Breaking SIDH in polynomial time

DAMIEN ROBERT

Abstract

We show that we can break SIDH in (classical deterministic) polynomial time, even with a random starting curve E_{0}.

1. Introduction

1.1. Result. We extend the recent attacks by [CD22; MM22] and prove that there exists a proven deterministic polynomial time attack on SIDH [JD11; DJP14] / SIKE [JAC+17], even with a random starting curve E_{0}.

Both papers had the independent beautiful idea to use isogenies between abelian surfaces (using [Kan97, § 2]) to break a large class of parameters on SIDH. Namely, on a random starting curve E_{0}, if the degree of the secret isogenies are $N_{A}>N_{B}$, their attack essentially apply whenever $a:=N_{A}-N_{B}$ is smooth. This is highly unlikely, however they use the fact that it is possible to tweak the parameters N_{A} and N_{B} to augment the probability of success (or reduce the smoothness bound on a), see Section 6 . In the case where End $\left(E_{0}\right)$ is known, [CD22] also have a (heuristic) polynomial time attack, essentially because one can use the endomorphism ring to compute an a-isogeny on E_{0} even if a is not smooth, see Section 5 .

A natural idea is to go in even higher dimension to extend the range of parameters on which an attack is possible, even on a random curve E_{0}. We show in Section 2 that by going to dimension 8 , it is possible to break in polynomial time all parameters for SIDH.

Theorem 1.1. We suppose that we are given the following input: we are given a secret $N_{B^{-}}$ isogeny over a finite field $\phi_{B}: E_{0} \rightarrow E_{B}$ along with its images on (a basis of) the N_{A}-torsion points of E_{0}, where N_{A} and N_{B} are smooth coprime integers and $N_{A}>N_{B}$. We also assume that we are given the factorisations of N_{A} and N_{B} and (for simplicity) that we are given a basis of $E_{B}\left[N_{B}\right]$ and a decomposition of $N_{A}-N_{B}$ as a sum of four squares. Let \mathbb{F}_{q} be the smallest field such that ϕ_{B}, and the points of $E_{0}\left[N_{A}\right]$ and $E_{B}\left[N_{B}\right]$ are defined ${ }^{1}$.

Then there is an explicit N_{A}-endomorphism $F: E_{0}^{4} \times E_{B}^{4}$ in dimension $g=8$ such that evaluating F at (P, P, P, P, Q, Q, Q, Q), for any $P \in E_{0}\left(\mathbb{F}_{q}\right), Q \in E_{B}\left(\mathbb{F}_{q}\right)$ allows to recover $\phi_{B}(P)$ and $\widetilde{\phi_{B}}(Q)$. Furthermore the kernel of F is described by 8 explicit rational generators which can be computed in time $O\left(\log N_{A}\right)$.

This reduces recovering ϕ_{B} to evaluating the isogeny F in dimension 8 given generators of its kernel. Using the algorithm of [LR22], such an isogeny can be evaluated in time $O\left(\ell_{A}^{8} \log \ell_{A} \log N_{A}+\right.$ $\log ^{2} N_{A}$) where ℓ_{A} is the largest prime divisor of N_{A}.

In particular, we can find generators for the kernel of ϕ_{B} in 2-evaluations of F. Assuming that we want a basis of $\operatorname{Ker} \phi_{B}$ rather than just generators, the total cost is then $O\left(\ell_{A}^{8} \log \ell_{A} \log N_{A}+\right.$ $\log ^{2} N_{A}+\log ^{2} N_{B}$) arithmetic operations in \mathbb{F}_{q} (in classical deterministic time).

[^0]
Remark 1.2.

- The attack can even be made "quasi-linear", ie in $\widetilde{O}\left(\log N_{A}\right)$ arithmetic operations in \mathbb{F}_{q}, when $\ell_{A}=O\left(\log \log N_{A}\right)$, see Remark 2.3.
- In the context of SIDH, if $N_{B}>N_{A}$ we will simply try to recover Alice's secret isogeny Φ_{A} instead. By considering the dual isogeny \tilde{F}, we will also see in Section 6.3 that as in [QKL+21], in Theorem 1.1 it is also possible to directly reconstruct ϕ_{B} (with the same complexity) as long as $N_{A}^{2}>N_{B}$.
- The method of Section 2 shows that the following embedding lemma holds: for any N-isogeny $f: A \rightarrow B$ between abelian varieties of dimension g, and any $N^{\prime}>N$, it is possible to efficiently embed f into an N^{\prime}-isogeny F in dimension $8 g$ (or $4 g$ or $2 g$ in certain cases). This provides considerable flexibility at the cost of going up in dimension, and was used in [Rob22b] to show that an isogeny over a finite field always admits an efficient representation.
1.2. Outline. We prove Theorem 1.1 in Section 2. This Section is written to be short and self contained, and since it applies in all cases, without requiring any parameter tweaks, the complexity analysis is straightforward. We recommend the reader, unless interested in the gory details of the dimension 2 and 4 attacks, to skip directly to this section.

For reasons stated in Remark 2.2, for practical attacks it would be more convenient to go in lower dimension. We first describe a common framework encapsulating possible dimension $2 g$ attacks in Section 3, before describing our dimension 4 attack in Section 4. We explain how the dimension 2 attacks of [CD22; MM22] fit into this common framework in Section 5. Parameter tweaks, needed for the dimensions 2 and 4 attacks, are described in Section 6.

For this introduction, we give more context in Section 1.3 explain how our attacks fit into the broad class of "torsion point attacks" in Section 1.4, and summarize in Section 1.5 the different complexities of the different dim 2, 4 and 8 attacks of [CD22; MM22; Rob22a].
1.3. Context. Supersingular Isogeny Diffie-Hellman (SIDH) is a post-quantum key exchange protocol initially proposed in [JD11] with further ameliorations (among many others) in [DJP14; CLN16]. A standard transform gives a key encapsulation method SIKE (supersingular isogeny key encapsulation) [JAC+17] which was submitted to the NIST post-quantum competition, and recently selected as an alternative candidate in the fourth round of the competition.

The key hardness problem of many isogeny based protocols is based on the difficulty of recovering a large degree isogeny $f: E \rightarrow E^{\prime}$ between two ordinary or supersingular elliptic curves, the so-called isogeny path problem. To the best of our knowledge, without more information on E and E^{\prime} (like an explicit representation of part of their endomorphism rings) this problem still has exponential quantum security for supersingular curves.

However, for the SIDH key exchange, Bob will reveal not only the codomain E_{B} of his secret N_{B}-isogeny $\phi_{B}: E_{0} \rightarrow E_{B}$ (N_{B} a large smooth number) but also the action of ϕ_{B} on the N_{A}-torsion $E_{0}\left[N_{A}\right]$ for an integer N_{A} prime to N_{B}, typically by revealing the image $Q_{1}=\phi_{B}\left(P_{1}\right), Q_{2}=\phi_{B}\left(P_{2}\right)$ of a basis $\left(P_{1}, P_{2}\right)$ of $E_{0}\left[N_{A}\right]$. This added information then allows Alice to pushforward her secret N_{A} isogeny $\phi_{A}: E_{0} \rightarrow E_{A}$ to $\phi_{A}^{\prime}: E_{B} \rightarrow E_{A B}$, via $\operatorname{Ker} \phi_{A}^{\prime}=\phi_{B}\left(\operatorname{Ker} \phi_{A}\right)$. Alice also reveals the action of her secret isogeny ϕ_{A} on $E_{0}\left[N_{B}\right]$, and Bob then pushforward his secret N_{B} isogeny to $\phi_{B}^{\prime}: E_{A} \rightarrow E_{A B}$ via $\operatorname{Ker} \phi_{B}^{\prime}=\phi_{A}\left(\operatorname{Ker} \phi_{B}\right)$. The codomain is the same since the maps $\phi_{B}^{\prime} \circ \phi_{A}: E_{0} \rightarrow E_{A} \rightarrow E_{A B}$ and $\phi_{A}^{\prime} \circ \phi_{B}: E_{0} \rightarrow$
$E_{B} \rightarrow E_{A B}$ have the same kernel $\operatorname{Ker} \phi_{A}+\operatorname{Ker} \phi_{B}:$

The supersingular curve $E_{A B}$ is then the common secret of Alice and Bob.
But as we will see, this is a key weakness that allows to break the SIDH key exchange. This is worth emphasizing once more: the work of [CD22; MM22; Rob22a] only breaks SSI-T, the supersingular isogeny with torsion problem, not the more general supersingular isogeny path problem. In particular, it does not apply to protocols like [CLM+18; DKL+20].
1.4. Torsion points attacks. It has been well known that the publication of these so called torsion points could, for some parameters, reduce the security of the supersingular isogeny problem.

Petit in [Pet17] had the first key idea of the following "torsion points" attack: assume that the attacker Eve could somehow combine Bob's secret N_{B}-isogeny ϕ_{B} and/or its dual $\widetilde{\phi_{B}}$ with an isogeny α she controls into a N_{A}-isogeny $F: E_{0} \rightarrow E^{\prime}$. Eve knows the action of ϕ_{B} on $E_{0}\left[N_{A}\right]$ because Bob published it, and she also knows the action of the dual isogeny $\widetilde{\phi_{B}}: E_{B} \rightarrow E_{0}$ on $E_{B}\left[N_{A}\right]$. Indeed, if $\left(P_{1}, P_{2}\right)$ is a basis of $E_{0}\left[N_{A}\right]$, and $Q_{1}=\phi_{B}\left(P_{1}\right)$, $Q_{2}=\phi_{B}\left(P_{2}\right)$, then $\widetilde{\phi_{B}}\left(Q_{1}\right)=N_{B} P_{1}, \widetilde{\phi_{B}}\left(Q_{2}\right)=N_{B} P_{2}$. Notice that Q_{1}, Q_{2} is a basis of $E_{B}\left[N_{A}\right]$ since N_{A} is prime to N_{B}.

Since she knows the action of α too because she controls it, she can recover the action of F on (a basis of) $E_{0}\left[N_{A}\right]$. It is then easy for Eve to compute the kernel of F using some linear algebra and discrete logarithms, either directly in E_{0} or, via the Weil pairing, in $\mu_{N_{A}}\left(\overline{\mathbb{F}}_{q}\right)$. These discrete logarithms are inexpensive because N_{A} is assumed to be smooth. From this kernel $\operatorname{Ker} F$, she can then evaluate F on any point of E_{0} via an isogeny algorithm, from which she can try to recover ϕ_{B} if extracting ϕ_{B} from F is possible.

In his attack, Petit considers for F an endomorphism of E_{0} of the form $F=\widetilde{\phi_{B}} \circ \gamma \circ \phi_{B}+[d]$, where γ is a trace 0 endomorphism (meaning that $\tilde{\gamma}=-\gamma$) of degree e. Then it is easy to check that F is a $N_{B}^{2} e+d^{2}$-isogeny, so it remains to find parameters such that $N_{B}^{2} e+d^{2}=N_{A}$, and to construct a γ of degree e. From the knowledge of F, it is not too hard to extract ϕ_{B}.

Remark 1.3. A variant is to "tweak" the parameters, in order to increase the range of susceptible parameters. For instance if we can find parameters such that $N_{B}^{2} e+d^{2}=u N_{A}$ with u smooth, then F will be an $u N_{A}$-isogeny. We only know its action on $E_{0}\left[N_{A}\right.$], so we cannot recover it directly. However F is a composition $F_{2} \circ F_{1}$ of a N_{A}-isogeny F_{1} followed by a u-isogeny F_{2}, so we can at least recover F_{1} and then try to brute force F_{2}. A similar strategy holds for higher dimensional attacks, we will describe more possible tweaks in Section 6.

This attack, while powerful, can only apply to unbalanced parameters (here $N_{A}>$ N_{B}^{2}), and requires the knowledge of a non trivial endomorphism of E_{0}. Further work, like [QKL+21], improves the range of parameters susceptible to these attacks, but still requires a non trivial endomorphism.

For SIKE's NIST submission, such an endomorphism is easy to find because the starting curve E_{0} is defined over \mathbb{F}_{p}. So in [Cos21], Costello argues that if this line of "torsion points" attacks is improved to reach the SIKE's parameters submitted to the NIST, a preventive measure would be to switch the starting elliptic curve E_{0} to a "random" one, so that Eve has no prior informations on its endomorphism ring. (This was not considered for SIKE's submission because it would involve either a trusted multipartite setup to build E_{0} or for

Alice's to first walk a random path and publish a "random" E_{0}, hence adding some complexity to the key exchange.)

The second key breakthrough was in the recent attacks by [CD22; MM22] by CastryckDecru and Maino-Martindale respectively (we refer to Sections 1.5 and 5 for the respective contributions of these two articles). They both, independently, had the beautiful idea that it is possible to extend the range of parameters susceptible to "torsion points" attack by constructing a N_{A}-isogeny F in dimension 2, on a product of two supersingular curves. Indeed, going up in dimension largely opens up the range of isogeny we can construct explicitly.

They exploit the following (easy) lemma, due to Kani in [Kan97] as part of his deep work on classifying covers $C \rightarrow E$ of elliptic curves by genus 2 curves: given a N_{B}-isogeny $\phi_{B}: E_{0} \rightarrow E_{B}$ and a a-isogeny $\alpha: E_{0} \rightarrow E^{\prime}$, with a prime to N_{B}, it is possible to build an explicit $a+N_{B}$-isogeny $F: E_{0} \times E^{\prime \prime} \rightarrow E_{B} \times E^{\prime}$ in dimension 2 . This means, assuming $N_{A}>N_{B}$, that Eve can break SIDH as long as she can find a $a=N_{A}-N_{B}$ isogeny from E_{0}.

This is in particular the case whenever a is smooth, and is the focus of Maino and Martindale's article (Castryck and Decru also mention this case briefly). While the probability to get a smooth a is small, tweaking the parameters can increase it, and subsequent analysis by De Feo showed that this gives a (heuristic) subexponential $L(1 / 2)$ attack. In particular, torsion points attacks can apply even to "random curves"!

Castryck and Decru furthermore exploit the fact that for the NIST submission, the curve E_{0} has an explicit endomorphism $2 i$, hence it is easy to construct a-isogenies whenever $a=a_{1}^{2}+4 a_{2}^{2}$. In particular, they obtain a (heuristic) polynomial time attack for this specific E_{0} (assuming the factorisation of a is precomputed). Subsequent work by Wesolowski [Wes22] shows that if $\operatorname{End}\left(E_{0}\right)$ is given for the starting curve, then a-isogeny can always be computed (for any a) in polynomial time, without requiring its factorisation. This shows that CastryckDecru's attack do not require parameter tweaks, hence is polynomial time without heuristics (see Section 1.5).

Our current work stems from the fact that it is easy to extend Kani's lemma to dimension g abelian varieties (see Section 3). Namely, from a a-isogeny and a N_{B}-isogeny in dimension g (with a prime to N_{B}), we can build an explicit $a+N_{B}$-isogeny in dimension $2 g$. We then exploit that even if we do not know $\operatorname{End}\left(E_{0}\right)$, on E_{0}^{2} we can always build endomorphisms of the form $\alpha=\left(\begin{array}{cc}a_{1} & a_{2} \\ -a_{2} & a_{1}\end{array}\right)$, which give $a_{1}^{2}+a_{2}^{2}$-endomorphisms. Hence we get a dimension $2 g$ attack, $g=2$, whenever $a=a_{1}^{2}+a_{2}^{2}$ (eventually after parameter tweaks).

And of course the general case stems from the fact that an integer is always a sum of four squares: $a=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ [\triangle เó 84 ; Lag7o], from which we can then build a a endomorphism α on E_{0}^{4} in dimension $g=4$, hence get a dimension $2 g=8$ attack. The fact that there always exist a-endomorphisms on A^{4} for any abelian variety A and any integer a was first used by Zarhin in [Zar74] and is known as "Zarhin's trick" or the "quaternion trick".

We remark also that unlike the decomposition of a as a sum of two squares, which requires its factorisation, the decomposition as a sum of four squares can be done in (random) polynomial time, see Remark 2.1. It is then easy to build by hand a $N_{B}+a$-endomorphism on $E_{0}^{4} \times E_{B}^{4}$, we will see in Section 2 that $F=\left(\begin{array}{cc}\alpha & \widetilde{\phi_{B}} \\ -\phi_{B} & \tilde{\alpha}\end{array}\right)$

This endomorphism F can be seen as a special case of the dimension g generalisation of Kani's lemma to build isogenies on product of abelian varieties, see Section 3. But it can also be seen as a variant of Petit's endomorphism to higher dimension. Indeed, if F_{1} is a
d_{1}-endomorphism and F_{2} is a d_{2}-endomorphism, then $F_{1}+F_{2}$ is a $d_{1}+d_{2}$-endomorphism whenever $\widetilde{F_{1}} F_{2}=-\widetilde{F_{2}} F_{1}$. Our dimension 8 endomorphism is the case $F=F_{1}+F_{2}$ with $F_{1}=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \tilde{\alpha}\end{array}\right)$ a a-endomorphism and $F_{2}=\left(\begin{array}{cc}0 & \widetilde{\phi_{B}} \\ -\phi_{B} & 0\end{array}\right)$, a N_{B}-endomorphism. Petit's endomorphism $F=\widetilde{\phi_{B}} \circ \gamma \circ \phi_{B}+[d]$ is the case where $F_{1}=\widetilde{\phi_{B}} \circ \gamma \circ \phi_{B}$ is antisymmetric (ie of trace o, ie $\widetilde{F_{1}}=-F_{1}$) and $F_{2}=[d]$ is symmetric (ie $\widetilde{F_{2}}=F_{2}$), with $F_{1} F_{2}=F_{2} F_{1}$.
1.5. Complexities of the different attacks. The article by Castryck and Decru was published first in 2022-07-30, with only minor revisions since. As mentioned above, this article mainly focuses on the dimension 2 attack when End $\left(E_{0}\right)$ is NIST's starting curve, ie contains the endomorphism $2 i$. In this case they obtain a heuristic polynomial time algorithm (with no explicit bound). The heuristic is due to two reasons. First in [CD22], Castryck and Decru guess a starting path for ϕ_{B} and use F as an oracle to know if the guess was correct or not, then they iterate the process. The heuristic is then that if a wrong path is guessed, the codomain of F will be a Jacobian of a superspecial curve rather than a product of two supersingular elliptic curves. Assuming heuristically that the codomain of F for a wrong guess is uniform among all superspecial surfaces, the probability of a mistake is $\approx 1 / p$, hence negligible. But, as first noticed by Maino and Martindale in [MM22], and also independently by Oudompheng [Oud22], Petit, and Wesolowski [Wes22], the isogeny F allows to directly recover ϕ_{B}. This gives a more direct attack (no need to guess many isogenies), and removes the first heuristic.

The second reason is that for their attack to work on the starting E_{0}, they need $N_{A}-N_{B}$ to be of the form $a_{1}^{2}+4 a_{2}^{2}$. For a uniform integer less than x, the probability to be decomposed in this form is roughly $1 / \sqrt{\log x}$ (see Remark 4.2), so assuming parameter tweaks behave like uniform integers, we may assume that we can tweak the parameters without increasing their size too much in such a way the attack can apply. Also this decomposition (which is a precomputation) supposes access to a factorisation oracle; hence is in polynomial time only in the quantum model. This second heuristic (and the need for factorisation) can be removed using work by Wesolowski [Wes22] explaining how to directly build a $N_{A}-N_{B}$-isogeny when $\operatorname{End}\left(E_{0}\right)$ is known.

We mention also that Castryck and Decru implemented their attack in Magma (so far this is the only publicly available implemented attack), which showed that it was practical, breaking Microsoft's and the NIST parameters. The timings were then considerably improved in an open source reimplementation in Sage $[\mathrm{POP}+22]$, where Oudompheng implemented the direct isogeny recovery of [MM22] and the extended parameter tweaks of [Rob22a] (see Section 5).

The article by Maino and Martindale was published in 2022-08-08, with a second major revision in 2022-08-25, fixing an error where their initial endomorphism candidate did not respect the product polarisations. They focus on the case where $\operatorname{End}\left(E_{0}\right)$ is not known, case which is also briefly investigated by Castryck and Decru. The first version does not contain a complexity estimate, but in the second version they use an analysis due to De Feo which shows that, using slightly more general parameter tweaks, they have an heuristic subexponential $L(1 / 2)$ attack.

This current article [Rob22a] was first published in 2022-08-11 (it's better to forget about the 2022-08-10 version which contained typos in the definition of the matrix $F \ldots$...) focusing mainly on the polynomial time dimension 8 attack (and explaining briefly the dimension 4 attack). There was a revision on 2022-08-23 expanding on the dimension 4 attack and another revision on 2022-08-25 giving a general dimension $2 g$ attack framework that shows how the dimension 2 attacks of Castryck-Decru and Maino-Martindale and our dimension 4
and 8 attacks all fit together. This current version was published in 2022-09-02 to expand the introduction and mention the complexity result of the second version of [MM22]. We expect a further revision once the dimension 4 and 8 are finished to be implemented in order to give explicit timings.

At the time of its publication, [Rob22a] was the only one containing a precise complexity estimate, and the only available polynomial time attack (with or without random starting curve) with no heuristics. Due to the work of Wesolowski and De Feo mentioned above, the current situation (as far as I am aware) is now as follow:

- When E_{0} is NIST's starting curve, the attack of Castryck-Decru using the endomorphism $2 i$, as implemented in [POP +22] is in heuristic polynomial time. The precomputation require tweaking of parameters and a factorisation oracle.

Using [Wes22], the dimension 2 attack can apply to any elliptic curve with known endomorphism ring in proven polynomial time. After a polynomial time precomputation, the attack is the same as in Theorem 1.1 except that F is computed in dimension 2, hence its evaluation costs $\widetilde{O}\left(\ell_{A}^{2} \log N_{A}+\log ^{2} N_{A}\right)$ arithmetic operations in \mathbb{F}_{q}, or even $\widetilde{O}\left(\log N_{A}\right)$ when $\ell_{A}=O\left(\log \log N_{A}\right)$. We mention also that for the isogeny computation in dimension 2 , since any principally polarised surface is either a Jacobian or an elliptic curve, one can also use the Jacobian model of [CE14] (which can be extended to the case of product of elliptic curves), rather than the theta model of [LR22].

- When E_{0} is a "random" curve, the dimension 2 attack of Maino and Martindale (and also Castryck and Decru) is in (heuristic) subexponential time.

The dimension 4 attack of Section 4 is in heuristic polynomial time (because it needs parameter tweaks). The precomputation is very similar to the precomputation done for Castryck-Decru using the endomorphism $2 i$ (because both attacks rely on decomposing an integer as a sum of two squares), hence requires a factorisation oracle.

The dimension 8 attack of Section 2 is in proven polynomial time, and as noted above is even in "quasi-linear" $\widetilde{O}\left(\log N_{A}\right)$ arithmetic operations over \mathbb{F}_{q} when $\ell_{A}=O\left(\log \log N_{A}\right)$. The precomputation step is the decomposition of $N_{A}-N_{B}$ as a sum of four squares and can be done in randomized $O\left(\log ^{2} N_{A}\right)$ binary operations.

The dimension 8 (resp. 4) attack remains the only proven (resp. heuristic) polynomial time attacks for a random curve E_{0}.

When $\operatorname{End}\left(E_{0}\right)$ is known and $\ell_{A}=O\left(\log \log N_{A}\right)$, both Castryck-Decru's dimension 2 attack (combined with [Wes22]) and the dimension 8 attacks are quasilinear, although the constants involved in dimension 8 are much higher than in dimension 2 (see Remark 2.2). The dimension 8 attack might still be better in certain cases if the precomputation step of [Wes22] is too expensive (because its own precomputation is fast). An implementation is ongoing to compare timings.
1.6. Thanks. Many thanks are due to the persons who commented on the prior versions. Special thanks to Benjamin Wesolowski and Marco Streng, for suggesting to simply use $b=1$ in the dimension 8 attack. This significantly simplify the description of the attack in this case. (Although as noted above the general $b>0$ case is still useful for the dimension 4 attack).

This work was supported by the ANR ANR-19-CE48-0008 project Ciao.

2. Dimension 8 attack

Since $N_{A}>N_{B}$, write $N_{A}=N_{B}+a$ for a positive integer $a>0$. It is harmless to suppose that N_{A} is prime to N_{B}, otherwise if $d=\operatorname{gcd}\left(N_{A}, N_{B}\right)$, we could recover the kernel of a d-isogeny through which ϕ_{B} factors (since we know its action on $E_{0}[d] \subset E_{0}\left[N_{A}\right]$), so we could reduce to solving the problem with new coprime parameters $N_{A}^{\prime}=N_{A} / d$, $N_{B}^{\prime}=N_{B} / d$.

As N_{A} is prime to $N_{B}, \operatorname{gcd}\left(N_{A}, a\right)=1$. Let $M \in M_{4}(\mathbb{Z})$ be a 4×4 matrix such that $M^{T} M=a$ Id. Explicitly we write $a=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ and take

$$
M=\left(\begin{array}{cccc}
a_{1} & -a_{2} & -a_{3} & -a_{4} \\
a_{2} & a_{1} & a_{4} & -a_{3} \\
a_{3} & -a_{4} & a_{1} & a_{2} \\
a_{4} & a_{3} & -a_{2} & a_{1}
\end{array}\right)
$$

the matrix of the multiplication of $a_{1}+a_{2} i+a_{3} j+a_{4} k$ in the standard quaternion algebra $\mathbb{Z}[i, j, k]$ [Ham44]. Let α_{0} be the endomorphism on E_{0}^{4} given matricially by M, The dual (with respect to the product principal polarisation) $\tilde{\alpha}_{0}$ of α_{0} is given matricially by M^{T} (since integer multiplications are their own dual), so $\tilde{\alpha}_{0} \alpha_{0}=a$ Id, hence α_{0} is an a-isogeny. We let α_{B} be the endomorphism of E_{B}^{4} given by the same matrix M, and by abuse of notation we denote by ϕ_{B} Id : $E_{0}^{4} \rightarrow E_{B}^{4}$ the diagonal embedding of $\phi_{B}: E_{0} \rightarrow E_{B}$. We remark that since α_{0} is given by an integral matrix, it commutes with ϕ_{B} in the sense that we have the equation: $\phi_{B} \alpha_{0}=\alpha_{B} \phi_{B}$:

Remark 2.1. The decomposition of a as a sum of four squares is a precomputation step that only depends on N_{A} and N_{B}. It can be done in random polynomial time $O\left(\log ^{2} a\right)$ by [RS86].

Let $F=\left(\begin{array}{cc}\alpha_{0} & \widetilde{\phi_{B}} \text { Id } \\ -\phi_{B} \text { Id } & \widetilde{\alpha_{B}}\end{array}\right)$, where $\widetilde{\phi_{B}}$ is the dual isogeny $E_{B} \rightarrow E_{0}$ of $\phi_{B} . F$ is an endomorphism on the 8 -dimensional abelian variety $X=E_{0}^{4} \times E_{B}^{4}$. Since the dual \tilde{F} of F is given by $\tilde{F}=\left(\begin{array}{cc}\widetilde{\alpha_{0}} & -\widetilde{\phi_{B}} \text { Id } \\ \phi_{B} \text { Id } & \alpha_{B}\end{array}\right)$ by Lemma 3.2, we compute

$$
\tilde{F} F=F \tilde{F}=\left(\begin{array}{cc}
N_{B}+a & 0 \\
0 & N_{B}+a
\end{array}\right)=N_{A} \mathrm{Id} .
$$

Hence F is an N_{A}-isogeny on X (with respect to the product polarisations). ${ }^{2}$
As in Section 1.4, the action of F on the N_{A}-torsion is explicit, hence we can recover its kernel. But in this case we can directly recover $\operatorname{Ker} F$ as follow: it is given by the image of \tilde{F} on $X\left[N_{A}\right]$. Furthermore, since a is prime to N_{A}, the kernel of F is exactly the image of \tilde{F} on $E_{0}^{4}\left[N_{A}\right] \times 0$, so we immediately get the 8 generators $\left(g_{1}, \ldots, g_{8}\right)$ of the kernel $\operatorname{Ker} F=$ $\left\{\left(\widetilde{\alpha_{0}}(P),\left(\phi_{B} \mathrm{Id}\right)(P)\right) \mid P \in E_{0}^{4}\left[N_{A}\right]\right\}$. This step costs $O(\log a)$ arithmetic operations in $E_{0}\left(\mathbb{F}_{q}\right)$.

[^1]We can then compute F (on any point $P \in X\left(\mathbb{F}_{q}\right)$) using an isogeny algorithm in dimension 8 , decomposing the N_{A}-endomorphism F as a chain of ℓ-isogeny for ℓ the prime factors of N_{A}. If ℓ_{A} is the largest prime divisor of N_{A}, the complexity of the first ℓ_{A}-isogeny computation will first be $\widetilde{O}\left(\log N_{A}\right)$ arithmetic operations in $A\left(\mathbb{F}_{q}\right)$ to compute the multiples $\frac{N_{A}}{\ell_{A}} g_{i}$, followed by the individual ℓ_{A}-isogeny computations on P and the g_{i}. These isogenies computations cost $O\left(\ell^{8} \log \ell\right)$ operations over \mathbb{F}_{q} using [LR22]. Since we compute a composition of at most $O\left(\log N_{A}\right)$ isogenies, the total cost of evaluating F on P is $O\left(\log ^{2} N_{A}+\log N_{A} \ell_{A}^{8} \log \ell_{A}\right)$.

Remark 2.2. The isogenies computations in [LR22; BCR10; Som21] use a (level $m=4$ or $m=2$) theta model of X, which we can compute as the (fourfold) product theta structure of the theta models of E_{0} and E_{B}. It is also well known how to switch between the theta model and the Weierstrass model on an elliptic curve, and it is not hard to extend the conversion to the product of elliptic curves, since the product theta structure is given by the Segre embedding. The arithmetic on the theta models can be done in $O(1)$ arithmetic operations in a $O(1)$-extension of \mathbb{F}_{q} (if $8 \mid N_{A} N_{B}$ the theta model will already be rational). However the big $O()$ notation hides an exponential complexity in the dimension g. In dimension 8 and level $m=4$, the theta model uses 2^{16} coordinates, so we would need in practice to switch to the Kummer model by working in level $m=2$ which "only" requires 2^{8} coordinates. This is another reason why we would prefer to compute an endomorphism in dimension $g=4$ rather than $g=8$: in dimension 4 we would only need 2^{8} coordinates in level $m=4$, or 2^{4} coordinates in level $m=2$.

Thus we can evaluate F on any point of X, so we can evaluate ϕ_{B} or $\widetilde{\phi}_{B}$ on any point of E_{0} (resp. E_{B}). We can now recover the kernel of ϕ_{B} on E_{0} as the image of $\widetilde{\phi}_{B}$ on $E_{B}\left[N_{B}\right]$. If (Q_{1}, Q_{2}) is a basis of $E_{B}\left[N_{B}\right]$, we compute $Q_{i}^{\prime}=\widetilde{\phi}_{B}\left(Q_{i}\right)$ by evaluating F on the point $\left(0,0,0,0, Q_{i}, 0,0,0\right)$, and the kernel of ϕ_{B} is generated by whichever Q_{i}^{\prime} has order N_{B}. If $\omega\left(N_{B}\right)$ is the number of distinct prime divisors of N_{B}, this step costs $O\left(\omega\left(N_{B}\right) \log N_{B}\right)=$ $O\left(\log ^{2} N_{B}\right)$ operations in $E_{0}\left(\mathbb{F}_{q}\right)$ along with two calls to the evaluation of F. This concludes the complexity analysis of Theorem 1.1.

Remark 2.3.

- It is immediate to generalize Theorem 1.1 to recover an N_{B}-isogeny ϕ_{B} between abelian varieties E_{0}, E_{B} of dimension g. The attack reduces to computing one $N_{A^{-}}$ isogeny in dimension $8 g$ (or eventually $4 g$ or even $2 g$ if the parameters allow for it).

The same proof as above holds. The only difference is that this time we get $\operatorname{Ker} \phi_{B}$ as the image of $\widetilde{\phi}_{B}$ on a $2 g$-dimensional basis of $E_{B}\left[N_{B}\right]$. To extract a g dimensional basis of the kernel from these generators, we can take any g points and check if the Weil pairing matrix with a basis of $E_{0}\left[N_{B}\right]$ has full rank (we expect this will be the case with high probability). Hence, since the dimension g is fixed, this still costs $O\left(\omega\left(N_{B}\right) \log N_{B}\right)=O\left(\log ^{2} N_{B}\right)$.

- When $\ell_{A}=O(1)$, or even $\ell_{A}=O\left(\log \log N_{A}\right)$, we can use a SIDH style fast evaluation of the N_{A}-isogeny F as in [DJP $14, \S 4.2 .2$]. The attack to recover generators of $\operatorname{Ker} \phi_{B}$ then becomes "quasi-linear": $\widetilde{O}\left(\log N_{A}\right)$ arithmetic operations, hence as efficient asymptotically as the key exchange itself (with a higher constant of course).
- The attack also breaks the TCSSI-security assumption of [DDF+21, Problem 3.2].

3. Dimension $2 g$ attack

We first generalize the construction of Section 2, and then show how it can be applied (in certain cases) to mount an attack in dimension 4 or 2.

3.1. N-isogenies.

Definition 3.1. An N-isogeny $f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{B}\right)$ of principally polarised abelian varieties is an isogeny such that $f^{*} \lambda_{B}:=\hat{f} \circ \lambda_{B} \circ f=N \lambda_{A}$, where $\hat{f}: \hat{B} \rightarrow \hat{A}$ is the dual isogeny. Letting $\tilde{f}=\lambda_{A}^{-1} \widehat{f} \lambda_{B}$ be the dual isogeny $\tilde{f}: B \rightarrow A$ of f with respect to the principal polarisations, this condition is equivalent to $\tilde{f f}=N$.

If Θ_{A} is a divisor associated to λ_{A}, sections of $m \Theta_{A}$ gives coordinates on A (if $m \geq 3$ we get a projective embedding by Lefschetz' theorem). Given a suitable model of $\left(A, m \Theta_{A}\right)$, a representation of the kernel $K=\operatorname{Ker} f$ of an N-isogeny f (for instance coordinates for its generators), and the coordinates of a point $P \in A$, an N-isogeny algorithm will output a suitable model of $\left(B, m \Theta_{B}\right)$ and the coordinates of the image $f(P)$ in this model. For instance, the N-isogeny algorithm from [LR22] uses a theta model of level $m=2$ or $m=4$, and in dimension g can compute the image of an N-isogeny in $O\left(N^{g} \log N\right)$ arithmetic operations over the base field.

Note that in general, for an N-isogeny algorithm, we only have the kernel K and the source polarised abelian variety $\left(A, \Theta_{A}\right)$. We first need to check that the divisor $N \Theta_{A}$ descends through the isogeny $f: A \rightarrow B=A / K$. This implies that K must be a subgroup of $K\left(N \Theta_{A}\right)$, the kernel of the polarisation $N \lambda_{A}: A \rightarrow \hat{A}$ associated to $N \Theta_{A}$. And by descent theory [Mum66, Proposition 1 p.291; Mum70, Theorem 2 p. 231], the descents of $N \Theta_{A}$ correspond exactly to level subgroups \widetilde{K} of K in Mumford's theta group $G\left(N \Theta_{A}\right)$. Hence $N \Theta_{A}$ descends if and only if K is isotropic for the commutator pairing of $G\left(N \Theta_{A}\right)$ (and the descent Θ_{B} will be of degree one if and only if K is maximal isotropic by a standard degree computation). Mumford proves in [Mum70, (5) p.229] that this commutator pairing is yet another incarnation of the Weil pairing. So the descent condition is thus equivalent to K being maximal isotropic for $e_{N, \Theta_{A}}$ in $A[N]$, as is well known (see eg [Kan97, Proposition 1.1]). Such a K is usually the entry point of an N-isogeny algorithm.

Our current situation is different: we already have a target codomain B with a polarisation λ_{B}, and we want $N \Theta_{A}$ to descend to λ_{B}, not just any other principal polarisation λ_{B}^{\prime} (on which there will be many, see Remark 3.5). So it does not suffice to check that $\operatorname{Ker} f$ is maximal isotropic for the Weil pairing, we want $f^{*} \Theta_{B} \simeq N \Theta_{A}$ (isomorphism up to algebraic equivalence), ie $\tilde{f} \circ f=N$.

If this condition is satisfied, we know that $N \Theta_{A}$ descend, hence by the above discussion we automatically know that $\operatorname{Ker} f$ is maximal isotropic. Another way to see that without invoking descent theory is to use the fact that $\operatorname{Ker} f=\operatorname{Im} \tilde{f} \mid B[N]$, and that since \hat{f} is the dual of f for the Weil pairings $e_{A, N}$ on $(A \times \hat{A})$ [N] and $e_{B, N}$ on $(B \times \hat{B})$ [N], then \tilde{f} is the dual of f for the Weil pairings $e_{\lambda_{A}, N}$ on $(A \times A)[N]$ and $e_{\lambda_{B}, N}$ on $(B \times B)[N]$. In particular, if $x, y \in \operatorname{Ker} f, x=\tilde{f}\left(x^{\prime}\right), y=\tilde{f}\left(y^{\prime}\right)$ for $x^{\prime}, y^{\prime} \in B[N]$, so $e_{\lambda_{A}, N}(x, y)=$ $e_{\lambda_{A}, N}\left(\tilde{f}\left(x^{\prime}\right), \tilde{f}\left(y^{\prime}\right)\right)=e_{\lambda_{B}, N}\left(x^{\prime}, f \circ \tilde{f}\left(y^{\prime}\right)\right)=e_{\lambda_{B}, N}\left(x^{\prime}, N y^{\prime}\right)=1$.

We need the following standard Lemma:
Lemma 3.2. If $F=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right):\left(A, \lambda_{A}\right) \times\left(B, \lambda_{B}\right) \rightarrow\left(C, \lambda_{C}\right) \times\left(D, \lambda_{D}\right)$, then for the product polarisations on $A \times B$ and $C \times D, \tilde{F}=\left(\begin{array}{ll}\tilde{a} & \tilde{c} \\ \tilde{b} & \tilde{d}\end{array}\right)$.

Proof. Recall that we have a canonical isomorphism $\hat{A} \simeq \operatorname{Pic}^{0}(A)$, and that under this isomorphism the dual of f is given by $\hat{f}=f^{*}$. This shows that $\hat{F}: \hat{C} \times \hat{D} \rightarrow \hat{A} \times \hat{B}$ is given by $\hat{F}=\left(\begin{array}{ll}\hat{a} & \hat{c} \\ \hat{b} & \hat{d}\end{array}\right)$ (see eg [MGE12, Proposition 11.28]). Since the product polarisations act component by component by definition (see eg the proof of [BLO4, Corollary 5.3.6] or the proof of [Kan16, Proposition 61]), we then get that $\tilde{F}=\left(\begin{array}{ll}\tilde{a} & \tilde{c} \\ \tilde{b} & \tilde{d}\end{array}\right)$.
3.2. Isogeny diamonds. The endomorphism F of Section 2 is a particular case of a construction due to Kani for $g=1$ [Kan97, §2], which generalizes immediately to $g>1$.

We define a (d_{1}, d_{2})-isogeny diamond as a decomposition of a $d_{1} d_{2}$-isogeny $f: A \rightarrow B$ between principally polarised abelian varieties of dimension g into two different decompositions $f=f_{1}^{\prime} \circ f_{1}=f_{2}^{\prime} \circ f_{2}$ where f_{1} is a d_{1}-isogeny and f_{2} is a d_{2}-isogeny. Then f_{1}^{\prime} will be a d_{2}-isogeny and f_{2}^{\prime} a d_{1}-isogeny:

Lemma 3.3 (Kani). Let $f=f_{1}^{\prime} \circ f_{1}=f_{2}^{\prime} \circ f_{2}$ be a $\left(d_{1}, d_{2}\right)$-isogeny diamond as above. Then $F=\left(\begin{array}{cc}f_{1} & \widetilde{f_{1}^{\prime}} \\ -f_{2} & \widetilde{f_{2}^{\prime}}\end{array}\right)$ is ad-isogeny $F: A \times B \rightarrow A_{1} \times A_{2}$ where $d=d_{1}+d_{2}$.

Its kernel is given by the image of $\tilde{F}=\left(\begin{array}{cc}\widetilde{f_{1}} & -\widetilde{f_{2}} \\ f_{2}^{\prime} & \widetilde{f_{2}^{\prime}}\end{array}\right)$ on $\left(A_{1} \times A_{2}\right)$ [d]. If d_{1} is prime to d_{2}, we also have $\operatorname{Ker} F=\left\{\left(\widetilde{f_{1}}(P), f_{2}^{\prime}(P)\right) \mid P \in A_{1}[d]\right\}$, the kernel is thus of rank $2 g$.

Proof. We check, using Lemma 3.2, that $\tilde{F} F=d$ Id. Furthermore if d_{1} is prime to d_{2}, then the restriction of \tilde{F} to $A_{1}[d] \times\{0\}$ is injective, hence its image spans the full kernel since $\# A_{1}[d]=d^{2 g}$.

The matrix F from Section 2 is a special case of Lemma 3.3 where $A=E_{0}^{g}, B=E_{B}^{g}$ and F is actually an endomorphism.
3.3. Description of the attack. Write $N_{A}=N_{B}+a, a>0$. Suppose that we can find an explicit a-isogeny $\alpha: E_{0}^{g} \rightarrow X_{0}$. Then we can consider the following pushout:

Hence we have the following isogeny diamond

so by Lemma 3.3, $F=\left(\begin{array}{cc}\tilde{\alpha} & \widetilde{\phi_{B}} \\ -\phi_{B}^{\prime} & \alpha^{\prime}\end{array}\right)$ is a N_{A}-isogeny $F: X_{0} \times E_{B}^{g} \rightarrow E_{0}^{g} \times X_{B}$. In particular, $\operatorname{Ker} F$ is the image of \tilde{F} on $\left(E_{0}^{g} \times X_{B}\right)\left[N_{A}\right]$. Since a is prime to N_{b}, it is also the image of \tilde{F} on $E_{0}^{g}\left[N_{A}\right] \times 0$: $\operatorname{Ker} F=\left\{\left(\alpha(P), \phi_{B}(P)\right) \mid P \in E_{0}^{g}\left[N_{A}\right]\right\}$. In particular, we don't need to build X_{B}, we will recover it when evaluating F.

Notice that if $\alpha_{0}: E_{0} \rightarrow E^{\prime}$ is an a-isogeny, then $\operatorname{diag}\left(\alpha_{0}\right): E_{0}^{g} \rightarrow X_{0}:=E^{\prime g}$ is also an a-isogeny. So on our product of elliptic curves, we can always compose or precompose with smooth isogenies, see Section 6.2.

To increase the parameters susceptible to this attack, we can also postcompose and precompose $\phi_{B}: E_{0}^{g} \rightarrow E_{B}^{g}$ by isogenies β_{1}, β_{2}. Write $N_{A}=b N_{B}+a, a, b>0$, eventually applying the parameter tweaks of Section 6 . Note that since N_{A} is coprime to N_{B}, then dividing by $\operatorname{gcd}\left(N_{A}, a, b\right)$ if necessary, we may assume that N_{A}, a, b are coprime. Write $b=b_{1} b_{2}$, and suppose that we can find an explicit b_{1}-isogeny $\beta_{1}: E_{0}^{g} \rightarrow Y_{0}$, a b_{2}-isogeny $\beta_{2}: E_{B}^{g} \rightarrow Y_{B}$, and a a-isogeny $\alpha: E_{0}^{g} \rightarrow X_{0}$. Let $\gamma=\beta_{2} \circ \phi_{B} \circ \widetilde{\beta_{1}}: Y_{0} \rightarrow Y_{B}$, it is a $b N_{B}$-isogeny. Consider the following pushouts,

since a is prime to $b N_{B}, \gamma^{\prime}=\beta_{2}^{\prime} \circ \phi_{B}^{\prime} \circ \widetilde{\beta_{1}^{\prime}}: Z_{0} \rightarrow Z_{B}$ is a $N_{B} b$-isogeny and $\alpha^{\prime}, \alpha^{\prime \prime}$ are a-isogenies.

We thus have the following isogeny diamond

so by Lemma 3.3, $F=\left(\begin{array}{cc}\tilde{\alpha} & \tilde{\gamma} \\ -\gamma^{\prime} & \alpha^{\prime}\end{array}\right)$ is a N_{A}-isogeny $F: Z_{0} \times Y_{B} \rightarrow Y_{0} \times Z_{B}$. In particular, Ker F is the image of \tilde{F} on $\left(Y_{0} \times Z_{B}\right)\left[N_{A}\right]$. Since a is prime to $b N_{b}$, it is also the image of \tilde{F} on $Y_{0} \times 0: \operatorname{Ker} F=\left\{\left(\alpha^{\prime}(P), \gamma(P)\right) \mid P \in Y_{0}\right\}$. Note that as before, this means that we don't need to construct Z_{B} explicitly, however in this case we need to construct the pushout Z_{0}.

This allows to compute F as a smooth N_{A}-isogeny of dimension $2 g$ in time $O\left(\log ^{2} N_{A}+\right.$ $\log N_{A} \ell_{A}^{2 g} \log \ell_{A}$) by [LR22], hence evaluate $\gamma=\beta_{2} \circ \phi_{B} \circ \widetilde{\beta_{1}}$ on any point of Y_{0}. It remains to recover ϕ_{B} from γ. Applying $\widetilde{\beta_{2}}$ and β_{1}, we can always recover $b \phi_{B}$, hence we may recover ϕ_{B} whenever b is prime to N_{B}. Otherwise, we at least recover a $N_{B} / \operatorname{gcd}\left(b, N_{B}\right)$-isogeny through which ϕ_{B} factors, and we iterate, which is possible as long as $\operatorname{gcd}\left(b, N_{B}\right)<N_{B}$.

We leave to the reader the case where α is constructed from E_{B}.
In summary we have reduced recovering ϕ_{B} to evaluating the isogeny F in dimension $2 g$:
Theorem 3.4. In the situation of Theorem 1.1, suppose that we can find $a, b>0$ such that $N_{A}=b N_{B}+a$ (eventually tweaking the parameters N_{A}, N_{B}), with a, b, N_{a} coprime, $b=b_{1} b_{2}$, and a b_{1}-isogeny $\beta_{1}: E_{0}^{g} \rightarrow Y_{0}$, a b_{2}-isogeny $\beta_{2}: E_{B}^{g} \rightarrow Y_{B}$, and a a-isogeny $\alpha: E_{0}^{g} \rightarrow X_{0}$. Assume furthermore for simplicity that $\operatorname{gcd}\left(b, N_{B}\right)=1$ (or is small). Let T be a bound on the arithmetic operations required to evaluate $\beta_{1}, \beta_{2}, \widetilde{\beta_{1}}, \widetilde{\beta_{2}}$ and the pushout α^{\prime} of α and β_{1} on
rational points. Then, we can recover generators of $\operatorname{Ker} \phi_{B}$ in $O\left(\ell_{A}^{2 g} \log \ell_{A} \log N_{A}+\log ^{2} N_{A}+\right.$ T) arithmetic operations in \mathbb{F}_{q}.

Remark 3.5. In dimension 8 , the domain (and codomain) of F is a product of supersingular elliptic curves, hence is a superspecial abelian variety. of dimension 8 . The same is true for the isogeny F in dimension $2 g$ by the argument below. Since F is an N_{A}-isogeny with N_{A} prime to the characteristic of the base field, F, or its decomposition into a product of ℓ-isogenies, preserve the a-number of the intermediate abelian varieties. Hence they have a-number equal to $2 g$, so they are still superspecial. By a theorem due to Deligne, Ogus and Shioda [Shi79, Theorem 3.5], they are all isomorphic (without the polarisation!) to $E_{0}^{2 g}$. So in the decomposition of F we always stay on the same abelian variety $E_{0}^{2 g}$, except we gradually change its polarisation. For instance in the dimension 2 attack, we start with a product polarisation but the intermediate polarisations will generically be indecomposable, hence correspond to Jacobians of genus 2 hyperelliptic superspecial curves.

4. Dimension 4 attack

In dimension 2, we can always write an a-endomorphism on E_{0}^{2} whenever $a=a_{1}^{2}+a_{2}^{2}$. So using Section 3, we can do a dimension 4 attack whenever we can find $a, b>0$ such that $N_{A}=b N_{B}+a$ and both a and b are a sum of two squares. To increase our probability of success, we can also tweaks the parameters N_{A} and N_{B} as explained in Section 6.

Remark 4.1. Since we can always prolong α and β by isogenies of smooth degree using Section 6.2, we can consider the more general decompositions: $N_{A}=\left(b_{1}^{2}+b_{2}^{2}\right) e N_{B}+\left(a_{1}^{2}+\right.$ $\left.a_{2}^{2}\right) e$ with e, f sufficiently smooth. But smooth integers are of negligible density compared to sum of two squares, hence for simplicity we focus only in this case here.

Write $a=a_{1}^{2}+a_{2}^{2}, b=b_{1}^{2}+b_{2}^{2}$. Note that unlike the decomposition of a as a sum of four squares from Section 2, these decompositions into a sum of two squares requires the factorisation of a, b.

Write $\alpha=\left(\begin{array}{cc}a_{1} & -a_{2} \\ a_{2} & a_{1}\end{array}\right), \beta=\left(\begin{array}{cc}b_{1} & -b_{2} \\ b_{2} & b_{1}\end{array}\right)$. These matrices can be interpreted as endomorphisms of E_{0}^{2} or E_{B}^{2} and commute with ϕ_{B} Id. Furthermore, $\tilde{\alpha} \alpha=\left(a_{1}^{2}+a_{2}^{2}\right) \mathrm{Id}$, so α is an a-endomorphism, and similarly β is a b-endomorphism. Lemma 3.3, or a direct computation, shows that $F=\left(\begin{array}{cc}\alpha_{0} & \widetilde{\phi_{B} \mathrm{Id}} \widetilde{\beta_{B}} \\ -\beta_{B} \phi_{B} \text { Id } & \widetilde{\alpha_{B}}\end{array}\right)$ is a $N_{A}=a+b N_{B}$-endomorphism of $E_{0}^{2} \times E_{B}^{2}$. Its kernel is given by $\operatorname{Ker} F=\left\{\left(\widetilde{\alpha_{0}}(P), \beta_{B} \phi_{B} \operatorname{Id}(P)\right) \mid P \in E_{0}^{2}\left[N_{A}\right]\right\}$.

We can thus evaluate F, hence evaluate $\beta_{B} \phi_{B} \operatorname{Id}=\phi_{B} \operatorname{Id} \beta_{0}$ on any point in $E_{0}^{2}\left(\mathbb{F}_{q}\right)$ in $O\left(\log ^{2} N_{A}+\log N_{A} \ell_{A}^{4} \log \ell_{A}\right)$ arithmetic operations over \mathbb{F}_{q} by [LR22]. In this situation we can recover more than just $b \phi_{B}$. Indeed from the matrix $\beta_{B} \phi_{B}$ Id we can directly recover $b_{1} \phi_{B}$ and $b_{2} \phi_{B}$; so if $b^{\prime}=\operatorname{gcd}\left(b_{1}, b_{2}\right)$, we can recover $b^{\prime} \phi_{B}$ in $O(\log b)$ arithmetic operations on E_{B}. This means that we can recover the kernel of a $N_{B} / \operatorname{gcd}\left(N_{B}, b^{\prime}\right)$-isogeny $E_{0} \rightarrow E_{B}^{\prime}$ through which ϕ_{B} factors. If $\operatorname{gcd}\left(N_{B}, b^{\prime}\right)=1$ we have directly recovered ϕ_{B}, otherwise we iterate the process, which is possible as long as $\operatorname{gcd}\left(N_{B}, b^{\prime}\right)<N_{B}$.

Remark 4.2. It is well known that b admits a primitive representation as a sum of two squares if and only if the odd prime divisors of b are all congruent to 1 modulo 4 and $4 \nmid b$. In particular, if the odd prime divisors of $\operatorname{gcd}\left(b, N_{B}\right)$ are congruent to 1 modulo 4 , and either $2 \nmid N_{B}$ or $4 \nmid b$, we can find a decomposition $b=b_{1}^{2}+b_{2}^{2}$ such that $\operatorname{gcd}\left(b_{1}, b_{2}, N_{B}\right)=1$.

Furthermore, by Perron's formula, the number of integers less than x that can be written as a sum of two squares (resp. a sum of two primitive squares) is roughly $0.7642 x / \sqrt{\log x}$ where 0.7642 is an approximation of the Landau-Ramanujan constant (resp. $\approx 0.49 x / \sqrt{\log x}$).

Summing up this discussion, we get for the dimension 4 attack:
Theorem 4.3. In the situation of Theorem 1.1, suppose that we can find $a, b>0$ such that $N_{A}=b N_{B}+a$ (eventually tweaking the parameters N_{A}, N_{B}) with N_{A}, a, b coprime and a, b can be written as a sum of two squares: $a=a_{1}^{2}+a_{2}^{2}, b=b_{1}^{2}+b_{2}^{2}$. Assume furthermore for simplicity that $\operatorname{gcd}\left(b, N_{B}\right)$ has its odd prime divisors congruent to 1 modulo 4 , and if $2 \mid \operatorname{gcd}\left(b, N_{B}\right)$ then $4 \nmid b$.

Then, given the decomposition of a and b as a sum of two square (eg given their factorisation), we can recover generators for $\operatorname{Ker} \phi_{B}$ in classical deterministic time $O\left(\ell_{A}^{4} \log \ell_{A} \log N_{A}+\right.$ $\log ^{2} N_{A}$) arithmetic operations in \mathbb{F}_{q}.

As mentioned in Remark 4.1 and Section 6, we can more generally look at $N_{A}=e\left(b_{1}^{2}+\right.$ $\left.b_{2}^{2}\right) N_{B}+f\left(a_{1}^{2}+a_{2}^{2}\right)$ with e, f sufficiently smooth.

5. Dimension 2 attack

We briefly describe how the dimension 2 attacks, due to [CD22; MM22], fit into the general framework of Section 3.

Write $N_{A}=b N_{B}+a$, to apply Section 3 for $g=1$, we need to construct a a-isogeny $\alpha: E_{0} \rightarrow X_{0}$ and a b-isogeny $\beta: E_{B} \rightarrow X_{B}$. If we don't assume that $\operatorname{End}\left(E_{0}\right)$ is known, we can only construct a a-endomorphism whenever a is square: if $a=a_{1}^{2}$ we take the a endomorphism $\left[a_{1}\right]$. More generally, since it is also easy to construct isogenies of smooth degree starting from E_{0} or E_{B} (see Section 6.2), the framework of Section 3 shows that the attack applies whenever $N_{A}=b_{1}^{2} e N_{B}+a_{1}^{2} f$ where e, f are sufficiently smooth. This is essentially the attack of [MM22]; in the first version they only looked at $N_{A}-N_{B}$ smooth (and tweaking of parameters), but to get a subexponential complexity they needed to look at the more general $N_{A}=e N_{B}+f$ case, which was already considered in [CD22] (squares are of negligible density compared to smooth numbers, so we can forget about them).

As mentioned in Section 1.5, in [CD22], the authors use the matrix F as an oracle attack, which requires many isogeny guesses, compared to the direct isogeny recovery of [MM22]. However, they also use the fact that for the parameters of SIKE submitted to NIST (or the Microsoft challenge [Cos21]), E_{0} has a know endomorphism $\gamma=2 i$, hence $\operatorname{End}\left(E_{0}\right) \supset$ $\mathbb{Z}[2 i]$. Hence we can construct an explicit a-endomorphism α on E_{0} whenever $a=a_{1}^{2}+4 a_{2}^{2}$, which is possible whenever all primes p such that $p \equiv 3 \bmod 4$ or $p=2$ are of even exponent in a. Hence, by Section 3, prolonging by isogenies of smooth degrees if necessary, for this starting curve E_{0} the attack holds whenever $N_{A}=\left(b_{1}^{2}+4 b_{2}^{2}\right) e N_{B}+\left(a_{1}^{2}+4 a_{2}^{2}\right) f$. Otherwise, one needs to do some guesses, as in Section 6. In [CD22], the authors only look at $N_{A}=N_{B}+\left(a_{1}^{2}+4 a_{2}^{2}\right) f$, but in [POP +22], Oudompheng, inspired by an earlier version of this paper describing the dimension 4 attack, implemented the more general formula above. This bumped down the time to solve the SIKEp217 challenge from 9 to 2 seconds and SIKEp964 instances from $1+\mathrm{h}$ to 30 seconds.

Finally we mention that [Wes22] gives a method to construct an a-isogeny on any supersingular elliptic curve with known endomorphism ring. Applying this to $a=N_{A}-N_{B}$, computing this a-endomorphism can be seen as a precomputation, and then we have a direct isogeny recovery without parameter tweaks as in Section 2, except we only need to compute isogenies in dimension 2 rather than 8 .

6. Parameter tweaks

We recall the decomposition of the parameters we need for the different attacks from the generic framework of Section 3:

- In dimension 8, or in dimension 2 when $\operatorname{End}\left(E_{0}\right)$ has known endomorphism ring (using [Wes22]), no tweaks!
- In dimension 4, we need a decomposition $N_{A}=e\left(b_{1}^{2}+b_{2}^{2}\right) N_{B}+f\left(a_{1}^{2}+a_{2}^{2}\right)$, e, f sufficiently smooth. For the dimension 2 attack of [CD22] where End $\left(E_{0}\right)$ has endomorphism $2 i$, we need the very similar decomposition $N_{A}=\left(b_{1}^{2}+4 b_{2}^{2}\right) e N_{B}+$ $\left(a_{1}^{2}+4 a_{2}^{2}\right) f$.
- For [MM22], in dimension 2 when $\operatorname{End}\left(E_{0}\right)$ is not known, we need $N_{A}=e N_{B}+f$ with e, f sufficiently smooth.
These decompositions rely on the fact that we can build isogenies of smooth degree on E_{0} and E_{B}, we detail that complexity in Section 6.2.

We can furthermore tweak the parameters N_{A} and N_{B} as follow, as in the strategies of [CD22; MM22] (upon which we improve a bit). In the following, we assume that we are in the context of SIDH, so E_{0}, E_{B} are supersingular elliptic curves defined over \mathbb{F}_{q} with $q=p^{2}$.
(1) We can replace N_{A} by $N_{A}^{\prime}=N_{A} / d_{A}$ where d_{A} any divisor of N_{A}.
(2) We can replace N_{B} by N_{B} / d_{B}, where d_{B} is a small divisor of N_{B}. This requires guessing the first d_{B}-isogeny step of Φ_{B}, and we have $O\left(d_{B}\right)$ guesses.
(3) We can replace N_{A} by $N_{A}^{\prime}=e N_{A}$ where e is a small integer prime to N_{B}. This means we will build F a $N_{A}^{\prime}=e N_{A}$ isogeny in dimension $2 g$, where we only know its action on the N_{A}-torsion, and we want to recover F (eg its kernel). We explain possible strategies in Section 6.3.
6.1. Constructing a basis of the e-torsion of E. We look at the complexity of building a basis of the e-torsion on E. By the group structure theorem of supersingular elliptic curves, since $\pi_{q^{k}}=(-p)^{k}, E\left(\mathbb{F}_{q^{k}}\right) \simeq \mathbb{Z} /\left((-p)^{k}-1\right) \oplus \mathbb{Z} /\left((-p)^{k}-1\right)$. Hence the smallest extension of \mathbb{F}_{q} where the points of e torsion of E live is of degree k, the order of $-p$ modulo e, hence $k=O(e)$. Sampling a e basis of E can be done by constructing the field $\mathbb{F}_{q^{k}}$, sampling random points in $E\left(\mathbb{F}_{q^{k}}\right)$, multiplying by the cofactor $\frac{(-p)^{k}-1}{e}$ and then checking if we have a basis using the Weil pairing. The dominant cost is the construction of $\mathbb{F}_{q^{k}}$, which costs $\widetilde{O}\left(k \log ^{5} q\right)$ using [CL13], and the sampling phase, which costs $O(k \log q)$ arithmetic operations in $\mathbb{F}_{q^{k}}$. In total we get $\widetilde{O}\left(k^{2} \log ^{2} q+k \log ^{5} q\right)=O\left(e^{2} \log ^{2} q+e \log ^{5} q\right)$ operations.
6.2. Building a smooth isogeny on a supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$. We want to build a smooth isogeny of degree e. We can build it as a composition of $O(\log e) \ell$-isogenies, for primes $\ell \mid e$. If $\ell \mid N_{A} N_{B}$, since we have access to a rational N_{A} and N_{B} torsion basis, we can simply use it to sample an element of order f in time $O\left(\min \left(\log N_{A}, \log N_{B}\right)\right)$ arithmetic operations, and the isogeny can then be computed in time $\widetilde{O}(\sqrt{\ell})$ arithmetic operations using Velusqrt[BDL+2o].

We now detail the general case. Since $\pi_{q}=[-p]$, all cyclic kernels of order ℓ of E are rational, and their generators live in an extension of degree at most $k=O(\ell)$, the order of $-p$ modulo e. We can construct $\mathbb{F}_{q^{k}}$ in $\widetilde{O}\left(k \log ^{5} q\right)$ then sample a generator (any primitive point P of ℓ-torsion) in $O\left(k^{2} \log ^{2} q\right)$ operations like in Section 6.1, then compute the isogeny using Vélu's formula [Vél 71] or the Velusqrt algorithm [BDL+20] in time $O(\ell k \log q)$ (resp. $\left.\widetilde{O}\left(\ell^{1 / 2} k \log q\right)\right)$ for a total cost of $\widetilde{O}\left(\ell^{2} \log ^{2} q+k \log ^{5} q\right)$.

An alternative is to compute and factorize the ℓ-division polynomial ψ_{ℓ}. It is of degree $O\left(\ell^{2}\right)$ and can be computed in time $\widetilde{O}\left(\ell^{2} \log q\right)$ via the recurrence formula. Furthermore, all points of ℓ-torsion live in the same extension of degree k. If ℓ is odd and $P \in E[\ell], x_{P}$ will live in the same extension as P unless k is even, in which case $\pi_{q}^{k / 2} P=-P$ so x_{P} lives in an extension of degree $k / 2$. This shows that the factors of ψ_{ℓ} are all of the same degree k if k is odd or $k / 2$ if k is even. We can then skip the distinct degree factorisation phase, hence compute a factorisation of ψ_{ℓ} in time $\widetilde{O}\left(\ell^{2} \log ^{2} q\right)$ by [VS92]. Any factor Q of ψ_{f} then gives us a construction of $\mathbb{F}_{q^{k}}$ and of a point of ℓ-torsion P in $E\left(\mathbb{F}_{q^{k}}\right)$ via, if $E: y^{2}=h(x)$, $P=\left(x \bmod Q(x), y \bmod \left(y^{2}-h(x), Q(x)\right)\right)$. Note that the polynomial $y^{2}-h(x)$ splits in $\mathbb{F}_{q}[x] / Q(x)$ if $\operatorname{deg} Q=k$, otherwise it is irreducible, $\operatorname{deg} Q=k / 2$ and it allows to construct $\mathbb{F}_{q^{k}}$ as a degree 2 tower over $\mathbb{F}_{q^{k / 2}}=\mathbb{F}_{q}[x] / Q(x)$. We can then apply Vélu or Velusqrt to P as above, for a total cost of $\widetilde{O}\left(\ell^{2} \log ^{2} q\right)$.

A third method is to construct an ℓ-isogeny using the ℓ-modular polynomial ϕ_{ℓ} (and its derivative), as in the SEA algorithm [Sch95]. We can evaluate this modular polynomial in time $\widetilde{O}\left(\ell^{2} \log q\right)$ by an easy adaptation of [Kie20] (see [Rob21, Remark 5.3.9; Rob22c]), then recover a root in time $\widetilde{O}\left(\ell \log ^{2} q\right)$. Recovering the isogeny can then be done in quasi-linear time by solving a differential equation [BMS+08; Rob21, $\S 4.7 .1$]. This reduces the complexity to $\widetilde{O}\left(\ell^{2} \log q+\ell \log ^{2} q\right)$ operations.
6.3. Recovering a N_{A} - -isogeny from its action on the N_{A}-torsion. We have a N_{A} e-isogeny F in dimension $2 g$, that Eve built from the secret isogeny $\phi_{B}: E_{0} \rightarrow E_{B}$ and some auxiliary isogeny she controls. She wants to recover F in order to retrieve ϕ_{B} from it.

One way to do that is to guess the action of ϕ_{B} on the $e N_{A}$-torsion of E_{0}. This requires to compute a basis of the $e N_{A}$-torsion on E_{0}, as described in Section 6.1, possibly taking an extension of degree k, and then guessing the images of Φ_{B} on the $N_{A} e$ torsion. Note that since the N_{A}-torsion is rational by assumption, we have $k=O(e)$. Guessing the image of ϕ_{B} on this basis involves $O\left(e^{3}\right)$-tries, using the compatibility of ϕ_{B} with the Weil pairing and the known image of the N_{A}-torsion.

An alternative strategy, when the codomain Y of $F: X \rightarrow Y$ is known, is as follow: since F is an $N_{A}^{\prime}=e N_{A}$-isogeny, and we know the action of ϕ_{B} on the N_{A}-torsion, we can still recover $\operatorname{Ker} F \cap X\left[N_{A}\right]$. So taking a maximal isotropic subgroup of $\operatorname{Ker} F \cap X\left[N_{A}\right]$ for the Weil pairing $e_{N_{A}}$ (for the F we build in Section 3, this intersection is already maximal isotropic), we can thus recover F_{1} in a decomposition $F=F_{2} \circ F_{1}$, with F_{1} an N_{A}-isogeny and F_{2} a e-isogeny. Then we can try to bruteforce F_{2} by an e-isogeny search in dimension $2 g$.

A last remark, still when the codomain Y is known, is that when $e \mid N_{A}$, then using the dual \tilde{F}, knowing the action of the $e N_{A}$-isogeny F on $X\left[N_{A}\right]$ is enough to recover F. Indeed we recall that in the construction of F of Section $3, K=\operatorname{Ker} F$ is of rank $2 g$, so it admits a symplectic complement $K^{\prime}: X\left[e N_{A}\right]=K \oplus K^{\prime}$. Decompose $F=F_{2} \circ F_{1}$, $F_{1}: X \rightarrow X_{1}, F_{2}: X_{1} \rightarrow Y$, with $\operatorname{Ker} F_{1}=\operatorname{Ker} F \cap X\left[N_{A}\right]=K\left[N_{A}\right]$ as above. Then we have $\operatorname{Ker} \widetilde{F_{2}}=\operatorname{Im} F_{2}\left|X_{1}[e]=\operatorname{Im} F\right| X[e]=\operatorname{Ker} \tilde{F} \cap Y[e]$ (indeed $\operatorname{Im} F \mid X[e] \subset$ $\operatorname{Im} F_{2} \mid X_{1}[e]$ but they have the same cardinality $e^{2 g}$ since the kernel is of rank $2 g$, hence we have equality). So we can build F_{1} from X through its kernel $\operatorname{Ker} F \cap X\left[N_{A}\right]$ (which is maximal isotropic of rank $2 g$ in $X\left[N_{A}\right]$), build $\widetilde{F_{2}}$ from Y through its kernel $\operatorname{Im} F \mid X[e]$, then compute $\operatorname{Ker} F_{2}=\operatorname{Im} \widetilde{F_{2}} \mid Y[e]$ to recover F_{2}, hence $F=F_{2} \circ F_{1}$. This is the same strategy as [QKL+21] use when F is an endomorphism of E_{0}. In particular this strategy applies for the attacks in dimension 4 of Section 4 and dimension 8 of Section 2.

References

[BDL+20] D. Bernstein, L. De Feo, A. Leroux, and B. Smith. "Faster computation of isogenies of large prime degree". In: Algorithmic Number Theory Symposium. 2020. arXiv: 2003. 10118.
[BLo4] C. Birkenhake and H. Lange. Complex abelian varieties. Second. Vol. 302. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, 2004, pp. xii+635. ISBN: 3-540-20488-1.
[BCR1o] G. Bisson, R. Cosset, and D. Robert. AVIsogenies. Magma package devoted to the computation of isogenies between abelian varieties. 2010. URL: https: //www.math.u-bordeaux.fr/~damienrobert/avisogenies/. Free software (LGPLv2+), registered to APP (reference IDDN.FR.001.440011.000.R.P.2010.000.10000). Latest version 0.7, released on 2021-03-13.
[BMS+o8] A. Bostan, F. Morain, B. Salvy, and E. Schost. "Fast algorithms for computing isogenies between elliptic curves". In: Mathematics of Computation 77.263 (2008), pp. 1755-1778.
[CD22] W. Castryck and T. Decru. An efficient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975. 2022. URL: https : //eprint.iacr.org/2022/975.
[CLM+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. "CSIDH: an efficient post-quantum commutative group action". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2018, pp. 395-427.
[Cos21] C. Costello. "The case for SIKE: a decade of the supersingular isogeny problem". In: Cryptology ePrint Archive (2021).
[CLN16] C. Costello, P. Longa, and M. Naehrig. "Efficient algorithms for supersingular isogeny Diffie-Hellman". In: Advances in Cryptology. Springer. 2016. url: https://ecc2017.cs.ru.nl/slides/ecc2017-costello.pdf.
[CE14] J.-M. Couveignes and T. Ezome. "Computing functions on Jacobians and their quotients". In: LMS Journal of Computation and Mathematics 18.1 (2014), pp. 555-577. arXiv: 1409.0481.
[CL13] J.-M. Couveignes and R. Lercier. "Fast construction of irreducible polynomials over finite fields". In: Israel Journal of Mathematics 194.1 (2013), pp. 77-105.
[DDF+21] L. De Feo, C. Delpech de Saint Guilhem, T. B. Fouotsa, P. Kutas, A. Leroux, C. Petit, J. Silva, and B. Wesolowski. "Séta: Supersingular encryption from torsion attacks". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2021, pp. 249-278.
[DJP14] L. De Feo, D. Jao, and J. Plût. "Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies". In: Journal of Mathematical Cryptology 8.3 (2014), pp. 209-247.
[DKL+2o] L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. "SQISign: compact post-quantum signatures from quaternions and isogenies". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2020, pp. 64-93.
[Ham44] W. R. Hamilton. "On Quaternions; or on a new System of Imaginaries in Algebra". In: Philosophical Magazine 25.3 (1844), pp. 489-495.
[JAC+17] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalili, B. Koziel, B. LaMacchia, P. Longa, et al. SIKE: Supersingular isogeny key encapsulation. 2017. URL: https://sike.org/.
[JD11] D. Jao and L. De Feo. "Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies". In: International Workshop on Post-Quantum Cryptography. Springer. 2011, pp. 19-34.
[Kan97] E. Kani. "The number of curves of genus two with elliptic differentials." In: Journal für die reine und angewandte Mathematik 485 (1997), pp. 93-122.
[Kan16] E. Kani. "The moduli spaces of Jacobians isomorphic to a product of two elliptic curves". In: Collectanea mathematica 67.1 (2016), pp. 21-54.
[Kie2o] J. Kieffer. "Evaluating modular polynomials in genus 2". 2020. HAL: hal02971326.
[Lag7o] J. L. de Lagrange. "Démonstration d'un théoreme d'arithmétique". In: Nouv. Mém. Acad. Roy. Sc. de Berlin (1770), pp. 123-133.
[LR22] D. Lubicz and D. Robert. "Fast change of level and applications to isogenies". Accepted for publication at ANTS XV Conference - Proceedings. Aug. 2022. URL: http://www. normalesup.org/~robert/pro/publications/ articles/change_level.pdf.
[MM22] L. Maino and C. Martindale. An attack on SIDH with arbitrary starting curve. Cryptology ePrint Archive, Paper 2022/1026. 2022. URL: https://eprint. iacr.org/2022/1026.
[MGE12] B. Moonen, G. van der Geer, and B. Edixhoven. Abelian varieties. Book project, 2012. URL: https://www.math.ru.nl/~bmoonen/research.html\# bookabvar.
[Mum66] D. Mumford. "On the equations defining abelian varieties. I". In: Invent. Math. 1 (1966), pp. 287-354.
[Mum7o] D. Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, 1970, pp. viii+242.
[Oud22] R. Oudompheng. "A note on implementing direct isogeny determination in the Castryck-Decru SIKE attack". Aug. 2022.
[Pet17] C. Petit. "Faster algorithms for isogeny problems using torsion point images". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2017, pp. 330-353.
[POP+22] G. Pope, R. Oudompheng, L. Panny, et al. Castryck-Decru Key Recovery Attack on SIDH. Aug. 2022. URL: https://github.com/jack4818/Castryck-DecruSageMath.
[QKL+21] V. d. Quehen, P. Kutas, C. Leonardi, C. Martindale, L. Panny, C. Petit, and K. E. Stange. "Improved torsion-point attacks on SIDH variants". In: Annual International Cryptology Conference. Springer. 2021, pp. 432-470.
[RS86] M. O. Rabin and J. O. Shallit. "Randomized algorithms in number theory". In: Communications on Pure and Applied Mathematics 39.S1 (1986), S239-S256.
[Rob21] D. Robert. "Efficient algorithms for abelian varieties and their moduli spaces". HDR thesis. Université Bordeaux, June 2021. URL: http://www. normalesup. org/~robert/pro/publications/academic/hdr.pdf. Slides: 2021-06-HDRBordeaux.pdf (1h, Bordeaux).
[Rob22a] D. Robert. "Breaking SIDH in polynomial time". Aug. 2022. URL: http://www. normalesup.org/~robert/pro/publications/articles/breaking_sidh. pdf. eprint: 2022/1038.
[Rob22b] D. Robert. "Evaluating isogenies in polylogarithmic time". Aug. 2022. URL: http://www. normalesup.org/~robert/pro/publications/articles/ polylog_isogenies.pdf. eprint: 2022/1068.
[Rob22c] D. Robert. "Fast evaluation of modular polynomials and compact representation of isogenies between elliptic curves". Aug. 2022. In preparation.
[Sch95] R. Schoof. "Counting points on elliptic curves over finite fields". In: J. Théor. Nombres Bordeaux 7.1 (1995), pp. 219-254.
[Shiz9] T. Shioda. "Supersingular K3 surfaces". In: Algebraic geometry. Springer, 1979, pp. 564-591.
[Som21] A. Somoza. thetAV. Sage package devoted to the computation with abelian varieties with theta functions, rewrite of the AVIsogenies magma package. 2021. URL: https://gitlab.inria.fr/roberdam/avisogenies/-/tree/sage.
[Vél71] J. Vélu. "Isogénies entre courbes elliptiques". In: Compte Rendu Académie Sciences Paris Série A-B 273 (1971), A238-A241.
[VS92] J. Von Zur Gathen and V. Shoup. "Computing Frobenius maps and factoring polynomials". In: Computational complexity 2.3 (1992), pp. 187-224.
[Wes22] B. Wesolowski. "Understanding and improving the Castryck-Decru attack on SIDH". Aug. 2022.
[Zar74] J. G. Zarhin. "A remark on endomorphisms of abelian varieties over function fields of finite characteristic". In: Mathematics of the USSR-Izvestiya 8.3 (1974), p. 477.

INRIA Bordeaux-Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
Email address: damien. robert@inria.fr
URL: http://www.normalesup.org/~robert/
Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex FRANCE

[^0]: Date: September 2, 2022.
 ${ }^{1}$ We make no further assumptions on E_{0} and E_{B} : we do not require them to be supersingular. In the context of SIDH, \mathbb{F}_{q} will be the base field $\mathbb{F}_{p^{2}}$.

[^1]: ${ }^{2}$ We refer to Section 3 for the definition of an N-isogeny between principally polarised abelian varieties in dimension g.

