
Lattice-Based Cryptography in Miden VM

Alan Szepieniec1 and Frederik Vercauteren2

alan@asdm.gmbh, frederik.vercauteren@gmail.com

1 AS Discrete Mathematics GmbH, Switzerland
2 CCI, Belgium

1 Introduction

The prime number p = 18446744069414584321 = 264 − 232 + 1 = Φ6(232) is
incredibly useful for proof systems for general-purpose computational integrity.
This usefulness originates from several factors:

– integers modulo p fit into one 64-bit register;
– the field Zp,+,× has a multiplicative subgroup of order 232, giving rise to

fast arithmetic using NTTs as well as the FRI [1] polynomial commitment
scheme for constructing transparent SNARKs;

– any integer modulo p can be decomposed into the unique pair of 32-bit limbs
and the correctness of this decomposition can be proven efficiently;

– the product of any two integers less than 232 is less than p;
– the balanced ternary expansion is sparse, and thus gives rise to efficient

modular reduction.

In light of these compelling properties, p was selected by a number of independent
teams for their general purpose computational integrity proof systems, including
Polygon Zero, Triton VM, Polygon Miden, Risc Zero, and Polygon Hermez.

It is often necessary to prove the correct execution of cryptographic al-
gorithms, such as public key encryption or signature verification. The different
cost model of proof systems versus physical computers motivates a re-evaluation
of the appropriate cryptographic algorithms. This line of research gave rise to
two elliptic curves, one defined by Pornin [11] over degree-five extension field of
Zp, and one defined by Salen et al. [13] over a degree-six extension field of Zp.

This report focuses on lattice-based cryptography. Specifically:

– Section 2 addresses the question how to do the arithmetic for lattice-based
cryptography efficiently on virtual machines defined over Zp, including NTT,
memory addressing, and embedding multiple integers into each field element.

– Section 3 discusses supporting the two lattice-based signature schemes se-
lected by the NIST PQC project, Falcon [6] and Dilithium [10].

– Section 4 proposes a new lattice-based public key encryption scheme defined
over Zp, which makes use of the embedding technique described above.

– Section 5 proposes a publicly re-randomizable commitment scheme based on
essentially the same construction.

Supporting python code for these techniques and proposed algorithms is available
at https://github.com/ASDiscreteMathematics/Miden_Lattices.

∗Date of this document: 11th August 2022.

https://polygon.technology/solutions/polygon-zero/
https://triton-vm.org
https://polygon.technology/solutions/polygon-miden/
https://www.risczero.com/
https://polygon.technology/solutions/polygon-zkevm/
https://github.com/ASDiscreteMathematics/Miden_Lattices

2 Fast arithmetic in cyclotomic rings

2.1 Non-native parameter sets

The lattice based schemes Kyber, Saber, Falcon and Dilithium, which are all
finalists in the NIST pqcrypto standardization effort (and many other schemes),
all rely on arithmetic in cyclotomic rings of the form

Rq,n = Zq[x]/(xn + 1)

for some modulus q (not necessarily prime) and n = 2k, and more in particular
n = 256, 512, 1024. The moduli used by the different schemes are as follows:

– Kyber: q = 3329
– Saber: q = 213

– Falcon: q = 12289
– Dilithium: q = 223 − 213 + 1

When the modulus q is chosen such that 2n|ϕ(q) (in many cases q is a prime
so then 2n|q − 1), it is well known that arithmetic in Rq can be computed
efficiently using the number theoretic transform. This can be done natively for
Falcon and Dilithium, almost natively for Kyber and with a work-around for
Saber.

In Miden, the native modulus is p = 264−232 + 1, so Zq in this case contains
a root of unity of order 232 and in particular of order 2k for any k = 1, . . . , 32,
and we therefore get fast arithmetic in Rp,n for all such n = 2k.

2.2 Bound on the size of q

The inequality p� q suggests that we might simulate ring multiplication in Rq,n
using NTTs modulo p without running into problems arising from the reduction
modulo p. This is indeed the case.

Since the q used in the above schemes is different from the native p, we first
need to give a bound for the maximum modulus size q for each ring Rq,n such
that we can recover the product exactly (using an extra modular reduction) from
the product in Rp,n.

So assume we are given two elements a(x), b(x) ∈ Rq,n written as a(x) =∑n−1
i=0 aix

i and b(x) =
∑n−1
i=0 bix

i, then the product c(x) =
∑n−1
i=0 cix

i satisfies

ci =

i∑
j=0

ai−jbj −
n−1∑
j=i+1

an−j+ibj .

In particular, we have a sum of n products of elements in Zq (with ±), so we see
that the maximum bound on ci is given

|ci| < nq2 ,

2

assuming that all coefficients were represented in [0, q). If a symmetric interval
[q/2, q/2) was used to represent elements in Rq,n the bound is clearly sufficient
as well. Since we need to be able to recover this as an integer (it can be negative)
to be able to reduce modulo q afterwards, it suffices that p ≥ 2nq2. For popular
choices of n above we therefore obtain the following upper bounds:

n max log2(q)
256 27.5
512 27
1024 26.5

2.3 Lazy reduction

In the schemes that use a module structure such as Kyber, Saber and Dilithium,
one often has to compute a matrix vector product A · v where the matrix and
vector contain elements of Rq,n. Assuming that the matrix has ` columns, we
therefore could add ` such products together before doing the final reduction
modulo q. The addition of ` such products simply introduces an extra factor of
` in the above bound. The largest number of columns appearing in all of the
above schemes is 7 in the case of Dilithium level 5 parameter set. It is easy to
verify that for this case we have p > 7 · 2 · 256 · q2, so we can indeed postpone
the final reduction after the addition of the ` products.

2.4 Multiplication using NTT

Let N be a power of 2 and assume that q − 1 ≡ 0 mod 2N , and let ψ be a
primitive 2N -th root of unity and ω = ψ2 a primitive N -th root of unity. The
N -point NTT of a sequence [a[0], . . . , a[N − 1]] is denoted as ã = NTT (a) and

defined by ã[i] =
∑N−1
j=0 a[j]ωij for i = 0, . . . , n− 1. The inverse transformation

b = INTT (ã) is given by b[i] = 1
N

∑N−1
j=0 a[j]ω−ij , which can be computed by

replacing ω by ω−1 and scaling by N .
Since ω is an N -th root of unity, note that this also corresponds to the

evaluation of the polynomial a(x) ∈ Zq[x]/(xN − 1) in all powers of ω, and
as such we can multiply two polynomials in a(x), b(x) ∈ Zq[x]/(xN − 1) by
computing

c(x) = INTT (NTT (a) ·NTT (b))

where · denotes pointwise multiplication.
The standard approach to NTT is given in Algorithm 1 where BitReverse

computes an array A such that A[k] = a[BitReverse(k)] obtained by reversing
the binary expansion of k using b = log2(N) bits to write k. In particular, if
k = k0 . . . kb−1 then BitReverse(k) = kb−1 . . . k0.

The above however is not directly applicable since we need arithmetic in
the ring Zq[x]/(xN + 1). Note that the roots of xN + 1 are given by ψ2k+1 for
k = 0, . . . , n − 1, we would need to compute the evalutions of a(x) in those

3

Algorithm 1: Iterative NTT
Input: Polynomial a(x) ∈ Zq [x] of degree N − 1 and N-th primitive root ωN ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq [x] = NTT(a)
begin

1 A← BitReverse(a);
2 for m = 2 to N by m = 2m do

3 ωm ← ω
N/m
N ;

4 ω ← 1 ;
5 for j = 0 to m/2− 1 do
6 for k = 0 to N − 1 by m do
7 t← ω · A[k + j +m/2] ;
8 u← A[k + j] ;
9 A[k + j]← u+ t mod q ;

10 A[k + j +m/2]← u− t mod q ;

11 end
12 ω ← ω · ωm ;

13 end

14 end

end

powers. Since ψ2k+1 = ωkψ, so we could use the standard NTT above on the
scaled polynomial a(ψx), and we would obtain

c(ψx) = INTT (NTT (a(ψx)) ·NTT (b(ψx)) .

This requires scaling of a(x), b(x) and an inverse scaling of c(ψx), where the
latter could be combined with the scaling by N in the final step of the INTT.

2.5 Optimizing the NTT

To optimize the NTT, it is possible to absorb the scaling by ψ and also to work
around the BitReverse as is done in [9]. In the forward NTT, the function will
return a ψ-scaled NTT in bit-reverse order, which will be undone in the INTT.

Let NTTsb denote the function which computes the NTT of the scaled poly-
nomial a(ψx) and where the output is given in bit-reversed order, in particular
the output is given by

BitReverse([a(ψωk) : k ∈ [0 . . . N − 1]]) .

The resulting algorithm is given in Algorithm 2 and Ψrev is the array given by

Ψrev = BitReverse([ψk : k ∈ [0 . . . N − 1]]) .

Let INTTsb denote the function which computes the inverse NTT of a bit-
reversed array including scaling by ψ−1, i.e. INTTsb satisfies

INTTsb(NTTsb(a(x)) = a(x) .

To compute the product c(x) of two polynomials in a(x), b(x) ∈ Zq[x]/(xN +
1), we can now simply compute it as

c(x) = INTTsb(NTTsb(a(x)) ·NTTsb(b(x)) .

4

Algorithm 2: NTTsb
Input: A vector a = [a[0], . . . , a[N − 1]] of elements in Zq in standard order and 2N-th

primitive root ψ ∈ Zq of unity, and precomputed table Ψrev containing the powers
of ψ in bit-reversed order

Output: NTTsb(a), i.e. bit-reversed NTT of scaled a(ψx)
begin

1 k = 0
2 for len = N/2; len > 0; len = len/2 do
3 for start = 0; start < N ; start = j + len do
4 S = Ψrev[+ + k]
5 for j = start; j < start+ len; + + j do
6 t = S ∗ a[j + len] mod q
7 a[j + len] = a[j]− t mod q
8 a[j] = a[j] + t mod q

9 end

10 end

11 end

end

Algorithm 3: INTTsb
Input: A vector a = [a[0], . . . , a[N − 1]] of elements in Zq in bit-reversed order and 2N-th

primitive root ψ ∈ Zq of unity, and precomputed table Ψrev containing the powers
of ψ in bit-reversed order

Output: INTTsb(a) in standard ordering
begin

1 k = N
2 for len = 1; len < N ; len = 2 ∗ len do
3 for start = 0; start < N ; start = j + len do
4 S = −Ψrev[−− k]
5 for j = start; j < start+ len; + + j do
6 t = a[j]
7 a[j] = t+ a[j + len] mod q
8 a[j + len] = S ∗ (t− a[j + len]) mod q

9 end

10 end

11 end
12 for j = 0; j < N ; + + j do
13 a[j] = a[j]/N
14 end

end

The function NTTsb uses (N/2) log2(N) multiplications modulo q and a total
of N log2(N) additions/subtractions modulo q. Due to the final scaling, the func-
tion INTTsb requires (N/2) log2(N)+N multiplications modulo q andN log2(N)
additions/subtractions modulo q.

A polynomial product in Zq[x]/(xN + 1) therefore requires (3N/2) log2(N) +
2N multiplications and 3N log2(N) additions/subtractions. This should be com-
pared to the N2 multiplications and additions required for schoolbook multiplic-
ation.

Example: for N = 256 we thus require 3328 multiplications modulo q and
6144 additions modulo q compared to the 65536 multiplications/additions for
the schoolbook approach.

5

2.6 NTT for 4-element word arrays

In Miden VM, a word consists of 4 field elements and the RAM is addressable
by words, so we can read or write 4 field elements in one cycle. As such, it
is interesting to develop an NTT routine which takes into account the word-
addressable memory. We see two possibilities depending on the application:

4 parallel NTTs In many cases, e.g. in Dilithium, more than one NTT is
required to be executed at the same time, e.g. in Dilithium, we require k + `
NTTs and k INTTs for (k, `) = (4, 4), (6, 5), (8, 7), so we can easily execute 4
NTTs in parallel.

The idea is simply to take the 4 input N -vectors and pack them columwise
in the 4 element words, i.e. the N words consist of

[A[k], B[k], C[k], D[k]]

where A,B,C,D are the 4 input vectors. Algorithm 2 remains exactly the same,
with the assumption that all operations are now executed in a SIMD fashion.

Example: For N = 256 this would result in 2048 reads and 2048 writes of a
word, 2048 SIMD-adds and 1024 SIMD-muls.

Single NTT for 4-element word arrays Inspired by the 2-element word
memory in [12], we extend this method to 4 element words, by packing two
consecutive words in the 2-element array into one 4-element word.

In particular, we simply store 4 consecutive elements in a logical array as a
4-element word.

Looking at the NTT however, we see that in one iteration elements of the
form a[j] and a[j+len] are manipulated for len = N/2, . . . , 1 where len is divided
by 2 in each iteration. This indicates that the input array to the NTT should be
ordered as follows:

[[A[2k], A[2k +N/2], A[2k + 1], A[2k + 1 +N/2]] .

Furthermore, since in the next iteration we still want to have that elements which
are combined in the NTT butterfly are in the same word, we will have to read
out a second word which contains the elements len/2 removed. This allows us to
keep elements that are combined in the butterfly in the same word, i.e. in every
iteration the elements saved will be of the form

[[A[2k], A[2k + len], A[2k + 1], A[2k + 1 + len]] .

The result is summarized in Algorithm 4. Note that the input has to be
formatted as above, but that the output is a linearly organized array of quad-
ruples of the bitreversed result, i.e. if B would be the output of NTTsb, then the
output of NTT4sb simply is

[B[4k], B[4k + 1], B[4k + 2], B[4k + 3]] .

6

A similar approach can be taken for the inverse NTT, see e.g. ntt 4 256.py

in the Code subdirectory.
Example: We obtain the following numbers for the NTT, where adds and

muls refer to single adds and muls (not SIMD versions). The inverse NTT re-
quires an extra N Reads and Writes and Muls if the scaling by N is not folded
into the final iteration of the main loop.

N Reads Writes Muls Adds
256 512 512 1024 2048
512 1152 1152 2304 4608
1024 2560 2560 5120 10240

A savings of N/4 reads and writes can be obtained by combining the len = 2
and len = 1 loops in Algorithm 4. If a single butterfly is implemented in 1 Miden
cycle, then the total number of cycles equals Reads + Writes + Muls, since there
are Muls butterflies, which also equals the number of Adds.

2.7 Native parameter sets

For the public key encryption and publicly re-randomizable commitment schemes
we rely on arithmetic in a ring that is natively compatible with the prime p =
264−232+1, meaning that there is no need for additional modular reduction. This
ring, which is inspired by the ThreeBears NIST standardization candidate [8],
is defined as

Rp =
Zp[X]

(Xn + 1)

but embeds a lattice of dimension 4n through the packing scheme

Zp =
Z[Y]

(Y 4 − Y 2 + 1, Y − 216)
.

In our application scenario we will always use n = 64.
Multiplication in this ring can be achieved using NTTs of dimension n. Ele-

ments of this ring are short if the balanced expansion base 216 of its coefficients
are short. Specifically, if a, b, c, d are small (in absolute value) integers, then
a+ b · 216 + c · 232 + d · 248 is a small element of Zp, and when all the coefficients
of a polynomial f(X) ∈ Rp have this form then it is short.

More concretely, we use the centered binomial distribution Ξ with bounds −8
and 8 (both inclusive) and standard deviation σ = 2. However, Ξ is a distribution
of small integers; we also need field elements whose 16-bit chunks are distributed
according to Ξ. To this end, define the distribution Υ =

∑3
i=0 ξi2

16i with ξi ∼ Ξ.
Algorithms 5 and 6 specify one way to sample these distributions. Sampling short
polynomials consists of sampling a coefficient vector of length n = 64 whose
elements are distributed according to Υ .

On top of the ring structure we use the module approach with dimension m.
So specifically, there is an m ×m matrix, along with m × 1 and 1 ×m vectors
whose elements belong to Rp. The parameter m depends on the security level.

7

Algorithm 4: NTT4sb
Input: A vector of quadruples a = [[A[2k], A[2k +N/2], A[2k + 1], A[2k + 1 +N/2]] for

k = 0, . . . , N/4 of elements in Zq and 2N-th primitive root ψ ∈ Zq of unity, and
precomputed table Ψrev containing the powers of ψ in bit-reversed order

Output: NTTsb(a), i.e. bit-reversed NTT of scaled a(ψx) in linear order as a vector of
quadruples

begin
1 k = 0
2 for len = N/2; len > 2; len = len/2 do
3 for start = 0; start < N/4; start = j + len/2 do
4 S = Ψrev[+ + k]
5 for j = start; j < start+ len/4; + + j do
6 A1 = a[j] // first quadruple
7 A2 = a[j + len/4] // second quadruple
8 t1 = S ∗ A1[1]
9 t2 = S ∗ A2[1]

10 t3 = S ∗ A1[3]
11 t4 = S ∗ A2[3]
12 a[j] = [A1[0] + t1, A2[0] + t2, A1[2] + t3, A2[2] + t4]
13 a[j + len/4] := [A1[0]− t1, A2[0]− t2, A1[2]− t3, A2[2]− t4]

14 end

15 end

16 end
17 // len = 2 done separately
18 for j = 0; j < N/4; + + j do
19 S = Ψrev[+ + k]
20 A1 = a[j]
21 t1 = S ∗ A1[1]
22 t2 = S ∗ A1[3]
23 a[j] := [A1[0] + t1, A1[2] + t2, A1[0]− t1, A1[2]− t2]

24 end
25 // len = 1 done separately
26 for j = 0; j < N/4; + + j do
27 S = Ψrev[+ + k]
28 A1 = a[j]
29 t1 = S ∗ A1[1]
30 S = Ψrev[+ + k]
31 t2 = S ∗ A1[3]
32 a[j] := [A1[0] + t1, A1[2] + t2, A1[0]− t1, A1[2]− t2]

33 end

end

Algorithm 5: sample small integer
Input:
Output: an integer distributed according to Ξ
begin

1 bits
$←− Z/216Z // 16 random bits

2 num set ← 0
3 while bits 6= 0 do
4 bits ← bits&(bits − 1) // bitwise and
5 num set ← num set + 1

6 end
7 return num set − 8

end

sec. lvl m
128 3
192 4
256 6

8

Algorithm 6: sample short field element
Input:
Output: a field element distributed according to Υ
begin

1 acc ← 0
2 for i ∈ {0, . . . , 3} do
3 ξ ← sample small integer()

4 acc ← acc · 216 + ξ

5 end
6 return acc

end

3 Signatures

3.1 Dilithium

Dilithium is a module-LWE based signature scheme based on Fiat-Shamir with
aborts. The base ring is given by Rq,n = Zq[x]/(xn+ 1) with q = 223− 213− 1 =
8380417.

The public key consists of the high bits (13 lower order bits are dropped) of
MLWE-samples

t := As1 + s2

where A is a k × ` matrix over Rq,n derived from a seed ρ and s1, s2 vectors
of length ` and k make up the secret key and contain elements in Rq,n with
small coefficients of max size η. A public key then contains the following data
pk = (ρ, t1) where t1 is obtained from t by dropping the lowest 13 bits. A
summary of the relevant (for verification) parameters is given in Table 1.

Table 1. Dilithium parameters used in verification

Security level 2 3 5

(k, `) (4,4) (6,5) (8,7)
η 2 4 2
β 78 196 120
γ1 217 219 219

γ2 (q − 1)/88 (q − 1)/32 (q − 1)/32
ω 80 55 75

A signature σ = (c̃, z,h) consists of 3 components:

– c̃: a challenge of 256 bits obtained as the hash of the public key, message and
Ay where y is a vector with elements in Rq,n with coefficients smaller than
γ1.

– z: a vector of length ` of polynomials with small coefficients, in particular,
smaller than γ1 − β.

9

– h: a vector of length k consisting of k hint polynomials (essentially the
overflows of a particular sum) whose coefficients are 0, 1 and the max number
of 1’s in h is ω.

The signature verification then proceeds as follows, where H is SHAKE-
256 and the specification of the other subroutines can be found in the original
specification [10].

Algorithm 7: Dilithium verification
Input: public key pk = (ρ, t1), message M , signature σ = (c̃, z,h)
Output: boolean indicating if signature is valid
begin

1 A ∈ Rk×`
q,n := ExpandA(ρ)

2 µ ∈ {0, 1}512 := H(H(ρ||t1)||M)
3 c := SampleInBall(c̃)

4 w′1 := UseHintq(h,Az− 2d · ct1, 2γ2)

5 return ||z||∞ < γ1 − β and c̃ = H(µ||w′1) and #1′s in h is ≤ ω
end

The matrix A ∈ Rk×`q,n is generated from ρ but directly into the NTT domain.
In particular, every element ai,j ∈ Rq is represented in a very specific format,
which is the following:

– Let r = 1753 which is a 512-th root of unity modulo q
– A polynomial a(x) ∈ Rq in NTT representation then is given by the array:

[a(r0), a(−r0), a(r1), a(−r1), . . . , a(r127), a(−r127)]

where by definition ri = rbrv(128+i) where brv(k) denotes the 8-bit bitreversal
of the number k. Note that this is the same result as the bit-reversed version of
the normal array

[a(r), a(r3), . . . , a(rN−1)] .

This is done to speed up step 4 in the verification procedure above, which
can be computed as

NTT−1(A ·NTT (z)−NTT (c) ·NTT (t1 · 2d))

which requires (*):

– `+ k + 1 NTTs
– k inverse NTTs
– k(`+ 1) pointwise multiplications of arrays of 256 elements in Fq

Integrating Dilithium in Miden Due to the formatting of A, i.e. it is derived
from ρ but directly into the NTT domain (with given ordering) as defined in
Dilithium, it is impossible to directly use this A with the native Miden NTT
routine.

10

If compatibility is required, then the only option is to first represent A in the
Miden NTT domain, by first mapping A to the time domain and then mapping
it to the Miden NTT domain. The result Ã is fully equivalent with A, just
represented in a different NTT domain. This transformation however is costly,
in that it requires k × ` calls to the original inverse NTT routine and also k × `
calls to the Miden NTT routine. Of course, it is possible to consider Ã as part
of the public key directly in Miden, but it is then impossible to directly derive
it from ρ (without going through the different NTTs).

It compatibility is not required, i.e. it is allowed to derive a different public
key from ρ, it looks tempting to derive Ã directly in the Miden NTT domain
from ρ. However, this is not possible since the corresponding polynomials in the
time domain should have coefficients uniform modulo the Dilithium modulus
and in particular, they should be small, since otherwise we cannot execute the
Dilithium operations by using the Miden arithmetic. As such, the only option
here seems to be to use the same ExpandA routine as in Dilithium, but to
consider the result to be defined in the time domain and then use k × ` Miden
NTTs to map it to the frequency domain. This approach will add another k× `
Miden NTTs on top of (*) which makes it the dominating cost.

3.2 Falcon

Falcon [6] is a lattice-based signature scheme using NTRU lattices and a hash-
and-sign approach following GPV [7]. Falcon works in a cyclotomic ring Rq,n =
Zq[x]/(xn + 1) with n = 2k, and an NTRU public key consists of a polynomial
h ∈ Rq,n which is computed as g · f−1 in Rq,n where f, g ∈ Rq,n that have small
coefficients. Recovering f, g from h corresponds to the NTRU-problem.

Falcon specifies two parameter sets n = 512 and n = 1024 corresponding to
NIST security levels I and V. The modulus q = 12289 = 12 · 1024 + 1 is prime
and fixed for both sets. The coefficients of the polynomials f, g are sampled from
a discrete Gaussian with standardard deviation σf,g = 1.17

√
q/2n.

The signature of a message m consists of a salt r and a pair of small poly-
nomials (s1, s2) such that s1 + s2h = H(r||m). Furthermore, s1 can be derived
fully from m, r and s2 so the signature is simply given by (r, s2). The signa-
ture (s1, s2) must satisfy ||(s1, s2)||2 ≤ bβ2c where β = 1.1σ

√
2n. In particular,

β2 = 34034726 for Level-I parameters and β2 = 70265242 for Level-V paramet-
ers. To verify a Falcon signature, one proceeds as described in Algorithm 8

Integrating Falcon in Miden Compared to Dilithium, Falcon is much easier
to integrate into Miden due to the fact that the main operation in Algorithm 8
is step 4 which mainly consists of the multiplication s2h. Since both polynomials
are given in the time domain, it is easy to compute their product by using the
Miden NTT and inverse NTT routines as described in Section 2.4 at a cost of
two NTTs and 1 inverse NTT plus n centered reductions modulo the Miden
prime and n reductions modulo the Falcon prime.

11

Algorithm 8: Falcon verification

Input: Message m, signature sig = (r, s), publick key pk = h and bound bβ2c
Output: boolean indicating if signature is valid
begin

1 c := HashToPoint(r||m, q, n)
2 s2 = Decompress(s, 8 · sbytelen− 328)
3 if (s2 =⊥) then return false
4 s1 = c− s2h mod q

5 if ||(s1, s2)||2 ≤ bβ2c then return true else return false

end

4 Encryption

This section specifies a public key encyption scheme over the native finite field
Zp.

4.1 Basic Description

The scheme employs matrix multiplications where the matrix algebra is defined

relative to the base ring Rp =
Zp[X]

(Xn+1) where n = 64. The elements of this base

ring are polynomials, and so the elements of the matrices and vectors are poly-
nomials. However, the fact that they are polynomials is only relevant to define
the multiplication law, which can be computed using the fast NTT-based al-
gorithm described in § 2.4. (The addition law is trivially element-wise addition.)
It is natural and fitting to represent these polynomials as vectors of n = 64 field
elements.

Let G ∈ Rm×mp be an arbitrary matrix, and let a,b, c,d ∈ Rm×1
p be vectors

of short polynomials. The encryption scheme builds on the following noisy Diffie-
Hellman protocol:

– The square matrix G is a public parameter known to both Alice and Bob.
– Alice samples a,b, computes A = Ga + b, and sends A to Bob.
– Bob samples c,d, computes B = GTc + d, and sends B to Alice.
– Alice receives B from Bob and computes KA = aTB.
– Bob receives A from Alice and computes KB = cTA.

Alice’s view KA and Bob’s view KB of the shared secret key are close in the
following sense. The difference KA−KB = aTd−bTc is short – every coefficient
of this polynomial has a balanced base-216 expansion with a small `2-norm.
Specifically, the variance of this `2-norm is σ2 ·

√
8mn, where σ = 2 is the

standard deviation in the distribution Ξ of § 2.7. For reference, for the worst
case parameter set this value is roughly 222 whereas for random field elements it

is roughly
√

232−1
12 ≈ 18919. Therefore, with high likelihood Alice and Bob will

agree upon the top bit of all these 16-bit chunks.
The encryption scheme embeds the message in the top bit of each 16-bit

chunk, and pads the resulting embedding with the noise shared one-time pad.
With high likelihood, the noise does not disturb the message.

12

Algorithm 9: embed msg

Input: a message m ∈ {0, 1}256
Output: a polynomial M ∈ Rp

begin
1 return [

∑3
i=0 216i+15 ·m[i+ 4j] : 0 ≤ j < 64]

end

Algorithm 10: extract msg
Input: a polynomial M ∈ Rp

Output: a message m ∈ {0, 1}256
begin

1 m← []
2 for c ∈M do
3 for i ∈ {0, 3} do
4 chunk ← c&0xffff
5 c← c� 16

6 if chunk < 214 ∨ 216 − chunk < 214 then
7 m← m‖0
8 end
9 else

10 m← m‖1
11 end

12 end

13 end
14 return m

end

4.2 Naive Scheme

In more detail, the public key encryption scheme consists of the following objects.

– The matrix G ∈ Rm×mp is a public parameter.
– A secret key is a pair of short vectors a,b ∈ Rm×1

p .
– A public key is single vector A ∈ Rm×1

p .
– A message is a list of 256 bits m ∈ {0, 1}256.
– A ciphertext is a pair (B, C) ∈ Rm×1

p ×Rp.

We start by defining a functionality that encryption and decryption relies
on, namely the embedding and extraction of a message m ∈ {0, 1}256 into the
top bits of 16-bit chunks of a polynomial f ∈ Rp.

The following algorithms (Algorithms 11-12-13) specify the public key en-
cryption scheme. Note that the operations + and × apply to vectors of 64 field
elements. Specifically, these operations compute addition and multiplication in
the ring Rp. This corresponds to element-wise addition and multiplication of
polynomials followed by reduction modulo X64 + 1.

4.3 Optimized Scheme

The strategy to compute multiplications in the polynomial quotient ring Rp by
using NTTs followed by INTTs is redundant because almost all INTT maps at
the end of one operation are follwed up with an NTT map preparing for the

13

Algorithm 11: KeyGen
Input:
Output: a secret key sk and public key pk
begin

1 a← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
2 b← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
3 // compute Alice’s Diffie-Hellman contribution
4 A← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
5 for i ∈ {0, . . . ,m− 1} do
6 for j ∈ {0, . . . ,m− 1} do
7 A[i]← A[i] + G[i][j]× a[j]
8 end
9 A[i]← A[i] + b[i]

10 end
11 return sk = (a,b), pk = A

end

Algorithm 12: Enc

Input: a public key pk = A, a message m ∈ {0, 1}256
Output: a ciphertext ctxt = (B, C)
begin

1 c← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
2 d← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
3 // compute Bob’s Diffie-Hellman contribution
4 B← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
5 for i ∈ {0, . . . ,m− 1} do
6 for j ∈ {0, . . . ,m− 1} do
7 B[i]← B[i] + G[j][i]× c[j]
8 end
9 B[i]← B[i] + d[i]

10 end
11 // compute shared noisy one-time pad
12 K ← [sample short field element() : 0 ≤ i < 64]
13 for i ∈ {0, . . . ,m− 1} do
14 K ← K + c[i]×A[i]
15 end
16 // pad message
17 C ← K + embed msg(m)
18 return ctxt = (B, C)

end

Algorithm 13: Dec
Input: a secret key sk = (a,b), a ciphertext ctxt = (B, C)
Output: a message m ∈ {0, 1}256
begin

1 // compute shared noisy one-time pad
2 K ← [0 : 0 ≤ i < 64]
3 for i ∈ {0, . . . ,m− 1} do
4 K ← K + B[i]× a[i]
5 end
6 // unpad message
7 M ← C −K
8 return extract msg(M)

end

next operation. It therefore pays to represent the polynomials in the frequency
domain. The time domain representation is only necessary when sampling small

14

Algorithm 14: KeyGen (optimized)
Input:
Output: a secret key sk and public key pk , both represented in frequency domain
begin

1 a← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
2 b← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
3 for 0 ≤ i < m do
4 NTTsb(a[i])
5 NTTsb(b[i])

6 end
7 // compute Alice’s Diffie-Hellman contribution
8 A← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
9 for i ∈ {0, . . . ,m− 1} do

10 for j ∈ {0, . . . ,m− 1} do
11 A[i]← A[i] + G[i][j] ◦ a[j]
12 end
13 A[i]← A[i] + b[i]

14 end
15 return sk = (a,b), pk = A

end

Algorithm 15: Enc (optimized)

Input: a public key pk = A represented in frequency domain, a message m ∈ {0, 1}256
Output: a ciphertext ctxt = (B, C) represented in frequency domain
begin

1 c← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
2 d← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
3 for 0 ≤ i < m do
4 NTTsb(c[i])
5 NTTsb(d[i])

6 end
7 // compute Bob’s Diffie-Hellman contribution
8 B← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
9 for i ∈ {0, . . . ,m− 1} do

10 for j ∈ {0, . . . ,m− 1} do
11 B[i]← B[i] + G[j][i] ◦ c[j]
12 end
13 B[i]← B[i] + d[i]

14 end
15 // compute shared noisy one-time pad
16 K ← [sample short field element() : 0 ≤ i < 64]
17 NTTsb(K)
18 for i ∈ {0, . . . ,m− 1} do
19 K ← K + c[i] ◦A[i]
20 end
21 // embed and pad message
22 M ← embed msg(m)
23 NTTsb(M)
24 C ← K +M
25 return ctxt = (B, C)

end

elements and when decoding the message. This observation gives rise to the
equivalent public key encryption scheme specified by Algorithms 14-15-16. Note
that the secret key, public key, and ciphertext are now represented in frequency
domain. We use ◦ to denote the Hadamard (element-wise) product.

15

Algorithm 16: Dec (optimized)

Input: a secret key sk = (a,b), a ciphertext ctxt = (B, C) all represented in frequency
domain

Output: a message m ∈ {0, 1}256
begin

1 // compute shared noisy one-time pad
2 K ← [0 : 0 ≤ i < 64]
3 for i ∈ {0, . . . ,m− 1} do
4 K ← K + B[i] ◦ a[i]
5 end
6 // unpad, intt, and extract message
7 M ← C −K
8 INTTsb(M)
9 return extract msg(M)

end

4.4 Security, Parameters

The encryption scheme is IND− CPA-secure under the assumed hardness of a
specific member of the decisional Ideal LWE class of problems as described by
Bootland et al. [2]. This specific member is defined below.

Hard Problem. Let Rp and Υ be defined as in § 2.7. Let k, l,m be small
integers. The IMLWE∗k,l,m is to distinguish the distribution (1) from the distri-

bution (2) given the sample (A,B) ∈ Rk×lp ×Rk×mp where

(1) A is uniformly random and B = Ac + d for some matrices c ∼ Υ l×m and
d ∼ Υ k×m;

(2) A and B are uniformly random.

The security reduction constructs a IMLWE solver from a IND− CPA ad-
versary A. The reduction proceeds in two steps.

In the first step, A is used to solve a Diffie-Hellman-like problem, where the
task is to distinguish the distribution (1) (G,A,B,K) from (2) (G,A,B, U),
where all symbols match with their use in the specification of the encryption
scheme and where U ∼ U(Rp). In fact, this step is trivial. Supply the adversary
with the public parameter G, the public key A, and the ciphertext (B, C) were C
was constructed according to the last lines of Enc. If A correctly identifies which
message was encrypted, then the fourth element of the tuple is not uniform.
Conversely, if A’s can do no better than guess at random then the fourth element
must be uniform.

In the second step, a solver for this Diffie-Hellman-like problem is used to
build one for IMLWE∗m,1,1. This step is analogous to § 5.5 of Frodo [3].

To estimate the hardness of IMLWE∗m,1,1 we use the tools of Albrecht et al. [5]
and Ducas et al. [4]. While these tools estimate the hardness of standard LWE
instances of dimension N , we argue that they apply also to IMLWE∗m,1,1 with
N = 4mn, where the factor 4 arises from the integer packing scheme pressing 4
integers into every field element, and the factor n arises from the ring Rp.

16

The aptitude of these estimators warrants a note of caution. The estimators
work for a generic q-ary lattice. However, the lattice induced by IMLWE∗m,1,1 is
not q-ary and has abundant structure corresponding to the algebra over which
multiplication is defined. Nevertheless, inspection of the generating matrix shows
that the lattice in question is very close to q-ary, with q = 216. Moreover, the
same estimators are used to estimate the hardness of the structured (thus not
generic) lattice problems underlying Ring- and Module-based lattice cryptosys-
tems. Neither of these caveats are known to give rise to exploitable attacks or
even different attack complexity.

Table 2. Parameters, security, failure probability

sec. lvl. m Albrecht et al. Ducas et al. failure probability

128 3 148.9 135.3 < 2−995

192 4 211.7 192.2 ∼ 2−725

256 6 263.5 310.8 ∼ 2−331

4.5 Homomorphisms and Failure Probability

The encryption scheme admits two homomorphic operations. First, addition of
ciphertexts corresponds to addition of plaintexts modulo 2. Second, multiplica-
tion by sufficiently short elements of Rp affects the underlying plaintexts in the
same way. Both operations can lead to a decryption failure, even if the operand
ciphertexts do not, although this event happens with small probability.

To compute an approximation of the probability of decryption failure after
any number of homomorphic operations, it is necessary to represent various
distributions on a single packed integer. To make this calculation feasible, it is
advisable to restrict distributions to the range [−214, 214] by truncation. The
probability of decryption failure corresponds to the distance between 1 and the
sum of all probabilities of integers in this range. Starting from the distribution
of small integers Ξ, this distribution evolves as follows.

– Multiplication of integers corresponds to convolution of their probability
distributions.

– Multiplication of field elements gives rise to at least one packed integer con-
sisting of the sum of 8 products of original packed integers.

– Multiplication of polynomials in Rp generates a polynomial where each coef-
ficient consists of the sum of two products of field elements.

– Multiplication of an l × m matrix of polynomials by an m × 1 vector of
polynomials generates an l × 1 vector where each coordinate consists of the
sum of m products of polynomials.

It is feasible to apply the same homomorphic circuit to the distribution of small
elements. The failure probability of decryption of the output ciphertexts is ap-
proximately the distance of the sum of this distribution from 1.

17

5 Post-quantum commitments

This section specifies a publicly rerandomizable commitment scheme over the
native finite field Zp. A basic commitment scheme consists of two functions:

– commit, takes a message and some randomness and outputs a commitment
along with some decommitment information.

– verify, takes a commitment, a message, decommitment information, and out-
puts a bit indicating whether the commitment is valid.

A commitment scheme is publicly rerandomizable when third parties can
derive a new commitment so that:

a) The new commitment is unlinkable to the original commitment except by
the party that produced the original commitment or the party that derived
the new one.

b) The party that produced the original commitment can open the new one as
well as the old one, but only to the same message.

We build this functionality using the ring Rp =
Zp

〈Xn+1〉 and associated tools

as follows. Let G ∈ Rm×mp be a pseudorandom m × m matrix consisting of
polynomials, and let a,b, c,d ∈ Rm×1

p be vectors of short polynomials, and

e ∈ Rp a single short polynomial. Then (G,aTG + bT) is one MLWE sample,
and (Gc + d,aTGc + bTc + e) is another. Both MLWE samples commit to a,
in the sense that it is a short approximate solution, and that such solutions are
difficult to find. This observation gives rise to the following scheme:

– The matrix G ∈ Rm×mp is a public parameter.
– Cory the committer feeds the message m ∈ {0, 1}∗ into a pseudorandom

number generator and uses it to sample a and b.
– Cory computes the commitment as aTG + bT.
– Rachel the rerandomizer samples c,d, e and computes the re-randomized

commitment as (Gc + d,aTGc + bTc + e).
– To open a commitment, Cory supplies m. From this message, a can be

determined, and it can be verified to be a short approximate solution to
the matching LWE sample.

5.1 Naive Scheme

The scheme consists of four functions, relative to a message space M and ran-
domness R, the latter of which doubles as the space of decommitment informa-
tion. The commitment has a different data structure before and after rerandom-
ization: before it is R1×m

p , whereas after it is Rm×1
p ×Rp.

– Commit :M×R→ R1×m
p ×R

– VerifyRaw :M×R×R 1×m
p → {True,False}

– Rerandomize : R1×m
p → (R

m×1
p ×Rp)

18

Algorithm 17: Commit
Input: a message t ∈ M and randomness r ∈ R
Output: a commitment A ∈ R1×m

p and decommitment information

begin
1 uniform bytes ← xof(t, r, 256 ·m)
2 ch ← [uniform bytes[128 · i : 128 · (i+ 1)] : i ∈ {0, . . . , 2m− 1}]
3 a← [[sample short field element(ch[128j + 2i : 128j + 2(i+ 1)]) : 0 ≤ i < 64] : 0 ≤ j < m]
4 b← [[sample short field element(ch[128j+2i : 128j+2(i+1)]) : 0 ≤ i < 64] : m ≤ j < 2m]
5 A← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
6 for i ∈ {0, . . . ,m− 1} do
7 for j ∈ {0, . . . ,m− 1} do
8 A[i]← A[i] + G[i][j]× a[j]
9 end

10 A[i]← A[i] + b[i]

11 end
12 return commitment = A, decommitment info = r

end

Algorithm 18: Verify

Input: a message t ∈ M, decommitment information r ∈ R, a commitment com ∈ R1×m
p

Output: True or False
begin

1 uniform bytes ← xof(t, r, 256 ·m)
2 ch ← [uniform bytes[128 · i : 128 · (i+ 1)] : i ∈ {0, . . . , 2m− 1}]
3 a← [[sample short field element(ch[128j + 2i : 128j + 2(i+ 1)]) : 0 ≤ i < 64] : 0 ≤ j < m]
4 b← [[sample short field element(ch[128j+2i : 128j+2(i+1)]) : 0 ≤ i < 64] : m ≤ j < 2m]
5 A← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
6 for i ∈ {0, . . . ,m− 1} do
7 for j ∈ {0, . . . ,m− 1} do
8 A[i]← A[i] + G[i][j]× a[j]
9 end

10 A[i]← A[i] + b[i]

11 end

12 return com
?
= A

end

– VerifyRerandomized :M×R× (R
m×1
p ×Rp)→ {True,False}

In addition to this interface we need a pseudorandom mapping from message-
randomness pairs to a short vector of polynomials. We construct this manually,
starting from a cryptographically secure extendable output function (XOF) to
sample uniform bytes, followed by a sampler to send these uniform bytes to short
polynomials. We overload the function sample short field element so that it can
use the argument as random bits if it is supplied; otherwise the bits are sampled
at random.

– xof :M×R× N→ ({0, 1}8)∗

Lastly, we need a procedure to test whether a given polynomial is short enough.
To this end we recycle the extract msg function. The polynomial is short enough
if this function returns all zeros.

19

Algorithm 19: Rerandomize

Input: a commitment A ∈ R1×m
p

Output: a rerandomized commitment (B, K) ∈ Rm×1
p × Rp

begin
1 c← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
2 d← [[sample short field element() : 0 ≤ i < 64] : m ≤ j < 2m]
3 B← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
4 for i ∈ {0, . . . ,m− 1} do
5 for j ∈ {0, . . . ,m− 1} do
6 B[i]← B[i] + G[j][i]× c[j]
7 end
8 B[i]← B[i] + d[i]

9 end
10 e← [sample short field element() : 0 ≤ i < 64]
11 K ← [0 : 0 ≤ i < 64]
12 for i ∈ {0, . . . ,m− 1} do
13 for j ∈ {0, . . . ,m− 1} do
14 K ← K + A[i]× c[i]
15 end
16 K ← K + e

17 end
18 return recom = (B, K)

end

Algorithm 20: VerifyRerandomized
Input: a message t ∈ M, decommitment information r ∈ R, and a rerandomized

commitment (B, K) ∈ Rm×1
p × Rp

Output: True or False
begin

1 uniform bytes ← xof(t, r, 256 ·m)
2 ch ← [uniform bytes[128 · i : 128 · (i+ 1)] : i ∈ {0, . . . , 2m− 1}]
3 a← [[sample short field element(ch[128j + 2i : 128j + 2(i+ 1)]) : 0 ≤ i < 64] : 0 ≤ j < m]
4 for i ∈ {0, . . . ,m− 1} do
5 K ← K − a[i]×B[i]
6 end

7 return extract msg(K)
?
= 0256

end

5.2 Optimized Scheme

Like in the case of the encryption scheme, a lot of cycles are wasted going
to and from frequency domain just to compute a multiplication. It is better
to represent the relevant objects in frequency domain and map them to and
from time domain only when needed. Specifically, NTTs are necessary after
sampling short elements, and INTTs before testing the lengths of elements. This
observation gives rise to the optimized variant of the scheme, whose algorithms
follow.

5.3 Security, Parameters, and Failure Probability

The security analysis and failure probability analysis reduces to analyses done
for the encryption scheme. As a result, we can reuse the same parameters for
the same target security levels and achieve the same failure probabilities. The

20

Algorithm 21: Commit (Optimized)
Input: a message t ∈ M and randomness r ∈ R
Output: a commitment A ∈ R1×m

p and decommitment information

begin
1 uniform bytes ← xof(t, r, 256 ·m)
2 ch ← [uniform bytes[128 · i : 128 · (i+ 1)] : i ∈ {0, . . . , 2m− 1}]
3 a← [[sample short field element(ch[128j + 2i : 128j + 2(i+ 1)]) : 0 ≤ i < 64] : 0 ≤ j < m]
4 for 0 ≤ i < m do
5 NTTsb(a[i])
6 end
7 b← [[sample short field element(ch[128j+2i : 128j+2(i+1)]) : 0 ≤ i < 64] : m ≤ j < 2m]
8 for 0 ≤ i < m do
9 NTTsb(b[i])

10 end
11 A← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
12 for i ∈ {0, . . . ,m− 1} do
13 for j ∈ {0, . . . ,m− 1} do
14 A[i]← A[i] + G[i][j] ◦ a[j]
15 end
16 A[i]← A[i] + b[i]

17 end
18 return commitment = A, decommitment info = r

end

Algorithm 22: VerifyRaw (Optimized)

Input: a message t ∈ M, decommitment information r ∈ R, a commitment com ∈ R1×m
p

Output: True or False
begin

1 uniform bytes ← xof(t, r, 256 ·m)
2 ch ← [uniform bytes[128 · i : 128 · (i+ 1)] : i ∈ {0, . . . , 2m− 1}]
3 a← [[sample short field element(ch[128j + 2i : 128j + 2(i+ 1)]) : 0 ≤ i < 64] : 0 ≤ j < m]
4 b← [[sample short field element(ch[128j+2i : 128j+2(i+1)]) : 0 ≤ i < 64] : m ≤ j < 2m]
5 for 0 ≤ i < m do
6 NTTsb(a[i])
7 NTTsb(b[i])

8 end
9 A← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]

10 for i ∈ {0, . . . ,m− 1} do
11 for j ∈ {0, . . . ,m− 1} do
12 A[i]← A[i] + G[i][j] ◦ a[j]
13 end
14 A[i]← A[i] + b[i]

15 end

16 return com
?
= A

end

table summarizing this is Table 2. What remains to be said here is why these
properties reduce to prior analyses.

Correctness. Correctness of VerifyRaw follows from construction. Correct-
ness of VerifyRerandomized is more intricate. This function returns False if the
noise term

bTc + e− aTd

is larger than 214 in any one packed digit of any coefficient. The probability of
this event is (marginally) less than the probability of a decryption failure.

21

Algorithm 23: Rerandomize (Optimized)

Input: a commitment A ∈ R1×m
p

Output: a rerandomized commitment (B, K) ∈ Rm×1
p × Rp

begin
1 c← [[sample short field element() : 0 ≤ i < 64] : 0 ≤ j < m]
2 d← [[sample short field element() : 0 ≤ i < 64] : m ≤ j < 2m]
3 for 0 ≤ i < m do
4 NTTsb(c[i])
5 NTTsb(d[i])

6 end
7 B← [[0 : 0 ≤ i < 64] : 0 ≤ j < m]
8 for i ∈ {0, . . . ,m− 1} do
9 for j ∈ {0, . . . ,m− 1} do

10 B[i]← B[i] + G[j][i] ◦ c[j]
11 end
12 B[i]← B[i] + d[i]

13 end

14 K ← [sample short field element() : 0 ≤ i < 64] // initialize with e ∼ Υ 64

15 NTTsb(K)
16 for i ∈ {0, . . . ,m− 1} do
17 K ← K + A[i] ◦ c[i]
18 end
19 return recom = (B, K)

end

Algorithm 24: VerifyRerandomized (Optimized)
Input: a message t ∈ M, decommitment information r ∈ R, and a rerandomized

commitment (B, K) ∈ Rm×1
p × Rp

Output: True or False
begin

1 uniform bytes ← xof(t, r, 256 ·m)
2 ch ← [uniform bytes[128 · i : 128 · (i+ 1)] : i ∈ {0, . . . , 2m− 1}]
3 a← [[sample short field element(ch[128j + 2i : 128j + 2(i+ 1)]) : 0 ≤ i < 64] : 0 ≤ j < m]
4 for 0 ≤ i < m do
5 NTTsb(a[i])
6 end
7 for i ∈ {0, . . . ,m− 1} do
8 K ← K − a[i] ◦B[i]
9 end

10 INTTsb(K)

11 return extract msg(K)
?
= 0256

end

Binding. The binding property decomposes into that of commitments before
rerandomization and that after.

Before rerandomization: suppose a commitment A has two valid openings:
(t0, r0) and (t1, r1). Let (a0,b0) and (a1,b1) be the pairs of short vectors of
polynomials that arise after seeding (t0, r0) or (t1, r1) into the XOF and sampling
short vectors of polynomials from the resulting output stream. Distinguish two
cases:

– (a0,b0) 6= (a1,b1). Over the random coins of (a1,b1), the probability that
a0

TG+b0
T = a1

TG+b0
T is approximately |Rmp |−1 ≈ 2−4096m. Therefore,

the probability of sampling distinct short vectors in the same lattice from
the XOF is negligible for adversaries with bounded time.

22

– (a0,b0) = (a1,b1). Each binomial coefficient has about 3.047 bits of entropy.
Every field element has 4 binomial coefficients; every polynomial 64 field
elements, and every vector m polynomials. The total is roughly 768m bits
of entropy. The cost of finding a collision in this distribution is on the order
of 2384m.

Hiding. Ignore the cost of attacking the XOF. The attacker who obtains
(a,b) from A can be used to undermine the security of the encryption scheme.
The attacker who obtains a from (B,K) can likewise be used to undermine
the security of the encryption scheme. Therefore, the hiding property of the
commitment scheme is at least as strong as the IND-CPA of the encryption
scheme.

Unlinkability. The adversary who can determine whether a pair (A, (B,K))
is matching or mismatching (i.e., fix the same short solution (a,b) or not) can be
used to win the decisional Diffie-Hellman game. An analogous reduction to that
of § 5.5 of the Frodo paper [3] reduces this adversary to a solver of IMLWE∗m,1,1.
The hardness analysis of this problem is provided in Section 4.4.

Acknowledgments This project was made possible through the financial
support of Polygon, for which the authors would like to express gratitude.

References

[1] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-
solomon interactive oracle proofs of proximity. In ICALP 2018, volume 107 of
LIPIcs, pages 14:1–14:17.

[2] Carl Bootland, Wouter Castryck, Alan Szepieniec, and Frederik Vercauteren. Sok:
On the security of cryptographic problems from linear algebra. 2021.

[3] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from lwe. 2016.

[4] Leo Ducas et al. A sage toolkit to attack and estimate the hardness of lwe with
side information.

[5] Martin Albrecht et al. Security estimates for lattice problems.
[6] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,

Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact signatures over
ntru. Submission to the NIST’s post-quantum cryptography standardization pro-
cess, 2017. https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
[7] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-

tices and new cryptographic constructions. Electron. Colloquium Comput. Com-
plex., (133), 2007.

[8] Mike Hamburg. Post-quantum cryptography proposal: Threebears, 2017.
[9] Patrick Longa and Michael Naehrig. Speeding up the number theoretic transform

for faster ideal lattice-based cryptography. In Sara Foresti and Giuseppe Persiano,
editors, Cryptology and Network Security - 15th International Conference, CANS
2016, Milan, Italy, November 14-16, 2016, Proceedings, volume 10052 of Lecture
Notes in Computer Science, pages 124–139, 2016.

23

https://polygon.technology/
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

[10] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. Crystals-dilithium.
Submission to the NIST’s post-quantum cryptography standardization pro-
cess, 2017. https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
[11] Thomas Pornin. Ecgfp5: a specialized elliptic curve. Cryptology ePrint Archive,

Paper 2022/274, 2022.
[12] Sujoy Sinha Roy, Furkan Turan, Kimmo Järvinen, Frederik Vercauteren, and In-

grid Verbauwhede. Fpga-based high-performance parallel architecture for homo-
morphic computing on encrypted data. In 25th IEEE International Symposium on
High Performance Computer Architecture, HPCA 2019, Washington, DC, USA,
February 16-20, 2019, pages 387–398. IEEE, 2019.

[13] Robin Salen, Vijaykumar Singh, and Vladimir Soukharev. Security analysis of el-
liptic curves over sextic extension of small prime fields. Cryptology ePrint Archive,
Paper 2022/277, 2022.

24

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

	Lattice-Based Cryptography in Miden VM

