
RPM: Robust Anonymity at Scale

Donghang Lu
Purdue University

Aniket Kate
Purdue University

Abstract
This work presents RPM, a scalable anonymous communi-
cation protocol suite using secure multiparty computation
(MPC) with the offline-online model. We generate random,
unknown permutation matrices in a secret-shared fashion
and achieve improved (online) performance and the light-
est communication and computation overhead for the clients
compared to the state of art robust anonymous communica-
tion protocols. Using square-lattice shuffling, we make our
protocol scale well as the number of clients increases. We
provide three protocol variants, each targeting different input
volumes and MPC frameworks/libraries. Besides, due to the
modular design, our protocols can be easily generalized to
support more MPC functionalities and security properties as
they get developed. We also illustrate how to generalize our
protocols to support two-way anonymous communication and
secure sorting. We have implemented our protocols using the
MP-SPDZ library suit and the benchmark illustrates that our
protocols achieve unprecedented online phase performance
with practical offline phases.

1 Introduction

There are by now millions of users using the Tor net-
work [27, 28] to break the link between their identities and
their messages/packets. As the solutions like Tor network
suffer from attacks such as traffic analysis [11, 31, 38], anony-
mous communication becomes an active research area and
many works [1,3,29,42,43,47,52,53] aim at providing anony-
mous communication services efficiently. In this work, we
explore the solutions of anonymous communication with the
help of secure multi-party computation (MPC). MPC allows
multiple distrusting parties to compute some functions collab-
oratively with their private input, thus it is a natural approach
to building applications with robust privacy guarantees [1,47].
This work proposes RPM1 as a solution for anonymous com-
munication in a client-server setting, where clients send their

1RPM stands for Random permutation matrix.

messages to the servers in a secret-shared manner, the servers
randomly shuffle the messages and then output them to des-
ignated parties. Compared with existing works, the highlight
of our protocols is that the clients only need the minimum
cost to send the messages, meanwhile, the servers can per-
form the random shuffle very efficiently in terms of time and
communication. It makes our protocol a preferred choice for
real-time anonymous communication applications such as
front-running-resistant market maker [20, 22]. Meanwhile,
the clients with limited computation power can benefit from
our protocol significantly.

RPM makes use of the standard offline/online model of
MPC [7, 23, 37, 46, 47], where the offline phase is used to pre-
pare input-independent data, such that they can be consumed
to accelerate the input-dependent online phase. The overall
idea is that anonymous communication can be achieved by
performing a random permutation to the input messages. Re-
call that for any k-input permutation π, there exists a zero-one
matrix Mπ such that π(x) = Mπx. Therefore, if we obtain
a permutation matrix such that anyone including the adver-
sary has no knowledge about the underlying permutation, the
anonymous communication could be achieved by simply mul-
tiplying the matrix with the input vector, and it is equivalent to
doing k inner product in parallel. In the offline/online model,
we can generate a permutation matrix in the offline phase as
it is input-independent, then achieve random permutation in
the online phase through multiplications. This core idea is
simple and fast, which are two great properties proven to be
significantly useful in an anonymous broadcast scheme.

We provide three variants of the protocols, targeting differ-
ent MPC frameworks and applications. The first variant lever-
ages efficient inner product protocols to achieve a fast and
cheap online phase. It only requires one communication round
and k share reconstructions for mixing k messages. Then we
present the second variant for MPC frameworks where an in-
ner product protocol with constant communication complexity
is not available. It requires 2 rounds and 2k reconstructions as
a trade-off. Finally, we provide the third variant to handle a
larger number of inputs more efficiently with cheaper offline

1

phase cost and online computation complexity. As a result,
all existing secret-sharing-based MPC frameworks can use
our protocols for their own purposes. Besides, we show how
to generalize our protocols to support more functionalities
(e.g. two-way communication and anonymous messaging)
and security properties (e.g. robustness, meaning that the pro-
tocols will make progress and finish with correct output even
with the existence of malicious behaviors). What’s more, as
the core part of our protocols is the secure random permuta-
tion, it is of independent interest to more applications such as
oblivious sorting and some graph-based algorithms.

We implement our protocols using MP-SPDZ frame-
work [39], and benchmark both the online phases and the
offline phases of all three variants of our protocols. These
variants are implemented using different MPC back-ends pro-
vided by MP-SPDZ, which shows that our protocols can be
used in most of existing MPC frameworks. The results il-
lustrate that the first two variants of our protocol have great
online&offline performances when dealing with small num-
ber of messages (e.g. less than 10000). We can mix k = 10000
messages in around 0.58 seconds with 1.9MB communication.
When dealing with large volume of messages, our last variant
achieves the best performance, which mixes k = 160000 mes-
sages in around 27 seconds with 88MB communication. The
benchmark shows the offline phase is practical for real-world
applications as well. Therefore, our protocol suits can handle
different MPC frameworks and input volumes flexibly.

Finally, we modify the malicious secure back-end of MP-
SPDZ to improve it from a secure-with-abort version to a
robust version, which can be of independent interest for MPC
applications. We test the performance of our protocols with
robustness guarantee, the benchmark shows that our protocols
achieves robustness with no additional cost in the best cases,
and around 2× more time in the worst cases.

1.1 Paper Organization

We introduce the related works in Section 2. We present the
system model of our protocols and introduce the background
and preliminaries in Section 3. We explain the detailed con-
struction of our protocols in Section 4. We compare the the-
oretical complexities of our protocols with related works in
Section 4.7. In Section 5, we introduce how to apply our pro-
tocols to solve more higher-level applications. In Section 6.1,
we show how our protocols are implemented using MP-SPDZ
framework and the detailed benchmark data is available in
Section 6.2. Besides, we illustrate the construction and the
performance of the robust version of our protocols in Sec-
tion 6.4. Finally, we present the conclusion and the future
works in Section 7.

2 Related Works

The Tor network is a popular tool for anonymous communi-
cation; however, the current low-latency Tor design is signif-
icantly vulnerable to traffic analysis asymptotically [25] as
well as empirically [11, 31, 38].

Mixing networks (mixnets) [18] improve the protection
against traffic analysis through increased latency overhead
in the form of communication over several hops (i.e., indi-
rection) and mixing messages at one or more honest hops.
Over the last four decades, numerous mix-net inspired pro-
tocols [17, 24, 42–45, 52, 53] have been proposed that can
deter traffic analysis attacks; however, their high latency over-
heads of several seconds (at least) is unacceptable for many
applications including browsing, messaging, or video calls.
Moreover, mixnets are inherently non-robust as even a single
node failure/crash can result in messages getting dropped.

For a high level of traffic analysis resistance while maintain-
ing low latency, dining-cryptographers network (DC-net) [16]
and its successors [14, 33, 41, 54–57] are much better suited.
Using a cryptographic setup/coordination among clients,
these schemes offer provably strong anonymity in a constant
number of rounds [26]. However, as the number of clients
grows client coordination can become an Achilles’ heel for
these DC-net-based solutions.

It is easy to observe that these DC-net systems are just
types of MPC among the clients. Towards avoiding client
coordination and expensive computation at the client-side,
the idea of employing some MPC servers is getting popu-
lar [1, 3, 8, 21, 47]: here, similar to mixnets, every client is
unaware of other clients and only communicates with the
MPC servers. MPC servers perform some MPC protocols
towards making clients’ messages unlinkable to their identi-
ties. Among these MPC-based solutions, we find the works
of AsynchroMix [47], Blinder [1], and Clarion [29] to be the
closest to our work.

AsynchroMix [47] proposes two MPC solutions for anony-
mous broadcast. One method is based on the switching
network, where the MPC performs log(k) iterations of
switching networks to simulate an almost-random permu-
tation for k input messages. The round complexity of this
method is O(log2(k)) and the communication complexity is
O(klog2(k)). In their second method (so-called PowerMix),
the messages are encoded into a symmetric equation system,
then the anonymous broadcast can be achieved by solving
it. The challenge for this method is that for any input secret-
shared message, its powers are required by the equation sys-
tem, and this leads to O(k3) computation complexity in the
online phase. Although the computation is usually not con-
sidered as the bottleneck of an MPC protocol, the benchmark
shows that the computation time actually dominates when k
is large. Compared with PowerMix, our method reduces the
computation complexity of the online phase to be at most
O(k2), making it a better choice for a large volume of inputs.

2

Blinder [1] achieves anonymous broadcast by accumulating
client messages in a large matrix. To achieve that, each client
secret shares a matrix to the servers where all elements are
zero but one position. The non-zero position is used to store
the secret-shared message. The servers add up all the matrices
from the clients and reconstruct the sum matrix to recover
the messages. Several optimizations are applied to reduce
the communication cost and to deal with the collisions when
multiple clients choose the same position. In some sense, they
achieve a scalable and efficient online phase by pushing some
of the computation to the client side. Compared with blin-
der, the communication and computation cost of the client
is cheaper in our protocol by an order of O(

√
k). Therefore,

our protocol fits better when clients have limited computation
powers. Besides Blinder, Riposte [21] uses similar approaches
of offloading part of the computation to the client-side. It uses
discrete point functions to help reduce the client communi-
cation costs and achieves the same client-side complexity as
Blinder.

Eskandarian and Boneh propose a protocol called Clar-
ion [29], which is communication-efficient to do anonymous
broadcast. They propose constructions for both three-server
setting and n-server setting, and the communication cost of
their protocol is O(kℓ) where k is the number of messages and
ℓ is the size of the message. Their protocol has O(n) round
complexity in the n-server setting as it is made up of pairwise
share translation. Our protocols and Clarion provide different
trade-offs and fit different scenarios. Theoretically, our proto-
col has better round complexity and Clarion has better com-
putation complexity. Therefore, there are settings where our
protocols perform better and vice versa. Besides, due to the
modular design, our protocols can inherently support stronger
security properties (e.g. censorship-resistance, robustness, and
fairness) if built with robust MPC libraries. For instance, if we
build our protocols using HoneybadgerMPC [47], we will get
exactly the same security properties as Asynchromix. How-
ever, it is impossible to do so for Clarion.

There are also works focusing on specialized applications.
Spectrum [49] is designed for a broadcasting system where
broadcasters share files anonymously with many subscribers.
Subscribers send dummy files to form cover traffics. The
evaluation results illustrate that Spectrum achieves better per-
formance for scenarios with small broadcasters and many
subscribers. Compared with their settings, all clients in our
protocols are treated as "broadcasters" who can send messages
anonymously.

3 Preliminary

3.1 System Model
We consider a standard client-server MPC setting with a set
of n servers P1,P2, . . . ,Pn and a set of k clients c1,c2, . . . ,ck
(k ≥ 2). We assume that the servers already have key pairs

established to build private, authenticated channels between
each other. Besides, we assume clients connect to all the
servers via TLS.

The whole protocol is divided into three phases as shown in
Figure 1: (1) clients send their messages to servers in a private
manner (via secret sharing). (2) Servers perform MPC proto-
cols to randomly permute the inputs. (3) Servers reconstruct
the permuted inputs to be the output of the protocol. We as-
sume the client messages are the field elements with the same
length, which can be achieved through padding. Fixed-length
messages are essential since otherwise the message can be
easily linked to its sender through the message size. Similar to
existing works [1, 47], we assume servers have agreed on the
set of client messages included in each protocol round, which
can be achieved through any Byzantine agreement protocol.

1. Clients secret-share their
messages to servers.

2. Servers perform MPC
protocols to randomly shuffle

messages.

3. Servers reconstruct the
shuffled messages and

publish them to the Internet.

Internet

Figure 1: Client-server setting for anonymous communication
with MPC shuffling.

Since our protocol works across different communication
settings, we do not put specific network assumptions such
as partial-synchrony, bounded-synchrony, or asynchrony. Be-
sides, the design goal of our protocol does not include protec-
tion against network-level attacks (e.g. DoS attacks).

The first variant of our protocol requires the usage of the
Shamir secret sharing scheme or similar error-correcting code
base secret sharing schemes. The second variant of our proto-
col gets rid of this restraint and can be applied to any secret-
sharing-based MPC framework.

As for the adversary model, we assume there exists a static
adversary that can corrupt at most t servers and at most k−2
clients. Our protocols are secure against a malicious adversary
with n≥ 2t+1. In practice, our protocols can be implemented
in any secret-sharing-based MPC framework, and the security
of our protocols depends on the malicious secure building
blocks of the underlying MPC frameworks. Besides, We pro-
pose verification checks to guarantee the malicious security

3

of the offline phase. What’s more, if the underlying MPC
framework supports security properties such as guaranteed
output delivery, our protocol should obtain those properties
inherently.

3.2 Goals and Non-Goals

Below we list the goals that our protocols achieve:
• Sender Anonymity: We want our protocol to achieve

sender anonymity for the client message i.e., the ability
of the adversary to figure out which client has sent a spe-
cific output message is no better than random guessing,
even if all but two clients and any minority of servers are
compromised.

• Fast online phase: Our protocols lead to very efficient
online phases in terms of communication, computation,
and communication rounds, thus being good options for
low-latency applications.

• Light-weighted clients friendly: Our protocols require
small communication and computation from the client-
side.

• Scalability: Our protocols can handle a medium volume
of inputs within a short amount of time.

Non-goals.We list the non-goals below:
• Confidentiality: Our protocols does not protect the con-

fidentiality of the message content. Therefore, our pro-
tocols should be combined with other methods (e.g. en-
cryption) to achieve confidentiality if it is required.

• Network-layer Attacks: Similar to most existing works,
our protocols are not designed to be resilient to network-
layer attacks (e.g. DoS attacks).

• Hiding Message Volume: Our protocols do not hide the
global volumes of the messages.

3.3 Secret-sharing based MPC

3.3.1 Shamir Secret Sharing

Shamir secret sharing scheme with threshold (n, t), where
n > t ≥ 0, allows the dealer to share a secret s ∈ Fp to n
parties {P1, . . . ,Pn} such that the s is revealed if and only if
t +1 or more parties combine their shares to reconstruct the
secret value. To share a secret s, the dealer samples a degree-t
polynomial φ() such that the constant coefficient of φ() is
the secret s, and all other coefficients are set to be random
elements. Then the dealer sends the share φ(i) to the party Pi.
We denote JsKi

t as the secret share of party Pi for the rest of
the paper. We may omit the superscript/subscript of a share
when it is clear from the context.

To reconstruct the secret, parties send their private shares
to each other. When the party gather the shares from t + 1
parties, it is sufficient for it to reconstruct the polynomial φ()
and the secret s can be computed through s = φ(0).

3.3.2 MPC with Shamir Secret Sharing

In this work, we focus on a client-server setting where clients
secret-share their private inputs to a group of servers, and
the servers perform MPC protocols collaboratively. For the
arithmetic-circuit MPC, a computed functionality can be rep-
resented using the addition gates and multiplication gates.
Shamir secret sharing is additive homomorphic in the sense
that the following equation holds:

Ja+bKt = JaKt + JbKt

Therefore, any addition and the linear combination of the
secret values can be performed locally by applying the same
operations over the shares. However, when it comes to the
multiplication, the multiplication of two degree-t polynomials
results in degree-2t polynomials. Thus it cannot be achieved
locally and we often follow the online/offline MPC paradigm
here and use Beaver triples [12] to do the multiplication. As
a result, the multiplication becomes an interactive protocol
among servers and requires communication. When measur-
ing the complexity of an MPC protocol, we usually think
of additions as free and only consider the number/rounds of
multiplications as they are the bottleneck of the protocols in
most cases.

Offline/Online Model. We often separate an MPC proto-
col into an input-independent offline phase and an input-
dependent online phase. In the offline phase, servers prepare
the input-independent secret shares such that they can be con-
sumed in the online phase to make the online phase faster.
The offline phase can be run for a long time before the ac-
tual online phase starts, therefore it is allowed that the offline
phase is more costly than the online phase. The starting point
of this work is to properly design the offline phase protocols
and the online phase protocols such that most cryptographi-
cal expensive operations are moved to the offline phase, and
the online phase only requires some basic operations such as
reconstructions. As the offline phase is often more costly than
the offline phase, a standard workflow is as follows: Before
the online protocol starts, the servers can run the offline phase
in advance, which may take a long time to finish. After that,
the clients send their input to the server to execute the efficient
online phase.

The goal of RPM is to optimize the online phase perfor-
mance. As the offline phase is input-independent, the offline
phase can be run early in advance, even days before the actual
online phase. This is especially useful when computations are
done regularly but not continuously. For example, an anony-
mous broadcasting system can run the offline phase during the
night and run the online phase during the day once it receives
user input. Therefore, it is the online phase that actually deter-
mines the user experience. The users will not be influenced
by a more costly but still practical offline phase.

4

3.3.3 Beaver Triple Multiplication [12] for scalars and
matrices

To multiply two secret shares JxK and JyK, the servers prepare
a precomputed triple JaK,JbK,JabK where a and b are random
elements. In the online phase, servers compute and reconstruct
(x−a) and (y−b), then the result is shown as follows:

JxyK = (x−a)(y−b)+(x−a)JbK+(y−b)JaK+ JcK

The equation above only involves the linear combination of
secret sharings, and thus can be computed locally. Therefore,
the cost of Beaver Multiplication is two reconstructions in
one round.

Beaver’s technique naturally extends to the multiplication
of two secret-shared matrices. The only change to the steps is
to replace the single elements with matrices [48]. The commu-
nication complexity of multiplying two k-by-k secret shared
matrices is O(k2), because it requires the reconstructions of
two k-by-k matrices. It is more efficient than simply using
O(k3) beaver multiplications to compute each cell. In the rest
of this paper, we use the extended Beavers idea when we refer
to the multiplication of two secret-shared matrices.

3.4 Robust Secret Sharing Reconstruction
The reconstruction of Shamir Secret sharing could achieve
robustness if robust polynomial interpolation is used. In this
work, we use the idea of [47] to provide robust share re-
construction when it is required. The robust reconstruction
requires n≥ 3t +1 in a synchronous setting. We briefly intro-
duce the construction below:

To reconstruct a secret robustly, the parties use the first
t +1 shares to reconstruct a polynomial φ, and use the rest t
points to confirm all points correspond to the same polyno-
mial. If any inconsistency occurs, the parties run the robust
Reed-Solomon decoding with 3t +1 shares as the inputs. (If
any share is missing, parties can use random values as the
share and it will be treated as wrong shares and automatically
corrected by the robust decoding algorithm). The procedure
is described in Algorithm 1.

Algorithm 1: Robust Shamir share reconstruction
Input :JSK = {Js1K, . . . ,JsnK}
Output :s

1 Interpolate a polynomial φ using any t +1 shares.
2 Use another t share to check if they are generated

using the same polynomial.
3 If it is true, output s = φ(0).
4 Else, run Reed-Solomon decoding with all the input

shares to reconstruct φ‘, and output s = φ‘(0).

The reason that the algorithm starts with a non-robust inter-
polation is that the non-robust interpolation is much cheaper

compared with the robust version. If the non-robust interpo-
lation succeeds, there is no need to run the expensive robust
version. With this design, if there are no malicious behaviors,
the performance of the robust share reconstruction is the same
as the non-robust version.

3.5 Notations
We summarize notations that appear in the rest of the paper
here. We denote JsK as a secret sharing of the secret field ele-
ment s. Besides, we use capital letters to represent matrices or
vectors (S and JSK). We denote Open(JsK) as the reconstruc-
tion of the secret share, and we use Mul(JxK, JyK) to represent
the Beaver Multiplication of two secret shares JxK and JyK
or two secret-shared matrices/vectors JXK and JY K. We use
Inner-prodcut-and reconstruct(JXK, JY K) to represent an al-
gorithm which computes the dot product of two input vectors
X and Y and reconstructs the results.

4 Using Permutation Matrices for Anonymous
Communication

4.1 Overview of the Variants
We present three variants of our protocol targeting different
MPC frameworks and applications. The first variant is de-
signed for MPC frameworks with an efficient secure inner
product protocol implemented [19, 34, 58] (i.e. each inner
product can be evaluated with a constant number of recon-
structions independent of the vector size). The second variant
gets rid of the secure inner product in the online phase, with
a cost of a little more expensive offline phase and one more
round in the online phase. Therefore, the second variant fits
better with MPC frameworks that do not support efficient se-
cure inner product evaluations. The third variant is designed
for a large number of inputs (e.g. k > 10000), as the offline
phases of the first two variants take a long time when k is large.
Besides, Variant 3 has cheaper online computation complex-
ity, which we find is the bottleneck of the protocols for large
k. As a trade-off, the third variant takes more online commu-
nication and rounds.

4.2 Collecting Client Messages
As the clients can be corrupted by a malicious adversary,
the messages they share to the servers may not be a valid
(n, t) secret sharing. To solve this problem, we use a similar
method used in [47]: servers can prepare a random share JrK
for each input client message m. During the input phase, all
servers send their shares of r to the client, such that the client
can reconstruct r, and broadcast m+ r to servers, each server
then compute their share of the message JmK = m+ r− JrK.
Since JrK is guaranteed to be a valid (n, t) secret sharing, the
share of the client input is guaranteed to be well-formed. The

5

computation and communication required by clients are both
O(n).

4.2.1 Supporting Messages with Large Size

Our protocols can be easily adapted to handle large messages.
If the message is too large to fit in one single field element,
clients can divide the large messages into pieces with the
same length and represent them using multiple field elements
(padding may be required for the last block). In the online
phase, the servers can use the same permutation matrix P to
permute all the message pieces, such that the same permuta-
tion is performed on all client messages.

4.3 Malicious Security
To achieve malicious security, our protocols should be built on
several malicious secure building blocks. More concretely, we
require a malicious-secure secret sharing scheme [2,40,47,50]
to guarantee the correctness of the secret sharing reconstruc-
tion. We also require malicious-secure share multiplication
to guarantee the correctness of matrix operations and vector
operations. A malicious secure inner product protocol [2,7] is
required in one of our variants. We follow a modular design
such that any building blocks achieving malicious security
can fit our protocols. Besides, our protocol can also benefit
from future building blocks with better efficiency in a plug-
and-play manner.

4.4 The First Variant
4.4.1 Offline Phase

The goal of the offline phase is to generate a random permuta-
tion matrix such that the adversary has no information about
the permutation. To achieve that, we ask t+1 servers to gener-
ate a random permutation matrix each, and secret-share them
to all parties. Then all parties multiply these shared matrices
together to get the final permutation matrix. Since there is at
least one matrix provided by the honest server, the adversary
has no knowledge about the final combined permutation. Note
that this step requires the multiplication of t +1 matrices, so
our offline phase is more suitable to the settings where the
number of servers is small. Besides, for small k, we can use
existing methods to efficiently evaluate the multiplication of
multiple matrices such as [46].

In the malicious setting, we also need to guarantee that
the matrices shared by servers are indeed the permutation
matrices. Therefore, the following two checks have to be
performed: (1) the elements of the matrix are either zero or
one. (2) The weight of each row and each column is exactly
one (i.e. Each row only has one position to be one, and all
other positions are zero.). To finish these checks, we can
use a linear sketch for the language of vectors of hamming
weight one [1,15,30]. To verify a vector w = (w1, . . . ,wk), the

sketch is represent by (∑k
i=1 wi · ri)

2−m(∑k
i=1 wir2

i) where ri
are public random values and m is the value in the single non-
zero entry (in our case m = 1). If the vector w has a hamming
weight greater than one, then the sketch outputs a non-zero
value with probability 1

|F | , where |F | is the size of the ring
or field. We can apply this sketch to each of the permutation
matrix and both properties can be properly verified. The cost
of this check is cheap since each sketch only includes one
secret sharing multiplication. The offline phase is summarized
in Algorithm 2.

Algorithm 2: The offline phase of Variant 1

1 for i← 1 to t +1 do
2 Server Pi generates a k-by-k permutation matrix Mi

and secret-share it to all servers
3 for i← 1 to k do
4 All servers perform sketch checks mentioned

in Section 4.4.1 on the i-th row and i-th
column of JMiK.

5 If any check fails, abort.

6 All Servers multiply and compute
JPK = JM1KJM2K . . .JMt+1K

7 Output JPK.

4.4.2 Online Phase

In the online phase, we can achieve permutation by simply
multiplying the permutation matrix M and the input vector X .
Considering X is a vector, this is essentially k dot products and
they can be computed in parallel. The protocol is summarized
in Algorithm 3.

There are existing works [7, 19, 58] showing how to do dot
product efficiently. As an example, we show how degree-2t
polynomial interpolation can be used to efficiently compute
and reconstruct the inner product of two secret shared vectors
X = {x1,x2, . . . ,xk} and Y = {y1,y2, . . . ,yk}:

In the online phase, parties locally compute JxiyiK2t = JxiKt ·
JyiKt for all i, then they compute and reconstruct the inner
product result Z = ∑

k
i=1 JxiyiK2t by reconstructing a degree-2t

polynomial.
If we use the protocol above to compute all the inner prod-

ucts in parallel, the round complexity of our online phase is
only one. The communication complexity is O(k) as there are
k reconstructions needed in total.

However, the inner product protocol introduced above has
some constraints, therefore not all MPC frameworks support it
naturally. For instance, this protocol only works with Shamir-
secret sharing (or similar error-correcting-code-based secret
sharing schemes), and does not work on schemes such as
additive secret sharing or replicated secret sharing. Besides, as
degree-2t polynomial reconstruction is required, the protocol

6

may need more portion of parties to be honest (e.g. n > 3t +
1). To mitigate this problem, we design another variant of
our protocol Variant 2, where the secure inner product is not
required in the online phase.

Algorithm 3: The online phase of Variant 1 (P[i] de-
notes the i-th row of the matrix P)

Input :JXK = {Jx1K, . . . ,JxkK}
Output :Y
Pre-computation :Permutation matrix JPK

1 Y = {}
2 for i← 1 to k do
3 Y[i] = Inner-product-and-reconstruct(JP[i]K, JXK)

4 Output Y .

4.5 The Second Variant
The design goal of this variant of our protocol is to get rid
of the inner product in the online phase. To achieve that,
we add an additional step in the offline phase such that the
inner product computation is shifted into the offline phase.
What’s left for the online phase is simply some secret share
reconstructions. The key observation of this protocol is an
equation PX = P(X +R)−PR, where P is the permutation
matrix, X is the input message vector, and R is a vector of
random shares. We leverage R as a mask vector such that we
can safely reconstruct X +R in the online phase, and PR can
be prepared in the offline phase as it is independent of the
input X . Finally, the permutation result PX can be written as
a linear combination of the secret shares above.

4.5.1 Offline Phase

The first part of the offline phase is still to generate a
shared permutation matrix, and the steps are the same as
Variant 1. After that, all parties collaboratively generate k
random shares JRK = {Jr1K, . . . ,JrkK}, then they compute
JY K = JPKJRK through k inner products. Note that a more
expensive inner product can be used here as it happens in
the offline phase, and an inner product protocol with O(k)
reconstructions per random r is perfectly fine because it will
not explode the complexity of the offline phase anyway, the
offline phase complexity is still bounded by the generation
of the permutation matrix. We can think of this approach as
shifting the inner product computation from the online phase
to the offline phase with the help of some randomness R. Fi-
nally, all parties take JPK, JRK, and JPRK as the output of the
offline phase. The protocol is summarized in Algorithm 4.
Online Phase. Given the input messages vector X =
{x1, . . . ,xk} and the offline phase output, all parties compute
and reconstruct X +R in the first round. Then they can locally
compute the share of the output as JPXK= JPK(X+R)−JPRK,

Algorithm 4: The offline phase of Variant 2

1 for i← 1 to t +1 do
2 Server Pi generates a k-by-k permutation matrix Mi

and secret-share it to all servers
3 for i← 1 to k do
4 All servers perform sketch checks mentioned

in Section 4.4.1 on the i-th row and i-th
column of JMiK.

5 If any check fails, abort.

6 All Servers multiply and compute
JPK = JM1KJM2K . . .JMt+1K

7 All servers generate k random shares
JRK = {Jr1K,Jr2K, . . . ,JrkK}.

8 All servers compute JPRK = Mul(JPK,JRK).
9 Output JPK, JPRK, JRK.

and reconstruct PX in the second round. As we mentioned,
the secure inner product is no longer needed in this variant,
and the cost is k more reconstructions and one more round.
The protocol is summarized in Algorithm 5.

Algorithm 5: The online phase of Variant 2

Input :JXK = {Jx1K, . . . ,JxkK}
Output :Y
Pre-computation :JPK,JRK,JPRK

1 JX +RK = JXK+ JRK
2 X +R = Open(JX +RK)
3 JY K = JPK · (X +R)− JPRK
4 Y = Open(JY K)

4.6 The Third Variant
The first two variants illustrate great performance when deal-
ing with a small volume of inputs. However, the offline phase
of the first two variants requires preparing k-by-k permutation
matrices, thus the size of the matrices increases quadratically
with k, and it becomes too huge to be used in practice for
large k.

To solve this problem, we propose our third variant that
performs much faster for larger k in both the online phase
and the offline phase. The idea is based on the permutation
network [3,36]. In [36], Hastad analyzed the efficiency of ran-
dom permutation using a square network. A square network
for k inputs consists of q layers, where each layer consists of√

k of permutation nodes. Each permutation node takes
√

k
inputs and randomly permutes them, then sends the outputs to
the next layers in a butterfly network fashion. We present an
example of a square network in Fig. 2. The study of Hastad
illustrates that this network can achieve a nearly random per-
mutation after only q ∈ O(1) iterations. (e.g. the result shows

7

that after q = 15 layers, the outputs are close to a random
permutation of inputs)

Figure 2: An illustrative example of a square network with
k = 9. The network consists of q = 4 layers, where each
layer has

√
k = 3 permutation nodes, represented by square

blocks. Each permutation node takes
√

k = 3 messages as
inputs, randomly permute and output them. In Variant 3, we
can initialize each permutation node using either Variant 1
or Variant 2. All permutation nodes in the same layer can be
executed in parallel.

Variant 3 implements a square network by realizing each
permutation node with either Variant 1 or Variant 2. This
significantly reduces the computation cost of the offline phase.
In Variant 1 and Variant 2, the offline phase has to prepare
a k-by-k permutation matrix. In Variant 3, the offline phase
generates q

√
k matrices of size

√
k-by-

√
k. Considering the

matrix multiplication is required in the offline phase, this
reduces the computation complexity of the offline phase from
O(k3) to O(q

√
k · t
√

k
3
) = O(k2). Besides, the computation

complexity of the online phase is also reduced by a factor of√
k because the vector size of each dot product is significantly

reduced.
As a trade-off, the online phase requires higher but still

constant rounds to finish. The parameter q is flexible and
can be changed based on the time available for the offline
phase and the anonymity strength. We pick q = 15 in our
experiments for a strong anonymity guarantee.

4.7 Cost Analysis and Comparisons with Re-
lated Works

For Variant 1, the offline phase requires t +1 servers to each
generate a k-by-k permutation matrix, and multiply them
together. This requires O(nk3) local computation, O(logn)
rounds and O(nk2) communication. The verification check
for the malicious security takes one round and O(k) commu-
nication. As for the online phase, since it is k dot products
in parallel, the overall communication is O(k) and the round
complexity is one.

For Variant 2, the offline phase cost is the sum of the first

variant offline phase cost and k dot product protocol. Consider
a dot product protocol where parties simply use beaver triples
to compute inner products, the communication complexity
for k dot product of length-k vectors is O(k2). Therefore, the
overall offline phase communication cost is O(nk2 + k2) =
O(nk2). The online phase only consists of two rounds, where
each round reconstructs k secrets.

For Variant 3, the offline phase requires O(nk2) local com-
putation, O(logn) rounds and O(nk1.5) communication. We
then explain why the online phase is also the most efficient
for large k: Our benchmark illustrates that the online phase is
heavily bottlenecked by the local computation when k is large,
which takes more than 95% of the overall running time. For
the first two variants, the computation complexity is O(k2)
because both variants require k dot products between size-k
vectors. For Variant 3, each layer includes

√
k permutation

nodes, with each node doing
√

k dot products between size-√
k vectors. Since we have a constant number of layers, the

overall computation complexity is O(k1.5). Therefore, Vari-
ant 3 achieves the best performance on the main bottleneck
when k is large. We highlight that when k is small, the first
two variants could be better choices since the online phase
is bottlenecked by the communication and rounds in those
cases.

We summarize the theoretical online complexity of our
work and related works in Table 1, the comparison shows that
our protocol achieves the best server-server performance in
the online phase, meanwhile keeping the client-server cost
minimum. As for the offline phase cost, we do not provide a
similar table as some protocols are unclear about their offline
phase costs. Here we just compare the offline phase cost
between our protocols and the PowerMix [47], which has
the closest online phase communication and rounds. The
communication cost of Powermix offline phase is O(k2) and
the round complexity is O(logk). Meanwhile, our first two
variants have offline communication cost O(nk2) in O(logn)
rounds. Variant 3 has the cheapest offline phase computation
cost by a factor of O(

√
k). We can observe the trade-off here:

we achieve a better online performance than Powermix by
pushing more computations to the offline phase. What’s more,
when the number of servers n is small such that it can be
treated as a small constant, the offline cost of our protocol is
in the same order of magnitude as PowerMix. In real-world
applications (especially in MPC-as-a-service settings), a small
number of servers are usually preferred considering the cost
of setting up these expensive high-end machines.

4.8 Security Analysis

In what follows, we informally define the security properties
we expect from our protocols:

Correctness: At the end of a successful run our our proto-
col, all servers output a set of plaintext messages, which is a
random permutation of all the input client messages.

8

Table 1: Comparison of the Online Phase Performance For Recent Anonymous Communication Protocols (n is the number of
servers, where t of them can be corrupted. k is the number of client messages. q is the depth of the square network, which is a
small constant. The server-server communication is measured by the number of secret sharing reconstructions required. The
client-server communication is measured by the number of messages sent by a client to a single server.)

Client-server
communication

Client Com-
putation

Server-server
Communication

Server Com-
putation

Server
Rounds

Resilience Robustness
Capability

McMix [3] O(1) O(1) O(αk logk)∗ O(αk logk)∗ O(logk) n = 3, t = 1 ✗

Switching
Network [47]

O(1) O(n) O(k log2 k) O(k log2 k) log2 k n≥ 3t +1 ✓

PowerMix [47] O(1) O(n) O(k) O(k3) 2 n≥ 3t +1 ✓

Blinder [1] O(
√

k) O(n ·
√

k) O(k) O(k2) O(1) n≥ 4t +1 ✓

Clarion [29] O(1) O(n) O(k) O(k) O(n) n > t ✗

Variant 1 O(1) O(n) k O(k2) 1 n≥ 2t +1∗ ✓

Variant 2 O(1) O(n) 2k O(k2) 2 n≥ 2t +1∗ ✓

Variant 3 O(1) O(n) O(k) O(k1.5) q n≥ 2t +1∗ ✓

* n ≥ 2t + 1 is the default model setting for our malicious secure protocols (especially for Variant 1). Variant 2 can support
n > t if built in dishonest-majority MPC frameworks. Meanwhile, more restriction might be needed to support more security
properties (e.g., n≥ 3t +1 for robustness).
* In McMix [3], α refers to the number of reconstructions needed for a single secure comparison protocol. McMix requires
O(k logk) secure comparisons evaluated in O(logk) rounds.

Sender Anonymity: The ability of the adversary to figure
out which client has sent a specific output message is no
better than random guessing, even if all but two clients and
any minority of servers are compromised.

The correctness of the protocol is trivial from the use of the
permutation matrix. As long as the permutation matrix P is
valid, the computation result is guaranteed to be a permutation
of input vectors. The validity of the permutation matrix is
verified in our offline phase through linear sketch checks in
malicious setting.

For sender anonymity, we can prove that the transcript of
the adversary only includes unrelated random values, there-
fore it cannot differentiate any input messages.

We provide the general idea here and put the complete
proof to Appendix A. The intuition is that the transcript of
our protocol includes the offline data, the reconstructed X +R
in Variant 2, and the final output. The offline data are all in the
form of secret shares, and they are independent of the client
inputs, thus the adversary has no information about either the
plaintext offline data or the client inputs. The reconstructed
X +R is also random because R contains elements picked uni-
formly random from the field. What’s more, the randomness
of offline phase and the randomness of X +R are independent
of each other. To conclude, the transcript of our online proto-
col only contains unrelated random elements, therefore they
are indistinguishable among one another.

For Variant 3, the protocol only invokes our first two vari-
ants multiple times, and the values outside of permutation
nodes are all secret-shared. Therefore, the privacy of the third
variant is reduced to the privacy of the first two variants.

We then discuss the security against a malicious adversary.
In the offline phase, the adversary can submit an arbitrary ma-
trix as permutation matrices, however, this will be captured
by the sketch check. The adversary has no information about
the combined permutation matrix because at least one random
permutation is provided by an honest party. Therefore, the
adversary cannot alter the protocols in the offline phase with-
out being captured. In the online phase, our protocol simply
invokes malicious secure building blocks, thus the security
is reduced to the security of those building blocks. In Vari-
ant 1, the online phase only includes k malicious-secure inner
product. In Variant 2, the online phase includes 2k malicious-
secure share reconstruction.

5 Applications of RPM

We so far focused on using RPM to achieve anonymous
broadcast. Below we show some higher-level applications
with RPM as building blocks.

5.1 Two Way Communication
First, we show how to extend our protocols to support two-
way communication, which allows the receivers to reply to the
sender’s messages anonymously. We notice that this feature
is similar to anonymous messaging [1, 3, 29], where senders
and receivers conduct private conversations such that the ad-
versary has no information about their identities.

Two-way communication is split into two parts: In the first
part, the sender sends its message anonymously. In the second

9

part, the receiver recognizes the message from the sender and
sends the reply message back to the sender. We can achieve
the first part using any variant of our protocols, such that the
output messages Y = π(X) is a random permutation π of the
input messages X . To help the receivers recognize the mes-
sages, senders and receivers agree on some tags offline, such
that these tags can be prefixed to the sender messages, and the
receivers can recognize the messages through the tags. As for
the second part, the key observation is that the permutation we
perform in the first part can be reversed through the inverse
permutation π−1, which is available by computing the inverse
of the permutation matrix. Therefore, the receivers can put
their reply messages in the same position as the sender mes-
sage, then the servers do a second round of mixing protocols
using the inverse of the permutation matrix π. Instead of recon-
structing the permutation outputs publicly, the servers send
their shares to the designated senders such that the senders
can reconstruct the reply messages privately. In this way, the
adversary has no information about the output of the second
round of mixing, therefore cannot build any link between the
sender messages and the reply messages. As for the computa-
tion of the inverse of a permutation matrix, we notice that it
can be achieved by simply computing the transpose because
it is an orthogonal matrix. The computation of the transpose
is just a relocation of matrix elements and therefore is a lo-
cal computation. An example of two-way communication is
shown in Figure 3.

If the application also requires hiding the content of the
sender messages, some extra steps should be deployed on
the sender side (e.g., senders can encrypt their messages ex-
cept the tags using symmetric key encryption, share the key
with the receiver offline, then send the encrypted messages to
our protocols). In this case, our protocol achieves the same
functionality as anonymous messaging [1, 3].

Since the design is simply two runs of our secure mixing
protocols, it is secure against malicious servers naturally. As
for the malicious clients, the worst case is that he/she can reply
to a message not belonging to him/her. To avoid it, we require
the sender and the receiver also agree on some randomness
offline (e.g., a common string), such that the sender could hash
the randomness, and put the hash of the randomness as the
tag. The servers allow a receiver to reply to the message only
if he/she can provide the common randomness that matches
the hash value.

We observe that our protocol leaks the number of messages
that receive replies. However, this information is not required
to be hidden in most applications.

5.2 Secure Sorting

The secure sorting takes private inputs from k clients, and
outputs the sorted inputs without revealing their ownership.
There are in general two types of sorting algorithms. The
first kind is data-dependent sorting, where the input decides

the execution path of the algorithm. A good example is the
quicksort, where the choice of pivot decides the number of
recursions. Therefore, the execution path (e.g. execution time)
leaks information about the input, and most existing works
choose to implement the second type of sorting algorithm so-
called oblivious sorting [9,10,51]. However, to the best of our
knowledge, the most practical oblivious sorting is achieved
by sorting networks [10] with O(k log2 k) communication in
O(log2 k) rounds.

Recently, Hamada et, al [35] propose to use data-dependent
algorithms in an oblivious fashion to solve the sorting prob-
lem. The idea is that parties can perform secure random shuf-
fle to the input, reconstruct the inputs, then compute data-
dependent algorithms locally with reconstructed input. With
this idea, the secure sorting problem is reduced to secure
random shuffle, which can be achieved through our random
permutation protocol. By applying our protocol there, secure
sorting can be achieved by only O(k) communication in one
or two rounds.

Secure sorting itself is a vital build block of various high-
level applications such as secure auctions [5, 13], combina-
torial graph problems [6], and network flow problems [4].
Therefore, our protocols can be beneficial to much more ap-
plications than just anonymous communication.

6 Implementation and Evaluation

6.1 Implementation
There are currently many MPC libraries [34, 39, 47, 58] avail-
able with different trade-offs. Among them, we choose to use
MP-SPDZ [39] to implement all three variants of our proto-
cols, because MP-SPDZ is a collection of multiple MPC back-
ends, and it allows us to pick proper back-ends for different
variants to get the best performances. Besides, it helps us to
illustrate that our protocols can suit almost all the MPC back-
end because of the fact that only the basic building blocks are
needed. The code is for now available in an anonymous link2,
and will be open-sourced in the full version of this paper.

As Variant 1 requires a fast malicious secure dot product
protocol, the number of the back-ends satisfying the require-
ments is limited. Among them, we find the SY-SPDZ back-
end to be the one with the best performance, thus choosing
it for the benchmark. For Variant 2, the back-end we use is
malicious-shamir-party of MP-SPDZ, as an efficient inner
product is not required. For Variant 3, we built up each per-
mutation node using Variant 2, thus using the same back-end.
In general, we are interested to answer how fast our online
protocol can be, as the protocols target real-time applications
where the latency is the most significant. Therefore, in the
experiments we mainly report the online running time and the
online communication time. To simulate the real-world use

2the anonymous link: https://anonymous.4open.science/r/MP-SPDZ-
811B/

10

RPM
with permutation matrix M

message 1tag1

message 2tag2

message 5tag5

message 3tag3

message 4tag4

messagetag3

messagetag5

message tag2

message tag1

message tag4

First Epoch Second Epoch

RPM

with permutation matrix M-1

messagetag3

messagetag5

message tag2

message tag1

message tag4

messagetag3

messagetag5

message tag2

message tag1

message tag4

(1) Sender 1's message is prefixed with tag 1, and the message
becomes the third message after the permutation.

(2) Receiver 1 realize the third message comes from sender 1 by checking

tags, thus put the reply message as the third input message of the second

round of RandP, which inverse the permutation of the first epoch

(3) Servers will send shares of the first output of RPM to sender 1, such that

sender 1 can reconstruct the reply message from receiver 1.

Figure 3: An example of two-way communication. The example includes five participating clients, and we mark the protocol
flow for the first sender (denoted as sender 1) in red. Sender 1 and the corresponding receiver agree with a tag (tag1 in the figure)
before the protocol.

cases, we run the experiment using Amazon AWS. Besides,
we also conduct experiments to measure the cost of the offline
phase to confirm it is practical.

The code is written in MP-SPDZ customized language.
Variant 1 directly invokes the inner product protocols k times
in parallel, then the results are reconstructed in the second
round. Note that in our original protocol, the inner product and
the reconstruction could be compressed into one single round,
however, our implementation requires two rounds to fit the
framework more easily. Variant 2 invokes the reconstruction
protocols in two rounds, where each round reconstructs k
secret shares. We notice that because of the limitation of the
framework, it actually takes more than 2 rounds to finish the
reconstruction when k is large. Besides, multi-threading is
used with up to 32 threads when applicable to speed up the
local computation.

6.2 Online Phase Evaluation
We run the benchmark on AWS EC2 clusters in a three-
party malicious-secure setting. The AWS instance we use
is c5.9xlarge with 32 cores and 72GB RAM. All three ma-
chines are in the same region (US.East).
Variant 1. First, we present the benchmark result of Vari-
ant 1. The result is available in Table 2. It shows that our
protocol can mix k = 10000 messages in around 1.5 seconds
and 1.483MB communication. The communication cost in-
creases linearly with the number of clients, which is consis-
tent with our theoretical complexity. We are also interested in
the bottleneck of this protocol, so we also implemented the
non-multi-threading version of the protocol, its benchmark
shows the local computation dominates over 95% of the over-
all running time. Therefore, the multi-threading significantly
improves the performance of our protocols as we confirm
local computation is the bottleneck especially when k is large.
Variant 2. The benchmark numbers of Variant 2 is available

Table 2: Performance of the online phase of Variant 1 in three
party setting. (k refers to the number of clients. We assume
each client sends a 16 byte field element as the message in
each execution. Communication is measured by total MB sent
per party)

k Online Time (s) Online Communication(MB)
1000 0.05 0.961
3000 0.132 1.077
5000 0.360 1.193
7000 0.689 1.309
10000 1.485 1.483

in Table 3. Interestingly, the performance of Variant 2 is better
than Variant 1, although theoretically Variant 1 should per-
form better. We think the reason is that the MPC back-end of
Variant 2 is faster than Variant 1, although it does not support
fast inner product. As a result, we also use Variant 2 as the
building blocks to conduct the benchmark of Variant 3.

Table 3: Performance of the online phase of Variant 2 in three
party setting. (k refers to the number of clients. message size
is 16 bytes. Communication is measured by total MB sent by
all parties)

k Online Time (s) Online Communication(MB)
1000 0.02 0.193
3000 0.066 0.577
5000 0.155 0.960
7000 0.288 1.345
10000 0.580 1.921

Variant 3. For Variant 3, we implement the square network
with q = 15 layers and each permutation node is initialized by
Variant 2. The benchmark is available in Table 4. The result
shows that we can permute k = 90000 messages in around 12

11

seconds with 46MB communication.

Table 4: Performance of the online phase of Variant 3 in three
party setting. (k refers to the number of clients. We assume
each client sends a 16 byte field element as the message in
each execution. Communication is measured by total MB sent
per party)

k Online Time (s) Online Communication(MB)
10000 0.56 5.12
40000 3.97 20.48
90000 12.68 46.08
160000 27.69 87.92

Performance with More Servers. We take Variant 3 as an
example and run it with k = 10000 for a different number of
servers. The results are available in Table 5. We only see a
slight increase in online running time when increasing the
number of servers. The reason is that our protocols are mostly
bottlenecked by the local computation (the local inner product
computation), which is independent of the number of servers.

Table 5: Online Performance of Variant 3 with more servers
(k = 10000 for all experiments, the hardware settings are the
same as the experiments above.)

n Online Time (s) Online Communication(MB)
3 0.56 5.12
5 0.58 10.2
7 0.64 15.3

Performace of Two-way Communication. We test the per-
formance of the two-way communication in the same hard-
ware setting. As the goal of the benchmark is to measure the
overhead of our protocols, we assume the receivers imme-
diately reply to the sender messages as soon as the sender
messages are reconstructed. In general, the performance is
almost the same as running Variant 3 twice. The reason is
that computing the inverse of a permutation matrix is the same
as computing its transpose, which is just a re-indexing and
takes no time. And the rest of the protocol is simply running
Variant 3 twice. The result is available in Appendix.

6.3 Offline Phase Benchmark

To illustrate the offline phase are practical, we run the offline
phases of all three variants and record their performance in
this section. For the first two variants, the offline phase is
bottleneck by an k-by-k matrix operation. The result shows
that we can run the offline phase of Variant 1 for k = 1000 in
3.9 seconds with 32MB communication. With the increase
of k, the offline time increases significantly, therefore we rec-
ommend the users to use Variant 3 for large k. The offline

phase of Variant 2 has almost the same time and communi-
cation cost because they are both computational-bounded by
the generation of the permutation matrix.

Table 6: Performance of the offline phase of Variant 1 in three
party setting. (k refers to the number of clients. Communica-
tion is measured by total MB sent per party)

k Offline Time (s) Online Communication(MB)
1000 3.99 32
3000 120 288
5000 598 800
7000 1804 1568
10000 5731 3200

For Variant 3, the offline phase is responsible to do q
√

k
matrix multiplications, with matrix size

√
k-by-

√
k. We use

multi-threading to perform multiple matrix multiplications
simultaneously, but each matrix multiplication itself is not
optimized by parallelism. we record the offline phase per-
formance in Table 7. The benchmark shows that the offline
phase of k = 90000 only takes about 7 minutes. As for the
bottleneck, we observe that at least for k up to 90000, the
communication and the computation both take a significant
portion of the time so they are both the bottleneck. We note
that the communication cost of this offline phase is large
compared with the first two variants.

Table 7: Offline phase benchmark for Variant 3. (k is the
number of clients, communication is measured by total MB
sent per server)

k Offline Time (s) Offline Communication(MB)
10000 5.741 480
40000 89.08 3840
90000 448.82 12960

6.4 Towards Robustness
Our proposed protocols can support more security properties
if built in proper MPC building blocks. As an illustrative
example, we show how to achieve a robust online phase for
our protocols in a synchronous setting.

Protocol Consturction. As mentioned in Section 4, the online
phase of Variant 2 and Variant 3 only requires secure secret
sharing reconstruction as the MPC building block. Therefore,
we follow the ideas of [47] and construct a robust Shamir
secret-sharing reconstruction using Reed-Solomon decod-
ing [32]. We require n≥ 3t +1 to guarantee that a sufficient
number of shares are available as the input of the robust de-
coding algorithm. Any wrong shares sent by the malicious
parties will be corrected by the robust decoding. In a syn-
chronous setting, if malicious parties refuse to send shares,

12

they will be caught by the honest online parties, and honest
online parties can use arbitrary shares as malicious parties’
shares, and treat them as the "wrong shares".

We implement this idea using MP-SPDZ with the
"malicious-shamir-party" back-end. The original back-end
achieves secure-with-abort sharing reconstruction in a n ≥
2t +1 setting. The party will use the first t +1 shares to re-
construct a polynomial and use the rest t points to confirm
all points correspond to the same polynomial. If any inconsis-
tency occurs, the protocol will abort. To achieve robustness,
we change the model to be n ≥ 3t + 1 and replace its share
reconstruction with a robust one. The Reed-Solomon decod-
ing algorithm we choose is from [32]. With this design, the
share reconstruction will have the same performance as the
non-robust version if there are no malicious behaviors. In
most scenarios, the probability that the malicious behaviors
happen is low, therefore this design is beneficial to the overall
performance.
Evaluation of the Robust Variant 3. We test the performance
of the robust versions of our protocols in the AWS cluster,
the hardware and network setting are the same as in the rest
of the experiments. The only difference is that we use n =
4, t = 1 to fulfill the requirement of robust MPC. In best cases,
the performance is the same as the non-robust version. To
illustrate the worst case, we conduct an experiment where we
trigger the malicious behaviors in every share reconstruction
by forcing one party to send 0 all the time as its shares. We
build up the robust implementation of Variant 3 by using
Variant 2 as the building block, and the benchmark result
is available in Table 8. In worst cases, the performance is
approximately 2× more than the non-robust version.

Table 8: Online phase performance of the robust Variant 3
in (n = 4, t = 1) setting. For data in this table, We trigger
the malicious behavior by always forcing one party to send
wrong shares to simulate the worst case.

k Online Time (s)
10000 1.75
40000 8.62
90000 24.05

160000 48.14

6.5 Performance Comparison
We present a comparison to PowerMix [47] and Blinder [1]
as they share the closest theoretical complexity with ours.

Compared with our work, PowerMix shares the same online
communication complexity and online rounds. Besides, the
client computation cost and communication cost are exactly
the same between the two protocols. In Powermix, it takes
around 140 seconds to mix k = 1000 messages, while our
protocol (Variant 2) takes around 0.02 seconds. The main rea-
son that we outperform Powermix is the online computation

complexity (O(k3) vs O(k2)), and we also confirm the online
computation is the main bottleneck of the whole protocol.

For Blinder, our protocol and the Blinder protocol share the
same online communication complexity and online rounds.
The first two variants of our protocol share the same on-
line computation complexity with blinder, while Variant 3
has a better online computation complexity by a factor of
O(
√

k). Blinder’s benchmark is based on five MPC parties
as they require N ≥ 4t +1, and the closest test case we can
find is k = 100000, with message size being 160B. Our case
is k = 100000 and the message size is 16B, ten times smaller
than Blinder’s test case. Blinder’s non-robust test case takes
around 8 minutes to finish in their CPU version and around
40 seconds in GPU version. Our protocol only implements
CPU version and it takes around 14 seconds to finish. As men-
tioned earlier, we can support larger messages by re-running
the protocol for all message pieces using the same permuta-
tion matrices, so we can simply multiply our performance
numbers with 10 for a fair comparison. With the 10× factor
incorporated, we outperform the blinder CPU version proto-
col by around 3.5×, and their GPU version is better than ours.
We expect a similar performance gain if our protocol can be
implemented in GPU version as most of the local computation
can be done in parallel. We will take it as one of the future
works. The comparison above is based on the non-robust ver-
sions of both works. If we take the robustness into the picture,
our protocols outperform blinder by a factor of 1.7× to 3.5×,
depending on the frequency of malicious behaviors.

What’s more, the main difference between our protocol and
blinder protocol is the client cost, the computation and com-
munication cost of our protocol is O(1) while the blinder’s
client cost is O(

√
k). Therefore, when k = 100000, the client

cost of our protocol is 316x cheaper than blinder in terms
of both the communication cost and the computation cost.
This performance difference makes our protocols preferred
choices for clients with limited hardware resources.

For Clarion [29], we realize that it outperforms our proto-
cols when it comes to a large volume of inputs (e.g. k ≥ 105).
However, Clarion cannot support security properties like ro-
bustness. Therefore both works have their own advantages
and use cases.

7 Conclusion

In this work, we build up protocols for efficient random per-
mutation, and use them to achieve anonymous communication
by randomly permuting the messages. We perform three vari-
ants of our protocols, each targeting different MPC framework
and real-world applications. The benchmark illustrates that
our protocols are efficient on both the online phase and the
offline phase, besides, the client cost of our protocol is the
lowest among all existing works, which make our protocols
friendly to clients with limited networks and computation
power. Finally, as we employ MPC in a generic fashion, our

13

performance will improve further as better MPC protocols
and libraries get developed in the near future.

References

[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai.
Blinder–scalable, robust anonymous committed broad-
cast. In Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1233–1252, 2020.

[2] Mark Abspoel, Anders Dalskov, Daniel Escudero, and
Ariel Nof. An efficient passive-to-active compiler for
honest-majority mpc over rings. In International Con-
ference on Applied Cryptography and Network Security,
pages 122–152. Springer, 2021.

[3] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste,
and Thomas Zacharias. MCMix: Anonymous messag-
ing via secure multiparty computation. In 26th USENIX
Security Symposium (USENIX Security 17), pages 1217–
1234, Vancouver, BC, August 2017. USENIX Associa-
tion.

[4] Abdelrahaman Aly. Network flow problems with secure
multiparty computation. PhD thesis, Catholic University
of Louvain, Louvain-la-Neuve, Belgium, 2015.

[5] Abdelrahaman Aly and Sara Cleemput. An improved
protocol for securely solving the shortest path problem
and its application to combinatorial auctions. Cryptol-
ogy ePrint Archive, 2017.

[6] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet,
Olivier Pereira, and Mathieu Van Vyve. Securely solv-
ing simple combinatorial graph problems. In Interna-
tional Conference on Financial Cryptography and Data
Security, pages 239–257. Springer, 2013.

[7] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lin-
dell. An end-to-end system for large scale p2p mpc-as-
a-service and low-bandwidth mpc for weak participants.
In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 695–
712, 2018.

[8] Ludovic Barman, Mahdi Zamani, Italo Dacosta, Joan
Feigenbaum, Bryan Ford, Jean-Pierre Hubaux, and
David Wolinsky. Prifi: a low-latency and tracking-
resistant protocol for local-area anonymous communica-
tion. In Proceedings of the 2016 ACM on Workshop on
Privacy in the Electronic Society, pages 181–184, 2016.

[9] Kenneth E Batcher. Sorting networks and their appli-
cations. In Proceedings of the April 30–May 2, 1968,
spring joint computer conference, pages 307–314, 1968.

[10] Kenneth E Batcher. Sorting networks and their appli-
cations. In Proceedings of the April 30–May 2, 1968,
spring joint computer conference, pages 307–314, 1968.

[11] K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and
D. C. Sicker. Low-resource routing attacks against tor.
pages 11–20, 2007.

[12] Donald Beaver. Efficient multiparty protocols using
circuit randomization. pages 420–432, 1992.

[13] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård,
Martin Geisler, Thomas Jakobsen, Mikkel Krøigaard,
Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, et al. Secure multiparty computation goes
live. In International Conference on Financial Cryp-
tography and Data Security, pages 325–343. Springer,
2009.

[14] Jurjen Bos and Bert den Boer. Detection of disrupters
in the dc protocol. In Jean-Jacques Quisquater and Joos
Vandewalle, editors, Advances in Cryptology — EURO-
CRYPT ’89, pages 320–327, 1990.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function se-
cret sharing: Improvements and extensions. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1292–1303, 2016.

[16] David Chaum. The dining cryptographers problem: Un-
conditional sender and recipient untraceability. Journal
of cryptology, 1(1):65–75, 1988.

[17] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate,
Anna Krasnova, Joeri de Ruiter, and Alan T. Sherman.
cmix: Mixing with minimal real-time asymmetric cryp-
tographic operations. In ACNS, 2017.

[18] David L Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of
the ACM, 24(2):84–90, 1981.

[19] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi,
Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast large-
scale honest-majority mpc for malicious adversaries. In
Annual International Cryptology Conference, pages 34–
64. Springer, 2018.

[20] Michele Ciampi, Muhammad Ishaq, Malik Magdon-
Ismail, Rafail Ostrovsky, and Vassilis Zikas. Fairmm:
A fast and frontrunning-resistant crypto market-maker.
Cryptology ePrint Archive, 2021.

[21] Henry Corrigan-Gibbs, Dan Boneh, and David Mazieres.
Riposte: An anonymous messaging system handling
millions of users. 2015 IEEE Symposium on Security
and Privacy, May 2015.

14

[22] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized
exchanges. arXiv preprint arXiv:1904.05234, 2019.

[23] Ivan Damgård, Marcel Keller, Enrique Larraia, Vale-
rio Pastro, Peter Scholl, and Nigel P Smart. Practical
covertly secure mpc for dishonest majority–or: breaking
the spdz limits. In European Symposium on Research in
Computer Security, pages 1–18. Springer, 2013.

[24] G. Danezis, R. Dingledine, and N. Mathewson. Mixmin-
ion: design of a type iii anonymous remailer protocol. In
2003 Symposium on Security and Privacy, 2003., pages
2–15, 2003.

[25] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latency-choose
two. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 108–126. IEEE, 2018.

[26] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Comprehensive anonymity
trilemma: User coordination is not enough. Proceed-
ings on Privacy Enhancing Technologies, 2020:356–
383, 2020.

[27] R. Dingledine and N. Mathewson. Tor Protocol Specifi-
cation. https://gitweb.torproject.org/torspec.
git?a=blob_plain;hb=HEAD;f=tor-spec.txt. Ac-
cessed Feb 2022.

[28] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceed-
ings of the 13th USENIX Security Symposium, page 21,
2004.

[29] Saba Eskandarian and Dan Boneh. Clarion: Anony-
mous communication from multiparty shuffling proto-
cols. Cryptology ePrint Archive, 2021.

[30] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Za-
haria, and Dan Boneh. Express: Lowering the cost of
metadata-hiding communication with cryptographic pri-
vacy. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1775–1792, 2021.

[31] N. S. Evans, R. Dingledine, and C. Grothoff. A Practical
Congestion Attack on Tor Using Long Paths. pages 33–
50, 2009.

[32] Shuhong Gao. A new algorithm for decoding reed-
solomon codes. In Communications, information and
network security, pages 55–68. Springer, 2003.

[33] Philippe Golle and Ari Juels. Dining cryptographers
revisited. In Proc. of Eurocrypt 2004, 2004.

[34] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni
Polychroniadou, and Yifan Song. Atlas: efficient and
scalable mpc in the honest majority setting. In Annual
International Cryptology Conference, pages 244–274.
Springer, 2021.

[35] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida,
and Katsumi Takahashi. Practically efficient multi-
party sorting protocols from comparison sort algo-
rithms. In Taekyoung Kwon, Mun-Kyu Lee, and Dae-
sung Kwon, editors, Information Security and Cryptol-
ogy – ICISC 2012, pages 202–216, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[36] Johan Håstad. The square lattice shuffle. Random
Structures and Algorithms, 29(4):466–474, 2006.

[37] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Clau-
dio Orlandi, and Anat Paskin-Cherniavsky. On the
power of correlated randomness in secure computation.
In Theory of Cryptography Conference, pages 600–620.
Springer, 2013.

[38] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr,
and Paul Syverson. Users get routed: Traffic correlation
on tor by realistic adversaries. In Proc. ACM SIGSAC
conference on Computer & communications security
2013, pages 337–348, 2013.

[39] Marcel Keller. Mp-spdz: A versatile framework for
multi-party computation. In Proceedings of the 2020
ACM SIGSAC conference on computer and communica-
tions security, pages 1575–1590, 2020.

[40] Marcel Keller, Emmanuela Orsini, and Peter Scholl.
Mascot: Faster malicious arithmetic secure computa-
tion with oblivious transfer. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[41] Anna Krasnova, Moritz Neikes, and Peter Schwabe.
Footprint scheduling for dining-cryptographer networks.
In Jens Grossklags and Bart Preneel, editors, FC, pages
385–402, 2016.

[42] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas,
and Bryan Ford. Atom: Horizontally scaling strong
anonymity. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 406–422, 2017.

[43] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI

15

https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt

2018, Carlsbad, CA, USA, October 8-10, 2018, pages
711–725, 2018.

[44] Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A Scalable,
Traffic Analysis Resistant Anonymity Network for VoIP
Systems. In Proc. ACM SIGCOMM 2015, pages 639–
652, 2015.

[45] Stevens Le Blond, David Choffnes, Wenxuan Zhou,
Peter Druschel, Hitesh Ballani, and Paul Francis. To-
wards Efficient Traffic-analysis Resistant Anonymity
Networks. In Proc. ACM SIGCOMM 2013, pages 303–
314, 2013.

[46] Donghang Lu, Albert Yu, Aniket Kate, and Hemanta
Maji. Polymath: Low-latency mpc via secure poly-
nomial evaluations and its applications. Proceedings
on Privacy Enhancing Technologies, 2022(1):396–416,
2022.

[47] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha,
Rahul Govind, Aniket Kate, and Andrew Miller. Hon-
eybadgermpc and asynchromix: Practical asynchronous
mpc and its application to anonymous communication.
In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 887–
903, 2019.

[48] P. Mohassel and Y. Zhang. SecureML: a system for
scalable privacy-preserving machine learning. In 2017
IEEE Symposium on Security and Privacy (SP), pages
19–38, 2017.

[49] Zachary Newman, Sacha Servan-Schreiber, and Srinivas
Devadas. Spectrum: High-bandwidth anonymous broad-
cast. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 229–248,
Renton, WA, April 2022. USENIX Association.

[50] Tal Rabin and Michael Ben-Or. Verifiable secret shar-
ing and multiparty protocols with honest majority. In
Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 73–85, 1989.

[51] Donald L. Shell. A high-speed sorting procedure. Com-
munications of the ACM, 2(7):30–32, 1959.

[52] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 423–440, 2017.

[53] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles,
pages 137–152, 2015.

[54] Luis von Ahn, Andrew Bortz, and Nicholas J. Hopper.
K-anonymous message transmission. In Proceedings of
the 10th ACM SIGSAC CCS, page 122–130, 2003.

[55] Michael Waidner. Unconditional sender and recipient
untraceability in spite of active attacks. In Advances in
Cryptology — EUROCRYPT ’89, pages 302–319, 1990.

[56] Michael Waidner and Birgit Pfitzmann. The dining cryp-
tographers in the disco: Unconditional sender and recip-
ient untraceability with computationally secure service-
ability. In Advances in Cryptology — EUROCRYPT ’89,
pages 690–690, 1990.

[57] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 179–182, 2012.

[58] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco:
a general-purpose compiler for private distributed com-
putation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 813–826, 2013.

A Security Proofs

We first provide the ideal functionality that our protocols
achieve, then we present a simulator-based proof to prove the
security. The multiparty random permutation ideal function-
ality is inspired by Clarion [29] and we modify it to fit our
protocols better. As we model the robustness as an optional
security property, the robustness is not included in the ideal
functionality.

Definition 1 (Ideal Functionality of Secure Random Permu-
tation). The ideal functionality of secure random permuta-
tion F interact with n servers P1,P2, . . . ,Pn and k′ clients
C1,C2, . . . ,Ck′ (k ≤ k′, where k is the number of messages
mixed in each run). We assume the existence of an adversary
that can control at most k−2 clients and t < n

2 servers. Any
server controlled by the adversary could send an abort to F
at any time, which leads to a protocol abort.

F initiates an empty array T and waits for messages from
clients. Any message received will be added to T. After collect-
ing k inputs M = {m1,m2, . . . ,mk}, F secret share the vector
M with (n, t) secret sharing, and send the shares to all the
servers, therefore the adversary will have t shares for each
input message. Next, F runs the permutation step as follows:
F samples a random permutation π and compute M′ = π(M).
Then F sends M′ together with the secret sharing of M′ to the
adversary, the adversary could respond with either finish or
abort. If the response is finish, F sends M′ to all the servers
and outputs M′. If the response is abort, the protocol aborts.

16

Theorem 1. Assuming the existence of a malicious secure
MPC framework, especially, let Open be the malicious secure
secret sharing reconstruction, let DotProduct be the malicious
secure inner product, RPM realizes the ideal functionality F
defined in Definition 1.

Proof. We build up a simulator S to simulate the view of the
adversary. Without loss of generality, we assume the worst
case where the adversary controls all but two honest clients,
and t servers P1,P2, · · · ,Pt .

The first step of the ideal functionality is to collect input
messages from clients in the form of secret sharing. There
are k input messages in total. For each message, the adversary
has access to t shares as it controls t malicious servers. To
simulate the view of the adversary, for each input message in
M, the simulator S can generate t random values as t shares.
This is identical to the adversary’s view because any t shares
leak no information about the secret message.

Next, F perform the random permutation to the input mes-
sage vector M. Here the view of the adversary includes the
intermediate communications when F executes the shuffling,
and we show how to simulate them with S below:

In Variant 1, the mixing steps only include doing k secure
inner products. Therefore, the malicious security of our pro-
tocol is reduced to the security of DotProduct. In Variant 2,
the mixing steps require the reconstruction of JM+RK. As R
is random, M+R is also uniformly random. Therefore S can
directly generate k random values and send them to all the
servers as the simulation of M +R. The malicious security
of the reconstruction step depends on the malicious secure
building block Open. For Variant 3, the mixing step is a com-
bination of multiple instances of Variant 1 or Variant 2. The
output of a permutation node is directly taken as the input of
the permutation nodes in the next layer, no more information
is leaked outside of permutation nodes. Therefore S can simu-
late the view of the adversary using the strategy the methods
above.

Finally, the parties reconstruct the output messages M′

through secret sharing reconstruction. The view of the ad-
versary includes the final output messages M′, and the corre-
sponding n secret shares of each message. For each opened
message m, The simulator S has access to m and t shares
as those t shares are stored in t malicious servers. The goal
of S is to generate the rest n− t shares for each message
m, which can be done depending on the underlying secret
sharing schemes. We take Shamir secret sharing as an exam-
ple. For each message, S has t points and the secret s, which
can also be treated as a point (0,s). S can use these t + 1
points to uniquely decide a degree-t polynomial, and use this
polynomial to compute the rest of the shares.

After the reconstruction, the adversary can decide to con-
tinue or abort. If the adversary decides to continue, the proto-
col outputs M′ and finishes.

B Benchmark of two-way communication

The benchmark result is shown in Table 9. As the protocol
is essentially two executions of the Variant 3, we see that
the performance numbers are also approximately 2× of the
numbers in Variant 3 benchmark.

Table 9: Performance of the two-way communication. (k
refers to the number of clients. We assume each client sends a
16 byte field element as the message in each execution. Com-
munication is measured by total MB sent per party)

k Online Time (s) Online Communication(MB)
10000 1.08 9.92
40000 7.89 39.68
90000 25.95 89.28
160000 57.22 158.72

17

	Introduction
	Paper Organization

	Related Works
	Preliminary
	System Model
	Goals and Non-Goals
	Secret-sharing based MPC
	Shamir Secret Sharing
	MPC with Shamir Secret Sharing
	Beaver Triple Multiplication Beaver for scalars and matrices

	Robust Secret Sharing Reconstruction
	Notations

	Using Permutation Matrices for Anonymous Communication
	Overview of the Variants
	Collecting Client Messages
	Supporting Messages with Large Size

	Malicious Security
	The First Variant
	Offline Phase
	Online Phase

	The Second Variant
	Offline Phase

	The Third Variant
	Cost Analysis and Comparisons with Related Works
	Security Analysis

	Applications of RPM
	Two Way Communication
	Secure Sorting

	Implementation and Evaluation
	Implementation
	Online Phase Evaluation
	Offline Phase Benchmark
	Towards Robustness
	Performance Comparison

	Conclusion
	Security Proofs
	Benchmark of two-way communication

