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Abstract

Can we hope to provide provable security against model extraction attacks? As a step to-
wards a theoretical study of this question, we unify and abstract a wide range of “observational”
model extraction defense mechanisms — roughly, those that attempt to detect model extrac-
tion using a statistical analysis conducted on the distribution over the adversary’s queries. To
accompany the abstract observational model extraction defense, which we call OMED for short,
we define the notion of complete defenses — the notion that benign clients can freely interact
with the model — and sound defenses — the notion that adversarial clients are caught and
prevented from reverse engineering the model. We then propose a system for obtaining provable
security against model extraction by complete and sound OMEDs, using (average-case) hardness
assumptions for PAC-learning.

Our main result nullifies our proposal for provable security, by establishing a computational
incompleteness theorem for the OMED: any efficient OMED for a machine learning model
computable by a polynomial size decision tree that satisfies a basic form of completeness cannot
satisfy soundness, unless the subexponential Learning Parity with Noise (LPN) assumption does
not hold. To prove the incompleteness theorem, we introduce a class of model extraction attacks
called natural Covert Learning attacks based on a connection to the Covert Learning model of
Canetti and Karchmer (TCC ’21), and show that such attacks circumvent any defense within
our abstract mechanism in a black-box, nonadaptive way.

Finally, we further expose the tension between Covert Learning and OMEDs by proving that
Covert Learning algorithms require the nonexistence of provable security via efficient OMEDs.
Therefore, we observe a “win-win” result by obtaining a characterization of the existence of
provable security via efficient OMEDs by the nonexistence of natural Covert Learning algo-
rithms.

∗Boston University. Email: arika@bu.edu. Supported by the DARPA SIEVE program, Agreement Nos.
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1 Introduction

In a model extraction attack, an adversary maliciously probes an interface to a machine learning
model in an attempt to extract the machine learning model itself. In many cases, preventing
model extraction helps increase security and privacy, especially with respect to model inversion and
adversarial example attacks (see e.g. [CJM20] and references therein). Additionally, in Machine
Learning as a Service (MLaaS), the model is considered confidential as the server usually operates
with a pay-per-query scheme. Therefore, maintaining the secrecy of ML models and finding effective
model extraction defense mechanisms is paramount. Indeed, the problem of how to defend against
model extraction has been considered from a practical perspective previously (e.g. [KMAM18,
TZJ+16, CCG+20, JSMA19, PGKS21]).

Most proposed model extraction defenses (MEDs) in the literature belong to two types (except a
few notable exceptions, see e.g. [DKLP22]). The first type aims to limit the amount of information
revealed by each client query. One intuitive proposal for this type of defense is to add independent
noise (i.e. respond an incorrect prediction independently with some probability) or even deliberately
modify the underlying model. This type of solution is not a focus of this work, because it necessarily
sacrifices predictive accuracy of the ML model, and is therefore not an option for many ML systems
where accuracy is critical such as autonomous driving, medical diagnosis, or malware detection.

The second type of MED that has been proposed aims to separate “benign” clients — those that
want to obtain predictions but will not attempt to extract the model — and “adverse” clients —
clients that aim to extract the model. This type of “observational” defense is the focus of the present
work. A common implementation of the observational defense involves so-called “monitors” that,
receive as input a batch of queries submitted by the client, and compute some statistic meant to
measure the likelihood of adversarial behavior, with the goal of rejecting a client’s requests when the
queries pass a certain threshold on the statistic (e.g. [KMAM18, JSMA19, PGKS21]). Essentially,
observational defenses aim to control the distribution of the client’s queries, by classifying any
clients that fail to conform to the appropriate distributions as adverse, and then prohibiting them
from accessing the model. To date, the choice of such appropriate distributions have been made
heuristically, for instance, in [JSMA19], an appropriate distribution is one with the property that
the distribution over hamming distances between independent samples is normally distributed.

However, no formal definitions of security against model extraction have been suggested, and
there has also not been much formal work done in an effort to understand the theoretical under-
pinnings of the proposed observational defenses, in particular. This fact is highlighted by Vaikun-
tanathan as an open problem in [Vai21]. As a result, a “cat-and-mouse” progression of attacks and
defenses has developed, while no satisfying guarantees have been discovered (for neither cat nor
mouse).

1.1 Our Contributions

In this work, we study the landscape of model extraction attacks and defenses from a theoretical
perspective. We seek an answer to the following three-part question:

Can we provide provable security against model extraction attacks, for any ML model,
using an observational defense? If so, can it be efficiently implemented? In fact, how
do we even define provable security?

We propose a broad method for obtaining cryptographic-strength provable security via an obser-
vational defense, and then provide a negative answer to the second part of the question, via the
following program:
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B We formally define a class of abstract MEDs by unifying the common observational defense
technique seen in the literature.

B We formalize the concepts of complete and sound defenses, namely, the provable guarantees
that benign clients are accepted and may interact with the machine learning interface, and
adverse clients are rejected. We show how our formalisms initiate a method for obtaining
a theory of provable security against efficient model extraction acttacks by relying on the
computational hardness of PAC-learning.

B Then, via a connection to the Covert Learning model of [CK21], we give a method for gener-
ating provably good and efficient attacks on the abstract defense, granted that the defense is
efficient and it satisfies a basic form of completeness. We then obtain an attack on decision
tree models protected by the abstract class of MEDs by an existing algorithm of [CK21]. The
attack relies on the subexponential Learning Parity with Noise (LPN) assumption, and to the
best of our knowledge, constitutes the first provable and efficient attack on any large class of
MEDs, for a large class of ML models.

B Using the existence of the attack, we prove our main result: informally, every efficient defense
mechanism (within the abstract class of MEDs) for decision tree models which satisfies a basic
notion of completeness does not satisfy soundness, even for efficient attackers. This result
essentially prevents instantiating the OMED method for provable security.

Additionally, we further develop the relationship between Covert Learning and OMED defenses.
As a consolation to the negative result, we prove that “either way science wins”: provable security
by OMEDs exists if and only if Covert Learning algorithms do not exist.

1.2 Technical Overview and Approach

Let us describe our approach in more detail.

1.2.1 The Observational Defense and Provable Security

First, we informally describe our abstract observational model extraction defense mechanism (OMED).
The OMED can be described in the following simple terms: it analyzes the requested queries, and
decides if the queries are distributed in an acceptable manner. It is generally said that this is meant
to decide if the client’s actions are consistent with a benign client, or an adversarial client (i.e. one
who is attempting to perform model extraction).1

Observational Model Extraction Defense: An OMED for an ML model is an algorithm
which takes as input a sequence of queries and outputs either accept or reject.

In other words, the OMED makes a decision about the nature of the client which depends solely
on the client’s query selection. As noted, this technique captures one large camp of the candidate
MEDs seen in the literature, and is purposely defined as broadly as possible so as to strengthen
our negative result. In Section 3.2, we highlight and discuss how three recent proposals (Extraction
Monitor [KMAM18], PRADA [JSMA19], and VarDetect [PGKS21]) implement special cases of the
OMED.

1In Section 1.2.4 we argue that the analysis of adverse vs. benign clients that is prevalent in the literature implicitly
employs a simulation-based definition of security against model extraction.
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Towards obtaining a theory of provable security against model extraction, we argue that, intu-
itively, a good OMED (and any MED) should satisfy:

MED Completeness: For any benign client, the defense mechanism does not reject the client
and allows the benign client to continue to interact with the model, with high probability.

A completeness requirement on a MED can be interpreted as formalizing the usefulness of the
defense. In other words, the defense at the very least provides the opportunity for benign clients
to interact with the model. On the other hand, the MED should provide some nontrivial security
guarantee. We consider soundness of a MED:

MED Soundness: For any adverse client that has attempted extraction, the defense mechanism
rejects the client, with high probability.

A soundness requirement can be interpreted as formalizing the security of the defense. That
is, attackers will not be able to deceive the OMED into granting interaction with the ML model in
such a way that allows extraction.

Cryptographically-Hard Model Extraction. In Section 3.1, we show how to combine com-
pleteness, soundness, and hardness assumptions for average-case or heuristic PAC-learning (see e.g.
[BFKL93, Nan21]) to obtain cryptographic-strength security against all efficient model extraction
attacks. Informally, we show,

Theorem 1.1. (Informal version of Theorem 3.10) Let M be any OMED satisfying completeness
and soundness, for a class of ML models F . Then, if F has no efficient average-case PAC-learning
algorithm, then there exists a large subset S of ML models within F such that any efficient client
cannot extract a good approximation to any f ∈ S, except with negligble probability.

For an in-depth discussion on the road to provable security for OMEDs, see Section 1.2.4. We
define average-case PAC learning in Section 2.

1.2.2 Generation of Attacks

Next, we introduce a way to generate model extraction attacks that are effective in efficiently
performing high fidelity model extraction in the presence of any efficient and complete OMED. A
model extraction attack has high fidelity if, with respect to the underlying model and some fixed
loss function, the extracted model achieves a low loss.

The attack operates in the following setting. Let {Fn}n∈N be an ensemble of function classes,
with input space Xn = {0, 1}n and output space Yn = {−1, 1} (we use the labels {−1, 1} for math-
ematical convenience). An entity learns a proprietary model f ∈ Fn. The entity then provides an
oracle to f accessible by clients, monitored by and OMED M, which is itself a (possibly random-
ized) algorithm. M acts as an external decision making process for preventing model extraction
(see Section 3 for a graphical depiction). Using the recently introduced notion of Covert Learning
algorithms [CK21] (see Section 1.2.5 for a more detailed overview, and Section 4.1 for a formal
treatment), we show:

Theorem 1.2. (informal version of Theorem 4.3). Assuming the existence of a natural Covert
Learning algorithm, there exists a probabilistic polynomial time (p.p.t.) model extraction attack A
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such that A has high fidelity and any complete OMED M outputs accept when given a batch of
queries from A, with high probability.

We stress that the class of attacks is nonadaptive, in the sense that it does not rely on any
knowledge of the specific implementation of the OMED, nor the underlying model. Moreover, we
call the class of model extraction attacks natural Covert Learning attacks, as they rely on natural
Covert Learning algorithms — special cases of the Covert Learning model of [CK21].

Finally, we instantiate a concrete universal model extraction attack, by invoking an algorithm
of [CK21]. The algorithm of [CK21], called CLDT, learns a decision tree f : {0, 1}n → {−1, 1}
in the PAC with membership queries model — with the added constraint that the membership
queries are drawn from a distribution which is cryptographically pseudo-random. The algorithm
relies on the subexponential hardness of the standard Learning Parity with Noise (LPN) problem
(to be defined formally in Section 4.3).

We say that an OMED satisfies uniform completeness if it outputs accept on a batch of uniformly
distributed queries, with high probability. We prove:

Theorem 1.3. (informal version of Theorem 4.6). Assuming subexponential hardness of the stan-
dard LPN problem, there exists a p.p.t. model extraction attack A for decision tree classifiers such
that A has high fidelity and any OMED that satisfies uniform completeness must output accept
when given a batch of queries from A, with high probability.

We note that, in contrast to typical PAC-learning model extraction attacks (outlined in Sec-
tion 1.2.4), the attack is provably efficient ; it runs in time polynomial in n.

We then use Theorem 1.3 to prove our main result:

Corollary 1.4. Main Result (informal version of Corollary 4.7). Assuming subexponential hard-
ness of the standard LPN problem, any efficient OMED (for a decision tree classifier) which satisfies
uniform completeness cannot satisfy soundness, even against efficient adversaries.

The main result follows from Theorem 1.3 because of the nature of the attack. In short,
the adversary poses as a benign client by requesting queries according to a distribution which is
computationally indistinguishable from that which would be requested by a truly benign client.
Since the completeness requirement of the OMED dictates that the honest client would “pass”
the OMED, we may conclude that the adversary — which operates in a way computationally
indistinguishable from honest — must also pass (with high probability).

1.2.3 A Characterization of Feasible OMEDs by Nonexistence of Covert Learning

As consolation for the main result, we show that non existence of efficient OMEDs is sufficient to
imply Covert Learning algorithms. This is a “win-win” dynamic, in that it gives a proof of:

Corollary 1.5. (informal version of Corollary 5.2) The following statements are equivalent.

1. There exists an OMED (for a class of ML models C) that is complete and sound.

2. There does not exist a natural Covert Learning algorithm for C.
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1.2.4 Discussion: Towards Complexity-Based Provable Security of Observational De-
fenses

Inspired by Modern Cryptography, a lofty goal behind developing a theory of security against
model extraction would be to ultimately obtain provable security guarantees. For example, an
initial attempt could attempt to leverage zero-knowledge style ideas, to obtain a guarantee that a
client learns nothing about the ML model than they could have learned prior to the interaction.
However, this is likely too strong of a goal, because at the very least the client will learn some
queried examples.2

What kind of guarantees could we feasibly hope to obtain, then? One possible revised goal,
could be to guarantee that a client learns only as much as possible from some random examples
from the model (perhaps using some simulation-based security definition). In fact, this notion of
security appears to be implicitly behind existing observational defenses. The literature on practical
observational defenses tends to cite the goal of detecting model extraction, but the downstream
effect is that the observational defenses seek to exactly confine the examples obtained by the client
to some specific distributions (by enforcing a particular benign behavior). Hence, the idea of only
serving clients confined to these benign example distributions undoubtedly assumes that whatever
the benign client can learn about the model is indeed “secure.”

To unpack this, let us focus on the case of observational defenses for binary classifiers. At first
glance, the beautiful learning theory of Vapnik and Chervonenkis — which tells us that a number
of samples proportional to the VC dimension of the hypothesis class suffices for PAC learning
— seems to dash the hopes of using this model of security to obtain any meaningful protection.
Indeed, an adversary could simply query the model a sufficient number of times according to one
of the appropriate distributions of random examples, and then apply a PAC-learning algorithm.
The output of the algorithm would be a function which would be a strong approximation to the
underlying ML model with high confidence.

However, this view does not account for the complexity of such attacks. Indeed, for many
important families of classifiers (e.g. boolean decision trees), no efficient (i.e., polynomial time)
PAC-learning algorithms are known despite intense effort from the learning theory community.3 In
fact, no efficient algorithms are known even when the examples are restricted to being uniformly
distributed, and the classifier itself is drawn from some kinds of distributions (i.e., in an average-
case way, see e.g. [BFKL93]). Hence, this lends credence to the idea that the revised model
of security might actually effective in preventing unwanted model extraction by computationally
bounded clients, for instance by forcing the client to interact with the query interface in a way
that mimics uniformly random examples, or some other hard example distribution. In this way,
security against model extraction could be provable in a complexity-theoretic way: one could give
a reduction from PAC-learning to model extraction in the presence of observational defenses. In
other words, one could hope to prove a theorem that says “any efficient algorithm to learn an
approximation of a proprietary ML model when constrained by an observational defense yields a
distribution-specific PAC-learning algorithm (that is currently beyond all known techniques).”

One potential pitfall of the preceding discussion of provable security is that due to the worst-
case guarantees for PAC-learning, the described reduction would not rule out the useless case that
a single model is hard to extract in the presence of observational defenses, but all others are easy.

2For example, in the setting of Machine Learning as a Service (MLaaS), the client must be granted “in good faith”
at least some ability to learn information, since otherwise the client may take business elsewhere.

3We note that there exist efficient learning algorithms for polynomial size decision trees that use correlated queries
[GL89] [KM93]. Therefore, these families of classifiers are at least efficiently learnable by a server who had this type
of data access, so the setting is still relevant.
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However, even in an average-case or heuristic PAC-learning setting, where the concept itself is drawn
from a distribution (see [BFKL93], [Nan21]), there is still a conjectured cryptographic hardness of
learning for sufficiently complex classes of concepts and concept distributions. Therefore, we can
continue to envision a reduction from average-case learning to model extraction for most underlying
ML models (provided they are sufficiently complex to begin with). Such provable security against
efficient model extraction adversaries would be a significant development in finding the theory
behind observational defenses.

1.2.5 Discussion: Relating Covert Learning to Model Extraction in the Presence of
Observational Defenses

Our results draw heavily from the work of [CK21] and thus they require familiarity with the Covert
Learning model. Let us first give a brief overview of the necessary ideas in this section,4 and
illuminate the connection between Covert Learning and our setting of Model Extraction.

The Covert Learning model — a variant of Valiant’s PAC model in the agnostic learning with
membership queries setting — formalizes a new type of privacy in learning theory. Specifically,
the Covert Learning algorithms provide the guarantee that the membership queries leak very little
information about the concept or the learner’s hypothesis class with respect to a computationally
bounded passive adversary. In other words, the learner can PAC-learn the concept in question
(using knowledge of secret internal randomness), while the adversary remains nearly completely
“in the dark” with respect to the concept and the learner’s hypothesis, even when it views the
entire transcript of membership queries and oracle responses (but is not privy to the secret ran-
domness). At its heart, the Covert Learning model uses the foundational simulation paradigm of
cryptography to achieve these goals. Roughly, any Covert Learning algorithm must have an accom-
panying simulator that emulates the membership queries (the “real” learner) in a computational
indistinguishable way — using nothing but random examples (the “ideal” learner).5

Originally, the Covert Learning model was introduced along an application to the secure out-
sourcing of automated scientific experiments, and a brief note regarding the possibilities of model
extraction attacks against MLaaS. The crux of this work thus formalizes this connection between
the adversary in Covert Learning — a distinguisher that attempts to differentiate between a “real”
learner and and “ideal” learner — and the “adversary” in a model extraction attack — an OMED.
In particular we consider the abstract OMED, and show that “natural” Covert Learning algorithms
can fool the OMED in the same way that they fool the Covert Learning adversary (roughly, a Covert
Learning algorithm is “natural” if the membership queries are pseudo-random).

Thus, our attacks roughly work by leveraging the Covert Learning guarantees to generate a
distribution of queries which is computationally indistinguishable from a distribution which will be
considered benign by the OMED. Still, by the guarantees of Covert Learning, the responses to the
queries given by the server allow the client to extract the underlying model. Hence, we can show
that a single Covert Learning attack can achieve high fidelity while “fooling” any OMED. That is,
any OMED will output “accept” with high probability even though an extraction attack is being
performed. Since the attack is completely black-box with respect to the implementation of the
OMED (it only requires that the OMED is efficient and satisfies the basic uniform completeness
condition), the existence of this attack demonstrates the incompleteness of the OMED.

4We refer the reader to [CK21] for technical details, and a deeper conceptual exposition.
5To elaborate a little, the simulator functions without access to the underlying concept (or knowledge of the

hypothesis class, in the case of agnostic learning). Instead, the simulator accesses, for instance uniformly random
examples (which for many interesting hypothesis classes makes the learning requirement hard, hence the use of the
real/ideal nomenclature).
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1.3 Related Work

Existing OMEDs. We point the reader to Section 3.2 for a detailed discussion on some of the
practical OMEDs proposed in the literature.

Secure inference for MLaaS. A somewhat related approach to improving the privacy of Ma-
chine Learning as a Service (MLaaS) termed “secure inference” has been proposed. This approach
borrows from ideas in the field of Secure Function Evaluation (where parties can securely compute
a function without revealing their inputs), and makes use of garbled circuits [RWT+18] or fully
homomorphic encryption [GBDL+16]. However, the principle guarantee of the “secure inference”
approach only provides hiding of information about the model beyond what can be deduced from
the query and the model’s output. Hence, a secure inference approach to security against model
extraction would implicitly assume (incorrectly) that total leakage from the predictions is little,
and that recovering the model from its predictions would be infeasible or impossible. Therefore, the
“secure inference” approach does not properly prevent model extraction when considering clients
who repeatedly interact with the service.

More natural Covert Learning attacks. The works of [Ajt96] and [GPV08] introduce a
method for sampling pairs of matrices (A, T ) with entries in Zq, such that A is statistically close to
a uniformly random matrix, while M2 is a low-norm, full-rank trapdoor matrix such that A · T is
the all zero matrix. In [Vai21], Vaikuntanathan notes that this sampling algorithm gives an easy,
yet somewhat contrived model extraction attack. In fact, it is a natural Covert Learning attack as
well. More specifically, for any ML model that is essentially a linear function over Zq with added
Gaussian noise e ∈ Zmq ,6 the linear function (denoted s ∈ Znq ) can be extracted by querying sA+ e,
and then taking (sA + e)T = eT , which can then be used to extract e via Gaussian elimination
(T is full rank). Then, given e, s is easily recoverable. However, A is statistically close to uni-
formly random, so the queries are impossible to distinguish from uniformly random queries with
any significant advantage. This statistical Covert Learning attack could rule out even unbounded
OMEDs, however it only works for the very narrow class of noisy linear models, which do not
appear frequently in practice. The work of [CK21] discusses how to similarly sample trapdoors for
the low-noise LPN problem [Ale03].7 The techniques gives rise to another natural Covert Learning
attack for an LPN variant of the above setting, however the queries are only computationally close
to uniform. Elaborating on this techinque in the present paper would be quite time-consuming,
hence we refer the reader to [CK21].

Related Formalisms. We note that the formalisms in this work are inspired by the field of
Interactive Proofs [GMR89]. Also, the work of [CLP13], who work on protocols for verifying
forecasting algorithms, inspired the drive to prove computational incompleteness theorems in this
setting.

2 Technical Preliminaries

Basic Notation and Terminology. Let X be a set, and define the ensemble {Xn}n∈N where
Xn is the n-wise direct product of X . Let ∆(Xn) be the convex polytope of all distributions over

6This setting is a bit contrived, since the typical ML models would rarely resemble such a noisy inner product
mod q.

7These techniques closely resembled that of the seminal work of Alekhnovich [Ale03].
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Xn. We denote by Pn a property of distributions, where Pn ⊆ ∆(Xn). For an input space Xn and
output space Yn, let Fn ⊆ {f : Xn → Yn} be a class of functions with domain Xn and codomain
Yn, and the corresponding ensemble F = {Fn}n∈N.

We will use the following standard of computational indistinguishability.

Definition 2.1. (Computational Indistinguishability) Let {Xn}, {Yn} be sequences of distributions
with Xn, Yn ranging over {0, 1}m(n) for some m(n) = nO(1). {Xn} and {Yn} are computationally
indistinguishable if for every polynomial time algorithm A and sufficiently large n,

|Pr[A(1n, Xn) = 1]− Pr[A(1n, Yn) = 1]| ≤ negl(n)

Often, n is clear from the context, so the subscript is omitted.

We define the following learning models that are considered in this work. Define the oracle
Ex(c,D) as one which samples independently x ∼ D (for a distribution D) and returns (x, f(x)).

Definition 2.2. (PAC Learning) We say that a concept class C is PAC-learnable with respect to
a distribution class D if there exists an algorithm A such that for any distribution D ∈ D, concept
c ∈ C, A and given as input n ∈ N, ε, δ > 0, outputs a function h such that

Pr
A

[
Pr
x∼D

[
c(x) 6= h(x)

]
< ε : h← AEx(c,D)(n, ε, δ)

]
≥ 1− δ

We say that C is efficiently PAC-learnable with respect to D if A runs in time polynomial in n, ε, δ.

The following definition of heuristic PAC learning due to Nanashima [Nan21] can be seen as a
variant of many existing average-case learning models, where the distribution over concepts is fixed
to be uniform. In his original work, Nanashima defines a distribution over representation strings
over concepts, but in this work it suffices to consider a distribution over actual concepts.

Definition 2.3. (Heuristic PAC-learning — adapted from [Nan21]) Let C be a concept class, and
let U be the uniform distribution over C. We say that the concept class C is heuristically PAC-
learnable with respect to the distribution class D if there exists an algorithm A that for any D ∈ D,
and given as input n ∈ N, ε, δ, η > 0, and access to Ex(c,D) for some c ∼ U , outputs a function h
such that

Pr
c∼U

[
Pr
A

[
Pr
z∼D

[
c(x) 6= h(x) : h← AEx(c,D)(n, ε, δ, η)

]
≤ ε
]
≥ 1− δ

]
≥ 1− η

We say that C is efficiently (η′, ε′)-heuristically PAC-learnable with respect to D if A runs in time
polynomial in n, η, ε, δ, and η, ε are fixed to η′, ε′.

3 The Abstract Observational Model Extraction Defense

In this section, we formally introduce the OMED as a unifying abstraction for the current state
of the art MEDs. Before we introduce the OMED formally, let us describe the model extraction
setting in detail.

The setting begins by an ML model f : X → Y being adversarially chosen (potentially from
some restricted class of functions). Then, we consider the case that a probabilistic polynomial time

10



algorithm C (the client), can interact via an oracle to the ML model f . We denote this oracle by Of .
The goal of the benign client is to obtain some predictions f(x) for queries x ∈ X . On the other
hand, the goal of the adversarial client is to output an approximate of f , f̂ that approximately
minimizes a loss function.

Figure 1: A depiction of the extraction setting. The adverse client queries the model f , attempting to
extract an approximation f̂ . The OMED watches over the interaction and outputs a decision to accept (and
forward the labels) or reject the client based on whether or not it is deemed adverse or benign.

However, the adverse client must be able to perform the extraction in the presence of the
OMED. In particular, the OMED is able to view all the queries made by C (see Figure 1), and the
labels that would be returned. The OMED then outputs a decision “accept” or “reject,” which
essentially mean that the client is benign or adverse, respectively. Again, the point is that the
client only receives labels on its queries when the OMED outputs “accept.”

With this in mind, let us now formally define the OMED. As noted in the introduction and
in [JCB+20], defense mechanisms for model extraction have mostly split into two tribes: reducing
the information gained per client query, and differentiating malicious extraction adversaries from
benign users. The OMED mechanism abstracts the latter approach; the implementation is left
unspecified. Hence, we define an OMED as follows.

Definition 3.1. (OMED) A p.p.t. algorithm M is a (T (n), q(n))-OMED for a class of ML models
F if for every n ∈ N, f ∈ Fn, M runs in time T (n) and takes as input a list of q(n) examples
S = [(x1, f(x1)), · · · (xq(n)f(xq(n)))] ⊆ (Xn × Yn)q(n) and outputs σ ∈ {accept, reject}.

The definition of the OMED is defined as generally as possible from the perspective of the
defense, but makes one important restriction on the client: the examples are requested in large
batches, rather than as an adaptive sequence. This nonadaptive setting (with respect to the query
selection) can be viewed as unnecessarily restrictive on the client. However, since we prove negative
results on the possibility of MEDs via OMEDs, the restriction on the client actually strengthens
our results. Furthermore, the defense could be expanded to a multi-client setting, where all clients
must submit their batches simultaneously. This is again a restriction on the power of the client(s),

11



and thus strengthens our negative results.

3.1 How to Obtain Provable Security

The above definition of an OMED makes no claims about desirable properties given by the OMED.
Thus, what properties should we expect from the OMED? As mentioned in Section 1.2.4, the goal
of the OMED is not just to classify the behavior of the clients, but to actually confine the clients
to certain predefined benign behaviors. However, it is not enough to simply define security as
the event that the client behavior is benign, because this actually needs to be detected and then
enforced.

Hence, it should be that a good OMED guarantees that (with high probability) any benign
client is accepted, while any adverse client is rejected (and thus prevented from reverse engineering
the underlying model). Naturally, the former requirement resembles completeness in an interactive
proof system while the latter requirement resembles soundness. Through this lens of Interactive
Proofs, we will formalize a notion of completeness and soundness.

First, let us explain how we model a client’s behavior in the context of the model extraction
setting depicted above. It has been noted in the model extraction literature (e.g. [JSMA19]) that
defenses should consider how a client’s queries relate to each other, rather than how they look
individually. This idea is implemented by assuming that a client’s queries follow a distribution8.
We adopt a similar idea in this work: we assume that a client’s queries follow a distribution P over
X . Now, we may nail down how adverse and benign clients behave, and subsequently the OMED.
Informally, the idea is that all benign client request examples according to distributions that share
some abstract property. We may formalize this as follows:

Definition 3.2. We denote by Pn a property of distributions, where Pn ⊆ ∆(Xn × Yn).

Thus intuitively,

Definition 3.3. We say that a set of examples Q ⊆ Xn × Yn is Pn-benign if Q ∼ P for some
P ∈ Pn.

and,

Definition 3.4. We say that a set of examples Q ⊆ ×Yn is Pn-adverse if Q ∼ P for some P /∈ Pn.

Moreover, we will informally refer to a client as benign (adverse) if he always requests Pn-benign
(Pn-adverse) sets (and it will be the case that Pn is clear from the context).

3.1.1 Completeness

The definition of completeness is straightforward:

Definition 3.5. (MED completeness) We say that M is a (T (n), q(n))-OMED is δ-complete with
respect to the property Pn if for any client C who requests examples SC which are Pn-benign, it
holds that

Pr
M,SC

[
M(SC) = accept

]
≥ 1− δ

8This model for the basic behavior of a client has appeared previously in the literature (e.g. [JSMA19], [PGKS21]).
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3.1.2 Provable Security for Benign Clients

The definition of completeness implicitly assumes that, in the case that the client is classified as
benign, they are essentially free to interact with the model. Thus, the underlying assumption is that
by virtue of queries being benign, the ML model is not considered at risk for being extracted by the
server. Therefore, the choice of the benign property is of utmost importance. As discussed in the
introduction (see Section 1.2.4), this leaves room for a theory of provable security. For example,
under our framework, a solid choice for a property would be the Pn = Un (i.e., the uniform
distribution over examples). This is because many interesting classes of models are thought to be
hard to learn from uniformly random examples, even for most models in the class (that is, in the
heuristic PAC-learning case, rather than just in the worst-case).

Indeed, a reduction from extracting the ML model (in the average-case over the uniform distri-
bution) using Un-benign queries to heuristic PAC-learning with respect to the uniform distribution
nearly writes itself. To formalize this intuition, we prove the following lemma, which essentially
says that if PAC learning is impossible for a large fraction of the class, then, given that the OMED
accepted a client that used Un-benign queries, the probability that most models could be extracted
(with arbitrarily high fidelity) is negligible. We will later use the lemma to show how to obtain a
formal notion of security against model extraction by all clients, whether adverse or benign.

We first need to establish what constitutes a successful model extraction. Similarly to [CCG+20],
we define the following extraction experiment. Let Fn ⊆ {f : Xn → Yn} and A be a probabilistic
polynomial time adversary. We fix a loss function LD,f : Fn → [0, 1] parametrized by an ML model
f ∈ Fn, and a distribution Dn over Xn.

Definition 3.6. (Extraction experiment) Let ExpC,Dn,f,q(n),ε be defined as the output of the following
process.

1. C interacts with Of by requesting the labels of a set S of q(n) queries.

2. Using [x,Of (x)]x∈S, C outputs a candidate model f̂ .

3. If LD,f (f̂) < ε, output “extracted,” else output “unextracted.”

Lemma 3.7. (Provable security against clients behaving benignly) Let M be any p.p.t. OMED
satisfying δ-completeness for any δ ≥ 1− 1/poly(n), with respect to a property of distributions Pn.
Then, if a class of ML models Fn is not efficiently (η, ε)-heuristic PAC-learnable with respect to
any distribution D ∈ Pn, then there exists F ⊆ Fn of size at least η · |Fn|, such that for any p.p.t.
client C which requests a set of q(n) examples SC that is Pn-benign, and for all f ∈ S,Dn ∈ Pn,

Pr
M,SC

[
ExpC,Dn,f,q(n),ε = extracted

∣∣M(SC) = accept
]
≤ negl(n)

Proof. We show the contrapositive. Thus, suppose that we have a p.p.t. C such that for some
Dn ∈ Pn, ε > 0, and a δ-complete M,

Pr
f∼Fn

[
Pr
M,SC

[
ExpC,Dn,f,q(n),ε = extracted

∣∣M(SC) = accept
]
≥ 1

poly(n)

]
≥ 1− η

This implies that

Pr
f∼Fn

 PrM,SC

[
ExpC,Dn,f,q(n),ε = extracted ∧ M(SC) = accept

]
PrM,SC

[
M(SC) = accept

] ≥ 1

poly(n)

 ≥ 1− η
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which is equivalent to

Pr
f∼Fn

[
Pr
M,SC

[
ExpC,Dn,f,q(n),ε = extracted ∧ M(SC) = accept

]
≥ 1− δ

poly(n)

]
≥ 1− η

since M is δ-complete. We now may observe that latest equation is the guarantee that C (η, ε)-
heuristically PAC learns Fn in time poly(n) with accuracy ε and confidence (1 − δ)/poly(n)), for
some Dn ∈ Pn.

Then, it follows that F is (η, ε)-heuristically PAC-learnable with respect to Dn by running C
poly(n) times to produce many hypotheses, testing each by random sampling, and outputting the
most accurate hypothesis. This works as long as δ ≥ 1− 1/poly(n).

3.1.3 Soundness

The notion of provable security from Lemma 3.7 only deals with clients that request sets of examples
that are Pn-benign. Thus, we need to provide some guarantees when this is not the case. To this
end, we also formalize soundness using the above extraction experiment.

Definition 3.8. (MED soundness) We say thatM is a (T (n), q(n))-OMED for Fn is δ-sound with
respect to the property Pn if for any client C∗ who requests examples SC∗ which are Pn-adverse, and
for any f ∈ Fn, Dn ∈ Pn, ε > 0, it holds that

Pr
M,SC∗

[
M(SC∗) = accept

∣∣ ExpC∗,Dn,f,q(n),ε = extracted
]
< δ

The definition mirrors soundness from an Interactive Proof, where for any adversary that does
not use benign queries, and given that the adversary would have extracted the model, the probability
that the OMEDM errs by accepting the adversary is low. In this cryptographic setting, the OMED
would want to set δ to a negligible function of n.

3.1.4 Cryptographically-Hard Model Extraction Against All Clients

To tie it all together, we argue that combining completeness, soundness, and hardness assumptions
for heuristic PAC-learning light the way to providing full security against model extraction by an
OMED. Our notion of security against model extraction (defined below) constitutes bounding the
probability that a client wins the extraction game by a negligible function, in this case of n (the
size of the learning problem).

Definition 3.9. (Security against Model Extraction) We say that an OMED M for F is (η, ε)-
secure against model extraction if for sufficiently large n, there exists S ⊆ Fn of size at least η · |Fn|,
such that for any p.p.t. client C which requests a set of q(n) examples SC and for all f ∈ S,Dn ∈ Pn,

Pr
M,SC

[
ExpC,Dn,f,q(n),ε = extracted

]
≤ negl(n)

Thus, we prove that, essentially, for any complete, sound, OMED M for a class of ML models
Fn, if Fn has no η-heuristic PAC-learning algorithm, then at least η fraction of models in Fn can
not be extracted by any client, no matter how it behaves, except with negligible probability.
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Theorem 3.10. (Provable Security from Complete and Sound OMEDs) Let M be any p.p.t.
OMED satisfying δ-completeness and γ-soundness for any δ ≥ 1− 1/poly(n), γ < 1/poly(n), with
respect to a property of distributions Pn. Then, if a class of ML models Fn has no p.p.t. (η, ε)-
heuristic PAC-learning algorithm with respect to any distribution Dn ∈ Pn, then M is (η, ε)-secure
against model extraction.

Proof. By definition, the examples requested by C are either Pn-benign or Pn-adverse. In the
former case, Lemma 3.7 implies that

Pr
M,SC

[
ExpC,Dn,f,q(n),ε = extracted

]
≤ negl(n)

In the latter case, we have the guarantee from Definition 3.8 that

Pr
M,SC∗

[
M(SC∗) = accept

]
< γ

where γ is a quantity bounded above by a negligible function of n. Therefore the statement
follows.

We remark that the level of security is essentially determined by the strength of the hardness
assumption on heuristic PAC-learning. To be specific, an assumption of hardness of (η, ε)-heuristic
PAC-learning maps to an (η, ε)-secure OMED. This dynamic mirrors, but formalizes, the efforts of
practical OMEDs in the literature, which implicitly make an underlying assumption that certain
query distributions make extraction hard. In other words, we phrase the implicit assumptions as
heuristic PAC-learning hardness assumptions.

3.2 Defense Proposals As Special Cases of the OMED

Our proposed OMED technique for provable security against model extraction is purposely defined
as generally as possible. However, we view it beneficial to discuss the relation to some concrete
MEDs which have been proposed.

In this section, we will review three MEDs, [KMAM18], [JSMA19] and [PGKS21], demon-
strating that each are special cases of an OMED (with unproved completeness and soundness
guarantees). We start each example with a direct quote from the original paper so as to directly
demonstrate the relevance to our OMED framework.

3.2.1 Extraction Monitors: Information Gain and Feature Space Coverage

The work of [KMAM18] proposes two different strategies for detecting model extraction attacks.
Both strategies “[quantify] the extraction status of models by continually observing the API query
and response streams of users” and provide a warning when a certain extraction status is reached.
This is indeed the paradigm outlined by the OMED.

The first proposal of [KMAM18] seeks to continuously train a “proxy model” for each client,
where the client queries are used to train the model. The function of the proxy model is to estimate
the information/knowledge gained by a client with respect to a validation set which is given by the
server (and when this information reaches some threshold the client is flagged). The distribution of
this validation set mimics the training set of the underlying model. It is noted that it may require
significant computational resources to train and update the proxy model (for every user and each
incoming query), and thus [KMAM18] propose to use a lightweight decision tree proxy model.
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In the second proposal, the observational keeps a short description of client queries, and esti-
mates the client’s learning rate (of the extraction attack) by analyzing the feature space covered
by these queries (as they relate to to the class boundaries of the underlying model. It is noted that
a drawback of this proposal is that the class boundaries of certain complex models (e.g. neural
networks) are not easily found. Thus, it is proposed that the owner of the underlying model up-
loads a “surrogate” decision tree which has high fidelity with respect to the complex model (class
boundaries of decision trees are easily interpreted by their leaf nodes).

3.2.2 PRADA

The MED known as PRADA [JSMA19] “analyzes the distribution of consecutive API queries and
raises an alarm when this distribution deviates from benign behavior” [JSMA19]. Immediately, it
is clear that the PRADA method is a candidate for being identified as a special case of the OMED.
The defense works under the observation that queries requested by an adversarial client are likely
to have a distribution that differs from the characteristic distribution of queries from a benign
client. In PRADA, this benign characteristic was chosen to be the property that the distribution
over hamming distances between each query in the requested batch should be normally distributed.
This choice is backed by observational evidence that certain popular attacks such as the attack of
[PMG+17] do not satisfy this condition. Hence, PRADA tries to satisfy completeness and soundness
with respect to the property of all distributions that have a pairwise hamming distance normally
distributed (e.g. the uniform distribution over {0, 1}n).

3.2.3 VarDetect

The work of [PGKS21] proposes a MED called VarDetect which is designed “to continuously obser-
vational the distribution of queries to [the model] from each user” [PGKS21]. Specifically, VarDetect
trains a Variational Autoencoder (VAE) to map the “problem domain” (PD) dataset distribution
(the PD distribution mimics the distribution of data that was used to train the underlying model)
and the adversarial “outlier” (O) data distribution (the distribution of attacker queries) to distinct
regions in latent space. Benign clients are assumed to query from the PD distribution while adverse
clients are assumed to query from an O distribution. VarDetect purports to separate these two
by computing the maximum mean discrepancy (MMD) between the latent mapping of the client’s
queries and that of the PD distribution (the MMD test flags the client if the result is above a
certain threshold).

4 Attacks on Efficient OMEDs from Natural Covert Learning

In this section, we will consider the question:

Can we efficiently realize the provable security guarantees outlined in the previous sec-
tion?

Towards a negative answer, we will introduce an attack on the OMED technique for provable
security, via a connection to Covert Learning [CK21]. Our attack will generate a distribution of
examples which is computationally indistinguishable from a distribution in the property that is
accepted by the OMED. In other words, the attacker operates (computationally) indistinguishably
from a benign client, in the eyes of the OMED. Still, the labelled queries allow the algorithm to
extract a model with high fidelity.
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Notation. We briefly recall some standard terminology and notation from learning theory which
we use throughout the remainder of the work. A concept f is a function over an input domain
Xn and label domain Yn. A concept class C = {Cn}n∈N is a sequence of sets of functions Cn =
{f : Xn → Yn}. We call a pair (x, y) ∈ Xn × Yn an example, where x is the input and y is the
label. In the rest of this work, we use Xn = {0, 1}n, and Yn = {−1, 1}. A membership oracle
Of for a concept f is an oracle with the property that on query z ∈ {0, 1}n, Of (z) = f(z). Let
D = {Dn}n∈N be a distribution ensemble over Xn. Define the distribution Ex(f,Dn, q) as the
output of sampling independently x1, · · ·xq ∼ Dn and returning [(x1, f(x1)), · · · (xq, f(xq))]. We
denote by Un the uniform distribution over {0, 1}n. Finally, let LD,f : C→ [0, 1] be a loss function
parameterized by a concept f and distribution D over inputs.

4.1 What is Natural Covert Learning?

We will focus on a special case of Covert Learning, which we call natural Covert Learning. A
natural Covert Learning algorithm, essentially, is a membership query learning algorithm that
satisfies the normal PAC-learning guarantees with respect to an example distribution D, with
the added property that distribution over the membership queries and labels is computationally
indistinguishable from examples sampled according to D.

More formally:

Definition 4.1. (Natural Covert Learning) Let C be a boolean concept class, let D be a distribution
ensemble, and fix a loss function L. We say that A is a q(n)-natural Covert Learning algorithm
for C with respect to D and L if for every n ∈ N, f ∈ Cn, ε, δ > 0, A satisfies the following:

• Completeness. For the random variable h = AOf (n, ε, δ) satisfies

Pr
h

[
LDn,f (h) ≤ ε

]
≥ 1− δ

• Privacy. For every p.p.t. adversary Adv, and S ∼ Ex(f,Dn, q(n)),∣∣∣∣∣ Pr
Adv,S

[
Adv(S) = 1

]
− Pr

Adv,T(AOf )

[
Adv(T(AOf )) = 1

]∣∣∣∣∣ ≤ negl(n) (1)

where T(AOf ) denotes the distribution over the queries made by A and the responses by the
oracle.

4.2 Natural Covert Learning Attack

In this section, our goal is to show that the existence of a natural Covert Learning algorithm for
a particular concept class implies inadequacy of a polynomial time OMED for a class of models
equal to the concept class. More specifically, we prove that satisfying soundness for an OMED is
impossible, for any reasonable completeness parameter. This suffices to rule out obtaining provable
security against model extraction by an OMED by instantiating Theorem 3.10.

Theorem 4.2. Suppose that there exists a q(n)-natural Covert Learning algorithm A for a hypoth-
esis class C, with respect to D and L. Then there exists a client C such that for any δ-complete
OMED M (with respect to Pn) for C, it holds that for any n ∈ N, ε, δA > 0, f ∈ Cn,

Pr
M,SC

[
M(SC) = accept ∧ ExpC,Dn,f,q(n),ε = extracted

]
≥ (1− δ)(1− δA)− negl(n)
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where negl(n) denotes a negligible function of n and δA is the failure probability of A.

Proof. Let SA denote the set of q(n) examples which are queried by A. Let S ∼ Ex(f,Dn, q(n)).
Furthermore, define E to be the event that M(SA) = accept and that ExpA,Dnf,q(n),ε = extracted.

Using the fact that by our Covert Learning assumption we have that for every p.p.t. adversary
Adv, ∣∣∣∣ Pr

Adv,S

[
Adv(S) = 1

]
− Pr

Adv,SA

[
Adv(SA) = 1

]∣∣∣∣ ≤ negl(n) (2)

and M, f are polynomial time computable, we then get that

Pr
M,SA,A

[
E
]
≥ Pr

[
M(S) = accept ∧ ExpA,Dn,f,q(n),ε = extracted

]
− negl(n)

Then, we can conclude by independence of events

Pr
M,SA,A

[
E
]

= Pr
[
M(S) = accept

]
∧ Pr

[
ExpA,Dn,f,m(n),ε = extracted

]
− negl(n)

≥ (1− δ)(1− δA)− negl(n)

The last equation follows by the δ-completeness property ofM. Therefore, the statement is proved
by allowing C to be identical to A.

From this attack, a generic incompleteness theorem follows, essentially because the attack works
against any efficient OMED.

Corollary 4.3. Suppose that there exists a q(n)-natural Covert Learning algorithm A for a hypoth-
esis class C with respect to D and L. Then if M is a (poly(q(n)), q(n))-OMED for C, and if M is
δ-complete with respect to D, then it is not (1−δ−γ)-sound with respect to D, when q(n) = poly(n)
and γ ≥ 1/poly(n).

Proof. By Theorem 4.2 there exists a client C that uses examples SC which are Dn-adverse such
that for any δ-complete OMED M (with respect to D) for C, it holds that for any f ∈ C, ε > 0,

Pr
M,SC

[
M(SC) = accept ∧ ExpC,Dn,f,q(n),ε = extracted

]
≥ (1− δ)(1− δC)− negl(n)

where negl(n) is a negligible function of n and δC is the failure probability of C. Then, we can
deduce that

Pr
M,SC

[
M(SC) = accept

∣∣ ExpC,Dn,f,q(n),ε = extracted
]

=

Pr
M,SC

[
E
]

Pr
M,SC

[
ExpC,Dnf,q(n),ε = extracted

]
≥ (1− δ)(1− δC)− negl(n)

1− δC

where E is defined as the event that M(SA) = accept and that ExpA,Dnf,q(n),ε = extracted. Thus
by taking an appropriately large n, M cannot be (1 − δ − γ)-sound for a reasonable choice of δC
such as 0.99.
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4.3 Concrete Attack and Incompleteness Theorem

In this section, we show that under the subexponential hardness assumption on the standard LPN
problem, there exists an attack of the type outlined in the previous section. Let us first formally
introduce our assumption.

Definition 4.4. Search LPN assumption. For µ ∈ (0, 0.5), n ∈ N, the (m(n), T (n))−SLPNµ,n
search assumption states that for every inverter I running in time T (n),

Pr
s,A,e

[I(A,As⊕ e) = s] ≤ 1

T (n)

where s
$← Zn2 ,A

$← Zm(n)×n
2 , e

$← β
m(n)
µ .

Thus, the assumption we adopt is the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption. The following

theorem is implicit in [CK21]. Let DT[poly(n)] be the set of all decision trees of size poly(n).

Theorem 4.5. (Agnostic Covert Learning of decision trees from [CK21]) Given query access to a
function f : {0, 1}n → {−1, 1}, there exists an algorithm A running in time poly(s, 1/ε, log(1/δ))

and making q(n) = poly(n, 1/ε, log(1/δ)) query accesses such that, unless the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n

assumption does not hold,

1. (Completeness) A outputs h : {0, 1}n → {−1, 1} such that

Pr
x∼Un

[
h(x) 6= f(x)

]
≤ min

g∈DT[s]
Pr

x∼{0,1}n

[
g(x) 6= f(x)

]
+ ε

with probability 1− δ.

2. (Privacy) The distribution over examples requested by A is computationally indistinguishable,
but statistically distinguishable, from Ex(f,Un, q(n)).

We may now proceed to combine Theorem 4.2 and Theorem 4.5 to obtain a concrete natural
Covert Learning attack on models implemented by decision tree classifiers of polynomial size. Let
U = {Un}n∈N, and let LD,f (h) = Prx∼D[h(x) 6= f(x)].

Theorem 4.6. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption, there exists a client C that requests

examples SC that are Un-adverse such that for any δ-complete OMED M (with respect to U) for
DT[poly(n)], it holds that for any f ∈ DT[poly(n)],

Pr
M,SC

[
M(SC) = accept ∧ ExpC,Unf,q(n),ε = extracted

]
≥ (1− δ)(1− δC)− negl(n)

where negl(n) is a negligible function of n and δC is the failure probability of C.

Proof. Observe that the algorithm described in Theorem 4.5 constitutes a natural Covert Learning
algorithm for C with respect to U, and loss function LD,f (h) = Prx[h(x) 6= f(x)]. Thus, the
statement follows directly from Theorem 4.5 and Theorem 4.2.
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4.3.1 Incompleteness Theorem

The previous theorem can be interpreted as the existence of a universal attack against any OMED
for decision tree classifiers with δ-completeness for the uniform property (up to SLPN assumptions).
Hence, the main result now follows.

Corollary 4.7. Main result. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption, if M is a

(poly(q(n)), q(n))-OMED for DT[poly(n)] and U, then ifM is δ-complete it is not (1−δ−γ)-sound,
when q(n) = poly(n), and γ ≥ 1/poly(n).

Proof. By Theorem 4.6 there exists a client C such that for any δ-complete OMEDM (with respect
to U) for DT[poly(n)], it holds that for any f ∈ DT[poly(n)], ε > 0,

Pr
M,SC

[
M(SC) = accept ∧ ExpC,Un,f,q(n),ε = extracted

]
≥ (1− δ)(1− δC)− negl(n)

where negl(n) is a negligible function of n and δC is the failure probability of C. Then, we can
deduce that

Pr
M,SC

[
M(SC) = accept

∣∣ ExpC,Un,f,q(n),ε = extracted
]

=

Pr
M,SC

[
E
]

Pr
M,SC

[
ExpC,Unf,q(n),ε = extracted

]
≥ (1− δ)(1− δC)− negl(n)

1− δC

Thus by taking an appropriately large n,M cannot be (1− δ− γ)-sound for a reasonable choice of
δC such as 19/20.

As an example, our result shows that for any reasonable choice of δ for uniform completeness
(e.g. 0.1, meaning that at most 0.1 honest clients are incorrectly rejected), then it is impossible
to obtain any even remotely useful soundness guarantee. Using δ = 0.1, our result shows that not
even 0.11 fraction of extraction attempts will be detected by the OMED.

More generally, let us recall the provable security theorem, restated below.

Theorem 4.8. (Restated Theorem 3.10) LetM be any p.p.t. OMED satisfying δ-completeness and
γ-soundness for any δ ≥ 1 − 1/poly(n), γ < 1/poly(n), with respect to a property of distributions
Pn. Then, if a class of ML models Fn has no p.p.t. (η, ε)-heuristic PAC-learning algorithm with
respect to any distribution Dn ∈ Pn, then M is (η, ε)-secure against model extraction.

The theorem, to be instantiated, requires that the completeness parameter and soundness pa-
rameter are noticeably apart.

Theorem 4.9. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption, provable security against model

extraction via efficient OMED and Theorem 3.10 cannot be achieved.

Proof. The statement follows immediately from Corollary 4.7 and inspection of Theorem 3.10.
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5 Provable Security from the Impossibility of Covert Learning

In this section, we show the inverse of Corollary 4.3. That is, if natural Covert Learning algorithms
do not exist, then we can obtain good OMEDs needed for security via Theorem 3.10.

Theorem 5.1. If there does not exist a q(n)-natural Covert Learning algorithm for a concept class
Cn with respect to Dn, then there exists M which is a (poly(q(n)), q(n) ·O(log(η−1)))-OMED for a
concept class Cn that is δ-complete and η-sound with respect to the property {Dn} for η ≤ negl(n).

Proof. Since there does not exist a q(n)-natural Covert Learning algorithm for the concept class
C with respect to Dn, then it means that for every learning algorithm A such that for every
f ∈ C, n ∈ N, ε, γ > 0 we have that with probability 1 − γ, ExpA,Dn,f,q(n),ε = extracted, then
distribution over queries made by A is efficiently distinguishable from Dn. In other words, there
exists p.p.t. Adv such that for S ∼ Ex(f,Dn, q(n)),∣∣∣∣∣ Pr

Adv,S

[
Adv(S) = 1

]
− Pr

Adv,T(AOf )

[
Adv(T(AOf )) = 1

]∣∣∣∣∣ = µ ≥ 1/poly(n) (3)

where T(AOf ) denotes the distribution over the queries made by A and the responses by the oracle.
This implies that we can produce the desired OMED M by using Adv as follows:

1. Estimate PrAdv,S [Adv(S) = 1] within an additive factor of µ/4 with probability at least 1−η/2.

2. Using segments of submitted query requests SC , estimate PrAdv,SC [Adv(SC) = 1] within an
additive factor of µ/4 (here SC are segments of input queries from a client C), with probability
at least 1− η/2.

3. Output “reject” if the two estimates are not within µ/2, and “accept” otherwise.

We analyze this process to prove the desired statement, starting with completeness and sound-
ness. Without loss of generality, assume that PrAdv,S [Adv(S) = 1] ≥ 1− δ. Then, it follows thatM
is δ-complete with respect to Pn. Now, by (3), it must be the case that

Pr
Adv,T(AOf )

[
Adv(T(AOf )) = 1

]
≤ 1− δ − µ

or

Pr
Adv,T(AOf )

[
Adv(T(AOf )) = 1

]
≥ 1− δ + µ

Hence, the estimation procedure is guaranteed to distinguish between the two cases with probability
least 1− η (using a union bound). Using this fact and inspecting step 3 gives η-soundness.

To see that M is an (poly(q(n)),poly(q(n)))-OMED specifically, observe that Adv is efficient
(and therefore runs in time poly(q(n)), and consider that the estimation procedure requires q(n) ·
O(log(η−1)) examples which are given by the client to estimate within the desired factor and with
probability 1− η as needed.

We remark that in the above proof, it is important that the OMED has access to q(n) ·
O(log(η−1)) examples from the client. Ideally, we can reduce this number, as clients may be
able to perform model extraction using less queries. Nonetheless, it allows us to obtain (along with
Corollary 4.3) the following “dichotomy” between the possibility of OMEDs and Covert Learning.
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Corollary 5.2. (OMED/Covert Learning Dichotomy) The following statements are equivalent.

1. There exists an (poly(q(n)), q(n) · O(log(η−1)))-OMED M for a concept class Cn which is
δ-complete and negl(n)-sound with respect to Dn.

2. There does not exist a q(n)-natural Covert Learning algorithm for a concept class Cn with
respect to Dn.

Proof. Corollary 4.3 gives 1→ 2, while Theorem 5.1 gives 2→ 1.
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