
Breaking SIDH in polynomial time

DAMIEN ROBERT

Abstract. We show that we can break SIDH in (classical deterministic) polynomial time,
even with a random starting curve 𝐸0.

1. Introduction

We extend the recent attacks by [CD22; MM22] and prove that there exists a proven
deterministic polynomial time attack on SIDH [DJP14]/SIKE [JAC+17], even with a random
starting curve 𝐸0. Both papers had the independent beautiful idea to use isogenies between
abelian surfaces (using [Kan97, § 2]) to break a class of parameter on SIDH. Namely, on a
random starting curve 𝐸0, if the degree of the secret isogenies are 𝑁𝐴 > 𝑁𝐵, their attack
essentially apply whenever 𝑎 ≔ 𝑁𝐴 − 𝑁𝐵 is smooth. This is highly unlikely, however they
use the fact that it is possible to tweak the parameters 𝑁𝐴 and 𝑁𝐵 to augment the probability
of success (or reduce the smoothness bound on 𝑎), see Section 6. In the case where End(𝐸0)
is known, [CD22] also have a (heuristic) polynomial time attack, essentially because one
can use the endomorphism ring to compute an 𝑎-isogeny on 𝐸0 even if 𝑎 is not smooth, see
Section 5.

A natural idea is to go in even higher dimension to extend the range of parameters on
which an attack is possible, even on a random curve 𝐸0. We show in Section 2 that by going
to dimension 8, it is possible to break in polynomial time all parameters for SIDH.

It is also possible to break a large class of parameters 𝑁𝐴, 𝑁𝐵 by going to dimension 4
rather than 8, see Section 4. Namely, this is possible whenever we can write 𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎
with 𝑎, 𝑏 > 0 sum of two squares (along with some slight technical conditions). This is a
much more likely condition than smoothness of 𝑁𝐴 − 𝑁𝐵, hence (if possible tweaking the
parameters 𝑁𝐴 and 𝑁𝐵) we expect this attack to be highly likely and more efficient than the
dimension 8 attack in practice.

The idea of the dimension 8 attack is that we can always write 𝑎, 𝑏 as a sum of four squares,
hence we always get an attack in dimension 8.

Many thanks are due to the persons who commented on the prior versions. Special
thanks to Benjamin Wesolowski and Marco Streng, for suggesting to simply use 𝑏 = 1 in
the dimension 8 attack. This significantly simplify the description of the attack in this case.
(Although as noted above the general 𝑏 > 0 case is still useful for the dimension 4 attack).

Theorem 1.1. We suppose that we are given the following input: we are given a secret 𝑁𝐵-
isogeny over a finite field 𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵 along with its images on (a basis of) the 𝑁𝐴-torsion
points of 𝐸0, where 𝑁𝐴 and 𝑁𝐵 are smooth coprime integers and 𝑁𝐴 > 𝑁𝐵. We also assume
that we are given the factorisations of 𝑁𝐴 and 𝑁𝐵 and (for simplicity) that we are given a basis
of 𝐸𝐵[𝑁𝐵] and a decomposition of 𝑁𝐴 − 𝑁𝐵 as a sum of four squares.
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Let 𝔽𝑞 be the smallest field such that 𝜙𝐵, and the points of 𝐸0[𝑁𝐴] and 𝐸𝐵[𝑁𝐵] are de-
fined1. Then we can recover 𝜙𝐵 in classical deterministic time 𝑂(ℓ8

𝐴 log ℓ𝐴 log𝑁𝐴 + log2 𝑁𝐴 +
log2 𝑁𝐵) arithmetic operations in 𝔽𝑞 where ℓ𝐴 is the largest prime divisor of 𝑁𝐴.

Note that in in the context of SIDH, if 𝑁𝐵 > 𝑁𝐴 we will simply try to recover Alice’s
secret isogeny Φ𝐴 instead.

2. Dimension 8 attack

Since 𝑁𝐴 > 𝑁𝐵, write 𝑁𝐴 = 𝑁𝐵 + 𝑎 for a positive integer 𝑎 > 0. As 𝑁𝐴 is prime to 𝑁𝐵,
gcd(𝑁𝐴, 𝑎) = 1.

Let 𝑀 ∈ 𝑀4(ℤ) be a 4 × 4 matrix such that 𝑀𝑇𝑀 = 𝑎 Id. Explicitly we write 𝑎 =
𝑎2

1 + 𝑎2
2 + 𝑎2

3 + 𝑎2
4 and take

𝑀 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎1 −𝑎2 −𝑎3 −𝑎4
𝑎2 𝑎1 𝑎4 −𝑎3
𝑎3 −𝑎4 𝑎1 𝑎2
𝑎4 𝑎3 −𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟⎟
⎠

,

the matrix of the multiplication of 𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘 in the standard quaternion algebra
ℤ[𝑖, 𝑗, 𝑘]. Let 𝛼0 be the endomorphism on 𝐸4

0 given matricially by 𝑀, The dual (with respect
to the product principal polarisation) ̃𝛼0 of 𝛼0 is given matricially by 𝑀𝑇 (since integer
multiplications are their own dual), so ̃𝛼0𝛼0 = 𝑎 Id, hence 𝛼0 is an 𝑎-isogeny. We let 𝛼𝐵 be
the endomorphism of 𝐸4

𝐵 given by the same matrix 𝑀, and by abuse of notation we denote
by 𝜙𝐵 ∶ 𝐸4

0 → 𝐸4
𝐵 the diagonal embedding of 𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵. We remark that since 𝛼0 is

given by an integral matrix, it commutes with 𝜙𝐵 in the sense that we have the equation:
𝜙𝐵𝛼0 = 𝛼𝐵𝜙𝐵:

𝐸𝑔
0 𝐸𝑔

𝐵

𝐸𝑔
0 𝐸𝑔

𝐵

𝜙𝐵

𝛼0 𝛼𝐵

𝜙𝐵

Remark 2.1. The decomposition of 𝑎 as a sum of four squares is a precomputation step
that only depends on 𝑁𝐴 and 𝑁𝐵. It can be done in random polynomial time 𝑂(log2 𝑎)
by [RS86].

Let 𝐹 = ( 𝛼0 𝜙𝐵
−𝜙𝐵 𝛼𝐵

), where 𝜙𝐵 is the dual isogeny 𝐸𝐵 → 𝐸0 of 𝜙𝐵. 𝐹 is an endomor-

phism on the 8-dimensional abelian variety 𝑋 = 𝐸4
0 × 𝐸4

𝐵. Since the dual ̃𝐹 of 𝐹 is given by

̃𝐹 = (𝛼0 −𝜙𝐵
𝜙𝐵 𝛼𝐵

), we compute

̃𝐹𝐹 = 𝐹 ̃𝐹 = (𝑁𝐵 + 𝑎 0
0 𝑁𝐵 + 𝑎) = 𝑁𝐴 Id .

Hence 𝐹 is an 𝑁𝐴-isogeny on 𝑋 (with respect to the product polarisations).2

1Wemake no further assumptions on 𝐸0 and 𝐸𝐵: we do not require them to be supersingular. In the context
of SIDH, 𝔽𝑞 will be the base field 𝔽𝑝2.

2We refer to Section 3 for the definition of an 𝑁-isogeny between principally polarised abelian varieties in
dimension 𝑔.
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We can compute the action of 𝐹 on the 𝑁𝐴-torsion. Indeed, since 𝑁𝐴 is prime to 𝑁𝐵,
we know how 𝜙𝐵 acts on 𝐸𝐵[𝑁𝐴]: if (𝑃1, 𝑃2) is a basis of 𝐸0[𝑁𝐴], and 𝑄1 = 𝜙𝐵(𝑃1),
𝑄2 = 𝜙𝐵(𝑃2), then 𝜙𝐵(𝑄1) = 𝑁𝐵𝑃1, 𝜙𝐵(𝑄2) = 𝑁𝐵𝑃2. From the action of 𝐹 on 𝑋[𝑁𝐴]
it is easy to compute its kernel using some linear algebra and discrete logarithms, either
directly in 𝑋 or, via the Weil pairing, in 𝜇𝑁𝐴

(𝔽𝑞). These discrete logarithms are inexpensive
because 𝑁𝐴 is assumed to be smooth.

But in fact we can directly recover Ker𝐹 as follow: it is given by the image of ̃𝐹 on 𝑋[𝑁𝐴].
Furthermore, since 𝑎 is prime to 𝑁𝐴, the kernel of 𝐹 is exactly the image of ̃𝐹 on 𝐸4

0[𝑁𝐴] × 0,
so we immediately get the 8 generators (𝑔1, … , 𝑔8) of the kernel Ker𝐹 = {𝛼0(𝑃), 𝜙𝐵(𝑃) ∣
𝑃 ∈ 𝐸4

0[𝑁𝐴]}. This step costs 𝑂(log 𝑎) arithmetic operations in 𝐸0(𝔽𝑞).
We can then compute 𝐹 (on any point 𝑃 ∈ 𝑋(𝔽𝑞)) using an isogeny algorithm in di-

mension 8, decomposing the 𝑁𝐴-endomorphism 𝐹 as a chain of ℓ-isogeny for ℓ the prime
factors of 𝑁𝐴. If ℓ𝐴 is the largest prime divisor of 𝑁𝐴, the complexity of the first ℓ𝐴-isogeny
computation will first be 𝑂(log𝑁𝐴) arithmetic operations in 𝐴(𝔽𝑞) to compute the mul-
tiples 𝑁𝐴

ℓ𝐴
𝑔𝑖, followed by the individual ℓ𝐴-isogeny computations on 𝑃 and the 𝑔𝑖. These

isogenies computations cost 𝑂(ℓ8 log ℓ) operations over 𝔽𝑞 using [LR22]. Since we com-
pute a composition of at most 𝑂(log𝑁𝐴) isogenies, the total cost of evaluating 𝐹 on 𝑃 is
𝑂(log2 𝑁𝐴 + log𝑁𝐴ℓ8

𝐴 log ℓ𝐴).
Remark 2.2. The isogenies computations in [LR22; BCR10; Som21] use a (level 𝑛 = 4
or 𝑛 = 2) theta model of 𝑋, which we can compute as the (fourfold) product theta structure
of the theta models of𝐸0 and𝐸𝐵. It is also well known how to switch between the theta model
and the Weierstrass model on an elliptic curve, and it is not hard to extend the conversion
to the product of elliptic curves, since the product theta structure is given by the Segre
embedding. The arithmetic on the theta models can be done in 𝑂(1) arithmetic operations
in a 𝑂(1)-extension of 𝔽𝑞 (if 8 ∣ 𝑁𝐴𝑁𝐵 the theta model will already be rational). However
the big 𝑂() notation hides an exponential complexity in the dimension 𝑔. In dimension 8
and level 𝑛 = 4, the theta model uses 216 coordinates, so we would need in practice to switch
to the Kummer model by working in level 𝑛 = 2 which “only” requires 28 coordinates. This
is another reason why we would prefer to compute an endomorphism in dimension 𝑔 = 4
rather than 𝑔 = 8: in dimension 4 we would only need 28 coordinates in level 𝑛 = 4, or 24

coordinates in level 𝑛 = 2.
Thus we can evaluate 𝐹 on any point of 𝑋, so we can evaluate 𝜙𝐵 or 𝜙𝐵 on any point of

𝐸0 (resp. 𝐸𝐵). We can now recover the kernel of 𝜙𝐵 on 𝐸0 as the image of 𝜙𝐵 on 𝐸𝐵[𝑁𝐵].
If (𝑄1, 𝑄2) is a basis of 𝐸𝐵[𝑁𝐵], we compute 𝑄′

𝑖 = 𝜙𝐵(𝑄𝑖) by evaluating 𝐹 on the point
(0, 0, 0, 0, 𝑄𝑖, 0, 0, 0), and the kernel of 𝜙𝐵 is generated by whichever 𝑄′

𝑖 has order 𝑁𝐵. If
𝜔(𝑁𝐵) is the number of distinct prime divisors of 𝑁𝐵, this step costs 𝑂(𝜔(𝑁𝐵) log𝑁𝐵) =
𝑂(log2 𝑁𝐵) operations in 𝐸0(𝔽𝑞) along with two calls to the evaluation of 𝐹. This concludes
the complexity analysis of Theorem 1.1.

Remark 2.3.

• It is immediate to generalize Theorem 1.1 to recover an 𝑁𝐵-isogeny 𝜙𝐵 between
abelian varieties 𝐸0, 𝐸𝐵 of dimension 𝑔. The attack reduces to computing one 𝑁𝐴-
isogeny in dimension 8𝑔 (or eventually 4𝑔 or even 2𝑔 if the parameters allow for
it).

The same proof as above holds.The only difference is that this time we getKer𝜙𝐵
as the image of 𝜙𝐵 on a 2𝑔-dimensional basis of 𝐸𝐵[𝑁𝐵]. To extract a 𝑔 dimensional
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basis of the kernel from these images, we can take any 𝑔 points and check if the
Weil pairing matrix with a basis of 𝐸0[𝑁𝐵] has full rank (we expect this will be the
case with high probability). Hence, since the dimension 𝑔 is fixed, this still costs
𝑂(𝜔(𝑁𝐵) log𝑁𝐵) = 𝑂(log2 𝑁𝐵).

• When ℓ𝐴 = 𝑂(1), we can use a SIDH style fast evaluation of the 𝑁𝐴-isogeny 𝐹
as in [DJP14, § 4.2.2]. If 𝜔(𝑁𝐵) = 𝑂(1) also (for instance if ℓ𝐵 = 𝑂(1)), the
attack becomes quasi-linear: 𝑂(log𝑁𝐴), hence as efficient asymptotically as the key
exchange itself (with a higher constant of course).

• The attack also breaks the TCSSI-security assumption of [DDF+21, Problem 3.2].

3. Dimension 2𝑔 attack

We first generalize the construction of Section 2, and then show how it can be applied (in
certain cases) to mount an attack in dimension 4 or 2.

Recall that an𝑁-isogeny 𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) is an isogeny such that 𝑓 ∗𝜆𝐵 ≔ ̃𝑓 ∘𝜆𝐵∘𝑓 =
𝑁𝜆𝐴, where ̃𝑓 ∶ �̃� → 𝐴 is the dual isogeny. Letting ̃𝑓 = 𝜆−1

𝐴
̃𝑓 𝜆𝐵 be the dual isogeny ̃𝑓 ∶ 𝐵 → 𝐴

of 𝑓 with respect to the principal polarisations, this condition is equivalent to ̃𝑓 𝑓 = 𝑁.
If Θ𝐴 is a divisor associated to 𝜆𝐴, sections of 𝑚Θ𝐴 gives coordinates on 𝐴 (if 𝑚 ≥ 3 we

get a projective embedding by Lefschetz’ theorem). Given a suitable model of (𝐴, 𝑚Θ𝐴),
a representation of the kernel 𝐾 = Ker 𝑓 of an 𝑁-isogeny 𝑓 (for instance coordinates for
its generators), and the coordinates of a point 𝑃 ∈ 𝐴, an 𝑁-isogeny algorithm will output
a suitable model of (𝐵, 𝑚Θ𝐵) and the coordinates of the image 𝑓 (𝑃) in this model. For
instance, the 𝑁-isogeny algorithm from [LR22] uses a theta model of level 𝑚 = 2 or 𝑚 = 4,
and in dimension 𝑔 can compute the image of an 𝑁-isogeny in 𝑂(𝑁𝑔 log𝑁) arithmetic
operations over the base field.

The endomorphism 𝐹 of Section 2 is a particular case of a construction due to Kani for
𝑔 = 1 [Kan97, § 2], which generalizes immediately to 𝑔 > 1.

We define a (𝑑1, 𝑑2)-isogeny diamond as a decomposition of a 𝑑1𝑑2-isogeny 𝑓 ∶ 𝐴 → 𝐵
between principally polarised abelian varieties of dimension 𝑔 into two different decomposi-
tions 𝑓 = 𝑓 ′

1 ∘ 𝑓1 = 𝑓 ′
2 ∘ 𝑓2 where 𝑓1 is a 𝑑1-isogeny and 𝑓2 is a 𝑑2-isogeny. Then 𝑓 ′

1 will be a
𝑑2-isogeny and 𝑓 ′

2 a 𝑑1-isogeny:

𝐴 𝐴1

𝐴2 𝐵

𝑓1

𝑓2 𝑓 ′
1

𝑓 ′
2

Lemma 3.1 (Kani). Let 𝑓 = 𝑓 ′
1 ∘ 𝑓1 = 𝑓 ′

2 ∘ 𝑓2 be a (𝑑1, 𝑑2)-isogeny diamond as above. Then

𝐹 = ( 𝑓1 𝑓 ′
1

−𝑓2 𝑓 ′
2
) is a 𝑑-isogeny 𝐹 ∶ 𝐴 × 𝐵 → 𝐴1 × 𝐴2 where 𝑑 = 𝑑1 + 𝑑2.

Its kernel is given by the image of ̃𝐹 = (𝑓1 −𝑓2
𝑓 ′
2 𝑓 ′

2
) on (𝐴1 × 𝐴2)[𝑑]. If 𝑑1 is prime to 𝑑2,

we also have Ker𝐹 = {(𝑓1(𝑃), 𝑓 ′
2(𝑃)) ∣ 𝑃𝑖𝑛𝐴1[𝑑]}.

Proof. We check that ̃𝐹𝐹 = 𝑑 Id. Furthermore if 𝑑1 is prime to 𝑑2, then the restriction of ̃𝐹
to 𝐴1[𝑑] × {0} is injective, hence its image spans the full kernel since #𝐴1[𝑑] = 𝑑2𝑔. �

Thematrix 𝐹 from Section 2 is a special case of Lemma 3.1 where 𝐴 = 𝐸𝑔
0, 𝐵 = 𝐸𝑔

𝐵 and 𝐹
is actually an endomorphism.
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Write𝑁𝐴 = 𝑏𝑁𝐵+𝑎, 𝑎, 𝑏 > 0, eventually applying the parameter tweaks of Section 6.Note
that since 𝑁𝐴 is coprime to 𝑁𝐵, then dividing by gcd(𝑁𝐴, 𝑎, 𝑏) if necessary, we may assume
that 𝑁𝐴, 𝑎, 𝑏 are coprime. Suppose that we can find an explicit 𝑏-isogeny 𝛽 ∶ 𝐸𝑔

𝐵 → 𝑋𝐵, and
a 𝑎-isogeny 𝛼 ∶ 𝐸𝑔

0 → 𝑋0. Let 𝛾 = 𝛽 ∘ 𝜙𝐵 ∶ 𝐸𝑔
0 → 𝑋𝐵, it is a 𝑏𝑁𝐵-isogeny. Then we ca build

the following pushouts,

𝐸𝑔
0 𝐸𝑔

𝐵 𝑋𝐵

𝑋0 𝑌 𝑋

𝜙𝐵

𝛼

𝛽

𝛼″ 𝛼′

𝜙′
𝐵 𝛽′

and since 𝑎 is prime to 𝑏𝑁𝐵, 𝛾′ = 𝛽′𝜙′
𝐵 ∶ 𝑋0 → 𝑋 is a 𝑁𝐵𝑏-isogeny and 𝛼′ a 𝑎-isogeny.

We thus have the following isogeny diamond

𝑋0 𝐸𝑔
0

𝑋 𝑋𝐵

̃𝛼

𝛾′ 𝛾

𝛼′

so by Lemma 3.1 𝐹 = ( ̃𝛼 �̃�
−𝛾′ 𝛼′) is a 𝑁𝐴-isogeny 𝐹 ∶ 𝑋0 × 𝑋𝐵 → 𝐸𝑔

0 × 𝑋. In particular,

Ker𝐹 is the image of ̃𝐹 on (𝐸𝑔
0 × 𝑋)[𝑁𝐴]. Since 𝑎 is prime to 𝑏𝑁𝑏, it is also the image of ̃𝐹

on 𝐸𝑔
0[𝑁𝐴] × 0: Ker𝐹 = {(𝛼(𝑃), 𝛾(𝑃)) ∣ 𝑃 ∈ 𝐸𝑔

0[𝑁𝐴]}. Note that this means that we don’t
need to construct 𝑋 explicitly, we only need to know it exists, and will recover it when we
evaluate 𝐹.

This allows to compute 𝐹 as a smooth 𝑁𝐴-isogeny of dimension 2𝑔 in time 𝑂(log2 𝑁𝐴 +
log𝑁𝐴ℓ2𝑔

𝐴 log ℓ𝐴) by [LR22], hence evaluate 𝛾 = 𝛽 ∘ 𝜙𝐵 on any point of 𝐸𝑔
0. It remains

to recover 𝜙𝐵 from 𝛾. Applying ̃𝛽 we can always recover 𝑏𝜙𝐵, hence we may recover 𝜙𝐵
whenever 𝑏 is prime to𝑁𝐵. Otherwise, we at least recover a𝑁𝐵/ gcd(𝑏, 𝑁𝐵)-isogeny through
which 𝜙𝐵 factors, and we iterate, which is possible as long as gcd(𝑏, 𝑁𝐵) < 𝑁𝐵.

A variant is to construct 𝛽 ∶ 𝐸𝑔
0 → 𝑋𝐵, and to form the pushout squares:

𝑋𝐵 𝐸𝑔
0 𝐸𝑔

𝐵

𝑌 𝑋0 𝑋

𝛼′

𝛽

𝛼

𝜙𝐵

𝛼″

𝛽′

𝜙′
𝐵

We then have the following isogeny diamond

𝑌 𝑋𝐵

𝑋 𝐸𝑔
𝐵

𝛼′

𝜙′
𝐵∘𝛽′ 𝜙𝐵∘𝛽

𝛼″

from which we construct the 𝑁𝐴-isogeny 𝐹 ∶ 𝑌 × 𝐸𝑔
𝐵 → 𝑋𝐵 × 𝑋

𝐹 = ( 𝛼′ 𝛽 ∘ 𝜙𝐵
−𝜙′

𝐵 ∘ 𝛽′ 𝛼″ ) ,

where Ker𝐹 = {(𝛼′(𝑃), 𝜙𝐵 ∘ ̃𝛽(𝑃)) ∣ 𝑃 ∈ 𝑋𝐵[𝑁𝐴]. Here we need to construct the pushout
𝑌 first, but not 𝑋, it will be recovered when we compute 𝐹. And like in the previous case,
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from 𝜙𝐵 ∘ ̃𝛽(𝑃) we can always recover 𝑏𝜙𝐵, which is enough to recover a partial information
on 𝜙𝐵 as long as gcd(𝑏, 𝑁𝐵) < 𝑁𝐵.

We leave to the reader the case where 𝛼, 𝛽 are constructed from 𝐸𝐵.

4. Dimension 4 attack

Using Section 3, we can do a dimension 4 attack whenever we can find 𝑎, 𝑏 > 0 such that
𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎 and both 𝑎 and 𝑏 are a sum of two squares. To increase our probability of
success, we can tweaks the parameters 𝑁𝐴 and 𝑁𝐵 as explained in Section 6.

Write 𝑎 = 𝑎2
1 + 𝑎2

2, 𝑏 = 𝑏2
1 + 𝑏2

2. Note that unlike the decomposition of 𝑎 as a sum of
four squares from Section 2, these decompositions into a sum of two squares requires the
factorisation of 𝑎, 𝑏.

Write 𝛼 = (𝑎1 −𝑎2
𝑎2 𝑎1

), 𝛽 = (𝑏1 −𝑏2
𝑏2 𝑏1

). These matrices can be interpreted as endo-

morphisms of 𝐸0 or 𝐸𝐵 and commute with 𝜙𝐵. Furthermore, ̃𝛼𝛼 = (𝑎2
1 + 𝑎2

2) Id, so 𝛼 is an
𝑎-endomorphism, and similarly 𝛽 is a 𝑏-endomorphism. Lemma 3.1 or a direct computation

shows that 𝐹 = ( 𝛼0 𝜙𝐵𝛽𝐵
−𝛽𝐵𝜙𝐵 𝛼𝐵

) is a 𝑁𝐴 = 𝑎 + 𝑏𝑁𝐵-endomorphism of 𝐸2
0 × 𝐸2

𝐵.

We can thus evaluate 𝐹, hence evaluate 𝛽𝐵𝜙𝐵 = 𝜙𝐵𝛽0 on any point in 𝐸2
0(𝔽𝑞) in

𝑂(log2 𝑁𝐴 + log𝑁𝐴ℓ4
𝐴 log ℓ𝐴) arithmetic operations over 𝔽𝑞 by [LR22]. In this situation we

can recover more than just 𝑏𝜙𝐵. Indeed from the matrix 𝛽𝐵𝜙𝐵 we can directly recover 𝑏1𝜙𝐵
and 𝑏2𝜙𝐵; so if 𝑏′ = gcd(𝑏1, 𝑏2), we can recover 𝑏′𝜙𝐵 in 𝑂(log 𝑏) arithmetic operations
on 𝐸𝐵. This means that we can recover the kernel of a 𝑁𝐵/ gcd(𝑁𝐵, 𝑏′)-isogeny 𝐸0 → 𝐸′

𝐵
through which 𝜙𝐵 factors. If gcd(𝑁𝐵, 𝑏′) = 1 we have directly recovered 𝜙𝐵, otherwise we
iterate the process, which is possible as long as gcd(𝑁𝐵, 𝑏′) < 𝑁𝐵.

Remark 4.1. It is well known that 𝑏 admits a primitive representation as a sum of two
squares if and only if the odd prime divisors of 𝑏 are all congruent to 1 modulo 4 and 4 ∤ 𝑏.
In particular, if the odd prime divisors of gcd(𝑏, 𝑁𝐵) are congruent to 1 modulo 4, and if
2 ∣ 𝑁𝐵 then 4 ∤ 𝑏, we can find a decomposition 𝑏 = 𝑏2

1 + 𝑏2
2 such that gcd(𝑏1, 𝑏2, 𝑁𝐵) = 1.

Furthermore, by Perron’s formula, the number of integers less than 𝑥 that can be written as
a sum of two squares (resp. a sum of two primitive squares) is roughly 0.7642𝑥/√log 𝑥 where
0.7642 is an approximation of the Landau-Ramanujan constant (resp. ≈ 0.49𝑥/√log 𝑥).

Summing up this discussion, we get for the dimension 4 attack:

Theorem 4.2. In the situation of Theorem 1.1, suppose that we can find 𝑎, 𝑏 > 0 such that
𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎 (eventually tweaking the parameters 𝑁𝐴, 𝑁𝐵) and 𝑎, 𝑏 can be written as a sum
of two squares: 𝑎 = 𝑎2

1 + 𝑎2
2, 𝑏 = 𝑏2

1 + 𝑏2
2. Assume furthermore for simplicity that gcd(𝑏, 𝑁𝐵)

has its odd prime divisors congruent to 1 modulo 4, and if 2 ∣ gcd(𝑏, 𝑁𝐵) then 4 ∤ 𝑏.
Then, given the factorisation of 𝑎 and 𝑏, we can recover 𝜙𝐵 in classical deterministic time

𝑂(ℓ4
𝐴 log ℓ𝐴 log𝑁𝐴 + log2 𝑁𝐴 + log2 𝑁𝐵) arithmetic operations in 𝔽𝑞.

5. Dimension 2 attack

We briefly describe how the dimension 2 attacks, due to [CD22; MM22], fit into the
general framework of Section 3.

Write 𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎, to apply Section 3 for 𝑔 = 1, we need to construct a 𝑎-isogeny
𝛼 ∶ 𝐸0 → 𝑋0 and a 𝑏-isogeny 𝛽 ∶ 𝐸𝐵 → 𝑋𝐵. If we don’t assume that End(𝐸0) is known,
we can only construct a 𝑎-endomorphism whenever 𝑎 is square: if 𝑎 = 𝑎2

1 we take the 𝑎-
endomorphism [𝑎1]. More generally, since it is also easy to construct isogenies of smooth



Breaking SIDH in polynomial time 7

degree starting from𝐸0 or𝐸𝐵 (see Section 6), the framework of Section 3 shows that the attack
applies whenever 𝑁𝐴 = 𝑏2

1𝑒𝑁𝐵 + 𝑎2
1𝑓 where 𝑒, 𝑓 are sufficiently smooth.This is essentially the

attack of [MM22], except they only look at 𝑁𝐴 − 𝑁𝐵 smooth (and tweaking of parameters).
In [CD22], the authors use the matrix 𝐹 as an oracle attack, which requires many isogeny

guesses, compared to the direct isogeny recovery of [MM22]. The fact that we could directly
recover 𝜙𝐵 from 𝐹 was also noticed independently at least by Oudompheng [Oud22], Petit,
and Wesolowski [Wes22].

However, in [CD22], the authors also use the fact that for the parameters of SIKE submitted
to NIST (or the Microsoft challenge [Cos21]), 𝐸0 has a know endomorphism 𝛾 = 2𝑖, hence
End(𝐸0) ⊃ ℤ[2𝑖]. Hence we can construct an explicit 𝑎-endomorphism 𝛼 on 𝐸0 whenever
𝑎 = 𝑎2

1 + 4𝑎2
2, which is possible whenever all primes 𝑝 such that 𝑝 ≡ 3 mod 4 or 𝑝 = 2 are

of even exponent in 𝑎. Hence, by Section 3, prolonging by isogenies of smooth degrees if
necessary, for this starting curve 𝐸0 the attack holds whenever 𝑁𝐴 = (𝑏2

1 +4𝑏2
2)𝑒𝑁𝐵 +(𝑎2

1 +
4𝑎2

2)𝑓. Otherwise, one needs to do some guesses, as in Section 6. In [CD22], the authors only
look at 𝑁𝐴 = 𝑁𝐵 +(𝑎2

1 +4𝑎2
2)𝑓, but in [PO+22] Oudompheng, inspired by an earlier version

of this paper describing the dimension 4 attack, implemented the more general formula
above.

Finally we mention that [Wes22] gives a method to construct an 𝑎-isogeny on any su-
persingular elliptic curve with known endomorphism ring. Applying this to 𝑎 = 𝑁𝐴 − 𝑁𝐵,
computing this 𝑎-endomorphism can be seen as a precomputation, and then we have a direct
isogeny recovery without parameter tweaks as in Section 2, except we only need to compute
isogenies in dimension 2 rather than 8.

6. Parameter tweaks

We can tweak the parameters 𝑁𝐴 and 𝑁𝐵 as follow, as in the strategies of [CD22; MM22]
(upon which we improve a bit). In the following, we assume that we are in the context of
SIDH, so 𝐸0, 𝐸𝐵 are supersingular elliptic curves defined over 𝔽𝑞 with 𝑞 = 𝑝2.

(1) We can replace 𝑁𝐴 by 𝑁′
𝐴 = 𝑁𝐴/𝑑𝐴 where 𝑑𝐴 any divisor of 𝑁𝐴.

(2) We can replace 𝑁𝐴 by 𝑁′
𝐴 = 𝑒𝑁𝐴 where 𝑒 is a small integer prime to 𝑁𝐵. This

requires to compute a basis of the 𝑒𝑁𝐴-torsion on 𝐸, possibly taking an extension,
and then guessing the images of Φ𝐵 on the 𝑁𝐴𝑒 torsion. By the group structure
theoremof supersingular elliptic curves, since𝜋𝑞𝑘 = (−𝑝)𝑘,𝐸(𝔽𝑞𝑘) ≃ ℤ/((−𝑝)𝑘−
1) ⊕ ℤ/((−𝑝)𝑘 − 1). Hence the smallest extension of 𝔽𝑞 where the points of 𝑒𝑁𝐴
torsion of 𝐸 live is of degree 𝑘, the order of −𝑝 modulo 𝑒𝑁𝐴. Since the 𝑁𝐴-torsion
is rational by assumption, we have 𝑘 = 𝑂(𝑒). Sampling a 𝑒𝑁𝐴 basis of 𝐸0, 𝐸𝐵

can be done by sampling random points, multiplying by the cofactor (−𝑝)𝑘−1
𝑒𝑁𝐴

and

then checking if we have a basis using the Weil pairing. This costs 𝑂(𝑘2 log2 𝑞) =
𝑂(𝑒2 log2 𝑞) operations. Guessing the image of𝜙𝐵 on this basis involves𝑂(𝑒3)-tries,
using the compatibility of 𝜙𝐵 with the Weil pairing and the known image of the
𝑁𝐴-torsion.

(3) We can replace 𝑁𝐵 by 𝑁𝐵/𝑑𝐵, where 𝑑𝐵 is a small divisor of 𝑁𝐵. This requires
guessing the first 𝑑𝐵-isogeny step of Φ𝐵, and we have 𝑂(𝑑𝐵) guesses.

(4) We can replace 𝑁𝐵 by 𝑁′
𝐵 = 𝑓 𝑁𝐵 where 𝑓 is any smooth integer prime to 𝑁𝐴.

This requires prolonging Φ𝐵 by an 𝑓-isogeny. If 𝑓 ∣ 𝑁𝐵, we can simply use the
existing 𝑁𝐵-torsion basis, hoping that we don’t accidentally backtrack through Bob’s
isogeny. For the general case, since 𝜋𝑞 = [−𝑝], all cyclic kernels of order 𝑓 of 𝐸𝐵
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are rational, and their generators live in an extension of degree at most 𝑘 = 𝑂(𝑓 ).
We can then sample a generator (any primitive point 𝑃 of 𝑓-torsion) in 𝑂(𝑓 2 log2 𝑞)
operations like in Item 2, then compute the isogeny using Vélu’s formula [Vél71]
or the Velusqrt algorithm [BDL+20] in time 𝑂(𝑓 2 log 𝑞) (resp. 𝑂(𝑓 3/2 log 𝑞)) for
a total cost of 𝑂(𝑓 2 log2 𝑞).

It is more expansive to compute and factorize the 𝑓-division polynomial 𝜓𝑓, since
it is of degree 𝑂(𝑓 3). An alternative is to construct an 𝑓-isogeny using the 𝑓-modular
polynomial 𝜙𝑓 (and its derivative), as in the SEA algorithm [Sch95]. We can evaluate
this modular polynomial in time 𝑂(𝑓 2 log 𝑞) by an easy adaptation of [Kie20] (see
[Rob21, Remark 5.3.9; Rob22]), then recover a root in time 𝑂(𝑓 log2 𝑞). Recovering
the isogeny can then be done in quasi-linear time by solving a differential equation
[BMS+08; Rob21, § 4.7.1]. This reduces the complexity to 𝑂(𝑓 2 log 𝑞 + 𝑓 log2 𝑞)
operations.
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