
RapidUp: Multi-Domain Permutation
Protocol for Lookup Tables

Héctor Masip Ardevol1∗, Jordi Baylina Melé2, Daniel Lubarov3 and José L.
Muñoz-Tapia1

1 Universitat Politècnica de Catalunya, Spain, {hector.masip,jose.luis.munoz}@upc.edu
2 Polygon Hermez, jordi@baylina.cat

3 Mir Protocol, daniel@lubarov.com

Abstract. SNARKs for some standard cryptographic primitives tend to be plenty
designed with SNARK-unfriendly operations such as XOR. Previous protocols such
as [GW20] worked around this problem by the introduction of lookup arguments.
However, these protocols were only appliable over the same circuit. RapidUp is a
protocol that solves this limitation by unfolding the grand-product polynomial into
two (equivalent) polynomials of the same size. Morevoer, a generalization of previous
protocols is presented by the introduction of selectors.
Keywords: lookup · tables · permutation · SNARK · protocol

1 Introduction
At the hearth of the universal SNARK [BCTV13] PlonK [GWC19] there is a protocol
proving that the vectors formed by the evaluations of two polynomials over an evaluation
domain are a permutation of each other. This protocol is latter on generalized for multiple
polynomials and used by the prover in the main PlonK protocol to prove that circuit gates
are correctly connected.

This permutation check is accomplished by the construction of a “grand-product”
polynomial. At a high level, the grand-product is defined, cumulatively, as the product
of the quotient of the evaluations of the involved polynomials. Then, if it is verified that
this polynomial correctly cycles back to 1 after its last evaluation, it is proven that the
original evaluations are a permutation of each other.

The principal problem of this protocol is that it cannot be instantiated when the
polynomials in question have to be evaluated over distinct (possibly related) domains.
That is, the permutation check between polynomials f and g is only described in the case
where the evaluations of both polynomials are over the same domain H.

In this article, we generalize this grand-product-based protocol in two different ways.
First, our protocol generalizes to the aforementioned context. That is, it will work even
in the scenario where the polynomials are evaluated over distinct domains of, possibly,
different size. Second, our protocol can be applied even where the original evaluations are
not a permutation of each other, but rather they contain this permutation. The latter
becomes useful in the case where the original values are not permuted “in its whole”.

Let’s see an example. Consider sets f = {5, 4, 2, 5} and g = {9, 7, 5, 8, 5, 1, 6, 9, 4}
representing the values obtained by evaluating two polynomials (also denoted f and g)
over domains of size m and n, respectively. Even if not relevant at this point, these
domains will consist on subgroups of the multiplicative group of some finite field.

∗Corresponding author.

mailto:hector.masip@upc.edu,jose.luis.munoz@upc.edu
mailto:jordi@baylina.cat
mailto:daniel@lubarov.com

From a generic point of view, our protocol can be used to prove that a certain subset1

of f , denoted as f ′, is a permutation of a subset of g, denoted as g′. Continuing with
the previous example, we can say that the subset f ′ = {5, 4, 5} of the multiset f , and
the subset g′ = {5, 5, 4} of the multiset g, are related through the permutation (1, 3, 2).
More formally, a permutation between the subsets f ′ and g′ can be defined as a relation
in which, for each index i of one of the subsets, say f ′, there exists some index j in the
other subset g′, such that the corresponding elements f ′

i , g
′
j are the same. Notice that

while the length of f and g might be different, the length of the subsets being checked is
the same, i.e., |f ′| = |g′|.

The main idea of our protocol to “split” the grand-product polynomial Z into two other
polynomials Zf , Zg, so that the latter ones represent the two members of the quotient in
Z. That is, if at some evaluation point the polynomial Z evaluates to A/B, then also in
some (possibly distinct) evaluation point the polynomials Zf , Zg will evaluate to A and
B, respectively. Following the structure of Z, these two polynomials will require to be
equal in is last evaluation.

To be able to define such polynomials, we introduce two additional sets f sel and gsel,
known as the selectors. These selectors will allow us to select the indexes of each multiset
f and g that we are going to be including in the subsets f ′ and g′ for the permutation
check. The elements of these selectors are defined to be 1 if the index is selected to be
included in the subset, and 0 otherwise. Following with the previous example, the selectors
are f sel = {1, 1, 0, 1} and gsel = {0, 0, 1, 0, 1, 0, 0, 0, 1}.

Now, we define two grand-product polynomials Zf , Zg that evaluate, respectively, to
the following values when evaluated on their respective evaluation domain:

Zf → {1, (5 + γ), (5 + γ)(4 + γ), (5 + γ)(4 + γ), (5 + γ)(4 + γ)(5 + γ)}

Zg → {1, 1, 1, (5 + γ), (5 + γ), (5 + γ)(5 + γ), (5 + γ)(5 + γ),
(5 + γ)(5 + γ), (5 + γ)(5 + γ), (5 + γ)(5 + γ)(4 + γ)}

where γ is a random element from the underlying field.
Observe that these polynomials end up in the same product value. Hence, the idea is

that the subset {5, 4, 5} ⊂ {fi} is also a subset in {gi} if and only if Zf and Zg evaluate
to the same element in their respective last element.

1.1 Use Case: Lookup Tables
A scenario in which this protocol can be applied is the case of lookup tables. This lookup
technique reduces the native SNARK representation that some standard primitives, such
as Keccak-256 [BDPA13], are made of. At a high level, this technique works by precomput-
ing a lookup table of all the possible combinations of inputs/outputs for some particular
“SNARK-unfriendly” operation2. Then, instead of representing the outsourced operation
in some SNARK language, the prover claims that the corresponding witnesses exist in the
table.

Plookup [GW20] provided a simple and efficient protocol of this idea. The main
problem of their approach is that the involved vectors in lookup, the witness-related f
and the table-related t, have to be of close length. In particular, their protocol can be
applied to vectors f, t such that |t| = |f | + 1. This restriction was accommodated latter
on by the alternating method described in [PFM+22]. Here, they could design a similar
protocol for vectors f, t of the same length; which lead to an even simpler lookup protocol
with less constraints.

However, there are some situations in which vectors f, t are not of close length. In
a traditional scenario, one can find |f | to be a small power of two and |t| a big power

1It could be the case where f ′ = f or g′ = g or both.
2One should typically think about bitwise operations, such as XOR.

2

of two. This is the bottleneck of the previous protocols, since one who wishes to use
them and faces the aforementioned problem must accommodate the length of |f | by, if
appropriate, padding to f repetitions of its last element until its size fits with the protocol.
This accommodation leads to efficiency loses in both the prover and the verifier part, but
mainly in the prover side.

In this article we present a solution to the length accommodation issue. The protocol
presented in Section 4 follows a similar nature than the protocols in [GW20] or even
[BCG+18], in the context of efficient SNARK arithmetization of common operations.

1.2 Organization of the Article
This article is organized as follows. In Section 2 we provide some background and prelimi-
naries. In Section 3 we define and discuss a more general version of a polynomial protocol,
where we cover the need for polynomial protocols defined over distinct domains. Finally,
in Section 4 we present the design and the security proof of our protocol.

2 Preliminaries
2.1 Terminology and Conventions
Given n ∈ N, we will use [n] as a shorthand for the set {1, 2, . . . , n}. Given appropriate
n,m ∈ Z+

0 , we will use [n,m] to denote the set {n, n+ 1, n+ 2, . . . ,m}.
We assume our field F is of prime order and denote by F∗ its respective multiplica-

tive group. We denote by F<n[X] the set of univariate polynomials over F of degree
smaller than n. When there is no room for confusion (e.g., when expressions only involve
univariate polynomials), we will simply write f instead of f(X).

For a polynomial f ∈ F<n[X] and for i ∈ [n] we denote fi := f(ωi). For a vector f ∈ Fn,
we also denote by f the polynomial in F<n[X] with f(ωi) = fi. We indistinguishably use
fi to denote the i-th element of vector f or the evaluation of polynomial f on input ωi,
as it is equivalent in the context of this article.

In our protocols, we typically denote by H a multiplicative subgroup of F of order
N with generator ω. When we write H2 we refer to the set that originates from taking
the square to all the elements in H. Generally, we write H2h when we take the 2h-th
power. For a subset H ⊂ F∗, we call vanishing polynomial to the polynomial defined as
ZH(X) :=

∏
x∈H(X − x).

Finally, we assume all algorithms described in this article receive as an implicit param-
eter the security parameter λ.

2.2 Lagrange Polynomials
For i ∈ [n], we denote by Li ∈ F<n[X] the i-th Lagrange polynomial for H. That is, Li

satisfies Li(ωi) = 1 and Li(ωj) = 0 for j ̸= i. It can be checked that the i-th Lagrange
polynomial has the form:

Li(X) = ωi (Xn − 1)
n (X − ωi)

.

Lagrange polynomials are convenient when specifying a point check in an protocol
restricted to some domain H. Specifically, these polynomials are suitable for converting
point checks to checks in the entire subgroup H, as it is shown in Claim 1.

Claim 1. Fix i ∈ [n] and f, g ∈ F[X]. Then Li(x)(f(x) − g(x)) = 0 for all x ∈ H if and
only if f(ωi) = g(ωi).

3

The generator ω is also convenient for specifying constraints on “neighboring values”.
For example, the constraint f(X ·ω2) = f(X ·ω) + f(X) means that f ’s values follow the
Fibonacci sequence between three consecutive points.

2.3 Polynomial Commitment Schemes
We define polynomial commitment schemes (PCS) in a general context similarly to [BDFG20].
Specifically, we define the scheme in a batched setting, allowing to query multiple polyno-
mials at multiple points.

Definition 1. A d-polynomial commitment scheme is a triplet PCS = (gen, com, open)
such that:

• gen(d): Randomized algorithm that given a positive integer d outputs a structured
reference string (SRS) srs.

srs = gen(d).

• com(f, srs): Deterministic algorithm that given a polynomial f ∈ F<d[X] and an
output srs of gen(d) returns a commitment cm of f .

cm = com(f, srs).

• open: Public coin protocol between parties PPCS and VPCS. PPCS is given f1, . . . , fk ∈
F<d[X]. PPCS and VPCS are both given:

1. Positive integers d, t = poly(λ).
2. The SRS srs = gen(d).
3. cm1, . . . , cmk: The alleged commitments to f1, . . . fk.
4. A subset T = {z1, . . . , zt} ⊂ F consisting on the evaluation points.
5. Some subsets S1, . . . , Sk ⊂ T consisting on the specific evaluation points to

be disclosed by each polynomial f1, . . . , fk, respectively. Note that we do not
require these subsets to be disjoint.

6.
{
ri ∈ F<|Si|[X]

}
i∈[k]: The polynomials describing the alleged openings, i.e.,

having ri(z) = fi(z) for each i ∈ [k] and z ∈ Si.

At the end of the protocol VPCS outputs Accept or Reject.
The open protocol satisfies the following properties:

– Completeness: Fix any d, t = poly(λ), f1, . . . fk ∈ F<d[X], T = {z1, . . . , zt} ⊂
F, S1, . . . , Sk ⊂ T and

{
ri ∈ F<|Si|[X]

}
i∈[k]. Suppose that for each i ∈ [k],

cmi = com(fi, srs), and ZSi
| (fi − ri). Then, if PPCS follows open correctly

with these values, VPCS outputs Accept with probability one.
– Knowledge soundness in the algebraic group model: There exists an

efficient extractor E such that for any algebraic adversary A and any choice of
d = poly(λ), the probability of A winning the following game is negligible over
the randomness of A,VPCS and gen:

1. Given d and srs = gen(d), A outputs cm1, . . . , cmk.
2. E, given access to the messages of A during the previous step, outputs
f1, . . . , fk ∈ F<d[X].

3. A outputs T = {z1, . . . , zt} ⊂ F, S1, . . . , Sk ⊂ T and
{
ri ∈ F<|Si|[X]

}
i∈[k].

4. A takes part of PPCS in the open protocol with the inputs cm1, . . . , cmk, T ,
S1, . . . , Sk, and {ri}i∈[k].

4

5. A wins if:
∗ VPCS outputs Accept at the end of the protocol.
∗ For some i ∈ [k], ZSi ∤ (fi − ri).

3 Polynomial Protocols
In this section, we will define a variant of polynomial protocol defined in [GWC19]. Recall
that the idea underneath the definition of a polynomial protocol is to cleanly capture and
abstract the use of polynomial commitment schemes such as [KZG10] and [BBHR18]. In
this protocol, the prover sends polynomials to a trusted party I. The verifier may then
ask I whether certain identities hold between the provers polynomials, and additional
predefined polynomials known to the verifier.

Compared to [GWC19], our polynomial protocols need to allow for the prover to
interact directly with the verifier by sending messages from F that will be dependent on
at least one of the messages send previously by the prover to I. Moreover, each of the
identities that the verifier ask I can be over distinct domains.

Definition 2. Fix positive integers d,D, ℓ, th. A (d,D, ℓ, t, h)-polynomial protocol over
F is a multi-round protocol between a prover Ppoly, a verifier Vpoly and an ideal (trusted)
party I that proceeds as follows.

1. The protocol definition includes a set of preprocessed polynomials g1, . . . , gℓ ∈
F<d[X].

2. The messages of Ppoly that are sent to I are of the form f , for f ∈ F<d[X]. If Ppoly
sends a message not of this form, the protocol is aborted.

3. The messages of Ppoly that are sent to Vpoly are of the form K, for K ∈ F. If Ppoly
sends a message not of this form, the protocol is aborted.

4. The messages of Vpoly that are sent to Ppoly are random coins.

5. At the end of the protocol, suppose f1, . . . , ft are the polynomials that were sent
from Ppoly to I. Also suppose K1, . . . ,Kh are the elements from F that were sent
from Ppoly to Vpoly. Vpoly may ask I if certain polynomial identities holds between
{g1, . . . , gℓ, f1, . . . , ft} and {K1, . . . ,Kh}. Each identity is of the form:

F (X) := G(X,h1(v1(X)), . . . , hM (vM (X)),K1, . . . ,Kh) ≡ 0,

for some hi ∈ {g1, . . . , gℓ, f1, . . . , ft}, G ∈ F[X,X1, . . . , XM], v1, . . . , vM ∈ F<d[X]
such that F ∈ F<D[X] for every choice of f1, . . . , ft made by Ppoly when following
the protocol correctly.

6. After receiving the answers from I regarding the identities, Vpoly outputs Accept if
all identities hold, and outputs Reject otherwise.

We also define polynomial protocols for relations in the natural way.

Definition 3. Given a relation R, a polynomial protocol for R is a polynomial protocol
with the following additional properties.

1. At the beginning of the protocol, Ppoly and Vpoly are both additionally given an input
x. The description of Ppoly assumes possession of ω such that (x,w) ∈ R.

2. Perfect Completeness: If Ppoly follows the protocol correctly using a witness w
for x, Vpoly accepts with probability one.

5

3. Knowledge Soundness: There exists an efficient extractor E, that given access
to the messages of Ppoly to I and Vpoly outputs w such that, for any strategy of Ppoly,
the probability of the following event is negl(λ).

(a) Vpoly outputs Accept at the end of the protocol.
(b) (x,w) /∈ R.

3.1 Polynomial Protocols on Multiple Domains
In our protocols, Vpoly in fact needs to check if certain polynomial identities hold on certain
subsets of values from F, rather than in the entire F. Hence, for subsets H1, . . . , Hk ⊂ F,
we define a multi-ranged (d,D, ℓ, t, h, k)-polynomial protocol over H1, . . . , Hk identically
to a (d,D, ℓ, t, h)-polynomial protocol, but:

1. The integer k satisfies k ≤ t.

2. Each of the identities that the verifier asks to I in the last step of the protocol are
only over one of H1, . . . , Hk rather than the entire F.

It is shown in Section 4 of [GWC19] how an H-ranged polynomial protocol can be
converted to a polynomial protocol over F, which only incurs in an additional preprocessed
polynomial and polynomials sent from Ppoly to I. This construction still holds true in the
case of multiple ranges.

Lemma 1. Let P be a multi-ranged (d,D, ℓ, t, h, k)-polynomial protocol over H1, . . . , Hk.
Let h = max{|H1|, . . . , |Hk|} and h = min{|H1|, . . . , |Hk|}. Then we can construct a
(max{d, h,D − h}, D, ℓ+ k, t+ k, h)-polynomial protocol P∗ over F.

Proof. We construct the protocol P∗. The set of preprocessed polynomials in P∗ are
the same as in P with the addition of vanishing polynomials ZHi :=

∏
a∈Hi

(X − a). P∗

proceeds exactly3 as P until the point where Vpoly ask about identities over H1, . . . , Hk.
Suppose that the m identities the verifier asks about are F1(X), . . . , Fm(X). Group them
depending over which Hi they are asked. W.l.o.g., assume there the existence of positive
integers m1, . . . ,mk such that m1 + · · · +mk = m and are such that F1(X), . . . , Fm1(X)
are asked over H1, Fm1+1(X), . . . , Fm1+m2(X) are asked over H2 and so on. P∗ now
proceeds as follows:

• Vpoly sends uniform a1, . . . , am ∈ F to Ppoly.

• Ppoly computes the polynomials:

T1 :=
∑

i∈[m1] ai · Fi(X)
ZH1

, . . . , Tk :=
∑

i∈[m−mk,m] ai · Fi(X)
ZHk

• Ppoly sends T1, . . . , Tk to I.

• Vpoly queries the identities:∑
i∈[m1]

ai · Fi(X) ≡ T1 · ZH1 , . . . ,
∑

i∈[m−mk,m]

ai · Fi(X) ≡ Tk · ZHk
.

The proof finish by using Claim 4.6 from [GWC19], noticing that our result holds except
with probability k/|F|. ■

3Since Hi ⊂ F for all i ∈ [k], sending messages of the form K for K ∈ Hi for some i ∈ [k] is equivalent
to sending messages of the same form, but for K ∈ F.

6

3.2 From Polynomial Protocols to Protocols Against Algebraic Adver-
saries

Regarding the compilation from polynomial protocols to protocols in the Algebraic Group
Model (AGM), this compilation also holds true in our scenario with no major changes.
The compilation is similar to the one in [GW21] in the sense that we can not assume the
verifier only checks one polynomial identity. As we have seen in Lemma 1, the verifier in
our protocols will end up asking for one identity per each range that we consider (in our
protocols, it will be used two ranges).

In the following, we describe the claim about knowledge in the AGM. Let P be a
(d,D, ℓ, t, h)-polynomial protocol. We construct a protocol P∗ with knowledge soundness
in the AGM. To this end, we must describe the extractor E for P∗. Let EP be the
extractor of the protocol P and let EPCS be the extractor for the knowledge soundness
game as in Def. 1.

Begin by assuming that an algebraic adversary A is taking the role of P in P∗.

1. E sends the commitments cm1, . . . , cmt and t to EPCS and receives in return f1, . . . , ft ∈
F<d[X].

2. E plays the role of I in interaction with EP , sending him the received polynomials
f1, . . . , ft.

3. When EP outputs w, E also outputs w.

Now let us define two events:

1. We think of an adversary AP participating in P, and using the polynomials f1, . . . , ft

as their messages to I. We define A to be the event that one of the identities Fi

held, but (x,w) /∈ R. By the KS of P, Pr(A) = negl(λ).

2. We let B be the event that for some i ∈ [k], j ∈ [M], hi,j(vi,j(x)) ̸= si,j , and at the
same time V has output Accept when open was run as a subroutine. By the KS of
P, Pr(B) = negl(λ).

Now look at the event C that V outputs Accept, but E failed in the sense that (x,w) /∈
R. We split C into two events.

1. A or B also happened - this has negl(λ) probability.

2. C happened but not A or B. This means for some i ∈ [k], Fi is not the zero
polynomial, but Fi(x) = 0; which happens w.p. negl(λ).

Notice that E also has access to the messages sent directly from Ppoly to Vpoly, but it
does not need them to be able to obtain the “incorrect” witness ω. Hence, E can simply
ignore them and continue as in the original proof.

4 Main Protocol
This section is entirely devoted to our protocol. For the description of our protocol, we
follow a similar approach to the one detailed in [GW20].

In Section 4.1 we explain our the tools used in our protocol and provide an intuition
on how it works. In Section 4.2 we provide a description and the soundness proof of our
protocol in the trusted party I setting.

7

4.1 Grand-Product Polynomials
Fix integers m,n, let ψ be a primitive (m + 1)-th root of unity and let ω be a primitive
(n + 1)-th root of unity. Subsequently, let Hf = ⟨ψ⟩ and Hg = ⟨ω⟩ be the multiplicative
subgroups generated by ψ and ω, respectively. Finally, let our input vectors be f ∈ Fm

and g ∈ Fn.
Recall that the way we want to show that some values from f are contained in g is

through the grand-product polynomials Zf and Zg. Therefore, we have to be able to
handle the “evolving” and “non-evolving” scenarios. This means that Zf has to remain
unchanged at the i-th step if the i-th value of f is not contained in g, and contribute to
the grand-product otherwise. The polynomial Zg is defined in a similar fashion.

Let γ be some element from F.

• The computation of both Zf and Zg begins with Zf (ψ) = Zg(ω) = 1.

• For i ∈ [2,m+ 1], the polynomial Zf ∈ F<m+1[X] must satisfy:

Zf (ψi) =

{
Zf (ψi−1) · (f(ψi) + γ), if there exists some j ∈ [n] s.t. fi = gj

Zf (ψi−1), otherwise
(1)

• For i ∈ [2, n+ 1], the polynomial Zg ∈ F<n+1[X] must satisfy:

Zg(ωi) =

{
Zg(ωi−1) · (g(ωi) + γ), if there exists some j ∈ [m] s.t. gi = fj

Zg(ωi−1), otherwise
(2)

In order to build constraints that relate the neighbor elements of those polynomials we
define two selector vectors f sel ∈ Fm, gsel ∈ Fn. By selectors we understand polynomials
that evaluate to 0 or 1 over their respective evaluation domain. The idea of the selectors
is to select the elements from f and g that are supposed to be included in the permutation
check. Hence, we define them under the same conditions of the polynomials Zf and Zg.

• For i ∈ [m], the polynomial f sel ∈ F<m[X] must satisfy:

f sel(ψi) =

{
1, if there exists some j ∈ [n] s.t. fi = gj

0, otherwise
. (3)

• For i ∈ [n], the polynomial gsel ∈ F<n[X] must satisfy:

gsel(ωi) =

{
1, if there exists some j ∈ [m] s.t. gi = fj

0, otherwise
. (4)

Now, following Eqs. (1)-(4) and in the spirit of the grand-product polynomial defini-
tions in [GWC19] or [GW20], we can define the polynomials Zf and Zg in a non-recursive
manner.

For i ∈ [2,m+ 1] we have:

Zf (ψi) =
∏

1≤j<i

(
f sel(ψj)

(
f(ψj) + γ − 1

)
+ 1

)
.

For i ∈ [2, n+ 1] we have:

Zg(ωi) =
∏

1≤j<i

(
gsel(ωj)

(
g(ωj) + γ − 1

)
+ 1

)
.

We are now ready to proceed to the description of the protocol.

8

4.2 Protocol Description and Soundness Proof
Based on the definitions in Section 4.1, we obtain the following protocol.

Input: f ∈ F<m[X] and g ∈ F<n[X].

Protocol:

1. Ppoly computes the polynomials f sel ∈ F<m[X] and gsel ∈ F<n[X] defined as in Eq.
(3), (4) and sends them to I.

2. Vpoly samples random γ ∈ F and sends it to Ppoly.

3. Ppoly computes the polynomials Zf ∈ F<m+1[X] and Zg ∈ F<n+1[X] such that
Zf (ψ) = Zg(ω) = 1; and for i ∈ [2,m+ 1] and k ∈ [2, n+ 1]:

Zf (ψi) =
∏

1≤j<i

(
f sel(ψj)

(
f(ψj) + γ − 1

)
+ 1

)
,

Zg(ωk) =
∏

1≤j<k

(
gsel(ωj)

(
g(ωj) + γ − 1

)
+ 1

)
.

Let K denote the evaluation4 of Zg at ωn+1, so that K = Zg(ωn+1).

4. Ppoly sends Zf , Zg to I and K to Vpoly.

5. Vpoly checks that both Zf , Zg are of the form described above. Vpoly also checks that
both polynomials evaluate to the same element at ψm+1 and ωn+1, respectively. In
other words, the same product is obtained in both in the very last step. Specifically,
Vpoly asks to I for the following identities for all x ∈ Hf and y ∈ Hg:

(a) L1(x) (Zf (x) − 1) = 0.
(b) L1(y) (Zg(y) − 1) = 0.
(c) Zf (x · ψ) = Zf (x)

(
f sel(x) (f(x) + γ − 1) + 1

)
(1 − Lm+1(x)) + Lm+1(x).

(d) Zg(y · ω) = Zg(y)
(
gsel(y) (g(y) + γ − 1) + 1

)
(1 − Ln+1(y)) + Ln+1(y).

(e) Lm+1(x) (Zf (x) −K) = 0.
(f) Ln+1(y) (Zg(y) −K) = 0.

outputting Accept if all checks hold.

Remark 1. To avoid notation overloading we have abused notation for the Lagrange poly-
nomials with respect to Hf and Hg. So, for instance, the polynomial L1 in (a) is the 1st
Lagrange polynomial for Hf , but the polynomial L1 in (b) is the 1st Lagrange polynomial
for Hg.

Lemma 2. Fix f ∈ F<m[X] and g ∈ F<n[X]. Suppose that the sets f = {fi}i∈[m] and
g = {gi}i∈[n] do not contain do not contain a permutation of each other. Then, for any
strategy of Ppoly, the probability of Vpoly outputting Accept in the above protocol is negl(λ).

Proof. For the proof we mainly use the following simple claim. A proof of it can be found
in Appendix A of [GWC19].

4We equivalently could have took the evaluation of Zf at ψm+1.

9

Claim 2. If the following holds with non-negligible probability over random γ ∈ F:
n∏

i=1
(ai + γ) =

n∏
i=1

(bi + γ),

then the entries in the tuple (a1, . . . , an) equal the entries in the tuple (b1, . . . , bn), but not
necessarily in the same order.

By Claim 2, the following holds with overwhelming probability over the choice of γ ∈ F:∏
i∈[m]

f sel
i · (fi + γ) ̸=

∏
k∈[n]

gsel
k · (gk + γ). (5)

Consequently, if Eq. (5) holds then the following also holds with the same probability5:

Af :=
∏

i∈[m]

(
f sel

i (fi + γ − 1) + 1
)

̸=
∏

k∈[n]

(
gsel

k (gk + γ − 1) + 1
)

=: Ag (6)

From check (a) we known that Zf (ψ) = 1. From check (c) we can show inductively,
that for each i ∈ [m]:

Zf (ψi+1) =
∏

1≤j≤i

[(
f sel(ψj)

(
f(ψj) + γ − 1

)
+ 1

)
(1 − Lm+1(ψj)) + Lm+1(ψj)

]
.

In particular, Zf (ψm+1) = Af .
Similarly, from check (b) we know that Zg(ω) = 1 and from check (d) we can show

inductively that for each i ∈ [n]:

Zg(ωi+1) =
∏

1≤j≤i

[(
gsel(ωj)

(
g(ωj) + γ − 1

)
+ 1

)
(1 − Ln+1(ωj)) + Ln+1(ωj)

]
.

In particular, Zg(ωn+1) = Ag.
Moreover, the Lagrange polynomials Lm+1, Ln+1 make checks (c) and (d) be valid

over all x ∈ Hf and y ∈ Hg, respectively. In particular, 1 = Zf (ψ) = Zf (ψm+2) and
1 = Zg(ω) = Zg(ωn+2).

However, checks (e) and (f) enforces that Zf (ψm+1) = Zg(ωn+1), which leads to a
contradiction with Eq. (6). ■

5Note that the value of these products remain unchanged if we add the values for i = m + 1 and
k = n+ 1, respectively.

10

References
[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-

solomon interactive oracle proofs of proximity. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP
2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary
Maller. Nearly linear-time zero-knowledge proofs for correct program execu-
tion. Cryptology ePrint Archive, Report 2018/380, 2018. https://eprint.
iacr.org/2018/380.

[BCTV13] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct
non-interactive arguments for a von neumann architecture. Cryptology ePrint
Archive, Report 2013/879, 2013. https://eprint.iacr.org/2013/879.

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polynomial
commitment schemes for multiple points and polynomials. Cryptology ePrint
Archive, Report 2020/081, 2020. https://eprint.iacr.org/2020/081.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 313–314. Springer, Heidelberg, May 2013.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial
protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315, 2020.
https://eprint.iacr.org/2020/315.

[GW21] Ariel Gabizon and Zachary J. Williamson. fflonk: a fast-fourier inspired verifier
efficient version of PlonK. Cryptology ePrint Archive, Report 2021/1167, 2021.
https://eprint.iacr.org/2021/1167.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidel-
berg, December 2010.

[PFM+22] Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz, and
Jose Luis Muñoz-Tapia. PlonKup: Reconciling PlonK with plookup. Cryp-
tology ePrint Archive, Report 2022/086, 2022. https://eprint.iacr.org/
2022/086.

11

https://eprint.iacr.org/2018/380
https://eprint.iacr.org/2018/380
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2021/1167
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/086
https://eprint.iacr.org/2022/086

	Introduction
	Use Case: Lookup Tables
	Organization of the Article

	Preliminaries
	Terminology and Conventions
	Lagrange Polynomials
	Polynomial Commitment Schemes

	Polynomial Protocols
	Polynomial Protocols on Multiple Domains
	From Polynomial Protocols to Protocols Against Algebraic Adversaries

	Main Protocol
	Grand-Product Polynomials
	Protocol Description and Soundness Proof

