Breaking SIDH in polynomial time

DAMIEN ROBERT

Abstract

We show that we can break SIDH in (classical deterministic) polynomial time, even with a random starting curve E_{0}.

1. Introduction

We extend the recent attacks by [CD22; MM22] and prove that there exists a proven deterministic polynomial time attack on SIDH/SIKE [DJP14; JAC+17], even with a random starting curve E_{0}. Both papers had the independent beautiful idea to use isogenies between abelian surfaces (using [Kan97, § 2]) to break a large class of parameter on SIDH. Namely, on a random starting curve E_{0}, if the degree of the secret isogenies are $N_{A}>N_{B}$, their attack essentially apply whenever $a:=N_{A}-N_{B}$ is smooth. This is highly unlikely, however they use the fact that it is possible to tweak the parameters N_{A} and N_{B} to augment the probability of success (or reduce the smoothness bound on a), see Section 4 . In the case where $\operatorname{End}\left(E_{0}\right)$ is known, [CD22] also have a (heuristic) polynomial time attack, essentially because one can use the endomorphism ring to compute an a-isogeny on E_{0} even if a is not smooth.

A natural idea is to go in even higher dimension to extend the range of parameters on which an attack is possible, even on a random curve E_{0}. We show in Section 2 that by going to dimension 8 , it is possible to break in polynomial time all parameters for SIDH.

It is also possible to break a large class of parameters N_{A}, N_{B} by going to dimension 4 rather than 8 , see Section 3 . Namely, this is possible whenever we can write $N_{A}=b N_{B}+a$ with $a, b>0$ sum of two squares (along with some slight technical conditions). This is a much more likely condition than smoothness of $N_{A}-N_{B}$, hence (if possible tweaking the parameters N_{A} and N_{B}) we expect this attack to be highly likely and more efficient than the dimension 8 attack in practice.

The idea of the dimension 8 attack is that we can always write a, b as a sum of four squares, hence we always get an attack in dimension 8 .

Many thanks are due to the persons who commented on the prior versions. Special thanks to Benjamin Wesolowski and Marco Streng, for suggesting to simply use $b=1$ in the dimension 8 attack. This significantly simplify the description of the attack in this case. (Although as noted above the general $b>0$ case is still useful for the dimension 4 attack).
Theorem 1.1. We suppose that we are given the following input: we are given a secret N_{B}-isogeny over a finite field $\phi_{B}: E_{0} \rightarrow E_{B}$ along with its images on (a basis of) the N_{A}-torsion points of E_{0}, where N_{A} and N_{B} are smooth coprime integers and $N_{A}>N_{B}$. We also assume that we are given the factorisations of N_{A} and N_{B}

[^0]and (for simplicity) that we are given a basis of $E_{B}\left[N_{B}\right]$ and a decomposition of $N_{A}-N_{B}$ as a sum of four squares.

Let \mathbb{F}_{q} be the smallest field such that ϕ_{B}, and the points of $E_{0}\left[N_{A}\right]$ and $E_{B}\left[N_{B}\right]$ are defined ${ }^{1}$. Then we can recover ϕ_{B} in classical deterministic time $O\left(\ell_{A}^{8} \log \ell_{A} \log N_{A}+\right.$ $\left.\log ^{2} N_{A}+\log ^{2} N_{B}\right)$ arithmetic operations in \mathbb{F}_{q} where ℓ_{A} is the largest prime divisor of N_{A}.

Note that in in the context of SIDH, if $N_{B}>N_{A}$ we will simply try to recover Alice's secret isogeny Φ_{A} instead.

2. Dimension 8 attack

Since $N_{A}>N_{B}$, write $N_{A}=N_{B}+a$ for a positive integer $a>0$. Since N_{A} is prime to $N_{B}, \operatorname{gcd}\left(N_{A}, a\right)=1$.

Let $M \in M_{4}(\mathbb{Z})$ be a 4×4 matrix such that $M^{T} M=a \mathrm{Id}$, Explicitly we write $a=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ and take M the matrix of the multiplication of $a_{1}+a_{2} i+a_{3} j+a_{4} k$ in the standard quaternion algebra $\mathbb{Z}[i, j, k]$. Let α_{0} be the endomorphism on E_{0}^{4} given matricially by M, The dual $\widetilde{\alpha}_{0}$ of α_{0} is given matricially by M^{T} (since integer multiplications are their own dual), so $\widetilde{\alpha}_{0} \alpha_{0}=a \mathrm{Id}$, hence α_{0} is an a-isogeny. We let α_{B} be the endomorphism of E_{B}^{4} given by the same matrix M.
Remark 2.1. The decomposition of a as a sum of four squares is a precomputation step that only depends on N_{A} and N_{B}. It can be done in random polynomial time $O\left(\log ^{2} a\right)$ by [RS86].

Let $F=\left(\begin{array}{cc}\alpha_{0} & \hat{\phi_{B}} \\ -\phi_{B} & \widetilde{\alpha_{B}}\end{array}\right)$, where $\hat{\phi_{B}}$ is the dual isogeny $E_{B} \rightarrow E_{0}$ of $\phi_{B} . F$ is an endomorphism on the 8 -dimensional abelian variety $A=E_{0}^{4} \times E_{B}^{4}$. Since N_{A} is prime to N_{B}, we know how $\hat{\phi_{B}}$ acts on $E_{B}\left[N_{A}\right]$, hence we know how F acts on $A\left[N_{A}\right]$ (we actually won't need to compute $\hat{\phi_{B}}$ on $E_{B}\left[N_{A}\right]$). Furthermore, since α_{0} is given by an integral matrix, it commutes with ϕ_{B} in the sense that we have the equation: $\phi_{B} \alpha_{0}=\alpha_{B} \phi_{B}$.

Since the dual \widetilde{F} of F is given by $\widetilde{F}=\left(\begin{array}{cc}\widetilde{\alpha_{0}} & -\hat{\phi_{B}} \\ \phi_{B} & \alpha_{B}\end{array}\right)$, we compute

$$
\widetilde{F} F=F \widetilde{F}=\left(\begin{array}{cc}
N_{B}+a & 0 \\
0 & N_{B}+a
\end{array}\right)=N_{A} \mathrm{Id}
$$

Hence F is an N_{A}-isogeny on A (with respect to the product polarisations), and we can compute its action on the N_{A}-torsion.

It is easy to compute its kernel: it is given by the image of \widetilde{F} on $A\left[N_{A}\right]$. In fact, since a is prime to N_{A}, the kernel of F is exactly the image of \widetilde{F} on $E_{0}^{4}\left[N_{A}\right] \times 0$, so we immediately get the 8 generators $\left(g_{1}, \ldots, g_{8}\right)$ of the kernel Ker F. This step costs $O(\log a)$ arithmetic operations in $E_{0}\left(\mathbb{F}_{q}\right)$.

We can then compute F (on any point $P \in A\left(\mathbb{F}_{q}\right)$) using an isogeny algorithm in dimension 8 , decomposing the N_{A}-endomorphism F as a chain of ℓ-isogeny for ℓ the prime factors of N_{A}. If ℓ_{A} is the largest prime divisor of N_{A}, the complexity of the first ℓ_{A}-isogeny computation will first be $\widetilde{O}\left(\log N_{A}\right)$ arithmetic operations in $A\left(\mathbb{F}_{q}\right)$ to compute the multiples $\frac{N_{A}}{\ell_{A}} g_{i}$, followed by the individual ℓ_{A}-isogeny computations

[^1]on P and the g_{i}. These isogenies computations cost $O\left(\ell^{8} \log \ell\right)$ operations over \mathbb{F}_{q} using [LR22].

Remark 2.2. The isogenies computations in [LR22; BCR10; Som21] use a (level $n=$ 4 or $n=2$) theta model of A, which we can compute as the (fourfold) product theta structure of the theta models of E_{0} and E_{B}. It is also well known how to switch between the theta model and the Weierstrass model on an elliptic curve, and it is not hard to extend the conversion to the product of elliptic curves. The arithmetic on the theta models can be done in $O(1)$ arithmetic operations in a $O(1)$-extension of \mathbb{F}_{q} (if $8 \mid N_{A} N_{B}$ the theta model will already be rational). However the big $O()$ notation hides an exponential complexity in the dimension g. In dimension 8 and level $n=4$, the theta model uses 2^{16} coordinates, so we would need in practice to switch to the Kummer model by working in level $n=2$ which "only" requires 2^{8} coordinates. This is another reason why we would prefer to compute an endomorphism in dimension $g=4$ rather than $g=8$: in dimension 4 we would only need 2^{8} coordinates in level $n=4$, or 2^{4} coordinates in level $n=2$.

Since we compute a composition of at most $O\left(\log N_{A}\right)$ isogenies, the total cost of evaluating F on P is $O\left(\log ^{2} N_{A}+\log N_{A} \ell^{8} \log \ell\right)$.

Thus we can evaluate F on any point of A, so we can evaluate ϕ_{B} or $\hat{\phi}_{B}$ on any point of E_{0} (resp. E_{B}). We can now recover the kernel of ϕ_{B} on E_{0} as the image of $\hat{\phi}_{B}$ on $E_{B}\left[N_{B}\right]$. If $\left(Q_{1}, Q_{2}\right)$ is a basis of $E_{B}\left[N_{B}\right]$, we compute $Q_{i}^{\prime}=\hat{\phi}_{B}\left(Q_{i}\right)$ by evaluating F on the point $\left(0,0,0,0, Q_{i}, 0,0,0\right)$, and the kernel of ϕ_{B} is generated by whichever Q_{i}^{\prime} has order N_{B}. If t_{B} is the number of distinct prime divisors of N_{B}, this step costs $O\left(t \log N_{B}\right)=O\left(\log ^{2} N_{B}\right)$ operations in $E_{0}\left(\mathbb{F}_{q}\right)$ along with two calls to the evaluation of F. This concludes the complexity analysis.

Remark 2.3.

- It is immediate to generalize Theorem 1.1 to recover an N_{B}-isogeny ϕ_{B} between abelian varieties E_{0}, E_{B} of dimension g. The attack reduces to computing one N_{A}-isogeny in dimension $8 g$ (or eventually $4 g$ if the parameters allow for it).

The same proof as above holds. The only difference is that this time we get $\operatorname{Ker} \phi_{B}$ as the image of $\hat{\phi}_{B}$ on a $2 g$-dimensional basis of $E_{B}\left[N_{B}\right]$. To extract a g dimensional basis of the kernel from these images, we can take any g points and check if the Weil pairing matrix with a basis of $E_{0}\left[N_{B}\right]$ has full rank (we expect this will be the case with high probability). Hence, since the dimension g is fixed, this still costs $O\left(t \log N_{B}\right)=O\left(\log ^{2} N_{B}\right)$.

- When $\ell_{A}=O(1)$, we can use a SIDH style fast evaluation of the N_{A}-isogeny as in [DJP14, § 4.2.2]. If $t_{B}=O(1)$ also (for instance if $\ell_{B}=O(1)$), the attack becomes quasi-linear: $\widetilde{O}\left(\log N_{A}\right)$, hence as efficient asymptotically as the key exchange itself (with a higher constant of course).
- The attack also breaks the TCSSI-security assumption of [DDF +21, Problem 3.2].

3. Dimension 4 attack

We can do a dimension 4 attack whenever we can find $a, b>0$ such that $N_{A}=b N_{B}+a$ and both a and b are a sum of two squares. To increase our
probability of success, we can tweaks the parameters N_{A} and N_{B} as explained in Section 4. Note that since N_{A} is coprime to N_{B}, then dividing by $\operatorname{gcd}\left(N_{A}, a, b\right)$ if necessary, we may assume that N_{A}, a, b are coprime.

Write $a=a_{1}^{2}+a_{2}^{2}, b=b_{1}^{2}+b_{2}^{2}$. Note that unlike the decomposition of a as a sum of four squares from Section 2, these decompositions into a sum of two squares require the factorisation of a, b.

Write $\alpha=\left(\begin{array}{cc}a_{1} & -a_{2} \\ a_{2} & a_{1}\end{array}\right), \beta=\left(\begin{array}{cc}b_{1} & -b_{2} \\ b_{2} & b_{1}\end{array}\right)$. These matrices can be interpreted as endomorphisms of E_{0} or E_{B} and commute with ϕ_{B}. Furthermore, $\widetilde{\alpha} \alpha=\left(a_{1}^{2}+\right.$ a_{2}^{2}) Id, so α is an a-endomorphism, and similarly β is a b-endomorphism. A direct computation shows that $F=\left(\begin{array}{cc}\alpha_{0} & \hat{\phi_{B}} \widetilde{\beta_{B}} \\ -\beta_{B} \phi_{B} & \widetilde{\alpha_{B}}\end{array}\right)$ is a $N_{A}=a+b N_{B}$-isogeny.

We can thus evaluate F, hence evaluate $\beta_{B} \phi_{B}=\phi_{B} \beta_{0}$ on any point in $E_{0}^{2}\left(\mathbb{F}_{q}\right)$ in $O\left(\ell_{A}{ }^{4} \log \ell_{A} \log N_{A}+\log ^{2} N_{A}^{\prime}\right)$ arithmetic operations over \mathbb{F}_{q} by [LR22]. Now let $b^{\prime}=\operatorname{gcd}\left(b_{1}, b_{2}\right)$, from $\beta_{B} \phi_{B}$ we can recover $b^{\prime} \phi_{B}$, hence we can recover the kernel of a $N_{B} / \operatorname{gcd}\left(N_{B}, b^{\prime}\right)$-isogeny $E_{0} \rightarrow E_{B}^{\prime}$ through which ϕ_{B} factors. If $\operatorname{gcd}\left(N_{B}, b^{\prime}\right)=1$ we have directly recovered ϕ_{B}, otherwise we iterate the process, which is possible as long as $\operatorname{gcd}\left(N_{B}, b^{\prime}\right)<N_{B}$.

Remark 3.1. It is well known that b admits a primitive representation as a sum of two squares if and only if the odd divisors of b are all congruent to 1 modulo 4 and $4 \nmid b$. In particular, if $\operatorname{gcd}\left(b, N_{B}\right)$ has only prime divisors congruent to 1 modulo 4 , we can find a decomposition $b=b_{1}^{2}+b_{2}^{2}$ such that $\operatorname{gcd}\left(b_{1}, b_{2}, N_{B}\right)=1$.

Summing up this discussion, we get for the dimension 4 attack:
Theorem 3.2. In the situation of Theorem 1.1, suppose that we can find $a, b>0$ such that $N_{A}=b N_{B}+a$ (eventually tweaking the parameters N_{A}, N_{B}) and a, b can be written as a sum of two squares: $a=a_{1}^{2}+a_{2}^{2}, b=b_{1}^{2}+b_{2}^{2}$. Assume furthermore for simplicity that $\operatorname{gcd}\left(b, N_{B}\right)$ has only prime divisors congruent to 1 modulo 4.

Then, given the factorisation of a and b, we can recover ϕ_{B} in classical deterministic time $O\left(\ell_{A}^{4} \log \ell_{A} \log N_{A}+\log ^{2} N_{A}+\log ^{2} N_{B}\right)$ arithmetic operations in \mathbb{F}_{q}.

4. Parameter tweaks

We can tweak the parameters N_{A} and N_{B} as follow, as in the strategies of [CD22; MM22]. In the following, we assume that we are in the context of SIDH, so E_{0}, E_{B} are supersingular elliptic curves defined over \mathbb{F}_{q} with $q=p^{2}$.
(1) We can replace N_{A} by $N_{A}^{\prime}=N_{A} / d_{A}$ where d_{A} any divisor of N_{A}.
(2) We can replace N_{A} by $N_{A}^{\prime}=e N_{A}$ where e is a small integer prime to N_{B}. This requires to compute a basis of the $e N_{A}$-torsion on E, possibly taking an extension, and then guessing the images of Φ_{B} on the $N_{A} e$ torsion. By the group structure theorem of supersingular elliptic curves, since $\pi_{q^{k}}=(-p)^{k}$, $E\left(\mathbb{F}_{q^{k}}\right) \simeq \mathbb{Z} /\left((-p)^{k}-1\right) \oplus \mathbb{Z} /\left((-p)^{k}-1\right)$. Hence the smallest extension of \mathbb{F}_{q} where the points of $e N_{A}$ torsion of E live is of degree k, the order of $-p$ modulo $e N_{A}$. Since the N_{A}-torsion is rational by assumption, we have $k=O(e)$. Sampling a $e N_{A}$ basis of E_{0}, E_{B} can be done by sampling random points, multiplying by the cofactor $p^{k} / e N_{A}$ and then checking if we have a basis using the Weil pairing. This costs $O\left(k^{2} \log ^{2} q\right)=O\left(e^{2} \log ^{2} q\right)$
operations. Guessing the image of ϕ_{B} on this basis involves $O\left(e^{3}\right)$-tries, using the compatibility of ϕ_{B} with the Weil pairing and the known image of the N_{A}-torsion.
(3) We can replace N_{B} by N_{B} / d_{B}, where d_{B} is a small divisor of N_{B}. This requires guessing the first d_{B}-isogeny step of Φ_{B}, and we have $O\left(d_{B}\right)$ guesses.
(4) We can replace N_{B} by $N_{B}^{\prime}=f N_{B}$ where f is any smooth integer prime to N_{A}. This requires prolonging Φ_{B} by an f-isogeny. If $f \mid N_{B}$, we can simply use the existing N_{B}-torsion basis, hoping that we don't accidentally backtrack through Bob's isogeny. For the general case, since $\pi_{q}=[-p]$, all cyclic kernels of order f of E_{B} are rational, and their generators live in an extension of degree at most $k=O(f)$. We can then sample a generator in $O\left(f^{2} \log ^{2} q\right)$ operations like in Item 2 , then compute the isogeny using Vélu's formula. It is more expansive to compute and factorize the f-division polynomial ψ_{f}, since it is of degree $O\left(f^{3}\right)$. An alternative is to construct an f-isogeny using the f-modular polynomial ϕ_{f} (and its derivative), as in the SEA algorithm [Sch95]. We can evaluate this modular polynomial in time $\widetilde{O}\left(f^{2} \log q\right)$ by an easy adaptation of [Kie20] (see [Rob21, Remark 5.3.9; Rob22]), then recover a root in time $\widetilde{O}\left(f \log ^{2} q\right)$. Recovering the isogeny can then be done in quasi-linear time by solving a differential equation $\left[\mathrm{BMS}+08 ;\right.$ Rob21, § 4.7.1]. This reduces the complexity to $\widetilde{O}\left(f^{2} \log q+\right.$ $f \log ^{2} q$) operations.

References

[BCR10] G. Bisson, R. Cosset, and D. Robert. AVIsogenies. Magma package devoted to the computation of isogenies between abelian varieties. 2010. URL: https://www. math.u-bordeaux.fr/~damienrobert/ avisogenies/. Free software (LGPLv2+), registered to APP (reference IDDN.FR.001.440011.000.R.P.2010.000.10000). Latest version 0.7, released on 2021-03-13.
[BMS+08] A. Bostan, F. Morain, B. Salvy, and E. Schost. "Fast algorithms for computing isogenies between elliptic curves". In: Mathematics of Computation 77.263 (2008), pp. 1755-1778.
[CD22] W. Castryck and T. Decru. An efficient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975. 2022. URL: https://eprint.iacr.org/2022/975.
[DDF+21] L. De Feo, C. Delpech de Saint Guilhem, T. B. Fouotsa, P. Kutas, A. Leroux, C. Petit, J. Silva, and B. Wesolowski. "Séta: Supersingular encryption from torsion attacks". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2021, pp. 249-278.
[DJP14] L. De Feo, D. Jao, and J. Plût. "Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies". In: Journal of Mathematical Cryptology 8.3 (2014), pp. 209-247.
$[J A C+17] \quad$ D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalili, B. Koziel, B. LaMacchia, P. Longa, et al. SIKE: Supersingular isogeny key encapsulation. 2017. URL: https://sike.org/.
[Kan97] E. Kani. "The number of curves of genus two with elliptic differentials." In: Journal für die reine und angewandte Mathematik 485 (1997), pp. 93-122.
[Kie20] J. Kieffer. "Evaluating modular polynomials in genus 2". 2020. HAL: hal-02971326.
[LR22] D. Lubicz and D. Robert. "Fast change of level and applications to isogenies". Accepted for publication at ANTS XV Conference Proceedings. Aug. 2022. URL: http://www.normalesup.org/~robert/ pro/publications/articles/change_level.pdf.
[MM22] L. Maino and C. Martindale. An attack on SIDH with arbitrary starting curve. Cryptology ePrint Archive, Paper 2022/1026. 2022. URL: https://eprint.iacr.org/2022/1026.
[RS86] M. O. Rabin and J. O. Shallit. "Randomized algorithms in number theory". In: Communications on Pure and Applied Mathematics 39.S1 (1986), S239-S256.
[Rob21] D. Robert. "Efficient algorithms for abelian varieties and their moduli spaces". HDR thesis. Université Bordeaux, June 2021. URL: http: / /www . normalesup. org/~robert/pro/publications / academic / hdr .pdf. Slides: 2021-06-HDR-Bordeaux.pdf (1h, Bordeaux).
[Rob22] D. Robert. "Fast evaluation of modular polynomials and compression of isogenies between elliptic curves". Aug. 2022. In preparation.
[Sch95] R. Schoof. "Counting points on elliptic curves over finite fields". In: J. Théor. Nombres Bordeaux 7.1 (1995), pp. 219-254.
[Som21] A. Somoza. thet $A V$. Sage package devoted to the computation with abelian varieties with theta functions, rewrite of the AVIsogenies magma package. 2021. URL: https://gitlab.inria.fr/roberdam/ avisogenies/-/tree/sage.

INRIA Bordeaux-Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE

Email address: damien.robert@inria.fr
URL: http://www.normalesup.org/~robert/
Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex FRANCE

[^0]: Date: August 23, 2022.

[^1]: ${ }^{1}$ We make no further assumptions on E_{0} and E_{B} : we do not require them to be supersingular. In the context of $\operatorname{SIDH}, \mathbb{F}_{q}$ will be the base field $\mathbb{F}_{p^{2}}$.

