Breaking SIDH in polynomial time

DAMIEN ROBERT

Abstract. We show that we can break SIDH in polynomial time, even with a random starting curve E_{0}.

1. Introduction

We extend the recent attacks by [CD22; MM22] and prove that there exists a proven polynomial time attack on SIDH, even with a random starting curve E_{0}.

Theorem 1.1. We suppose that we are given the following input: we are given a secret N_{B}-isogeny over a finite field $\phi_{B}: E_{0} \rightarrow E_{B}$ along with its images on (a basis of) the N_{A}-torsion points of E_{0}, where N_{A} and N_{B} are smooth coprime integers. Let \mathbb{F}_{q} be the smallest field such that ϕ_{B}, and the points of $E_{0}\left[N_{A} N_{B}\right]$ are defined ${ }^{1}$. Then we can recover ϕ_{B} in time $\widetilde{O}\left(\ell_{A}^{8} \log q+\ell_{B}^{2} \log ^{2} q\right)$ operations where ℓ_{A} is the largest prime divisor of N_{A} and ℓ_{B} the largest of N_{B}.

2. Proof

We suppose here that $N_{A}>N_{B}$. Otherwise, in the context of SIDH we would attack ϕ_{A}. Another solution would be to guess the image of the $e N_{A}$-torsion under ϕ_{B} for the smallest e such that $e N_{A}>N_{B}$. Write $N_{A}=b N_{B}+a$ for positive integers $a, b>0$. Since N_{A} is prime to N_{B}, the $\operatorname{gcds}\left(N_{A}, a\right)=\left(N_{A}, b\right)=\left(N_{A}, a, b\right):=d$, so we get a relation $N_{A} / d=(b / d) N_{B}+(a / d)$. Since we know the image of the N_{A} / d torsion, henceforth, we will assume $d=1$.

Let α be an endomorphism on E_{0}^{4} given by a matrix $M \in M_{4}(\mathbb{Z})$ such that α is an a-isogeny, ie $\hat{\alpha} \alpha=a$ Id where $\hat{\alpha}$ is the dual of α and is simply given by the transpose of M (since integer multiplications are their own dual). Explicitly we write $a=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ and take M the matrix of the multiplication of $a_{1}+a_{2} i+a_{3} j+a_{4} k$ in the standard quaternion algebra. Likewise we let β be an endomorphism of E_{B}^{4} which is a b-isogeny.

Let $F=\left(\begin{array}{cc}\alpha & \beta \phi_{B} \\ -\hat{\beta} \hat{\phi_{B}} & \hat{\alpha}\end{array}\right)$, where $\hat{\phi_{B}}$ is the dual isogeny $E_{B} \rightarrow E_{0}$ of ϕ_{B}. Since N_{A} is prime to N_{B}, we know how $\hat{\phi}_{B}$ acts on $E_{B}\left[N_{A}\right]$. Then the dual \hat{F} of F is given by $\hat{F}=\left(\begin{array}{cc}\hat{\alpha} & -\beta \phi_{B} \\ \hat{\beta} \hat{\phi}_{B} & \alpha\end{array}\right)$, and we compute $\hat{F} F=F \hat{F}=$ $\left(\begin{array}{cc}b N_{B}+a & 0 \\ 0 & b N_{B}+a\end{array}\right)=N_{A}$ Id. Hence F is an N_{A}-isogeny on $E_{0}^{4} \times E_{B}^{4}$ and we can compute its action on the N_{A}-torsion. It is easy to compute its kernel: using pairings and discrete logarithms in $\mu_{N_{A}}$ (which is easy since N_{A} is smooth: they cost $O\left(\sqrt{\ell_{A}}\right)$) we reduce to linear algebra over $\mathbb{Z} / N_{A} \mathbb{Z}$. The cost of this step will be dominated by the following isogeny computation.

We can then compute F using an isogeny algorithm in dimension 8 . If ℓ is the largest prime divisor of N_{A}, the complexity will be dominated by $\widetilde{O}\left(\ell^{8}\right)$ operations over \mathbb{F}_{q} using [LR22].

Given F, we recover $\beta \phi_{B}$, hence $b \phi_{B}$ on E_{0} (more precisely we recover its kernel via two evaluations of F on a basis of $E_{0}\left[N_{B}\right]$ suitably embedded into $\left.E_{0}^{4} \times E_{B}^{4}\right)$. If b is prime to N_{B} we directly recover ϕ_{B}. Otherwise, we only recover $e \phi_{B}$ where $e=\left(b, N_{B}\right)$ and we have to do a bit of backtracking to recover $\frac{e}{\ell} \phi_{B}$ on E_{0} for ℓ a prime divisor of e and so on until we recover ϕ_{B}. This involve working over an extension where the points of $E_{0}\left[\ell N_{B}\right]$ torsion are defined.

[^0]More precisely, since $E_{0}\left[N_{B}\right]$ is defined over \mathbb{F}_{q} by assumption and $\ell \mid N_{B}$, this extension is of degree $O(\ell)$ (in fact unless $E_{0}\left[N_{B}\right]$ is already rational, $E_{0}\left[\ell N_{B}\right]$ is defined over an extension of degree exactly ℓ). We can compute a basis of $E_{0}\left[\ell N_{B}\right]$ in time $\widetilde{O}\left(\ell^{2} \log ^{2} q\right)$ using [BCR11] (a summary is in [Rob21, $\left.\$ 5.6 .1\right]$). This is assuming we already know the zeta function of E_{0}, otherwise we need to compute it in $\widetilde{O}\left(\log ^{4} q\right)$ using the SEA algorithm. We can evaluate $e \phi_{B}$ on this basis, hence recover the kernel of $\frac{e}{\ell} \phi_{B} \subset E_{0}\left[N_{B} \frac{\ell}{e}\right]$.

References

[BCR11] G. Bisson, R. Cosset and D. Robert. ?On the Practical Computation of Isogenies of Jacobian Surfaces? 2011. URL: https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/. In preparation.
[CD22] W. Castryck and T. Decru. An efficient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975. https : / /eprint.iacr. org/2022/975. 2022. URL: https : //eprint.iacr.org/2022/975.
[LR22] D. Lubicz and D. Robert. ?Fast change of level and applications to isogenies? Accepted for publication at ANTS XV Conference - Proceedings. august 2022. URL: http://www. normalesup.org/~robert/ pro/publications/articles/change_level.pdf.
[MM22] L. Maino and C. Martindale. An attack on SIDH with arbitrary starting curve. Cryptology ePrint Archive, Paper 2022/1026. https://eprint.iacr.org/2022/1026. 2022. URL: https://eprint. iacr.org/2022/1026.
[Rob21] D. Robert. ?HDR: Efficient algorithms for abelian varieties and their moduli spaces? phdthesis. Université Bordeaux, june 2021. URL: http://www. normalesup.org/~robert/pro/publications/ academic/hdr.pdf. Slides: 2021-06-HDR-Bordeaux.pdf (1h, Bordeaux).

INRIA Bordeaux-Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
Email address: damien. robert@inria.fr
URL: http://www.normalesup.org/~robert/
Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex FRANCE

[^0]: Date: August 11, 2022.
 ${ }^{1}$ We make no further assumptions on E_{0} and E_{B} : we do not require them to be supersingular. In the context of SIDH, k will be the base field $\mathbb{F}_{p^{2}}$.

