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Abstract. The Security Protocol and Data Model (SPDM) de�nes �ows
to authenticate hardware identity of a computing device. It also allows
for establishing a secure session for con�dential and integrity protected
data communication between two devices. The present version of SPDM,
namely version 1.2, relies on traditional asymmetric cryptographic algo-
rithms that are known to be vulnerable to quantum attacks. This paper
describes the means by which support for post-quantum (PQ) cryptog-
raphy can be added to the SPDM protocol in order to enable SPDM for
the upcoming world of quantum computing. We examine SPDM 1.2 pro-
tocol and discuss how to negotiate the use of post-quantum cryptography
algorithms (PQC), how to support device identity reporting, means to
authenticate the device, and how to establish a secure session when us-
ing PQC algorithms. We consider so called hybrid modes where both
classical and PQC algorithms are used to achieve security properties as
these modes are important during the transition period. We also share
our experience with implementing PQ-SPDM and provide benchmarks
for some of the winning NIST PQC algorithms.

Keywords: PQ digital signature · PQ key establishment · post quantum
SPDM · device authentication · device secure session.

1 Introduction

The Security Protocol and Data Model (SPDM) 1.2 speci�cation [16] is de�ned
by the Distributed Management Task Force (DMTF). It is used for device iden-
tity collection, device authentication, measurement collection and device secure
session establishment. The SPDM protocol is a standard for the device com-
munity. It is adopted by multiple other standard groups, including Peripheral
Component Interconnect (PCI) [35], Compute Express Link (CXL) [11], Mobile
Industry Processor Interface (MIPI) [27], and Trusted Computing Group (TCG)
[48].

The current SPDM 1.2 speci�cation uses traditional asymmetric crypto-
graphic algorithms, such as RSA, ECDSA, EdDSA for digital signatures and
ephemeral Di�e-Hellman over �nite �elds (FFDHE) or elliptic curves (ECDHE)
for key establishment. Unfortunately, all of the earlier listed algorithms are not
quantum safe. Attacks based on Shor's algorithm [44, 45, 37, 39] will break cryp-
tosystems relying on the hardness of integer factorization and discrete logarithms
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in abelian groups. While the race to build large scale quantum computers is still
at an early phase, some devices have long lifetimes and need to be supported
beyond 2030. Beyond 2030 is when people expect quantum computers may be
available. If a device uses SPDM and needs to be supported beyond 2030, then
likely it will need to be PQC-ready and it seems prudent to consider supporting
post-quantum cryptography (PQC) [29] in the SPDM protocol.

A lot of research has been dedicated to network security with PQC, such
as X.509 certi�cates [33, 50, 32, 23, 36], Media Access Control security (MACsec)
[9], Internet Protocol Security (IPSec) [17, 49], Transport Layer Security (TLS)
[47, 8, 6, 25, 40, 51, 41, 10, 46, 43, 42], Secure Shell (SSH) [41, 24], WireGuard [20,
38, 26]. PQC algorithms have been implemented in devices for secure boot [21,
22].

As far as we know, this is the �rst study of PQC algorithm adoption for a
device communication security protocol, such as SPDM. This aspect seems to be
currently particularly relevant as the IoT market is expanding and on one hand
we get more and more devices with diverse security needs (including long-term
security requirements) and on the other hand, IoT devices need to be served by
backend services where performance is also critical due to the scale factor.

1.1 Our Contributions

Our focus in this work is to provide a construction for supporting post-quantum
cryptography algorithms in the SPDM protocol, including algorithm negotiation,
device certi�cate transfer, digital signature signing and veri�cation, and authen-
ticated key exchange for secure session. We explored a prototype implementation
of the SPDM PQC capability in a device with di�erent modes:

� Traditional mode: PQC algorithms not used,
� PQC mode: only PQC algorithms are used,
� Hybrid mode: using both traditional algorithms and PQC algorithms.

The hybrid mode was studied in [5, 4] and recommended by NIST during the
transition and migration phase [28].

We also consider design challenges for adopting post-quantum algorithms for
devices with SPDM capability, such as backward compatibility and message size.

The paper is organized as follows. We start with a brief recap of SPDM in
Section 2. Section 3 is dedicated to extending algorithm negotiation phase. Then,
we follow with changes to support PQC-ready device identities in Section 4 and
device authentication in Section 5. Establishment of secure session keys is treated
in detail in Section 6 with security analysis. Finally, we report the results of our
proof-of-concept implementation and discussion in Section 7 and Section 8.

The PQC algorithm selection has been driven by National Institute of Stan-
dards and Technology (NIST) [30]. While te protocol design is algorithm agnostic
and could be used with any new PQC scheme, we report performance results for
the four winners of the NIST PQC competition announced very recently.

Note that since symmetric cryptographic algorithms can be used in the quan-
tum computing world with increased key sizes and larger hash digests, we do
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not study any symmetric cryptographic algorithms for SPDM, such as hash algo-
rithms or Authenticated Encryption with Associated Data (AEAD) algorithms.

2 SPDM Background

2.1 SPDM Device Authentication

In the SPDM speci�cation, the authentication of the identity of a device involves
two steps: device identi�cation and device authentication.

During the device manufacturing phase, each device is provisioned with a
device certi�cate chain. This certi�cate chain can be treated as the device iden-
tity. The device certi�cate chain includes all the certi�cates from a trusted root
certi�cate authority (CA) certi�cate that chains to a device speci�c leaf cer-
ti�cate. The device certi�cate contains the public key that corresponds to the
device private key. The root CA endorses the device public / private key pair
through the certi�cate chain. At runtime, an SPDM initiator (requester) may
use a GET_CERTIFICATE message to ask an SPDM device (responder) to return
its certi�cate chain as the identity.

The SPDM device authentication uses a challenge�response mechanism. The
initiator (requester) sends a CHALLENGE message to the SPDM device (respon-
der). The CHALLENGE message includes a nonce to prevent replay attacks. Then
the device signs the challenge with its private key and returns a CHALLENGE_AUTH
message. The authentication initiator can verify the digital signature by using
the device public key taken from the certi�cate chain.

2.2 SPDM Secure Session

The SPDM speci�cation allows two devices to establish a secure communication
channel, similar to the network Transport Layer Security (TLS) 1.3. An SPDM
requester and an SPDM responder may use an authenticated key exchange pro-
tocol to derive a set of session keys. The session keys will provide con�dentiality
and integrity for the communication data by using encryption and message au-
thentication.

2.3 SPDM Algorithm Negotiation

SPDM speci�cation de�nes a message NEGOTIATE_ALGORITHMS sent by an SPDM
requester and a message ALGORITHMS returned by the SPDM responder that to-
gether perform the task of negotiating a common set of cryptographic algorithms.
The cryptographic algorithm selection in SPDM is di�erent from the way it is
implemented in TLS. TLS de�nes a set of cipher suites. A TLS entity selects
one cipher suite that covers all algorithms, including key exchange or agree-
ment, authentication, block or stream ciphers, and message authentication. An
SPDM requester lists all individual algorithms it can support, such as hash algo-
rithms, responder direction asymmetric digital signature algorithms, requester
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direction asymmetric digital signature algorithms, key exchange algorithms and
Authenticated Encryption with Associated Data (AEAD) ciphers. The SPDM
responder chooses one of these options in each category as the �nal negotiated
algorithm. As opposed to TLS cipher suites, each type of SPDM algorithm can
be negotiated separately.

3 Post Quantum Design for SPDM Algorithm

Negotiation

The SPDM speci�cation de�nes cryptographic algorithms separately. An SPDM
entity can negotiate an individual cipher, such as a hash algorithm, responder
direction asymmetric digital signature algorithm, requester direction asymmetric
digital signature algorithm, key exchange algorithm and Authenticated Encryp-
tion with Associated Data (AEAD) cipher suite. Table 1 shows an example.

Table 1. Current SPDM Algorithm Negotiation (Example)

Algorithm Requester's List Responder's Selection

Hash SHA256, SHA384 SHA384

Responder Digi-
tal Signature

RSASSA_3072,
ECDSA_NIST_P256,
ECDSA_NIST_P384

ECDSA_NIST_P384

Requester Digi-
tal Signature

RSASSA_3072, RSAPSS_3072 RSAPSS_3072

Key Exchange FFDHE_3072,
ECDHE_secp256r1,
ECDHE_secp384r1

ECDHE_secp384r1

AEAD AES_256_GCM,
CHACHA20_POLY1305

AES_256_GCM

In order to support a post quantum world, we extend three algorithm types:
PQC responder digital signature algorithm, PQC requester digital signature al-
gorithm, and PQC key exchange algorithm. The original responder digital sig-
nature algorithm, requester digital signature algorithm, and key exchange algo-
rithms are interpreted as traditional algorithms only to support compatibility.

Table 2 shows an example of an SPDM algorithm negotiation with PQC in
traditional mode, PQC mode, and hybrid mode. The Responder Digital Sig-
nature designates the SPDM asymmetric key signature algorithm for signature
generation by Responder and veri�cation by Requester. The Requester Digital
Signature describes the SPDM asymmetric key signature algorithm for signature
generation by Requester and veri�cation by Responder. The PQC algorithms are
separated from traditional algorithms because we expect the Responder will se-
lect one of the PQC algorithms and one of the traditional algorithms in hybrid
mode.

Assuming the SPDM Requester has full capabilities, including traditional
only, PQC only and hybrid mode, the Requester needs to declare all supported
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algorithms. The SPDM Responder needs to make the �nal decision. If the Re-
sponder wants to choose traditional only, it shall select one of the traditional
algorithms and not select any PQC algorithm. If the Responder wants to choose
PQC only, it shall select one of the PQC algorithms and not select any tradi-
tional algorithm. If the Responder wants to choose hybrid mode, it shall select
one traditional algorithm and one PQC algorithm.

Table 2. SPDM Algorithm Negotiation with PQC (Example)

Algorithm

Requester's

List

(full capability)

Responder's

Selection

(traditional
mode)

Responder's

Selection

(PQC mode)

Responder's

Selection

(hybrid mode)

Hash SHA256, SHA384 SHA384 SHA384 SHA384

Responder Digital
Signature

RSASSA_3072,
ECDSA_NIST_P256,
ECDSA_NIST_P384

ECDSA_NIST_P384 - ECDSA_NIST_P384

Requester Digital
Signature

RSASSA_3072,
RSAPSS_3072

RSAPSS_3072 - RSAPSS_3072

Key Exchange FFDHE_3072,
ECDHE_secp256r1,
ECDHE_secp384r1

ECDHE_secp384r1 - ECDHE_secp384r1

AEAD AES_256_GCM AES_256_GCM AES_256_GCM AES_256_GCM

PQC Responder
Digital Signature

Falcon-512,
Falcon-1024

- Falcon-512 Falcon-512

PQC Requester
Digital Signature

Dilithium2,
Dilithium5

- Dilithium2 Dilithium2

PQC Key Ex-
change

Kyber512,
SIDH-p434,
SIKE-p434

- SIDH-p434 SIDH-p434

There is one limitation if we use this mechanism. A requester or a responder
may want to say: �I can support either traditional mode or PQC mode, but I
don't want to support hybrid mode.� There is no way to pass this information
via the NEGOTIATE_ALGORITHMS request and ALGORITHMS response message. As
such, we need to use the GET_CAPAILITIES request and CAPABILITIES response
message. To support this usage we have added more capabilities bits, including:

� PQC Capability: this means an entity supports PQC mode
� Hybrid Capability: this means an entity support Hybrid mode.

If both entities indicate PQC capability, then PQC mode is chosen. If both
entities indicate hybrid capability, then hybrid mode is chosen. If both PQC ca-
pability and hybrid capability is selected, then hybrid mode takes precedent. We
do not de�ne a traditional algorithm capability for compatibility consideration.

The SPDM speci�cation also de�nes the timing requirements. The requester
and the responder need tell the peer a CTExponent timing parameter, which is the
maximum amount of time for cryptographic processing. A PQC algorithm might
have di�erent timing requirement comparing with traditional algorithm. The
timing in the hybrid mode could be the addition of timing in traditional mode
and timing in PQC mode. Unfortunately, the timing parameter in CAPABILITIES
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is negotiated before the algorithm negotiation in ALGORITHMS. It is hard to use
a single CTExponent to indicate the timing parameter in three di�erent modes.
Setting a maximum value is one option, but it might cause the requester wait for
long time to issue a retry. The other option is to add a new PQCTExponent to in-
dicate the PQC speci�c timing. The �nal interpretation of the timing parameter
could be:

� Timing in Traditional Mode: 2CTExponent

� Timing in PQC Mode: 2PQCTExponent

� Timing in Hybrid Mode: 2CTExponent + 2PQCTExponent

3.1 Design Considerations

Mode identi�cation A requester and a responder may negotiate traditional
algorithms and PQC algorithms separately. A device only supporting traditional
mode may provide or select traditional algorithms and ignore PQC algorithms.
A PQC mode only device may provide or select PQC algorithms and ignore tra-
ditional algorithms. A hybrid mode aware device may provide a list of traditional
algorithms and a list of PQC algorithms or select one traditional algorithm and
one PQC algorithm. An SPDM requester or an SPDM responder can know the
�nal negotiated mode by checking if there are both traditional algorithms and
PQC algorithms negotiated.

The other option is to merge the traditional algorithm and PQC algorithm
together in one �eld. There is no impact to a requester in choosing this approach.
The impact for a responder is that we need to allow the algorithm selection �eld
to designate one or two algorithms. If only one algorithm is selected, then it
is traditional mode or PQC mode. If two algorithms are selected - one that is
traditional and the other that is PQC, then it is hybrid mode.

No Combinatorial Explosion Since SPDM allows both entities to negotiate
algorithms individually, there is no danger of algorithm combination explosion.
We use a similar technique to handle the hybrid mode. SPDM uses one bit to
indicate one algorithm. In order to support N traditional mode ciphers and M
PQC mode ciphers, the total required bit space is (N +M).

Security Level Matching Technically, traditional algorithms and PQC algo-
rithms are orthogonal. In the real world, a product may need to meet a NIST
security level requirement. As such, an entity should choose the required tradi-
tional algorithm and a PQC algorithm with a matching security level in hybrid
mode. For example, the Level 1 PQC algorithm should go with the ECC P-256
curve, the Level 3 PQC algorithm should go with the ECC P-384 curve, and the
Level 5 PQC algorithm should go with the ECC P-521 curve.

Algorithm Set Matching Besides a set of NIST algorithms such as SHA,
AES, RSA, DH and ECC, SPDM 1.2 also adds support for Shang-Mi (SM)
algorithms, such as SM3, SM4, and SM2. In the real world, the product may
choose either a NIST algorithm set, or an SM algorithm set. In the future, if
NIST or SM de�nes its own PQC algorithm set, the PQC algorithm should go
with the tradition algorithm in the same set.
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Hash Algorithm used in digital signature Some traditional digital signa-
ture algorithms require �xed length input messages for signing. To reduce the
combinatorial explosion problem, the hash algorithm is negotiated separately
with the digital signature algorithm in SPDM. Some PQC digital signature al-
gorithms, such as SPHINCS, have an associated hash algorithm such as SHA256
or SHAKE256. How do we indicate the hash algorithm required in PQC digital
signature? Currently, we let the original hash algorithm only associate with a tra-
ditional digital signature. The PQC digital signature algorithm should indicate
the hash algorithm explicitly. For example, SPHINCS+-SHA256-128f-robust or
SPHINCS+-SHAKE256-128f-robust are potential options.

4 Post Quantum Design for SPDM Device Identity

The SPDM speci�cation uses the X.509 certi�cate chain as the device identity.
If an SPDM device supports a PQC algorithm (PQC and/or hybrid mode),
the device should carry an X.509 certi�cate with PQC support, namely a PQC
or hybrid X.509 certi�cate. In the hybrid mode, the SPDM requester can use
the GET_CERTIFICATE command to retrieve one X.509 certi�cate chain and
SET_CERTIFICATE command to provision one. This one certi�cate chain contains
both a traditional algorithm and a PQC algorithm. In PQC mode or traditional
mode, this hybrid certi�cate chain may still be used since the veri�er may just
skip the unneeded algorithm and certi�cate digital signature.

The alternative approach is to extend the GET_CERTIFICATE command to
indicate which type of certi�cate chain is required, namely a traditional certi�-
cate chain or PQC certi�cate chain. The Certi�cate Type can be in param2 and
includes

� Traditional Certi�cate Chain (0),
� PQC Certi�cate Chain (1),
� Hybrid Certi�cate Chain (2).

In the hybrid mode, the requester needs to request the certi�cate chain twice:
one for the traditional certi�cate chain and the other for the PQC certi�cate
chain.

The X.509 certi�cate format is out of scope of the SPDM speci�cation so we
will not discuss the details here.

The SPDM speci�cation may also allow a device to provision a raw public
key of the peer during the manufacturing phase. In this case, the trust of the
public key of the peer is established without the certi�cate based public key
infrastructure. If PQC is required in the raw public key scenario then the man-
ufacturer may need to provision the public keys for both a traditional algorithm
and a PQC algorithm. The format of the raw public keys is out of scope of the
SPDM speci�cation. That raw key format is implementation speci�c so we don't
discuss the details here.

The SPDM 1.2 speci�cation de�nes an alias certi�cate mode to support the
device compatible with Trusted Computing Group (TCG) Device Identity Com-
position Engine (DICE) speci�cation. A DICE device may include a device ID



8 Jiewen Yao, Krystian Matusiewicz, and Vincent Zimmer

certi�cate and alias certi�cate. The device ID certi�cate includes the device ID
key derived from the Compound Device Identity (CDI) value computed by the
DICE process. The certi�cate depends on the unique device secret (UDS) and
measurement of DICE layer 0. The alias certi�cate includes a device alias key
that is computed using the last CDI value in the chain of the device Trust Com-
puting Base (TCB) component. The alias certi�cate is usually generated during
the runtime because the CDI includes the measurement of the last layer, which
includes mutual �rmware. If a DICE device chooses to support a PQC alias cer-
ti�cate chain or Hybrid alias certi�cate chain, each DICE layer needs to support
the PQC algorithm.

4.1 Design Considerations

No Duplication In the hybrid mode, if we require an entity to pass one hybrid
certi�cate chain, then the message includes the identity information. In this case,
the authority information just needs to be transmitted once.

If we require an entity to pass both a traditional certi�cate chain and a PQC
certi�cate chain, then the identity information and authority information will
be transmitted twice. Also, both certi�cate chains needs to be included in the
transcript calculation. This is not e�cient and might cause latency problems.
In addition, the entity needs to check if the two certi�cate chains use the same
identity information or authority information. If they are di�erent, then the
entity needs to record the di�erence and verify against the pre-de�ned policy,
which adds lots of complexity.

Local Storage Size When an entity considers the compatibility requirements,
it will consider the capability of the peer. Because the peer may support tradi-
tional mode, PQC mode and hybrid mode, the entity may need to prepare the
traditional mode certi�cate chain, PQC mode certi�cate chain and hybrid mode
certi�cate chain. A small device may only have limited storage size. Provisioning
three certi�cate chains might not be the best choice.

Transport Message Size The SPDM speci�cation does not de�ne the message
size limitation. However, the secured message using SPDM [15] de�nes a 16
bit application data length �eld. As such, the maximum size of an encrypted
message is 216 bytes. SPDM transport layer binding speci�cations also have a
size limitation. For example, the PCI Data Object Exchange (DOE) mailbox [34]
uses a 18 bit length �eld for the double-word (4 bytes) number, which means the
maximum message size is 220 bytes. The Management Component Transport
Protocol (MCTP) over System Management Bus (SMBus) / Inter-Integrated
Circuit (I2C) [12, 14, 13] only supports 256 bytes as a maximum in one packet.

For a large message that may potentially exceed the 256 byte limitation,
SPDM 1.0 and 1.1 de�nes a command speci�c chunking mechanism. For exam-
ple, the GET_CERTIFIACTE request message includes a 16 bit OFFSET and 16 bit
LENGTH �elds to indicate the requested certi�cate data bu�er o�set and length.
The CERTIFICATE response message includes a 16 bit PortionLength and 16 bit
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RemainderLength to indicate the transmitted data bu�er length and remaining
data bu�er length. SPDM does not rely on low level transport layer fragmenta-
tion. A more generic chunking mechanism (CHUNK_CAP) is de�ned in SPDM 1.2.
As such, all SPDM messages can support chunking after the chunking capability
is negotiated, such as the SET_CERTIFIACTE and CSR.

The SPDM public certi�cate size depends upon the PQC public key size.
Some PQC algorithms, such as Dilithium and Falcon, use public keys larger
than 256 bytes. The public key size of Rainbow and GeMSS algorithms is larger
than 216 bytes. As such, the current GET_CERTIFICATE command cannot meet
the requirement. We may need to extend the 16 bits o�set and length �eld to 32
bits in a new version of GET_CERTIFICATE, or we can rede�ne GET_CERTIFICATE
to use the generic SPDM 1.2 chunking mechanism. However, considering a recent
attack [3] on Rainbow, it might not be a concern anymore.

In addition, we may de�ne a new format in secured message using SPDM
[15] by extending the 16 bit application length �eld to 32 bit, in order to support
the device without chunking capability.

5 Post Quantum Design for SPDM Device Authentication

Some SPDM messages, such as CHALLENGE_AUTH response, MEASUREMENTS re-
sponse, KEY_EXCHANGE_RSP response, and FINISH request, require a digital sig-
nature, such as RSA and ECDSA. The SPDM speci�cation de�nes the binary
format of the digital signature for a speci�c algorithm with a �xed size.

The signature format in PQC mode is exactly the same as the one in tradi-
tional mode. The signature size can be interpreted as the digital signature size of
the PQC algorithm. In hybrid mode, we require that both traditional algorithm
and PQC algorithm sign the same message data. The digital signature �eld in
the SPDM message should be the concatenation of the two signatures. The �rst
part is the traditional digital signature with �xed size, and the second part is
the PQC digital signature. In order to maintain compatibility we do not add the
signature size �eld. The format of the PQC digital signature should be de�ned
by the PQC algorithm.

5.1 Design Considerations

Hybrid Digital Signature We require that both a traditional algorithm and
a PQC algorithm sign the same message data and then concatenate signatures
together.

We do not choose the option to let one algorithm sign the digital signature
output from the other algorithm. This aligns with the current practice in TLS
hybrid mode.

No duplication In the hybrid mode, the traditional and PQC digital signatures
are combined together. There is no need to send the CHALLENGE/CHALLENGE_AUTH
twice - one is for classic mode and the other is PQC mode. The transcript
calculation just needs to happen one time.
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Transport Message Size As we discussed in a previous section, there is a
size limitation in the transport message. Unfortunately, most post quantum al-
gorithms have a large digital signature size. The signature size of Dilithium,
Falcon, SPHINCS+, and picnic algorithms are larger than 256 bytes. The sig-
nature size of picnic_{L3,L5}_{FS,UR,full} can be larger than 216 bytes.

Currently there are multiple SPDM messages including digital signature
- CHALLENGE_AUTH response, MEASUREMENTS response, KEY_EXCHANGE_RSP re-
sponse, and FINISH request message. In order to support large message trans-
portation, we can use the generic SPDM 1.2 chunking message for them.

Timing As we discussed in a previous section, a PQC algorithm may have
di�erent signature generation timing requirement. Some hash based signature
(HBS) algorithms, such as SPHINCS+, are much slower than the lattices based
algorithms, such as Dilithium2 or Falcon. The PQCTExponent should be larger
than the maximum signing time for the supported PQC signature algorithms.

6 Post Quantum Design for SPDM Secure Session

SPDM de�nes two ways to build a secure session, based on either a pre-shared
key (PSK) or an asymmetric key exchange. The PSK based key exchange in-
volves only hash-based message authentication code (HMAC), which is still se-
cure against quantum adversaries. The asymmetric key exchange uses ephemeral
Di�e-Hellman (DH) over �nite �elds or elliptic curves. The SPDM speci�cation
de�nes the binary format of the DH public key (ExchangeData) for both the
SPDM requester and the SPDM responder.

The SPDM 1.2 speci�cation only supports FFDHE and ECDHE. One-way
authentication is always required in an SPDM key exchange, while mutual au-
thentication is optional.

NIST supports Key Encapsulation Mechanism (KEM) for the shared key
generation. The only DH style PQC - Supersingular Isogeny Di�e-Hellman
(SIDH) is broken recently [7]. We adopted KEM style algorithm to make the
ExchangeData format in PQC mode similar to the one in the traditional mode.
The requester's ExchangeData is the requester's public key generated with a
PQC KEM key generation. The responder's ExchangeData is the responder's
cipher text generated with the PQC KEM encapsulation. In hybrid mode, the
ExchangeData �eld in the SPDM message should be the concatenation of the
two key ExchangeData. The �rst part is the traditional key ExchangeData with
a �xed size, and the second part is the PQC key ExchangeData with a �xed size.
The format of the PQC key ExchangeData, such as public key and cipher text,
should be determined by the selected PQC algorithm. With this approach, only
key agreement part of SPDM is converted to PQC. The remaining portion, such
as the identity authentication, is unchanged.

We did notice that KEM based authentication [18] was adopted by sev-
eral standard proposals, such as wireguard [20] and KEMTLS [8, 43, 42]. How-
ever, that will involve a much bigger impact for the SPDM KEY_EXCHANGE mes-
sage �ow, as well as other digital signature based commands such as SPDM
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CHALLENGE or GET_MEASURMENT. Our future work is to investigate the design de-
cision on how to support SPDM KEM based Authentication and if we can get
any bene�t.

6.1 SPDM KEM message �ow

For PQC-SPDM, we use a key encapsulation mechanism (KEM) based authen-
ticated key exchange to replace DHE. Fig. 1 shows the high-level view of PQ-
SPDM KEM-based handshake message �ow with mutual authentication. The
step in the FINISH message that is typeset with an asterisk is not required
in one-way authentication. The KEM-related action is highlighted in blue. The
KEM ephemeral secret key (esk) is highlighted in red, and the KEM ephemeral
public key (epk) and cipher text are highlighted in green. spdmvca means the
SPDM transcript for the SPDM command/response: GET_VERSION/VERSION,
GET_CAPABILITIES/CAPABILITIES, and NEGOTIATE_ALGORITHMS/ALGORITHMS.

First Message: KEY_EXCHANGE (initiator to responder)

1. The initiator needs to use the KEM algorithm to generate an ephemeral
private/public key pair (eski and epki).

2. To identify the session, the initiator generates a 16bit session ID (sidi) as
the �rst half of 32bit session ID.

3. To prevent the replay attacks, the initiator generates a 32bit random number
(randi).

4. The KEY_EXCHANGE message (keyexi) is the concatenation of the opcode
(keyexopi), the initiator generated session ID (sidi), the random number
(randi), the ephemeral public key (epki) and the initiator speci�c opaque
data.

Second Message: KEY_EXCHANGE_RSP (responder to initiator)

1. After the responder receives the KEY_EXCHANGE message, the responder uses
the KEM algorithm to encapsulate the ephemeral public key (epki) and
derives the shared session key and the cipher text.

2. The responder generates a 16bits session ID (sidr) as the second half of the
32bit session ID. The �nal session ID is the concatenation of the initiator's
session ID and the responder's session ID (sidi||sidr).

3. The responder also generates a 32bit random number (randr).
4. Now the responder can prepare the KEY_EXCHANGE_RSP message (keyex1r),

which is concatenation of the opcode (keyexopr), the half of the session ID
(sidr), the 32bit random number (randr), the KEM cipher text and the
responder speci�c opaque data.

5. From the shared key, the responder uses SPDM de�ned key schedule algo-
rithm to derive the ephemeral �nish key (efk), initiator direction ephemeral
handshake key (ehki) and responder direction ephemeral handshake key
(ehkr). The ephemeral �nish key (efk) will be used to generate a message
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Initiator Responder

(eski, epki)← KEM.Gen()
sidi ← {0, 1}16
randi ← {0, 1}32

keyexi ← keyexopi||sidi||randi||epki||opaquei

keyexi

(sharedkey,wrappedkey)← KEM.Encap(epki)
sidr ← {0, 1}16
randr ← {0, 1}32

keyex1r ← keyexopr||sidr||randr||wrappedkey||opaquer
(efk, ehki, ehkr)← SPDM.Derive(sharedkey)

sigr ← SIG.Sign(skr, spdmvca||pkr||keyexi||keyex1r)
macr ←MAC.Mac(efk, spdmvca||pkr||keyexi||keyex1r||sigr)

keyexr ← keyex1r||sigr||macr

keyexr

sharedkey← KEM.Decap(eski,wrappedkey)
(efk, ehki, ehkr)← SPDM.Derive(sharedkey)
SIG.Verify(pkr, spdmvca||pkr||keyexi||keyex1r)

MAC.Verify(efk, spdmvca||pkr||keyexi||keyex1r||sigr)
finish1i ← finopi

sigi ← SIG.Sign(ski, spdmvca||pkr||keyexi||keyexr||pki||finish1i)∗
maci ←MAC.Mac(efk, spdmvca||pkr||keyexi||keyexr||pki||finish1i||sigi)

finishpi ← finish1i||sigi||maci
finishi ← AEAD.Enc(ehki, finishpi)

finishi

finishpi ← AEAD.Dec(ehki, finishi)
SIG.Verify(pki, spdmvca||pkr||keyexi||keyexr||pki||finish1i)∗

MAC.Verify(efk, spdmvca||pkr||keyexi||keyexr||pki||finish1i||sigi)
finishpr ← finopr

finishr ← AEAD.Enc(ehkr, finishpr)

finishr

finishpr ← AEAD.Dec(ehkr, finishr)

Application Phase

Fig. 1. PQ-SPDM KEM based key exchange �ow
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authentication code (MAC) for the transcript. The ephemeral handshake key
will be used to AEAD the rest of messages in the handshake phase such as
FINISH and FINISH_RSP.

6. In order to prevent man-in-the-middle-attacks, the responder shall create
a transcript and sign the transcript with its permanent private key (skr)
and generate the digital signature (sigr). Per the SPDM speci�cation, the
transcript of KEY_EXCHANGE_RSP for signing is the concatenation of the ne-
gotiated SPDM protocol version, capability and algorithm (spdmvca), the
permanent public certi�cate chain or public key of the responder as identity
information (pkr), the KEY_EXCHANGE message from initiator (keyexi) and
the response generated KEY_EXCHANGER_RSP message (keyex1r).

7. The next step is to create another transcript and MAC the transcript with
the ephemeral �nish key (efk) and generate the MAC (macr). Per the SPDM
speci�cation, the transcript of KEY_EXCHANGE_RSP for MAC is the concate-
nation of the transcript of KEY_EXCHANGE_RSP for signing and the digital
signature (sigr).

8. The �nal full KEY_EXCHANGE_RSP message (keyexr) is the concatenation of
the response generated KEY_EXCHANGER_RSP message (keyex1r), the digital
signature (sigr) and the MAC (macr).

Third Message: FINISH (initiator to responder)

1. Once the initiator receives the KEY_EXCHANGE_RSP message, it can use KEM
algorithm decapsulate the cipher text with its ephemeral private key (eski)
and generate the shared key.

2. The initiator can follow the SPDM de�ned key schedule algorithm to derive
the ephemeral �nish key (efk), initiator direction ephemeral handshake key
(ehki) and responder direction ephemeral handshake key (ehkr). These keys
should be same as the one derived by the responder.

3. Then the requester shall follow the same process to construct the transcript
of KEY_EXCHANGE_RSP for signing and verify the digital signature (sigr) with
the responder's permanent public key (pkr). If the digital signature veri�ca-
tion fails, then the initiator shall terminate the session handshake immedi-
ately.

4. The requester shall follow the same process to construct the transcript of
KEY_EXCHANGE_RSP for MAC and verify the MAC (macr) with the ephemeral
�nish key (efk). If the MAC veri�cation fails, then the initiator shall termi-
nate the session handshake immediately.

5. At this point the initiator starts preparing the FINISH message (finish1i)
to close the handshake.

6. If mutual authentication is required, the initiator shall create the transcript
of FINISH for signing, which is the concatenation of spdmvca, the permanent
public certi�cate chain or public key of the responder as identity information
(pkr), the KEY_EXCHANGE message from initiator (keyexi) and the response
generated KEY_EXCHANGER_RSP message (keyexr), the permanent public cer-
ti�cate chain or public key of the initiator as identity information (pki) and
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the initiator generated FINISH message (finish1i). The initiator needs to
sign the transcript with its permanent private key (ski) and generate the
digital signature (sigi).

7. Then the initiator shall create the transcript of FINISH for MAC, which is
the concatenation of the transcript of FINISH for signing and the digital sig-
nature (sigi). The initiator needs to MAC the transcript with the ephemeral
�nish key (efk) and generate the MAC (maci).

8. The full FINISH message (finishpi) is the concatenation of the requester
generated FINISH message (finish1i), the digital signature (sigi) and the
MAC (maci). The digital signature is absent if mutual authentication is not
required.

9. The �nal FINISH message (finishi) is the AEAD of the full FINISH message
(finishpi) with initiator direction handshake key (ehki).

Fourth Message: FINISH_RSP (responder to initiator)
Once the responder receives the FINISH message, it performs AEAD decryp-

tion and veri�es the AEAD MAC.

1. If mutual authentication is required, the responder needs to verify the dig-
ital signature with the initiator's permanent public key (pki). If the digital
signature veri�cation fails, then the responder shall terminate the session
handshake immediately.

2. The responder needs to verify the MAC with the ephemeral �nish key (efk).
If the MAC veri�cation fails, then the responder shall terminate the session
handshake immediately.

3. As the �nal step, the responder creates the FINISH_RSP message (finishpr).
4. The �nal FINISH_RSP message (finishr) is the AEAD of the responder gen-

erated FINISH_RSP message (finishpr) with responder direction handshake
key (ehkr).

After the requester receives the FINISH_RSP, it performs AEAD decryption and
veri�es the AEAD MAC. If the AEAD MAC veri�cation passes, then the secure
session is setup between the initiator and the responder. The session applica-
tion message after the handshake phase is unchanged, which uses the AEAD
encryption.

In hybrid mode, there will be two shared secrets, including the traditional
Di�e-Hellman ephemeral (DHE) secret and the PQC shared secret. We concate-
nate them together as the �nal SPDM key exchange shared secret and input it
to the SPDM key schedule algorithm.

Note that in the SPDM speci�cation, the SPDM key schedule algorithm
names the SPDM key exchange shared secret to be "DHE Secret" because the
traditional algorithms only support DHE or ECDHE. We use a new term "key
exchange shared secret" to avoid any misunderstanding. In traditional mode,
"key exchange shared secret" is "DHE Secret". In PQC mode, "key exchange
shared secret" is "PQC shared secret". In hybrid mode, "key exchange shared
secret" is "the concatenation of traditional DHE secret and PQC shared secret".
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6.2 Security Analysis

KEM based key agreement In this proposal, we replaced the DHE based
key agreement with a KEM based key agreement. This mechanism is similar to
the key exchange model in TLS 1.3 hybrid design [47]. The KEM includes three
parts.

� KEM.Gen()->(esk,epk): A probabilistic key generation algorithm. It gener-
ates an ephemeral public key (epk) and an ephemeral secret key (esk).

� KEM.Encap(epk)->(sharedkey, wrappedkey): A probabilistic encapsulation
algorithm. It takes epk as input and outputs a shared secret (sharedkey) and
a ciphertext pk wrapper (wrappedkey).

� KEM.Decap(esk, wrappedkey)->sharedkey: A decapsulation algorithm. It
takes esk and wrappedkey as input and outputs a sharedkey.

Once the shared key is calculated, the remaining steps are the same as in
the existing SPDM standard, such as key derivation with HMAC based key
derivation function (HKDF), identity authentication using a digital signature,
and the proof for the owner of session key via HMAC.

The required security property of a KEM scheme is indistinguishability under
adaptive chosen ciphertext attack (IND-CCA2), which ensures security against
an active attacker. All NIST PQC KEM �nalists support IND-CCA2. However,
two NIST PQC KEM alternate candidates, BIKE and SIDH, only support in-
distinguishability under chosen plaintext attack (IND-CPA), which means they
can only guarantee security against passive attacker. The implementer should
choose a proper KEM algorithm based on the security needs, we recommend
ID-CCA2 schemes.

The existing SPDM only supports DHE. The DHE can be modeled as KEM,
where

� KEM.Gen()->(esk,epk): To select an exponent x and calculate gx, then esk
= x, epk = gx.

� KEM.Encap(epk)->(sharedkey, wrappedkey): To select an exponent y and
calculate gy and gx∗y, then sharedkey = gx∗y, wrappedkey = gy.

� KEM.Decap(esk, wrappedkey)->sharedkey: To compute sharedkey = gx∗y.

The details of DH based KEM are described in RFC9180 [2].
SPDM standard recommends that the requester and responder should gener-

ate a fresh DHE key pair for each key exchange request or response. That means
some key reuse might be possible. The implementer should understand the lim-
itation of key use, such as forward secrecy, and understand the KEM algorithm
speci�c requirement, such as number of reuses. For example, PQC SIDH is not
secure when keys are reused. We recommend always using fresh, one time use
key exchange values.

Shared Secret Combiner In hybrid mode, we calculate the final_shared_secret
to be the concatenation ofDHE_shared_secret and PQC_KEM_shared_secret,
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Fig. 2. SPDM Key Derivation Flow

followed by the HKDF-Extract and HKDF-Expand to derive the handshake se-
cret and data secret. See Fig.2.

In the current SPDM and NIST PQCKEM algorithms, the length of shared_secret
is �xed. As such, the length of final_shared_secret is also �xed.

The final_shared_secret shall have hybrid property: The secret is secure if
at least one of the key exchange algorithm is secure. The analysis of KEM com-
biners were provided in [4, 19]. The construction follows the dual-PRF combiner
which was approved to be IND-CCA secure in [4].

6.3 Design Considerations

Hybrid Key Exchange We require that a traditional algorithm and a PQC
algorithm each generate key ExchangeData separately, then concatenate them
together. We do not choose the option to de�ne a new key exchange algorithm
to combine both traditional and PQC algorithms. This aligns with the current
practice in TLS hybrid mode.

No duplication In the hybrid mode, the traditional and PQC key ExchangeData
are combined together. There is no need to send the KEY_EXCHANGEmessage twice
- one is for classic mode and the other is PQC mode. The transcript calculation
just needs to happen one time.

Hybrid Key Schedule We concatenate the raw traditional DHE secret and
raw PQC KEM shared secret as the �nal key exchange shared secret.
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We do not perform any other mathematical operation, such as XOR or Key
Derivation Function (KDF) to process the shared secrets. This aligns with the
current practice in TLS hybrid mode.

Transport Message Size As we discussed in previous section, there is a size
limitation in the transport message. The public key and the cipher text of the
PQC key establishment algorithm are involved in the transmission. The public
key size and the cipher text size of BIKE, HQC, Kyber, NTRU-HPS, ntrulpr,
Saber, FrodoKEM, SIDE/SIKE are larger than 256 bytes. The public key size
of classic-McEliece-{6688128,6960119,8192128} exceeds 216 bytes.

The current KEY_EXCHANGE request and response messages need to pass the
key ExchangeData. In order to support large message transportation, we can use
the generic SPDM 1.2 chunking message for them.

Timing As we discussed in a previous section, a PQC algorithm may have dif-
ferent KEM encapsulation timing requirements. Some isogenies of elliptic curves
based algorithms such as SIKE are much slower than the lattices based or code
based algorithms such as NTRU or Classic-McEliece. The PQCTExponent should
be larger than the maximum encapsulation time for the supported KEM algo-
rithms.

7 Results

We have developed a prototype that implements the above PQ-enabled SPDM
variant using post-quantum algorithms library liboqs [31] on top of an SPDM
implementation [1]. The implementation can run in both the Windows and Linux
SPDM emulators. It can run in a Field Programmable Gate Array (FPGA) smart
card and communicate with a host system on Intel Core CPU. We collected data
for the winning PQC algorithms (Kyber as a KEM and DILITHIUM, FALCON,
SPHINCS+ as digital signature primitives) described in the status report of
NIST PQC 3rd round �nalists [30] and compare them with the RSA and ECC
in traditional mode and hybrid mode. For parameters, we choose NIST security
level 1, 3 and 5 separately. The data has been collected on Intel Core(TM)
i7-8665U CPU @ 1.90 GHz.

Usually, a device is an SPDM responder and a host operating system is an
SPDM requester. We collect data from SPDM requester and responder sep-
arately. We considered two typical use cases: 1) device authentication which
includes digital signature signing and veri�cation, 2) one-way authenticated se-
cure session establishment, which includes key establishment and digital sig-
nature. In the �gure, we highlighted the time consuming portions - certi�cate
veri�cation (CERT_VERIFY) in GET_CERTIFICATE, digital signature signing
(CHAL_SIGN) and veri�cation (CHAL_VERIFY) in CHALLENGE for authenti-
cation, KEM generation (KEY_EX_KEM_GEN), encapsulation (KEY_EX_KEM_ENCAP),
decapsulation (KEY_EX_KEM_DECAP) in KEY_EXCHANGE, and digital sig-
nature signing (KEY_EX_SIGN) and veri�cation (KEY_EX_VERIFY) in
KEY_EXCHANGE for authentication secure session setup.
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Fig. 3. SPDM Requester Performance - Kyber, DILITHIUM, FALCON (microsecond)

Fig. 4. SPDM Requester Performance - SPHINCS+ (microsecond)
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Fig. 5. SPDM Responder Performance - Kyber, DILITHIUM, FALCON (microsecond)

Fig. 6. SPDM Responder Performance - SPHINCS+ (microsecond)
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Fig. 3 and Fig. 4 show the data for the SPDM requester. Fig. 5 and Fig. 6
show the data for the SPDM responder. L1, L3 and L5 means the minimal
NIST security level for the combination. The algorithm list is below (note that
for hybrid modes we have both classical and PQC algorithm suites):

� L1-RSA: ECDHE_secp256r1 + RSASSA_3072

� L1-EC: ECDHE_secp256r1 + ECDSA_NIST_P256

� L1-RSA+KB+DL: ECDHE_secp256r1& Kyber512+ RSASSA_3072& Dilithium2

� L1-EC+KB+DL: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256 &
Dilithium2

� L1-EC+KB90+DLA: ECDHE_secp256r1& Kyber512-90s+ ECDSA_NIST_P256

& Dilithium2-AES

� L1-RSA+KB+FC: ECDHE_secp256r1& Kyber512+ RSASSA_3072& Falcon-512

� L1-EC+KB+FC: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256 &
Falcon-512

� L1-RSA+KB+SPHRK: ECDHE_secp256r1 & Kyber512 + RSASSA_3072 &
SPHINCS+-Haraka-128f-robust

� L1-RSA+KB+SPSHA: ECDHE_secp256r1 & Kyber512 + RSASSA_3072 &
SPHINCS+-SHA256-128f-robust

� L1-RSA+KB+SPSHK: ECDHE_secp256r1 & Kyber512 + RSASSA_3072 &
SPHINCS+-SHAKE256-128f-robust

� L1-EC+KB+SPHRK: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256

& SPHINCS+-Haraka-128f-robust

� L1-EC+KB+SPSHA: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256

& SPHINCS+-SHA256-128f-robust

� L1-EC+KB+SPSHK: ECDHE_secp256r1 & Kyber512 + ECDSA_NIST_P256

& SPHINCS+-SHAKE256-128f-robust

� L3-EC: ECDHE_secp384r1 + ECDSA_NIST_P384

� L3-EC+KB+DL: ECDHE_secp384r1 & Kyber768 + ECDSA_NIST_P384 &
Dilithium3

� L3-EC+KB90+DLA: ECDHE_secp384r1& Kyber768-90s+ ECDSA_NIST_P384

& Dilithium3-AES

� L3-EC+KB+FC: ECDHE_secp384r1 & Kyber768 + ECDSA_NIST_P384 &
Falcon-1024

� L5-EC: ECDHE_secp521r1 + ECDSA_NIST_P521

� L5-EC+KB+DL: ECDHE_secp521r1 & Kyber1024 + ECDSA_NIST_P521 &
Dilithium5

� L5-EC+KB90+DLA: ECDHE_secp521r1& Kyber1024-90s+ ECDSA_NIST_P521

& Dilithium5-AES

� L5-EC+KB+FC: ECDHE_secp521r1 & Kyber1024 + ECDSA_NIST_P521 &
Falcon-1024

8 Discussion

The data on the requester side shows that the cryptography timing caused by
the hybrid mode is less than double of the traditional time. Kyber, DILITHIUM
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and FALCON all demonstrate good performance. The data on the responder
side shows that the digital signature process contributed the majority of time.
DILITHIUM is much better than FALCON. However, SPHINCS+ takes signif-
icantly longer time in both signature generation and veri�cation.

Challenges The SPDM speci�cation de�nes the digital signature data or the
public key ExchangeData as �xed size �elds. However, some PQC algorithms
will generate a signature with variable size, such as FALCON. The actual size
is smaller than the maximum size. The liboqs implementation uses the �rst four
bytes to store the actual size. Care should be taken to move the variable signature
data to or from a �xed size bu�er to avoid bu�er over�ows.

If there is a transport message size limitation, we have to use chunking mech-
anism to transfer the large signature or public key. Chunking will increase the
overhead on message disassembling and reassembling. However, even the trans-
port layer has capability to transfer a large message, we may still consider chunk-
ing. The SPDM transport layer might not be reliable. As such, a package may
be lost or broken during transmission, then a message retry maybe needed. The
overhead to retry a large message is bigger than the one to retry a small chunked
messaged. The implementer needs to balance the overhead of chunking and the
overhead of message retry.

Backward Compatibility According to the previous discussion, the PQ-SPDM
can achieve partial backward compatibility with SPDM 1.2 protocol. See Table 3.

9 Conclusions

In this paper, we proposed to a way to add PQC capability to the SPDM proto-
col. This addition entailed minimal modi�cation of the existing SPDM protocol.
We successfully created a prototype based upon the proposal. This prototype
shows that PQC-SPDM is feasible in practice. We hope our analysis will help
prepare the industry to adopt SPDM for device �rmware with long-lived service
requirements. This is imperative given the looming need to have more widespread
support for post-quantum security capabilities. We notice that the latency caused
by the digital signature signing on the responder side might become a perfor-
mance concern in the future. The KEM based authentication [18] could be a
way to resolve this timing problem. We will do the research on that area in the
future.
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