined. Useful choices of the polynomial F (X) will be discussed in Section 3.2 below.

Remark 3.2 (Noise distribution) Note that in the default variant of our definition, the dis-
tribution over sparse polynomials is obtained by picking the t noise positions with replacement.
This can result in collisions, and thus negatively affect the entropy introduced by the payloads.
The reason for this choice is that it helps simplify some of our constructions and their analysis.
The entropy loss is minor in the regime of parameters we care about, as for t � N the proba-
bility of collisions is very small. The collisions are entirely avoided in the regular variant of the
definition, which also leads to better concrete efficiency in our constructions.

Remark 3.3 (Extension to other rings.) Note that our restriction to prime-order fields Zp
is only for simplicity; R-LPN can be defined similarly over other rings (such as extension fields
Fpd or rings Z2k or Zpq for primes p, q). These alternative choices are not known to introduce
any significant weakness or structural difference compared to the version over prime-order fields.
In fact, we obtain PCGs for OLEs and multiplication triples over extension fields Fpd by using
rings Rp defined over the base field.

Module LPN. We will also use a natural generalization of R-LPN, where we replace a(i) · e
by the inner product 〈~a(i), ~e〉 between length-(c − 1) vectors over R, for some constant c ≥ 2.
(The parameter c can be viewed as a compression factor in our construction – see more below.)
We call this module-LPN, analogously to module-LWE. This will allow for useful efficiency
tradeoffs, as according to our security analysis it will be enough to choose the total number of
noise positions w such that w = ct ≈ λ, and therefore increasing c allows to choose a smaller t.
For the parameter regime in our constructions, increasing c will result in shorter PCG seeds at
the expanse of higher running time of Expand.

Definition 3.2 (Module-LPN) Let c ≥ 2 be an integer and R,HWR,t be as in Definition 3.1.
Then, for R = R(λ),m = m(λ), t = t(λ), we say that the Rc-LPNR,m,t problem is hard if for
every nonuniform polynomial-time distinguisher A, it holds that
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∣∣∣Pr[A((~a(i), 〈~a(i), ~e〉+ f (i))mi=1) = 1]− Pr[A((~a(i), u(i))mi=1) = 1]
∣∣∣ ≤ negl(λ)

where the probabilities are taken over ~a(1), . . . ,~a(m) ← Rc−1, u(1), · · · , u(m) ← R, ~e ← HWc−1
R,t ,

f (1), . . . , f (m) ← HWR,t. We similarly define the regular variant by modifying HWR,t as in
Definition 3.1.

Equivalence to module-LPN with uniform secret. We observe that, by the same argu-
ment as for standard LWE [ACPS09], the R-LPN (resp. module-LPN) problem with a secret
chosen from the error distribution is at least as hard as the corresponding R-LPN (resp. module-
LPN) problem where the secret is chosen uniformly at random, if the adversary is given one
additional sample (resp., c− 1 additional samples).

Lemma 3.4 For any c ≥ 2, let Rc-uLPN denote the variant of Rc-LPN where the secret e is sam-
pled uniformly at random. Then, for any R = R(λ),m = m(λ), t = t(λ), if Rc-uLPNR,m+(c−1),t
is hard then Rc-LPNR,m,t is hard.

Proof. Letm > c. We show how a distinguisher for Rc-LPNR,m−(c−1),t can be used to solve an in-
stance ofRc-uLPNR,m,t, which implies the statement in the theorem. Let (~a(1), u(1), · · · ,~a(m), u(m))
beRc-uLPN samples, where ~a(i) ∈ Rc−1 and u(i) ∈ R for i = 1 tom. Assume that (~a(1), · · · ,~a(c−1)),
viewed as a matrix A of dimensions (c − 1) × (c − 1) over R, is invertible; this happens
with high probability (at least constant) over a random choice of the ~a(i). Denote by A′ ∈
Rm−(c−1)×(c−1) the matrix whose rows are the remaining (~a(c), · · · ,~a(m)), by ~u the (vertical)
vector (u(1), · · · , u(c−1)), and by ~u′ the (vertical) vector (u(c), · · · , u(m)). With these, the dis-
tinguishing game can be rewritten as follows: the adversary must distinguish between the case
where

• A~e+ ~f = ~u for some ~e ∈ Rc−1 and sparse ~f ∈ HWc−1
R,t , and

• A′~e+ ~f ′ = ~u′ for some sparse ~f ′ ∈ HWm−c+1
R,t ,

from the case where (~u, ~u′) are random. But since A is invertible, by multiplying the first
equation with B ← A′A−1 and denoting ~v ← B~u− ~u′, the first case can be rewritten as

B~f − ~f ′ = ~v

which is distributed exactly as an instance of the Rc-LPNR,m−(c−1),t problem; hence, a distin-
guisher for Rc-LPNR,m−(c−1),t can be used to get a distinguisher for Rc-uLPNR,m,t. �

Relation to syndrome decoding. Our constructions will use module-LPN with a single
sample (m = 1). To simplify notation and emphasize that the secret comes from the error dis-
tribution, we often combine the secret and noise value (~e and f in the notation of Definition 3.2)
into a single vector ~e, replacing the previous (~a, 〈~a,~e〉+ f) by writing (~a, 〈~a,~e〉), where

~a = (1,~a′),~a′
$← Rc−1, ~e

$← HWc
R,t.

This formulation of module-LPN is equivalent to a variant of the syndrome decoding problem
in random polynomial codes. To see this, let Mi be the N × N matrix over Zp representing
multiplication with the fixed element a′i ∈ Rp, for i = 1 to c− 1. Define the matrix

H = [IdN ||M1|| · · · ||Mc−1].

H is a parity-check matrix in systematic form for a polynomial code defined by the random
elements a′i ∈ Rp. Module-LPN can be seen as a decisional version of syndrome decoding for
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this code, where we assume that (H,H · ~e) is pseudorandom for an error vector ~e = (e1, . . . , ec)
with a regular structure, namely where each of the length-N blocks ei have t non-zero entries.
The code has length N · c and dimension N · (c− 1); the rate of the code is therefore (c− 1)/c.
With this formulation, c can be viewed as the compression factor of the linear map ~e → H · ~e.
Therefore, we generally refer to c as the syndrome compression factor.

3.2 Choice of the Polynomial F

The ring-LPN assumption (and more generally, the module-LPN assumption) is dependent of
the choice of the underlying polynomial F . We discuss possible choices for the polynomial F ,
and their implications for the security of ring-LPN/module-LPN over the corresponding ring
Rp = Zp[X]/F (X).

Irreducible F (X). The most conservative instantiation is when F (X) is irreducible over Zp,
and so Rp is a field. In this setting, no attacks are known that perform significantly better than
for standard LPN.

Reducible F (X). We also consider when F (X) is reducible over Zp, and splits into several
distinct factors. Here we have a few different useful instantiations.

1. Cyclotomic F (X). Let F (X) be the M -th cyclotomic polynomial, whose degree is N =
φ(M) (Euler’s totient function). Then, F (X) splits modulo p into N/d distinct factors
fi, where each fi is of degree d, and d is the smallest integer satisfying pd ≡ 1 mod M .
The advantage of using a cyclotomic F is that it allows for fast multiplication in Rp using
FFT. We are particularly interested in the following cases.

• Two-power N , prime p > 2N . Let N be a power of two and p a large prime such
that p ≡ 1 mod (2N) (here, M = 2N). Then F (X) splits completely into N linear
factors modulo p, so Rp is isomorphic to ZNp .

• p = 2. Here, each degree-d subring Zp[X]/(fi(X)) is isomorphic to the finite field
F2d , hence Rp ∼= FN/d

2d
.

Regarding security, we observe that cyclotomic polynomials can introduce an additional
weakness, due to sparse factors of F (X). In Section 8.2, we analyze this further and discuss
how to adjust parameters accordingly.

2. Random factors. A more conservative option may be to choose an F (X) that splits com-
pletely into d distinct, random factors. For instance, for a large prime p we can pick
(distinct) random elements α1, . . . , αN ← Zp and let

F (X) =
N∏
i=1

(X − αi)

Just as with the two-power cyclotomic case, Rp is isomorphic to ZNp . Now, however, the
problem may be harder since we are avoiding the structure given by roots of unity. On
the other hand, the isomorphism is more expensive to compute as we can no longer make
a direct use of FFT, and polynomial interpolation algorithms cost O(N log2N) instead of
O(N logN).
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4 PCGs for OLE and Authenticated Multiplication Triples

In this section, we construct PCGs for OLE and authenticated multiplication triples, based on
the Rc-LPN assumption. The constructions in this section can achieve an arbitrary (a priori
bounded) polynomial stretch, where the seed size scales logarithmically with the output length
N and the running time of Expand scales nearly linearly with N .

4.1 PCG for OLE over Rp

We build a PCG for producing a single OLE over the ring Rp. When Rp splits appropriately, as
described in Section 3.2, this can be locally transformed into a PCG for a large batch of OLEs
or (authenticated) multiplication triples over a finite field Fpd or Fp. The OLE correlation over
Rp outputs a single sample from the distribution{

((x0, z0), (x1, z1))
∣∣∣x0, x1, z0 $← Rp, z1 = x0 · x1 − z0

}
This can be viewed as giving the two parties additive shares of a product of two random elements
x0, x1 of Rp, where xσ is known to party Pσ.

Below is an informal presentation of the construction, which is described formally in Fig. 1.
The high-level idea is to first give each of the two parties a random vector ~e0 or ~e1 ∈ Rcp,

consisting of sparse polynomials, together with a random, additive secret sharing of the tensor
product ~e0 ⊗ ~e1 over Rp.

We view ~e0, ~e1 as Rc-LPN error vectors (whose first entry is implicitly the Rc-LPN secret),
which will be expanded to produce outputs xσ = 〈~a,~eσ〉 by each party Pσ for a random, public
~a = (1, ~̂a). This defines two Rc-LPN instances with independent secrets but the same ~a value,
which are pseudorandom by a standard reduction to Rc-LPN with a single sample. To obtain
shares of x0 · x1, observe that when ~a is fixed, this is a degree 2 function in (~e0, ~e1), so can be
computed locally by the parties given their shares of ~e0 ⊗ ~e1.

The only part that remains, then, is to distribute shares of this tensor product. Recall that
each entry of ~eσ is a polynomial of degree less than N with at most t non-zero coordinates.
We write these coefficients as a set of indices A ∈ [0..N)t and corresponding non-zero values
~b ∈ Ztp. Taking two such sparse polynomials (A,~b) and (A′,~b′), notice that the product of the
two polynomials is given by ∑

i∈[0..t)

~b[i] ·XA[i]

 ·
 ∑
j∈[0..t)

~b′[j] ·XA′[j]

 =
∑

i,j∈[0..t)

~b[i] ·~b′[j] ·XA[i]+A′[j]

We can therefore express the coefficient vector of the product as a sum of t2 point functions,
where the (i, j)-th point function evaluates to ~b[i] ·~b′[j] at input A[i] +A′[j], and zero elsewhere.
This means the parties can distribute this product using a function secret sharing scheme SPFSS
for sums of point functions, as defined in Definition 2.3. Recall that an SPFSS takes a sequence
of points and associated vector of values, and produces two keys that represent shares of the
underlying sum of point functions. If each party locally evaluates its key at every point in the
domain, then it obtains a pseudorandom secret-sharing of the coefficients of the entire sparse
polynomial.

There are c2 polynomials in the tensor product, so overall we need c2 instances of SPFSS,
where each SPFSS uses t2 point functions. Instantiating this naively using t2 distributed point
functions, we get a seed size of Õ(λ(ct)2 logN) bits. Note that to achieve exponential security
against the best known attacks on Rc-LPN, it is enough to choose ct = O(λ). By increasing
N , we can therefore obtain an arbitrary polynomial stretch for the PCG, where the stretch is
defined as the ratio of its output length to the seed size.

More concretely, we have the following theorem.
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Construction GOLE

Parameters: Security parameter λ, noise weight t = t(λ), compression factor c ≥ 2, modulus
p = p(λ), degree N = N(λ), and the ring Rp = Zp[X]/F (X) for degree-N F (X) ∈ Zp[X].
An FSS scheme (SPFSS.Gen,SPFSS.FullEval) for sums of t2 point functions, with domain
[0..2N − 1) and range Zp.
Public input: random polynomials a1, . . . , ac−1 ∈ Rp, used for Rc-LPN.
Correlation: After expansion, outputs (x0, z0) ∈ R2

p and (x1, z1) ∈ R2
p, where z0+z1 = x0 ·x1.

Gen: On input 1λ:

1. For σ ∈ {0, 1} and i ∈ [0..c), sample random vectors Aiσ ← [0..N)t and ~biσ ← (Z∗p)t.

2. For each i, j ∈ [0..c), sample FSS keys (Ki,j
0 ,Ki,j

1 )
$← SPFSS.Gen(1λ, Ai0 �A

j
1,
~bi0 ⊗~b

j
1).

3. Let kσ =
(

(Ki,j
σ )i,j∈[0..c), (A

i
σ,
~biσ)i∈[0..c)

)
.

4. Output (k0, k1).

Expand: On input (σ, kσ):

1. Parse kσ as
(

(Ki,j
σ )i,j∈[0..c), (A

i
σ,
~biσ)i∈[0..c)

)
.

2. Define (over Zp) the degree < N polynomials, for i ∈ [0..c)

eiσ(X) =
∑

j∈[0..t)

~biσ[j] ·XAiσ [j]

3. Compute xσ = 〈~a,~eσ〉 mod F (X), where ~a = (1, a1, . . . , ac−1), ~eσ = (e0σ, . . . , e
c−1
σ ).

4. For i, j ∈ [0..c), compute uσ,i+cj ← SPFSS.FullEval(σ,Ki,j
σ ) and view this as a degree < 2N

polynomial, defining the length-c2 vector ~uσ mod F (X).

5. Compute zσ = 〈~a⊗ ~a, ~uσ〉 mod F (X).

6. Output (xσ, zσ)

Figure 1: PCG for OLE over the ring Rp, based on ring-LPN
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Theorem 4.1 Suppose that SPFSS is a secure FSS scheme for sums of point functions (Defi-
nition 2.3), and the Rc-LPNRp,1,t assumption (Definition 3.2) holds. Then the construction in
Fig. 1 is a secure PCG for OLE over Rp.

When instantiating SPFSS using from PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based DPF
construction from [BGI16b], we have:

• Each party’s seed has size at most (ct)2 ·((dlogNe+1) ·(λ+2)+λ+dlog pe)+ct(dlogNe+
dlog pe) bits.

• The computation of Expand can be done with at most (4 + 2blog p/λc)N(ct)2 PRG oper-
ations, and O(c2N logN) operations in Zp.

Under standard ring-LPN parameters the above can be instantiated with seed size poly(λ) · logN
and with Expand running in time O(N1+ε). This running time can be improved to Õ(N)
using batch codes, as discussed below. Increasing the syndrome compression parameter c allows
choosing a smaller noise parameter t, which results in smaller seed side at the expense of increased
running time.
Proof. We first argue correctness.

Let i, j ∈ [0..c) and consider the polynomials ei0, e
j
1 defined in Expand. We have,

ei0(X) · ej1(X) =
∑

k,`∈[0..t)

~bi0[k] ·~bj1[`] ·X
Ai0[k]+A

j
1[`]

Therefore, the coefficients of this product can be obtained by evaluating the sum of point
functions used in the (i, j)-th instance of SPFSS. This means that u0,i+cj +u1,i+cj equals ei0(X) ·
ej1(X), and hence, ~u = ~e0 ⊗ ~e1. Looking at the outputs of expand, we then have

z0 + z1 = 〈~a⊗ ~a, ~u0 + ~u1〉 = 〈~a⊗ ~a,~e0 ⊗ ~e1〉 = 〈~a,~e0〉 · 〈~a,~e1〉 = x0 · x1
where the penultimate equality can be seen by inspection of the tensor products.

Each 〈~a,~eσ〉 can be seen as a sample from the Rc-LPN distribution with a fixed random ~a and
independent secret ~eσ. It follows from a standard hybrid argument that (x0, x1) is computation-
ally indistinguishable from a random pair in R2

p, under Rc-LPN. Furthermore, by the security of
SPFSS, each zσ is individually pseudorandom, so the outputs (x0, z0, x1, z1) are indistinguishable
from a random OLE over R.

To show the security property, fix σ = 1 (the case σ = 0 is symmetric). For two keys
(k0, k1)

$← PCG.Gen(1λ) with associated expanded outputs (x0, z0) and (x1, z1), we need to show
that

{(k1, x0, z0)} ≡
{

(k1, x̃0, z̃0)|x̃0 $← Rp, z̃0 = x̃0 · x1 − z1
}

We use a sequence of hybrids, where first we change z0 to be computed as x0 · x1 − z1,
and successively replace each FSS key Ki,j

1 in k1 with a simulated key, generated with only the
range and domain of the function. This is indistinguishable from the first distribution, by the
correctness and security properties of the FSS scheme. Then, since K1 and z0 are independent of
the Rc-LPN secret producing x0, we can rely on Rc-LPN to sample x0 at random instead of from
the seed k0. Finally, we can now switch the FSS keys back to ones generated from SPFSS.Gen,
again using the FSS security property. This gives the distribution on the right. �

We remark that assuming Rc-LPN holds for regular error distributions, the seed size can be
reduced to roughly (ct)2 · ((logN − log t+ 1) · (λ+ 2) + λ+ log p) + ct(logN + log p) bits, and
the number of PRG calls in Expand down to (4 + 2b(log p)/λc)Nc2t. See details below. This
eliminates a factor of t from the asymptotic computational cost. Furthermore, implementing
SPFSS using batch codes reduces the number of PRG calls to O(Nc2). This eliminates another
factor of t, making the overall computational overhead logarithmic in N , but comes at a cost of
making distributed seed generation more complex.
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Obtaining OLEs over Fp. As discussed in Section 3.2, when R and p are chosen appro-
priately, an OLE over Rp is locally equivalent to N OLEs over Fp or Fpd . Hence, this PCG
immediately implies PCGs over Fpd , with the same seed size and complexity.

If we want to rely on the (apparently) more conservative version of Rc-LPN, where F (X) is
irreducible in Zp[X], the parties can still use our PCG over Rp to obtain OLEs over Zp, but this
requires O(N) interaction. To do this, the parties each sample random polynomials a, b ∈ Zp[X],
each of degree < N/2. They then use the OLE over Rp to multiply a and b, which can be done
by sending N elements of Zp.6 This gives shares of c = ab in Rp, which equals ab over Zp[X],
since no overflow occurs modulo F (X) (which has degree N). Each party then locally computes
evaluations of its shares of a, b and c at N/2 fixed, distinct, non-zero points, which gives N/2
secret-shared products over Zp (this can be done as long as p > N/2).

Optimizations. We now discuss a few optimizations which apply to the basic scheme.

Optimizing the MPFSS evaluation. Naively, the computational cost of the FSS full-
domain evaluation is O((ct)2N) PRG operations. Using a regular error distribution, we can
bring this down to O(c2tN) (see below). With batch codes [IKOS04,BCGI18] or probabilistic
batch codes [ACLS18,SGRR19], the full evaluation cost can be brought down to O(c2N) opera-
tions. However, if the seed generation phase has to be created by a secure distributed protocol,
setting up the seeds that support better Expand time can hurt the concrete cost of distributed
seed generation.

Using regular errors. Suppose two sparse polynomials e0, e1 ∈ ZNp are regular, that is
eb = (eb,1, . . . , eb,t), where each eb,j ∈ ZN/tp has weight 1, and defines a coefficient in the range
[(j−1) · (N/t), j · (N/t)−1]. Each pair (e0,i, e1,j) gives rise to an index in [(i+ j−2) · (N/t), (i+
j) · (N/t)− 2], so the product of two regular error polynomials can be represented by a t2-point
SPFSS of domain size 2N/t. This leads to a total expansion cost of O(c2tN) PRG operations.

Extension to multiplication triples. Recall that in an instance of an OLE correlation over
Zp, parties P0 and P1 each hold a secret random Zp element, and they jointly hold an additive
secret-sharing of the product of the two secrets. While OLE correlations can be directly useful
for some applications of secure computation [NP99, IPS09,DGN+17,GN19,CDI+19,HIMV19],
it is often more convenient to use a slightly more complicated variant known as a multiplication
triple correlation [Bea91]. In a (2-party) multiplication triple, the two parties hold shares of
random Zp elements a and b (which are known to neither party), and moreover they hold
shares of the product c = a · b. Multiplication triples are useful for 2-PC of arithmetic circuits
over Zp with security against semi-honest parties: each multiplication gate can be evaluated
by consuming a single multiplication triple and communicating two Zp elements per party.
(Addition gates are “for free.”) An instance of a multiplication triple correlation can be obtained
in a black-box way using two instances of an OLE correlation. Concretely, writing a = a0 + a1,
b = b0 + b1, and c = a0b0 + a1b1 + a0b1 + a1b0, one can distribute (aσ, bσ) to party Pσ and
secret-share the cross-terms a0b1 and a1b0 via two independent OLE instances (the terms a0b0
and a1b1 can be computed locally by P0 and P1 respectively and added to the OLE outputs).
As a result, a PCG generating N instances of multiplication triples can be obtained from a
PCG generating 2N instances of OLE. In the next section we will see how to extend this to
authenticated multiplication triples, which serve as a useful resource for 2-PC with security
against malicious parties, at a slightly higher cost.

6This can be reduced to N/2, by defining a, b to be the first N/2 coefficients of the polynomials x0, x1 produced
by the OLE, so that only the second half of the coefficients need to be sent in the multiplication protocol.
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Extension to higher degree correlations. We can naturally extend this construction from
OLE over Rp to general degree-D correlations (over Rp), for any constant D, by sharing D-
way products of sparse polynomials instead of just pairwise products. However, this comes at
a high cost: the seed size increases to O((ct)D logNλ), and the computational cost becomes
Õ((ct)D ·N).

4.2 Authenticated Multiplication Triples

We now show how to modify the PCG for OLE to produce authenticated multiplication triples,
which are often used in maliciously secure MPC protocols such as the BDOZ [BDOZ11] and
SPDZ [DPSZ12,DKL+13] line of work. Note that although OLE can be used to build authen-
ticated triples in a black-box way, doing this requires several OLEs and some interaction, for
every triple. This is contrasted with the case of standard multiplication triples, discussed above,
that can be reduced to OLE without any interaction. Our PCG avoids this interaction, with
only a small overhead on top of the previous construction: the seeds are less than 2x larger,
while the expansion phase has around twice the computational cost.

Secret-sharing with MACs. We use authenticated secret-sharing based on SPDZ MACs
between n parties, where a secret-sharing of x ∈ Zp is defined as:

JxK = (αi, xi,mx,i)
n
i=1 such that

∑
i

xi = x,
∑
i

mx,i = x ·
∑
i

αi

Note that the MAC key shares αi are fixed for every shared x. The MAC sharesmx,i are used
to prevent a sharing from being opened incorrectly, via a MAC check procedure from [DKL+13].
An authenticated multiplication triple is a tuple of random sharings (JxK, JyK, JzK), where x, y $←
Zp and z = x · y. Our PCG outputs a single multiplication triple over the ring Rp, for n = 2
parties, together with additive shares of the MAC key α ∈ Zp. When using the fully-reducible
variant of ring-LPN, this is equivalent to N triples over Fpd (where for suitably chosen p we can
have d = 1).

PCG construction. The construction, given in Fig. 2, is remarkably simple. Recall that
our previous construction for OLE uses FSS keys which are expanded into shares of sparse
polynomials ui,j = ei · ej ∈ Zp[X]. The FSS payload was defined by some (column) vector
~v ∈ Zt2p , which defines the t2 values of the non-zero coefficients in ui,j . We can modify this to
produce authenticated OLE by extending the FSS range from Zp to Z2

p, and letting the payload
be ~v · (1, α) ∈ Z2N×2

p , for a random α ∈ Zp. Evaluating the FSS keys at some input k now
produces shares of (~v[k], α · ~v[k]). Hence, these can be used to obtain authenticated shares of
x0 · x1, as well as the OLE.

To extend the above to authenticated triples, the seed generation phase will now produce
three sets of FSS keys. The first two sets, (Ki

x,0,K
i
x,1) and (Ki

y,0,K
i
y,1), are used to compress

shares of the 2c sparse polynomials defined by (Ai0,
~bi0) and (Ai1,

~bi1). These have sparsity t, so
can be compressed using t-point SPFSS, and are later expanded to produce shares and MAC
shares for Rp elements x and y. The third set, (Ki

z,0,K
i
z,1), compresses pairwise products of the

previous sparse polynomials, so each of these can be defined using t2-point SPFSS, as in the
previous construction. This gives the shares and MAC shares for the product term z = x · y.

We omit the proof of the following theorem, which is very similar to that of Theorem 4.1.
Recall that to achieve exponential security against the best known attacks on Rc-LPN, it is
enough to choose ct = O(λ), therefore choosing a larger c allows to decrease the size of t. For
more details on concrete parameter choices we refer to Section 9.
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Construction Gtriple

Parameters: Security parameter λ, noise weight t = t(λ), compression factor c ≥ 2, modulus
p = p(λ), degree N = N(λ), and the ring Rp = Zp[X]/F (X) for degree-N F (X) ∈ Zp[X].
An FSS scheme (SPFSS.Gen,SPFSS.FullEval) for sums of t2 point functions, with domain
[0..2N − 1) and range Z2

p.
Public input: random polynomials a1, . . . , ac−1 ∈ Rp, used for Rc-LPN.
Correlation: Authenticated triples (JxK, JyK, JzK), satisfying z = x · y ∈ Rp, and MAC key
shares α0, α1 ∈ Zp.

Gen: On input 1λ:

1. Sample α0, α1
$← Zp and let α = α0 + α1.

2. For σ ∈ {0, 1} and i ∈ [0..c), sample random vectors Aiσ ← [0..N)t and ~biσ ← (Z∗p)t.

3. Sample the following FSS keys:

• (Ki
x,0,K

i
x,1)

$← SPFSS.Gen(1λ, Ai0,
~bi0 · (1, α)), for i ∈ [0..c)

• (Ki
y,0,K

i
y,1)

$← SPFSS.Gen(1λ, Ai1,
~bi1 · (1, α)), for i ∈ [0..c)

• (Ki,j
z,0,K

i,j
z,1)

$← SPFSS.Gen(1λ, Ai0 �A
j
1, (
~bi0 ⊗~b

j
1) · (1, α)), for i, j ∈ [0..c)

4. Let kσ =
(
ασ, (K

i
x,σ,K

i
y,σ)i∈[0..c), (K

i,j
z,σ)i,j∈[0..c)

)
.

5. Output (k0, k1).

Expand: On input (σ, kσ), where kσ =
(
ασ, (K

i
x,σ,K

i
y,σ)i∈[0..c), (K

i,j
z,σ)i,j∈[0..c)

)
:

1. Compute the vectors ~uσ, ~vσ, ~wσ and ~u′σ, ~v′σ, ~w′σ as follows:

• uσ,i, u
′
σ,i ← SPFSS.FullEval(σ,Ki

x,σ), for i ∈ [0..c)

• vσ,i, v
′
σ,i ← SPFSS.FullEval(σ,Ki

y,σ), for i ∈ [0..c)

• wσ,i+cj , w
′
σ,i+cj ← SPFSS.FullEval(σ,Ki,j

z,σ), for i, j ∈ [0..c)

viewing each FullEval output as a pair of degree < 2N polynomials over Zp.

2. Compute
xσ = 〈~a, ~uσ〉 , yσ = 〈~a,~vσ〉 , zσ = 〈~a⊗ ~a, ~wσ〉 and
mx,σ =

〈
~a, ~u′σ

〉
,my,σ =

〈
~a,~v′σ

〉
,mz,σ =

〈
~a⊗ ~a, ~w′σ

〉
all modulo F (X).

3. Output (ασ, xσ, yσ, zσ,mx,σ,my,σ,mz,σ)

Figure 2: PCG for authenticated triples over the ring Rp, based on Ring-LPN
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Theorem 4.2 Suppose that SPFSS is a secure FSS scheme for sums of point functions (Defi-
nition 2.3), and the Rc-LPNRp,1,t assumption (Definition 3.2) holds. Then the construction in
Fig. 2 is a secure PCG for two-party authenticated multiplication triples over Rp.

When instantiating SPFSS using from PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based DPF
construction from [BGI16b], we have a secure PCG for two-party authenticated multiplication
triples over Rp with the following complexities:

• Each party’s seed has size at most 2(2ct+(ct)2)·((dlogNe+1)·(λ+2)+λ+dlog pe)+dlog pe
bits.

• The computation of Expand can be done with at most (8 + 4b(log p)/λc)N(2ct + (ct)2)
PRG operations, and O(c2N logN) operations in Zp.

As with the PCG for OLE, when using ring-LPN with regular errors the seed size can be
reduced, replacing dlogNe + 1 in the formula with log(2N/t), while also reducing the number
of PRG operations by a factor t.

5 DPF Key Generation Protocols

Up to this point, the exposition has focused on how to obtain and use pseudorandom correlation
generators (PCG), abstracted in an idealized model where the short PCG seeds are sampled by
a third-party trusted dealer. In this section, we give the preliminaries that will be necessary to
securely set up these seeds. In particular, we present a protocol for setting up keys for distributed
point functions with malicious security (allowing some leakage on the path value). Since these
protocol works over any finite field, we will present it over Fq for arbitrary q ∈ N.

5.1 Reactive 2-PC

In the following, we assume secure computation of simple operations over F`2 and Fq, which are
depicted in Functionality F2-PC and - for the malicious setting - in Functionality Fext-2-PC in
Figure 3. Note that the arithmetic addition BitAdd is nontrivial, as the parties must hold
bitwise additive secret shares, but the sum itself is over Z. This “grade school addition” over
bits can be implemented via a binary circuit for integer addition with logN AND gates, similar
to previous (e.g., garbled circuit based [KSS09]) protocols. For details on implementation and
efficiency considerations we refer to Section 6.3.

5.2 Semi-honest DPF Key Generation

Recall that a distributed point function (DPF) allows to generate succinct shares of the point
function f : [0..D)→ Fq,

fα,β(x) =

{
β if x = α

0 else
.

We give the functionality for setting up this succinct shares securely in Figure 4. We use the DPF
construction of [BGI16b] and implement the functionality FDPF using the protocol of [Ds17] (note
that the optimized DPF construction used in [Ds17] is not secure, see Remark 5.1 for details).
In the following we give an overview of the underlying DPF construction and the distributed
setup protocol.

The DPF construction [BGI16b]: We start by outlining the underlying DPF construction.

Parameters: Security parameter 1λ, a natural number D specifying the domain size, and a
pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ+2.
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Functionality F2-PC

The functionality operates on elements of Fq for q ∈ N and bit-strings F`2 for ` ∈ N. Each value
stored by the functionality is associated with a unique identifier that is given to all parties. Let
JyKFq denote the identifier for a value x ∈ Fq and JxKF`2 denote the identifier for a bit-string
x ∈ F`2 that is stored by the functionality. Note that for stored bit-strings JxKF`2 we assume
individual access to the i-th bit JxiKF2 for all i ∈ [0..`).

Input(Pσ, x): Receive a value x ∈ Fq or x ∈ F`2 or from party Pσ and store JxKFq or JxKF`2 .

Add(JxKFq , JyKFq): Compute z = x+ y ∈ Fq and store JzKFq .

Add(JxKF`2 , JyKF`2): (for x, y ∈ F`2) Compute z = x⊕ y ∈ F`2 and store JzKF`2 .

BitAdd(JxKF`2 , JyKF`2): (for x, y ∈ F`2) Compute z = x + y ∈ {0, 1}`+1 via arithmetic addition
and store JzKF`+1

2
.

Mult(JxKFq , JyKFq): Compute z = x · y ∈ Fq and store JzKFq .

Output(JxKFq): Send the value x ∈ Fq to all parties.

Output(JxKF`2): Send the value x ∈ F`2 to all parties.

Functionality Fext-2-PC

The functionality contains all the same commands as F2-PC, as well as the additional commands
below.
In the following, xσ is always the input of party Pσ.

Inv(JxKFq): Compute z = x−1 ∈ Fq and store JzKFq .

MixedMult(x0, x1, JαKF2): (for x0, x1 ∈ F`2, α ∈ F2) Compute z = α · (x0 ⊕ x1) ∈ F`2.

1. If both parties are honest: Choose z0
$← F`2 at random and set z1 = z ⊕ z0. Output

zσ to Pσ for σ ∈ {0, 1}.
2. If Pσ is corrupt: Wait for input zσ by Pσ, set z1−σ = z⊕zσ and output z1−σ to P1−σ.

PassiveOutput(x0, x1): (for x0, x1 ∈ F`2)

1. If both parties are honest: Wait for input x0, x1 ∈ F`2. Output z = x0 ⊕ x1 ∈ F`2 to
both parties.

2. If Pσ is corrupt: Send x1−σ to Pσ and wait for input xσ ∈ F2` by Pσ. Send z =
x0 ⊕ x1 ∈ F`2 to P1−σ.

Figure 3: Functionality F2-PC and extended functionality Fext-2-PC for reactive 2-PC over Fq and F2
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Functionality FDPF

Parameters: Security parameter 1λ, distributed point function DPF = (DPF.Gen,DPF.Eval)
with domain [0..D) and range Fq, where D, q ∈ N.
Functionality: The functionality contains the same Input, Add, Mult and Output com-
mands as F2-PC, as well as the following command.
DPF: On input JαKF`2 , and JβKFq :

1. Sample keys (Kdpf
0 ,Kdpf

1 )← DPF.Gen(1λ, α, β).

2. For σ ∈ {0, 1} output Kdpf
σ to Pσ.

Figure 4: Functionality for semi-honest setup of a distributed point function. Here, we parse α ∈ [0..D) as
bit-string α ∈ {0, 1}log2D, and assume to be given a secret sharing of α over Flog2D

2 as explained in Figure 3.

Input: A “path” α ∈ [0..D) (in the following usually interpreted as a bit-string ∈ {0, 1}logD)
and a “payload” β ∈ Fq.

Goal: The parties hold a compact representation of (pseudorandom) shares ~y0, ~y1 ∈ FDq , such
that ~y0 + ~y1 = (0, . . . , β, . . . , 0), where β is in the α-th position. In other words, parties
P0, P1 hold an additive secret sharing modulo p of the α-th unit vector scaled by payload
β.

Strategy: 1. Each party Pσ holds seeds ~s0,0σ , ~s0,1σ ∈ {0, 1}λ. These values define a logD-depth
tree following the GGM paradigm:
To get from the i-th to i+ 1-st level, for all j ∈ [0..2i), Pσ computes

~si+1,2j
σ ‖~si+1,2j+1

σ ‖ti+1,2j
σ ‖ti+1,2j+1

σ
$← PRG(~si,jσ ).

Ignoring the t-values for now, the seeds ~s0,0σ , ~s0,1σ can be viewed as a compact repre-
sentation of a length-D vector (~slogD,0σ , . . . , ~slogD,D−1σ ).

2. In order to achieve ~slogD,j0 = ~slogD,j1 for all j ∈ [0..D)\{α} (i.e. shares of a scaled unit
vector), the idea is to correct the nodes leaving the position defined by α.
If α was known to one party (say P0), this could be achieved by giving a correction
word CWi := ~s i,α0α1...αi

0 ⊕~s i,α0α1...αi
1 (i.e. the node leaving the path corresponding to

α in the i-th level) to party P0 in every level. In the last level the party additionally
receives CW := (slogD,α0 −slogD,α1 )−1 ·β, where slogD,ασ corresponds to the value ~slogD,ασ

interpreted as a bit string. (Note that this hides β, as party P0 as no information on
any of the preceding nodes of ~slogD,α1 ).
Adding CWi at position α0α1 . . . αi in the i-th level and interpreting the last values
in the last level of the GGM tree as Fq elements, where P1 multiplies its shares by
−1 and P0 multiplies the value at the α’s position by CW, the parties indeed obtain
output shares of the α-th unit vector scaled by β.

3. In the general setting, neither party has knowledge of α. This is, when the t-values
come into play. The idea is as follows: For each node ~si,jσ at level i, the parties will
hold a value T i,jσ (derived from their t-values together with correction bits τ i,0, τ i,1

hold by both parties) determining whether party Pσ adds the correction word or not,
such that

(a) for children of nodes outside the path corresponding to α, either none or both of
the parties add the correction word
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(b) for children of nodes on the path corresponding to α, exactly one of the parties
adds the correction word.

As the parties do not know about the others party’s T i,jσ value, α is not leaked by
the correction words or bits.

Remark 5.1 (Difference compared with [Ds17]) [Ds17] actually use a modification of the
above description, since they choose each bit ti,jσ as the LSB of ~s i,jσ , instead of as a fresh output
from the PRG. We observe that unfortunately, this tweak renders their construction insecure,
since the same bits are then used in computation of the correction words CWi. This has the effect
of leaking the bit αi whenever LSB(~s

i,α0...αi−10
0 ⊕ ~s i,α0...αi−10

1 ) 6= LSB(~s
i,α0...αi−11
0 ⊕ ~s i,α0...αi−11

1 ).
This occurs with probability 1/2, so on average leaks half of the bits of α, given just one of the
two seeds.7 To avoid this issue, we instead apply the setup protocol of [Ds17] to the original DPF
of [BGI16b].

The protocol of Doerner and shelat. The setup protocol of Doerner and shelat [Ds17] is
based on the observation that the correction words in the i-th level can be derived from the
sums of the values of all left (resp. right) leaves in level i, if αi = 1 (resp. αi = 0). This is due to
the fact that all left (resp. right) leaves that are not a child of node α|i−1 in level i− 1 already
agree due to previous corrections. Their protocol can be described as follows:

Input: The position α ∈ [0..D) (in bit-representation) and the payload β ∈ Fq.

Setup: Each party (locally) chooses random seeds ~s0,0σ , ~s0,1σ ∈ {0, 1}λ

Key generation: For each i ∈ [0..D) the parties input the sums of their right leaves and
the sums of their left leaves (as well as the sums of their right t-values and their left
t-values) into a secure computation. The secure computation outputs a correction word
CW i (computed as the sum of either all left leaves or all right leaves, depending on the
i-th bit of alpha) and correction bits τ i,0, τ i,1. The parties correct the nodes of the i-th
level by adding CW i to the j-th word whenever T i,jσ = 1. Further, both parties derive the
values T i+1,2j

σ , T i+1,2j+1
σ for the next level using the correction bits. In the last level, each

party additionally inputs the sum of all nodes, from which the final correction word CW
can be derived.

Working Over a Ring Instead of a Field. Although we described the above protocol only
over finite fields, note that it can in fact be adapted to work over Zq for any q ∈ N.

5.3 Malicious DPF Key Generation

We now turn focus to malicious adversaries. When transferring the protocol of Doerner and
shelat to the malicious setting, one runs into the following problem: In order to achieve a
practically efficient protocol, the evaluation of the PRG has to take place locally, i.e. outside
any secure evaluation. But this would allow a malicious adversary to provide inconsistent key
shares during key generation.

Previous works [BCG+19a,YWL+20] solve this issue at very low cost for the simpler setting
of puncturable pseudorandom functions, where one party is in knowledge of the position (say
P0) and the other party in charge of setting up the key (say P1). The idea is to introduce
a consistency check that ensures that P1 behaved consistently with respect to the input value
α. As the check depends on the input value α if P1 deviates from the protocol, party P1 can
attempt guess partial information on α. If P1 guesses correctly, it obtains (partial) leakage on
α. Otherwise, the protocol aborts.

7In the notation of [Ds17, Fig. 1], whenever τ j,0 = τ j,1⊕1, you can read off αj by XORing τ j,1 with LSB(σj).
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Functionality Fc-SUV

Parameters: Length D ∈ N, and a prime modulus p
Functionality: The functionality contains the same Input, Add, Mult and Output
commands as F2-PC, as well as the following command.

SUV: On input JαKFlogD
2

and JβKFq :
If both parties are honest:

1. If β = 0 output “β = 0” to both parties and abort.

2. Sample ~y0
$← FDq , and let ~y1 ← (0, . . . , 0, β, . . . , 0) − ~y0, where β is in position α (parsed

as integer).

3. Output ~yσ to party Pσ, for σ ∈ {0, 1}

If party Pσ is corrupted:

1. Allow the adversary to determine its output shares. Wait for input ~yσ ∈ FDq from
the adversary.

2. Allow the adversary an arbitrary guess on α. Wait for input P : FlogD
2 → {0, 1}. If

P (α) = 0, abort.

3. If β = 0 output “β = 0” to both parties and abort.

4. Set ~y1−σ ← (0, . . . , 0, β, . . . , 0)− ~yσ ∈ FDq , where β is in position α (parsed as integer).

5. Output (success) to the adversary and ~y1−σ to the honest party.

Figure 5: Functionality for the malicious distributed setup of a scaled unit vector

We show how to achieve the same in the more general setting of distributed point functions.
We do this using a new consistency check for verifying the DPF keys were computed correctly.
This check, which is inspired by [YWL+20], has a similar leakage profile to previous approaches
for puncturable PRFs.8 Compared with the semi-honest protocol, we need a small extra over-
head, dominated by two maliciously secure 2-PC multiplications and one inversion in Fq, as well
as around twice as many PRG evaluations as in the semi-honest case.

In Figure 5 we outline the achieved functionality. Note that this is weaker than the func-
tionality for securely generating keys of a distributed point function for two reasons:

• For the reason elaborated on above, it allows some leakage on the noise α. In the setting
of noise generation for LPN, this leakage is tolerable for the following reason: The more
the adversary attempts to guess, the higher the probability the protocol aborts, resulting
in a leakage of only 1 bit on average. Intuitively, this can be accounted for by slightly
increasing the noise rate.

• It gives out additive secret shares of the output (instead of the DPF keys), where the
adversary is given full control over its share of the input. To make the resulting restriction
to polynomial-size output explicit, we refer to the functionality as a setup functionality
for a shared unit vector. Note that combined with our PCGs, this allows implementing
the corruptible OLE functionality (Fig. 9) and the corruptible functionality for generating

8The original version of this paper used a hash-based consistency check similar to [BCG+19a], however, as
observed by Damiano Abram, that check was not sufficient in this setting.
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authenticated multiplication triples (Fig. 11), where the adversary is also given control
over its share of the output.

Intuition for the Protocol (Fig. 6). The protocol uses the malicious 2-PC functionality
Fext-2-PC (Fig. 3), and requires that α is stored in Fext-2-PC bitwise, while β is stored as an
element of Fq. Next, it starts by running the semi-honest setup protocol, with the difference
that in the secure computation used to compute the correction words CWi, we rely on Fext-2-PC

to ensure that the correct bits of α are being used. Apart from this, the secure computation
stage is only semi-honest: the PassiveOutput command of Fext-2-PC allows corrupt parties to
incorrectly open a shared value, while MixedMult only enforces that the bit αi is correct, and
not the string it is multiplied with.

The correction words computed in this first stage correspond to a random payload β′. Before
switching this to β, we perform a consistency check. The parties sample (via coin-tossing)
random values r0, . . . , rD−1 ∈ Fq, and use these to compute a linear combination of the DPF
outputs. The result (which is secret-shared) should equal rα · β′. To check this, the parties take
an additional D outputs of the DPF (by extending the depth of the tree by one), with associated
random payload CWR, and take the same linear combination, scaled by (CWR)−1, and multiply
the result with β′ (which has been stored in F2-PC). The parties then use F2-PC to verify that
these two values are equal.

The idea of the check is that the only way a corrupt party can cheat is by guessing β′, which
is random in a large field Fq, or by guessing (a few bits of) α, which is allowed by the leakage
in the functionality. If the check goes through, the parties finally correct the DPF payload to β
instead of β′, by outputting the relevant correction value CWL = β/β′.

Remark 5.2 Note that one can use the functionality Fc-SUV with larger output spaces F`q, by
running the same functionality over Fq` and embedding F`q vectors into that field. Alternatively,
if q is already large enough for security, a slightly more efficient solution can be obtained by
tweaking the protocol as follows. Choose a PRG with larger output length ({0, 1}λ)`+1 on the last
level, compute a correction word CWL

i for each i ∈ [`], and check consistency for each component
individually. More precisely, for each i ∈ [`], compute SL,iσ similarly to SLσ in Fig. 6, using the
additional PRG outputs, and check that β′ · SR − SL,i = 0 as required.

In the following, we prove that our protocol Πc-SUV (see Fig. 6) realizes the functionality
Fc-SUV (Fig. 5) for generating additive secret shares of a scaled unit vector with security against
malicious adversaries.

Theorem 5.1 If PRG : {0, 1}λ → {0, 1}2λ+2 is a secure PRG , then the protocol Πc-SUV (Fig.
6) implements the functionality Fc-SUV (Fig. 5) with security against malicious adversaries in
the (Fext-2-PC,Fcoin)-hybrid model.

Proof. We first consider the case that both parties are honest, before giving a simulator for the
case that one party is corrupt.

Both parties are honest. We have to show that the outputs in a real execution of the
protocol are indistinguishable from the outputs of the ideal functionality (i.e. ~y0

$← FDq , ~y1 ←
(0, . . . , β, . . . , 0)− ~y0, where β is in position α), even to an adversary seeing all communication
over the network.

Correctness. We have to prove that indeed yj0 + yj1 = 0 for all j 6= α and yα0 + yα1 = β. In
particular, we have to show that in an honest execution the protocol does not abort. We proceed
in a number of steps.
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Protocol Πc-SUV (Part I)

Parameters:

• Security parameter 1λ; output length D = 2k; finite field Fq (where log q is a statistical
security parameter)

• PRG : {0, 1}λ → {0, 1}2λ+2, a pseudorandom generator

• ConvertFq : {0, 1}λ → Fq, maps a pseudorandom bit string into an Fq element

• Functionalities Fext-2-PC (Fig. 3) and Fcoin (coin-tossing)

Protocol: The framed parts are run in malicious 2-PC (using commands from Fext-2-PC).

Inputs:
• The parties holds a position JαKFlogD

2
and a payload JβKFq stored in Fext-2-PC. We

assume α is shared bitwise, so for each bit αj , for j ∈ [0.. logD), party Pσ holds αj,σ
with αj,0 + αj,1 = αj .

Key Generation Phase:
1. For σ ∈ {0, 1} party Pσ chooses a PRG seed ~s 0,0σ ∈ {0, 1}λ and computes
~s 1,0σ ‖~s 1,1σ ‖t1,0σ ‖t1,1σ := PRG(~s0,0σ ). Party Pσ locally sets T 1,0

σ := T 1,1
σ := σ, and

~z 1,0
σ := ~s 1,0σ , ~z 1,1

σ := ~s 1,1σ , u1,0σ := t1,0σ , u1,1σ := t1,1σ .

2. For i = 1 to logD:

• For b ∈ {0, 1}: τ i,b ← PassiveOutput(ui,b0 ⊕ αi,0, u
i,b
1 ⊕ αi,1 ⊕ 1⊕ b)

• (~yi0, ~y
i
1)←MixedMult(~z i,00 ⊕ ~z

i,1
0 , ~z i,01 ⊕ ~z

i,1
1 , JαiKF2) // = αi · (~z i,0 + ~z i,1)

• CWi ← PassiveOutput(~y0 ⊕ ~z
i,1
0 , ~y i1 ⊕ ~z

i,1
1 ) // CWi = ~z i,1−αi

• For σ ∈ {0, 1}, j ∈ [0..2i), party Pσ computes:

– The next level of the GGM tree:

~s i+1,2j
σ ‖~s i+1,2j+1

σ ‖ti+1,2j
σ ‖ti+1,2j+1

σ := PRG(~s i,jσ ⊕ T i,jσ · CWi)

– If i < logD, the sums of the left/right leaves and left/right correction
bits, for b ∈ {0, 1}:

~z i+1,b
σ :=

2i−1⊕
j=0

~s i+1,2j+b
σ , ui+1,b

σ :=
2i−1⊕
j=0

ti+1,2j+b
σ ,

– If i < logD, the next level of choice bits:

T i+1,2j
σ := ti+1,2j

σ ⊕T i,jσ ·τ i,Parity(j), T i+1,2j+1
σ := ti+1,2j+1

σ ⊕T i,jσ ·τ i,Parity(j)
3. Convert the output shares to Fq: Pσ computes:

zLσ :=

D−1∑
j=0

sj,Lσ , zRσ :=
D−1∑
j=0

sj,Rσ

where sj,Lσ = ConvertFq(~s
logD+1,2j
σ ) and sj,Rσ = ConvertFq(~s

logD+1,2j+1
σ ).

(to be continued)

Figure 6: Protocol for the malicious distributed setup of scaled unit vectors (Part I)
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Protocol Πc-SUV (Part II)

Key Generation Phase: (continued)
4. Correct the offset of the left leaves to β and the offset of the right leaves to 0:

• For σ ∈ {0, 1}: JzLσ KFq ← Input(Pσ, z
L
σ ), JzRσ KFq ← Input(Pσ, z

R
σ )

• Jβ′Kp ← JzL0 KFq − JzL1 KFq

• JCWLKFq ← Jβ′K−1Fq · JβKFq , JCWRKFq ← JzR0 KFq − JzR1 KFq

• Output CWR ← Output(JCWRKFq) to both parties.

Verification Phase:
6. To verify that the sender behaved consistently and the output unit vector has the

correct payload β, the parties proceed as follows:

• The parties call Fcoin to obtain public random values r0, . . . , rD−1 ∈ Fq.
• Each Pσ computes

SLσ = (−1)σ ·
D−1∑
j=0

rj · sj,Lσ , SRσ = (−1)σ · (CWR)−1 ·
D−1∑
j=0

rj · sj,Rσ

7. The parties check if the check values where computed correctly:
• For σ ∈ {0, 1}: JSLσ KFq ← Input(Pσ, S

L
σ ), JSRσ KFq ← Input(Pσ, S

R
σ )

• Compute JZKFq = Jβ′KFq · (JSR0 KFq + JSR1 KFq)− JSL0 KFq − JSL1 KFq .

• If Z ← Output(JZKFq) does not equal 0, abort.
Output Phase:

1. Output CWL ← Output(JCWLKFq) to both parties. If CWL = 0, abort.

8. Finally, if all checks passed, party Pσ outputs ~yσ = (y0σ, . . . , y
D
σ − 1), where

yjσ := (−1)σ · sj,Lσ · CWL.

Figure 6: Protocol for the malicious distributed setup of scaled unit vectors (Part II)
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Claim 5.3 If the parties follow the protocol description honestly, then all i ∈ [0.. logD) and
j ∈ [0..2i)\{α|i} we have ~s i,j0 ⊕T

i,j
0 ·CW

i = ~si,j1 ⊕T
i,j
1 ·CW

i. Further, for the correction bits we have
T i+1,2j+b
0 = T i+1,2j+b

1 for all j ∈ [0..2i)\{α|i}, b ∈ {0, 1}, as well as T i+1,2α|i+b
0 = T

i+1,2α|i+b
1 ⊕1

for b ∈ {0, 1}.

We omit the proof of this claim, which closely follows from [BGI16b].

Claim 5.4 After an honest execution of the protocol party Pσ holds output (y0σ, . . . , y
D−1
σ ), such

that yj0 + yj1 = 0 for all j 6= α, and yα0 + yα1 = β.

Proof. For all j 6= α, by Claim 5.3 we have

~s logD−1,jσ ⊕ T logD−1,j
σ · CWD−1 = ~s logD−1,j1−σ ⊕ T logD−1,j

1−σ · CWD−1,

and thus ~s logD,2j0 = ~s logD,2j1 . This implies sj,L0 = sj,L1 , and thus yj0 + yj1 = sj0, L · CW
L − sj1, L ·

CWL = 0
Further, we have

zL0 − zL1 =
D−1∑
j=0

sj,L0 −
D−1∑
j=1

sj,L1 = sα,L0 − sα,L1

and thus yα0 + yα1 = sα,L0 · CWL − sα,L1 · CWL = (sα,L0 − sα,L1 ) · (sα,L0 − sα,L1 )−1 · β = β. �

Claim 5.5 If β 6= 0, then in an honest execution the protocol does not abort with overwhelming
probability.

Proof. First, note that β 6= 0 implies that CWL 6= 0. Further, by the same reasoning as above,
5.3 yields ~s logD,2j+1

0 = ~s logD,2j+1
1 , and thus sj,R0 = sj,R1 , for all j ∈ [0..D)\{α}. This implies

CWR = zR0 − zR1 = sα,R0 − sα,R1 . This implies

SR0 + SR1 = (CWR)−1 ·
D−1∑
j=0

rj · (sj,R0 − sj,R1 )

= (sα,R0 − sα,R1 )−1 · rα · (sα,R0 − sα,R1 ) = rα.

Further, we have

SL0 + SL1 =
D−1∑
j=0

rj · (sj,L0 − s
j,L
1 )

= rα · (sα,L0 − sα,L1 )

= rα · β′

which yields Z = 0 as required.
�

Security. It is left to show that ~yσ is distributed uniformly for each σ ∈ {0, 1} individually,
even given access to all communication between P0 and P1. As an honest execution of our pro-
tocol is very similar to an execution of the original protocol of Doerner and shelat (instantiated
with the DPF of [BGI16b]), in the following we only give a proof sketch. Note that even condi-
tioned on all correction words and correction bits revealed during the protocol, i.e. CWi, τ i,0, τ i,1

for all i ∈ [0..D) and CWR, it holds that ~yσ is distributed uniformly at random, because each
of the correction values is blinded by an output of the PRG, where the input is known only to
P1−σ (and in particular not revealed during the protocol execution). Further, if β 6= 0, the same
holds true conditioned on CWL. Finally, note that the only value that an adversary sees in the
verification step of an honest execution is a 0, therefore security follows.
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Party Pσ is corrupted. We now proceed to the case that one party is corrupted. We start by
giving an intuition for the proof. In the simulation, all the correction values τ i,b,CWi, and the
right correction word CWR, will be simulated using random values. In the consistency check,
the simulator needs to extract a guess on α ∈ [D] made by the potentially cheating adversary.
Since the simulator does not know α, it will define, for each χ ∈ [D], a simulated “honest view”
that is consistent with α = χ and the adversary’s view so far. Using the SLσ , SRσ values provided
by the adversary, the simulator then defines the predicate P (χ), which is 1 if the adversary’s
behaviour is consistent with the simulated honest view based on χ. It queries this guess to the
functionality, if the guess is successful, the consistency check passes. The simulator can then use
a consistent value of χ to extract a valid output vector that is known by the adversary. In the
proof, we show that due to the random linear combination, every χ that satisfies P (χ) = 1 will
lead to the same extracted output, so the simulation is consistent with the real protocol.

The simulator proceeds as follows.

Key generation phase: • For i ∈ [1.. logD] :

– The simulator sends a random τ i,b1−σ ∈ {0, 1} to Pσ, and waits to receive τ i,bσ , then
defines τ i,b = τ i,b0 ⊕ τ

i,b
1 .

– Next, the simulator awaits input ~v iσ ∈ {0, 1}λ toMixedMult from the adversary,
as well as the adversary to input Pσ’s output share ~y iσ ∈ {0, 1}λ.

– Next, to simulate PassiveOutput the simulator sends a random CWi
1−σ ∈

{0, 1}λ to the adversary, then waits to receive CW i
σ ∈ {0, 1}λ, and sets CWi :=

CWi
0 ⊕ CWi

1.
• Now, the simulator awaits input zLσ , zRσ ∈ Fq from the adversary and returns a random
CWR ← Fq. It also samples a random CWL ← Fq.

• Finally, for each χ ∈ [0..D) (corresponding to all possible values of α) the simulator
computes the output of the honest party P1−σ that is compatible with the correction
values and correction bits as sampled above.
– The simulator sets T 1,1−χ1

1−σ,χ := 1− σ.
– For i ∈ [1.. logD]:

∗ For b ∈ {0, 1}, the simulator sets ui,b1−σ,χ := τ i,b1−σ⊕χi⊕αi,σ⊕ (1⊕σ) · (1⊕ b).
∗ The simulator sets

~z i,1−χi1−σ,χ := CWi
1−σ ⊕ ~y iσ ⊕ χi · ~v iσ.

– For the first level, the simulator sets ~s 1,1−χ1
1−σ,χ := ~z 1,1−χ1

1−σ,χ .
– For i ∈ [1.. logD] :

∗ For j ∈ [0..2i), the simulator computes:
· The next level of the GGM tree:

~s i+1,2j
1−σ,χ ‖~s

i+1,2j+1
1−σ,χ ‖ti+1,2j

1−σ,χ‖t
i+1,2j+1
1−σ,χ := PRG(~s i,j1−σ,χ⊕ T

i,j
1−σ,χ ·CW

i) if j 6= χi.

· Next, if i < logD the simulator uses the pre-computed values ~z i+1,1−χi+1

1−σ,χ ,
ui+1,0
1−σ,χ, u

i+1,1
1−σ,χ to compute the missing part of the GGM tree – except for

the seed value on the χ-path, ~s i+1,χ|i+χi+1

1−σ,χ (where by χ|i =
∑i−1

j=0 χj2
j we

denote the i-bit prefix of χ parsed as a natural number), since we do not
need this value to continue. Instead, the already chosen correction word of
the next level (together with the other leave values) will implicitly define
it.

~s
i+1,2χ|i+1−χi+1

1−σ,χ := ~z
i+1,1−χi+1

1−σ,χ ⊕
2i−1⊕

j=0,j 6=χ|i

~s
i+1,2j+1−χi+1

1−σ,χ ,
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as well as

t
i+1,2χ|i+b
1−σ,χ := ui+1,b

1−σ,χ ⊕
2i−1⊕

j=0,j 6=χ|i

ti+1,2j+b
1−σ,χ .

· Further, if i < logD, the simulator computes the next level of choice bits:

T i+1,2j
1−σ,χ := ti+1,2j

1−σ,χ⊕T
i,j
1−σ,χ·τ

i,Parity(j), T i+1,2j+1
1−σ,χ := ti+1,2j+1

1−σ,χ ⊕T i,j1−σ,χ·τ
i,Parity(j)

• Note that the simulator cannot compute the honest party’s output shares at position
χ, since this would require knowledge of β. However, the simulator can compute the
output share of the dishonest party Pσ, such that it is consistent with the shares of
P1−σ (conditioned on α = χ).

sχ,Lσ,χ := zLσ −
D−1∑

j=0,j 6=χ
sj,Lσ,χ, sχ,Rσ,χ := zRσ −

D−1∑
j=0,j 6=χ

sj,Rσ,χ

where sj,Lσ,χ = ConvertFq(~s
logD+1,2j
1−σ,χ ) and sj,Rσ,χ = ConvertFq(~s

logD+1,2j+1
1−σ,χ ) for j 6= χ.

Verification phase: • To simulate Fcoin, the simulator sends random r0, . . . , rD−1 ∈ Fq.
• Further, the simulator receives the “real” inputs SLσ , SRσ by the adversary.

• Next, for each χ ∈ [0..D) the simulator computes

SLσ,χ = (−1)σ ·
D−1∑
j=0

rj · sj,Lσ,χ, SRσ,χ = (−1)σ · (CWR)−1 ·
D−1∑
j=0

rj · sj,Rσ,χ

• For all j ∈ [0..D) the simulator further computes the (potential) output as

yjσ,χ := (−1)σ · sjσ,χ, L · CWL.

• To extract the adversary’s potential guess on α, the simulator defines the predicate

P : FlogD
2 :→ {0, 1}, P (χ) = 1⇔ SLσ,χ = SLσ ∧ SRσ,χ = SRσ ,

picks a χ? with P (χ?) = 1 and inputs ~yσ,χ? = (y0σ,χ? , . . . , y
D−1
σ,χ? ) and P to the func-

tionality. If such a χ? does not exist, the simulator sends ~yσ = 0 and P = 0 to the
functionality.

– If the functionality aborts, then the simulator receives α and sends to the adver-
sary a random Z ∈ F∗q and aborts.

– Else, the simulator outputs Z = 0 to the adversary. It also learns from the
functionality whether or not β = 0.

Output phase. Finally, we simulate the opening of the correction word CWL. If β = 0, the
simulator outputs 0 and aborts. Else, it sends CWL as sampled before.

It is left to show that the simulation is indistinguishable from a real protocol execution. To
this end, we first switch the real protocol distribution to a randomized distribution (Lemma 5.6),
and then show that the simulation is statistically indistinguishable from the randomized distri-
bution (Lemma 5.7).

Hybrid 1: Real behaviour of the honest party: We start by describing the honest party’s
behavior in a real execution, when the protocol is run with input α.
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Key generation phase: • Party P1−σ chooses a PRG seed ~s0,01−σ ∈ {0, 1}λ and com-
putes ~s 1,01−σ‖~s

1,1
1−σ‖t

1,0
1−σ‖t

1,1
1−σ := PRG(~s0,01−σ). Party P1−σ locally sets T 1,0

1−σ :=

T 1,1
1−σ := 1− σ, and ~z 1,0

1−σ := ~s 1,01−σ, ~z
1,1
1−σ := ~s 1,11−σ, u

1,0
1−σ := t1,01−σ, u

1,1
1−σ := t1,11−σ.

• For i = [1.. logD] :

– For b ∈ {0, 1}, P1−σ sends τ i,b1−σ := ui,b1−σ ⊕ αi,1−σ ⊕ (1 ⊕ σ) · (1 ⊕ b) to
PassiveOutput and receives τ i,b.

– P1−σ sends ~z i,01−σ ⊕ ~z
i,1
1−σ to MixedMult and receives ~y i1−σ.

– P1−σ sends ~yi1−σ ⊕ ~z
i,1
1−σ to PassiveOutput and receives CWi.

– For j ∈ [0..2i), party P1−σ computes:
∗ The next level of the GGM tree:

~s i+1,2j
1−σ ‖~s i+1,2j+1

1−σ ‖ti+1,2j
1−σ ‖t

i+1,2j+1
1−σ := PRG(~s i,j1−σ ⊕ T

i,j
1−σ · CW

i)

∗ The sums of the left/right leaves and left/right correction bits, for b ∈
{0, 1}:

~z i+1,b
1−σ :=

2i−1⊕
j=0

~s i+1,2j+b
1−σ , ui+1,b

1−σ :=

2i−1⊕
j=0

ti+1,2j+b
1−σ ,

∗ The next level of choice bits:

T i+1,2j
1−σ := ti+1,2j

1−σ ⊕T
i,j
1−σ ·τ

i,Parity(j), T i+1,2j+1
1−σ := ti+1,2j+1

1−σ ⊕T i,j1−σ ·τ
i,Parity(j)

• Convert the output shares to Fq: P1−σ computes:

zL1−σ :=
D−1∑
j=0

sj,L1−σ, zR1−σ :=
D−1∑
j=0

sj,R1−σ

where sj,L1−σ = ConvertFq(~s
logD+1,2j
1−σ ) and sj,R1−σ = ConvertFq(~s

logD+1,2j+1
1−σ ).

• Correct the offset of the left leaves to β and the offset of the right leaves to 0:
– Party P1−σ sends ~z L1−σ and ~zR1−σ to Input.
– Party P1−σ receives CWR.

Verification Phase: • The parties call Fcoin to obtain r0, . . . , rD−1 ∈ Fq.
• Party P1−σ computes

SL1−σ = (−1)1−σ ·
D−1∑
j=0

rj · sj,L1−σ, SR1−σ = (−1)1−σ · (CWR)−1 ·
D−1∑
j=0

rj · sj,R1−σ

• Party P1−σ inputs SL1−σ, SR1−σ to Input. It receives Z. If Z 6= 0, party P1−σ
aborts.

Output Phase: • Party P1−σ receives CWL. If CWL = 0, the party aborts.
• Finally, if all checks passed, party P1−σ outputs ~y1−σ = (y01−σ, . . . , y

D
1−σ − 1),

where
yj1−σ := (−1)1−σ · sj,L1−σ · CW

L.

Hybrid 2: Randomized behaviour of the honest party. We now describe the honest party’s
behaviour, where we replace calls to PRG by random values whenever the seed is not known
by the adversarial party Pσ. Changes to the first hybrid are framed .
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Key generation phase: • Party P1−σ chooses ~s 1,01−σ‖~s
1,1
1−σ‖t

1,0
1−σ‖t

1,1
1−σ

$← {0, 1}2λ+2 at

random. Party P1−σ locally sets T 1,0
1−σ := T 1,1

1−σ := 1− σ, and ~z 1,0
1−σ := ~s 1,01−σ, ~z

1,1
1−σ :=

~s 1,11−σ, u
1,0
1−σ := t1,01−σ, u

1,1
1−σ := t1,11−σ.

• For i = [1.. logD] :

– For b ∈ {0, 1}, P1−σ sends τ i,b1−σ := ui,b1−σ ⊕ αi,1−σ ⊕ (1 ⊕ σ) · (1 ⊕ b) to
PassiveOutput and receives τ i,b.

– P1−σ sends ~z i,01−σ ⊕ ~z
i,1
1−σ to MixedMult and receives ~y i1−σ.

– P1−σ sends ~y i1−σ ⊕ ~z
i,1
1−σ to PassiveOutput and receives CWi.

– For j ∈ [0..2i), party P1−σ computes:
∗ The next level of the GGM tree:

~s i+1,2j
1−σ ‖~s i+1,2j+1

1−σ ‖ti+1,2j
1−σ ‖t

i+1,2j+1
1−σ

 $← {0, 1}2λ+2 if j = α|i
:= PRG(~s i,j1−σ ⊕ T

i,j
1−σ · CW

i) else

∗ The sums of the left/right leaves and left/right correction bits, for b ∈
{0, 1}:

~z i+1,b
1−σ :=

2i−1⊕
j=0

~s i+1,2j+b
1−σ , ui+1,b

1−σ :=

2i−1⊕
j=0

ti+1,2j+b
1−σ ,

∗ The next level of choice bits:

T i+1,2j
1−σ := ti+1,2j

1−σ ⊕T
i,j
1−σ ·τ

i,Parity(j), T i+1,2j+1
1−σ := ti+1,2j+1

1−σ ⊕T i,j1−σ ·τ
i,Parity(j)

• Convert the output shares to Fq: P1−σ computes:

zL1−σ :=
D−1∑
j=0

sj,L1−σ, zR1−σ :=
D−1∑
j=0

sj,R1−σ

where sj,L1−σ = ConvertFq(~s
logD+1,2j
1−σ ) and sj,R1−σ = ConvertFq(~s

logD+1,2j+1
1−σ ).

• Correct the offset of the left leaves to β and the offset of the right leaves to 0:
– Party P1−σ sends ~z L1−σ and ~zR1−σ to Input.
– Party P1−σ receives CWR.

Verification Phase: • The parties call Fcoin to obtain r0, . . . , rD−1 ∈ Fq.
• Party P1−σ computes

SL1−σ = (−1)1−σ ·
D−1∑
j=0

rj · sj,L1−σ, SR1−σ = (−1)1−σ · (CWR)−1 ·
D−1∑
j=0

rj · sj,R1−σ

• Party P1−σ inputs SL1−σ, SR1−σ to Input. It receives Z. If Z 6= 0, party P1−σ
aborts.

Output Phase: • Party P1−σ receives CWL. If CWL = 0, the party aborts.
• Finally, if all checks passed, party P1−σ outputs ~y1−σ = (y01−σ, . . . , y

D
1−σ − 1),

where
yj1−σ := (−1)1−σ · sj,L1−σ · CW

L.

We omit the proof of the following lemma here and refer to [BGI16b], since the changes only
concern the underlying DPF protocol.
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Lemma 5.6 If PRG : {0, 1}λ → {0, 1}2λ+2 is a secure PRG, then the real behaviour and the
randomized behaviour of P1−σ are indistinguishable to an adversary controlling Pσ.

Lemma 5.7 Assume q = q(λ) = λω(1). Then, the distribution generated by the simulator is
statistically indistinguishable from the randomized protocol execution as described in Hybrid 2.

Proof. Assume to be given the real α ∈ [0..D), β ∈ Fq. First, note that we can assume that for
CWL as sampled by the simulator it holds that CWL 6= 0, since this holds except with probability
1/q. Further, we assume that for β′ as generated in the randomized protocol execution, it holds
β′ 6= 0, which is also true except with probability 1/q.

We begin the proof by showing that the values ~s logD+1,2j
1−σ,α and ~s logD+1,2j+1

1−σ,α for j 6= α are
perfectly indistinguishable from those generated in a real protocol execution with randomized
behaviour of P1−σ.

• First, we have T 1,1−α1
1−σ,α = 1 = T 1,1−α

1−σ .

• Next, recall that for b ∈ {0, 1} the simulator sets u1,b1−σ,α := τ1,b1−σ⊕α1⊕α1,σ⊕(1⊕σ)·(1⊕b),
where τ1,b1−σ is chosen uniformly at random from {0, 1}. This is equivalent to choosing u1,b1−σ
uniformly at random and setting τ i,b1−σ := ui,b1−σ ⊕ α1,1−σ ⊕ (1⊕ σ) · (1⊕ b), as done in the
randomized protocol execution.

• Further, recall that the simulator sets

~z 1,1−αi
1−σ,α := CW1

1−σ ⊕ ~y 1
σ ⊕ α1 · ~v 1

σ ,

where ~v 1
σ ∈ {0, 1}λ is the adversary’s input to MixedMult and ~y 1

σ ∈ {0, 1}λ is the
adversary’s output share for Pσ. Note that in a randomized execution of the protocol, it
holds CW1

1−σ = ~y11−σ ⊕ ~z
1,1
1−σ, where ~y

1
σ ⊕ ~y 1

1−σ = α1 · (~v1σ ⊕ ~z
1,0
1−σ ⊕ ~z

1,1
1−σ). This yields

CW1
1−σ = ~y 1

σ ⊕ α1 · ~v 1
σ ⊕ ~z

1,1−α1
1−σ ,

where ~z1,1−α1
1−σ is sampled uniformly at random. Thus, as above we obtain that the simu-

lation is perfectly indistinguishable from the randomized protocol execution.

• For i ∈ [1.. logD], observe that again sampling CWi+1, τ i+1,0, τ i+1,1 (and thus ~z i+1,1−αi
1−σ,α

and u i+1,b
1−σ,α) and then defining the missing ~s i+1,2α|i+1−αi+1

1−σ,α , t i+1,2α|i
1−σ,α , t i+1,2α|i+1

1−σ,α is indistin-
guishable to the randomized protocol execution, where P1−σ proceeds vice versa.

With the above considerations, we obtain that ~s logD+1,2j
1−σ,α and ~s logD+1,2j+1

1−σ,α for j 6= α are
indistinguishable from those generated in a randomized protocol execution as required.

Next, we compute the values sα,L1−σ, s
α,R
1−σ, as would be computed in a randomized protocol

execution (conditioned on β 6= 0), and show that the simulator outputs Z = 0 if and only if the
randomized execution outputs Z = 0, except with negligible probability (corresponding to the
event that the adversary successfully guessed β′).

• Recall that zLσ , zRσ are the values sent to Input by the adversary. In a randomized protocol
execution we would have

(−1)σ · z Lσ + (−1)1−σ · z L1−σ = β′,

and thus
z L1−σ = (−1)1−σ · β′ + z Lσ ,

as well as
zR1−σ = (−1)1−σ · CWR + zRσ .
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This yields

sα,L1−σ = zL1−σ −
D−1∑

j=0,j 6=α
sj,L1−σ, sα,R1−σ = zR1−σ −

D−1∑
j=0,j 6=α

sj,R1−σ

where sj,L1−σ = ConvertFq(~s
logD+1,2j
1−σ ) and sj,R1−σ = ConvertFq(~s

logD+1,2j+1
1−σ ) for j 6= α.

• Let now SL1−σ, SR1−σ be the values as computed by the honest party in a randomized
protocol execution, and SLσ,α, SRσ,α the values computed by the simulator. Then, we have

SL1−σ + SLσ,α = (−1)1−σ · rα · sα,L1−σ + (−1)σ · rα · sα,Lσ,α

= (−1)1−σ · rα · zL1−σ + (−1)σ · rα · zLσ
= (−1)1−σ · rα · ((−1)1−σ · β′ + z Lσ ) + (−1)σ · rα · zLσ
= rα · β′

and

SR1−σ + SRσ,α = (−1)1−σ · (CWR)−1 · rα · sα,R1−σ + (−1)σ · (CWR)−1 · rα · sα,Rσ,α

= rα.

We thus have that the randomized protocol execution outputs Z = 0 if and only if
SLσ = SLσ,α and SRσ = Sσ,α, unless the adversary successfully guessed β′. Since β′ is
distributed perfectly uniformly at random from the adversary’s point of view in the ran-
domized protocol execution at this point (since it didn’t yet learn CWL), this only happens
with probability 1/q. Further, if the simulator aborts and the adversary did not success-
fully guess β′, it perfectly simulates the distribution of Z, since again β′ is distributed
uniformly at random.

It is left to show that the output of the honest party induced by the simulation is indistin-
guishable from the output of the honest party in the randomized protocol execution. To that
end, we have to show that

1. ~yσ,α + ~y1−σ = (0, . . . , 0, β, . . . , 0), where ~yσ,α is as computed by the simulator and ~y1−σ is
the value computed in the randomized protocol execution, and

2. ~yσ,χ∗ = ~yσ,α for all χ∗ with P (χ?) = 1.

This can be proven as follows.

1. By the above considerations we have

yjσ,α + yj1−σ = (−1)σ · sj,Lσ,α · CWL + (−1)1−σ · sj,L1−σ · CW
L = 0

for all j 6= α. Further, we have

yασ,α + yα1−σ = (−1)σ · sα,Lσ,α · CWL + (−1)1−σ · sα,L1−σ · CW
L

= (−1)σ · zLσ · CWL + (−1)1−σ · zL1−σ · CWL

= β′ · CWL

= β,

which yields the required.

2. Since r0, . . . , rD−1 are sampled at random over Fq, independently of the rest of the protocol
execution, we have that if SL1−σ,χ? = SL1−σ,α and SL1−σ,χ? = SL1−σ,α, then s

j,L
σ,α = sj,Lσ,χ for all

j ∈ [0..D), except with negligible probability. This concludes the proof.

�
�
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Functionality FOLE-Setup

Parameters: Security parameter 1λ, PCGOLE = (PCGOLE.Gen,PCGOLE.Expand) as per Fig-
ure 1.
Functionality:

1. Sample (k0, k1)← PCGOLE.Gen(1λ).

2. Output kσ to party Pσ, for σ ∈ {0, 1}

Figure 7: Generic functionality for the distributed setup of OLE PCG seeds

6 PCG Setup Protocols

In this section, we present the complete secure two-party setup protocols for our PCGs based on
module-LPN, using the protocols from the previous section as building blocks. In Section 6.1,
we show how to securely realize (against a semi-honest adversary) the randomized functionality
FOLE-Setup that executes the seed generation for our PCG construction PCGOLE from Section 4,
and outputs the corresponding PCG seeds to each party. This can in turn be used to realize a
functionality for the secure generation of OLE correlations, by having the parties simply expand
their received PCG seeds locally.

For the malicious case, we do not directly realize the PCG seed generation functionality,
which would be much more challenging. Instead, we realize the random OLE generation func-
tionality Fmal-OLE, in which a corrupt adversary can choose his output (xσ, zσ) ∈ R2

p and the
honest party receives a random consistent value (x1−σ, z1−σ), i.e. for which z0 + z1 = x0 · x1 (or
the parties receive a random sample from the correlation given honest behavior; see Figure 9 for
full description). As discussed in [BCG+19b], such a protocol can directly serve as a substitute
for ideal OLE correlations in a wide range of higher-level applications, already proven to remain
secure given this functionality. More precisely, in Section 5.3, we address both the secure gen-
eration of OLEs and authenticated multiplication triples in the presence of active adversaries,
securely realizing the functionality Fmal-triple at little extra cost.

Finally, in Section 6.3 we analyze the efficiency of our protocols. For concrete numbers, we
refer to Table 3 in Section 9.2.

6.1 Semi-Honest Distributed Setup for OLE

We present a protocol for securely executing the seed-generation functionality FOLE-Setup (Fig-
ure 7) with respect to our PCG construction PCGOLE from Section 4. Recall that in the
PCGOLE.Gen procedure (see Figure 1), each party receives a succinct description (Aiσ,

~biσ)i∈[0..c) of
t-sparse “noise vectors” e0σ, . . . , ec−1σ each of length N , as well as a collection of (ct)2 distributed
point function (DPF) keys as a compact representation of all possible products ei0 · e

j
1.

Note that the protocols works over the prime field Fp, rather than an extension field Fq (as
in FDPF). This is because the PCGs we use need to run over Rp for a prime p, to be useful for
the case where Rp fully splits into linear factors (cf. Section 3.2).

Theorem 6.1 The protocol ΠOLE-Setup (Fig. 8) securely realizes the OLE PCG seed functionality
FOLE-Setup (Fig. 7) with security against semi-honest adversaries in the (F2-PC,FDPF)-hybrid
model.

Proof. Observe that the protocol ΠOLE-Setup is directly a secure evaluation of the computation
steps of FOLE-Setup (see description of PCGOLE.Gen as given in Figure 1 within Section 4), with
the exception that the FSS key generation for the sum of point functions SPFSS.Gen(1λ, Ai0 �
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Protocol ΠOLE-Setup

Parameters: Security parameter 1λ, natural number N = 2k, prime p, distributed point
function DPF = (DPF.Gen,DPF.Eval) with domain [0..2N) and range Fp. Further, we assume
access to the functionalities F2-PC (Fig. 3) and FDPF (Fig. 4).
Protocol:

1. For σ ∈ {0, 1}, i ∈ [0..c), party Pσ samples random vectors Aiσ ← [0..N)t (where each
entry of Aiσ is viewed as a length-logN bit-string) and ~biσ ← (F∗p)t. Note that as outlined
in Figure 1, each pair Aiσ,~biσ defines a t-sparse polynomial eiσ ∈ Rp.

2. For σ ∈ {0, 1}, i ∈ [0..c) and k ∈ [0..t):

//Pσ inputs the k-th non-zero position and corresponding payload of eiσ.

JAiσ[k]KF`2 ← Input(Pσ, A
i
σ[k]) and J~biσ[k]Kp ← Input(Pσ,~b

i
σ[k])

3. For every i, j ∈ [0..c) and k, l ∈ [0..t) (in parallel) the parties do the following:

(a) Jαi,jk,lKF`+1
2
← BitAdd(JAi0[k]KF`2 , JA

j
1[l]KF`2) //Compute the k+ tl-th position of ei0 ·e

j
1.

(b) Jβi,jk,lKp ←Mult(J~bi0[k]Kp, J~b
j
1[l]Kp) //Compute the k + tl-th payload of ei0 · e

j
1.

(c) For each i, j ∈ [0..c) and k, l ∈ [0..t), call FDPF with domain size [0..2N) on input
Jαi,jk,lKF`+1

2
and Jβi,jk,lKp, and let Ki,j

σ,k,l denote the output to party Pσ.

//Compute compressed additive secret shares of ei0 · e
j
1.

4. Party Pσ outputs kσ =
(

(Ki,j
σ,k,l)i,j∈[0..c),k,l∈[0..t), (A

i
σ,
~biσ)i∈[0..c)

)
.

Figure 8: Distributed setup of PCG seeds for OLE in the (F2-PC,FDPF)-hybrid model, against semi-honest adver-
saries. JxKF`2 , JxKp denote additive shares of bit-strings or Fp elements.

Aj1,
~bi0 ⊗ ~b

j
1) is instantiated directly by the DPF key generation for every individual nonzero

component. As discussed in Section 2.2, this is a valid instantiation of SPFSS, and hence the
claim holds. �

6.2 PCG Setup Protocols with Malicious Security

Module-LPN with static leakage. The protocols in this section rely on a stronger variant
of module-LPN, where the adversary is allowed to query (on average) one bit of information
on the secret error vectors. We need to allow this, because of the leakage in the functionality
Fc-SUV used to generate DPF keys with malicious security. Note that this style of assumption
with leakage is very similar to the assumption of standard LPN with static leakage as used
in [HOSS18a,BCG+19a].

Definition 6.2 (Module-LPN with static leakage) Let Rp = Zp[X]/F (X) for some prime
p and degree-N polynomial F (X) ∈ Z[X], and let c, t ∈ N with c ≥ 2. Let HWt be the distribution
over Rp that is obtained via sampling t noise positions A← [0..N)t as well as t payloads ~b← Ztp
uniformly at random, and outputting e(X) :=

∑t−1
j=0

~b[j] ·XA[j]. For b ∈ {0, 1} let Gb(λ) be the
following game:

• Let e0, . . . , ec−1 ← HWt and let A0, . . . , Ac−1 ∈ [0..N)t be the corresponding positions of
non-zero coefficients.
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• Allow the adversary arbitrary guesses on the noise positions before seeing the
module-LPN sample. The adversary A can make an arbitrary number of (adaptive)
queries, each consisting of indices i ∈ [0..c), k ∈ [0..c) and a predicate P : [0..N)→ {0, 1}.
For each query, if P (Ai[k]) = 0 then abort, otherwise, send (success) to the adversary
and continue.

• Set u0 = 〈~a,~e〉 mod F (X), where ~e = (e0, . . . , ec−1) and draw u1 ← Rp at random.

• Return ub to the adversary.

The Rc-LPNp,t problem with static leakage for ~a ∈ Rcp is hard if for any PPT adversary A, it
holds that ∣∣∣Pr[AG0(λ) = 1]− Pr[AG1(λ) = 1]

∣∣∣ ≤ negl(λ)

where the probabilities are taken over e0, . . . , ec−1 ← HWt and the randomness of A.

In the above, if the adversary was restricted to querying predicates that either take 1 on
all values or 0 on at least half of the values (in other words: if the adversary attempts to
guess some noise coordinate, the protocol will abort with probability at least 1/2), then we
can reduce the ring LPN with static leakage and noise parameter t + κ to our basic ring LPN
assumption with noise parameter t. The idea is that the adversary can attempt a guess on at
most κ noise coordinates, where κ is a statistical security parameter, as otherwise the protocol
will abort with probability > 1 − 2−κ. This observation would allow to reduce security of a
slight tweak of the protocol Πmal-OLE (Figure 10), where our protocol Πc-SUV is used to generate
random instances of scaled unit vectors (which are derandomized subsequently), to the standard
module-LPN assumption. This is due to the fact that if α is random from the point of the view
of the adversary, one can show that in the protocol Πc-SUV an adversary actually can only give
a wildcard guess on α, i.e. guess a subset of the bits, which corresponds to giving a predicate
which takes 0 on at least half of the inputs.

This said, we want to stress that the described reduction is very loose in the sense that even
if the adversary only attempts to guess a single bit on the noise position, the reduction “gives
up” the correspoding noise position completely. Indeed, for our concrete protocol, we conjecture
that it’s not necessary to increase the noise rate in the presence of this limited leakage. For a
more detailed discussion regarding attacks on ring LPN with static leakage, see Section 8.6.

Distributed generation of OLEs in the malicious setting. Building on the previous
protocols, we now present our PCG protocol for generating OLE correlations with distributed
setup (Fig. 10) and show that it securely implements the corruptible OLE functionality (Fig.
9) with security against malicious adversaries.

Theorem 6.3 Let Rp = Zp[X]/F (X) for some prime p and degree-N polynomial F (X) ∈
Z[X], and let c, t ∈ N. If the Rc-LPNp,t problem with static leakage is hard, then the protocol
Πmal-OLE (Fig. 10) implements the functionality Fmal-OLE (Fig. 9) with security against malicious
adversaries in the F2-PC,Fc-SUV-hybrid model.

Proof. We start with considering the case that both parties are honest.

Both parties are honest. Note that all communication of the parties is via ideal functionali-
ties, so we only need to prove that the final output of a real protocol execution is indistinguishable
from the output of the ideal functionality.

For σ ∈ {0, 1}, let eiσ(X) =
∑t−1

k=0
~biσ[k] ·XAiσ [k] ∈ Rp be the noise polynomial defined by Aiσ

and ~biσ. Then, ei0 · e
j
1 is the polynomial with coefficient ~bi0[k] ·~bj1[l] at position Ai0[k] +Aj1[l] for all
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Functionality Fmal-OLE

Parameters: Security parameter 1λ, modulus p, and the ring Rp = Zp[X]/F (X), where F (X)
has degree N .
Functionality:
If both parties are honest:

1. Sample x0, x1 ← Rp.

2. Sample z0
$← Rp, and let z1 ← x0 · x1 − z0.

3. Output (xσ, zσ) to party Pσ, for σ ∈ {0, 1}

If party Pσ is corrupted:

1. Wait for input (xσ, zσ) ∈ R2
p from the adversary.

2. Sample x1−σ ← Rp and set z1−σ ← x0 · x1 − zσ.

3. Output (x1−σ, z1−σ) to the honest party.

Figure 9: Corruptible OLE Functionality

i, j ∈ [0..c) and k, l ∈ [0..t). Thus, by the properties of Fc-SUV, it holds g0,i+cj + g1,i+cj = ei0 · e
j
1,

and therefore x0 · x1 = z0 + z1 as required.
Finally, Rc-LPNp,t implies the indistinguishability of (x0, x1), (z0, z1) from an OLE triple

generated at random similarly to the proof of Theorem 4.1.

Party Pσ is corrupted. For the notation in the following we assume σ = 1, the case σ = 0
is obtained by switching (i, k) with (j, l). The simulator proceeds as follows. For j ∈ [0..c)
and l ∈ [0..t) it waits for input Ajσ, . . . , Ajσ ∈ [0..N)t and ~bjσ ∈ Ztp of the adversary. Otherwise,
the simulator sets ejσ ∈ Rp to be degree < N polynomial defined by Ajσ,~bjσ, and saves ~eσ :=
(e0σ, . . . e

c−1
σ ) ∈ Rcp.

The simulator proceeds to simulate the calls to Fc-SUV as follows. For each j ∈ [0..c),
l ∈ [0..t) for which ~biσ[k] = 0 it outputs “β = 0” to the adversary and aborts on this instance.
Next, for all other instances it awaits a guess B of size at most 2N of the adversary. The
simulator replies with “⊥” (regardless of the set B) and continues. Subsequently, for i, j ∈ [0..c)
and k, l ∈ [0..t) corresponding to a non-aborting instance the simulator waits for input ~gi,jσ,k,l
and predicate P i,jk,l : [0..2N) → {0, 1} by the adversary. Now, the simulator chooses random
A0, . . . , Ac−1

$← [0..N)t,~b0, . . . ,~bc−1
$← Ztp\{0} and proceeds as follows: For each i, j ∈ [0..c),

k, l ∈ [0..t), in the (i, j, k, l)-th invocation of Fc-SUV, if P
i,j
k,l (A

i[k] + Ajσ[l]) = 0, the simulator
aborts on all instances and outputs (Ai[k] +Ajσ[l],~bi[k] ·~bjσ[l]). Otherwise, it outputs (success)
and continues. Next, if the simulator did not abort on any instance, for each i, j ∈ [0..c),
k, l ∈ [0..t) the simulator defines the vector

~gi,jσ =

t∑
j,k=1

~gi,jσ,k,l.

The simulator interprets each ~gi,jσ as a degree < 2N polynomial gσ,i+cj over Zp, and sets ~gσ :=

(g0σ, . . . , g
c2−1
σ ).
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Protocol Πmal-OLE

Parameters: Security parameter 1λ, natural number N = 2k, prime p, access to functionality
Fc-SUV with length 2N , prime modulus p, polynomial F (X) ∈ Z[X] of degree N , ring R =
Zp[X]/F (X), and parameters c, t ∈ N (corresponding to the syndrome compression factor and
noise rate of the LPN assumption, respectively).
Public input: random polynomials a1, . . . , ac−1 ∈ Rp, used for Rc-LPN
Correlation: After expansion, outputs (x0, z0) ∈ R2

p and (x1, z1) ∈ R2
p, where z0+z1 = x0 ·x1.

Protocol:

1. For σ ∈ {0, 1}, i ∈ [0..c), party Pσ samples random vectors Aiσ ← [0..N)t (where each
entry of Aiσ is viewed as a length-logN bit-string) and ~biσ ← (Z∗p)t. Note that each pair
Aiσ,

~biσ defines a t-sparse polynomials eiσ(X) =
∑t−1

k=0
~biσ[k] ·XAiσ [k] ∈ Rp.

2. For σ ∈ {0, 1}, i ∈ [0..c) and k ∈ [0..t):

JAiσ[k]K2 ← Input(Pσ, A
i
σ[k]) and J~biσ[k]Kp ← Input(Pσ,~b

i
σ[k]).

3. For every i, j ∈ [0..c) and k, l ∈ [0..t) (in parallel) the parties do the following:

(a) Jαi,jk,lK2 ← BitAdd(JAi0[k]K2, JA
j
1[l]K2).

(b) Compute Jβi,jk,lKp ←Mult(J~bi0[k]Kp, J~b
j
1[l]Kp).

(c) For each i, j ∈ [0..c) and k, l ∈ [0..t), call Fc-SUV with length 2N on input Jαi,jk,lK2 and
Jβi,jk,lKp, and let ~gi,jσ,k,l denote the output to party Pσ.

4. For each i, j ∈ [0..c), Pσ defines the vector

~gi,jσ =

t−1∑
j,k=0

~gi,jσ,k,l.

5. Party Pσ computes xσ = 〈~a,~eσ〉 mod F (X), where ~a = (1, a1, . . . , ac−1), ~eσ =
(e0σ, . . . , e

c−1
σ ).

And, interpreting each ~gi,jσ as a degree < 2N polynomial gσ,i+cj over Zp, and setting
~gσ := (g0, . . . , gc2−1), party Pσ computes

zσ = 〈~a⊗ ~a,~gσ〉 mod F (X).

6. Party Pσ outputs (xσ, zσ)

Figure 10: PCG protocol securely implementing the corruptible OLE functionality
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Finally, the simulator forwards

xσ := 〈~a,~eσ〉 mod F (X)

and
zσ := 〈~a⊗ ~a,~gσ〉 mod F (X)

to the functionality.
We conclude the proof by showing that an adversary A distinguishing the simulated pro-

tocol execution from a real execution can be turned into an adversary B on the module-LPN
assumption with static leakage. Adversary B proceeds exactly as the simulation until the point,
where it receives the predicate guesses P i,jk,l from the adversary within the call of Fc-SUV. Instead
of choosing A0, . . . , Ac−1

$← [0..N)t,~b0, . . . ,~bc−1
$← Ztp\{0}, for each i, j ∈ [0..c), k, l ∈ [0..t) the

simulator defines the predicate Qi,jk,l : [0..N) → {0, 1} via Qi,jk,l(A) = 0, iff P i,jk,l (A + Ajσ[l]) = 0

and forwards indices i, k and predicate Qi,jk,l to the module-LPN game. If the game aborts
on some index i?, j? ∈ [0..c), k?, l? ∈ [0..t), B samples A0, . . . , Ac−1

$← [0..N)t such that
Qi

?,j?

k?,l?(A
i? [k?]) = 0 and Qi,jk,l(A

i[k]) = 1 for all previously queried tuples (i, j, k, l). Further,
B samples ~b0, . . . ,~bc−1 $← Ztp\{0}, returns (Ai

?
[k?] + Aj

?

σ [l?],~bi[k] ·~bjσ[l]) to A and aborts. Note
that B can sample A0, . . . , Ac−1 as required by sampling fresh tuples A0, . . . , Ac−1

$← [0..N)t

until the predicates take the values as required. For all events that happen with noticeable
probability, this yields an adversary in expected polynomial time.

If the module LPN game does not abort, B receives u ∈ Rp from the experiment and sets
x1−σ := u. The adversary B computes z1−σ = x0 · x1− zσ (where xσ and zσ are computed as in
the simulation). Finally, B outputs 0 if and only if the adversary A returns “real”.

Note that in case b = 0 (i.e. the module-LPN game returns a real module-LPN sample),
adversary B simulates the real protocol execution except with negligible probability: First, note
that the probability that the adversary gets any of the guesses B to the functionality Fc-SUV

right is negligible, since p is superpolynomial and |B| ≤ 2N . Next, observe that the output
distribution simulated by B corresponds to the real output distribution, and the module-LPN
game aborts if and only if the functionality Fc-SUV would have aborted on at least one of its calls.
Therefore, B simulates the real protocol execution except with negligible probability. In case
b = 1, B perfectly simulates the simulation, since the probability that the module-LPN game
aborts equals the probability that the simulation aborts in an ideal execution. This concludes
the proof.

�

Distributed generation of authenticated multiplication triples in the malicious set-
ting. We finally present the distributed setup for our PCG protocol to generate authenticated
multiplication triples Πmal-triple (Fig. 12). To additionally generate shares of the MACs, the
protocol uses FDPF with outputs in F2

p; this can be done using the modification in Remark 5.2.
Note that the corruptible functionality Fmal-triple (similar to Fc-SUV) gives the adversary full

control over its share of the output. Recall that this is sufficient to use our PCG construction as a
“plug-in” replacement in a wide range of natural MPC protocols that use correlated randomness,
such as [DPSZ12]. As the proof of the following is very similar to the proof of Theorem 6.3, we
omit it here.

Theorem 6.4 Let R = Zp[X]/F (X) for some prime p and degree-N polynomial F (X) ∈ Z[X],
and let c, t ∈ N. If the Rc-LPNp,t problem with static leakage is hard, then the protocol Πmal-triple

(Fig. 12) implements the functionality Fmal-triple (Fig. 11) with security against malicious ad-
versaries in the F2-PC,Fc-SUV-hybrid model.
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Functionality Fmal-triple

Parameters: Security parameter 1λ, modulus p, and the ring R = Z[X]/F (X), where F (X)
has degree N .
Functionality:
If both parties are honest:

1. Sample γ0, γ1 ← Zp and let γ = γ0 + γ1.

2. Sample x0, x1, y0, y1 ← Rp and let x = x0 + x1, y = y0 + y1.

3. Compute z = x · y.

4. Choose mx,0,my,0,mz,0 ← Rp and define mx,1 := γ · x −mx,0, my,1 := γ · y −my,0 and
mz,1 := γ · z −mz,0.

5. Output (γσ, xσ, yσ, zσ,mx,σ,my,σ,mz,σ) to party Pσ, for σ ∈ {0, 1}

If party Pσ is corrupted:

1. Wait for input (γσ, xσ, yσ, zσ,mx,σ,my,σ,mz,σ) ∈ Zp ×R6
p from the adversary.

2. Sample γ1−σ ← Zp and x1−σ, y1−σ ← Rp. Set γ := γ0 + γ1, x := x0 + x1, y := y0 + y1 and
z := x ·y. Compute z1−σ ← z−zσ, as well as mx,1−σ ← γ ·x−mx,σ,my,1−σ ← γ ·y−my,σ

and mz,1−σ ← γ · z −mz,σ.

3. Output (γ1−σ, x1−σ, y1−σ, z1−σ,mx,1−σ,my,1−σ,mz,1−σ) to the honest party.

Figure 11: Corruptible functionality for authenticated triples

6.3 Efficiency Analysis

In this section we analyze the efficiency of the presented protocols for distributed setup. For
an overview of concrete efficiency for the generation of OLEs in the semi-honest and malicious
setting, we refer to Table 3 in Section 9.

We start this section by providing the costs for implementing the secure functionalities
F2-PC and Fext-2-PC from Section 5. We assume that secret values in these functionalities are
additively secret-shared between the two parties. In the case of malicious security, the shares are
also authenticated with information-theoretic MACs as in [BDOZ11,NNOB12], which ensures
correct opening of shares.

Input(Pσ, x): For semi-honest security, this has no communication cost as the parties define
their respective shares to be x and zero. For malicious security, Pσ needs to have an
authenticated random value, which can be preprocessed, and then sends ` bits for x ∈
{0, 1}` or log p bits for x ∈ Zp, to use the random value to authenticate x.

Add: This is a local operation.

Mult(JxKM , JyKM ): Uses one multiplication triple over ZM , with an online communication cost
of 2 logM bits per party (from two calls to Output).

BitAdd: Evaluates a binary circuit on inputs of length ` bits, using ` AND gates. This consumes
` multiplication triples over Z2, giving an online communication cost of 2` bits per party.

Output(JxKM ): This requires sending logM bits per party. With malicious security, the parties
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Protocol Πmal-triple (Part I)

Parameters: Security parameter 1λ, natural number N = 2k, prime p, access to functionality
Fc-SUV with length 2N , prime modulus p, polynomial F (X) ∈ Z[X] of degree N , ring R =
Zp[X]/F (X), and parameters c, t ∈ N (corresponding to the syndrome compression factor and
noise rate of the LPN assumption, respectively).
Public input: random polynomials a1, . . . , ac−1 ∈ Rp, used for Rc-LPN
Protocol:

1. The parties jointly setup γ ∈ Zp and t-sparse polynomials e0, ..., ec−1 and f0, . . . , f c−1,
which will be used to generate x and y, respectively.

(a) For σ ∈ {0, 1}, party Pσ chooses γσ ∈ Zp, and inputs JγσKp ← Input(Pσ, γσ). The
parties compute JγKp ← Jγ0Kp + Jγ1Kp.

(b) For σ ∈ {0, 1}, i ∈ [0..c), party Pσ chooses Aie,σ ← [0..N)t,~bie,σ ← (Z∗p)t. For k ∈ [0..t):

i. JAie,σ[k]K2 ← Input(Pσ, A
i
e,σ[k]) //Pσ inputs k-th non-zero position of eiσ

ii. J~bie,σ[k]Kp ← Input(Pσ,~b
i
e,σ[k]) //Pσ inputs the k-th payload of eiσ

iii. JAie[k]K2 ← JAie,0[k]K2 ⊕ JAie,1[k]K2 //compute k-th position of ei = ei0 + ei1

iv. J~bie[k]Kp ← J~bie,0[k]Kp + J~bie,1[k]Kp //compute k-th payload of ei = ei0 + ei1

v. J~mi
e[k]Kp ←Mult(J~bie[k]Kp, JγKp) //multiply k-th payload of ei by MAC key γ

vi. Call Fc-SUV with length N on input JAie[k]K2 and J~bie[k], ~mi
e[k]Kp such that party

Pσ receives output (~eiσ,k, ~u
i
σ,k) ∈ ZNp × ZNp .

//convert to additive shares of ei, γ · ei

(c) Repeat step (b) for f0, . . . , f c−1 with result (~f iσ,k, ~v
i
σ,k) ∈ ZNp × ZNp .

2. For every i, j ∈ [0..c) and k, l ∈ [0..t) (in parallel) the parties do the following:

(a) Jαi,jk,lK2 ← BitAdd(JAie[k]K2, JA
j
f [l]K2) //compute (k+tl)-th non-zero position of ei ·f j

(b) Jβi,jk,lKp ←Mult(J~bie[k]Kp, J~b
j
f [k]Kp) //compute (k + tl)-th payload of ei · f j

(c) Jmi,j
k,lKp ←Mult(Jβi,jk,lKp, JγKp) //multiply (k+ tl)-th payload of ei · f j by MAC key γ

(d) For each i, j ∈ [0..c) and k, l ∈ [0..t), call Fc-SUV with length 2N on input Jαi,jk,lK2 and
Jβi,jk,l,m

i,j
k,lKp, and let (~gi,jσ,k,l, ~w

i,j
σ,k,l) denote the output to party Pσ.

//convert to additive shares of ei · f j , γ · ei · f j

3. For each i ∈ [0..c), Pσ defines the vectors

~eiσ =

t−1∑
k=0

~eiσ,k, ~uiσ =

t−1∑
k=0

~uiσ,k,
~f iσ =

t−1∑
k=0

~f iσ,k and ~viσ =

t−1∑
k=0

~viσ,k.

4. For each i, j ∈ [0..c), Pσ defines the vectors

~gi,jσ =
t−1∑
j,k=0

~gi,jσ,k,l and ~wi,jσ =
t−1∑
j,k=0

~wi,jσ,k,l.

Figure 12: PCG protocol implementing the corruptible functionality for authenticated triples (Part I)
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Protocol Πmal-triple (Part II)

Protocol: (continued)

5. Interpret each ~eiσ as a degree < N polynomial eσ,i over Zp, and set ~eσ := (e0, . . . , ec−1)

(accordingly for ~uiσ, ~f iσ and ~viσ).

6. Interpret each ~gi,jσ as a degree < 2N polynomial gσ,i+cj over Zp, and set ~gσ :=

(g0, . . . , gc2−1) (accordingly for ~wi,jσ ).

7. Compute
xσ = 〈~a,~eσ〉 , yσ =

〈
~a, ~fσ

〉
, zσ = 〈~a⊗ ~a,~gσ〉 and

mx,σ = 〈~a, ~uσ〉 ,my,σ = 〈~a,~vσ〉 ,mz,σ = 〈~a⊗ ~a, ~wσ〉

all modulo F (X).

8. Output (γσ, xσ, yσ, zσ,mx,σ,my,σ,mz,σ)

Figure 12: PCG protocol implementing the corruptible functionality for authenticated triples (Part II)

also need to send and check the MACs on shares, however, this can be amortized for a
large batch of openings by checking a random linear combination, so we ignore this.

Inv(JxKp): This can be done using one multiplication triple, and two openings.9

MixedMult(x0, x1, JαK2): With semi-honest security, this uses two string-OTs of length `, plus
` + 1 bits of communication from each party. With malicious security, when α is already
authenticated with MACs, this can be done with ` bits of communication from each party
without any additional preprocessing. To see this, recall that a share ασ is authenticated
by giving Pσ a MACM = ασK+K ′, where K,K ′ ∈ {0, 1}λ are random MAC keys known
to P1−σ. By hashing M and K ′ respectively, the parties obtain secret shares of ασ · z,
where z = H(K ′) ⊕ H(K ′ ⊕ K) is known to P1−σ. These can be converted into shares
of ασ · x1−σ with ` bits of communication; the complete multiplication is then obtained
symmetrically.

PassiveOutput(x0, x1): (x0, x1 ∈ {0, 1}logM ) Here, the parties exchange shares by sending
logM bits each.

Cost of Preprocessing. We assume that multiplication triples over Zp can be obtained by
bootstrapping from a previous PCG instance, so essentially obtained at no cost. Similarly, for the
Input phase we can obtain authenticated random values with vector-OLE (over Zp) or correlated
OT (over Z2), using the efficient PCGs from previous works [BCGI18, BCG+19b, BCG+19a].
With semi-honest security, we can also obtain multiplication triples over Z2 using a PCG for
OT. However, we cannot do this for malicious security, since we do not have an efficient PCG
for authenticated triples over Z2. Therefore, we build these from correlated OT using the
TinyOT protocol from [FKOS15,HSS17], for a cost of 32 bits of communication per party and
54 correlated OTs, for each triple.

Main Subprotocols. Before stating the complexities of distributed key generation, we give an
overview of the complexity of the subprotocols ΠDPF (based on [Ds17])/ Πc-SUV (see Figure 6) for

9Given a triple JaK, JbK, JcK with c = ab, first open x + a, then compute JxbK = (x + a)JbK − JcK, open xb and
finally compute JzK = JbK(xb)−1.
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implementing FDPF (semi-honest)/ Fc-SUV (malicious) with domain size D and output shares
in Z`p (see Remark 5.2 for obtaining outputs in Z`p). Note that for the following we assume
λ > log p, otherwise the parties have to perform an additional D · b(log p)λc PRG operations.

Basic protocol: the basic protocol has the following complexity:

• 2D evaluations of PRG //Step 2

• logD Mult/MixedMult over {0, 1}λ × {0, 1} //Step 2

• logD Output/PassiveOutput over {0, 1}λ+2 //Step 2

• `+ 1 Input (per party) + `+ 1 Output over Zp //Step 4

• ` Inv + ` Mult over Zp //Step 4

Consistency check: (only required for malicious security)

• ` Mult over Zp //Step 7

• `+ 1 Input (per party) + ` Output over Zp //Step 7

With implementing the functionalities for secure 2-party computation as described, this adds
up to the following complexity:

Correlated randomness: Consuming correlated randomness in the form of:

• semi-honest: 2` multiplication triples + 2 logD λ-string-OTs

• malicious: 3` multiplication triples + 2× length-(2`+ 2) vector-OLE (both over Zp)

Computation: Computation is dominated by 2D PRG evaluations.

Communication: Communication (per party) is dominated by:

• (2λ+ 3) logD + 5` log p bits

• malicious: extra (4`+ 2) log p bits

Cost of distributed setup. The complexities of our protocol ΠOLE-Setup (Fig. 8/ Πmal-OLE

(Fig. 10 implementing FOLE-Setup (semi-honest)/ Fmal-OLE (malicious) to produce N OLEs are
as follows:

1. ct Input over {0, 1}logN and Zp (per party) //positions + payloads of ei0, ei1

2. (ct)2 BitAdd over {0, 1}logN + (ct)2 Mult over Zp //positions + payloads of ei0 · e
j
1

3. (ct)2 invocations of FDPF/ Fc-SUV with length 2N over Zp (` = 1) //convert to shares of
ei0 · e

j
1

For protocol Πmal-triple (Fig. 12) implementing Fmal-triple (malicious)the costs are as follows:

1. 2ct Input over {0, 1}logN and Zp (per party) //positions + payloads of ei0, ei1, f i0, f i1

2. 2ct+ (ct)2 Mult over Zp //multiply payloads of ei0, ei1, f i0, f i1 by MAC γ

3. 2ct Fc-SUV with length N and output Z2
p //convert to shares of ei0 + ei1, f i0 + f i1

4. (ct)2 BitAdd over {0, 1}logN + (ct)2 Mult over Zp //positions + payloads of ei · f j

5. (ct)2 invocations of FDPF/ Fc-SUV with length 2N over Z2
p (` = 2) //convert to shares of

ei · f j
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Altogether, we obtain the following theorems:

Theorem 6.5 (OLE Distributed Generation) Assuming hardness of Rc-LPNp,1,t (Def. 3.2),
there exists a protocol securely realizing functionality FOLE-Setup/ Fmal-OLE to produce N OLEs
against semi-honest adversaries/ malicious adversaries with the following complexity (note that
costs not specified in the following apply to both):

Correlated randomness: Consuming correlated randomness in the form of:

1. malicious: 2ct logN correlated OTs + 2× length-ct vector-OLE (in Zp)
2. • semi-honest: 2(ct)2 logN bit-OTs + (ct)2 OLEs over Zp

• malicious: 54(ct)2 logN correlated OTs + (ct)2 authenticated triples over Zp
3. • 4(ct)2 OLEs + 2(ct)2 log(2N) λ-string-OTs

• malicious: 3(ct)2 authenticated triples + 2× length-4(ct)2 vector-OLE over Zp

Computation: Computation is dominated by 2(ct)2N PRG evaluations.

Communication: Communication (per party) is dominated by:

1. malicious: ct(logN + log p) bits

2. • semi-honest: 2(ct)2 logN + 2(ct)2 log p bits
• malicious: 34(ct)2 logN + 2(ct)2 log p bits

3. • (ct)2((2λ+ 3) log(2N) + 5 log p) bits
• malicious: additional (ct)2 · 6 log p) bits

Theorem 6.6 (Authenticated Triples Distributed Generation) Assuming hardness of the
Rc-LPNp,1,t assumption (Def. 3.2), there exists a protocol securely realizing functionality Fmal-triple

to produce N authenticated triples against malicious adversaries with the following complexity:

Correlated randomness: Consuming correlated randomness in the form of:

1. 4ct logN correlated OTs + 2× length-2ct vector-OLE (in Zp)
2. & 4. 54(ct)2 logN bit OTs + 2(ct+ (ct)2) authenticated triples over Zp
3. & 5. 6(2ct + (ct)2) authenticated triples over Zp + 2× length-6(2ct + (ct)2) vector-OLE

over Zp

Computation: Computation is dominated by 2(2ct+ (ct)2)N PRG evaluations.

Communication: Communication (per party) is dominated by:

1. 2ct(logN + log p) bits

2. & 4. 34(ct)2 logN + 4(ct+ (ct)2) log p bits

3. & 5. (2ct+ (ct)2) · ((2λ+ 3) log(2N) + 10 log p) bits

Remark 6.1 (Optimizing efficiency) If N is a power of 2, the above protocols can be opti-
mized by taking the noise positions mod N and therefore reducing the input length to FDPF/Fc-SUV

from 2N to N .
Alternatively, by relying on the hardness of Rc-LPN with a regular error distribution (where

each noisy coordinate lies in a fixed interval of size N/t), one can replace all occurrences of N
in the efficiency estimates above by N/t.
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Recall that except for a one-time setup cost the generation of correlated randomness is almost
for free in terms of communication: For the generation of OT and vector-OLE with semi-honest
and even malicious security, we can build on the silent OT and vector-OLE extensions from
[BCG+19b, BCG+19a]. Further, for the generation of OLE and authenticated multiplication
triples we can bootstrap and therefore only need to generate these correlations from scratch once.
For generating OLEs with malicious security one can bootstrap using the PCG for authenticated
multiplication triples (at comparatively little extra cost).

7 Extensions and Applications

In this section we extend our PCG for OLE in several directions. First, we build PCGs for
inner product correlations from OLE over Rp, with the advantage that we do not need to rely
on the full reducibility of F (X), and can also obtain correlations over F2. Secondly, we present
a method for building PCGs for general bilinear correlations, such as matrix multiplication, in
a black-box way from our previous PCG. Finally, we show that all of these PCGs for degree two
correlations can be extended in a natural way to the multi-party setting.

7.1 Bilinear Correlations

The class of bilinear correlations we consider is as follows.

Definition 7.1 (Simple Bilinear Correlation) Let G1,G2,GT be Abelian groups and e : G1×
G2 → GT be a bilinear map. We define the simple bilinear correlation for e by the distribution
Ce over (G1 ×GT )× (G2 ×GT ) of the form

Ce =
{

((r0, s0), (r1, s1)) | r0 $← G1, r1
$← G2, s0

$← GT , s1 = e(r0, r1)− s0
}
.

We denote by Cne the correlation that outputs n independent samples from Ce, i.e.

Cne =
{

((R0, S0), (R1, S1)) | R0
$← Gn

1 , R1
$← Gn

2 , S0
$← Gn

T , S1 = e(R0, R1)− S0
}
,

where we define e : Gn
1 ×Gn

2 → Gn
T as the bilinear map obtained by applying e componentwise.

This covers several common correlations like OT and OLE, for example, OLE over a ring
R can be obtained with G1 = G2 = GT = (R,+) and e(x, y) = x · y. Also, note that two
independent bilinear correlations can be locally converted to produce an additively secret-shared
instance of the correlation — for example, two OLEs are locally equivalent to one multiplication
triple.

7.2 Inner Product Correlations

An inner product correlation is a simple bilinear correlation with the inner product map over
Zp. These can be used to compute inner products in an MPC online phase, in a similar way to
using multiplication triples. Inner products are common in tasks involving linear algebra, like
privately evaluating or training machine learning models such as SVMs and neural networks,
and a single inner product can also be used to measure the similarity between two input vectors.

We remark that given n random OLEs in Fp, it is easy to locally convert these into a length-n
inner product correlation, so we can build a PCG for inner products of any length using a PCG
for OLE. However, the constructions in this section do not rely on the fully-reducible ring-LPN
assumption that is needed for OLE in Fp; instead, we use the ring-OLE construction from Fig. 1
over more conservative rings, which do not split completely into linear factors. Further, the
constructions in this section generalize to rings Zp for arbitrary p ∈ N (including p = 2).
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Lemma 7.1 Let Rp = Zp[X]/F (X), where F (X) is a degree-N polynomial with non-zero con-
stant coefficient. Then, a single OLE over Rp can be locally converted into an inner product
correlation over ZNp .

Proof. For a ∈ Rp, define the matrix over Zp that corresponds to multiplication by a, as

Ma =

 a aX · · · aXN−1


where each aXi is reduced modulo F (X) and represented as a vector of coefficients in ZNp .

We have that for any b ∈ Rp represented as a vector of coefficients, the coefficient vector of
ab is Ma · b. Also, it is easy to see that if a is uniformly distributed in Rp then the first row of
Ma, denoted Ma[0], is uniform over ZNp , since aXi has aN−i appearing in its constant term. So
given an OLE (a, c), (b, d) over Rp, where c − d = ab, the parties can define an inner product
correlation (Ma[0], c0), (b,−d0), where c0 − d0 = 〈Ma[0], b〉. �

Note that, for the special case of F (X) = Xn + 1, the vector Ma[0] can be computed as
(a0,−an−1, . . . ,−a1), without any modular reductions.

Corollary 7.2 (Large inner product from irreducible ring-LPN) Suppose the R-LPNp,1,t
assumption holds for R = Zp[X]/F (X), where F (X) is degree N and irreducible over Zp. Then
there is a PCG for the length-N inner product correlation over Zp, where the seeds have size
O(λt2 logN) bits, and the computational complexity of the Expand operation is Õ(N) operations
in Zp, plus O(t2N) PRG operations.

Corollary 7.3 (Small inner products from reducible ring-LPN) Suppose the R-LPNp,1,t
assumption holds for R = Zp[X]/F (X), where F (X) is degree N and splits into N/d distinct
factors of degree d. Then there is a PCG for producing N/d instances of length-d inner product
correlation over Zp, with the same seed size and complexity as above.

The latter construction has two benefits over naively using OLE over Fp to generate an inner
product. Firstly, OLE in Fp requires that R splits fully into linear factors, whereas for inner
products the factors can be degree-d (and irreducible), which is a much more conservative as-
sumption; in particular, the dimension-reduction attack we consider in Section 8 is less effective.
Secondly, we can also use this to generate inner products over small fields such as F2, whereas
we cannot efficiently obtain OLEs over F2 with our present constructions.

7.3 Bilinear Correlations from Programmable PCG for OLE

We can build a PCG to create a large batch of samples from any simple bilinear correlation, using
the PCG for OLE from Section 4. To do this, we exploit the fact that this PCG is programmable,
which, roughly speaking, means that one party can “reuse” its input a or b in several instances
of the PCG, while maintaining security. Boyle et al. [BCG+19b] previously used this property
to construct multi-party PCGs from several instances of programmable two-party PCGs; unlike
their work, we exploit the property for a different purpose in the two-party setting.

In the following, we recall the definition of programmability, and show that our PCG for
OLE satisfies this definition.

Definition 7.2 (Programmable PCG) A tuple of algorithms PCG = (PCG.Gen,PCG.Expand)
following the syntax of a standard PCG, but where PCG.Gen(1λ) takes additional random inputs
ρ0, ρ1 ∈ {0, 1}?, is a programmable PCG for a simple bilinear 2-party correlation Cne (specified
by e : G1 ×G2 → GT ) if the following holds:
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• Correctness. The correlation obtained via:{
((R0, S0), (R1, S1))

∣∣∣∣ ρ0, ρ1
$← $, (k0, k1)

$← PCG.Gen(1λ, ρ0, ρ1),
(Rσ, Sσ)← PCG.Expand(σ, kσ) for σ ∈ {0, 1}

}
is computationally indistinguishable from Cne (1λ).

• Programmability. There exist public efficiently computable functions φ0 : {0, 1}? → Gn
1 ,

φ1 : {0, 1}? → Gn
2 such that

Pr

 ρ0, ρ1 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ0, ρ1)

(R0, S0)← PCG.Expand(0, k0),
(R1, S1)← PCG.Expand(1, k1)

:
R0 = φ0(ρ0)
R1 = φ1(ρ1)

 ≥ 1− negl(λ),

where e : Gn
1 ×Gn

2 → Gn
T is the bilinear map obtained by applying e componentwise.

• Programmable security. The distributions{
(k1, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ0, ρ1)

}
and{

(k1, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1, ρ̃0 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ̃0, ρ1)

}
as well as {

(k0, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ0, ρ1)

}
and{

(k0, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1, ρ̃1 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ0, ρ̃1)

}
are computationally indistinguishable.

We start by showing that a programmable PCG is a PCG in the standard sense.

Lemma 7.4 Let e : G1 × G2 → GT be a bilinear map. Then, a programmable PCG PCG =
(PCG.Gen,PCG.Expand) for the bilinear 2-party correlation Cne is also a PCG for Cne in the sense
of Definition 2.6 (where the sampling of ρ0, ρ1 happens inside PCG.Gen).

Proof. We have to show that the PCG satisfies standard security. More precisely, we have to
prove that if PCG = (Gen,Expand) satisfies correctness, programmability and programmable
security, then the distributions

Dreal :=

{
(k1, (R0, S0))

∣∣∣∣ ρ0, ρ1 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ0, ρ1)

(R0, S0)← PCG.Expand(0, k0)

}
and

Dsim :=

(k1, (R0, S0))

∣∣∣∣ ρ0, ρ1 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ0, ρ1)

(R1, S1)← PCG.Expand(1, k1)

R0
$← G1, S0 = e(R0, R1)− S1


are computationally indistinguishable (the case k0 is symmetric). We proceed the proof via a
sequence of hybrid distributions:

D1 :=

(k1, (R0, S0))

∣∣∣∣ ρ0, ρ1 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ0, ρ1)

(R1, S1)← PCG.Expand(1, k1)

R0 = φ0(ρ0), S0 = e(R0, R1)− S1


D2 :=

(k1, (R0, S0))

∣∣∣∣ ρ0, ρ1 ← $, (k0, k1)
$← PCG.Gen(1λ, ρ0, ρ1)

(R1, S1)← PCG.Expand(1, k1)

ρ̃0 ← $, R0 = φ0(ρ̃0) , S0 = e(R0, R1)− S1


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The distribution Dreal and D1 are computationally close by the programmability and correctness
of the PCG.

Next, let A be a distinguisher between the distribution D1 and D2. Then, we can construct
an adversary B on the programmable security of PCG as follows. The adversary B obtains
(k1, (ρ0, ρ1)) from its experiment. It computes (R1, S1) ← PCG.Expand(1, k1), R0 = φ0(ρ0)
and S0 = e(R0, R1) − S1 and forwards (k1, (R0, S0)) to A. Finally, B forwards the reply of A
to its own experiment. If B obtained the real ρ0 from its own experiment, then the resulting
distribution is identically to D1, whereas if B obtained a simulated ρ0, B simulates D2. Therefore,
B successfully breaks the programmable security, whenever A successfully distinguishes D1 and
D2.

Finally, D2 and Dsim are computationally indistinguishable by the correctness of the PCG.
�

Lemma 7.5 The PCG construction for ring-OLE from Fig. 1 is programmable.

Proof. To allow programmability, we tweak the Gen algorithm as follows. For σ ∈ {0, 1} the
additional input ρσ can be sampled as {Aiσ,~biσ}i∈[0..c) in Fig. 1, representing a vector of sparse
polynomials ~e = (e0σ, . . . , e

c−1
σ ). Notice that the first part (i.e. xσ) of both expanded outputs

can now be obtained from just ρσ, by first expanding {Aiσ,~biσ}i∈[0..c) to ~eσ and then computing
xσ = 〈~a,~eσ〉 mod F (X). This defines the functions φ0 and φ1, and the correctness property
follows in the same way as the proof of correctness in Theorem 4.1. The programmable security
property can also be proven similarly to the proof of Theorem 4.1, with a reduction to the FSS
scheme and ring-LPN assumption. �

Below we describe the main result, and some applications.

Decomposition of bilinear maps. Let f : G1 × G2 → GT and g : Gu
1 × Gv

2 → Gw
T be

bilinear maps over the additive groups G1,G2,GT . We will consider ways of computing g that
are restricted to a fixed number of calls to f on the components of the inputs to g, followed by
linear combinations in GT of the results of the f evaluations.

Definition 7.3 (Simple f-decomposition) Let G1,G2,GT be additive abelian groups, viewed
as Z-modules. Let f : G1×G2 → GT and g : Gu

1×Gv
2 → Gw

T be non-degenerate bilinear maps. We
say that g has a simple f -decomposition if there exist γ ∈ N, W ∈ Zw×γ and αi ∈ [u], βi ∈ [v],
for i ∈ [γ], such that for all a = (a1, . . . , au) ∈ Gu

1 and b = (b1, . . . , bv) ∈ Gv
2, it holds that

g(x0, x1) = W ·

f(aα1 , bβ1)
...

f(aαγ , bβγ )


We say that the f -complexity of this decomposition of g is given by nf (g) := γ.

Note that if G1,G2,GT are all a (commutative) ring R and f is multiplication in R, then
any g has a simple f -decomposition of complexity u · v. However, it can still be useful to find a
different f that achieves lower complexity.

We now show that any map g with a simple f -decomposition can be used to construct a PCG
for the simple bilinear correlation Cg, given a programmable PCG for Cf . The construction is
given in Fig. 13. The idea is that for each invocation of f used in an evaluation of g, we will use
a separate instance of the PCG for f , programmed to use the correct portions of the input to g.
Then, we can obtain the expanded g output by applying the linear map W to all the expanded
outputs of f . We also use a PRG to randomize the final output shares, to ensure that there are
no correlations introduced when multiplying by W .

For the security proof, we use an extension of the programmable security property, which
considers several PCG instances, given in the following lemma.
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Construction Gprog
bil

Parameters: Security parameter 1λ, a programmable PCG (PCGf .Gen,PCGf .Expand) for the
simple bilinear correlation Cnf with programmibiliy maps φ0 : {0, 1}? → Gn

1 , φ1 : {0, 1}? → Gn
2 ,

and a pseudorandom generator PRG : {0, 1}λ → Gn×w
T .

The bilinear map g : Gu
1 × Gv

2 → Gw
T has an f -decomposition with parameters

(γ, α1, . . . , αγ , β1, . . . , βγ ,W ).
Correlation: Cng produces n instances of the simple bilinear correlation for g. That is,
Cng outputs tuples ((X0, Y0), (X1, Y1)) such that it holds Y0 + Y1 = g(X0, X1), where by
g : Gn×u

1 ×Gn×v
2 → Gn×w

T we denote the transpose of the map g applied to X0 and X1 row-wise.

Gen: On input 1λ:

1. Sample random ρ10, . . . , ρ
u
0 and ρ11, . . . , ρ

v
1 according to the programmability property of

PCGf . // This choice will define the j-th column of X0 as φ0(ρ
j
0) for all j ∈ [u], and the

k-th column of X1 as φ1(ρk1) for all k ∈ [v].

2. Sample a PRG seed kprg ← {0, 1}λ.

3. For i = 1, . . . , γ, sample seeds (ki0, k
i
1)← PCGf .Gen(1λ, ραi0 , ρ

βi
1 ).

4. Output k0 = (kprg, {ki0}i∈[γ]) and k1 = (kprg, {ki1}i∈[γ])

Expand: On input (σ, kσ):

1. Compute (Riσ, S
i
σ)← PCGf .Expand(σ, kiσ), for i ∈ [γ]

2. If σ = 0, define the matrix X0 = (A1‖ . . . ‖Au) ∈ Gn×u
1 , where Aj = Ri0 for some i where

αi = j (if more than one αi matches, pick arbitrarily)a

3. If σ = 1, define the matrix X1 = (B1‖ . . . ‖Bv) ∈ Gn×v
2 , where Bj = Ri1 for some i where

βi = j

4. Output Xσ and Yσ = (S1
σ‖ . . . ‖S

γ
σ) ·W> + (−1)σ · PRG(kprg) ∈ Gn×w

T

aNote that such an αi always exists, otherwise g would be degenerate. Further, if αi = αi′ = j, then ~ki0 and
~ki

′
0 were sampled using the same seed ρj0, and thus Ri0 = Ri

′
0 = φ0(ρ

j
0) by programmability of PCGf .

Figure 13: PCG for general bilinear correlations defined by the map g
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Lemma 7.6 (Multi-instance programmability) Let PCG = (PCG.Gen,PCG.Expand) be a
programmable PCG as in Definition 7.2. Then, for any d = poly(λ), the distributions{(

ki1, (ρ0, ρ
i
1)
)d
i=1

∣∣∣∣ ρ0, ρ
i
1 ← $, (ki0, k

i
1)

$← PCG.Gen(1λ, ρ0, ρ
i
1)

}
and{(

ki1, (ρ0, ρ
i
1)
)d
i=1

∣∣∣∣ ρ0, ρ
i
1, ρ̃

i
0 ← $, (ki0, k

i
1)

$← PCG.Gen(1λ, ρ̃i0, ρ
i
1),

}
are computationally indistinguishable. A symmetric property holds for ki0.

Proof. This follows a standard hybrid argument, where the reduction loses a factor of d in
advantage. In the j-th hybrid, pick randomness ρ0, ρi1 ← $ and for i ≤ j also ρ̃i0 ← $, for
i ≤ j compute the key as (ki0, k

i
1)

$← PCG.Gen(1λ, ρ̃i0, ρ
i
1), and for i > j compute the key as

(ki0, k
i
1)

$← PCG.Gen(1λ, ρ0, ρ
i
1). Then give out

(
ki1, (ρ0, ρ

i
1)
)d
i=1

. Given a distinguisher for any
two hybrids j and j + 1, it is straightforward to construct a distinguisher for the programmable
security property of PCG, with the same advantage. �

Theorem 7.4 Let f and g be bilinear maps as above, and suppose that g has a simple f -
decomposition with f -complexity nf (g). Furthermore, let PCGf = (PCGf .Gen,PCGf .Expand)
be a programmable PCG for Cnf . Then there exists a programmable PCG PCGg = (PCGg.Gen,
PCGg.Expand) for Cng , with the following properties:

• PCGg.Gen runs nf (g) executions of PCGf .Gen, and its key sizes are nf (g) times that of
PCGf .

• PCGg.Expand runs nf (g) executions of PCGf .Expand, and n evaluations of the linear map
W from the f -decomposition of g.

Proof. We give an explicit consturction of PCGg in Figure 13. We consider separately the
correctness and security properties of the PCG definition.

Correctness. Let (X0, Y0) and (X1, Y1) be a pair of outputs from PCGg.Expand. Let φ0, φ1 be
the programmibility maps, and ρ10, . . . , ρu0 and ρ11, . . . , ρv1 as chosen by Gen on input 1λ. Let Aj =

φ0(ρ
j
0) ∈ Gn

1 and Bk = φ1(ρ
k
1) ∈ Gn

2 for all j ∈ [u], k ∈ [v]. Then, by the programmibility prop-
erty of PCGf it holds that (R1

0, . . . , R
γ
0) = (Aα1 , . . . , Aαγ ) and (R1

1, . . . , R
γ
1) = (Bβ1 , . . . , Bβγ )

with overwhelming probability. Also, by construction in PCGg, we have X0 = (A1‖ . . . ‖Au) and
X1 = (B1‖ . . . ‖Bv). From the correctness of PCGf , with overwhelming probability

Y0 + Y1 = (S1
0 + S1

1‖ . . . ‖S
γ
0 + Sγ1 ) ·W> = (f(Aα1 , Bβ1)‖ . . . ‖f(Aαγ , Bβγ )) ·W> = g(X0, X1),

where f is considered to be applied entry-wise to the inputs. Furthermore, X0 and X1 are both
pseudorandom by the correctness property of PCGf , and any individual Yσ is pseudorandom
due to the security of PRG; hence, the outputs of PCGg are computationally indistinguishable
from random outputs of the correlation Cng .

Programmability. The programable randomness can be defined as ρ0 = (ρ10, . . . , ρ
u
0) and

ρ1 = (ρ11, . . . , ρ
v
1). The programmability maps are defined by applying φ0 and φ1 for PCGf

componentwise. The programmability property then follows directly from the programmability
of PCGf .
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Programmable Security. We first consider the case σ = 1. Recall that by Lemma 7.4
programmable security together with correctness and programmability automatically implies
standard PCG security. We need to show indistinguishability of the two distributions

Dreal :=

{
(k1, (ρ0, ρ1))

∣∣∣∣ρ0, ρ1 $← $, (k0, k1)
$← PCGg.Gen(1λ, ρ0, ρ1)

}
and

Dsim :=

{
(k1, (ρ0, ρ1))

∣∣∣∣ρ0, ρ1, ρ̃0 $← $, (k0, k1)
$← PCGg.Gen(1λ, ρ̃0, ρ1)

}
Recall that k1 = (kprg, {ki1}i∈[γ]), where (ki0, k

i
1)← PCGf .Gen(ραi0 , ρ

βi
1 ), and ρ0 = {ρi0}i∈[u], ρ1 =

{ρi1}i∈[v]. We use a hybrid argument, where the j-th experiment is as follows.
Hybrid distribution D0. Give out (k1, (ρ0, ρ1)) as computed in the actual construction.

Hybrid distribution Dj , for j = 1, . . . , u. Sample randomness ρ10, . . . , ρu0 , ρ11, . . . , ρv1 as
in the construction, as well as random ρ̃10, . . . , ρ̃

γ
0 . For each i ∈ [γ], if αi ≤ j then sample

(ki0, k
i
1)

$← PCGf .Gen(1λ, ρ̃i0, ρ
βi
1 ). Otherwise, if αi > j, sample (ki0, k

i
1) using (ραi0 , ρ

βi
1 ) as in the

construction. Output k1 = {ki1}i∈[γ] and the randomness ρ0 = {ρi0}i∈[u], ρ1 = {ρi1}i∈[v].

Note that D0 is identical to Dreal and Du is identical to Dsim. It is left to consider the
difference between hybrids Dj and Dj+1. For any i ∈ [γ] such that αi = j + 1, in hybrid
distribution Dj+1 we use fresh randomness ρ̃i0 to sample ki1, whereas in Dj we use the real
randomness ραi0 . However, any adversary who distinguishes these can be used to break the
multi-instance security property (Lemma 7.6) of the programmable PCG, where the d keys are
defined to be those of the indices where αi = j + 1.
Finally, notice that the case of σ = 0 proceeds symmetrically, with a sequence of v hybrids
argued in the same way.

�

7.4 Application: Matrix Multiplication Triples

We can use the general bilinear construction to build a PCG for generating a large batch of
matrix multiplication triples. For matrices of dimensions n1 × n2 and n2 × n3, the PCG seed
size is around n1 · n3 times larger than the PCG for OLE. This means it will likely be practical
for small-to-medium matrices.

Let g : Zn1×n2
p ×Zn2×n3

p → Zn1×n3
p be the matrix multiplication map, and let f : Zn2

p ×Zn2
p →

Zp be the inner product map over Zp. These maps fit the requirements of Theorem 7.4, by using
G1 = G2 = Zn2

p , GT = Zp, u = n1, v = n3, w = n1 · n3 and appropriately flattening matrices
into one-dimensional vectors.

Multiplication of n1 × n2 and n2 × n3 matrices is easily decomposed as a sequence of n1 · n3
inner products of length n2, where each inner product is taken from a consecutive portion of the
two inputs. This shows that the matrix multiplication map g has a linear f -decomposition with
f -complexity n1 · n3.

To obtain a PCG for g, we use the PCG for the length-n2 inner product correlation f , which
can be based on R-LPN when F (X) splits into degree-n2 factors (Corollary 7.3).

Corollary 7.7 Suppose R-LPNp,1,t holds for R = Zp[X]/F (X), where F (X) is degree N and
splits into N/n2 distinct factors of degree n2. Then there is a PCG for producing n = N/n2
correlations for (n1 × n2)× (n2 × n3) matrix multiplication over Zp. The PCG requires n1 · n3
copies of the PCG for n inner products of length n2, and has seed size and computational cost
around n1 · n3 times that of the PCG for inner product.
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Example parameters. We now give some example parameters for generating matrix triples,
based on the analysis in Section 9. For instance, when producing 8-dimensional square matrix
triples in a batch of size ≈ 130000, over a 128-bit field, the PCG seeds have size around 83MB.
These can be expanded to produce matrix correlations of around 400MB, giving a 5-fold ex-
pansion factor. Increasing the dimension to 16, the seed size grows to 330MB, while the PCG
output has size 810MB. Going to dimension 32 and beyond, the seeds start to become much
larger, although better expansion rates could be obtained when producing a much larger batch
of triples. In general, this shows that in practice, the construction is only likely to be useful for
small matrix dimensions; however, these could still be used as a building block in performing
larger matrix multiplications in applications. For larger matrices, more interactive approaches
such as recent work based on homomorphic encryption [CKR+20] appear to be more practical.

Remark 7.8 Instead of using a PCG for inner product, we could instead directly use a pro-
grammable PCG for OLE to build matrix multiplications, by applying Theorem 7.4 with f as Zp
multiplication. However, this would require n1 ·n2 ·n3 instances of the base PCG, giving a much
worse expansion factor. This shows the advantage of finding a suitable f such that the desired
correlation g has low f -complexity, compared with the naive approach.

7.5 Application: Circuit-Dependent MPC Preprocessing

Circuit-dependent preprocessing is a variation on the standard multiplication triples technique,
which is based on Beaver’s circuit randomization technique [Bea92] and extended in more recent
works [DNNR17,KKW18,BNO19,BGI19]. The idea is to preprocess multiplications in a way
that depends on the structure of the circuit, and leads to an online phase that requires just one
opening per multiplication gate, instead of two when using multiplication triples.

With the PCG for general bilinear correlations, we can generate circuit-dependent prepro-
cessing for a large batch of identical circuits. This can be useful, for instance, when executing
the same function many times on different inputs, or when a larger computation contains many
small, repeated instances of a particular sub-circuit.

Let C be an arithmetic circuit over F consisting of fan-in two addition and multiplication
gates.

In the offline phase each wire w in the circuit is assigned a value rw such that:

• if w is an input wire, rw
$← F is chosen at random

• if w is the output wire of a multiplication gate, rw
$← F is chosen at random

• if w is the output wire of an addition gate with input wires u and v, then rw = ru + rv.

Further, each multiplication gate is assigned a value su,v as follows:

• if the multiplication gate has input wires u and v, then su,v = ru · rv.

The goal of the offline phase is for the parties to obtain random additive shares of rw for all
input wires and output wires of multiplication gates, as well as su,v for all multiplication gates.

Let G denote the set of multiplication gates. Then, for a multiplication gate g ∈ G with
input wires u and v, we can write su,v as

∑
i∈Lg ri ·

∑
j∈Rg rj , where Lg and Rg are the sets

of output wires of multiplication gates that pass only through addition gates before reaching g.
All su,v values can therefore be computed as a bilinear function fC of ~r, where ~r consist of the
random values assigned to the input wires and the output wires of multiplication gates.

Plugging in the previous construction for general bilinear correlations, we obtain a PCG
for fC out of several instances of a PCG for OLE, where the total number of instances is∑

g∈G |Lg| · |Rg|.
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7.6 Application: Multi-Party PCGs for Bilinear Correlations

In [BCG+19b][Theorem 41], Boyle et al. showed that any two-party, programmable PCG for a
simple bilinear correlation can be used to build a multi-party PCG for an additively secret-shared
version of the same correlation.

Plugging in Lemma 7.5 and the results of the previous section, we obtain N -party PCGs
for (unauthenticated) multiplication triples, matrix triples and circuit-dependent preprocessing
over Zp based on ring-LPN, for any polynomial number of parties N . Each party’s seed contains
2(N − 1) seeds of the underlying two-party PCG, plus N − 1 seeds for a PRG. The expansion
procedure of the PCG consists of expanding the 2(N − 1) PCG seeds, as well as the PRG seeds.

Authenticated triples in the multi-party setting. Unfortunately, the transformation of
Boyle et al. only applies to degree-2 correlations, and we do not see a way to directly apply
it to our PCG for authenticated multiplication triples, which is a degree-3 correlation. To see
the challenge in extending their construction, consider the case of n parties who wish to obtain
additive shares of α · (x · y), where α, x, y are additively shared. To do this using pairwise
correlations, it seems we need a way to obtain shares of xi · yj · αk, for every i, j, k ∈ [n], where
Pi holds xi, Pj holds yj and Pk holds αk. We cannot do this with just a pairwise correlation
between Pi and Pj , since αk must be known only to Pk. On the other hand, given a function
secret sharing scheme for 3 parties, one could modify our authenticated triples construction from
Fig. 2 to make this work. However, known constructions of 3-party distributed point functions
are much more expensive, with a seed size of O(

√
λN) rather than O(λ logN) [BGI15].

8 Security Analysis

We analyze the security of module-LPN against various attacks. In the following, we consider
a Rc-uLPN instance over a ring R = F[X]/F (X) (where F (X) is a degree-N polynomial) with
c samples, and a regular noise of total weight w (that is, w = t · c, where t is the number
of nonzero coordinates of each noise ei ∈ R); therefore, the adversary gets (~ai, 〈~ai, ~s〉 + ei)

c
i=1,

where ~s and each ~ai are random over Rc−1, and each ~ei is sampled from HWw/c, and must
distinguish (〈~ai, ~s〉 + ei)i≤c from a random element of Rc. The corresponding code is a linear
code with dimension (c − 1) · N and length c · N , whose parity-check matrix H ∈ FN×c·N is
c-compressing. Note that by our reduction from R-LPN to R-uLPN (Lemma 3.4), this effectively
reduces to distinguishing (~a′, 〈~a′, ~s′〉+ e′) from random, where ~a′ $← Rc−1 and ~s′ $← (HWc−1

w/c) is
(c− 1)w/c-sparse.

We will consider two alternatives for the underlying field: either F is a very small field (e.g.
F = F2), or F is a large field (e.g. F = Zp where p is a large prime, for example p ≈ 2128).
Eventually, we will consider both the cases where F (X) is an irreducible polynomial over F[X],
and the case where F (X) is fully reducible over F[X] (typically, this will be the case when F is
a two-power cyclotomic polynomial and F = Zp where p is a large prime).

We can also consider two error distributions: the ei can be either random weight-t errors,
or regular weight-t errors (where N coordinates of ei are divided into t blocks of length N/t,
and a single random noise is added to a random coordinate of each block). Below, we analyze
various attacks with respect to the uniform noise distribution. However, none of the attacks we
describe in the following sections performs better when using a regular noise distribution.

Bottom Line. To provide a short, high-level summary of the conclusion of this section: when
F is irreducible over a large field F, no known attacks perform significantly better than those on
standard LPN, with a very limited number of samples O(n), where n is the dimension. In this
setting, attacks such as BKW do not apply, but information set decoding (ISD) and statistical
decoding (SD) do. Both have complexity exponential in the number of noisy coordinates. When

57



F is reducible, however, the adversary can reduce the instance modulo some factor and get
a new LPN instance, which might be easier to solve if the factor is sparse (as it reduces the
dimension without increasing the noise). Hence, the cost of ISD and SD must be evaluated for
each reduction modulo a sparse factor, and the cost of the attack is the smallest cost accross
all factors. Our use of structured matrices means that the DOOM attack might apply, but it
only reduces security by about (logN)/2 bits. Eventually, over types of structural attacks, like
algebraic decoding attacks, do not seem to apply to our setting.

8.1 Generic Attacks on LPN

We denote by G = [IdN || −Aᵀ1|| · · · −A
ᵀ
c−1]

ᵀ the generating matrix of the linear code associated
to our R-LPN instance, which generates a code with a c-compressing parity-check matrix H =
[A1|| · · ·Ac−1||IdN ] where the Ai are the multiplication matrices of ai mod F (X) for independent
random ai ∈ R.

Existing Generic Attacks. In spite of its extensive use in cryptography, few cryptanalytic
results are known for the general LPN assumption. We outline below the main known attacks.

Attacks on Syndrome Decoding. The problem we consider is best seen as an instance of
the syndrome decoding problem, where the goal is to recover ~s given H · ~s (where, in our case,
H = [A1|| · · ·Ac−1||IdN ] is the parity-check matrix of G). Existing attacks on syndrome decoding
rely either on improvements over a natural Gaussian elimination attack, called information set
decoding (ISD), or on a parity-check attack exploiting low-weight codewords in the dual code,
known as statistical decoding attacks [AJ01,Ove06,FKI06,DAT17], or low-weight parity-check
attacks [Zic17].

• Gaussian Elimination. For the standard LPN assumption with w noisy coordinates,
the Gaussian elimination attack requires on average (1/(1 − w/(cN)))(c−1)N iterations,
where the adversary must invert a (c− 1)N × (c− 1)N submatrix of G, which takes time
O(((c − 1)N)2.8) using Strassen’s matrix multiplication algorithm. However, since the
special structure of G allows for fast (quasilinear) matrix-vector multiplication, standard
techniques allow for solving a linear system of equations defined by a random submatrix of
G in time O(((c−1)2N2 log((c−1)N)). Hence, the cost (counted as a number of arithmetic
operations over F) of the generic Gaussian elimination attack on R-LPN is (assuming for
simplicity that c is a constant, as it will be in all our instantiations):

O

((
1

1− w
cN

)(c−1)N
· ((c− 1)N)2 logN

)
= O(e

(c−1)w
c · ((c− 1)N)2 logN),

where the equality holds when N � w. Note that the above attack assumes a standard
noise distribution. However, using a regular noise distribution does not change the effi-
ciency of the attack: if the noise vector is divided into w blocks of length cN/w with a
single noise in each block, the natural adaptation of the above Gaussian elimination attack
to this setting works by trying to find (c − 1)N/w non-noisy coordinate in each of the w
blocks (finding more non-noisy coordinates in a given block can only decrease the success
probability of the attack). This means that the success probability of the attack is given
by ((

1− 1

cN/w

)(c−1)N/w
)w

=
(

1− w

cN

)(c−1)N
which leads exactly to the same cost for the attacker. We note that the same observation
applies to all variants of ISD we are aware of.
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• Information Set Decoding. Among the best algorithms for syndrome decoding are
improvements of Prange’s ISD algorithm (which is itself an improvement over the Gaussian
elimination attack given above), which attempts to find a size-w subset of the rows of H
that spans H · ~e. When the LPN instance has high dimension (c− 1)N , cN samples, and
very low error rate (which is the case in our scenario, since we consider a fixed amount w
of noisy coordinates and N � w), according to the analysis of [TS16], all known variants
of ISD (e.g. [Pra62, Ste88, FS09, BLP11,MMT11, BJMM12,MO15]) have essentially the
same asymptotic complexity cw(1+o(1)) (ignoring the O((c− 1)2N2 logN) polynomial cost
of solving a linear system). Therefore, their gain compared to the initial algorithm of
Prange vanishes in our setting and the cost of these attacks is well approximated by

O
(
cw·(1+o(1)) · (c− 1)2N2 · logN

)
.

• Statistical Decoding. Eventually, all the previous attacks recover the secret ~s. If one
simply wants to distinguish ~b = A · ~s+ ~e from random, there exists an alternative, incom-
parable line of attacks, known as statistical decoding attacks [AJ01]. These attacks are
based on the following observation: by the singleton bound, the minimal distance of the
code generated by H is at most (c−1) ·N+1, hence there must be a parity-check equation
for G of weight (c−1) ·N +1. Then, if ~b is random, it passes the check with probability at
most 1/|F|, whereas if ~b is a noisy encoding, it passes the check with probability at least
1/|F|+ ((N − 1)/cN)w. Note that this attack works especially well when F is very large,
since then a random ~b has negligible probability to pass the check. Improved variants
of the algorithm describe optimized methods to quickly find a relatively large number of
parity-check equations with a sufficiently small weight. For the sake of providing conser-
vative estimates, however, we will assume in our analysis that the adversary has already
pre-computed an arbitrary number of parity-check equations (since these equations depend
solely on H), and that all such equations have minimal weight N + 1. Under these conser-
vative assumptions, the cost (counted as a number of arithmetic operation) of statistical
decoding is lower-bounded by

O

((
cN

N − 1

)w
·N
)
≈ O (cw ·N) .

Here again, the estimations are made using the standard noise distribution. However, it
does not seem feasible for an attacker to exploit a regular noise distribution: intuitively, the
best the attacker can do to exploit this structure requires finding low-weight codewords in
the dual code whose nonzero coordinates are ‘equally well-spread’ accross all coordinates.
But at quick calculation similar to the one we did for Gaussian elimination shows that,
even if finding many such optimally low-weight well-spread codewords was feasible (which
is not clear), the running time of the attack would still remain identital to our estimate
above.

Attacks on LPN (Using Many Samples). When the number of samples can be very large,
as is generally the case in the LPN literature, there exist improved attacks based on time-space
tradeoffs. Below, we briefly recall existing attacks. However, as our overview below illustrates, all
these attacks require a superlinear number of samples ω(D) in the dimensionD (even the sample-
optimized variant of BKW of [Lyu05]), while the variant we consider has cN = c

c−1 ·D samples.
Hence, none of the attacks below does apply in our scenario. We refer the reader to [EKM17]
for a more comprehensive overview. Given an LPN instance with dimension (c− 1)N , w noisy
coordinates, and q = cN samples, we let r ← w/q denote the noise rate of the instance.

• The BKW algorithm [BKW00]. This algorithm is a variant of Gaussian elimination
which achieves subexponential complexity even for high-noise LPN (e.g. constant noise
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rate), but requires a subexponential number of samples: the attack solves LPN over F2 in
time 2O((c−1)N/ log((c−1)N/r)) using 2O((c−1)N/ log(c−1)(N/r)) samples.

• Hybrid attacks [EKM17]. The authors of [EKM17] conducted an extended study of
the security of LPN, and described combinations and refinements of the previous three
attacks (called the well-pooled Gauss attack, the hybrid attack, and the well-pooled MMT
attack). All these attacks achieve subexponential time complexity, but require as many
sample as their time complexity.

• Scaled-down BKW [Lyu05]. This algorithm is a variant of the BKW algorithm, tailored
to LPN with polynomially-many samples. It solves LPN in time

2O((c−1)N/ log log((c−1)N/r)),

using ((c− 1)N)1+ε samples (for any constant ε > 0) and has worse performance in time
and number of samples for larger fields.

8.2 Taking Advantage of Reducible F

When F (X) is reducible, the above attacks can be improved if the adversary finds sufficiently
sparse polynomial factors fi of F . Indeed, when this is the case, the adversary obtains new LPN
instances by computing ~a · s + ~e mod fi, where the new noise ~e mod fi remains sparse since fi
is sparse. This reduces the problem to an LPN instance in smaller dimension, which can also
be solved by any of the above attacks. Below, we consider the best case (for the adversary),
when there is a factor fi of degree n = N/k, for some k, which has sparsity 1. This happens, for
example, when F (X) is the m-th cyclotomic polynomial, of degree N = φ(m), p = 1 mod 2N ,
and N is a power of two. In this case, F (X) = XN + 1 splits completely into N linear factors
modulo p, but also has sparse factors of the form X2i + ci due to properties of roots of unity.10

Reducing a R-LPN sample mod fi brings the dimension down to N/k, while the total number
of noisy coordinates now lies between w/k and w (depending on how many errors are added
together). To study the effectiveness of this attack, we need to first analyze the new noise rate,
and then the performance of the best known R-LPN attacks for the new set of parameters.

Estimating the reduced error rate. Suppose each of the t = w/c errors in one entry of
~e = (e1, · · · , ec) is chosen independently and uniformly from [N ] (this is only a small change
from the original distribution. Then, reducing an error polynomial modulo some 1-sparse fi of
degree n = N/k just means each error ends up in a random position in the reduced length-n
vector. For each j ∈ [n], define the random variable Ej to be 1 if position j in the reduced
polynomial has zero errors, and 0 otherwise. It follows that the expected the number of error-
free positions is

∑
j E[Ej ] = n ·Pr[Ej = 1] = n · (1− 1/n)t. Therefore, summing up across the c

error polynomials, we get a total of

cn(1− (1− 1

n
)t)

expected errors in the reduced LPN instance.

Analysis for Two-Power Cyclotomics. In our estimations below, we will focus on the
important case where F (X) is a two-power cyclotomic, which is one of our main candidates for
building a pseudorandom correlation generator for OLE correlations over F = Zp, and which is
also the best-case scenario for the attacker: for i = 1 to logN , there exists 1-sparse factors of
F (X) of degree 2i, and each of them gives rise to an LPN instance of dimension ni = (c− 1) · 2i,
with qi = c · 2i samples, and with an expected number of errors wi = cni(1− (1− 1

ni
)w/c).

10For example, if c is a square root of −1 modulo p (which exists, since with two-power cyclotomics, p ≡
1 mod 4) then XN + 1 = (XN/2 + c)(XN/2 − c).
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Gaussian Elimination. By picking an optimal choice of i, this R-LPN instance can be solved
in time

O

(
min

1≤i≤logN

(
1

1− wi
qi

)ni
· n2i log ni

)
.

Information Set Decoding. When F (X) is reducible, we cannot generally assume that the
dimension is much larger than the number of noisy coordinates, since the adversary can reduce
the dimension. By picking an appropriate i, the adversary can therefore find an LPN instance
where some of the improved ISD algorithm perform better than Prange’s original algorithm.
Due to the extended literature on ISD, it is difficult to evaluate precisely all existing attacks on
a given instance. However, a simplified and general estimation of the efficiency of ISD algorithms
was given in [HOSS18b], based on similar analysis given in [FS09, Sen11a, HS13, TS16]. This
general analysis builds upon the fact that most state-of-the-art ISD algorithms share a common
structure, from which a general lower bound on the cost of the attack can be derived. Here,
we simply reproduce the conclusions of [HOSS18b], restricted to our specific setting, and refer
the reader to [HOSS18b] for details on the analysis. We note that [HOSS18b] does not aim at
precisely estimating the cost of the attacks, but at providing a reasonably sharp and general
lower bound on their costs. In general, the cost of modern ISD algorithms for a parity-check
matrix Hi, with dimension ni = (c−1) ·2i, qi = c ·2i samples, and wi noisy coordinates, is lower
bounded by

min
p,q

min
{

2ni ,
(
qi
wi

)}(
ni−q
wi−p

) ·

(
K1 +K2(

ni+q
p

) +
wi · (ni − q)

2q

) ,

where the values (p, q) satisfy 0 ≤ q ≤ 2i and 0 ≤ p ≤ ni+q, K1 denotes the cost of performing a
Gaussian elimination on a submatrix of Hi with ni−q columns, andK2 denotes the running time
of a specific sub-algorithm, which varies accross different attacks. Since H is well structured,
we assume to be conservative that performing Gaussian elimination on the submatrix of Hi can
be done in time (ni − q)2 log(ni − q). Regarding K2, according to the analysis of [HOSS18b], it
can be lower bounded by (

(ni + q)/2

p/8

)
when using the algorithm of [BJMM12], which seems to provide the best efficiency on the
instances we consider (more recent algorithms improve over [BJMM12], but at the cost of large
hidden constants that render them less practical, or only for very high noise rates). Putting
everything together, a lower bound on the cost of ISD algorithm for a two-power cyclotomic F
is given by

min
1≤i≤logN
0≤q≤ni

0≤p≤ni+q

min
{

2ni ,
(
qi
wi

)}(
ni−q
wi−p

) ·

(ni − q)2 log(ni − q) +
((ni+q)/2

p/8

)(
ni+q
p

) +
wi · (ni − q)

2q

 .

Statistical Decoding. By picking an optimal choice of i, a reducible R-LPN instance can be
solved with a statistical decoding algorithm in time

O

(
min

1≤i≤logN

(
qi

ni − 1

)wi
· 2i
)
.

Changing the Structure of the Noise. In our analysis above, we rely on an estimation
of the expected amount of noise after reduction modulo a 1-sparse factor fi of F . However,
this ignores the possibility that, in some rare cases, the reduction modulo fi might lead to an
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instance with a much smaller amount of noise than the expected number, in which case the
attacks above will work much more efficiently. We note that there is a natural approach to avoid
these “weak parameters”, by sampling the noise such that its reduction modulo any 1-sparse
factor fi has weight at least the expected quantity ti. Typically, when F = XN +1, the 1-sparse
factors are all of the form X2i + ci, and sampling the noise in this way is very easy; one can
for example use a simple rejection sampling approach. Note that it is sufficient to consider a
single factor X2i + ci for the smallest i which the adversary can consider (typically, i = 6 or 7
in our instances), because reducing the noise modulo X2i + ci amounts to computing a linear
combination of the consecutive length-2i subvectors of the noise vector. Hence, reducing modulo
any factor with a larger i′ amounts to computing a linear combination of concatenations of 2i

′−i

of these subvectors, which implies that the total noise cannot decrease more than when reducing
modulo X2i + ci. Since a random noise vector will have more than ti noisy coordinates after
reduction modulo fi with probability ≈ 1/2, this rejection sampling approach reduces by a single
bit the total entropy of the noise vector.

We note that there might possibly be other, less sparse factors, which the adversary could
use. For such factors, the sampled noise vector is not guaranteed to maintain a target expected
number of nonzero coordinates after modular reduction. However, the noise reduction achieved
by modular reduction comes from collisions between the noisy coordinates in the reduced in-
stance, but this number of collision (as shown in our computation of the expected number ti
of collisions) is typically quite small. On the other hand, reducing modulo a d-sparse factor
increases the amount of noise by a factor d; when d > 1, we expect that this will systematically
lead to an increased total amount of noise, and is not a viable adversarial strategy. Therefore,
reductions modulo 1-sparse factors seems to be the main concern, and sampling the noise vector
as we suggest eliminates the unlikely event of a weak noise with respect to one of these factors.

8.3 Algebraic Attacks on Fully-Reducible F

Another type of attacks are the algebraic attacks that exploit the structure of the underlying
code. Many such algebraic decoding attacks have been devised in the literature, and fall in a
unified framework developed in [Pel92,Kot92] of distinguishing attacks based on componentwise
product of codes. Examples of such attacks include [PMCMM11,MCP12,FGUO+13,CGGU+13,
MCMMP14] (and many more), and were often used to break some variants of the McEliece
cryptosystem. Assume again that F (X) = XN + 1 is a 2-power cyclotomic polynomial, with
N linear factors fi(X) = X + ci. In this setting, the generating matrix associated to (~s 7→
〈~a,~s〉 mod fi)i≤N is of the form G = V · [IdN || − Aᵀ1|| · · · − A

ᵀ
c−1]

ᵀ, where V is a Vandermonde
matrix (since Vandermonde matrices capture polynomial evaluation, and reducing a polynomial
modulo a linear factor of the form X + ci is equivalent to evaluating the polynomial at ci).
Algebraic decoding attacks would allow to break the reducible R-LPN assumption if G is strongly
multiplicative (roughly, G generates a strongly multiplicative code if the entry-wise product of
each pairs of columns of G spans a vector space of dimension d < (cN)2). However, with G
as above, it is easily seen that the pointwise products of pairs of columns of G span the whole
F(cN)2 with overwhelming probability over the choice of A1, · · · , Ac−1, because the pointwise
products of two columns in each Ai are distinct to each other with overwhelming probability.
Therefore, algebraic decoding attacks do not seem to apply to our LPN variant.

8.4 Attacks Using the Quasi-Cyclic Structure of the Code

When the underlying code has a quasi-cyclic structure, there is an additional attack which must
be accounted for, which enhances the ISD family of attacks with a

√
(c− 1)N computational

speedup: the DOOM (Decoding One Out of Many) attack [Sen11b]. We note that the structure
of our codes is not exactly a quasi-cyclic structure; however, they have a structure that closely
resemble the structure of quasi-cyclic codes (e.g. when F = XN + 1, our code matrix is quasi-
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cyclic up to the fact that the odd-numbered blocks are multiplied by a factor −1). Therefore,
even though we are not aware of an extension of the DOOM attack to the kind of structured
codes we consider, we assume to be conservative that the DOOM attack can be extended to
work in our setting, and take into account the corresponding speedup for the ISD attacks in our
estimations. Similarly, when F is reducible, we assume that the DOOM attack speeds up the
ISD attacks by a

√
ni factor over the reducted instance of dimension ni.

8.5 Attacks over Small Fields

In this section, we assume the F = F2, which is the setting we consider in our applications that
rely on R-LPN small fields. The attack we describe works also over larger fields, but performs
more poorly, since it requires to brute-force over all possible secrets.

A natural approach to attack R-LPN over a small field is to brute-force over all possible
choices of ~s ∈ HWc−1

w/c. For each candidate vector ~s, the attacker checks whether 〈~a,~s〉 +~b is a
regular w/c-sparse vector. The number of sparse secrets from HWc−1

w/c over F2 is(
(c− 1) ·N
(c− 1) · wc

)
,

and grows to
(((c−1)·N)|F|−1

((c−1)·w
c
)|F|−1

)
over arbitrary fields. Each 〈~a,~s〉 for some candidate secret ~s requires

O((c−1) ·N logN) multiplications over F, hence the running time of the attack is lower bounded
by

O

((
(c− 1) ·N
(c− 1) · wc

)
· (c− 1) ·N logN

)
.

Note that when F = F2, the smallest integer d such that 2d = 1 mod m (where m is such that
φ(m) = N , i.e., F is the m-th cyclotomic polynomial) is at least logN , hence F splits into
at most N/d factors and when this is the case, F2[X]/F (x) = R ∼= FN/d

2d
. When applying the

brute-force attack to a reduced instance, the cost grows as(
((c− 1) · d)|F2d

|−1

((c− 1) · wc )|F2d
|−1

)
· (c− 1) ·N logN ≈

(
((c− 1) · d)N−1

((c− 1) · wc )N−1

)
· (c− 1) ·N logN.

Since N will be very large (e.g. about 220) in our instantiations, this attack is never feasible.

Improved Small Field Attacks. We note, however, that when F = F2 and F is reducible,
one can significantly refine the naive brute-force attack which we described above. Since this
setting is exactly the setting of the Lapin authentication protocol [HKL+12], which is perhaps the
flagship application ofR-LPN, it has been the subject of extensive cryptanalysis in [BL12,GJL15],
which managed to break some candidate parameters of the original proposal. We will not cover
their attacks in detail, but note that parameters which were conjectured to provide 80 bits of
security in the original proposal (where the estimation was based on standard attacks on LPN,
ignoring the ring structure), were shown to provide only 70 bits of security in [GJL15]. Therefore,
when using F = F2 and a reducible F , the state-of-the-art attack of [GJL15] should be taken
into account and the security margin must be increased by at least a comparable factor.

8.6 Attacks on R-LPN with Static Leakage

Eventually, our malicious distributed setup protocol in Section 5.3 relies on the R-LPN assump-
tion with static leakage (Definition 6.2). In this variant, security is based on the following game:
after the c noise vectors ~e0, · · ·~ec−1 sampled, the adversary is allowed to submit c · t arbitrary
predicates P ik : [0, N) 7→ {0, 1}, where P ik takes as input the position of the k-th nonzero entry

63



of ~ei. If any P ik returns 0, we abort and the adversary looses the game. Otherwise, we sens
“success” to the adversary, and he can now attempt to distinguish whether he got a random
vector or a noisy codeword.

As outlined in 5.3, R-LPN with static leakage can be reduced to R-LPN without leakage.
However, this comes at a strong loss in the reduction, and updating parameters to reflect this
reduction would decrease the efficiency of our schemes. While the resulting efficiency would still
be acceptable, we observe that all the attacks described in this section do not perform signifi-
cantly better against the R-LPN with static leakage assumption. The reason is that in all the
attacks mentioned in this section, the choices made by the adversary when trying to distinguish
~b = A~s+~e from random (e.g. picking candidate non-noisy coordinates in the Gaussian elimina-
tion attack, or choosing low-weight parity-check vectors in the statistical decoding attack) are
made independently of ~b. Therefore, in all these attacks, the success probability of the adversary
can be computed by sampling the noise vector ~e after the adversary made his choices; indeed,
this is exactly how we estimate the complexity of the attack in our asymptotic estimations.

This implies that, for all the above attacks, the success probability of the adversary can be
obtained by fixing his choice of predicates P ik, his choice of attack parameters (e.g. candidate
non-noisy coordinates in the Gaussian elimination attack, low-weight parity-check vectors in the
statistical decoding attack) and computing p0p1 with

• the probability p0 that all P ik return 1, over a random choice of ~e;

• the probability p1 that the attack succeeds when ~e is sampled conditioned on all P ik re-
turning 1.

However, the above probability is upper bounded by the probability that the attack succeeds for
a random noise vector not conditioned on the output of the predicates. The takeway message is
that any attack that selects its attack parameters without using ~b (but possibly using A and all
other parameters of the system) cannot succeed better at breaking R-LPN with static leakage
than at breaking the standard non-leaky R-LPN. In light of the fact that all known attacks that
apply to our setting have this feature, it seems that, for the same parameters, R-LPN with static
leakage offers the same concrete level of security as R-LPN without leakage.

9 Efficiency Analysis

In this section, based on our security analysis from Section 8, we discuss concrete choices of
parameters for which the corresponding ring-LPN problems are secure against the attacks we
considered. We then analyse the concrete efficiency of our PCGs in terms of seed size, commu-
nication complexity of the setup protocol, and estimated computational costs of seed expansion.

We focus on the case of a large finite field F = Zp, for a prime p with log p ≈ 128, as is
commonly used in MPC implementations [KOS16, KPR18]. Further, for improved efficiency,
we always choose the ring-LPN noise vectors to have a regular structure (as was done e.g.
in [BCGI18,BCG+19b,BCG+19a]), which does not introduce any known weaknesses.

Estimating Attack Costs. For large fields, we focus on the statistical decoding and infor-
mation set decoding (ISD) families of attacks (the latter being always at least as efficient as
the Gaussian elimination attack), combined with the speedup obtained with the DOOM attack
against quasi-cyclic codes. For statistical decoding, we compute our estimations with a conser-
vative lower bound of n · (cN/(N − 1))w arithmetic operations. For ISD, we used the parameter
estimation tool developed for the LEDA candidate [BBC+19] in the NIST post-quantum com-
petition11. This software takes as input the parameters (dimension, number of sample, number
of noisy coordinates, block-size of the quasi-cyclic matrices) of the instance, and outputs the

11https://github.com/LEDAcrypt/LEDAtools
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complexity of attacking the instance with several ISD variants, namely those of Prange [Pra62],
Lee and Brickell [LB88], Leon [Leo88], Stern [Ste88], Finiasz and Sendrier [FS09], May, Meurer,
and Thomae [MMT11], and Becker, Joux, May, and Meyer [BJMM12], while taking into account
the speedup of the DOOM attack when the code is quasi-cyclic. Furthermore, observing that
the C++ code of the software implements matrix inversion using standard (cubic time) Gaus-
sian elimination, we modified the matrix inversion used in the code to account for polynomial
speedups obtained by using fast (quasi-quadratic time) algorithms for inversion of structured
matrices.

9.1 Comparing Reducible and Irreducible Ring-LPN

We start by comparing parameters for the PCGs based on the reducible and irreducible variants
of ring-LPN. Recall that in the reducible case, F (X) splits completely into linear factors modulo
p, so we can obtain OLEs or triples over Zp (or an extension field Fpd). To improve computational
efficiency, we use the cyclotomic polynomial F (X) = XN + 1, for N a power of two. In the case
where F (X) is irreducible, we only produce a single, large OLE/triple over Zp[X]/F (X).

Reducible Ring-LPN Parameters. We consider a field F = Zp of size |F| ≈ 2128. As in
our applications, we focus on the case where there is a factor fi of degree n = N/k, for some k,
which has sparsity 1, such as when N is a power of two and F (X) = XN + 1 splits completely
into N linear factors modulo p. From the analysis in Section 8.2, we can reduce an instance
modulo a 1-sparse factor fi of degree n = 2i, reducing the expected number of noisy coordinates
to

wi = w − cn+ (c(n− 1) + w) ·
(

1− 1

n

)w/c−1
,

the dimension to ni = (c−1) ·2i, and the number of samples to qi = c ·2i. In our experiments, we
found that the optimal behavior for the adversary was always to pick the smallest i such that the
new weight wi of the noise is not higher than the dimension ni (such that the reduced instance
is still uniquely decodable and is not statistically close to random). For security parameter
λ = 80 (resp. λ = 128), the smallest such i is i = 6 (resp. i = 7). In Table 1, we provide
various choices of parameters (λ,N, c, w) such that the best attack on any reduced instance
requires at least 2λ multiplications over a field F of size |F| ≈ 2128. Observe that increasing N
does not allow increasing the noise weight, since the best attack always exploits the structure
of F (X) by reducing to a much smaller dimension. The table also presents the concrete seed
sizes and computational requirements for our PCG for OLE, based on Theorem 4.1 (and with
optimizations due to the regular error distribution).

Our conservative estimates of the running time of the statistical decoding attack have better
asymptotic complexity than the ISD attacks, according to our analysis in Section 8; and indeed,
we found statistical decoding to always give the best available attack. Given that statistical de-
coding should not generally perform better than ISD [DAT17], this suggests that our estimation
of the cost of statistical decoding might be overly conservative, meaning that our parameters
might be slightly pessimistic. When using a smaller field F′, the parameters in Table 1 change
as follows: the size of the seed, as it is counted as a number of group elements, grows roughly
by a factor log2 |F|/ log2 |F′|, the stretch and the number of PRG calls decrease by the same
factor (e.g. about a factor 2 when using F with log2 |F′| ≈ 64, meaning that the running time
for generating N OLEs over F′ decrease by a factor 2 compared to OLEs over F). The reduction
in the number of PRG calls requires encoding multiple field elements into a PRG output; for
example, using AES, a single PRG call produces 128 pseudorandom bits, which suffices to “pack”
two elements over a 64-bit field using an appropriate encoding.
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Table 1: Concrete parameters and seed size (per party, counted as equivalent number of field elements) for our
PCG for OLE over Zp from reducible ring-LPN, where p = 1 mod 2N , log p ≈ 128, for various λ, N , syndrome
compression factor c, and number of noisy coordinates w. ‘Stretch’, computed as 2N/(seed size), is the ratio
between storing a full random OLE (i.e., 2N field elements) and the smaller PCG seed. #PRG calls is computed
as 4 · Ncw. Parameters are chosen to achieve λ-bits of security against known attacks (see Section 9.1 for the
details on how the bit-security is estimated). This setting is useful for generating batches of N OLE correlations
or authenticated triples over Zp, or small inner-product correlations (Section 7.2). See Section 9.1 for estimations
of how to update the table for smaller field sizes.

λ N c w (i, wi) Seed size Stretch # R-mults #PRG calls

80 220 2 97 (6, 74) 217.4 12 4 229.6

80 220 4 40 (6, 37) 215.0 65 16 229.3

80 220 8 26 (6, 25) 213.9 139 64 229.7

128 220 2 152 (7, 121) 218.6 5 4 230.2

128 220 4 64 (7, 60) 216.3 27 16 230.0

128 220 8 41 (7, 40) 215.1 59 64 230.4

80 225 2 97 (6, 74) 217.7 306 4 234.6

80 225 4 40 (6, 37) 215.3 1654 16 234.3

80 225 8 26 (6, 25) 214.2 3623 64 234.7

128 225 2 152 (7, 121) 219.0 130 4 235.2

128 225 4 64 (7, 60) 216.6 673 16 235.0

128 225 8 41 (7, 40) 215.4 1513 64 235.4

Irreducible Case. We consider a field F = Zp of size |F| ≈ 2128. We consider various choices of
parameters (N, c, w), such that the time complexity of the best attack, with statistical decoding
or any attack from the ISD family, takes time at least 2λ (using all the optimizations discussed
previously). As with the reducible case, our analysis in Section 8 (which may be too pessimistic)
shows the statistical decoding attack to have the best complexity. Given parameters (λ,N, c, w),
our PCG for generating one pseudorandom OLE correlation over R has seeds of size equivalent
to

w · (1 + logN/ log |F|) + w2 · ((logN + 1)(λ+ 2) + λ+ log |F|)/ log |F|

elements of F. When the error distribution is regular, the seed size can be reduced to

w · (1 + logN/ log |F|) + w2 · (log(2Nc/w) · (λ+ 2) + λ+ log |F|)/ log |F|.

The computational complexity of the expansion algorithm is dominated by c2 multiplications
over R, and 4Ncw calls to a PRG for evaluating FullEval in the underlying SPFSS. The results
are represented on Table 2. When using a smaller field F′, the size of the seed, as it is counted
as a number of group elements, grows roughly by a factor log2 |F|/ log2 |F′|, the stretch and
the number of PRG calls decrease by the same factor (e.g. about a factor 2 when using F
with log2 |F′| ≈ 64, meaning that the running time for generating N OLEs over F′ decrease
by a factor 2 compared to OLEs over F). The reduction in the number of PRG calls requires
encoding multiple field elements into a PRG output; for example, using AES, a single PRG call
produces 128 pseudorandom bits, which suffices to “pack” two elements over a 64-bit field using
an appropriate encoding.

Compared with the reducible case in Table 1, notice that when N = 220, using an irreducible
F (X) allows the noise weight w to be around 10–40% smaller, for the same level of security.
This saving is slightly more pronounced for larger N , since in the reducible version, an increase
in N does not allow any reduction in the noise weight.
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Table 2: Size of the seed (per party, counted as an equivalent number of field elements) for generating an OLE
correlation over R = F[X]/F (X), where F is irreducible, dlog2 |F|e = 128 and degF = N for various λ, N ,
syndrome compression factor c, and number of noisy coordinates w. ‘Stretch’ is computed as 2N/(seed size),
and refers to the ratio between storing a full random OLE (i.e., 2N field elements) and storing the smaller seed.
#PRG calls is computed as 4 ·Ncw. Parameters are chosen to achieve λ-bits of security against known attacks
(see Section 9.1 for the details on how the bit-security is estimated). Note that increasing c always decreases
the seed size, but increases the running time of the expansion algorithm. This setting is useful for generating
large OLE correlations or authenticated triples over R, inner-product correlations (Section 7.2), or batch matrix
product correlations (Section 7.4). See Section 9.1 for estimations of how to update the table for smaller field
sizes.

λ N c w seed size stretch # R-mults #PRG calls

80 220 2 60 216.0 32 4 228.9

80 220 4 30 214.2 114 16 228.9

80 220 8 20 213.1 238 64 229.3

128 220 2 108 217.6 10 4 229.8

128 220 4 54 215.8 37 16 229.8

128 220 8 36 214.7 76 64 230.2

80 225 2 55 216.1 941 4 233.8

80 225 4 28 214.3 3344 16 233.8

80 225 8 19 213.3 6834 64 234.2

128 225 2 103 217.9 279 4 234.7

128 225 4 52 216.0 1006 16 234.7

128 225 8 35 215.0 2085 64 235.1

9.2 Estimated Costs and Runtimes for OLE and Triple Generation

We now look more closely at the concrete costs of setting up and expanding the PCG seeds.
Here, we consider the task of producing N = 220 OLEs or triples over Zp, using reducible
ring-LPN. (For smaller numbers of outputs, see the discussion in Section 9.3.)

Methodology. We estimate both the computational cost of expanding a PCG seed, as well
as the communication cost required to distribute the PCG seeds with either passive or active
security. When measuring communication, we do not include the one-time setup phase for
bootstrapping the protocol with an initial batch of OLEs or multiplication triples (in practice,
these can be created with a non-PCG based protocol such as ring-LWE).

For computation, the main costs in the expansion step are the DPF full-domain evaluations,
and polynomial operations over Rp. We separately benchmarked these using the DPF code
from [BCG+19a], and NFLLib [ABG+16] for polynomial arithmetic with a 124-bit modulus p,
which is a product of two 62-bit primes (such that Rp splits completely into linear factors, by
the CRT). The benchmarks were run on a single core of an Intel i7-7600U 2.8GHz processor.

To estimate the communication complexity of setting up the seeds, we first assume that as a
one-time setup, the parties already have access to a single pair of PCG seeds (for multiplication
triples). We then measure the cost of bootstrapping this to produce another seed, based on the
analysis from Section 6.3.

Cost Estimates for N = 220 Correlations. The results are in Table 3 for OLE, and Table 4
for authenticated triples. Note that compared with Table 1, the noise weight w has been rounded
so it is divisible by c, so that t = w/c is an integer. We see that as the module-LPN compression
factor c increases, the polynomial arithmetic gets more expensive, while the DPF cost first
decreases at c = 4, and then goes back up at c = 8. This is because the DPF complexity scales
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Table 3: Estimated costs for our PCG for producing N = 220 OLEs in Zp, with log p ≈ 124. Seed size is the
size of one party’s seed, setup comm. measures the per-party communication required to setup the PCG seeds
(ignoring costs for correlated randomness that can come from a previous PCG).

λ c w Seed size (MB) Setup comm. (MB) Runtimes for Expand (s)

passive active R-mult (s) DPF eval. (s) Total (s)

80 2 96 2.69 6.14 6.69 0.4 9.8 10.2
80 4 40 0.52 1.17 1.28 1.4 7.5 8.9
80 8 32 0.35 0.78 0.86 5.3 9.3 14.6

128 2 152 6.37 14.63 15.92 0.4 12.6 13.0
128 4 64 1.26 2.86 3.12 1.4 8.6 10.0
128 8 40 0.55 1.22 1.34 5.3 14.4 19.7

Table 4: Estimated costs for our PCG for producing N = 220 authenticated triples in Zp, with log p ≈ 124. Seed
size is the size of one party’s seed, setup comm. measures the per-party communication required to setup the
PCG seeds (ignoring costs for correlated randomness that can come from a previous PCG).

λ c w Seed size (MB) Setup comm. (MB) Runtimes for Expand (s)

R-mult (s) DPF eval. (s) Total (s)

80 2 96 5.49 8.77 0.8 19.6 20.4
80 4 40 1.09 1.68 2.8 15.0 17.8
80 8 32 0.74 1.13 10.6 18.6 29.2

128 2 152 12.91 20.97 0.8 25.2 26.0
128 4 64 2.60 4.09 2.8 17.2 20.0
128 8 40 1.14 1.75 10.6 28.8 39.4

with c2t, so doubling c only reduces its cost if t can be reduced by more than a factor of 4. The
best choice for speed seems to be c = 4, where we are able to silently expand over 100 thousand
OLEs per second at the 128-bit security level, with a seed size of around 1MB. When generating
authenticated triples instead of OLEs, the seed size and runtimes increase by roughly a factor
of two, while the setup communication cost is only slightly larger.

9.3 Comparison with OLE From Ring-LWE

In Table 5, we compare the cost of our OLE protocol from ring-LPN with the passively secure
OLE protocol from ring-LWE by Baum et al [BEPU+20]. For a 120-bit plaintext modulus,
the protocol implemented in [BEPU+20] has an average communication cost of 420 bits per
party, for each OLE. Excluding the one-time setup, our ring-LPN based protocol with c = 4
improves upon the communication complexity of ring-LWE when producing N = 65536 or
more OLEs. With c = 2, when N is 32768 or 65536, the ring-LPN protocol requires more
OLEs as preprocessing than it produces as output, so is not beneficial; instead, the asymptotic
improvement in communication starts to take effect when N is half a million or more.

10 PCG for OLE from Standard LPN

In this section, we provide new constructions of PCG for OLE and matrix product correlations.
Unlike the other PCG constructed in this work, the PCGs of this section do not rely on the
R-LPN assumption, but on the standard LPN assumption (or alternatively, some variant of it
with a structured parity-check matrix H allowing for fast multiplication with H). The PCG
for OLE we obtain is typically less efficient than those based on R-LPN, but rely on more
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Table 5: Comparing costs of our passively secure OLE protocol from ring-LPN with ring-LWE. # OTs and #OLEs
measure the amount of correlated randomness required to run one instance of the protocol. Communication is
averaged per-party

N c w Ring-LPN costs Ring-LWE costs [BEPU+20]

# OTs # OLEs Comm. (MB) Comm. (MB)

32768 2 152 877952 115520 10.9 1.72
65536 2 152 970368 115520 11.6 3.44
131072 2 152 1062784 115520 12.4 6.88
262144 2 152 1155200 115520 13.1 13.78
524288 2 152 1247616 115520 13.9 27.5

32768 4 64 188416 20480 2.19 1.72
65536 4 64 204800 20480 2.33 3.44
131072 4 64 221184 20480 2.46 6.88
262144 4 64 237568 20480 2.59 13.8
524288 4 64 253952 20480 2.73 27.5

well-studied assumption, hence can be seen as a conservative alternative. Furthermore, our
LPN-based PCGs for matrix multiplication correlations is incomparable to our R-LPN-based
PCG for batch matrix multiplication: while the later generates large batch of small-to-moderate
size matrix multiplication triples, the former allows to generate one (potentially very large)
matrix multiplication triple.

Our starting point is the LPN-based construction of PCGs for bilinear correlations from
Boyle et al. [BCG+19b], over an arbitrary field F, which we recall below. In [BCG+19b], this
construction was estimated to be mainly of theoretical interest: generating m = O(n) OLEs
with this PCG requires O(n4) arithmetic operations, and a seed of size O(t2 log n). When n is
large enough for the seed to provide a nontrivial compression factor, the computational overhead
is already impractical. In this section, we will give an optimized variant of this construction
which requires O(nω) arithmetic operations, where ω is the matrix multiplication exponent. This
cost can be further reduced to O(n2 log n) by relying on any variant of LPN with structured
parity-check matrices allowing for fast (o(n2)) matrix-vector products, such as a Toeplitz or a
quasi-cyclic parity-check matrix.

10.1 The Construction of [BCG+19b]

Theorem 10.1 (From [BCG+19b], Section 6) Suppose the dual-LPNm,n,t assumption holds
relative to H, and that SPFSS is a secure sum of point function secret sharing scheme. Then
the construction Gbil (Fig. 14) is a secure PCG for general bilinear correlations.

Efficiency. Instantiating the SPFSS as in [BCGI18], the setup algorithm of Gbil outputs seeds
of size t2 · (dlog ne(λ+ 2) + λ+ log2 |F|) bits, which amounts to Õ(t2 log n) field elements over a
large field (log2 |F| = O(λ)). Expanding the seed involves (tn)2 PRG evaluations and O(m·n)2 =
O(n4) arithmetic operations.

10.2 Optimized Construction

The main source of inefficiency in the above construction stems from the fact that to compute a
bilinear function of two (pseudo)random strings, the expansion algorithm must obtain the tensor
product between the pseudorandom strings (~x0, ~x1). In the construction, it holds that

~xσ = H · ~eσ for σ = 0, 1
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Construction Gbil

Parameters: 1λ,m, n, t,∈ N, where n > m; a field F. A parity-check matrix
H ∈ Fm×n for a code of dimension n−m and number of samples m over F. A bilinear
function B~c : Fn × Fn → F, (~α, ~β) 7→ 〈~c, (~α⊗ ~β)〉.

Gen: On input 1λ:

1. Pick two random sparse vectors ~e0, ~e1
$← Fn with wt(~e0) = wt(~e1) = t. Define

f to be the sum of t2 point functions whose evaluation on its entire domain is
~e0 ⊗ ~e1.

2. Compute (K0,K1)
$← SPFSS.Gen(1λ, f).

3. Let k0 ← (K0, ~e0) and k1 ← (K1, ~e1).

4. Output (k0, k1).

Expand: On input (σ, kσ), parse kσ as (Kσ, ~eσ). Set ~xσ ← H · ~eσ. Compute ~uσ ←
SPFSS.FullEval(σ,Kσ) in Fn2

p , and set ~zσ ← 〈~c, (H ⊗H) · ~uσ〉. Output (~xσ, ~zσ).

Figure 14: PCG for Bilinear Correlations

hence

~x0 ⊗ ~x1 = (H · ~e0)⊗ (H · ~e1)
= (H ⊗H) · (~e0 ⊗ ~e1).

The tensor product between noise vectors ~e0 ⊗ ~e1 is compressed using SPFSS. Then, the
O(n4) overhead comes from multiplying this length-n2 vector with an m2×n2 matrix. However,
computing the above can be done much more efficiently by observing that the n × n square
matrix ~x0 ·~xᵀ1 contains exactly the same entries as the tensor product between ~x0 and ~x1. Hence,
any bilinear function of (~x0, ~x1) can be trivially computed as a linear combination between the
components of ~x0 · ~xᵀ1. Furthermore, we can compute ~x0 · ~xᵀ1 much more efficiently using the
following identity:

~x0 · ~xᵀ1 = (H · ~e0) · (H · ~e1)ᵀ

= H · (~e0 · ~eᵀ1) ·Hᵀ.

As before, ~e0 · ~eᵀ1 can be generated from an O(t2 log n)-long seed using SPFSS. But now,
computing H · (~e0 ·~eᵀ1) ·Hᵀ requires only O(nω) operations, where ω is the matrix multiplication
exponent. Furthermore, if H is a structured matrix, this can be computed even more efficiently;
for example, taking H to be a Toeplitz matrix or a quasi-cyclic matrix leads to a computation
cost of O(n2 log n) for generating m = O(n) OLEs, under well-established variants of the LPN
assumption. This provides a less efficient, but still feasible more conservative alternative to our
construction based on the splittable variant of R-LPN. Hence, we directly get:

Theorem 10.2 Suppose the dual-LPNm,n,t assumption holds relative to random Toeplitz matri-
ces, and that SPFSS is a secure SPFSS scheme. Then the construction described in this section
is a secure PCG for general bilinear correlations with seeds of size Õ(t2 log n) field elements
over a large field (log2 |F| = O(λ)). Expanding the seed involves O((tn)2) PRG evaluations and
O(n2 log n) arithmetic operations.
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10.3 LPN-Based PCG for Matrix Multiplication

In this section, we describe two new variants of the PCG described in the previous section, which
allow to generate large matrix multiplication triples over F (with different parameters tradeoffs
across the two constructions).

First Construction. The first construction directly generalizes the construction above to
generating pseudorandom correlations (X0, Z0) ∈ Fm×m×Fm×m and (X1, Z1) ∈ Fm×m×Fm×m
such that X0 ·Xᵀ1 = Z0 + Z1.

Parameters: 1λ,m, n, t, p ∈ N, where n > m. A parity-check matrix H ∈ Fm×n for a code of
dimension n−m and number of samples m over F.

Gen: On input 1λ:

1. Pick two random matrices E0, E1 ∈ Fn×m such that each column of E0, E1 contains exactly
t nonzero entries.

2. Compute SPFSS keys (K0,K1) which generate shares of E0 · Eᵀ1 .

3. Let k0 ← (K0, E0) and k1 ← (K1, E1).

4. Output (k0, k1).

Expand: On input (σ, kσ), parse kσ as (Kσ, Eσ). Set Xσ ← H · Eσ. Compute Uσ ←
SPFSS.FullEval(σ,Kσ) in Fn×n and set Zσ ← H · Uσ ·Hᵀ. Output (Xσ, Zσ).

The correctness and security of the construction follows by the same argument as for Gbil

(Section 10.2). Regarding efficiency, the expansion cost is optimal, O(nω) using random parity-
check matrices, or O(n2 · log n) using Toeplitz or quasi-cyclic matrices. Note that this means
that generating a pseudorandom m ×m matrix multiplication triples via this method is even
faster than computing the product of random m×m matrices in the clear (for m = O(n)). On
the downside, the size of the seed grows now as O(t2n2 log n); i.e., the expansion is limited to
subquadratic in the seed size. The next construction allows to achieve much better seed size
(logarithmic in n), but has a higher computational complexity.

Second Construction. The second construction is similar in spirit to the previous one; it
achieves a much smaller seed size, albeit with a larger computational cost O(n4 log n). The high
level idea is to generate each m×m matrix Xσ by constructing a length-m2 vector ~xσ = H ·~eσ,
where H is an m2 × n2 parity-check matrix (e.g. a Toeplitz or quasi-cyclic matrix), and ~eσ is a
length-n2 t-sparse vector. Let Hi ∈ Fm×n2 the matrix comprising the rows (i−1) ·m+ 1 to i ·m
of the matrix H, i.e. H is horizontally parsed as (very flat) matrices H1, . . . Hm ∈ Fm×n

2 . Then,
we define Xσ to be the m×m matrix whose i-th column is equal two Hi ·~eσ. In other words, the
i-th column of Xσ contains the entries (i− 1) ·m+ 1 to i ·m of ~xσ. We let mat : Fm2 7→ Fm×m
denote the operator mapping an m2-vector to an m×m matrix.

Parameters: 1λ,m, n, t, p ∈ N, where n > m. A parity-check matrix H ∈ Fm2×n2 for a code
of dimension n2 −m2 and number of samples m2 over F.

Gen: On input 1λ:

1. Pick two random vectors ~e0, ~e1 ∈ Fn2 with exactly t nonzero entries.

2. Compute SPFSS keys (K0,K1) which generate shares of ~e0 · ~eᵀ1.
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3. Let k0 ← (K0, ~e0) and k1 ← (K1, ~e1).

4. Output (k0, k1).

Expand: On input (σ, kσ), parse kσ as (Kσ, ~eσ). Set Xσ ← mat(H · ~eσ). Compute Uσ ←
SPFSS.FullEval(σ,Kσ) in Fn2×n2 and set

Zσ ←
m∑
i=1

Hi · Uσ ·Hᵀi .

Output (Xσ, Zσ).

Security follows from the same argument as previously. For correctness, note that by defini-
tion we can write Xσ = [H1 ·~eσ | · · · | Hm ·~eσ], which implies X0 ·X>1 =

∑m
i=1Hi ·~e0 ·(Hi ·~e1)> =∑m

i=1Hi · (~e0 · ~e>1 ) ·H>i and thus correctness follows.
The seed size is now much smaller, O(t2 log n); however, the computational complexity is

dominated by the matrix product H ·Uσ, which takes time O(n4 log n) if H is a structured ma-
trix. This provides a much better tradeoff than when generating OLEs: the cost of generating
m = O(n) OLEs with (our improved version of) Gbil is Õ(n2), quadratically larger than the cost
of generating them in the clear. However, the cost of generating a large random matrix multipli-
cation correlation is M(n) = O(nω), meaning that the cost of our algorithm is below O(M

√
M)

when the matrix multiplication algorithm is implemented with e.g. Strassen’s algorithm.
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ear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer, Heidelberg, De-
cember 2011.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with appli-
cations to decoding of binary linear codes. In Elisabeth Oswald and Marc Fis-
chlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 203–228.
Springer, Heidelberg, April 2015.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-
shank Burra. A new approach to practical active-secure two-party computation.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 681–700. Springer, Heidelberg, August 2012.

78



[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
31st ACM STOC, pages 245–254. ACM Press, May 1999.

[Ove06] Raphael Overbeck. Statistical decoding revisited. In Lynn Margaret Batten and
Reihaneh Safavi-Naini, editors, ACISP 06, volume 4058 of LNCS, pages 283–294.
Springer, Heidelberg, July 2006.

[Pel92] Ruud Pellikaan. On decoding by error location and dependent sets of error posi-
tions. Discrete Mathematics, 106:369–381, 1992.

[PMCMM11] Ruud Pellikaan, Irene Márquez-Corbella, and Edgar Martínez-Moro. Evaluation
of public-key cryptosystems based on algebraic geometry codes. In Third Inter-
national Castle Meeting on Coding Theory and Applications (3ICMTA, Cardona
Castle, Barcelona, Spain, pages 199–204, 2011.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans-
actions on Information Theory, 8(5):5–9, 1962.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
84–93. ACM Press, May 2005.

[Sen11a] Nicolas Sendrier. Decoding one out of many. In International Workshop on Post-
Quantum Cryptography, pages 51–67. Springer, 2011.

[Sen11b] Nicolas Sendrier. Decoding one out of many. In Bo-Yin Yang, editor, Post-
Quantum Cryptography - 4th International Workshop, PQCrypto 2011, pages 51–
67. Springer, Heidelberg, November / December 2011.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019, pages 1055–1072. ACM Press, November 2019.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In International
Colloquium on Coding Theory and Applications, pages 106–113. Springer, 1988.

[SV14] N. P. Smart and F. Vercauteren. Fully homomorphic simd operations. Des. Codes
Cryptography, 71(1):57–81, April 2014.

[TS16] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decod-
ing for a sub-linear error weight. In International Workshop on Post-Quantum
Cryptography, pages 144–161. Springer, 2016.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1607–
1626. ACM Press, November 2020.

[Zic17] Lior Zichron. Locally computable arithmetic pseudorandom generators. Master’s
thesis, School of Electrical Engineering, Tel Aviv University, 2017.

79


	Introduction
	Our contributions
	Changes Since Publication at CRYPTO 2020
	Technical Overview

	Preliminaries
	Notation
	Function Secret Sharing
	Pseudorandom Correlation Generators

	The Ring-LPN Assumption
	Ring-LPN
	Choice of the Polynomial F

	PCGs for OLE and Authenticated Multiplication Triples
	PCG for OLE over Rp
	Authenticated Multiplication Triples

	DPF Key Generation Protocols
	Reactive 2-PC
	Semi-honest DPF Key Generation
	Malicious DPF Key Generation

	PCG Setup Protocols
	Semi-Honest Distributed Setup for OLE
	PCG Setup Protocols with Malicious Security
	Efficiency Analysis

	Extensions and Applications
	Bilinear Correlations
	Inner Product Correlations
	Bilinear Correlations from Programmable PCG for OLE
	Application: Matrix Multiplication Triples
	Application: Circuit-Dependent MPC Preprocessing
	Application: Multi-Party PCGs for Bilinear Correlations

	Security Analysis
	Generic Attacks on LPN
	Taking Advantage of Reducible F
	Algebraic Attacks on Fully-Reducible F
	Attacks Using the Quasi-Cyclic Structure of the Code
	Attacks over Small Fields
	Attacks on R-LPN with Static Leakage

	Efficiency Analysis
	Comparing Reducible and Irreducible Ring-LPN
	Estimated Costs and Runtimes for OLE and Triple Generation
	Comparison with OLE From Ring-LWE

	PCG for OLE from Standard LPN
	The Construction of C:BCGIKS19
	Optimized Construction
	LPN-Based PCG for Matrix Multiplication

	Acknowledgements

