
Breaking SIDH in polynomial time

DAMIEN ROBERT

Abstract. We show that we can break SIDH in (classical deterministic)
polynomial time, even with a random starting curve E0.

1. Introduction

We extend the recent attacks by [CD22; MM22] and prove that there exists a
proven deterministic polynomial time attack on SIDH/SIKE [DJP14; JAC+17], even
with a random starting curve E0. Both papers had the independent beautiful idea
to use isogenies between abelian surfaces (using [Kan97, § 2]) to break a large class
of parameter on SIDH. Namely, on a random starting curve E0, if the degree of the
secret isogenies are NA > NB , their attack essentially apply whenever a := NA−NB

is smooth. This is highly unlikely, however they use the fact that it is possible to
tweak the parameters NA and NB to augment the probability of success (or reduce
the smoothness bound on a), see Section 4. In the case where End(E0) is known,
[CD22] also have a (heuristic) polynomial time attack, essentially because one can
use the endomorphism ring to compute an a-isogeny on E0 even if a is not smooth.

A natural idea is to go in even higher dimension to extend the range of parameters
on which an attack is possible, even on a random curve E0. We show in Section 2 that
by going to dimension 8, it is possible to break in polynomial time all parameters
for SIDH.

It is also possible to break a large class of parameters NA, NB by going to
dimension 4 rather than 8, see Section 3. Namely, this is possible whenever we can
write NA = bNB + a with a, b > 0 sum of two squares (along with some slight
technical conditions). This is a much more likely condition than smoothness of
NA −NB , hence (if possible tweaking the parameters NA and NB) we expect this
attack to be highly likely and more efficient than the dimension 8 attack in practice.

The idea of the dimension 8 attack is that we can always write a, b as a sum of
four squares, hence we always get an attack in dimension 8.

Many thanks are due to the persons who commented on the prior versions. Special
thanks to Benjamin Wesolowski and Marco Streng, for suggesting to simply use
b = 1 in the dimension 8 attack. This significantly simplify the description of the
attack in this case. (Although as noted above the general b > 0 case is still useful
for the dimension 4 attack).

Theorem 1.1. We suppose that we are given the following input: we are given a
secret NB-isogeny over a finite field φB : E0 → EB along with its images on (a basis
of) the NA-torsion points of E0, where NA and NB are smooth coprime integers
and NA > NB. We also assume that we are given the factorisations of NA and NB
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and (for simplicity) that we are given a basis of EB[NB] and a decomposition of
NA −NB as a sum of four squares.

Let Fq be the smallest field such that φB, and the points of E0[NA] and EB [NB ] are
defined1. Then we can recover φB in classical deterministic time O(`8

A log `A logNA +
log2 NA + log2 NB) arithmetic operations in Fq where `A is the largest prime divisor
of NA.

Note that in in the context of SIDH, if NB > NA we will simply try to recover
Alice’s secret isogeny ΦA instead.

2. Dimension 8 attack

Since NA > NB, write NA = NB + a for a positive integer a > 0. Since NA is
prime to NB , gcd(NA, a) = 1.

Let M ∈M4(Z) be a 4× 4 matrix such that MTM = a Id, Explicitly we write
a = a2

1+a2
2+a2

3+a2
4 and takeM the matrix of the multiplication of a1+a2i+a3j+a4k

in the standard quaternion algebra Z[i, j, k]. Let α0 be the endomorphism on E4
0

given matricially by M , The dual α̃0 of α0 is given matricially by MT (since integer
multiplications are their own dual), so α̃0α0 = a Id, hence α0 is an a-isogeny. We let
αB be the endomorphism of E4

B given by the same matrix M .

Remark 2.1. The decomposition of a as a sum of four squares is a precomputation
step that only depends on NA and NB . It can be done in random polynomial time
O(log2 a) by [RS86].

Let F =
(
α0 φ̂B

−φB α̃B

)
, where φ̂B is the dual isogeny EB → E0 of φB. F is an

endomorphism on the 8-dimensional abelian variety A = E4
0 × E4

B. Since NA is
prime to NB, we know how φ̂B acts on EB[NA], hence we know how F acts on
A[NA] (we actually won’t need to compute φ̂B on EB [NA]). Furthermore, since α0
is given by an integral matrix, it commutes with φB in the sense that we have the
equation: φBα0 = αBφB .

Since the dual F̃ of F is given by F̃ =
(
α̃0 −φ̂B

φB αB

)
, we compute

F̃F = FF̃ =
(
NB + a 0

0 NB + a

)
= NA Id .

Hence F is an NA-isogeny on A (with respect to the product polarisations), and we
can compute its action on the NA-torsion.

It is easy to compute its kernel: it is given by the image of F̃ on A[NA]. In fact,
since a is prime to NA, the kernel of F is exactly the image of F̃ on E4

0 [NA] × 0,
so we immediately get the 8 generators (g1, . . . , g8) of the kernel KerF . This step
costs O(log a) arithmetic operations in E0(Fq).

We can then compute F (on any point P ∈ A(Fq)) using an isogeny algorithm in
dimension 8, decomposing the NA-endomorphism F as a chain of `-isogeny for ` the
prime factors of NA. If `A is the largest prime divisor of NA, the complexity of the
first `A-isogeny computation will first be Õ(logNA) arithmetic operations in A(Fq)
to compute the multiples NA

`A
gi, followed by the individual `A-isogeny computations

1We make no further assumptions on E0 and EB : we do not require them to be supersingular.
In the context of SIDH, Fq will be the base field Fp2 .
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on P and the gi. These isogenies computations cost O(`8 log `) operations over Fq

using [LR22].

Remark 2.2. The isogenies computations in [LR22; BCR10; Som21] use a (level n =
4 or n = 2) theta model of A, which we can compute as the (fourfold) product theta
structure of the theta models of E0 and EB. It is also well known how to switch
between the theta model and the Weierstrass model on an elliptic curve, and it is not
hard to extend the conversion to the product of elliptic curves. The arithmetic on the
theta models can be done in O(1) arithmetic operations in a O(1)-extension of Fq (if
8 | NANB the theta model will already be rational). However the big O() notation
hides an exponential complexity in the dimension g. In dimension 8 and level n = 4,
the theta model uses 216 coordinates, so we would need in practice to switch to the
Kummer model by working in level n = 2 which “only” requires 28 coordinates. This
is another reason why we would prefer to compute an endomorphism in dimension
g = 4 rather than g = 8: in dimension 4 we would only need 28 coordinates in
level n = 4, or 24 coordinates in level n = 2.

Since we compute a composition of at most O(logNA) isogenies, the total cost of
evaluating F on P is O(log2 NA + logNA`

8 log `).
Thus we can evaluate F on any point of A, so we can evaluate φB or φ̂B on any

point of E0 (resp. EB). We can now recover the kernel of φB on E0 as the image
of φ̂B on EB[NB]. If (Q1, Q2) is a basis of EB[NB], we compute Q′

i = φ̂B(Qi) by
evaluating F on the point (0, 0, 0, 0, Qi, 0, 0, 0), and the kernel of φB is generated by
whichever Q′

i has order NB. If tB is the number of distinct prime divisors of NB,
this step costs O(t logNB) = O(log2 NB) operations in E0(Fq) along with two calls
to the evaluation of F . This concludes the complexity analysis.

Remark 2.3.

• It is immediate to generalize Theorem 1.1 to recover an NB-isogeny φB

between abelian varieties E0, EB of dimension g. The attack reduces to com-
puting one NA-isogeny in dimension 8g (or eventually 4g if the parameters
allow for it).

The same proof as above holds. The only difference is that this time we
get KerφB as the image of φ̂B on a 2g-dimensional basis of EB[NB]. To
extract a g dimensional basis of the kernel from these images, we can take
any g points and check if the Weil pairing matrix with a basis of E0[NB]
has full rank (we expect this will be the case with high probability). Hence,
since the dimension g is fixed, this still costs O(t logNB) = O(log2 NB).

• When `A = O(1), we can use a SIDH style fast evaluation of the NA-isogeny
as in [DJP14, § 4.2.2]. If tB = O(1) also (for instance if `B = O(1)), the
attack becomes quasi-linear: Õ(logNA), hence as efficient asymptotically as
the key exchange itself (with a higher constant of course).

• The attack also breaks the TCSSI-security assumption of [DDF+21, Prob-
lem 3.2].

3. Dimension 4 attack

We can do a dimension 4 attack whenever we can find a, b > 0 such that
NA = bNB + a and both a and b are a sum of two squares. To increase our
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probability of success, we can tweaks the parameters NA and NB as explained in
Section 4. Note that since NA is coprime to NB, then dividing by gcd(NA, a, b) if
necessary, we may assume that NA, a, b are coprime.

Write a = a2
1 + a2

2, b = b2
1 + b2

2. Note that unlike the decomposition of a as a
sum of four squares from Section 2, these decompositions into a sum of two squares
require the factorisation of a, b.

Write α =
(
a1 −a2
a2 a1

)
, β =

(
b1 −b2
b2 b1

)
. These matrices can be interpreted

as endomorphisms of E0 or EB and commute with φB. Furthermore, α̃α = (a2
1 +

a2
2) Id, so α is an a-endomorphism, and similarly β is a b-endomorphism. A direct

computation shows that F =
(

α0 φ̂Bβ̃B

−βBφB α̃B

)
is a NA = a+ bNB-isogeny.

We can thus evaluate F , hence evaluate βBφB = φBβ0 on any point in E2
0(Fq)

in O(`A
4 log `A logNA + log2 N ′

A) arithmetic operations over Fq by [LR22]. Now let
b′ = gcd(b1, b2), from βBφB we can recover b′φB , hence we can recover the kernel of
a NB/ gcd(NB , b

′)-isogeny E0 → E′
B through which φB factors. If gcd(NB , b

′) = 1
we have directly recovered φB , otherwise we iterate the process, which is possible as
long as gcd(NB , b

′) < NB .

Remark 3.1. It is well known that b admits a primitive representation as a sum of
two squares if and only if the odd divisors of b are all congruent to 1 modulo 4 and
4 - b. In particular, if gcd(b,NB) has only prime divisors congruent to 1 modulo 4,
we can find a decomposition b = b2

1 + b2
2 such that gcd(b1, b2, NB) = 1.

Summing up this discussion, we get for the dimension 4 attack:

Theorem 3.2. In the situation of Theorem 1.1, suppose that we can find a, b > 0
such that NA = bNB + a (eventually tweaking the parameters NA, NB) and a, b can
be written as a sum of two squares: a = a2

1 + a2
2, b = b2

1 + b2
2. Assume furthermore

for simplicity that gcd(b,NB) has only prime divisors congruent to 1 modulo 4.
Then, given the factorisation of a and b, we can recover φB in classical de-

terministic time O(`4
A log `A logNA + log2 NA + log2 NB) arithmetic operations in

Fq.

4. Parameter tweaks

We can tweak the parameters NA and NB as follow, as in the strategies of [CD22;
MM22]. In the following, we assume that we are in the context of SIDH, so E0, EB

are supersingular elliptic curves defined over Fq with q = p2.
(1) We can replace NA by N ′

A = NA/dA where dA any divisor of NA.
(2) We can replace NA by N ′

A = eNA where e is a small integer prime to NB.
This requires to compute a basis of the eNA-torsion on E, possibly taking an
extension, and then guessing the images of ΦB on the NAe torsion. By the
group structure theorem of supersingular elliptic curves, since πqk = (−p)k,
E(Fqk ) ' Z/((−p)k − 1) ⊕ Z/((−p)k − 1). Hence the smallest extension
of Fq where the points of eNA torsion of E live is of degree k, the order
of −p modulo eNA. Since the NA-torsion is rational by assumption, we
have k = O(e). Sampling a eNA basis of E0, EB can be done by sampling
random points, multiplying by the cofactor pk/eNA and then checking if we
have a basis using the Weil pairing. This costs O(k2 log2 q) = O(e2 log2 q)
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operations. Guessing the image of φB on this basis involves O(e3)-tries,
using the compatibility of φB with the Weil pairing and the known image
of the NA-torsion.

(3) We can replace NB by NB/dB, where dB is a small divisor of NB. This
requires guessing the first dB-isogeny step of ΦB , and we have O(dB) guesses.

(4) We can replace NB by N ′
B = fNB where f is any smooth integer prime

to NA. This requires prolonging ΦB by an f -isogeny. If f | NB, we can
simply use the existing NB-torsion basis, hoping that we don’t accidentally
backtrack through Bob’s isogeny. For the general case, since πq = [−p], all
cyclic kernels of order f of EB are rational, and their generators live in an
extension of degree at most k = O(f). We can then sample a generator
in O(f2 log2 q) operations like in Item 2, then compute the isogeny using
Vélu’s formula. It is more expansive to compute and factorize the f -division
polynomial ψf , since it is of degree O(f3). An alternative is to construct
an f -isogeny using the f -modular polynomial φf (and its derivative), as in
the SEA algorithm [Sch95]. We can evaluate this modular polynomial in
time Õ(f2 log q) by an easy adaptation of [Kie20] (see [Rob21, Remark 5.3.9;
Rob22]), then recover a root in time Õ(f log2 q). Recovering the isogeny
can then be done in quasi-linear time by solving a differential equation
[BMS+08; Rob21, § 4.7.1]. This reduces the complexity to Õ(f2 log q +
f log2 q) operations.
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