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ABSTRACT
Resource-based consensus is the backbone of permissionless dis-

tributed ledger systems. The security of such protocols relies funda-

mentally on the level of resources actively engaged in the system.

The variety of different resources (and related proof protocols, some

times referred to as PoX in the literature) raises the fundamental

question whether it is possible to utilize many of them in tandem

and buildmulti-resource consensus protocols. The challenge in com-

bining different resources is to achieve fungibility between them,

in the sense that security would hold as long as the cumulative
adversarial power across all resources is bounded.

In this work, we put forthMinotaur, a multi-resource blockchain

consensus protocol that combines proof of work (PoW) and proof-

of-stake (PoS), and we prove it optimally fungible. At the core of our
design, Minotaur operates in epochs while continuously sampling

the active computational power to provide a fair exchange between

the two resources, work and stake. Further, we demonstrate the

ability ofMinotaur to handle a higher degree of work fluctuation as

compared to the Bitcoin blockchain; we also generalizeMinotaur
to any number of resources.

We demonstrate the simplicity of Minotaur via implementing

a full stack client in Rust (available open source [25]). We use

the client to test the robustness of Minotaur to variable mining

power and combined work/stake attacks and demonstrate concrete

empirical evidence towards the suitability of Minotaur to serve as

the consensus layer of a real-world blockchain.

1 INTRODUCTION
Resource-based Consensus. The fundamental feature of the de-

centralized computing paradigm of permissionless blockchains is

that participation in the consensus protocol is enabled by prov-

ing possession of a resource. Bitcoin pioneered this idea based on

proof-of-work (PoW), and its implied energy wastage inspired new

designs based on alternative resources such as proof-of-stake (PoS),

proof-of-space (PoSp) and proof-of-elapsed-time (PoD). These dif-

ferent resources cover the variegated and multidimensional forms

of ‘capital’ that the participants bring. Each proof-of-X mechanism
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is interesting on their merit in appropriate settings (computation

in PoW, memory and storage in PoSp and time/delay in PoD, to-

kens/capital in PoS). Further, the mechanisms trigger different in-

centives even within the same resource format; focusing on PoW

for example, we see that the hashcash algorithm [2] instantiated

by the SHA256 function [29] implemented in Bitcoin has been re-

placed by others, including scrypt [32] and ethash [12]. Each of

these different proof-of-X mechanisms have led to different, and

isolated, blockchain ecosystems.

Combining different resources. Given the diversity of incen-

tivization embodied by different resources, it is a natural ques-

tion whether it is feasible to combine their features into a single

blockchain design (e.g., hybrid PoW-PoS permissioned blockchains).

The key challenge to combining multiple resources is in determin-

ing the exchange rate, i.e., to what extent the different resources

are translated into power of authority in the system and to extract

security from these resources in an optimal manner. Adapting the

exchange rate dynamically to the participation levels in each re-

source type, resulting in a truly fungible notion of resource, is a

basic and fundamental goal. By truly fungible, we mean that the

security of the multi-resource consensus protocol is guaranteed

as long as the honest players control a majority of the combined

resources that consist of each resource type in the system — con-

cretely,

∑M
i=1 βi < M/2 whereM is the number of resources and βi

the adversarial power in the i-th resource (this property is appropri-

ately generalized to any linear combination in Definition 2). Next

we give some examples of non-fungible hybrid PoW/PoS protocol

designs.

First order hybrid PoW/PoS protocols. Given the basic impor-

tance of incorporating multiple resources in a single blockchain

design, there are several designs of hybrid PoW/PoS protocols in

the literature [4, 10, 11, 19, 23]. These protocols, however, are ei-

ther heuristic (lacking a formal security analysis) [4, 10, 23], or

make assumptions that break fungibility (e.g. honest majority in

stake [10, 11, 19] and/or static mining power [11]). Indeed, with

sufficient assumptions the problem of a hybrid protocol is trivially

resolved. For instance, if we assume an honest majority in stake

(at all time), we can use a committee chosen randomly from the

pool of stakeholders to assist a PoW ledger by regularly issuing



checkpoints [19]. However, the security of this scheme is solely

guaranteed by the stakeholders, and the trust is entirely supported

by PoS (not from PoW).

Natural solutions. In fact, if we assume a static setting (where

both the total mining power and total ‘active’ stake are fixed and

known to the protocol designer), a simple solution is the following:

PoW and PoS mining occur in parallel; and whichever PoW or PoS

succeeds first, goes ahead and extends the longest chain. However,

there does not appear to be any straightforward (or otherwise)

approach to extend this simple idea to the non-static setting, since

we can no longer normalize the stake and work in the system when

the total mining power is changing and unknown (§4). Even a

fungible combination of work (i.e., total amount of honest work

is more than total Byzantine work) emanating from two different

hash functions (thus allowing two PoW blockchains using the same

longest-chain consensus protocol to co-exist) has been unsolved.

Minotaur Protocol. In this paper we presentMinotaur, a block-
chain protocol with proof of fungible work and stake. At its core,

Minotaur is a longest chain protocol that bases its block-proposer

schedule on our concept of virtual stake that fuses active actual
stake and work stake. The work-stake distribution is determined

per epoch by measuring the participants’ contributions in hashing

power during a prior epoch. Work contribution is achieved by con-

current PoWmining of PoW blocks (similar to ‘endorser inputs’ [21]

or ‘fruits’ [31]) to be eventually referenced by main-chain blocks.

The work-stake distribution is then assigned proportionally to a

participant’s share of endorser blocks referenced from the main

chain during that epoch; and applying the fairness mechanisms

in [17, 21, 31], this assignment indeed truly represents the PoW-

resource distribution among the participants. Figure 1a illustrates

the protocol (a detailed description is given in §5).

Minotaur security is optimal. We show that Minotaur is truly
fungible between work and stake by showing it is secure when the

sum of ω times the proportion of adversarial hash power (βw ) and

1 − ω times the proportion of the adversarial stake (βs ) is smaller

than 1/2, for any ω ∈ [0, 1], a weighing parameter of PoW/PoS

(see Figure 1b for ω = 0.5). Figure 1b also compares the security

guarantee of Minotaur and a couple of non fungible PoW/PoS

protocols in the literature (the checkpointed ledger [19], the 2-hop

blockchain [11], and a few finality gadgets [6, 28, 33, 36]), with more

details in Appendix A. We give a formal security analysis in §6.

The new challenge that we have to tackle in our security analysis

is to show a fairness guarantee in the work-stake conversion (e.g.,

a miner with 10% mining power should gain 10% work stake) in

the non-static setting and in the presence of an adversarial majority
of mining power. This requires a new understanding of how to

bound the evolution of mining difficulty in the system compared

to techniques used in previous works and the Bitcoin blockchain,

and presents a significant barrier to surmount in our analysis. One

immediate consequence is thatMinotaur can tolerate a 51% mining

adversary, as long as there is a supermajority in honest stake (and

vice verse, a 51% stake adversary). We prove our security guarantee

to be optimal, see §3, in the sense that otherwise the adversary will

control the majority of the combined “resource” in the system and

an analogy of Nakamoto’s private chain attack [26] could break

the security (formal and detailed proof in §3). We also show that

(a)

(b)

Figure 1: (a) Architecture ofMinotaur consensus protocol. (b)
Comparison of security regions achieved by different hybrid
PoW/PoS protocols (more details in Appendix A).

Minotaur is capable of tolerating fluctuations of work much more

effectively than Bitcoin, cf. §6.4.

Implementation. We have implemented a prototype of a Mino-
taur client in about 6000 lines of Rust code [25] and provide experi-

mental results to evaluate the concrete performance ofMinotaur
under different scenarios. We also implemented a Bitcoin client as

a benchmark. We use that client to validate also experimentally

that Minotaur can survive more drastic variations of network hash

power, while Bitcoin is no longer live under the same scenario.We

also evaluate practical security concerns, like selfish mining and

spamming, on ourMinotaur client. Our implementation shows that

Minotaur performs well even under these attacks, and makes a

stronger case for the practical viability and robustness of the sys-

tem. More details on the implementation and the experiments can

be found in §7.

Launching considerations.We point out thatMinotaur provides
also a secure and efficient method to bootstrap a PoW-based block-

chains. In general, it is more challenging to securely launch PoW

blockchains, as a new blockchain would presumably start off with

a relatively smaller total computation power and be vulnerable to

the so-called “51% attacks”. On the other hand, PoS blockchains are

easy to launch with existing techniques, such as proof-of-burn [20],

initial coin offering [24] and airdrop [1]. The key advantage of

Minotaur is that it can launch in pure PoS mode (setting parameter
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ω = 0) and later transit into a pure PoW blockchain by gradually

changing the weighing parameter ω to a higher value (§8).

Related work. The idea of hybrid PoW/PoS block production was

first mentioned in [23]. A first concrete construction was given

in [4] under the label ‘proof of activity’, but without giving a rig-

orous security analysis. Their block-production mechanism essen-

tially extends standard Bitcoin mining by having the mined block

implicitly elect a set of stakeholders that are required to sign the

block in order to validate it.

A similar construction was proposed in [11] and proven secure

under a majority of adversarial hashing power—however, their

security proof still implies an honest majority of stake. In particular,

and contrary to their initial claims, the protocol is not proven secure

under the condition that any minority of the combined resources

is controlled by the adversary.
1

The work of [11] was extended in [10], to adapt to dynamic

participation of both, hashing power and stake, and in [37], to

combine PoW with multiple resources (rather than just PoS)—both

works lack a rigorous security analysis.

The application of PoW/PoS hybrid block production for the goal

of protecting early-stage PoW systems against initial periods of

adversarial dominance in hashing power was explored in [7]. They

propose to start the system with hybrid block production (where

each resource contributes to a certain fraction of the blocks) and

then slowly fade out the stake contribution to eventually turn the

system into pure PoW. Also this protocol is not proven secure.

There also exist another class of hybrid PoW/PoS protocols [6,

28, 33, 36], which uses a BFT protocol (PoS) to build a finality gad-

get/layer on the top of a Nakamoto-style longest chain protocol

(PoW) to achieve important properties such as accountability and fi-

nality. However, these protocols require an honest majority (or even

supermajority) on both the set of miners and the set of stakeholders

hence they are not fungible.

2 PRELIMINARIES
2.1 Security model
Time, slots, and synchrony.We consider a setting where time is

divided into discrete units called slots. Players are equipped with

(roughly synchronized) clocks that indicate the current slot. Slots

are indexed by integers, and further grouped into epochs with fixed

sizeR, i.e., epoch e composes of slots {(e−1)R+1, (e−1)R+2, · · · , eR}.
And we assume that the real time window that corresponds to each

slot has the following two properties: (1) The current slot is deter-

mined by a publicly-known and monotonically increasing function

of current time; (2) Each player has access to the current time and

any discrepancies between parties’ local time are insignificant in

comparison with the duration of a slot.

We describe our protocols in the now-standard ∆-synchronous
network model considered in [3, 8, 18, 30], where there is an (un-

known) upper bound ∆ in the delay (measured in number of slots)

that the adversary may inflict to the delivery of any message. Simi-

lar to [18, 30], the protocol execution proceeds in slots with inputs

provided by an environment program denoted by Z(1κ ) to parties

that execute the protocol Π, where κ is a security parameter. The

1
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network is modeled as a diffusion functionality similar to those

in [18, 30]: it allows message ordering to be controlled by the adver-

saryA, i.e.,A can inject messages for selective delivery but cannot

change the contents of the honest parties’ messages nor prevent

them from being delivered within ∆ slots of delay — a functional-

ity parameter. Specially, for ∆ = 1, the network model is reduced

to the so-called lock-step synchronous model, where messages are

guaranteed to be delivered within one slot.

Protocol player. The protocol is executed by two types of players,

PoW-miners (miners for short) and PoS-holders (stakeholders for

short), who generate different types of blocks, PoW blocks and

PoS blocks. Note that we allow for any relation among the sets of

miners and stakeholders, including the possibility that all players

play both roles, or the two types of players are disjoint.

Random oracle. For PoW mining, we abstract the hash function

as a random-oracle functionality. It accepts queries of the form

(compute, x) and (verify, x,y). For the first type of query, assum-

ing x was never queried before, a value y is sampled from {0, 1}κ

and it is entered to a table TH . If x was queried before, the pair

(x,y) is recovered from TH . In both cases, the value y is provided

as an answer to the query. For the second type of query, a lookup

operation is performed on the table. Honest miners are allowed to

ask one query per slot of the type compute and unlimited queries

of the type verify. The adversary A is given a bounded number

of compute queries per slot and also unlimited number of verify
queries. The bound for the adversary is determined as follows.

Whenever a corrupted miner is activated the bound is increased by

1; whenever a query is asked the bound is decreased by 1 (it does

not matter which specific corrupted miner makes the query).

Adversarial control of resources. We assume a Byzantine ad-

versary who can decide on the spot how many honest/corrupted

miners are activated adaptively. In a slot r , the number of honest

miners that are active in the protocol is denoted by hr and the

number of all active miners in slot r is denoted by nr . Note that
hr can only be determined by examining the view of all honest

miners and is not a quantity that is accessible to any of the honest

miners individually. In order to obtain meaningful concentration

bounds on the number of PoW blocks in a long enough window, we

set a lower bound α0 on the fraction of honest mining power, i.e.,

hr ≥ α0nr for all r . Note that α0 does not have to be 1/2 as required
by Bitcoin, it can be a small positive constant. Sudden decreases of

total mining power could hurt the liveness of the protocol due to

too few PoW blocks mined in one epoch. Therefore, we need to re-

strict the fluctuation of the number of honest/adversarial queries in

a certain limited fashion. Suppose Z,A with fixed coins produces

a sequence of honest miners hr , where r ranges over all slots of the
entire execution, we define the following notation.

Definition 1 (from [16]). For γ ∈ [1,∞), we call a sequence
(xr ), r ∈ [LR], as (γ , s)-respecting if for any set S ⊆ [0, LR] of at most
s consecutive slots,

max

r ∈S
xr ≤ γ min

r ∈S
xr ,

We say that Z is (γ , s)-respecting if for all A and coins for Z and
A, both the sequences of (hr ) and (nr ) are (γ , s)-respecting.
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Finally, Minotaur achieves consensus via proof of fungible work
and stake. The following is the formal definition of fungibility and

our major assumptions on the adversarial power.

Definition 2 (Fungibility of resources). For a time window
W , let βWs be the maximum fraction of adversarial stake inW , where
the maximum is taken over all views of all honest players across
all slots inW ; and let βWw be the maximum fraction of adversarial
mining power over all slots inW (i.e., βWw = 1−minr ∈W hr /nr ). For
θ ∈ [0, 1], we say the adversary A is (θ ,m,ω)-bounded if for any
time windowW with at mostm slots, we haveωβWw + (1−ω)β

W
s ≤ θ .

We say a blockchain protocol achieves fungibility of work and stake
if it is secure against such an adversary.

Assumption 1 (Initialization). During the initialization phase
of the protocol, we assume:

1.1 The initial stake distribution has honest majority, i.e., β0s ≤

1/2 − σ , where β0s is the fraction of initial stake controlled by
the adversary.

1.2 We have a good estimate of the initial honest mining power
h1. In particular, let ˜h1 be the estimate of h1, we have h1/(1 +
δ )γ 2 ≤ ˜h1 ≤ γ 2h1/(1 − δ )α0.

To keep the paper simple, theMinotaur protocol, as described,
relies on Assumption 1, while we refer the reader to §8 for a discus-

sion on how to modify the protocol such that this initial assumption

(of an honest majority of stake) is no longer required.

Assumption 2 (Execution). During the execution phase of the
protocol, we assume:

2.1 Stake-work bound: The adversaryA is (1/2−2σ , 2R,ω)-bounded.
2.2 Work fluctuation bound: The environmentZ is (γ , 2R)-respecting.
2.3 Work participation bound:For any slot r ∈ [LR], hr ≥ α0nr .

Participation model.Minotaur can be constructed based on dif-

ferent PoS longest chain protocols. Various versions ofMinotaur
will take different subsets of the following assumptions on the

participation model:

(P1) Honest stakeholders are always online
2
;

(P2) Honest miners who mined PoW blocks in epoch e will stay
online in epoch e + 2;3

(P3) In case an honest party joins after the beginning of the pro-

tocol, its initialization chain C provided by the environment

should match an honest party’s chain which was active in

the previous slot.

2.2 Blockchain security properties
Notation 1. We denote by C ⌈ℓ the chain resulting from “pruning”

the blocks with timestamps within the last ℓ slots. If C1 is a prefix of
C2, we write C1 ≺ C2. The latest block in the chain C is called the
head of the chain and is denoted by head(C). We denote by C1∩C2 the
common prefix of chains C1 and C2. Given a chain C and an interval
S (or [r1, r2]), let C(S) (or C[r1, r2]) be the segment of C containing

2
This assumption can be easily relaxed. Namely, it is sufficient for an honest stakeholder

to come online at the beginning of each epoch, determine whether it belongs to the

slot leader set for any slots within this epoch, and then come online and act on those

slots while maintaining online presence at least every k slots. See Appendix H of [8]

for more detail.
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blocks with timestamps in S (or [r1, r2]). We say that a chain C is
held by or belongs to an honest node if it is one of the best chains in
its view.

Definition 3 (Common Prefix (CP)). The common prefix prop-
erty with parameter ℓcp ∈ N states that for any two honest nodes
holding chains C1, C2 at slots r1, r2, with r1 ≤ r2, it holds that

C
⌈ℓcp
1

≺ C2.

Definition 4 (Existential ChainQuality (∃CQ)). The exis-
tential chain quality property with parameter ℓcq ∈ N states that
for any chain C held by any honest party at slot r and any interval
S ⊆ [0, r ] with at least ℓcq consecutive slots, there is at least one
honestly generated block in C(S).

Our goal is to generate a robust transaction ledger that satisfies

persistence and liveness as defined in [21].

Definition 5. A protocol Π maintains a robust public transaction
ledger if it organizes the ledger as a blockchain of transactions and it
satisfies the following two properties:

• (Persistence) Consider the confirmed ledger L1 on any node
p1 at any slot r1, and the confirmed ledger L2 on any node p2
at any slot r2 (here u1 (r1) may or may not equal u2 (r2)). If
r1 + ∆ < r2, then L1 is a prefix of L2.

• (Liveness) Parameterized by u ∈ R, if a transaction tx is re-
ceived by all honest nodes for more than u slots, then all honest
nodes will contain tx in the same place in the confirmed ledger.

3 IMPOSSIBILITY RESULT
Consider any protocol Π executed by two types of players, miners

and stakeholders, and let DΠ be the region of (βw , βs ) such that Π
can generate a robust public transaction ledger under an adversary

controlling a βw fraction of mining power and a βs fraction of stake

(see Figure 1b).

Theorem 3.1. Any two points, X1 = (p1,q1) and X2 = (p2,q2)
such that p1 + p2 ≥ 1 and q1 + q2 ≥ 1, cannot co-exist in DΠ .

Proof. We show that if there exists a protocol Π secure under

both both points X1 and X2, then we can use Π to implement a

robust transaction ledger with two players, one of them being

Byzantine, which is impossible.

Let Alice and Bob be two players, one of them possibly being

malicious. Let Alice control a p1 fraction of mining power and a

1 − q2 fraction of stake. Let Bob control a 1 − p1 fraction of mining

power and aq2 fraction of stake. In the case where Alice is malicious,

a p1 fraction of mining power and a 1 − q2 ≤ q1 fraction of stake

are malicious, which is dominated by point X1. In the case where

Bob is malicious, a 1 − p1 ≤ p2 fraction of mining power and a q2
fraction of stake are malicious, which is dominated by point X2.

Assuming that Π implements a robust public transaction ledger

implies that also the protocol among the 2 players does while one

of them being malicious. However, by Theorem 1 in [15], tolerating

f = 1 malicious player requires at least 2f + 1 = 3 players. This is

a contradiction. □

Figure 2 gives a few examples of possible maximum security

regions that satisfy the constraint by Theorem 3.1. By maximum,

we mean the region cannot be enlarged any more. All these regions
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Figure 2: A few examples of possible security regions satis-
fying the constraint by Theorem 3.1.

are bounded by a non-increasing curve that is symmetrical about the
point (1/2, 1/2). Therefore, all these security regions have area 1/2,

which is an analogy of the 1/2 fault tolerance in the single-resource

systems. In this work, we focus on achieving the security regions

bounded by a linear curve (the yellow and red ones in Figure 2) and

leave the achievability of other possible regions (e.g., the green and

blue ones) to future work.

Corollary 1. No protocol Π can generate a robust public trans-
action ledger under a (1/2,m, ·)-bounded adversary for anym.

Corollary 1 thus implies that Assumption 2.1 is not only sufficient

but also necessary.

4 BASELINE APPROACHES
In this section, we provide a couple of natural designs of hybrid

PoW/PoS protocols, which fail to achieve the full goal as Minotaur.
Idea 1: Securing PoW chain via checkpointing. The check-

pointed ledger [19] employs an external set of parties or a committee

chosen randomly from the pool of stakeholders to assist a PoW

ledger by finalizing blocks shortly after their creation. The finalized

blocks are called checkpoints and the final ledger is formed by the

chain of checkpoints. This mechanism can also secure a PoW ledger

in the presence of adversarial mining majorities, but the security is

solely guaranteed by the external set or the stakeholders.

There also exist other checkpointing protocols [6, 28, 33, 36]

achieving properties that are not possible with pure PoW protocols,

such as accountability and finality. However, these protocols require

an honest majority (or even supermajority) on both the set of miners

and the set of stakeholders.

Idea 2: Smooth interpolation among PoW and PoS blocks. In
the static setting (where both the total mining power and total

active stake are fixed and known to the protocol designer), there is

a simple protocol that can also achieve the regions defined by the

red line in Figure 1b. In this protocol, PoW and PoS mining occur

in parallel, following the longest chain rule. In the initialization

phase, we tune the mining targets such that the mining rate (i.e.,

number of blocks produced per unit time) of PoW blocks is ω f and

the mining rate of PoS blocks is (1 − ω)f . In the execution phase,

whichever miners or stakeholders succeeds first, it goes ahead and

extends the longest chain.

Compared with a pure PoS protocol (e.g., Ouroboros Praos [3]),

the adversary in this protocol has strictly smaller action space be-

cause it cannot equivocate with the PoW blocks. Therefore, the secu-

rity of this protocol follows directly from the security of Ouroboros

Praos via either the forkable string argument [3] or the Nakamoto

block method developed in [9]. We remark that the existence of this

simple protocol makes the 2-hop blockchain [11] less interesting as

it only works in the static setting and does not even allow weighing

PoW and PoS.

However, it is very hard to extend this simple idea to the non-

static setting, particularly with variable mining power. A natural

approach to support variable mining power is to have fixed-length

epochs and adjust the mining target of PoW blocks every epoch

as in Bitcoin. From the simple protocol described above, we learn

that in order to guarantee security in the non-static setting, we

need to make sure that the ratio of total mining rates of PoW blocks

and PoS blocks is a constant ω/(1 − ω) in every epoch. However,

this is impossible to achieve in the variable mining power setting

because the adversary can always decide to hide or release its PoW

blocks so that there is no way to estimate the total mining power

accurately. Inaccurate PoW mining target adjustment could lead

to a different weighing parameter ω of the security region than

the desired one. More importantly, the value of ω can be easily

manipulated by the adversary (via selectively publishing its PoW

blocks), and is unknown to the honest players.

5 THE FULL PROTOCOL
In this section, we provide a detailed description of our protocol

Minotaur. The protocol is built on an epoch-based PoS longest chain
protocol (e.g., Ouroboros [21], Ouroboros Praos [8], Ouroboros

Genesis [3]). Recall that in a epoch-based PoS protocol, time is

divided into multiple epochs, each with a fixed number of slots.

In each slot, one or multiple stakeholders are selected as block

proposers by a PoS ‘lottery’ process. In this process, the probability

of being selected is proportional to the relative stake a stakeholder

has in the system, as reported by the blockchain itself.

In contrast to the original Ouroboros protocols, the block-proposer

schedule accounts for both resources by means of virtual stake,
which is a combination of the actual stake (representing stake as

in the original protocol), and work stake representing the share in

block-production rights attributed to the PoW resource.

Additionally, PoW miners participate by mining endorser blocks
(along the lines of ‘endorser inputs’ [21] or ‘fruits’ [31]). These

endorser blocks are not directly appended to the main chain, but

are to be referenced by future main-chain blocks (i.e., PoS blocks

scheduled by means of virtual stake). Each epoch is assigned a

certain amount of work stake that is assigned to the PoW min-

ers who succeed in mining PoW blocks; the work stake assigned

to the respective miners is proportional to their contribution of

PoW blocks referenced from the main chain during an epoch. PoS

block production rights per epoch are then assigned by considering

the sum of actual stake (contributed by tokens) and work stake

(contributed by PoW blocks).
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Note that the purpose of the PoW endorser blocks is to measure

work fairly, not implying that they also need to carry the ledger

transactions. Transaction inclusion is orthogonal to this aspect,

and can still be implemented along the lines of Bitcoin (transaction

inclusion in the main-chain blocks) or Input-Endorsers/Fruitchains

(transaction inclusion in the endorser blocks), or variants thereof.

We now treat the underlying PoS protocol as a black-box and

present the protocol in detail. The protocol runs in fixed-time

epochs with R slots each.

• PoWmining: In slot sl of epoch e , a miner mines a PoW block

if

H (pk, sl,h,mr ,nonce) < Te ,

where pk is the public key of the miner, h is the hash of the

last confirmed PoS block (according to the confirmation rule

of the underlying PoS protocol), mr is the Merkel root of

the payload, Te is the mining target in epoch e . Like in PoW

blockchains, miners try different values of nonce to solve

this hash puzzle. Following the notation in [18], we define

the difficulty of this PoW block to be 1/Te . Besides possible
transactions, also the public key of the miner is included in

the payload. A PoWblock is called recent in current slot slnow
if it refers to a confirmed PoS block mined no earlier than

slot slnow − slre, where slre is called the recency parameter.
• PoS mining: in slot sl of epoch e , one or multiple stakehold-

ers are selected to propose PoS blocks extending the best

chain (according to the chain selection rule). The selection

of PoS block proposers uses the same mechanism as in the

underlying PoS protocol. But for each node, the probability

of being selected is proportional to it relative “virtual” stake,

instead of the relative actual stake. The virtual stake is the

sum of actual stake and work stake. At the beginning of each

epoch, we set the total work stake equal to
ω

1−ω times the

total actual stake in the system. And the work stake distri-

bution used in epoch e is set to be the distribution of block

difficulties from PoW blocks referred by PoS blocks in epoch

e − 2.

• Adjust the PoW mining target: For epoch e , Te is adjusted

according to Dtotal

e−1 the total difficulty of PoW blocks referred

by PoS blocks in slots [(e − 2) ∗ R − k + 1, (e − 1) ∗ R − k],

i.e., Te = f (w )R/Dtotal

e−1 , where f (w )
is a protocol parameter

representing the expected PoW mining rate in number of

blocks per slot. (Specially, for e = 2,T2 = f (w )(R−k)/Dtotal

1
.)

Note that around the boundary of two epochs e − 1 and

epoch e , the adversary has the option to use targets from

both epochs, as PoW blocks don’t have accurate timestamps.

• Chain selection rule: due to a long-range attack (see Appen-

dix C), the longest chain rule would fail. We use the following

chain selection rules, which have different security guaran-

tees.

– maxvalid-mc (from Ouroboros Praos [8], needs a trusted

third party for bootstrapping, i.e., assumption (P3)): it

prefers longer chains, unless the new chain forks more

than k blocks relative to the currently held chain (in which

case the new chain would be discarded).

– maxvalid-bg (from Ouroboros Genesis [3], supports boot-

strapping from genesis block): it prefers longer chains, if

the new chain C′
forks less than k blocks relative to the

currently held chain C. If C′
did fork more than k blocks

relative to C, C′
would still be preferred if it grows more

quickly in the s slots following the slot associated with

the last common block of C and C′
.

6 SECURITY ANALYSIS
6.1 Main theorems
Under different security models and assumptions, we prove the

security (in particular, persistence and liveness as defined in §2.2)

of Minotaur constructed with three various versions of Ouroboros

PoS protocols.

Theorem 6.1. Under Assumption 1, Assumption 2 and assump-
tions (P1)-(P3), when executed in a lock-step synchronous model
(i.e., ∆-synchronous model with ∆ = 1),Minotaur constructed with
Ouroboros generates a transaction ledger that satisfies persistence and
liveness with overwhelming probability.

Theorem 6.2. Under Assumption 1, Assumption 2 and assump-
tions (P1)-(P3), when executed in a ∆-synchronous model,Minotaur
constructed with Ouroboros Praos generates a transaction ledger that
satisfies persistence and liveness with overwhelming probability.

Theorem 6.3. Under Assumption 1, Assumption 2 and assump-
tions (P1)-(P2), when executed in a ∆-synchronous model,Minotaur
constructed with Ouroboros Genesis generates a transaction ledger
that satisfies persistence and liveness with overwhelming probability.

6.2 Security with Ouroboros
We first provide a proof sketch for Theorem 6.1. All the parameters

used in our analysis are listed in Table 1.

hr number of honest PoW queries in slot r
nr number of total PoW queries in slot r
α0 lower bound on the fraction of honest mining power

slre recency parameter for PoW blocks

∆ network delay in slots

κ security parameter; length of the hash function output

R ∈ N duration of an epoch in number of slots

(γ , s) restriction on the fluctuation of the number of

honest queries across slots (Definition 1)

f (s) expected PoS mining rate in number of blocks per slot

f (w )
expected PoW mining rate in number of blocks per slot

ϵ quality of concentration of random variables

σ PoW fairness parameter

& advantage of honest parties (Assumption 1.1 and 2.1)

δ “goodness” parameter of an epoch/slot (Definition 6)

λ typicality parameter of the execution

ℓ minimum number of slots for concentration bounds

L total number of epochs in the execution

ω the weighing parameter

Table 1: The parameters used in our analysis.

Proof sketch. The proof relies on two important building blocks:
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1) Single-epoch argument. Given honest majority in the vir-

tual stake (normalized work-stake + normalized actual-stake)

used in one epoch, we prove the security properties (CP and

∃CQ) for this single epoch. For this, we use the so-called

forkable strings technique developed in the Ouroboros pa-

pers [3, 8, 21].

2) Fruitchains argument.GivenCP and∃CQof the PoS chain

in an epoch, we prove fairness of PoW blocks in this epoch,

i.e., a miner controlling a ϕ fraction of the computational

resources will contribute a ϕ fraction of work. This is similar

to the analysis on the variable difficulty Fruitchains [38].

Using these building blocks, we prove the security withmaxvalid-
mc inductively. Under the honest majority assumption in the initial

stake distribution (Assumption 1.1), we can prove security of the

PoS chain in epochs 1&2. Then applying the Fruitchains argument,

we get fairness of PoW blocks in epochs 1&2. Combining with

Assumption 2.1, i.e., βw + βs < 1 (for any long enough window),

we have honest majority in the virtual stake distribution used in

epoch 3&4. And the proof goes on till the last epoch (Figure 3).

□

6.2.1 Single-epoch security.

Theorem 6.4 (Theorem 3 from [8]). Let κ,R,∆ ∈ N and σ ∈

(0, 1). Let βv be the fraction of adversarial virtual stake satisfying

βv ≤ 1/2 − σ

for some positive constant σ . Then the probability that the adversary
violates CP with parameter ℓcp = κ and ∃CQ with parameter ℓcq = κ
throughout a period of R slots is no more than Re−Ω(κ). The constant
hidden by the Ω(·)-notation depends on σ .

6.2.2 Fruitchains argument. Recall that hr is the number of honest

PoW queries in slot r and nr is the number of total PoW queries

in slot r . For a set of slots S , we define h(S) =
∑
r ∈S hr and n(S) =∑

r ∈S nr . In order to obtain meaningful concentration bounds on

the number of PoW blocks in one epoch, there is a lower bound α0
on the fraction of honest mining power, i.e., hr ≥ α0nr for all r .

In the analysis of this subsection, we assume the main chain (PoS

chain) satisfies properties CP with parameter ℓcp = κ and ∃CQwith

parameter ℓcq = κ. By the common prefix property, for a PoS chain

C held by an honest node at slot r , the prefix C ⌈κ
are stabilized,

so to mine a PoW block at slot r an honest miner will refer the tip

of C ⌈κ
as the last confirmed PoS block. And we set the recency

parameter slre = 3κ +∆, i.e., a PoW block Bw is recent w.r.t. a chain

C at slot r if the confirmed PoS block referred by Bw is in C and

has timestamp at least r − 3κ −∆. With this selection of the recency

parameter, we can prove the following key property of the protocol:

any PoW block mined by an honest miner will be incorporated into

the stabilized chain (and thus never lost). We refer to this as the

Fruit Freshness Lemma—PoW blocks stay “fresh” sufficiently long

to be incorporated.

Lemma 6.5 (Fruit Freshness). Suppose the PoS chain satisfies
properties CP with parameter ℓcp = κ and ∃CQ with parameter
ℓcq = κ. Then, if slre = 3κ + ∆, an honest PoW block mined at slot r
will be included into the stabilized chain before slot r + rwait, where
rwait = 2κ + ∆.

Proof. Suppose an honest PoW block Bw is mined at slot r0
while the PoS chain C0 is adopted, then Bw will reference the tip of

C
⌈κ
0

as the last confirmed PoS block. Further, by the ∃CQ property,

the tip of C
⌈κ
0

has timestamp r1 ≥ r0 − 2κ. By slot r0 +∆, all honest
nodes will receive Bw . Let r2 = r0 + 2κ +∆ and C be any chain held

by an honest node at slot r2, then again by the ∃CQ property, there

exists at least one honest block Bs on C whose timestamp r3 is in
the interval [r2 − 2κ, r2 −κ). We check that Bw is still recent at slot

r3 as
r3 − r1 < (r2 − κ) − (r0 − 2κ) = 3κ + ∆ = slre.

As Bs is an honest block mined after r0 + ∆, Bs or an ancestor of

Bs must include Bw . And since Bs is stabilized in C at slot r2, we
have that rwait = r2 − r0 = 2κ + ∆. □

In a (γ , s)-respecting environment, we have the following useful

proposition.

Proposition 1 (Proposition 2 from [18]). In a (γ , s)-respecting
environment, letU be a set of at most s consecutive slots and S ⊆ U .
Then, for any h ∈ {hr : r ∈ U } and any n ∈ {nr : r ∈ U } we have

h

γ
≤

h(S)

|S |
≤ γh,

n

γ
≤

n(S)

|S |
≤ γn,

h(U ) ≤

(
1 +

γ |U \ S |

|S |

)
h(S), n(U ) ≤

(
1 +

γ |U \ S |

|S |

)
n(S).

Recall that Te is the mining target in epoch e determined by the

stabilized segment of the chain from epoch e − 1. In order to obtain

meaningful concentration bounds on the number of PoW blocks,

we needTe to be “reasonable” for each epoch. Similar to [16, 18], we

define a notation of “good” epochs as follows. By abuse of notation,

we write the expected PoW block rate f (w )
simply as f in the

analysis below.

Definition 6. Epoch e is good if (1 − δ )α0 f /γ ≤ ph(e)Te ≤

(1 + δ )γ f , where p = 1/2κ and h(e) = h(e−1)R+1, i.e., the number of
honest queries in the first slot of epoch e . A slot r is good if it is in a
good epoch.

Proposition 2. Under a (γ , 2R)-respecting environment, if slot r
is a good slot in epoch e , then (1 − δ )α0 f /γ

2 ≤ phrTe ≤ (1 + δ )γ 2 f .

Proof. By the definition of a good epoch, we have (1−δ )α0 f /γ ≤

ph(e)Te ≤ (1 + δ )γ f . And under a (γ , 2R)-respecting environment

and the fact that slot r is in epoch e , we know 1/γ ≤ hr /h
(e) ≤ γ .

Therefore, (1 − δ )α0 f /γ
2 ≤ phrTe ≤ (1 + δ )γ 2 f . □

Now, we prove fairness of PoW blocks in any large enough win-

dow, i.e., a miner controlling a ϕ fraction of the computational

resources will contribute a ϕ fraction of work. We first give a form

definition of fairness.

Definition 7. We say that H is a ϕ-fraction honest subset if
miners in H (that may change over time) are honest and nHr > ϕnr
for any slot r , where nHr is number of queries inH at slot r .

Definition 8 (Fairness). We say that the protocol has (approx-
imate) (W0,σ )−fairness if, for any ϕ, α0 ≤ ϕ < 1, any ϕ−fraction
honest subsetH , and any honest miner holding chain C at slot r and
any interval S0 ⊆ [0, r ]with at leastW0 consecutive slots, it holds that
the PoW blocks included in C(S0) mined by H have total difficulty
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Figure 3: Proof sketch of §6.2.

at least (1 − σ )ϕd , where d is the total difficulty of all PoW blocks
included in C(S0).

Define the random variableDr equal to the sum of the difficulties

of all PoW blocks computed by honest miners at slot r . And for

fixed ϕ and ϕ−fraction honest subsetH , define the random variable

DH
r equal to the sum of the difficulties of all PoW blocks computed

by miners in H at slot r . For a set of slots S , we define D(S) =∑
r ∈S Dr , D

H(S) =
∑
r ∈S D

H
r , and nH(S) =

∑
r ∈S n

H
r . For a set of

J adversarial queries, define the random variable A(J ), as the sum
of difficulties of all the PoW blocks created during queries in J .

Next we define the notion of typical executions, which will be

shown to occur with overwhelming probability.

Definition 9 (Typical execution). An execution E is typical if
the following hold
(a) For any set S of at least ℓ consecutive good slots,

D(S) < (1 + ϵ)ph(S).

(b) For any set S of at least ℓ consecutive good slots, let J be the set of
adversarial queries in S . If we further know each query in J made at
slot r with targetT satisfies (1− δ )α0 f /γ

2 ≤ pnrT ≤ (1+ δ )γ 2 f /α0,
then

D(S) +A(J ) < (1 + ϵ)p(h(S) + |J |).

(c) For any set S of at least ℓ/ϕ consecutive good slots,

DH(S) > (1 − ϵ)pnH(S).

To obtain meaningful concentration, we should be considering a

sufficiently long slot sequence of at least

ℓ ≜
2(1 + ϵ/3)

ϵ2γ 3(1 − δ )α0 f
λ,

where λ is called the typicality parameter of the execution.

For our analysis to go through, the protocol parameters should

satisfy certain conditions which we now discuss. First, we will

require that the number ℓ defined above and the security parameter

κ are appropriately small compared to R, the duration of an epoch.

R − 3κ − ∆ ≥ ℓ/α0 ≥
γ

ϵ
(4κ + ∆). (C1)

Note that (C1) implies R ≥ (4κ + ∆)/ϵ . Second, the slack variables

ϵ and δ should satisfy

4ϵ ≤ δ ≤ 1. (C2)

Nextwe bound the probability of an atypical execution (Lemma 6.6)

and show that all epochs are good in a typical execution by induc-

tion (Lemma 6.7). Therefore, all epochs are goodwith overwhelming

probability.

Lemma 6.6. For an execution E of LR slots, in a (γ , 2R)-respecting
environment, the probability of the event “E is not typical” is bounded
by O(LR)e−λ .

Lemma 6.7. For a typical execution in a (γ , 2R)-respecting envi-
ronment, all epochs are good.

The proofs of Lemma 6.6 and Lemma 6.7 are in Appendix D.

Theorem 6.8 (Fairness). For a typical execution in a (γ , 2R)-
respecting environment, the protocol with recency parameter slre =
3κ + ∆ satisfies (W0,σ )−fairness, whereW0 = ℓ/α0 + 3κ + ∆ and
σ = 4ϵ .

Proof. Fix ϕ, a ϕ−fraction honest subsetH , and an honest node

holding chain C. Let S0 = {u : r1 ≤ u ≤ r2} be a window of at least

W0 consecutive slots. Let C(S0) be the segment of C containing PoS

blocks with timestamps in S0, let B be all PoW blocks included in

C(S0), and d be the total difficulty of all PoW blocks in B. Facts

1-3 from the proof of Lemma 6.7 will be useful for proving the

theorem. Let S1 = {u : r1 − (4κ + ∆) ≤ u ≤ r2 + κ}, S2 = {u :

r1 ≤ u ≤ r2 − (3κ + ∆)}, and J be the set of adversary queries

associated with B in S1. Then by Fact 1 and Fact 2, we have that

all PoW blocks in B are mined in S1; by Fact 3, we have that all

PoW blocks mined byH in S2 are in B. Similar to the arguments

in Lemma 6.7, for each query in S1 made by either an honest node

or the adversary at slot r in epoch e , the target T must satisfy

(1 − δ )α0 f /γ
2 ≤ pnrT ≤ (1 + δ )γ 2 f /α0.

Further note that, to prove σ -fairness, it suffices to show that

DH(S2) ≥ (1 − σ )ϕ(D(S1) +A(J )).

Under a typical execution, we have

DH(S2) > (1 − ϵ)pnH(S2) ≥ (1 − ϵ)ϕpn(S2),

and

D(S1) +A(J ) < (1 + ϵ)p(h(S1) + |J |) = (1 + ϵ)pn(S1).

By our choice ofW0, we have |S2 | ≥ ℓ/α0 ≥ ℓ/ϕ. Furthermore,

we may assume |S2 | ≤ 2R. This is because we may partition S2 in
parts such that each part has size between ℓ/α0 and 2R, sum over

all parts to obtain the desired bound. Then by Proposition 1, we
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have

n(S1) ≤ (1 +
γ |S1 \ S2 |

|S2 |
)n(S2)

≤ (1 +
γ (8κ + 2∆)

ℓ/α0
)n(S2)

(C1)
≤ (1 + 2ϵ)n(S2).

Finally, by setting σ = 4ϵ , we conclude the proof. □

6.2.3 Lifting argument from single-epoch to multiple-epoch. The-
orem 6.4 gives bounds for CP and ∃CQ for a single-epoch run of

the protocol with static stake distribution and perfect randomness.

We now conclude our proof of Theorem 6.1 by showing that these

blockchain properties hold throughout the whole lifetime of the

system consisting of many epochs.

Theorem 6.9 (Restatement of Theorem 6.1). Fix parameters κ,
λ, ℓ, γ , σ , ϵ , δ , R and L satisfying conditions (C1) and (C2). Under As-
sumption 1, Assumption 2 and assumptions (P1)-(P3), when executed
in a lock-step synchronous model (i.e., ∆-synchronous model with
∆ = 1),Minotaur constructed with Ouroboros generates a transaction
ledger that satisfies persistence and liveness throughout a period of L
epochs (each with R slots) with probability 1 − RL(e−Ω(κ) + e−λ).

This part of the analysis proceeds similarly as in Section 5 of [21]

and hence we only sketch it in Appendix D.

6.3 Security with Ouroboros Praos/Genesis
By maxvalid-bg, an honest node prefers longer chains, if the new

chain C′
forks less than k blocks relative to the currently held chain

C. If C′
did fork more than k blocks relative to C, C′

would still be

preferred if it grows more quickly in the s slots following the slot
associated with the last common block of C and C′

. In this section,

we analyze the security of the protocol with maxvalid-bg, but drop
assumption (P3) (i.e., allow bootstrapping from genesis).

Proof sketch. This part is identical to the analysis in Ouroboros

Genesis (Section 4.3-4.4 of [3]), so we only sketch it here. The proof

proceeds in two steps:

1) For an honest node h1 that is always online, we show that

when replacing maxvalid-mc with maxvalid-bg, the overall
execution of the protocol in h1’s view remains the same

except with negligible probability. That is to show that with

overwhelming probability, wheneverh1 receives a new chain

C′
that forks more than k blocks from h1’s local chain C, h1

will always favor C, i.e., C grows more quickly than C′
in

the first s slots right after the fork.
2) For a newly joined node h2, we consider a “virtual” node h

′
2

that holds no stake, but was participating in the protocol

since the beginning and was honest all the time. Then we

showh2 will always adopt the same chains ash′
2
after joining

the network.

□

6.4 Comparison to Bitcoin
In this paragraph, we observe that Minotaur (when executed in

the pure PoW case, ω = 1) is more robust against fluctuations in

PoW participation than Bitcoin. In particular, we demonstrate that

Bitcoin may not enjoy liveness if the number of parties is allowed

to halve every two weeks—whileMinotaur does. The theoretical
results of this section are accompanied by experiments; see §7.2

and Figure 5.

Consider Bitcoin for the case that, initially, there are n honest

parties and that the target isT . Using the model and notation of [16]

with q = 1,m is the number of blocks in an epoch and p = 1/2κ .

Thus, each slot is successful with probability f = 1−(1−pT )n ≈ pTn.
We will show that for s = ⌊m/pTn⌋, liveness may fail in a (2, s)-
respecting environment. In such an environment, the adversary is

allowed to halve the number of parties every s ≈m/f slots (note

thatm/f is the expected duration of an epoch, which for Bitcoin is

two weeks).

The attack proceeds in stages of s slots, during which the adver-

sary does not mine nor delays messages. Thus, in the beginning of

each slot all parties have a chain of the same length. The adversary

halves the number of parties at the beginning of each stage. Let Ni
denote the number of honest parties in stage i , with N0 = n and

Ni = n/2i for i > 0. The expected number of successful slots in

stage i is

s · [1 − (1 − pT )Ni ] < spTNi =
spTn

2
i ≤

m

2
i .

Consider the stage j for which

k − 1 <
m

2
j ≤ 2(k − 1).

The expected number of blocks computed in the first j stages is

m

2

+
m

2
2
+ · · · +

m

2
j =m −

m

2
j < m − k + 1

and at most k − 1 in stage j + 1. Recalling that the median of a

binomial distribution with mean µ is at most ⌈µ⌉, we obtain that

with probability at least 1/4 at mostm blocks have been computed

by the end of stage j + 1 and at most k − 1 of them have been

computed in the last stage. Assuming the liveness parameter u < s ,
any transaction provided to all honest parties for the first u slots of

the final stage, will be in depth less than k . It follows that liveness
does not hold in the final stage of the attack.

Proposition 6.10. Bitcoin’s ledger does not satisfy liveness in a
(2, s)-respecting environment, for any u < s and s < m/pTn.

In contrast,Minotaur does not suffer from such fluctuation. In-

tuitively, this is because it inherits its security from the underlying

proof-of-stake protocol. In particular, the epochs are of fixed du-

ration, implying that target recalculation occurs regularly. This is

evident from Condition C1, which allows much greater values for

R and γ .

7 EXPERIMENTS
We implemented a prototype instantiation of aMinotaur client in
Rust and the code can be found at [25]. We also implemented a

Bitcoin client as a benchmark. In this section, we briefly describe

the architecture of our implementation and present experimental

results to evaluate the concrete performance of Minotaur under
different scenarios.
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7.1 Architecture
We implemented the Input-Endorsers/Fruitchains variant of Mino-
taur, where transactions are exclusively included in the PoW blocks.

In this way,Minotaur can potentially achieve optimal throughput

up to the capacity of the network as shown by the implementation of

Prism [39], a pure PoW consensus protocol with similar blockchain

structure. The system architecture is illustrated in Figure 4. Func-

tionally it can be divided into the following three modules:

(1) Block Structure Manager, which maintains the client’s view

of the blockchain, and communicates with peers to exchange

new blocks.

(2) Miner, which assembles new PoW blocks.

(3) Staker, which assembles new PoS blocks.

The goal of a Minotaur client is to maintain up-to-date informa-

tion of the blockchain. They are stored in the following three data

structures:

(1) Block Structure Database, stores the graph structure of the

blockchain (i.e., a directed acyclic graph (DAG) formed with

PoW and PoS blocks).

(2) Memory Pool, stores the set of transactions that have not

been mined into any PoW block.

(3) PoW Block Pool, stores the set of PoW blocks that have not

been referenced by any PoS block.

At the core of the Block Structure Manager is an event loop
which sends and receives network messages to/from peers, and

a worker thread pool which handles those messages. When a new

block arrives, theworker thread first checks its proof-of-work/proof-

of-stake, and if valid, then proceeds to relay the block to peers that

have not received it. Next, the worker thread checks whether all

blocks referenced by the new block, e.g. its parent, are already

present in the Block Structure Database. If not, it buffers the block

in an in-memory queue and defers further processing until all the

referenced blocks have been received. Finally, the worker validates

the block (e.g., verifying transaction signatures), and inserts the

block into the Block Structure Database. If the block is a PoW block,

the Block Structure Manager checks the Memory Pool against the

transactions in this new block and removes any duplicates or con-

flicts from the Memory Pool, and also puts the block into the PoW

Block Pool.

TheMinermodule assembles new PoWblocks. It is implemented

as a busy-spinning loop. At the start of each round, it polls the Block

Structure Database and the Memory Pool to update the block it

is mining. When a new PoW block is mined, it will be inserted

into the Block Structure Database, then sent to peers by the Block

Structure Manager. The Memory Pool and PoW Block Pool will

also be updated accordingly.

The Staker module works similarly, but assembles new PoS

blocks. At the start of each round, it polls the Block Structure Data-

base and the PoW Block Pool to update the block it is assembling.

When a new PoS block is generated, it will be inserted into the

Block Structure Database, then sent to peers by the Block Structure

Manager. The PoW Block Pool will also be updated accordingly.

Block

Structure

Database

Block

Structure

manager

Staker Miner

Memory

Pool

PoW

Block Pool

New Blocks New Transactions

Figure 4: Architecture of our Minotaur client implementa-
tion.

7.2 Performance under variable mining power
In §6.4, we have seen thatMinotaur can survive more drastic varia-

tions of network hash power. We design the following experiment

on our Minotaur/Bitcoin codebase to verify this argument.

Recall that both Bitcoin andMinotaur have epoch-based target

adjustment rules, varying the difficulty target of block mining based

on the median inter-block time from the previous epoch. However,

the epoch length in Minotaur is defined as a fixed number of slots

instead of a fixed number of blocks (e.g., 2016 blocks in Bitcoin).
This definition makes sense inMinotaur because the main-chain

blocks, which are PoS blocks, always have accurate timestamps

(even if they are proposed by an adversary). In this experiment,

we will see that this small change allows Minotaur to enjoy better

liveness than Bitcoin when the total mining power is decreasing.

In our experiment, we set the epoch length in Bitcoin to be 400

blocks and the expected duration of an epoch is 2 minutes; while

the epoch length ofMinotaur is 2 minutes and the expected number

of blocks in a epoch is 400 blocks. Then Bitcoin andMinotaur are
experiencing the same mining power variation, i.e., starting with an

insufficient mining rate (100 blocks per minute) and then halving

the mining rate every epoch (2 minutes in the experiments). From

Figure 5, we can see that the mining target never has a chance to be

adjusted in Bitcoin as the length of the chain can never reach 400

blocks, which leads to a liveness failure; while the mining targets

are adjusted every epoch (2 minutes) inMinotaur to make sure that

the number of PoW blocks referenced by the main chain grows

linearly.

7.3 Performance under attacks
In the following experiments, we evaluate how Minotaur performs

in the presence of active attacks. Specifically, we consider two types

of attacks: spamming and selfish mining attacks. Spamming attack

aims to reduce network throughput, while selfish mining aims to

compromise the PoW fairness of the protocol (i.e., reducing the

work stake of honest miners).

Spamming attack. In a spamming attack, attackers flood the net-

work with conflicting transactions. Among a bunch of conflicting

transactions, at most one of them could be executed successfully. For

example, in an account model, transactions with identical sender

and nonce are conflicting transactions. Compared to Bitcoin, the
Input-Endorsers/Fruitchains variant of Minotaur cannot ensure
that no conflicting transactions enter the transaction ledger since

PoW are mined before picked by main chain. Therefore, goodput
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Figure 5: Behavior of Bitcoin andMinotaur under decreasing
mining power. When the total mining power is halved ev-
ery two minutes, the Bitcoin chain stops growing as it can
never reach its epoch size (400 blocks), while the number of
PoW blocks referenced by the main chain grows linearly in
Minotaur.

(i.e., throughput of successfully executed transactions) ofMinotaur
transaction ledger will be comprised if conflicting transactions en-

ter PoW blocks. To mitigate this attack, we propose a spam filter

that operates as follows: a miner validates transactions with respect

to the transaction ledger, PoW blocks that haven’t been picked by

main chain, and preceding pending transactions of this miner. In

this way, if one of the conflicting transactions enters a PoW block

and propagated throughout the network before other conflicting

ones enter a PoW block, miners will filter out other conflicting

transactions and increase goodput.

We implemented the spam filter and did experiments with four

nodes in a line topology. Our metrics is normalized spam, which is

the count of unsuccessfully executed transactions normalized by

the count of transactions in ledger. In our experiments, we make

transaction generators create conflicting transactions on purpose,

and send them to two nodes sitting at the ends of the line topology.

And other nodes receive non-conflicting transactions. Hence, with-

out any spam precaution, normalized spam is 0.25. We set the block

generation rate to be 0.44 block/s for PoS blocks and 1.39 block/s

for PoW blocks. The results of our experiments with additional

peer-to-peer latency is shown in Figure 6, and we observe that al-

though normalized spam increases as additional latency increases,

it is still lower than that without spam filter. The highest spam

in our experiments is 0.063, far lower than 0.25. Noticed that in

that experiment we apply an additional peer-to-peer latency of

0.3s, which is larger than most peer-to-peer latency in Bitcoin and

Ethereum [22]. This means that our spam filter can reduce spam to

minimal effect.

Selfish mining attack. It has been known that Bitcoin is vulnera-

ble to the selfish mining attack [13, 27, 34], where a selfish miner

withhold its mined blocks and release them later at an appropriate

time to take the place of honest blocks in the longest chain. This

attack hurts the fairness of the protocol, in the sense that the selfish

0.0 0.1 0.2 0.3
Additional peer-to-peer latency (seconds)

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d 
sp

am

0.003

0.032
0.045

0.063

With spam filter
Without spam filter

Figure 6: Normalized spam in 4-node experiments with ad-
ditional peer-to-peer latency. Spam is reducedmostly under
various additional latencies.

miner with βw fraction of mining power can have more than βw fac-

tion of blocks in the main chain so that it will reap higher revenue.

The Fruitchains protocol [30]was proposed as a solution to selfish

mining. We observe that the selfish mining attack won’t work on

Minotaur Since it has similar blockchain structure as Fruitchains.

To verify this observation, we implemented the following selfish

mining attacks on our Bitcoin/Minotaur code base:

• On Bitcoin: The selfish miner always mines on the block at

the tip of the longest chain, whether the chain is private or

public. Upon successful mining, the adversary maintains the

block in private to release it at an appropriate time. In par-

ticular, when an honest miner publishes a block, the selfish

miner will release a previously mined block at the same level

(if it has one).

• OnMinotaur: The selfish miner plays the same withholding-

and-releasing strategy on its PoS blocks as above, while its

PoS blocks contain PoW blocks mined by itself exclusively.

We assume honest nodes will choose the attacker’s block with

probability p whenever there is a tie. In our experiments, we set

p > 0.5 to simulate the case that the attacker has better network

connection than honest nodes so its blocks are usually transmitted

faster. Table 2 presents fractions of PoW blocks in the main chain of

Bitcoin/Minotaur under various adversarial power (combinations

of βw and p). On Minotaur, the attacker controls 1/3 of the virtual
stake, i.e., ωβw + (1 − ω)βs = 1/3, where βs is the fraction of the

actual stake controlled by the attacker. From Table 2, we can see

that Bitcoin is indeed vulnerable to selfish mining, meaning that

the attacker has more fraction of PoW blocks in the main chain

(which means more block rewards in the context of Bitcoin) than its

fraction of mining power, particularly when βw ≥ 0.5. Meanwhile,

in Minotaur, the attacker can only have βw faction of PoW blocks

in the main chain, no matter how much mining power it has, and

how the network favors it. This property is crucial to the security

ofMinotaur as we have seen in §6.2.2.

8 DISCUSSION
Variable weighing parameter. In our security analysis, we as-

sume a fixed weighing parameterω through the whole execution of

the protocol. However, we point out that ω can change over time as
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Attacker’s power Fraction of PoW blocks

βw 0.75 0.67 0.50 0.33 0.25

p = 1

Bitcoin 0 0 0.007 0.513 0.669

Minotaur 0.248 0.332 0.498 0.665 0.746

p = 0.7
Bitcoin 0 0.001 0.098 0.618 0.72

Minotaur 0.248 0.333 0.499 0.666 0.750

Table 2: Fractions of honest PoW blocks in the main chain
under selfish mining attacks in Bitcoin/Minotaur. In these
experiments, the attacker controls βw fraction of mining
power and the tie breaking rule favors the attacker’s block
with probability p.

Figure 7: An example of variable weighing parameter ω in
Minotaur. Suppose the value of ω changes from 1/2 to 2/5 at
the onset of epoch e0 + 1. Then the adversarial stake/mining
power needs to be restricted below the red line in epochs
e ≤ e0 − 1 and below the blue line in epochs e ≥ e0 − 1. In
particular, the adversary is restricted by both lines in epoch
e0 − 1. When ω changes smoothly over time, it is reasonable
to assume exactly this.

long as we put proper assumptions on the adversarial stake/mining

power. Suppose ω(e) is the weighing parameter of epoch e , i.e.,
the ratio of work stake and actual stake in epoch e is set to be

ω(e)/(1 − ω(e)). Note that the function ω(e) may be decided by

the protocol designers and hard-coded in the genesis block, but

the players can also reach an agreement (off-chain) to update it by

doing a soft fork.

We give a brief security sketch, deferring the full analysis to

future work. Recall that, in our protocol, the virtual stake of a

player in epoch e composes of two parts: the actual stake drawn

from the last PoS block in epoch e − 2; and the work stake that

is proportional to the amount of work it produced during epoch

e − 2. Thus, to guarantee the security in epoch e , we need the

adversary to be (1/2 − 2σ , 2R,ω(e))-bounded (see Definition 2) in

epoch e − 2 and epoch e − 1. And similarly, the adversary needs

to be (1/2 − 2σ , 2R,ω(e + 1))-bounded in epoch e − 1 and epoch e .
Therefore, the adversarial stake/mining power must be restricted

by both above bounds for epoch e − 1. As long as ω(e + 1) does

not differ too much from ω(e), this restriction on the adversary

is reasonable to assume, and the weighing parameter can transit

smoothly from ω(e) to ω(e + 1). Figure 7 gives an example of how

the assumptions shift when ω(e) is updated at the onset of epoch

e0 + 1.

We point out that such flexible weighing between work and stake

is very useful in practice. For example, in general, PoS blockchains

are easy to launch with existing techniques, such as proof- of

burn [20], initial coin offering [24] and airdrop [1]. Therefore,Mino-
taur can be launched as a pure PoS blockchain and later transit into

a hybrid PoW/PoS one or a pure PoW blockchain. In addition, the

security ofMinotaur can be enhanced by assigning higher weight

to the more decentralized resource.

Removing the initial constraint.As discussed in §2, we required
an honest majority of stake for the two initial epochs (as there is

no initial work-stake distribution). We note that we can remove

this initial constraint by implementing the first two epochs using

the smooth-interpolation approach (§4, Idea 2) where work blocks

are mined based on 2-for-1 PoW [18] producing both, main-chain

blocks (at a rate defined by ω) and endorser blocks (at a sufficient

rate to guarantee fairness). This allows to start the protocol with

any initial weighing by means of ω. We defer a formal analysis to

future work.

Generalization tomultiple resources. Following the idea in [37],
Minotaur can be extended to more than two resources. Note that,

in contrast to their construction, this is achievable without funda-

mentally changing the structure of the protocol.

AssumeM ≥ 1 different resources, and for each such resource, an

independent lottery mechanism among the contributors to assign

‘successes’ proportionally to a party’s ratio of the total contributed

resource.

Defining a fixed amount of virtual stake V and weights ωi > 0,∑M
i=1 ωi = 1, we have resource i control ωi ·V of the virtual stake.

During each epoch e , the different lotteries are run concurrently,

wherein each success allows for the release of a respective block

(to be eventually picked up by a block of the main chain), tied to

the respective resource.

Main-chain block leadership for epoch e + 2 is assigned to re-

source i based on relative virtual stake ωi , and further split among

the contributors of that resource based on their production of re-

spective ‘resource blocks’ during epoch e .
Naturally, this protocol tolerates

M∑
i=1

ωiβi <
1

2

, (1)

where βi ∈ [0, 1] is the fraction of resource i held by the adversary.

A pictorial example forM = 3 is given in Fig. 8.

Although the underlying blockchain protocol is PoS-based, stake

(in the classical, non-virtual sense) is not required to be one of theM
resources, i.e., the protocol can be run solely on virtual stake. Also,

full adversarial control of some of the resources can be tolerated as

long as Eq. (1) is satisfied.

Finally, note that the resources can also be of the same type,

e.g., Minotaur can combine work emanating from different hash

functions such as SHA256, scrypt, and ethash—answering an open

question raised in §1.

Fairnesswith respect to the combined resources. Fairnesswith
respect to PoW blocks (Definition 8) is a crucial property of Mino-
taur to guarantee fair assignment of work stake to the miners.

However, this is not sufficient for aspects like fair reward shar-

ing [31], since, for this purpose, fairness needs to be achieved for
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overall block production with respect to the combined resources.

We note that fairness with respect to the combined resources can

be achieved by scheduling endorser blocks for every involved re-

source, including stake. A given epoch reward can now be shared

by assigning an ωi fraction of the reward to the contributors of the

i-th resource, and distributing each such fraction proportionally to

the parties’ contributions of endorser blocks for that resource.
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APPENDIX
A SECURITY REGIONS OF HYBRID

PROTOCOLS IN FIGURE 1B
We give details of the security regions plotted in Figure 1b. Recall

that βw is the proportion of adversarial hash power and βs is the
proportion of the adversarial stake (or the proportion of Byzantine

nodes if a permissioned BFT protocol is adopted).

2-hop blockchain. We derived the security region from the as-

sumptions in Theorem 2&3 of [11]. When ∆ = 0 (which gives

the largest security region), the security proof of [11] assumes

(1 − βw )(1 − βs ) > βs , i.e., βs <
1−βw
2−βw

implying βs < 1/2.

Checkpointed ledger. [19] uses a synchronous BFT protocol (with

1/2 fault tolerance) to regularly issuing checkpoints on a PoW

longest chain. The protocol is proven to be safe and live when

βs < 1/2.

Finality gadgets. [6, 28, 33, 36] use an asynchronous/partial syn-

chronous BFT protocol (with 1/3 fault tolerance) to build a finality

gadget/layer on the top of a PoW longest chain to achieve impor-

tant properties such as finality (a.k.a deterministic safety under

asynchrony) and accountability. These protocols are proven to be

safe and live when βs < 1/3 and βw < 1/2.

B MATHEMATICAL FACTS
Theorem B.1 (from [18]). Let (X1,X2, . . .) be a martingale with

respective the sequence (Y1,Y2, . . .), if an eventG impliesXk−Xk−1 ≤

b and V =
∑
k var [Xk − Xk−1 |Y1, . . . ,Yk−1] ≤ v , then for non-

negative n and t

P(Xn − X0 ≥ t,G) ≤ e
− t2

2v+ 2bt
3 .

The following is known as the Berry-Esseen Theorem. See [14]

as a standard reference and [35] for improvements with respect to

the constant 1/2.

Theorem B.2. Let the Xi be independent variables with common
distribution such that E[Xi ] = µ, V[Xi ] = σ 2 > 0, E[|Xi − µ |3] =

ρ < ∞. If Fn is the distribution of (X1 + · · · +Xn − µn)/
√
nσ 2 and Φ

the standard normal, then

|Fn (x) − Φ(x)| ≤
ρ

2σ 3
√
n
, for all x and n.

C A LONG RANGE ATTACK
We point out that Minotaur is insecure with the longest chain rule

due to a long range attack. Let the weighing parameter ω = 0.5

and define f to be PoS block production rate by a stakeholder who

controls all actual stake in the system. Suppose the adversary con-

trols 0.8 fraction of stake and 0.1 fraction of mining power at some

slot (not at the beginning of the execution), then after behaving

honestly for some time, the adversary will control 0.8 fraction of

actual stake and 0.1 fraction of work stake at the beginning of some

epoch e . Now, the adversary starts to grow a private chain C1, while

honest nodes grow a public chain C2. Suppose C1 and C2 include

the same set of transactions. Then at the beginning of epoch e + 2,
the adversary will control 0.8 fraction of actual stake and all the

work stake (after normalization) on its chain C1 because C1 only

refers adversarial PoW blocks in epoch e . So the growth rate of C1

after epoch e +2will be 0.8f + f = 1.8f . Similarly, at the beginning

of epoch e + 2, honest nodes will control 0.2 fraction of actual stake

and all the work stake (after normalization) on the chain C2 and

the growth rate of C2 after epoch e + 2 will be 0.2f + f = 1.2f .
Therefore, C1 will catch up with C2 eventually if the longest chain

rule is adopted. See Figure 9.

This long range attack is similar to the stake grinding attack

on Ouroboros and it can be prevented by the new chain selection

rulesmaxvalid-mc andmaxvalid-bg. Formaxvalid-mc, honest nodes
won’t accept C1 because it forks too long from C2; for maxvalid-bg,
honest nodes won’t accept C1 because it grows slower than C2 in

epoch e (right after the fork).

D PROOF FOR §6
Proof of Lemma 6.6. The proof for (a) is the same as part (a) of

Theorem 1 in [18]. For (b), by the condition, for each query in S
made by either an honest node or the adversary at slot r in epoch e ,
the target T must satisfy (1 − δ )α0 f /γ

2 ≤ pnrT ≤ (1 + δ )γ 2 f /α0
Therefore, the proof is also similar to part (a) of Theorem 1 in [18].

For (c), let the execution be partitioned into parts such that each

part has at least ℓ/ϕ and at most s = 2R slots. We prove that the

statement fails with a probability less than e−λ for each part. Let J

denote the queries made by H in slots S . We have |J | = nH(S) =
ϕn(S). For k ∈ [|J |], let Zi be the difficulty of any block obtained

from query j ∈ J and we write Ej−1 for the execution just before

this query. Then

X0 = 0

Xk =
∑
i ∈[k ]

Zi −
∑
i ∈[k ]

E[Zi |Ei−1]

is a martingale with respect to E0, . . . , Ek . We have

Xk − Xk−1 = Xk − E[Xk |Ek−1] = Zk − E[Zk |Ek−1]

≤
1

Tk
=

phk
phkTk

≤ γ 3ph(S)/(1 − δ )α0 f |S |

≤ γ 3pn(S)/(1 − δ )α0 f |S | := b .

Similarly

V =
∑
k

var [Xk − Xk−1 |Ek−1] ≤
∑
k

E[Z 2

k |Ek−1]

=
∑
k

pTk
1

T 2

k

≤ γ 3p2 |J |h(S)/(1 − δ )α0 f |S |

≤ γ 3p2 |J |n(S)/(1 − δ )α0 f |S | := v .

Let the deviation t = ϵp |J | = ϵϕpn(S), thenwe haveb =
γ 3t

(1−δ )α0ϵϕf |S |

and v =
γ 3t 2

(1−δ )α0ϵ 2ϕf |S |
. Using the minimum value of |S | is ℓ/ϕ and

applying Theorem B.1 to −X | J | , we have

P[D(S) < (1 − ϵ)pnH(S)] ≤ exp(−
ϵt

2b(1 + ϵ/3)
) ≤ exp(−λ).
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Figure 9: A long range attack on the longest chain rule.

This concludes the proof.

□

Proof of Lemma 6.7. We prove the lemma by induction. For

epoch e = 1, it is trivial to just set T1 = f /p ˜h1 by Assumption 1.2.

Now we assume all epochs are good until epoch e − 1 (e ≥ 2), we

will show epoch e is good.
Let S0 = {u : r1 ≤ u ≤ r2} be the window that will be used

to determine Te , i.e., r1 = max (0, (e − 2)R − κ) + 1 and r2 = (e −
1)R − κ. Let C(S0) be the segment of C containing PoS blocks with

timestamps in S0, let B be all PoW blocks included in C(S0), and
d be the total difficulty of all PoW blocks in B. Then we have the

following facts:

• Fact 1. For any PoW block B ∈ B, B is mined after r1−4κ−∆.
Indeed by recency condition, B must refer to a confirmed PoS

block Bs with timestamp at least r1 − slre. By ∃CQ, the last

honest ancestor block of Bs has timestamp at least r1−slre−κ.
So B must be mined after r1 − 4κ − ∆.

• Fact 2. For any PoW block B ∈ B, B is mined before r2 +
κ. Indeed the PoS block (denoted as Bs ) including B has

timestamp at most r2, and again by ∃CQ, the first honest

descendant block of Bs has timestamp at most r2 + κ. So B
must be mined before r2 + κ.

• Fact 3. If a PoW block B is mined by an honest miner after r1
and before r2 − 3κ − ∆, then B ∈ B. Indeed, by ∃CQ, the last

honest block in C(S0) has timestamp at least r2−κ. Hence by
Lemma 6.5, all honest PoW blocks mined after r1 and before

r2 − κ − rwait will be included into a PoS block in C(S0).

Let S1 = {u : r1 − (4κ + ∆) ≤ u ≤ r2 + κ}, S2 = {u : r1 ≤ u ≤

r2 − (3κ +∆)}, and J be the set of adversary queries associated with
B in S1. Then by Fact 1 and Fact 2, we have all PoW blocks in B are

mined in S1; by Fact 3, we have all PoW blocks mined by honest

nodes in S2 are in B. Hence, D(S2) ≤ De−1 ≤ D(S1) + A(J ). By
Proposition 2, for each query in S1 made by an honest node at slot

r in epoch e , the target T must be Te , so we have (1 − δ )α0 f /γ
2 ≤

phrT ≤ (1 + δ )γ 2 f . For each query in J made by the adversary at

slot r in epoch e , the target T may be either Te−1 or Te , still we
have (1 − δ )α0 f /γ

2 ≤ phrT ≤ (1 + δ )γ 2 f in both cases (under a

(γ , 2R)-respecting environment). By the fact that α0nr ≤ hr ≤ nr ,
we have (1 − δ )α0 f /γ

2 ≤ pnrT ≤ (1 + δ )γ 2 f /α0.
Under a typical execution, we have

D(S2) > (1 − ϵ)ph(S2),

and

D(S1) +A(J ) < (1 + ϵ)p(h(S1) + |J |)

= (1 + ϵ)pn(S1) ≤ (1 + ϵ)ph(S1)/α0.

Therefore, by Proposition 1, we have

(1 − ϵ)ph(e) |S2 |/γ < Dtotal

e−1 < (1 + ϵ)γph(e) |S1 |/α0.

By the difficulty adjustment rule, we have Te = f |S0 |/D
total

e−1 .

Then Te can be bounded as follows:

• Lower bound:

ph(e)Te ≥
|S0 |

(1 + ϵ)|S1 |

α0 f

γ
≥

(1 − ϵ)|S0 |

|S0 | + 5κ + ∆

α0 f

γ

≥
(1 − ϵ)(R − κ)

R + 4κ + ∆

α0 f

γ

(C1)
≥

(1 − ϵ)(R − ϵR)

R + ϵR

α0 f

γ

≥ (1 − ϵ)3
α0 f

γ
≥ (1 − 4ϵ)

α0 f

γ

(C2)
≥ (1 − δ )

α0 f

γ
.

• Upper bound:

ph(e)Te ≤
|S0 |

(1 − ϵ)|S2 |
γ f =

|S0 |

(1 − ϵ)(|S0 | − 3κ − ∆)
γ f

≤
R − κ

(1 − ϵ)(R − 4κ − ∆)
γ f

(C1)
≤

R

(1 − ϵ)(R − ϵR)
γ f

=
1

(1 − ϵ)2
γ f ≤

1

1 − 2ϵ
γ f ≤ (1 + 4ϵ)γ f

(C2)
≤ (1 + δ )γ f .

This concludes the proof. □

Proof sketch of Theorem 6.9. When moving from the single-

epoch setting to the multiple-epoch setting, two new aspects need

to be considered.

• Virtual stake distribution updates. For epochs e = 1, 2,

the virtual stake has the same distribution as the initial stake.

Since we assume the initial stake has honest majority (As-

sumption 1.1), by Theorem 6.4, CP and ∃CQ are guaran-

teed in epochs 1&2. For epoch e ≥ 3, the virtual stake of a

node h composes of two parts, the actual stake recorded on

the blockchain up to the last block of the epoch e − 2 (by

Ouroboros [21]) and the work stake decided by the amount

of work h has contributed in epoch e − 2. Let Ss and Sw
be the total actual stake and total work stake in epoch e .
Recall that we set ωSs = (1 − ω)Sw in Minotaur, i.e., the
total virtual stake is Sv = Ss/(1 − ω). Denote that the ad-
versary controls βsSs actual stake and let βw be maximum
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fraction of adversarial mining power in epoch e − 2, i.e.,

βw = 1−minr ∈[(e−3)R+1,(e−2)R] (hr /nr ). By Assumption 2.1,

we have ωβw + (1 − ω)βs ≤ 1/2 − 2σ . And by Theorem 6.8,

honest nodes control at least (1 − σ )(1 − βw )Sw work stake

for epoch e . Therefore, the virtual stake controlled by the

adversary is at most

βsSs + (1 − (1 − σ )(1 − βw ))Sw

= ((1 − ω)βs + ω(βw + σ (1 − βw ))))Sv

≤ (1/2 − σ )Sv .

Therefore, by an induction argument, we can guarantee an

honest majority in the virtual stake for all epochs. The anal-

ysis critically relies on the fact that the CP property is im-

mutable: specifically, when all honest parties agree on a

common prefix C(t )
at some slot t and, as maxvalid-mc can

only revise the last k blocks of a currently adopted chain,

C(t )
will be a prefix of all future chains held by the honest

parties. Check the proof of Theorem 5.3 in [21] for details.

• Randomness updates. Every epoch needs new public ran-

domness to be used for sampling slot leaders from the above

virtual stake distribution. In Ouroboros [21], elected slot lead-

ers (one per slot) from epoch e − 1 runs a publicly verifiable

secret sharing (PVSS) protocol to generate the randomness

for epoch e . The core idea is the following: given that we

have guaranteed that an honest majority among elected lead-

ers in epoch e will hold with very high probability, we have

that the PVSS protocol suitably simulates a beacon with the

relaxation that the output may become known to the adver-

sary before it is known to the honest parties. However, as

long as the distribution of virtual stake is determined prior

to this leakage, the sampling of leaders in epoch e will still
be unbiased.

At last, it is not hard to see that, the CP property is equivalent to

the persistence of the ledger, while CP together with ∃CQ implies

liveness. □

E DETAILS ON THE OUROBOROS PROTOCOL
FAMILY

We give a summary of the different PoS protocols we explicitly

base our generic hybridization construction on in the main part

of the paper, Ouroboros Classic [21], Praos [8], and Genesis [3]. In

order of this sequence, each version of the protocol gives stronger

security guarantees.

We first give quick summaries of the respective protocol guaran-

tees and their underlying assumptions. Finally, in Appendix E.1, we

give a more detailed description of Ouroboros Praos as the reference

protocol; and sketch how the other variants differ from it.

Ouroboros Classic. Classic is secure against a minority of adver-

sarially controlled stake under the following assumptions:

Network. The communication network is synchronous.

Corruption. The adversary is ‘moderately’ adaptive (participant

corruption only takes effect after a certain delay).

Stake shift. There is an upper bound on the stake shift, i.e., the

stake distribution among the stake holders does not change

too fast.

Offline tolerance. The protocol participants only go offline for

short periods of time.

Ouroboros Praos assumptions: Praos is secure against a minority

of adversarially controlled stake under the following assumptions:

Network. The communication network is semi-synchronous, i.e.,

that the network delay is bounded bu some delay ∆ not

known to the participants.

Corruption. The adversary is fully adaptive.

Stake shift. As in Classic.

Ouroboros Genesis assumptions: Classic is secure against a mi-

nority of adversarially controlled stake among all participants who

are active in the system—under the following assumptions:

Network. As in Praos.

Corruption. As in Praos.

Offline tolerance. The protocol participants can join later during

any stage of the protocol, or go offline for extended periods

of time during participation.

E.1 Ouroboros Praos
The protocol proceeds in epochs of R slots, each slot representing

a given ‘unit of time’, say, 1 second of the protocol run-time. For

ease of exposition, let the genesis block represent epoch 0 of the

protocol. We now describe how the protocol operates per epoch

e > 0.

Slot-leader election. During each slot slj , a slot-leader election is

held among the stakeholders, and a winning stakeholder is allowed

to publish a new block associated with this slot.

The slot-leader election during epoch e is based on the stake

distribution at the end of epoch max(0, e − 2), i.e., the stake distri-

bution that results after the processing of the last block of epoch

e − 2 (or the stake distribution from the genesis block).

Let αi be the relative stake held by stake holder Pi (holding αi ·S
of the total stake S) at the end of epoch max(e − 2, 0). Per slot, the

probability pi for stakeholder Pi to be a block leader is defined as

pi = ϕf (αi )
△
= 1 − (1 − f )αi (2)

for some appropriate active-slots coefficient f (the probability that,

among the total stake, at least one slot leader is elected during any

given slot).

Slot leadership is pseudo-randomly assigned based on the epoch
nonce η, a seed calculated in epoch e−1 (as described further below).
To become a slot leader for slot slm , the stakeholder Pi evaluates a
verifiable random function (VRF) (bound to a public key registered

by Pi ) (y, π ) = VRFi (η, slm ). Slot leadership is satisfied iff

y
!

< T
△
= 2

ℓVRF · ϕf (αi ),

where VRFi produces outputs of ℓVRF bits, and T is a threshold to

enforce the desired probabilities.

Block production. Besides a hash of its predecessor and the pay-

load, a block contains

• the slot numberm;

• the above proof of leadership (y, π ) (such that y < T );
• an additional, independent, VRF output (yρ , πρ ) contributing
to the epoch-nonce generation; and
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• a signature on (m, (y, π ), (yρ , πρ )) by Pi of a key-evolving
signature scheme (KES).

4

Block settlement. A block is considered settled if it sits at least k
blocks deep in a node’s main chain where k is the prefix parameter
of the protocol.

Chain selection rule: maxvalid-mc. Upon the arrival of a new

block, each node chooses, as their main chain, the longest chain

that does not fork from the previous main chain by more than k
blocks where k is the prefix parameter.

Epoch-nonce generation. The epoch nonce η for epoch e > 1 is

computed as a hash of all VRF outputs yρ included in the blocks

of the main chain up to 2/3 of epoch e − 1. The epoch nonce for

epoch e = 1 is included in the genesis block.

E.2 Differences in Classic and Genesis
Classic. The main difference to Praos is that the epoch random-

ness is obtained from a coin-flip protocol based on a publicly verifi-

able secret sharing protocol—with the disadvantage that the leader

schedule is public and thus allows for adaptive corruption.

Genesis. Genesis differs from Praos by applying a different chain

selection rule to allow protocol participants to be offline for ex-

tended periods of time. The modified chain-selection rulemaxvalid-
bg works as follows: A longer chain is adopted if

• it forks from the current main chain by at most k blocks; or

• if forks by more than k blocks but contains more blocks in

the s slots following the last common block of the main chain

and the longer chain.

F ANALYSIS TIGHTNESS
The analysis of ourmain security theorem, Theorem 6.1, draws from

[21]. A more careful and improved analysis appears in [5], from

which we may obtain the refined bound 1 − RL(e−Ω(δ
3κ) + e−λ) for

the statement of Theorem 6.1. In this section we analyze a private

chain attack and show a corresponding lower bound. It reveals that

δ2κ needs to be bounded below by a constant and, consequently,

the dependency on δ3 cannot be improved much further.

Proposition 3. Common prefix does not hold against a (1/2 −

δ ,m,ω)-bounded adversary, for δ ≤ 1/
√
ℓcp and sufficiently large

ℓcp.

Proof. The adversary follows the protocol using his mining

power to produce PoW blocks. The attack begins when the virtual

stake of the adversary is ωβw + (1 − ω)βs ≥ 1

2
− δ .

Define the random variable Xi taking values in {−1, 0, 1} accord-

ing to who produced blocks of height i . If it was the adversary only,

then Xi = 1; if both the adversary and honest parties, then Xi = 0;

if honest parties only, then Xi = −1. Let p = 1 − (1 − f )1/2+δ and

q = 1 − (1 − f )1/2−δ . We have

Pr[Xi = −1] = p(1 − q)/f ,

Pr[Xi = 1] = q(1 − p)/f , and

Pr[Xi = 0] = pq/f .

4
The stakeholders update the private keys of their KES instance after every slot.

Note that the adversary will create a fork of length k , if X1 + · · · +

Xk ≥ 0. We will use the Berry-Esseen bound to lower bound the

probability he succeeds. To that end we compute

µ = E[Xi ] = (q − p)/f = [(1 − f )1/2+δ − (1 − f )1/2−δ ]/f

= [(1 − f )1+δ − (1 − f )1−δ ]/[f (1 − f )1/2]

> [(1 − f )1+δ − (1 − f )1−δ ]/f > −2δ ,

σ 2 = E[X 2

i ] − µ2 = 1 − pq/f − µ2 > 1 − f − 4δ2,

ρ = E[|Xi − µ |3] < (1 + 2δ )3.

Observe that for δ ≤ 1/3 and f ≤ 1/9.

Let Fk = (X1+· · ·+Xk −µk)/
√
kσ 2

. By the Berry-Essen Theorem

we have that, for δ ≤ 1/
√
k ,

Pr

[
Fk ≥ −µk/

√
kσ 2

]
≥ Φc

(
3) −O

(
k−1/2

)
.

□

Although it might be possible to strengthen the above attack and

analysis to obtain slight improvements, it remains an open question

whether the exponential drop in the probability of security failure

is in the order of δ3κ or δ2κ.
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