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Abstract. We show that we can break SIDH in polynomial time, even with a random
starting curve 𝐸0.

1. Introduction

We extend the recent attacks by [CD22; MM22] and prove that there exists a proven
polynomial time attack on SIDH, even with a random starting curve 𝐸0. Both papers had the
independent beautiful idea to use isogenies between abelian surfaces to break a large class
of parameter on SIDH. Namely, on a random starting curve 𝐸0, if the degree of the secret
isogenies are 𝑁𝐴 > 𝑁𝐵, their attack essentially apply whenever 𝑎 ≔ 𝑁𝐴 − 𝑁𝐵 is smooth.
This is highly unlikely, however they use the fact that it is possible to tweak the parameters
𝑁𝐴 and 𝑁𝐵 to augment the probability of success (or reduce the smoothness bound on
𝑎), see Remark 1.2. In the case where End(𝐸0) is known, [CD22] also have a (heuristic)
polynomial time attack, essentially because one can use the endomorphism ring to compute
an 𝑎-isogeny on 𝐸0 even if it is not smooth.

A natural idea is to go in even higher dimension to extend the range of parameters on
which an attack is possible, even on a random curve𝐸0.We show that by going to dimension 8,
it is possible to break in polynomial time all parameters for SIDH.

In an upcoming version, we will also show how to break a large class of parameters
𝑁𝐴, 𝑁𝐵 by going to dimension 4 rather than 8. Namely, this is possible whenever we can
write 𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎 with 𝑎, 𝑏 > 0 sum of two squares (along with some slight technical
conditions). This is a much more likely condition than smoothness of 𝑁𝐴 − 𝑁𝐵, hence (if
possible tweaking 𝑁𝐴 and 𝑁𝐵), we expect this attack to be highly likely and more efficient
than the one in this paper in practice.

The idea of the present attack is that we can always write 𝑎, 𝑏 as a sum of four squares,
hence we always get an attack in dimension 8. A rough version of this article was originally
published late at night with many errors and mistakes…I originally intended to carefully
write a more thorough version of this article fully spelling out the dimension 4 attack too.
However, given the interest on this subject, I thought it would be better to first correct the
existing mistakes, and leave the generalisation for later.

Many thanks are due to the persons who commented on the prior version. Special thanks
to Benjamin Wesolowski and Marco Streng, for suggesting to simply use 𝑏 = 1 in the
dimension 8 attack. This significantly simplify the description of the attack in this case.
(Although as noted above the general 𝑏 > 0 case will still be useful for the dimension 4
attack, see Remark 1.2).

Theorem 1.1. We suppose that we are given the following input: we are given a secret 𝑁𝐵-
isogeny over a finite field 𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵 along with its images on (a basis of) the 𝑁𝐴-torsion
points of 𝐸0, where 𝑁𝐴 and 𝑁𝐵 are smooth coprime integers and 𝑁𝐴 > 𝑁𝐵. We also assume
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that we are given the factorisations of 𝑁𝐴 and 𝑁𝐵 and (for simplicity) that we are given a basis
of 𝐸𝐵[𝑁𝐵].

Let 𝔽𝑞 be the smallest field such that 𝜙𝐵, and the points of 𝐸0[𝑁𝐴𝑁𝐵] are defined1. Then
we can recover 𝜙𝐵 in time 𝑂(ℓ8

𝐴 log ℓ𝐴 log𝑁𝐴 + log2 𝑁𝐴 + log2 𝑁𝐵) arithmetic operations
in 𝔽𝑞 where ℓ𝐴 is the largest prime divisor of 𝑁𝐴.

Note that in in the context of SIDH, if 𝑁𝐵 > 𝑁𝐴 we will simply try to recover Alice’s
secret isogeny Φ𝐴 instead.

Remark 1.2. We can tweak the parameters 𝑁𝐴 and 𝑁𝐵 as follow, as in the strategies of
[CD22; MM22]: we can replace 𝑁𝐴 by 𝑁′

𝐴 = 𝑒𝑁𝐴/𝑑𝐴 where 𝑒 is a small integer (this
will require to guess the image of Φ𝐵 on the 𝑁𝐴𝑒 torsion), and 𝑑𝐴 any divisor of 𝑁𝐴,
and 𝑁𝐵 by 𝑁′

𝐵 = 𝑓 𝑁𝐵/𝑑𝐵 where 𝑓 is any smooth integer prime to 𝑁𝐴 (this requires pro-
longing Φ𝐵 by an 𝑓-isogeny) and 𝑑𝐵 a small divisor of 𝑁𝐵 (this requires guessing the first
𝑑𝐵-isogeny step of Φ𝐵). We can hope to find integers 𝑁′

𝐴 and 𝑁′
𝐵, 𝑎′ > 0, 𝑏′ > 0 such

that 𝑁′
𝐴 > 𝑁′

𝐵 and 𝑁′
𝐴 = 𝑏′𝑁′

𝐵 + 𝑎′ where both 𝑏′ and 𝑎′ are a sum of two squares. In
this case, suppose for simplicity that we can also find a decomposition 𝑏′ = 𝑏′

1
2 + 𝑏′

2
2

where gcd(𝑏′
1, 𝑏′

2) is prime to 𝑁′
𝐵 (the general case will be tackled in an upcoming revision

of this paper). Once these parameter tweaks are found, the complexity of Theorem 1.1 is
reduced to 𝑂(ℓ′

𝐴
4 log ℓ′

𝐴 log𝑁′
𝐴 + log2 𝑁′

𝐴 + log2 𝑁′
𝐵) arithmetic operations, because we

can replace the endomorphism computation 𝐹 from an 𝑁𝐴-endomorphism in dimension 8
to an 𝑁′

𝐴-endomorphism in dimension 4.

2. Proof

Since 𝑁𝐴 > 𝑁𝐵, write 𝑁𝐴 = 𝑁𝐵 + 𝑎 for a positive integer 𝑎 > 0. Since 𝑁𝐴 is prime to
𝑁𝐵, gcd(𝑁𝐴, 𝑎) = 1.

Let 𝑀 ∈ 𝑀4(ℤ) be a 4 × 4 matrix such that 𝑡𝑀𝑀 = 𝑎 Id, Explicitly we write 𝑎 =
𝑎2

1 + 𝑎2
2 + 𝑎2

3 + 𝑎2
4 and take 𝑀 the matrix of the multiplication of 𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘 in the

standard quaternion algebra ℤ[𝑖, 𝑗, 𝑘]. Let 𝛼0 be the endomorphism on 𝐸4
0 given matricially

by 𝑀, The dual ̃𝛼0 of 𝛼0 is given matricially by 𝑡𝑀 (since integer multiplications are their
own dual), so ̃𝛼0𝛼0 = 𝑎 Id, hence 𝛼0 is an 𝑎-isogeny. We let 𝛼𝐵 be the endomorphism of 𝐸4

𝐵
given by the same matrix 𝑀.

Remark 2.1. The decomposition of 𝑎 as a sum of four squares is a precomputation step that
only depends on 𝑁𝐴 and 𝑁𝐵 and can be done by solving a norm equation.

Let 𝐹 = ( 𝛼0 ̂𝜙𝐵
−𝜙𝐵 𝛼𝐵

), where ̂𝜙𝐵 is the dual isogeny 𝐸𝐵 → 𝐸0 of 𝜙𝐵. 𝐹 is an endomor-

phism on the 8-dimensional abelian variety 𝐴 = 𝐸4
0 × 𝐸4

𝐵. Since 𝑁𝐴 is prime to 𝑁𝐵, we
know how ̂𝜙𝐵 acts on 𝐸𝐵[𝑁𝐴], hence we know how 𝐹 acts on 𝐴[𝑁𝐴] (we actually won’t
need to compute ̂𝜙𝐵 on 𝐸𝐵[𝑁𝐴]). Furthermore, since 𝛼0 is given by an integral matrix, it
commutes with 𝜙𝐵 in the sense that we have the equation: 𝜙𝐵𝛼0 = 𝛼𝐵𝜙𝐵.

Since the dual ̃𝐹 of 𝐹 is given by ̃𝐹 = (𝛼0 − ̂𝜙𝐵
𝜙𝐵 𝛼𝐵

), we compute

̃𝐹𝐹 = 𝐹 ̃𝐹 = (𝑁𝐵 + 𝑎 0
0 𝑁𝐵 + 𝑎) = 𝑁𝐴 Id .

1Wemake no further assumptions on 𝐸0 and 𝐸𝐵: we do not require them to be supersingular. In the context
of SIDH, 𝔽𝑞 will be the base field 𝔽𝑝2.
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Hence 𝐹 is an 𝑁𝐴-isogeny on 𝐴 (with respect to the product polarisations), and we can
compute its action on the 𝑁𝐴-torsion.

It is easy to compute its kernel: it is given by the image of ̃𝐹 on 𝐴[𝑁1]. In fact, since 𝑎 is
prime to 𝑁𝐴, the kernel of 𝐹 is exactly the image of ̃𝐹 on 𝐸4

0[𝑁1] × 0, so we immediately get
the four generators (𝑔1, 𝑔2, 𝑔3, 𝑔4) of the kernel Ker𝐹. This step costs 𝑂(log 𝑎) arithmetic
operations in 𝐴(𝔽𝑞).

We can then compute 𝐹 (on any point 𝑃 ∈ 𝐴(𝔽𝑞)) using an isogeny algorithm in
dimension 8, decomposing the 𝑁𝐴-endomorphism 𝐹 as a chain of ℓ-isogeny for ℓ the prime
factors of 𝑁𝐴. If ℓ𝐴 is the largest prime divisor of 𝑁𝐴, the complexity of the first ℓ𝐴-isogeny
computationwill first be𝑂(log𝑁𝐴) arithmetic operations in𝐴(𝔽𝑞) to compute themultiples
𝑁𝐴
ℓ𝐴

𝑔𝑖, followed by the individual ℓ𝐴-isogeny computation on 𝑃 and the 𝑔𝑖. This isogeny
computation costs 𝑂(ℓ8 log ℓ) operations over 𝔽𝑞 using [LR22].

Remark 2.2. The isogeny computation in [LR22; BCR10] uses a (level 𝑛 = 4) theta model
of 𝐴, which we can compute as the (fourfold) product theta structure of the theta models of
𝐸0 and 𝐸𝐵. It is also well known how to switch between the theta model and the Weierstrass
model on an elliptic curve, and it is not hard to extend the conversion to the product of
elliptic curves.The arithmetic on the theta models can be done in𝑂(1) arithmetic operations
in a 𝑂(1)-extension of 𝔽𝑞 (if 8 ∣ 𝑁𝐴𝑁𝐵 the theta model will already be rational). However
the big 𝑂() notation hides an exponential complexity in the dimension 𝑔. In dimension 8
and level 𝑛 = 4, the theta model uses 216 coordinates, so we would need in practice to switch
to the Kummer model by working in level 𝑛 = 2 which “only” requires 28 coordinates. This
is another reason why we would prefer to compute an endomorphism in dimension 𝑔 = 4
rather than 𝑔 = 8: in dimension 4 we would only need 28 coordinates in level 𝑛 = 4, or 24

coordinates in level 𝑛 = 2.

Since we compute a composition of at most 𝑂(log𝑁𝐴) isogenies, the total cost of evalu-
ating 𝐹 on 𝑃 is 𝑂(log2 𝑁𝐴 + log𝑁𝐴ℓ8 log ℓ).

Thus we can evaluate 𝐹 on any point of 𝐴, so we can evaluate 𝜙𝐵 or ̂𝜙𝐵 on any point of
𝐸0 (resp. 𝐸𝐵). We can now recover the kernel of 𝜙𝐵 on 𝐸0 as the image of ̂𝜙𝐵 on 𝐸𝐵[𝑁𝐵].
If (𝑄1, 𝑄2) is a basis of 𝐸𝐵[𝑁𝐵], we compute 𝑄′

𝑖 = ̂𝜙𝐵(𝑄𝑖) by evaluating 𝐹 on the point
(0, 0, 0, 0, 𝑄𝑖, 0, 0, 0), and the kernel of 𝜙𝐵 is generated by whichever 𝑄′

𝑖 has order 𝑁𝐵. This
step costs 𝑂(log2 𝑁𝐵) operations in 𝐸0(𝔽𝑞), along with two calls to the evaluation of 𝐹. This
concludes the complexity analysis.
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