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Abstract. The emergence of distributed digital currencies has raised
the need for a reliable consensus mechanism. In proof-of-stake cryptocur-
rencies, the participants periodically choose a closed set of validators,
who can vote and append transactions to the blockchain. Each valida-
tor can become a leader with the probability proportional to its stake.
Keeping the leader private yet unique until it publishes a new block can
significantly reduce the attack vector of an adversary and improve the
throughput of the network. The problem of Single Secret Leader Election
(SSLE) was first formally defined by Boneh et al. in 2020.

In this work, we propose a novel framework for constructing SSLE proto-
cols, which relies on secure multi-party computation (MPC) and satisfies
the desired security properties. Our framework does not use any shuffle
or sort operations and has a computational cost for N parties as low as
O(N) of basic MPC operations per party. We improve the state-of-the-
art for SSLE protocols that do not assume a trusted setup. Moreover,
our SSLE scheme efficiently handles weighted elections. That is, for a
total weight S of N parties, the associated costs are only increased by
a factor of log.S. When the MPC layer is instantiated with techniques
based on Shamir’s secret-sharing, our SSLE has a communication cost of
O(N?) which is spread over O(log N) rounds, can tolerate up to t < N/2
of faulty nodes without restarting the protocol, and its security relies on
DDH in the random oracle model. When the MPC layer is instantiated
with more efficient techniques based on garbled circuits, our SSLE re-
quires all parties to participate, up to N — 1 of which can be malicious,
and its security is based on the random oracle model.

1 Introduction

In 2008, Bitcoin [27] laid the foundation for the increasingly important areas
of cryptocurrencies and distributed ledgers. One of the main advantages of dis-
tributed ledgers is that there is no single central authority that controls the

* This is the full version of the paper, an extended abstract is to appear at ESORICS
2022.
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transaction flow (censorship resistance). Anyone can access the public ledger,
which is a sequence of blocks that contains transactions. For example, in Bit-
coin, participants called “miners” are randomly selected to produce and append
a new block to the chain. This selection process relies on the “proof-of-work” con-
cept (PoW). To append a block to the chain, the participant has to find a value,
such that a cryptographic hash function is evaluated below some threshold.

To avoid extreme energy consumption induced by PoW protocols [29], an
alternative approach, “proof-of-stake” (PoS), has been proposed. Here, the prob-
ability of being selected for appending the chain depends on the stake (i.e., coins)
a party owns. It does not matter whether the party owns an account with some
stake v, or several accounts whose accumulated stake amounts to v. The protocol
consensus works as long as the majority of all stake is controlled by honest users.

In cryptocurrencies based on proof-of-stake [23, 26, 18, 19], a single party that
produces a block is chosen randomly from a set of participants, called validators
(which is the equivalent to miners in a PoW protocol). In a PoS cryptocurrency
there could be potentially thousands or millions users, who may come and go.
It is up to a PoS protocol to determine and fix a relatively small (typically tens
or hundreds) set of validators [23] from which a validator is selected that can
append a block within a given time frame. To create a consistent picture for all
validators, this selection has to be deterministic, but pseudo-random — properties
often achieved by relying on Verifiable Random Functions (VRF). However, if
an adversary knows in advance which of the validators is selected, it can launch
a targeted attack and cause a denial-of-service.

Previous approaches to solving this issue aim to run the selection process
in private, with the selected participant publishing a proof alongside the block.
Until recently, these approaches failed to guarantee only a single participant to be
chosen [23]. After much interest in a solution that provides such a guarantee [35],
Boneh et al. proposed a formal definition and several instantiations of a Single
Secret Leader Election [4].

The primary motivation of having a single leader is a simple consensus design,
as there are no forks in the blockchain (assuming some reasonable connectivity
between parties). This property encourages the leader to solely perform heavy
computations, which may even exceed the running time of SSLE and/or re-
quire multiple cores. For example, the leader’s task may consist of prover-heavy
computations, whereas verification is very fast (SNARKs). Many protocols (e.g.,
[26, 18]) assume uniqueness, and it is easy to update them with a SSLE solution.
They may require a full redesign if the uniqueness assumption no longer holds.

1.1 Owur contribution

1. In this work, we propose a framework for constructing an efficient Single
Secret Leader Election (SSLE), which relies on secure multi-party computation
(MPC). We formulate a simulation-based definition of the SSLE problem.

2. We present two instantiations of our framework, which improve the state-
of-the-art for SSLE protocols that do not require a trusted setup. The first
instantiation is a t¢-threshold SSLE scheme that is based on Shamir’s secret
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sharing in the random oracle model. We prove that our construction is secure
in the honest-but-curious and malicious adversary models. For the latter, we
additionally assume DDH. For N parties, the leader election requires O(log N)
communication rounds and O(N) of basic operations on the underlying primi-
tives. Furthermore, we instantiate our SSLE scheme using the MPC framework
by Wang et al. [40], which is secure against any number of malicious parties and
is more scalable, but requires all parties to be online.

3. Our SSLE framework can efficiently handle arbitrary stake distributions.
For N parties and the overall sum of their stake units S, our construction achieves
O(Nlog S) cost of the election. Compared with a standard multi-registration
technique, in which a party registers multiple times for the election propor-
tionally to her stake, this cost may go up to O(S), which makes our solution
exceptionally efficient if N < S.

4. We implemented and microbenchmarked our solution using two different
MPC frameworks. The performance evaluation indicates that our DDH-based
SSLE protocol can be used in practical scenarios up to 30-40 parties when in-
stantiated with the textbook O(N?) techniques using the verifiable secret sharing
scheme (VSS). Furthermore, we implemented our SSLE in the MPC framework
based on garbled circuits [40]. The overall time to set up and complete the pro-
tocol for 128 parties in a practical scenario is less than 7 minutes.

Note that, due to space limitations, we refer to the full-version [3] for most
proofs. Only the security analysis can be found in the appendix.

1.2 Background

The idea of proof-of-stake was first discussed on the Bitcoin forum* in 2011. Ki-
ayaias et al. presented a provably-secure PoS protocol “Ouroboros" at CRYPTO
2017 [26], in which the participants that produce the blocks are elected pub-
lically. Such a leader election may be public as in Ouroboros or private as in
Algorand [23]. In a private leader election, each node needs to check whether it
will be the next leader using its private information but then can prove to others
using only public information that it is indeed the next leader. Such a design
makes it impossible for others to predict and carry out DoS attacks against the
next leader until it is too late.

Algorand achieves this private leader election using Verifiable Random Func-
tions, for which a participant has to prove the outcome to be below a certain
threshold. This, however, can result in either no participant or multiple partic-
ipants being elected. Another protocol employing a private leader election has
been formalized by Ganesh et al., whose protocol Ouroboros Praos [19] does not
guarantee existence and uniqueness of the leader either.

To mitigate these shortcomings of previous private leader elections, a problem
statement of a single secret leader election was first posed at a GitHub page [35]
in the form of a research proposal in the context of the Filecoin cryptocurrency.
The protocol’s goal is to elect a single leader among a finite set of participants.

4 https://bitcointalk.org /index.php7topic=27787.0 (accessed 31.01.2022)
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Informally, such a protocol consisting of n participants has to meet the fol-
lowing requirements: fairness — the probability of a particular party being elected
should be proportional to her power or stake, secrecy — only the elected leader
should learn the result of the protocol, (public) verifiability — the elected leader
should be able to prove the leadership to the other participants or observers by
showing a proof-string, unpredictability — no set of participants smaller than a
threshold m of n should be able to predict the outcome of the protocol with a
probability greater than a negligible factor. To tolerate sporadic drop outs, the
protocol should satisfy liveness — it should terminate as long as the honest major-
ity is participating. Moreover, the protocol should be reasonably efficient, i.e.,
on-chain O(logn) bits per block, O(n) communication complexity (per active
party).

In order to let anyone to verify transactions in a chain, the leader has to
append new transactions along with a proof of leadership, and the verification
algorithm should only use the data stored on the blockchain. Therefore, in the
context of PoS systems, we distinguish on-chain and off-chain messages sent by
the parties according to a SSLE scheme. A multi-round SSLE protocol is not
required to post intermediate messages in a blockchain, as long as the parties
agree on the final on-chain message. If in a PoS protocol the parties’ stakes are
public, an SSLE scheme can be naturally used out of the box.

1.3 Related work

Following this call, Boneh et al. [4] formalized the problem of Single Secret Leader
Election (SSLE) and presented three constructions: 1) a feasibility result based
on indistinguishability obfuscation, 2) a construction based on threshold fully
homomorphic encryption (TFHE), and 3) a construction based on DDH that
achieves a weaker notion of security. Subsequently, Catalano et al. [9] proposed
a UC-secure SSLE based on public key encryption with keyword search (PEKS).

We begin by first comparing how arbitrary stake distributions are handled in
previous and our work. While a scenario with equal stakes is easier to analyze,
in practice one has to also account for arbitrary stake distributions and how
they affect the overall performance of the scheme. Boneh et al. [4] suggest a
multi-registration technique (one registration corresponds to one unit of stake)
to address arbitrary stake distributions, which makes the associated costs grow
linearly with the user’s stake. In contrast, our construction offers a more efficient
tree-based solution to this setting with the associated costs grow logarithmically
in the total stake S of participating parties.

The TFHE-based SSLE [4] uses TFHE [5] as a building block, which in
turn is based on fully homomorphic encryption (FHE) [22]. In contrast to our
approach, its security relies on the learning with errors assumption (LWE) [34]
and requires a trusted setup. Depending on how the underlying building blocks
are instantiated, the TFHE-based SSLE scheme offers various trade-offs in terms
of assumptions and space/runtime. For more details, we refer the reader to [4,
5]. After a random beacon R is revealed, the parties engage in one round of
communication to determine a leader.
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The DDH-based construction [4] relies on more lightweight components than
the TFHE-based one, but achieves only a weaker security notion of unpredictabil-
ity. More specifically, for N parties, a potential leader is picked from a subset
of data elements representing 0(\/N ) parties, and an adversary is asked to pre-
dict a leader within this subset (excluding parties controlled by the adversary),
whereas in the full notion of unpredictability an adversary has to guess a pur-
ported leader from the set of N parties. To register for an election, a party has to
update and shuffle O(\/]v ) group elements available and provide a NIZK proof
of honest shuffling and re-randomization. These messages have to be considered
on-chain, so that everyone could verify the outcome of an election. One can trade
efficiency for security in this scheme by changing the number of elements that
has to be reshuffled during registration. After a random beacon R is revealed,
a leader can be determined locally, thus requiring no further communication.
This construction can achieve a full security notion when shuffling all N group
elements, at the cost of degrading its efficiency.

The PEKS-based construction [9] uses PEKS as a building block. The latter
is a notion of functional encryption [6, 31|, in which a holder of a secret key sk
associated with a keyword w can locally check whether a ciphertext encrypts w
or not. On a high level, the SSLE construction works as follows: each party i
receives a secret PEKS-key sk; associated with the number i. During an election,
a new ciphertext c is generated, which encodes a random keyword j € {0, N —1}.
A party that can decrypt c is the leader and can compute a NIZK proof of
leadership. The SSLE construction requires a trusted party to generate the keys,
for which the authors show a protocol to distribute this trust assuming ¢t < | N/2]
of parties are corrupted; this instantiation is based on the functional encryption
for orthogonality (OFE) [25, 41] and assumes SXDH is hard in bilinear groups.

Our SSLE is based on MPC, runs O(log N) rounds of communication, and
does not use a randomness beacon R. A party is required to post as little as O(1)
of information on-chain during registration and for proving leadership. From [4],
we use game-based definitions, as a starting point for our definitions, and the
technique to prevent duplicate key attacks; we then propose a simulation-based
definition in the UC framework. Our UC-formulation of the SSLE problem differs
from [9]; we find that our definition better facilitates a more restrictive setting,
in which each party fully controls its registration procedure of the SSLE and the
leader reveals the registration material as a proof of leadership. In such a model,
we are able to seamlessly instantiate SSLE with any secure MPC framework. We
prove security for a sequential execution of the protocol.

We compare our constructions with Boneh et al. [4] and Catalano et al. [9]
in Table 1. For completeness, we included the obfuscation-based feasibility re-
sult in [4]. This construction is the only non-interactive among the discussed
ones, i.e., the outcome of the election is known right after the randomness bea-
con is revealed. By pub. we denote the number of public key operations such as
exponentiation, by MPC op. we denote basic MPC operations such as multiplica-
tion. The most notable differences are that (1) our scheme does require neither a
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Construction ‘ Ass.ump- ‘ Secuﬂty ‘ Setup ‘ Rounds ‘ Computa‘twn‘ / On-chain
tions notion Communication
Obfuscation- . i . . 0+ O(X), feasibility
based [4] i0 game-based | trusted beacon result o)
} TFHE, game-based, § 1+ depends on a
TFHE-based [4] weak PRF t-threshold trusted beacon |particular instance O(N)
game-based,
Shuffle-based [4]|ROM, DDH| weak unpre- - bemeon | OOV pUb- S 6/
dictability group el.
Shuffle-based [4]|ROM, DDH| game-based - bela:on O(g]rvo)uiuekl" / O(N)
PEKS-based [9] ;?S/IH’ UC, t-treshold | trusted | =2 * O(g]rvo)ugue‘i‘ /| oog? W)
Our UC,
Construction 1 ROM, DDH t-threshold } O(log N) | O(N) MPC op. o)
Our
Construction 2 ROM UucC - O(log N) | O(N) MPC op. O(1)

Table 1: Comparison of SSLE protocols, assuming all N users participate in
election, amortized per one election. On-chain asymptotics include a security
parameter A; PEKS-based on-chain asymptotic is shown assuming the parameter
choice suggested in [9].

trusted setup nor a randomness beacon, and (2) requires only a constant amount
of data to be posted on-chain.

In the discussed schemes except for iO- and PEKS-based the leader has to
re-register before next election, since she reveals a secret that was generated and
used for the registration.

Concurrently to our work, Catalano et al. [10] revisit the shuffle-based SSLE
realization from [4] and propose two UC-secure SSLE constructions from DDH.
Their first construction is secure against static adversaries and their second
achieves adaptive security with erasures.

On the practicality of our SSLE framework The number of validators
depends on the PoS protocol and can vary from dozens to a few hundred and in
limited cases thousands. It does not necessarily correlate with the total number of
users. Stake disbalances also vary, and therefore they need to be approximated in
our framework by a tree of a sufficient height (Section 7.1). Our tree optimization
technique has a better effect when applied to a smaller set of validators.

In our SSLE framework, we rely on existing MPC techniques. If a more
efficient MPC protocol than the ones used in our constructions emerges, it will
help to further improve the running time of the SSLE.
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2 Definitions

2.1 Preliminaries

DDH Assumption [16] Let g be a generator of a group G of a prime order q.
For any probabilistic polynomial time (PPT) machine A and (z,vy,2) + (Z,)3,

|PrlA(g, 9%, 9%, 9"") = 1] — Pr[A(g,9",9",9%) = 1]| < negl(A).

Secret Sharing Secret sharing schemes allow a dealer to share a secret s among
parties such that later a qualified set of parties can jointly reconstruct s, whereas
a non-qualified set of parties learns no information about it. We use Shamir’s
Secret Sharing [37], which is a t-threshold scheme. Let P, ..., Py be N parties
and there is a threshold ¢ < N/2. In Shamir’s secret sharing scheme, a secret can
be shared among N parties such that ¢ 4+ 1 parties can reconstruct it, whereas
t parties learn no information about the secret. We denote [z] a Shamir sharing
of z in a prime field Z,, for which each party P; gets a secret share x; € Z,.
For this scheme to work, it is required that N < ¢. We denote Share a protocol
to share a secret x as [z], and Rec to reconstruct z from [z]. Whereas Shamir’s
Secret Sharing is only secure against passive adversaries, Verifiable Secret Share
(VSS) schemes [32] can protect against active.

Communication and adversary models We assume secure point-to-point com-
munication channels between parties. An adversary is allowed to corrupt up to
t < N parties. We consider two models of adversaries: honest-but-curious and
malicious. In the honest-but-curious model, adversaries follow the protocol hon-
estly and try to learn as much as possible from observed communication by
corrupted parties. In the malicious model, the parties controlled by an adver-
sary can stop communicating or send arbitrary messages to other parties, not
necessarily following the prescribed protocols.

Secure Multi-Party Computation (MPC) MPC allows a set of parties P =
{Pi, ..., Pn} to jointly compute a function on their private inputs in a privacy-
preserving manner [42]. Our SSLE scheme is based on MPC.

We borrow the standard definitions of VIEW and ¢-Privacy from [1].

Definition 1 (VIEW). Let P = {P,..., Pn} engage in a protocol IT that com-
putes function f(iny,...,inx) = (outy,...,outy). Let VIEW (P;) denote the view
of participant P; during the execution of protocol II. More precisely, P;’s view
s formed by its input and internal random coin tosses r;, as well as messages
mi,...,my passed between the parties during protocol execution: VIEW (P;) =
(ing,ri;my, ..., my).

We denote the combined view of a set of participants T C P (i.e., the union
of the views of the participants in I) by VIEW ().

Definition 2 (¢-Privacy). We say that protocol II is t-private in the presense
of honest-but-curious adversaries if for all T C P with |Z| <t < N there exist
a PPT simulator Sz such that {Sz(inz, f(in1,...,iny))} = {VIEW (Z),outz},
where ing = Up cz{ini}, outz = Up cr{outi}, and = denotes computational
indistinguishability.
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In the malicious setting, the subset Z of honest-but-curious parties in Def. 1
and 2 is replaced with an equal-sized subset of malicious PPT parties ZM, and
the protocol IT is replaced with ITM, its maliciously-secure version.

We instantiate our SSLE scheme using the following underlying protocols:

1. the VSS-based MPC protocols [32, 33, 21, 20, 15, 11], in which secrets are
shared between the parties using Shamir’s secret sharing scheme:
— protocols for adding shares, substracting, and multiplying by a scalar:
[$] + [y], [l‘} - [y]a [a : :E],
— RndFld to generate a share of a random field element in Z,,
— RndBit to generate a share of a random bit,
— Mul to compute [z - y] given [x] and [y].
2. garbled circuit based MPC [40] on boolean circuits, where each party can
privately input her input to a computing circuit.

2.2 Single Secret Leader Election

We consider the following problem. Given a set of N parties. The parties do
some interactive pre-computation. Then, each party can run a local function
that takes the transcript as input to determine whether it is the leader or not.
The leader can show a proof that it is the leader.

Game-based formulation of the SSLE problem Our syntax and security properties
of SSLE are based on that of [4], with a slight difference that we do not have an
external source of randomness (random beacon) and we allow multiple rounds of
communication between the parties during the election, whereas the definition
of SSLE in [4] allows a single round of communication.

Informally, we capture the following security properties:

1. Uniqueness — an adversary wins this experiment if in at least one election
in a series of consecutive elections there is more than one verifiable leader.

2. Unpredictability — the adversary asks for a challenge election after a series
of elections. The challenger does not send to the adversary the outcome of
this election. The adversary has to guess the leader in this challenge election.
If some honest party is the leader, the adversarial chances to correctly guess
the leader should not be significantly greater than pure guessing.

3. Fairness — the adversary asks for a challenge election after a series of elec-
tions. The probability of winning this challenge election by one of the cor-
rupted parties should not be significantly greater than ¢/n, where ¢ is the
number of corrupted parties, and n is the number of parties registered for
the challenge election.

Due to page limits, we postpone the formal game-based definition to Ap-
pendix A.
Simulation-based definition of the SSLE problem We now formulate the SSLE
problem as an ideal functionality ]—'S]\g’f’Ec, which is presented in Figure 1. In the
description of the ideal functionality, we denote election id as eid, and registra-
tion numbers as C;. We then show that the simulation-based definition implies
the game-based one.
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]_-sz\glep for a set of parties P = {P1,...,Pn}, ¢ of which are corrupted by an adversary,

consists of the following steps:

— Upon receiving a message (eid, register, C') from P;, check if (eid, P;,-) or (eid, elected, -, -)
is stored. If so, ignore the message. Otherwise, store (eid, P;, C)). When storing tuples, we
write P; to denote the party’s unique identifier. Send (eid, registered, P;) to all parties
and the environment.

— Upon receiving a message (eid, regVerify) from P;, reply 0 if there exist two stored tuples
(eid, P;, C;) and (eid, Py, C)) such that j # k and C; = Cj. Otherwise, reply 1.

— Upon receiving a message (eid, elect) from P;, check if there are at least £ registered parties
that have corresponding stored tuples (eid,-,-). If not, ignore the message, otherwise
proceed. Check if (eid,elected, P, C,,) is stored. If not, pick one of the stored tuples
(eid, -, -) uniformly at random as (eid, P,,Cy), append it as (eid, elected, P,,CY), and
send (eid, elected, Cy,) to the environment. Send (eid, elected, Cy,) to P;.

— Upon receiving a message (eid, verify, P;, C) from P;, check if (eid,elected, P,,C,) is
stored. If such a tuple exists, reply 1 if P, = P; and C, = C. In all other cases, re-
ply 0.

]_-N,Z,c

Fig. 1: Ideal functionality Feg) -

Our modeling of the ideal functionality fsj\é’fl’f for N parties with an adversary

statically corrupting up to ¢ of them is influenced by the corresponding game-
based definition (Definition 3), which defines the registration and verification
algorithms that surround the election itself. We follow the same approach and
define messages in the ideal functionality for registration, election, and their
verification.

In fsj\g’fl’;, the parties send messages to the ideal functionality that correspond
to a specific stage of the election. First, the parties register for an election with
id eid via sending register messages containing the registration number C. They
receive notifications from the ideal functionality for every registered party. To
verify registration, the parties send messages regVerify to the ideal functionality,
which outputs 1 if all registered numbers are distinct, otherwise it outputs 0 and
the execution of fsj\g’fl’f stops. If regVerify returned 1, the parties participate in the
election by sending messages elect to fsj\é’fl’;, which returns one of the registered
numbers as the elected number. Finally, the parties can verify whether some
party P; is the elected leader by sending a message verify with the identifier for
P; and the elected number.

Next, we discuss some of the design choices that we made in fs]\_é’f’EC:

1. With the explicit inputs associated to parties, the definition naturally cap-
tures the adversarial ability to register multiple parties using the same pri-
vate material and thereby break the uniqueness property.

2. The result of the election is returned to the parties as one of the numbers,
used for the registration. In this way we model the information leakage,
which suggests an efficient way of running multiple elections by the same
parties. To run a subsequent election, the leader has to simply re-register,
while other parties can keep their previously registered numbers.
Intuitively, the security properties from the game-based definitions are cap-

tured in the ideal functionality fsl\é’féc as follows:
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1. Uniqueness — provided by answering regVerify messages, which excludes
the case that two parties register the same number, and elect messages are
answered with exactly one number.

2. Unpredictability— provided by answering elect messages with one of n
registered numbers, which are known only to the respective parties. In the
beginning, party P; sends her input C; only to the ideal functionality and
never discloses C; to other parties until the election is finished. P; discloses
her registered number only when P; is the elected leader.

3. Fairness — provided by answering elect messages by uniformly at random
selecting one of n registered distinct numbers as the elected value.

We formally prove that the ideal functionality implies the game-based defi-
nitions by showing the non-existence of a simulator given any of the game-based
attackers.

Proposition 1. The ideal functionality .F_évs’f;:-c implies the game-based defini-

tions for uniqueness (Definition 5), unpredictability (Definition 6), and fairness
(Definition 7).

We refer to Appendix B for the proof of Proposition 1 and subsequent theo-
rems.

In this work, we only consider SSLE schemes with exzpiring registration. In
such schemes, in a single SSLE instance elections are run sequentially and the
eventual leader has to re-register for subsequent elections. In the remainder of
the paper we will only consider the modified ideal functionality that ensures se-
quentiality. To this end, the ideal functionality keeps track of the current election
id eid*. As soon as it receives a message with eid’ # eid*, it stops responding
to any further messages with eid* and updates the current election id to eid’.
In contrast to the real world, in the ideal world non-leaders have to register for
subsequent elections explicitly using the same registration number C.

3 (Non-secret) single leader election constructions

In this section, we start by discussing how naive solutions to the problem of
SSLE fail in keeping the leader secret. We then gradually introduce the basis for
our final SSLE protocol. Note that, while the constructions in this section do
not yet meet our requirements and are considered non-secret, they will form the
basis of the protocol presented in Section 4.

Naive attempts Designing a secure SSLE protocol is not a trivial task. Below,
we briefly mention three naive leader selection protocols and discuss where they
fail to meet our requirements.

Protocol 1 Run any secure MPC protocol for N parties to generate a fresh
random number (selection phase) and later reveal it and take it modulo N to
determine which party is selected (reveal phase).
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Protocol 2 Fach party commits to a number and sends the commitment to all
parties (selection phase). To determine the leader, each party opens the commit-
ment, and the leader is computed as a sum of these N numbers modulo N (reveal
phase).

Protocol 3 Let an array of distinct numbers represent the participants in the
election. To determine a leader, we randomly permute this array (or sort it
according to some unpredictable criteria) (selection phase) and pick the first
number as the leader and discard the rest (reveal phase).

Problem The three naive protocols defined above are not secret leader election
protocols, as they follow a two-phase pattern: the selection phase and the reveal
phase. After the selection phase is over, the parties have already committed to
some leader, which is not yet known to anyone. After the reveal phase, everyone
knows who the leader is. The missing intermediate point (the “check” phase) is
the one that would allow the leader to learn the outcome exclusively.

Nevertheless, these protocols can serve as the basis for a secret leader election
protocol. Our construction is inspired by the idea in Protocol 3. While there
exist cryptographic protocols for multi-party sorting ([24, 30]) that all rely on a
pairwise comparison subroutine, we take a more efficient approach: We observe
that the order of the discarded numbers does not matter and take this into
account when designing our solution. This observation allows us to eliminate
the requirement for this comparison subroutine.

Oblivious Select We begin by defining a two-party Oblivious Select (OSelect)
protocol, whose goal is to secretly select one out of two commitments. Once the
commitment is selected, the parties can open the selected commitment. This sub-
protocol essentially makes use of the observation from the previous section that
we can discard any information except the chosen leader. Let PSwap be an algo-
rithm that on input commitments Co and Cy computes (C] = Com(Ci, 74)),c 10,13
and outputs (C;, C]_,) for a random bit b. Let PSelect be an algorithm that on
input commitments Cy and C outputs C’ = Com(Cy, ). It is easy to see that
if the commitment scheme is hiding, then an adversary cannot find the value of
b significantly better than pure guessing.

We now describe OSelect between Alice and Bob. The protocol consists of
the select and the opening phases. In the select phase, Alice publishes her com-
mitment C'4 and Bob Cp, then Alice performs PSwap on (C4, Cp) and sends the
result (Cp, C1) to Bob; Bob now performs PSelect on those values and outputs
C’. In the opening phase, the two parties reveal their randomness so that the
complete transcript of computing C” could be reconstructed by anyone.

The protocol can be naturally extended to N parties, where N is a power
of two; let us call the resulting protocol OSelect . It consists of (log N) rounds;
in the first round N/2 pairs of parties are formed that run OSelect, thereby
reducing two commitments into one. In the following round, N/4 pairs of parties
are formed, etc., until there is a single commitment left. We will use the logical
tree-like structure used in OSelecty as the basis for our final SSLE construction.
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Leader Election based on Oblivious Select We define LeaderElection, our
intermediate non-secret protocol, which essentially uses OSelecty in a black-box
manner. In the selection phase, each user U; initially holds a distinct number m;
and commits to it as C; = Com(m;;r;). Then, the users run OSelecty. Thanks
to the properties of OSelectyy, its output C is a commitment to one of the user’s
inputs. If C' is a commitment to m;, then U; is the elected user. Since there are
in total N — 1 calls to OSelect, we achieve an amortized cost O(1) per party. In
the opening phase, all users broadcast their input message and randomness, so
that the execution of OSelecty could be verified by anyone.

Problem The resulting protocol is still a non-secret leader election, as the leader
does not learn the output of the protocol exclusively. Moreover, the unpredictabil-
ity property does not hold: an adversary controlling two parties in a single in-
stance of OSelect can exclude certain parties as potential leaders. Lastly, all
parties are required to participate in the protocol in at least one instance of
OSelect, which makes it impossible to tolerate a single faulty party. In the next
section, we will address these problems and present our secure SSLE protocol.

Upgrading to secret leader We now modify LeaderElection by adding an in-
termediate representation layer in order to let the secret leader actually check
whether she is the elected leader. Here, we make use of a distributed key genera-
tion and threshold decryption. The resulting secret leader election protocol does
not satisfy all our requirements to SSLE but serves as an intermediate point
towards our final construction in Section 4.

Distributed Key Generation (DKG) [32] allows several parties to agree on a
joint secret key. The corresponding public key is computed and published jointly
by the honest majority of the parties. In a t-out-of-N DKG protocol [20], the se-
cret key is shared according to Shamir’s secret sharing scheme. The protocol can
be efficiently simulated against passive and active adversaries, which can corrupt
up to t parties. In threshold cryptography, parties jointly generate a group public
key to encrypt messages and a qualified subset of parties can collaboratively
decrypt ciphertexts encrypted using that key. We consider Shamir’s t-out-of-IV
threshold ElGamal-based decryption schemes, for which any coalition of ¢ parties
cannot decrypt a given ciphertext or learn any information about the plaintext,
whereas any coalition of t+1 parties can recover it, even if the remaining N —t—1
parties stop communicating.

Let g be a generator of a group G of a prime order Z,,. User U; registers for the
election by generating a registration key k; € Z, and computing a registration
token as e; « (g”, g¥'") for some random r. The values k; are e; are kept private.
Next, the users generate a temporary shared public key using as t-out-of-N DKG
protocol, pkg = ¢**¢. The corresponding group secret key, skg, is shared between
N parties, such that ¢ 4+ 1 parties have to collaborate to decrypt a ciphertext C'.

Instead of OSelect, we use a new subroutine OSelectD, which is a two-party
verifiable oblivious select protocol in the discrete log setting. Unlike OSelect,
the users can publicly verify that a OSelectD instance was executed correctly
without learning which input was selected. The input to OSelectD is an Elgamal
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encryption of two group elements e; := (g”, g*") under a group public key yg for
some user’s registration key k; and randomness r; these two encryptions can be
represented as a tuple (9", (yg)" - ¢", (yg)" - g*") € (Gy)3, for some 17, and we
will call such tuples valid. OSelectD relies on the discrete log variants of PSwap
and PSelect, which we call PSwapD and PSelectD. Let PSwapD be an algorithm
that on input two tuples Cy and C; computes Cfj = (Cp)™, C] = (C1)™ and
outputs (C{,C7_,) for a random bit b, accompanied with appropriate NIZK
proofs that computation is done correctly. Let PSelectD be an algorithm that
on input two tuples Cy and C; outputs C' = (Cp)" and appropriate NIZK
proofs. These proofs are generalizations [14, 7] of Schnorr signature [36] and
can be efficiently instantiated in the random oracle model using the Fiat-Shamir
transform [17]. It is straightforward to see that if the inputs to OSelectD are valid
tuples w.r.t. k; and k;, then so is the output of OSelectD w.r.t. k € {k;, k;}.
Expanding OSelectD to IV users, we get OSelectDy. Users jointly run OSelectDy

and decrypt its output to obtain C. There will be a unique pair (e;, &), which
forms a valid DDH tuple, for which the elected leader knows an exponent; all
other pairs (e;, €), where j # ¢, are random tuples. The leader presents the ex-
ponent as proof of leadership. She will have to re-register to get a fresh k; before
participating in another election.

Problem While the leader can learn the outcome of the election in private, there
remain several problems to address. First, an adversary can run a duplicate key
attack [4], where she obtains multiple registration tokens that correspond to a
single registration key, and thus break fairness. To see why the protocol suffers
from this attack, we observe that for a fixed registration key k;, two valid tokens
(g™, g% 1) and (9”2, g*i""2) are indistinguishable from two valid tokens that cor-
respond to different keys, because of the DDH assumption. The mitigation mea-
sures proposed in [4] work in our setting, too. Second, a malicious adversary can
use biased coins when computing OSelectD. If both parties are under her control,
she can break the obliviousness of OSelectD and, in turn, the unpredictability
and fairness of the SSLE. Finally, even an honest-but-curious adversary, who
controls both parties in OSelectD and follows the protocol, exactly knows which
input has been selected, thus breaking unpredictability of SSLE. Since our goal is
to satisfy all the three properties (uniqueness, unpredictability, and fairness), we
will need one more modification to our current construction, which we present
in the following section.

4 Our SSLE from DDH

In this section, we define our full SSLE construction; to this end we modify the
secret leader election from Section 3 by replacing OSelect with its MPC vari-
ant, OSelectM. Thereby we ensure that no adversary in our model can learn
the outcome of a OSelectM protocol instance. The extension of OSelectM to
N inputs, which we call OSelectMy;, retains the (binary) tree layout of inputs
and outputs. Each OSelectM instance is now executed by all parties simulta-
neously. This modification incurs additional communication costs compared to
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OSelectM([C 4], [CE])

[b] + RandBit() [Ci]  [C2] [C3]  [C4]

do // run in parallel \4 / \4 /
[b- Ca] + Mul([b], [Cal) [C1] + OSelectM([C1], [C2])  [C3] + OSelectM([C3], [Ca])
[(1=b) - Cp] < Mul([1 = 8], [CB]) T —

(O] < [b-Cal +[(1—b) - Cg] [C] + OSelectM([C1], [C4])

output [C’]

Fig.3: OSelectMy: Extension OSelectM
Fig.2: OSelectM: Oblivious Se-  to IV inputs. Example for N = 4.
lect in the MPC setting.

the previous (insecure) version of our SSLE construction. Fortunately, the num-
ber of communication rounds needed for a leader election remains O(log N), as
OSelectM instances on the same level in the tree can run in parallel.

OSelectM is an oblivious select protocol in the MPC setting, which can be
completed as long as at least ¢+ 1 parties remain online and honestly execute the
protocol. It takes two secret shares [C4], [Cg] as input and outputs a new secret
share [C’] such that the output secret C” is either Cy or Cp with equal prob-
ability, depending on the selection bit b. The description of OSelectM protocol
is shown in Fig. 2. OSelectM extension to IV inputs, called OSelectMy, follows a
binary-tree structure of inputs and outputs to OSelectM; see Fig. 3.

To prevent duplicate key attacks, we incorporate into our SSLE scheme a
technique used in [4]. The technique works as follow. The registration key k;
is now used to produce a secret part k;;, and a public fingerprint k;r using a
cryptographic hash function H, where (k;r,kir) < H(k;). Before the election
starts, each user verifies that there are no duplicate fingerprints in the public
state st. The security properties of the hash function ensure that chances for an
adversary to succeed in a duplicate key attack are negligible.

The election proceeds as follows. For each i € {1,..., N}, the parties jointly
generate [C;], a MPC version of the secret part k;r of the registration key k;,
which is [k;z]. In the MPC setting we do not need to additionally hide the key
using Elgamal encryption, since secret sharing already hides the results of the
computation.

The parties then proceed with OSelectMy and obtain [C], which is a secret
share of one of the secret inputs to OSelectMy. The parties jointly reconstruct
two group elements (€1, &) from [C], which turn out to be a randomization of
the secret part of a party participated in the election, which we denote kr,. If P;
is the elected leader, the following equation will hold k; = k;z,, i.e. each party
learns the secret key k;1, of the leader, but does not know which one. The leader
P; sends the registration key k; as a proof of leadership. To verify a proof 7, one
recomputes the secret part 7, of the registration key and its fingerprint 7z and
checks that the computed fingerprint matches the one stored as st;, and that the

equation 7 = kg, holds.
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Setup(1*,t, N) RegisterVerify(i, k;) Elect(i, k;)
1: p,g+ FindParam(lA) 1: for j; € 1..(N —1) 1: foriel.N
2: forie€l.N 2 for j» € (j1 +1)..N 2: [C;] := [kiL]
3: sty + L 3: if stj, = stj, # L 3: [C] < OSelectMy([C1],
4: returnp,g,sti, ..., sty 4: return 0 4 ..., [CN])

5: kip,kir + H(k:) 5: kr + Rec([C])
Register (%) 6: if kir # st; 6: if kp # kir
1: ki« 7, 7 return 0 7. return |
2: kip,kip «— H(k:) 8: return 1 8: return w:=k;
3: sty < kir
4: [kiz] < Share(kiz) Verify (i, m)
5: return k; 1: mp,mRr + H(m)

2: if 7y =kr and mg = st;

3: return 1

4: return 0

Fig.4: Single Secret Leader Election construction SSLE instantiated with
OSelectMy.

In the malicious adversary model, we can use standard techniques [21, 13]
to protect the underlying MPC primitives used in the scheme against active
adversaries.

We now formally define our fully-fledged SSLE construction.

Construction 1 (Single secret leader election (SSLE)) Our (N, N,t)-SSLE
scheme is a tuple of PPT algorithms SSLE = (Setup, Register, RegisterVerify,
Elect, Verify) that use a group G of a prime order p. Let g be a generator of G,
let H be a function that maps {0,1}* to Z, x {0,1}"™). The description of the
algorithms is shown in Figure 4.

Theorem 1. Assuming the underlying MPC primitives are secure in the honest-
but-curious adversary model, H is a random oracle, then Construction 1 imple-
ments functionality Fssig.

5 Our SSLE based on garbled circuits

In this section, we present our SSLE protocol, instantiated in the MPC frame-
work by Wang et al. [40], which can tolerate up to N — 1 corrupted parties.

Preliminaries Wang et al. proposed an efficient secure constant-round MPC
on boolean circuits by extending a two-party protocol [39] to the multi-party
setting [40]. The protocol uses an ideal functionality Fp, as a preprocessing
step to set up correlated randomness between the parties. At a high level, Fpye
generates authenticated shares on random bits z, y, z such that z = z A y, using
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information-theoretic MACs [28]. Those authenticated shares are then used to
distributively construct a single, “authenticated” garbled circuit, which is eval-
uated by one of the parties. Wang et al. show the security of their protocol
against a malicious adversary that compromises N —1 parties in the Fp-hybrid
model and assuming a random oracle (ROM). We refer the reader to [40] for the
description of Fp, and further details.

Construction We use the MPC protocol [40] to instantiate our SSLE in a black-
box manner. The SSLE construction shown in Figure 4 needs to be updated to
account for the technical details specific to the MPC part in the Elect algorithm.

To implement the Oblivious Select, we use a part of the input as selection
bits. Each party contributes to these bits, via bitwise-xor; the selection bits
are therefore secret-shared. The modified version of the Elect algorithm and a
pseudocode of OSelectM instantiated in the framework [40] are shown in Fig. 5.
Each party P; provides her input of (rBits 4+ aBits) bits, which is stored in
arrays of instances of MPC’s class Integer, R and A. We require that rBits >
log(aBits). Array R is used to compute selection bits R[0]. Then log(NN) rounds
follow, in which depending on a selection bit bit, Afi] is assigned to either A[24]
or A[2i + 1]. We use an existing function select of MPC’s class Integer for this
specific computation. Finally, A[0] is revealed.

Construction 2 (Single secret leader election (SSLE)) Our SSLE scheme
is a tuple of PPT algorithms SSLE = (Setup, Register, RegisterVerify, Elect,
Verify). Let H be a function that maps {0,1}* to {0, 11N x {0,1}"N. The
description of the algorithms is shown in Fig. 4, and Elect is appropriately mod-
ified, as shown in Fig. 5.

Theorem 2. Assuming the underlying MPC primitives are secure in the mali-
cious adversary model, H is a random oracle, then Construction 2 implements
functionality Fssie.

6 Evaluation

6.1 Experimental setup

We evaluate our SSLE framework, we implemented Constructions 1 and 2 and
ran two kind of tests: in a local setting (LAN) and in a global setting (WAN).
In the LAN setting, we used machines located in the same Amazon EC2 region.
In the WAN setting, we used machines located in four different regions (Europe,
North America, South America, and Asia). If not specified otherwise, each ma-
chine is a t2.large instance with 2 cores Intel Xeon E5-2686v4 2.3 GHz, 8Gb of
RAM, and installed Ubuntu 20.04. In some regions t2.large instances are not
available; instead we used t3.large instances with 2 cores Xeon Platinum 8175
2.5 GHz, 8Gb of RAM.

In our experiments, we evaluate a complete OSelect tree in our SSLE frame-
work, that is the number of users being a power of two, starting from 8 parties,
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oselecty
1: foriel.N
2: R[i — 1] = Integer(bits : rBits, party : i)
3: Ali — 1] = Integer(bits : aBits, party : i)
4: foriel.N -1

ot

R[0] = R[0] & RJ[i]

6: rem=N

7: round =0

8 : while rem > 1

9: bit = R[0][round]

10 : for i € 0.rem/2 — 1

11: Ali] = A[2i].select(bit, A[2i + 1])
12 round = round + 1

13: rem = rem/2
14:  A[0].reveal()
Elect(i, k;)

1: Ri,A; < kir

2: A« oselectn(party i : R, A;)
3: if A#A;

4: return |

ot

return 7 := k;

17

Fig. 5: Elect algorithm and Oblivious Select instantiated in the MPC framework

by Wang et al. [40]
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and each party holding one unit of stake. For each experiment we take average
of 10 runs, except that for lengthy experiments with a running time more than
1 minute we perform a single run. Next, we present implementation details and
the evaluation results individually for each construction.

N t Algorithm HbC time, sec. Mal. time, sec.

8 3 Register <0.01 0.11
RegisterVerify <0.01 <0.01 N I\ LAN time, WAN time,
Elect 0.1 3.56 sec. sec.
Verify <0.01 <0.01 8 48 2.73 23.42
16 7 Register 0.01 0.56 64 2.76 24.03
RegisterVerify <0.01 <0.01 80 2.80 24.27
Elect 0.34 28.1 16 48 4.28 38.95
Verify <0.01 <0.01 64 4.50 39.92
32 15 Register 0.02 3.83 80 4.86 40.61
RegisterVerify <0.01 <0.01 32 48 8.25 73.34
Elect 1.45 356.6 64 8.35 75.93
Verify <0.01 <0.01 80 8.80 77.81
64 31 Register 0.08 n.a. 64 48 17.64 145.87
RegisterVerify <0.01 64 18.62 153.34
Elect 7.63 80 23.90 150.67
Verify <0.01 128 48 64.33 300.77
128 63 Register 0.21 n.a. 64 74.54 326.09
RegisterVerify <0.01 80 83.54 317.46
Elect 54.4
Verify <0.01

Table 2: Experimenal results for Construction 1 in the honest-but-curious and
malicious adversary models (left), and for Construction 2 in the malicious ad-
versary model (right).

6.2 Construction 1 (Section 4)

Implementation details We implemented our Construction 1 in C++ in the
honest-but-curious and malicious adversary models. We implemented the under-
lying MPC primitives for secret sharing, adding shares, substracting, multiplying
by a scalar: [z] + [y], [x] — [y], [« - z], protocols RndFld, RndBit, Mul [32, 33, 21,
20, 15, 11]. In the malicious adversary model, these primitives are accompanied
with verifiable secret sharing (VSS). We set the threshold ¢ = N/2 — 1 in all
experiments. Our implementation uses the Relic toolkit [2] for operations on
elliptic curves in groups of a prime order of 256 bits, the Boost and OpenSSL
libraries for secure communication.

Ezxperimental results We performed LAN tests for up to 128 parties in the honest-
but-curious adversary model, and up to 32 parties in the malicious model. Tim-
ings are shown in Table 2.

Analysis The experimental results show that up to 128 parties can complete
Elect protocol in under a minute. The running time grows rapidly as the number
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Fig. 6: Comparison of timings for Oblivious Select in Construction 2 in the LAN
and WAN settings.

of parties increases. This is due to expensive public key operations for generat-
ing and reconstructing Shamir’s secret shares. The explosion of running time is
more visible in the malicious adversary model. In order to protect against such
adversaries, we have to use verifiable secret sharing, which requires O(N?) public
key operations in the textbook implementation. While Elect is the most heavy
algorithm, the rest of the SSLE protocol is essentially for free. We conclude that
Construction 1 offers a practical t-robust solution to the SSLE problem for a
small number of parties (up to 32, according to our evaluation).

6.3 Construction 2 (Section 5)

Implementation details We implemented and evaluated Oblivious Select part of
the Elect algorithm, as it is the most heavy part of the SSLE protocol (see ex-
perimental results for Construction 1 in the honest-but-curious adversary model
in Section 6.2). Our implementation fully relies on the implementation of the
MPC framework by Wang el at. [40], which is available as [38]. We can trade-off
security for efficiency by controlling how many bits each party inputs to Oblivi-
ous Select(see Lemma 8).

Experimental results In the MPC framework, the evaluator of the garbled global
circuit requires more RAM than any other party. Therefore, we set up one ma-
chine as a mba.4xlarge instance with 16 cores and 64G of RAM, while the rest of
machines remain t2.large or t3.large instances. We run experiments for each N up
to 128. For the trade-off, we choose the length of user inputs to Oblivious Select,
I(N), as 48, 64, and 80 bits. Additionally, each party provides 8 bits of selection
bits, which satisfies the constraint that it should be at least as big as log(/N) in
all test cases. Timings the LAN and WAN settings are shown in Table 2 and
in Fig. 6.

Analysis The experimental results show that the running time of Oblivious
Select algorithm (and in turn, Elect) grows almost linearly as the number of
parties gets increased. As we ran only 1 iteration for long test cases, we can see
some unexpected fluctuations in the running time, which we think are caused by
fluctuations in the network and normally should be eliminated after averaging
multiple iterations.
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The LAN and WAN settings have identical computational and communica-
tion cost, as they only differ in the location of machines. We suspect that higher
latency between machines in the WAN settings accounts for the increased run-
ning time. In the LAN setting, 128 parties can compute a leader in under 1.5
minutes, where as in the WAN setting, this number approaches 7 minutes.

7 Practical considerations

There are several constraints in Constructions 1 and 2 that affect its practicality.
First, the definition of SSLE says that the probability for a party being elected
should be equal among all participants. In practice, the stakeholders may have
different stakes, and the probability for a party to be elected should be pro-
portional to her stake. A straightforward solution to this constraint would be
to adapt our SSLE construction to work with stake units and let each party
control several units. If implemented naively, this approach results in a linear
blow-up in computation and required storage (in the number of stake units). In
the following, we will show an efficient technique to extend Construction 1 to
support arbitrary (non-uniform) probability distributions in the election.

Second, we assumed the number of parties to be a power of two, in order to
construct a complete binary tree in Oblivious Select. However, if the number of
parties is arbitrary, the tree structure will likely unbalance the tree leaves, as
some inputs will not be matched on the first level with other inputs. Therefore,
such inputs would proceed to the next round without competition, i.e., with
the probability of 1, whereas input C; in a binary tree will proceed with the
probability of 1/2. We will show that the technique from the previous point
addresses this concern, too.

Moreover, we will show how to reduce the number of communication rounds
in Construction 1 by using appropriate MPC primitives. Due to page limits, we
present this extension in Appendix D.

7.1 Non-uniform distributions

We observe that it is possible to unbalance almost-for-free the probability of
being selected (among two parties) if the sum of the weights is a power of two.
To illustrate this idea, assume that the weights are (1,3), i.e., the probabilities
for two parties being selected are determined by the ratio 1:3. We can construct
a tree-structure with the probabilities 1/4 and 3/4, as shown in ?7.

Basically, we introduce a special case for OSelectM when handling shares of
the same secret for free, OSelectM(ShareC, [C]) — [C]. The resulting tree can be
optimized significantly by dropping the nodes with the same inputs.

Using this technique, we can handle weights of the form (w, 2" — w) with
a logarithmic overhead, for some L > 1 and 1 < w < 2*. However, we cannot
naturally handle arbitrary weight ratios. For example, weights such as (1,2) are
problematic. Nevertheless, we can approximate the probabilities in the election
according to any weights (a,b) by having a tree of sufficient depth.
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Arbitrary N and stakes Let N be the number of parties participating in the
election with their stakes (s1,...,sy), and let S = Zf\; s; be the sum of par-
ties’ stakes. The multi-registration solution may lead to O(S) complexity of the
election algorithm. We extend our technique to an arbitrary number of users.

We start with a similar idea: each party has a sequence of stake units on the
first level in a OSelectMy tree. If N < S, there will be many pairs of inputs
that represent the same party. We observe that in this case, there is no need to
run OSelectM on such inputs. Instead, we can pick any input and advance it to
the next level in the tree. The worst case complexity (the number of OSelectM
instances) of this technique is O(N log S), since each party P;’s inputs will be
matched in a tree of depth O(log.S) at most two times, against P;_; and Pjy;.
With a tree of depth L we can get the absolute precision up to 272 - S.

8 Conclusion

In current proof-of-stake cryptocurrencies, the a-priori knowledge of who will
append the blockchain may be easily exploited by an adversary and lead to a
denial-of-service of the system. The importance of hiding the identity of the block
appender was recently recognized, and first solutions to the problem have been
proposed by Boneh et al. [4]. In this work, we took a step further and presented
an efficient SSLE protocol, whose security relies on MPC. We implemented our
solution and microbenchmarked it in a real-world scenario. Our security analysis
and performance evaluation indicate that our solution is practical and can be
deployed into existing proof-of-stake cryptocurrencies.

Nevertheless, there are open questions that we leave for future work. First,
our construction elects a unique leader. If the leader does not show up within
some timeout, the parties have to restart the protocol from scratch. It would be
interesting to come up with a more efficient solution for this scenario. The secret
committee election of size > 1 can be seen as a generalization of the SSLE prob-
lem and could solve the mentioned problem. Such a primitive could be used,
for example, to privately electing a committee for making treasury decisions
as in [43]. However, the generalization of our techniques for this setting is not
straightforward. If we naively skip the last OSelect subroutine and declare both
candidates as leaders, we know that one candidate is from the left subtree, an-
other from the right, which would contradict the committee’s uniform selection.
We leave this interesting problem as future work.

And second, the precision of our construction w.r.t. the stake distribution
directly affects the communication and computational costs. It would be in-
teresting to design an SSLE scheme that is cost-stable with regard to stake
distributions.
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Postponed definitions

Definition 3 (Single secret leader election (SSLE)). A single secret leader
election scheme is a tuple of PPT algorithms SSLE = (SSLE.Setup, SSLE. Register,
SSLE.RegisterVerify, SSLE.Elect;, SSLE.Elects,

SSLE. Verify) with the following behavior:

SSLE.Setup(1*, ¢, N) — (pub, ski, ..., skx,sty): The setup process generates
public parameters pub, a number of secrets, and an initial state sty. N is an
upper bound on the number of participants supported by the scheme, and £
s a lower bound on the number of required users per election. SSLE.Setup is
a one-time setup process, followed by a series of elections.

SSLE.Register(i, pub, st) — (rk;,rt;, st'): Each user registers with a unique
public identity i € [N], the public parameters pub, and the current state st.
Registration outputs a registration key rk;, gives a user a registration token
rt;, and modifies the state to st'. SSLE.Register must be run to participate in
a series of elections. The eventual leader may be required to re-register for
subsequent elections.
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— SSLE.RegisterVerify(i, rk;, rt;, pub, st) — {0,1}:

SSLE.RegisterVerify is run by previously registered users after a new user

registers to verify that the registration was carried out correctly. Verification

can use the user’s registration key rk;, registration token rt;, the public pa-
rameters pub, and current state st. The user’s registration token rt; can be
modified as the result of SSLE.RegisterVerity.

— SSLE.Elect (pub, st, i, sk;) — (pi,1;): Leader election begins by taking public
parameters pub, current state st, a user U;’s secret key sk;, and outputting
intermediate values p; and ;.

— SSLE.Elects(pub, st,i,pi,l1, .oy by, skiy ks, vt;) — (05,10 U U {L}: Leader
election proceeds by taking public parameters pub, current state st, interme-
diate values p; and li,...,l,, user U;’s secrets sk;, Tk;, rt;, and outputting
either 1) new intermediate values p; and I}, in which case the algorithm will
be executed one more time on appropriate inputs, or eventually 2) a proof of
leadership w in case user U; has been chosen as the leader, or a distinguish-
able symbol L otherwise.

— SSLE.Verify(pub, i, st,m;; pi) — {0,1}: Given index i, the state st, and op-
tionally an intermediate value p; from the election, the verification algorithm
accepts or rejects the proof that user U; has been elected leader. SSLE. Verify
is used to check the authenticity of a participant who claims to be the leader
when it is time for the leader to reveal herself.

If the eventual leader is required to re-register for subsequent elections, we
say that an SSLE scheme with such a property has expiring registration. Other-
wise, if the parties may re-use their registration for multiple elections regardless
of the outcome, an SSLE scheme has non-expiring registration. Note that re-
registration will change the public state st.

We could also formally include a revoke algorithm, to indicate that a user no
longer wishes to participate. We refrain from such a formalism since it does not
significantly impact the security properties, but our scheme can be modified to
account for it.

Definition 3 specifies algorithms for setting up an SSLE instance, register-
ing participants for the elections, verifying that the registration is performed
correctly, electing the leader among registered parties, and verifying a proof of
leadership. The setup algorithm generates private keys for the parties and in-
troduces some initial state sty, and the state can be updated by the registration
algorithm. The state is public and accessible by all parties during the entire exe-
cution of an SSLE instance. The registration algorithm provides a party P; with
a registration key rk; and a registration token rt;, which are kept private and
used during elections. The difference between the key and the token is that the
token depends on other parties participating in elections and therefore can be
altered by the party holding it as the result of SSLE.RegisterVerify. The election
proceeds in several rounds. In each round, party P, computes private p; and
public /; intermediate values, and public output values from all participating
parties are used as input for subsequent rounds (SSLE.Electy). After the final
round, each party holds either a proof of leadership 7 or L. The public state
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and, optionally, private value p; from the last communication round are used to
verify a proof of leadership.

Next, we define an experiment for N parties between the challenger and an
adversary, where the adversary is controlling ¢ parties. This experiment will serve
as the initial step in the security games.

Definition 4 (Experiment). We define an experiment EXPR[A, X, ¢, N, ¢
with security parameter \, which is played between an adversary A and a chal-
lenger C as follows:

— Setup phase. A picks® a set of indices M C [N], |M| = ¢, of users to
corrupt. C runs (pub, sky, ..., skx, stg) < SSLE.Setup(1*, £,N) and gives A
the parameters pub, state stg, and secrets sk; fori € M.

— Elections phase. A chooses a set of users to register for elections and for
any polynomial number of elections to occur, where A plays the role of users
U; fori € M and C plays the role of the rest of the users.

To register an uncorrupted user, A sends the index i of the user to C, and C
runs (rk;,rt;, st’) < SSLE.Register(i, pub, st). To register a corrupted user, A
sends the index i of the user to C along with an updated state st’. In either case,
C then runs SSLE.RegisterVerify(j,rk;, rt;, pub, st) for any previously registered
user Uj, where j € [N]\ M. If any call to SSLE.RegisterVerify returns 0, the
game 1mmediately ends with output 0. Otherwise, the state is updated to st'.
Each election begins with C generating (p;,1;) < SSLE.Elect; (pub, st,i, sk;)
on behalf of each uncorrupted registered user and A sending values l; for any
subset of corrupted registered users. Let li,...,1; be the set of intermediate
values l; generated in this step. Then, elections may proceed with C generat-
ing (p,1}) « SSLE.Electy(pub, st,i,p;, 11, ..., ls, ski, 7k;, rt;) on behalf of each
uncorrupted registered user and A sending values I for any subset of cor-
rupted registered users. The intermediate values l}, ...,1; are used as input for
subsequent calls to SSLE.Electy. Let If,...,1} be the last intermediate values
generated by SSLE.Electy, and p}’ be the last private intermediate value of an
uncorrupted registered user Uj.

Then, for all uncorrupted users, C sets m; <= SSLE.Electy(pub, st, j, i, 1Y, ..., 1Y,
if user U; has registered for that election or L otherwise. C sends m; for each
uncorrupted user to A.

If the SSLE scheme has expiring registration, the leader of an election should
repeat the registration procedure after the election is over, and uncorrupted
parties should verify registration. During the elections phase, multiple elections
can take place.

The experiment in Definition 4 allows the adversary to corrupt parties stati-
cally during the setup. Then, the elections phase takes place, where an adversary
chooses which parties will participate in an election. Those parties then register
for the election. Each time a new party registers, all registered parties have to

5 We define the experiment is a way that ¢ is given. Should A pick this number, we
will denote such an experiment as EXPR[A, A, £, N].

Skj, Tk‘j, ’I“tj)
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re-run SSLE.RegisterVerify to ensure that the registration data stored in the pub-
lic state st is not malformed. During the election, the challenger plays the role
of honest users, whereas a (malicious) adversary can send arbitrary messages on
behave of the corrupted parties. As the outcome of an election, all non-registered
(but participating in the election) parties receive L symbol, whereas registered
parties may receive either | or a proof 7.

Definition 5 (Uniqueness). The uniqueness experiment

UNIQUE[A, A\, ¢, N| between an adversary A and a challenger C with security

parameter A extends EXPR[A, A, ¢, N] as follows:

— Output phase. For each election in the elections phase, A outputs values T;
for each i € M. The experiment outputs 0 if for each election with state st,
there is at most one user U;« who wins that election. Otherwise the experiment
outputs 1. We say user Uy« wins an election if it outputs my # L such that
SSLE. Verify(pub, i*, st,m+) = 1.

We say an SSLE scheme is unique if no PPT adversary A can win the unique-

ness game expect with negligible probability. That is, for all PPT A and for any

¢ < N, PrlUNIQUE[A, A\, ¢, N] = 1] < negl(\). If uniqueness only holds so long
as there are at least t uncorrupted users participating in each election, we say
that the scheme is t-threshold unique.

Informally, an adversary wins the uniqueness experiment if in at least one
election in a series of consecutive elections there is more than one verifiable
leader.

Definition 6 (Unpredictability). The unpredictability experiment UNPRED[A, A, ¢, N, n, c]
between an adversary A and a challenger C with security parameter \ extends
EXPR[A, A, ¢, N, ] as follows:

— Challenge phase. At some point after the elections phase, A indicates that it
wishes to receive a challenge, and one more election occurs. In this election, C
does not send (mj) for each uncorrupted user to A. Let U; be the winner of this
election. The game ends with A outputting an index i’ € [N]. If, for U; elected
in the challenge phase, i € M, then the output of UNPRED[A, A\, ¢, N, n,c| is
set to 0. Otherwise, UNPRED[A, A\, ¢, N,n, c] outputs 1 iff i =1'.

We say that an SSLE scheme S is unpredictable if no PPT adversary A can
win the unpredictability game with greater than negligible advantage. That is, for

all PPT A, for any c <n—2,n <N, and for any £ < N,

Pr[UNPRED[A, A, ¢, N,n,c] | i € [N]\ M] < L + nelg(N).
n—c

If A wins with advantage a+negl(\) for a > ﬁ, with « potentially depend-
ing on ¢, n, or N, we say that S is a-unpredictable. If the value of o depends on
N, then we require that n = N. If unpredictability only holds for ¢ < t for some
t >0, we say that S is t-threshold unpredictable.

Informally, in the unpredictability experiment the adversary asks for a chal-
lenge election after a series of elections. In this special election, the challenger
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does not send to the adversary the outcome of elections. The adversary has to
guess, who is the leader in this challenge election. If some corrupted party turns
out to be the leader, the experiment is trivial and the result of the experiment
will be always 0. Otherwise, if some honest party is the leader, the adversarial
chances to correctly guess the leader should not be significantly greater than
pure guessing.

Definition 7 (Fairness). The fairness experiment FAIR[A, X, £, N, n, c] between
an adversary A and a challenger C with security parameter A extends EXPR[A, A, ¢, N, c|
as follows:

— Challenge phase. At some point after the elections phase, A indicates that it
wishes to receive a challenge, and one more election occurs. FAIR[A, X\, £, N, n, ]
outputs 1 if there is no i € [n] \ M for which SSLE.Verify(pub,i,st,m;) =1 in
the challenge election.

We say that an SSLE scheme S is fair if no PPT adversary A can win the
fairness game with greater than negligible advantage. That is, for all PPT A,
n < N, c<mn, and for any ¢ < N, |Pr[FAIR[A, A\, ¢, N,n,c] = 1]—c/n| < negl(N).

If fairness only holds for ¢ <t for some t > 0, we say S is t-threshold fair.

Weaker selectively secure definitions of unpredictability and fairness are not
considered in this paper. A viable SSLE scheme must satisfy all the definitions
above.

Informally, in the fairness experiment, the adversary asks for a challenge
election after a series of elections. The probability of winning this challenge
election by one of the corrupted parties should not be significantly greater than
¢/n, where c is the number of corrupted parties, and n is the number of parties
registered for the challenge election.

B Security analysis

Lemma 1. Let [C4] and [Cg] be the inputs to OSelectM protocol, and let [C')
be the output. Then, assuming the underlying secret sharing scheme is linearly
homomorphic and the primitives for multiplication secret shares and generating
a random shared bit are secure, it holds that C' € {Ca,Cp}.

Proof. The underlying RandBit primitive produces shares of a random bit [b].
By homomorphic properties of the secret sharing scheme and security of the
multiplication primitive, it follows that, if b = 0, C’ evaluates to C 4, otherwise,
if b=1, C’ evaluates to Cp.

Lemma 2. Let [C1],...,[Cn] be the inputs to OSelectMy protocol, and let [C] be
the output. Then, it holds that C € {C1,...,Cn}.

Proof. Tt follows from Lemma 1 and the binary tree structure of OSelectM in-
stances in OSelectMy.
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Lemma 3. Assuming secret sharing is secure, algorithm Register in Construc-
tion 1 called by some party, securely implements sending a (register) message in
the ideal model.

Proof. The party uses the output value from Register as input to the (register)
message in the ideal model. The proof follows from simulatability of the secret
sharing scheme.

Lemma 4. Assuming H is a random oracle, algorithm RegisterVerify in Con-
struction 1 securely implements sending a (regVerify) message in the ideal model.

Proof. By the properties of the random oracle, we have that the probability that
C; # C; in the ideal model and k;g = k;g is 1/2*, which is negligible in \.

Lemma 5. Algorithm Elect in Construction 1 securely implements sending a
(elect) message in the ideal model.

Proof. We construct a simulator S for an ideal adversary A. S recovers the
adversarial input from party P; by reconstructing it from the shares available
to the simulator (S controls enough honest parties to reconstruct any shared
secret).

S sends all inputs from honest parties and the recovered adversarial inputs
and receives Cpy~ from the ideal functionality as the result of the election. It
is the same for all parties, including those controlled by the adversaries, so
the simulator forwards this value to A. In order to let the adversary believe
it interacts with the real protocol, the simulator has to produce a transcript of
the OSelectMy protocol that will result in a specific value Uy to be chosen and
output. To do that, the simulator fixes the shares of the honest parties for random
bits [b] in OSelectM instances so that the reconstruction would output the specific
fixed b, that will result OSelectMy to select precisely the Uy-th element of the
sequence (st1, ..., sty). The underlying secret sharing scheme allows to simulate
the transcripts for the honest parties that share a simulator-chosen secret.

In the real protocol, it is possible that for some ¢ # j, kir = k;r, while
kir # kjr and so the parties would pass the registration. However, this only
happens with a low probability that we can control.

Lemma 6. Assuming H is a random oracle, Construction 1 produces a unique
N(N=1)

leader with the probability at least 1 — e~ 2

Proof. The probability that there exist two parties P; and P; such that k;;, = k;r
and k;r # kjr can be estimated by the birthday paradox. Specifically, this

N(N-1)

probabilty is bounded by e™ — 2»

Lemma 7. Algorithm Verify in Construction 1 securely implements sending a
(verify) message in the ideal model.

Proof. Tt follows by a similar argument as in the proof of Lemma 4.
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Proof (Proof of Theorem 1). Since we only consider sequential execution, we
need to show that the adversarial view in the real and the ideal worlds is in-
distinguishable for one instance of the protocol, and the security of the whole
protocol will follow by Canetti’s composition theorem [8]. To this end, we con-
struct a simulator for a real-world adversary as follows.

— For the registration, the real-world adversary and honest users use a call to
the random oracle H for some (random) input and then share a string. Shar-
ing algorithm can be simulated by a secure secret sharing scheme. Moreover,
a t-private secret sharing scheme for ¢ < IV allows S to reconstruct the input
used by the corrupted user. Hence, all the numbers shared by the corrupted
and honest users during registration are known to S.

— To simulate the verification of registration, S verifies that there is no dupli-
cate numbers recorded during registration. If this is the case, it outputs 1,
otherwise 0.

— To simulate the election, S first consults the ideal functionality to elect the
leader and then we use Lemma 5 to simulate the corresponding transcript.

— To simulate the verify algorithm, & compares the elected number with the
number registered by the user (honest or malicious) and outputs 1 if the
numbers are equal, otherwise it outputs 0.

We argue that any PPT environment Z cannot distinguish between the ideal
world and the real world significantly better than negligible probability via a
series or games.

Go - the real-world experiment.

Gy - same as Gp, except that the election always returns a single leader.
G; = Gg, since the probability of collisions during registration is negligible
by Lemma 6.

Gg - same as Gy, except that MPC protocols (secret sharing, secret multiplica-
tion, and secret addition) are simulated by Lemma 5. We have that Gg &~ G; due
to the properties of the secure secret sharing scheme, which allows for efficient
simulation.

G, - same as Gy, except that S consults the ideal functionality to determine
the leader on the submitted numbers during registration. Since we have at least
one honest user in the election who generates a random number for the regis-
tration and that the transcript can be simulated by the MPC functionality, we
have that Gy = G;y.

G3 - same as Gg, except that during the registration, parties submit random
numbers (instead of calls to H), and for the verification they send theses numbers
to §. We have that G3 =~ Gs by the properties of the random oracle.

G4 - the ideal-world experiment. We have that G3 = G4 by construction
(parties use random number for the registration and are consulted by the ideal
functionality to determine the leader).

Proof (Proof of Theorem 2). Since both our constructions Construction 1 and
Construction 2 rely on secure MPC primitives and differ only in specifics of the
used MPC frameworks, we simply follow the steps in the proof of Theorem 1 to
prove the theorem.
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C Postponed security analysis

Proof (Proof of Proposition 1). The goal is to demonstrate that any scheme
that UC-realizes Fss g fulfills all three game-based notions of (a) uniqueness,
(b) unpredictability and (c) fairness. One needs to show the non-existence of a
simulator given any of the game-based attackers: For some protocol 7, assume
an adversary against (a) and construct from it an environment distinguishing 7
and Fssi e (and same for (b) and (c)).

In the following experiments, assume to the contrary that some protocol
7 UC-realizes Fss g and there is an ideal-world simulator S of the real-world
adversary. Before an experiment starts, a random bit b is drawn; Z* interacts
with 7 in case b = 0, otherwise it interacts with S in case b = 1. Let B be
an adversary successfully attacking some game-based property of 7 with non-
negligible advantage Advg. We construct an environment Z* as follows: it uses
B to set up malicious parties and communicate with the honest parties in the
real world and with S in the ideal world. Let Exec denote the output bit of Z*
in the experiment.

Uniqueness. An adversary wins the uniqueness experiment if there are at
least two users U;, U; for which the verification algorithm outputs 1 in the chal-
lenge election. At the end of the experiment, Z* runs the verification algo-
rithm for each user on the final output of the election (running SSLE.Verify in
the real world or interacting with S that simulates the corresponding (verify)
queries). If there is more than one user for which the verification algorithm (or
S) returns true, Z* outputs 0 (Z* believes it interacts with 7). Otherwise, Z*
outputs 1 (Z* believes it interacts with §). On the one hand, we have that
Pr{Ezec|FssLe, S, Z*] = 0] = 0 due to the definition of Fss g, which records
only one leader for a single election and never changes it afterwards. On the
other hand, Pr[Ezxec[r, A, Z*] = 0] = Advg, which is non-negligible. Hence, Z*
can distinguish between the real and ideal worlds with non-negligible probability,
which contradicts the assumption we made about .

Unpredictability. An adversary breaks unpredictability if it can predict
the leader (among honest parties) significantly better than pure guessing. At
the end of the experiment, Z* computes the prediction as whatever B does. If
the prediction was correct, Z* outputs 0 (Z* believes it interacts with ), oth-
erwise it outputs 1 (Z* believes it interacts with §). On the one hand, we have
that Pr[Ezec[Fssie,S,2*] = 0] = —- due to the definition of Fssig, which
uniformly at random chooses the leader among n registered parties, where ¢ of
them are controlled by the adversary. On the other hand, Pr[Exec[r, A, Z*] =
0] > ﬁ + Advp, where Advg is non-negligible. We have that Z* can distin-
guish between the real and ideal worlds with non-negligible probability, which
contradicts the initial assumption about .

Fairness. An adversary breaks fairness if it can significantly increase the
chances for the corrupted parties to be elected. At the end of the fairness experi-
ment, Z* learns whether one of the ¢ controlled users (among n registered) is the
leader. If this is the case, Z* outputs 0 (Z* believes it interacts with 7), other-
wise it outputs 1 (£Z* believes it interacts with §). On the one hand, we have that
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Pr[Exec[FssLg, S, 2¥] = 0] = £ due to the definition of Fss g, which uniformly
at random chooses the leader among n registered parties, where c of them are con-
trolled by the adversary. On the other hand, Pr[Ezec[n, A, Z*] = 0] > £+ Advg,
where Advg is non-negligible. We have that Z* can distinguish between the real
and ideal worlds with non-negligible probability.

Theorem 3. Assuming the underlying primitives are secure in the malicious
adversary model, the statement of Theorem 1 holds in the malicious adversary
model.

Proof. The theorem follows from Canetti’s composition theorem [8] and Theo-
rem 1.

Lemma 8. Assuming H is a random oracle, Construction 2 produces a unique
N(N=1)

leader with the probability at least 1 —e 2™ +1,

Proof. Analogously to Lemma 6 with the difference that k;;, has 2!(}) possible
choices.

D Extensions

D.1 Extensions to DDH-based MPC

It is possible to generate random bits in a fully non-interactive manner [12]. This
will require an initial (trusted) setup for distributing randomness between the
parties. For the base case where stakes are equal and N is a power of two, this
improvement will not be significant, as the parties have to generate only O(log N)
random bits, while requiring O(N) interactive multiplications of shares. In a
general case, for arbitrary stakes, it will show a better reduction in cost.



