
How to Verifiably Encrypt Many Bits
for an Election?

Henri Devillez, Olivier Pereira, and Thomas Peters

UCLouvain – ICTEAM, B-1348 Louvain-la-Neuve – Belgium
{henri.devillez, olivier.pereira, thomas.peters}@uclouvain.be

Abstract. The verifiable encryption of bits is the main computational
step that is needed to prepare ballots in many practical voting protocols.
Its computational load can also be a practical bottleneck, preventing the
deployment of some protocols or requiring the use of computing clusters.

We investigate the question of producing many verifiably encrypted
bits in an efficient and portable way, using as a baseline the protocol
that is in use in essentially all modern voting systems and libraries
supporting homomorphic voting, including ElectionGuard, a state-of-the-
art open source voting SDK deployed in government elections. Combining
fixed base exponentiation techniques and new encryption and ZK proof
mechanisms, we obtain speed-ups by more than one order of magnitude
against standard implementations. Our exploration requires balancing
conflicting optimization strategies, and the use of asymptotically less
efficient protocols that turn out to be very effective in practice. Several
of our proposed improvements are now on the ElectionGuard roadmap.

1 Introduction

Verifiable encryption of bits. Encrypting bits is the main computational step
that is needed in order to prepare a ballot in numerous voting protocols [5,
10–12] and systems, including VoteBox, Helios, STAR-Vote, Belenios, Strobe and
ElectionGuard for instance [1, 3, 8, 4, 13, 22]. In these protocols, which follow the
general approach pioneered by Benaloh [5], voters compute one additively homo-
morphic ciphertext per candidate on the ballot, and prove (in zero-knowledge)
that each of these ciphertexts encrypts a bit, expressing whether the voter sup-
ports the candidate or not. Thanks to the homomorphic property, the ciphertexts
submitted by the voters can be combined candidate-wise, resulting in a vector of
ciphertexts encrypting the number of votes that each candidate received, and
these ciphertexts can then be verifiably decrypted in order to obtain the election
result.

The blueprint that we just described is adequate for approval voting, where
voters are allowed to support as many candidates as they want. Different ballot
completion rules may require additional verifiable bit encryptions. For example,
if voters can support at most k candidates out of n, one common approach
to proving the validity of ballots, based on the addition of dummy candidates,

requires to compute the verifiable encryption of k + n bits [11, 13]. For Instant-
Runoff voting (IRV), some protocols require to produce a number of verifiably
encrypted bits that is equal to the square of the number of candidates [21].

Apart from voting applications, which are our main focus here, the verifiable
encryption of bits is also a central component of other protocols. A prominent
example is the computation of range proofs: there, one of the standard approaches
to prove that a ciphertext encrypts a value v less than 2n consists in producing
n verifiable encryptions of each of the bits of v [2], and arbitrary ranges can be
supported with 2n verifiable bit encryptions [23].

The computational cost of encrypting bits. All recent voting protocol with
homomorphic tallying implementations encrypt bits using exponential ElGamal,
that is, a bit v is encrypted as a pair (gr, gvhr), and the proof that a ciphertext
encrypts a bit is computed as a disjunctive Chaum-Pedersen proof [7, 9].

The choice of ElGamal over Paillier encryption and its variants [11, 12] is
motivated by the simplicity to generate keys for a distributed or threshold variant
of ElGamal [19], compared to the challenges of generating an RSA modulus in a
distributed way [14]. The disjunctive Chaum-Pedersen proof was adopted and
used in virtually every system since the initial proposal by Cramer et al. [10].
In this approach, the cost of verifiably encrypting a bit is largely dominated by
7 modular exponentiations: 2 for the ElGamal encryption, and 5 for the proof.
This cost can quickly become limitating in practice.

Let us consider, as a motivating example, the state-of-the-art ElectionGuard
SDK developed by Microsoft, which has been used in various public elections
since 2020 [13]. When ElectionGuard was deployed for a Risk Limiting Audit
in Inyo County, the encryption of a single ballot took around 6 seconds, the
exponentiations being reported as the bottleneck [4]. In the context of such an
audit, thousands and possibly millions of ballots have to be verifiably encrypted,
which led to the deployment of a cluster, raising numerous practical challenges
and requiring a significant expertise [24].

As a second example, we can turn to the Verificatum JavaScript Cryptographic
Library [25], which is a state-of-the-art crypto library supporting various ElGamal-
related operations. A library benchmark shows that a modular exponentiation
computed in the group used in ElectionGuard takes around 37ms. on a 2020
laptop. Encrypting a ballot with 100 candidates, a size that is typical in many
countries, would then require around 26 sec.. This may create important usability
issues on a laptop, and would just be unbearable on a slow lower-end smartphone.

1.1 Contributions

Taking the state-of-the art ElectionGuard SDK as our baseline, we show how to
considerably improve the speed at which bits can be verifiably encrypted, with a
focus on the constraints from voting applications.

We proceed in 4 steps:

1. We observe that verifiable bit encryption can take advantage of fixed base
encryption techniques, something that is not accounted for in existing libraries.

2

Taking into account that fairly large amounts of memory (at least a few MB)
are available on voting devices, we depart from standard techniques that
focus on memory constrained environments and explore the use of a fast and
memory-intensive approach.

2. We explore the use of multi-ElGamal encryption, that reduces the number of
exponentiations at the cost of requiring a larger number of bases. We show
that this approach offer benefits when the precomputation time does not
need to be accounted for when preparing a ballot, or when the number of
public keys remains relatively low.

3. We propose a switch from the traditional disjunctive Chaum-Pedersen proofs
to product proofs. We show that, within the space of protocol design strategies
that keep a linear number of multiplication operations (in the number of
encrypted bits), the proof computational effort can be halved for multi-
ElGamal ciphertexts, and an extra halving can be obtained when many proofs
need to be computed, taking the cost of the proof close to 1 exponentiation
per encrypted bit. .

4. Eventually, we explore the impact of recent developments that aim at provid-
ing short proofs. The use of these techniques is intriguing because the proof
size is not our primary goal, and the number of multiplications required to
compute these proofs is typically super-linear (typically in O(n logd(n)) with
d ≥ 1), compared to the linear cost of the Chaum-Pedersen and product
proofs. Nevertheless, we propose a new protocol that offers speed improve-
ments for any practical number of proofs to be computed, including by a
factor up to 70 for a few thousand proofs.

We benchmark our solutions against our baseline protocol and confirm their
benefits. Several of our improvements are now on the ElectionGuard 2.0 roadmap.

2 The Baseline

In all the voting systems based on homomorphic tallying that we examined,
including [1, 22, 8, 13], the verifiable encryption of bits is performed as in the
original protocol of Cramer et al. [10], which can be described as follows.

1. A group G is chosen as a subgroup of prime order q of a group Z∗p, with
|q| = 256 and 2048 ≤ |p| ≤ 4096 depending on the implementation. A
generator g of G is also chosen. Then, an ElGamal public key h ∈ G is
selected, with the corresponding secret key x : h = gx being kept secret by a
group of trustees. (Distributed key generation protocols are used for that.)

2. A bit v is encrypted as an exponential ElGamal pair (gr, gvhr) for a random
r ← Zq.

3. A disjunctive Chaum-Pedersen proof [7, 9] is computed in order to demon-
strate that v ∈ {0, 1}. Given a ciphertext (A,B) = (gr, gvhr) as above, a
commitment is computed as a pair of ciphertexts (A′0, B

′
0) = (gs, gvwhs)

and (A′1, B
′
1) = (gt, g(1−v)wht) where s, t, w←$Zq. Then a random chal-

lenge e ∈ Zq is obtained using the Fiat-Shamir transform. Eventually, the

3

sub-challenges e0 = (1 − v)e − w and e1 = ve + w are computed, as well
as the responses f0 = s + e0r and f1 = t + e1r. The proof is made of
(A′0, B

′
0, A

′
1, B

′
1, e0, e1, f0, f1).

In real-world implementations, the choice of a subgroup of Z∗p is preferred over
a group on elliptic curves, motivated by the desire to keep the implementation of
a verifier as accessible as possible: the basics of modular arithmetic are part of
any CS curriculum, which is not the case of elliptic curves. Exponential ElGamal
is preferred over Paillier, which is also additively homomorphic and has a more
efficient decryption process, because ElGamal comes with efficient threshold key
generation protocols. The disjunctive Chaum-Pedersen proof can be described in
various ways. Here, we follow ElectionGuard, whose specification can be accessed
for further details [13]. Numerous other descriptions exist and lead to equally or
less efficient implementations.

We observe that the verifiable encryption of a bit requires 2 exponentiations
for the ciphertext and 5 more exponentiations for the proof. In terms of storage,
the ciphertext takes 2 elements in Z∗p, and the proof takes 4 elements in Z∗p and
4 elements in Zq. Using the ElectionGuard parameters with |p| = 4096, we see
that each verifiably encrypted bit requires 25600 bits ≈ 3KB. However (and
even though this is usually not the case in practice), the proof size can be much
reduced by omitting the 4 elements in Z∗p, which can be recomputed from the
other ones, taking the size down to about 1KB.

3 Fixed-base exponentiation

Existing implementations of homomorphic voting schemes (e.g., VoteBox, Helios,
Belenios, ElectionGuard. . .) make use of the exponentiation function of standard
Multi-Precision arithmetic libraries for computing modular exponentiations,
including gmpy2 [15] in Python and jsbn [26] in JavaScript. These libraries
support the computation of modular exponentiations as a stateless operation.

Numerous techniques however exist that make it possible to compute multiple
exponentiations w.r.t. a single base much faster than independently [6, 18]. This
is precisely our case here: we only use bases g and h.

The design of most fixed base exponentiation algorithms was however guided
by constraints that are quite different of those of voting exponentiations: while
these algorithms behave very well when a small amount of memory is available
to store the result of precomputation, voting applications can typically dedicate
several MB, and possibly even GB of memory to precomputation storage.

It is tempting to consider such an option, given that we may need to compute
a lot of exponentiations: a single race with half a dozen candidates will already
require a few dozens exponentiation, and a full ballot, which can often contain
one or two hundreds choices, can take a thousand exponentiations. Even more
challenging is the encryption of all the ballots cast in an election, as needed for
a privacy preserving publicly verifiable risk limiting audit, which may require
millions of exponentiations. Based on these observations, we explore the use

4

of a simple precomputation approach based on the standard right-to-left k-ary
exponentiation algorithm, aiming at minimizing the number of multiplications
needed per exponentiation. We will compare it to other traditional approaches
below.

Precomputation Suppose that we are willing to compute a lot of exponentiations
in base g, with exponents of at most ` bits. We select a parameter k, and
precompute a table of t = d`/ke lines and 2k columns, in which table[i][j]← g2

i·j .
Such a table can be computed using t · (2k−1) multiplications as the first column
of “1”’s, for j = 0, requires no computation. As an example, for ` = 6 and k = 2,
the table looks as follows:

1 g g2 g3

1 g4 g8 g12

1 g16 g32 g48

Computation Computing ge for e = (et−1 . . . e0)2k with ei ∈
{

0, . . . , 2k − 1
}

is
now immediate: we just need to pick the correct element on each line of the table,
and multiply them together: ge =

∏t−1
i=0 table[i][ei].

This algorithm requires t−1 multiplications, and makes use of the first column
of the table in order to deal with the cases where some ei = 0. An alternative
would be to simply exclude these terms from the product but, since we intend
to use relatively large values of k, this strategy would only save us a marginal
amount of memory and computation, while adding a test on each ei value.

How to choose k? We see that, for a fixed exponent size, the number of
multiplications and the storage that are required for the precomputation grow
like 2k/k, while the online computation decreases like 1/k.

Obviously, if the precomputation time does not matter (because it can be
performed well in advance), choosing a value of k as large as the memory can fit
would lead to the fastest online exponentiations. If we would like to minimize
the total computation time, then the right balance needs to be found between
the time spent on precomputation and the time spent on computation: for n
exponentiations in base g, the total number of multiplications is d`/ke(2k − 1) +
(d`/ke − 1)n. When n� 1, this expression is minimum when n ≈ (ln(2)k − 1)2k.

For the sake of concreteness, we explore these values in the group used in
ElectionGuard, that is ` = |q| = 256. Table 1 contains the maximum value of n
until which various choices of k are optimal, based on the multiplication count
made above. We may observe that k = 15 and k = 17 are never optimal choices.

The storage that is required for the precomputation table grows relatively fast:
if we ignore the first column that only contains “1”, we need to store t · (2k − 1)
group elements. Table 1 also shows these volumes for various values of k. Even if
this grows fast, the volumes remain lower than 100MB for values of k up to 13,
which should be within reach of any modern computer. The table also shows that
the benefits of increasing the value of k for such values also starts plummeting:
moving from k = 7 to k = 10 gives a speedup by a factor 36/25=1.44 for an

5

k 3 4 5 6 7 8 9

n 16 54 121 332 692 2219 3926

Table size (MB) 0.3 0.5 0.8 1.4 2.4 4.2 7.6

t− 1 (online mult.) 85 63 51 42 36 31 28

k 10 11 12 13 14 16 18

n 11265 20481 36865 147457 245761 2883585 3407873

table size (MB) 14 25 46 84 159 537 2013

t− 1 (online mult.) 25 23 21 19 18 15 14

Table 1: The n line gives an estimation of the maximum value of n for which
choices of k are optimal. For instance, k = 8 is the best choice for n ∈ [693, 2219].
We also give the precomputation storage volume and the online computation
work for various parameters of k.

extra 11.6MB of storage, while moving from k = 10 to k = 13 only gives an extra
factor 25/19=1.31 for an extra 70MB of storage.

Overall, we observe a few “sweet spots” in this table: in a low-memory setting,
we see that computational gains remain fairly high until we reach k = 8 and
t − 1 = 31, which still comes with a very small memory requirement of 4MB.
The value k = 13 and t − 1 = 19 is the second-to-last that saves at least 2
online multiplications compared to the previous value of k and keeps memory
requirements below 100MB. As we will see in our benchmarks in Section 7.1, all
these values offer important speed improvements over the standard exponentiation
function of big integer libraries.

What about other fixed-base exponentiation methods? The method that is de-
scribed above is demanding in terms of precomputation table size, compared
to traditional solutions. Nevertheless, we see that, when aiming for very fast
exponentiations, it is quite competitive, and remarkably simple. To offer some
points of comparison, we consider the classical methods as described in [18] for
the parameters listed above.

– The fixed-base windowing method (Algo. 3.41) is expected to require 2k+t−3
multiplications/exponentiation and the storage of t values. This is minimum
for k = 4 in our case, and requires 77 multiplications per exponentiation and
the storage of 63 group elements. So, our method leads to faster exponentia-
tions as soon as k > 4.

– The fixed-base comb method (Algo. 3.44) is expected to require 2t − 2
multiplications per exponentiation, and the storage of 2k precomputed values.
If we aim for the same number of multiplications/exponentiation (meaning
that k needs to be approximately twice as big for the comb method compared
to our method), our method is more efficient as soon as k > 5.

– The two-table fixed-base comb method (Algo 3.45) is expected to require
3t/2−2 multiplications/exponentiation, and the storage of 2k+1 precomputed
values. Here, our method is more efficient as soon as k > 7.

So, it seems that, apart from its extreme simplicity, the method we described
also offers important speed-ups. Our estimates only focus on the number of

6

multiplications, being the bulk of the work here. More sophisticated methods
focusing on the efficient computation of short multiplication chains, for example
Pippenger’s [20], may require a smaller number of multiplications. However, they
also require more bit-by-bit inspection in the exponents, and create multiplication
chains that combine all the exponents, which requires additional book keeping.

4 Multi-ElGamal

The implementation improvement discussed above does not touch the voting
protocol itself, easing its integration in an existing system. Nevertheless, it is
appealing to explore whether the use of other cryptographic mechanisms would
reduce the efforts needed to verifiably encrypt a bit. We start by exploring the
case of ElGamal encryption, and will turn to the ZK proof in the next sections.

ElGamal encryption requires 2 exponentiations per bit. But ElGamal encryp-
tions can be easily batched if we have multiple public keys (h1, . . . , hm) =
(gx1 , . . . , gxm) with each xi ← Zq: we can encrypt m bits (v0, . . . , vm) as
(gr, gv1hr1, . . . , g

vmhrm) – the security of this multi-ElGamal scheme can be re-
duced to the one of the original ElGamal encryption scheme. We can now encrypt
m bits with m+ 1 exponentiations, compared to 2m with plain ElGamal, leading
to a speed-up by a factor close to 2 even for relatively low values of m.

However, exponentiations are now computed w.r.t. m+ 1 bases instead of 2,
which may require more efforts of precomputation if we want to use fixed-base
exponentiation methods. If the precomputation is taken offline, and in the absence
of memory concerns, multi-ElGamal will always be more efficient.

But if the precomputation needs to be made online, then what we gain on
one side may be lost on the other side. We can estimate this by exploring a few
values by multiplication counts. If n = 1000, the two exponentiations of plain
ElGamal (i.e., m = 1) require an optimal effort of 78320 multiplications for k = 8
(including precomputation), and a storage of 8MB. The use of multi-ElGamal
can offer some benefits: we reach 66045 multiplications for m = 4 and k = 6, and
a slightly lower precomputation volume of 7MB. If n = 100000, plain ElGamal
requires an optimal effort of 4.13 million multiplications for k = 13. If we switch
to multi-ElGamal, we can for instance obtain 3.06 millions multiplications for
m = 5 and k = 11. The storage needed for the tables again slightly decreases
from 168MB to 151MB. Overall, we observe that the benefits increase when we
have more votes to encrypt. But they remain well below the factor ≈ 2 that was
hoped for a large m.

The adoption of multi-ElGamal may also be complicated by extra validity
requirements on ballots. It is for instance quite common to require that a
maximum number of candidates are selected within a single race. This is typically
handled by computing an encryption of the number of candidates selected within
the race as the homomorphic sum of the ciphertexts computed for each choice, and
proving that this sum is within the expected range. However, this homomorphic
addition won’t work if the choices within a race are encrypted with a different

7

public key hi. Nevertheless, it remains an option to use multi-ElGamal in an
election with multiple races, and to use one public key hi per race.

5 Adapting the ZK 0-1 proofs – Linear Techniques

The disjunctive version of the Chaum-Pedersen protocol described in Section 2,
requires 5 modular exponentiations: 3 in base g, and 2 in base h, and makes most
of the computational effort.

We will first see how a simple change in the ElGamal encryption process makes
it possible to save 1 exponentiation in base g, down to a total of 4 exponentiations.
As a second step, we will turn to proofs for multi-ElGamal ciphertexts, and show
how to compute the proof with 3m + 1 exponentiations for an m-key multi-
ElGamal ciphertext. Eventually, using batching techniques, we will show how
to compute a proof for ` multi-ElGamal ciphertexts with ` · m + ` + m + 1
exponentiations, bringing the cost of the proof down to almost 1 exponentiation
per encrypted bit.

5.1 From 5 to 4 Exponentiations

Looking back at the disjunctive Chaum-Pedersen proof as it is described in
Section 2, we can observe that the computation of (A′0, B

′
0) = (gs, gvwhs) and

(A′1, B
′
1) = (gt, g(1−v)wht) requires a total of 3 exponentiations when v is 0 or 1.

We observe that exponential ElGamal encryption works just as well, and may
be slightly more efficient by saving one multiplication, if bits are encrypted as
a (gr, hv+r) pair. Now, the commitment of the proof can be computed with a
pair of ciphertexts (A′0, B

′
0) = (gs, hvw+s) and (A′1, B

′
1) = (gt, h(1−v)w+t), and

the rest of the proof can remain unchanged. This saves 1 exponentiation in base
g, taking the cost of computing a proof from 5 to 4 exponentiations.

5.2 A 0-1 product proof

The adaptation of the disjunctive Chaum-Pedersen proof to multi-ElGamal
ciphertexts does not offer any particular benefit, unfortunately: one basically
needs to compute one full proof for each (A,Bj) = (gr, h

vj+r
j) pair, keeping a

cost of 4 exponentiations per encrypted bit.
In Table 2, we describe another proof approach, that consists in proving that

vj(1− vj) = 0, adapting a classical approach described in [17] for instance, and
see that it makes it possible to take the cost of the 0-1 proof for a multi-ElGamal
ciphertext down to 3m+ 1 exponentiations.

5.3 Batching the product proof

Another advantage of the product proof is that it becomes compatible with
batching techniques. To compress the proof further and save the computation of
some exponentiations, and even more when we have ` multi-ElGamal ciphertexts,

8

Commitment The prover computes: A′ = gs, B′j = h
wj+s

j , Cj = gtj , Dj =

hj
wjvj+tj , where s, wj , tj ←$Zq and j ∈ [m].

Challenge The verifier sends a challenge e←$Zq.
Response The prover computes the response, for j ∈ [m]:

fr = s+ er , fvj = wj + evj , fuj = tj + r(e− fvj) .
Verification The verification proceeds by checking that, for every j ∈ [m]:

AeA′ = gfr , Bej B̄
′
j = h

fvj+fr

j , A
e−fvjCj = g

fuj , B
e−fvj
j Dj = h

fuj
j .

Table 2: Proof of 0-1 encryption for multi-ElGamal ciphertexts.

we consider a batching process. More precisely, when we have ` ciphertexts of
the form (Ai, {Bij}mj=1) = (gri , {hvij+rij }mj=1), for i ∈ [`], we seek to prove that∑
ij vij(1− vij) ·α(i−1)m+j−1 = 0, where α ∈ Zq is a random value. As long as α

is independent of the statements to be proven, the Schwartz-Zippel lemma implies
that the above equation (seen as the evaluation of a polynomial at the random
point α) ensures vij ∈ {0, 1}, for all i ∈ [`] and j ∈ [m], with overwhelming
probability 1− `m/q.

Our protocol is in Table 3. In the commit phase, we provide the A′ and
B′ elements from which we can extract all the ri and vij exponents, as in our
previous protocol. This makes it possible to isolate all these exponents from each
other before starting the batching.

Now, the batching proceeds by picking a random exponent α after all the
ciphertexts have been chosen and compressing the C and D terms of our previous
proof: using α, the `m Cij terms can be compressed into a single group element
C0 and the `m Dij terms can be compressed into m group elements, one per hj
base. With respect to ` parallel executions of the first protocol, we would have

the relation C0 =
∏
i∈[`],j∈[m] C

α(i−1)m+j−1

ij and D0j =
∏
i∈[`]D

α(i−1)m+j−1

ij .

It would be tempting to further compress our D0j ’s into a single D0 as we
do for C0, but the special-soundness would then have to rely on the hardness of
computing the discrete logarithms of the hj ’s in basis g. While the security of
the encryption implies this hardness, the authorities that know the secret key
would have the possibility to cheat when colliding with corrupted users/provers.
This is the reason why we keep our m values.

We prove the special-soundness of our protocol below – the other standard
properties of Σ-protocols come by inspection.

Theorem 1. The protocol in Table 3 has special soundness.

Proof. From any two transcripts of this protocol with identical α and commit-
ments (A′i, {B′ij}mj=1)`i=1,C0, {D0j}mj=1 different challenges e and e′ and responses

(fri , {fvij}mj=1, {fuij}mj=1)`i=1 and (f ′ri , {f
′
vij}

m
j=1, {f ′uij}

m
j=1)`i=1, we can extract,

for all i ∈ [`] and j ∈ [m],

ri =
fri − f ′ri
e− e′

, vij =
fvij − f ′vij
e− e′

, uij =
fuij − f ′uij
e− e′

,

9

Statement Given the statement Ai = gri , {Bij = h
vij+ri
j }mj=1, for i ∈ [`], the verifier

generates and sends α←$Zq to the prover.

Commitment The prover computes A′i = gsi , B′ij = h
wij+si
j for proving openings,

C0 = g
∑
i∈[`],j∈[m] tij ·α

(i−1)m+j−1

, D0j = h
∑
i∈[`](vijwij+tij)·α

(i−1)m+j−1

j

for proving the relations, where si, wij , tij ←$Zq, for all i ∈ [n], j ∈ [m].
Challenge The verifier sends a challenge e←$Zq.
Response The prover computes the response for all i ∈ [`], j ∈ [m]:

fri = eri + si , fvij = evij + wij , fuij = ri(e− fvij) + tij .

Verification The verification proceeds by checking that, for all i ∈ [`], j ∈ [m]:

AeiA
′
i = gfri , BeijB

′
ij = h

fvij+fri
j ,∏

i∈[n],j∈[m]A
(e−fvij)·α

(i−1)m+j−1

i C0 = g
∑
i∈[n],j∈[m] fuij ·α

(i−1)m+j−1

,∏
i∈[n]B

(e−fvij)·α
(i−1)m+j−1

ij D0j = y
∑
i∈[n] fuij ·α

(i−1)m+j−1

j .

Table 3: Batch proof of 0-1 encryption for multi-ElGamal ciphertexts.

where (ri, {vij}mj=1)`i=1 are the exponents of the ciphertexts, since dividing the first

two verification equations gives Ae−e
′

i =gfri−f
′
ri and Be−e

′

ij =h
(fvij−f

′
vij

)+(fri−f
′
ri

)

j ,
and the encryption scheme is perfectly binding.

It remains to show that vij ∈ {0, 1}, for i ∈ [`], j ∈ [m]. If we divide the
remaining verification equations of the two transcripts by corresponding equations,
and raise them all to the power (e−e′)−1 mod q, then take the discrete logarithms
in their respective basis, we get:∑

i∈[`],j∈[m]
ri(1− vij) · α(i−1)`+j−1 =

∑
i∈[`],j∈[m]

uij · α(i−1)`+j−1 ,∑
i∈[`]

(vij + ri)(1− vij) · α(i−1)`+j−1 =
∑

i∈[`]
uij · α(i−1)`+j−1 ,

for all j ∈ [m]. By injecting the values of the right-hand side member of the last
equations for j ∈ [m] into the one above we find∑
i∈[`],j∈[m]

ri(1− vij) · α(i−1)`+j−1 =
∑

i∈[`],j∈[m]

(vij + ri)(1− vij) · α(i−1)`+j−1 ,

where the constants in front of the powers of α are uniquely determined by
the statement. Since α was generated after the verifier received the statement,
we have ri(1 − vij) = (vij + ri)(1 − vij), for all i ∈ [`], j ∈ [m], due to the
Schwartz-Zippel lemma, which implies that 0 = vij(1− vij) mod q. ut

Efficiency. Computing the proof in Table 3 requires (` + 1)(m + 1) exponen-
tiations. The number of multiplications in the exponents increases to 4`m+ `
multiplications, but this will remain negligible in the group we consider where
|p| = 16|q|. We can make a few more observations:

– If we need to compute n = ` ·m 0-1 proofs and if there is no precomputation,
then picking m ≈ ` is the best choice. In this case, when n is large, the cost
of the proof comes close to 1 exponentiation per encrypted bit.

10

– However, when precomputation is used, and since the number of exponentia-
tions in each base is well-balanced, the remarks made for the choice of m
in the multi-ElGamal encryption still apply: we can expect only marginal
benefits when increasing m above 4, for most values of n.

– While our basic product proof did not offer any benefit for a regular ElGamal
ciphertext (m = 1), the batching process helps quite a bit in that case: we
move from 4n exponentiations down to 2n+ 2.

6 Adapting the ZK 0-1 proofs - Logarithmic batching

We propose a shorter proof system showing that n = 2τ ElGamal ciphertexts
encrypt bits. Our system shares similarities with a protocol due to Groth [16]
that was described recursively as a subroutine of a bigger protocol. Here, we give
an iterative description which halves the number of rounds of [16] to prove that
n pairs of commitments {(ci, di)}n−1i=0 , for any homomorphic commitment Com

(ElGamal encryption in our case), satisfy
∑n−1
i=0 xiyi = 0, where ci = Com(xi; ri)

and di = Com(yi; si) for some coins ri, si ∈ Zq, for all i = 0, . . . , n− 1. That is,
we prove that the inner product is null. We then show how to turn our protocol
into our desired proof system and analyze the efficiency.

6.1 Notations

We identify the index i =
∑τ
k=1 ik2k−1 with the τ -bit string multi-index i1 . . . iτ

so that xi = xi1···iτ , for all 0 ≤ i ≤ 2τ−1, and conversely for all 0 ≤ i1, . . . , iτ ≤ 1.
To get a shortened form of xi1···ik−1ikik+1···iτ , we write xi−k iki

+
k

with i−k = i1 · · · ik−1
and i+k = ik+1 · · · iτ when τ is implicit. By convention i−1 and i+τ are empty strings
so that we have xi−1 i1i

+
1

= xi1i+1
as well as xi−τ iτ i+τ = xi−τ iτ . In the same spirit, we

set xi+0
= xi1···iτ . For the sake of readability, we often do not specify the values

taken by the multi-indexes in the summation∑
i−k iki

+
k

=
∑

i−k ∈{0,1}k−1

∑
ik∈{0,1}

∑
i+k ∈{0,1}τ−k

since the bit-strings take all their possible values determined by the bit-size.
Similarly for exponents, we use a notation to compress the product αi11 · · ·αiττ

over Zq as αI when α = (α1, . . . , ατ) and I = i1 · · · iτ . For the product of the first

k − 1 factors, with α<k = (α1, . . . , αk−1), we naturally write α
i−k
<k = αi11 · · ·α

ik−1

k−1 .

By convention α<1 = () and α
i−1
<1 = 1. We also see k-bit strings as tuples of Zk

so that, component-wise, i−k − j
−
k is well defined. Finally, xI = xi1···iτ .

6.2 Intuition

Assuming that the prover receives τ ∈ O(log n) unpredictable scalars α1, . . . , ατ
of Zq from the verifier, both parties can efficiently compute

C =

1∏
i1,...,iτ=0

c
α
i1
1 ···α

iτ
τ

i1...iτ
=

∏
I∈{0,1}τ

cα
I

I = Com
(∑

I xIα
I ;
∑
I rIα

I
)

11

as well as

D =

1∏
i1,...,iτ=0

d
α
−i1
1 ···α−iτn

i1...iτ
= Com

(∑
I yIα

−I ;
∑
I sIα

−I
)
.

Letting zero-knowledge apart for now, the prover can send the opening (X,R)
of C = Com(X,R) to the verifier so that both parties can also compute the
commitment DX = Com(Y ;S)X = Com(XY ;XS) = Com(Z, T) where Z =
XY =

∑
I,J xIyJα

I−J .

Viewed as a rational fraction over Zq(α) with τ indeterminates α = (α1, . . . , ατ),
the prover has to ensure that the constant term of Z(α) is

∑
I xIyI = 0. To get

a proof of size in O(τ) we rely on the following observation:

Z(α) =

(∑
i−τ ,j

−
τ

xi−τ 0 · yj−k 1 · α
i−τ −j

−
τ

<τ︸ ︷︷ ︸
Uτ−1

)
· α−1τ

+
∑

i−τ ,j
−
τ ,iτ

xi−τ iτ · yj−k iτ · α
i−τ −j

−
τ

<τ︸ ︷︷ ︸
Vτ−1

+

(∑
i−τ ,j

−
τ

xi−τ 1 · yj−k 0 · α
i−τ −j

−
τ

<τ︸ ︷︷ ︸
Wτ−1

)
· ατ ,

where the terms Uτ−1, Vτ−1,Wτ−1 no more depend on ατ . By iterating this
process with the middle term we find

Z(α) = Uτ−1α
−1
τ + · · ·+ U0α

−1
1 + V0 +W0α1 + · · ·+Wτ−1ατ ,

for V0 =
∑
I xIyI and some U0,W0, . . . , Uτ−1,Wτ−1 ∈ Zq(α), where for each

k = 1, . . . , τ , the terms Uk−1,Wk−1 only depends on α<k = (α1, . . . , αk−1). This
means that we can gradually build Vk ∈ Zq(α<k)(αk) as

Vk = Uk−1 · α−1k + Vk−1 +Wk−1 · αk ,

for all k = 1, . . . , τ , from k = 1, with V0 =
∑
I xIyI = 0, to Vτ = Z(α).

Therefore, the special-soundness may use the Schwartz-Zippel lemma since
the prover can first compute and send commitments1

cuk−1
∈ Com(Uk−1) cvk−1

∈ Com(Vk−1) cwk−1
∈ Com(Wk−1)

to the verifier before receiving back the next scalar αk←$Zq and iterating with

cvk = c
α−1
k
uk−1 · cvk−1

· cαkwk−1
∈ Com(Vk)

which can also be computed by the verifier. Starting from 1 = Com(V0; 0) the
process stops with cvτ = Com(Z) =: E after τ iterations. The prover and the
verifier then engage in a simple proof for a product relation between C,D and E
ensuring XY = Z.

For the extraction of the witness, since the protocol reveals only one opening
related to {ci}n−1i=0 and one opening related to {di}n−1i=0 we cannot hope to extract

1 Actually, the verifier can compute the commitment of Vk−1 itself.

12

the witness in less than 2τ ≈ n rewinds in the proof of special-soundness.
Fortunately, we only need less than 2n rewinds to extract the witness.

6.3 Proof of Inner Product

Common Reference String: ck, where ck ← Gen(1λ). It will be implicit in
every use of Com.

Statement: {(ci, di)}n−1i=0 , where ci, di ∈ Cck, for all i = 0 to n− 1, and n = 2τ .

Prover’s Witness: openings {(xi, ri), (yi, si)}n−1i=0 such that ci = Com(xi, ri)

and di = Com(yi, si), for all i = 0 to n− 1, and satisfying
∑n−1
i=0 xiyi = 0.

Initial Round: common inputs are ck and the statement.

P → V : Pick µ0, ν0←$Zq and compute

cu0 = Com(U0, µ0) , U0 =
∑

i+1 ∈{0,1}τ−1
x0i+1

· y1i+1 ,

cw0
= Com(W0, ν0) , W0 =

∑
i+1 ∈{0,1}τ−1

x1i+1
· y0i+1 .

Send cu0 and cw0 . (We set V0 = 0, ρ0 = 0 so that cv0 = Com(V0, ρ0) = 1)

V → P : If cu0 , cw0 ∈ Cck, pick and send α1←$Zq, else abort and output 0.

For later use, already compute cv1 = c
α−1

1
u0 · cv0 · cα1

w0
.

Iterative Round: in the k-th round the common inputs are ck, the statement as
well as the values generated in the previous rounds {(cuk−2

, cwi−2
, αi−1)}ki=2

and the private prover’s inputs are the witness and {(µi−2, ρi−2, νi−2)}ki=2.

P → V : Pick µk−1, νk−1←$Zq and compute

cuk−1
= Com(Uk−1, µk−1) , Uk−1 =

∑
i−k ,i

+
k ,j
−
k

xi−k 0i+k
· yj−k 1i+k

· αi
−
k −j

−
k

<k ,

cwk−1
= Com(Wk−1, νk−1) , Wk−1 =

∑
i−k ,i

+
k ,j
−
k

xi−k 1i+k
· yj−k 0i+k

· αi
−
k −j

−
k

<k .

Send cuk−1
and cwk−1

. (Compute ρk−1 = µk−2α
−1
k−1 + ρk−2 + νk−2αk−1.)

V → P : If cuk−1
, cwk−1

∈ Cck, pick and send αk←$Zq, else abort and output 0.

For later use, already compute cvk = c
α−1
k
uk−1cvk−1

cαkwk−1
.

Penultimate Round: ((τ + 1)-th round) after the first τ rounds the common
inputs are ck, the statement as well as {(cui−1

, cwi−1
, αi)}τi=1 and the private

prover’s inputs are the witness and {(µi−1, ρi−1, νi−1)}τi=1. From that point,
both P and V can deterministically compute

C =
∏
I c

αI

I = Com
(∑

I xIα
I ;
∑
I rIα

I
)

= Com(X,R) ,

D =
∏
I d

α−I

I = Com
(∑

I yIα
−I ;
∑
I sIα

−I) = Com(Y, S) ,

and cvτ = Com(Vτ , ρτ) iteratively, as V already did. It remains to ensure that
XY = Vτ using a standard protocol.

13

P → V: First, compute ρτ = µτ−1α
−1
τ + ρτ−1 + ντ−1ατ and T = ρτ − SX

such that E := cvτ = DX · Comck(0, T). Then, pick X ′, Y ′, R′, S′, T ′←$Zq
and compute the commitments

C ′ = Com(X ′, R′) , D′ = Com(Y ′, S′) , E′ = Com(Y X ′, SX ′ + T ′) ,

so that E′ = DX′ · Com(0, T ′). Send C ′, D′ and E′.

V → P : If C ′, D′, E′ ∈ Cck, pick and send β←$Zq, else abort and output 0.

Final Round: the common inputs are ck, the statement, {(cuk−1
, cwi−1 , αi)}τi=1

as well as (C ′, D′, E′) and the private prover’s inputs are the witness, the τ
triples {(µi−1, ρi−1, νi−1)}τi=1, the opening values (X,Y,R, S, T) and ρτ as
well as the random scalars (X ′, Y ′, R′, S′, T ′) and β.

P → V : Compute and send the final response as

zx = βX +X ′ , zy = βY + Y ′ ,

zr = βR+R′ , zs = βS + S′ , zt = βT + T ′ .

Note that X and Y have been computed in the previous round.

V → P : If zx, zy, zr, zs, zt ∈ Zq does not hold, output 0, else perform the last

verification: from α = (α1, . . . , ατ), compute C =
∏
I c

αI

I and D =
∏
I d

α−I

I ,
and check whether

CβC ′ = Com(zx, zr) , DβD′ = Com(zy, zs) , EβE′ = DzxCom(0, zt) ,

holds or not. If so, output 1, otherwise, output 0.

Efficiency The communication complexity of the interactive protocol is 2τ+3 com-
mitments and 5 scalars of Zq for the prover and τ + 1 scalars for the verifier. The
size of the transcript 〈cu0

, cw0
, α1, . . . , cuτ−1

, cwτ−1
, ατ , C

′, D′, E′, β, zx, zy, zr, zs, zt〉
is 2τ + 3 commitments and τ + 6 scalars. The non interactive version of this τ + 2-
round protocol based on the Fiat-Shamir heuristic saves the 3 last commitments
of the transcript and the τ scalars of the challenge tuple (α1, . . . , ατ).

6.4 The many-bits case

We turn the proof of inner-product into a proof that n ElGamal ciphertexts
{(gri , hvi+ri)}n−1i=0 encrypt vi ∈ {0, 1}, for all i + 1 ∈ [n]. Since the ElGamal
encryption is homomorphic, we have ci = Com(vi; ri) in the previous notation.
Also, di := Com(1; 0) c−1i = Com(1− vi,−ri) is a publicly computable ElGamal
encryption of 1− vi, so that xi = vi and yi = 1− vi in the previous notation.

Assuming that n = 2τ , a direct application of the inner product proof only
ensures

∑n−1
i=0 vi(1− vi) = 0 while our goal is vi(1− vi) = 0, for all i+ 1 ∈ [n],

and not their sum. Fortunately, by applying the Schwartz-Zippel technique to

y′i = yi · γi over d′i = dγ
i

i , we see that
∑n−1
i=0 vi(1 − vi)γi = 0 implies, for all

i+ 1 ∈ [n], vi(1− vi) = 0, but with negligible probability n/q. In the case that n
is not a power of two, we can still pad x and y′ with 0’s using dummy ElGamal
ciphertext ci = Com(0, 0) and d′i = Com(0, 0). Note that we can ignore these
terms when computing the X, Y , Uk and Wk sums in the proof as they will

14

always result in a 0 value. Therefore, the padding does not increase the cost of
the proof. Finally, note that we drop the D′, zs and zs entries in the proof for
the many-bits case. They are used to prove the knowledge of y, but here y is
directly derived from x.

Efficiency. Computing the log-based proof requires 4 log n+ 4 exponentiations in
Z∗p: 4 in each round to compute cu and cw and 4 to compute C ′ and E′. However,
we now need to compute n(τ + 8) + 2τ + 7 multiplications and n(τ + 5) + 4τ + 8
additions in Zq, which now dominate the cost asymptotically since τ = log n.
Finally, the size of the proof is 4τ elements in Z∗p and 4 elements in Zq.

7 Benchmarking

We implemented the algorithms described above in Python, and executed them
on an AMD 3990X processor with the turbo boost technology disabled, using the
Python 3.8.10 interpreter, and gmpy2 2.1.0. All the running times listed below
are in milliseconds. The implementation of the schemes and the benchmarks can
be found on this repository: https://github.com/uclcrypto/many01proofs.

7.1 Precomputation and exponentiations

We first tested the time needed to precompute and compute 1000 exponentiations
in the ElectionGuard default group (|p| = 4096, |q| = 256).

As a baseline, computing 1000 modular exponentiations using gmpy2.powmod
takes 1560 ms. Figure 1.(a) shows the precomputation and computation time
for various values of the precomputation parameter k. The speed-up factors of
the exponentiation, compared to gmpy2.powmod are quite important: they range
from a factor 4 when k = 4 to a factor 12 when k = 13.

Depending on the application context, the precomputation time may need
to be taken into account. This question is particularly interesting in the case of
multi-ElGamal encryption where, for a given number of bits to verifiably encrypt,
we may wonder which (k,m) pair leads to an optimal running time, as discussed
in Section 4.

This is explored in Figure 1.(b), in which we show, for a number n of bits to
be encrypted with n ∈ {24, 28, 212, 216}, the computation time/bit for m ∈ [1, 6],
selecting the optimal k every time. The lines are surprisingly flat: what is gained
by multi-ElGamal is lost in the fixed-base exponentiations. The maximum benefits
of multi-ElGamal are around 25%, much lower than the factor of almost 2 that
was hoped for, and this gain is reached around m = 4 for our 3 highest values of
n. So, picking m = 4 independently of n might be a reasonable choice, should
multi-ElGamal encryption be adopted. The picture is of course different is the
precomputation time does not need to be taken into account: there, multi-ElGamal
keeps its expected efficiency benefits.

15

k 0 4 8 13

precomp. - 6.1 51 1042
1000 exp 1560 387.6 204.2 131

(a) (b)

Fig. 1: (a) Precomputation time and time to compute 1000 exponentiations. (b):
evolution of the time needed to encrypt votes with optimal choice of k and various
choices of the number of multi-ElGamal bases.

7.2 Verifiable bit encryption using linear techniques

As a second step, we explore in Figure 2(a) the efficiency of our proof techniques
with linear complexity. For the same values of n as above, a choice of m = 4
for the multi-ElGamal encryption, and optimal values of k, we explore the time
needed for performing the precomputation, encryption, product proof (from
Table 2), and batch proof (from Table 3). We can make a few observations from
this figure: (i) As expected, the optimal k grows with n, and so does the time
spent in precomputation. But the proportion of the time spent in precomputation
decreases when n increases, which illustrates the decreasing returns of increasing
k. (ii) While n is multiplied by a factor 16 from line to line, the computation
time is only multiplied by a factor around 10, thanks to the amortization coming
from an increased amount of precomputation. (iii) The cost of our batch proof is
essentially equal to the cost of the multi-ElGamal encryption.

Multi- Prod. Batch
n k Pre. ElGamal Proof Proof

16 2 12 13 33 16
256 5 51 103 270 107
4096 7 150 1214 3187 1256
65536 11 1573 13022 34353 13605

(a) (b)

Fig. 2: (a) Running time with linear techniques. (b) Speed-up given by the log
proof for n ∈ {2i|i ∈ [16]}.

16

7.3 Verifiable bit encryption using logarithmic proof techniques

Eventually, Figure 2(b) shows the speed-ups obtained in an implementation of
our logarithmic proof of Section 6, compared to the baseline Chaum-Pedersen
disjunctive proof (the batched proof is faster by a factor ≈ 2.5 when n is big
enough). Both proofs take advantage of the fixed base precomputation, which is
needed for the ElGamal encryption.

Here, and despite a higher asymptotic complexity due to the n log(n) multipli-
cations needed in Zq, the log proof provides dramatic speed improvements, by
a factor up to 70 when around 8000 proofs need to be computed, making the
cost of the proof computation negligible compared to the one of encryption. The
gains are already there for a small number of proofs: we obtain a speedup by a
factor 2.5 for 8 proofs and a factor 18 for 128 proofs, about the size of a ballot.
If one needs to compute a large number of 0-1 proofs, it may be more convenient
and efficient to compute many logarithmic proofs by batches of a size between
210 and 214 for instance.

8 Conclusions

We proposed various techniques that could be used to increase the speed of
verifiably encrypting bits, both at the arithmetic level (modular exponentiations)
and at the protocol level (encryption and ZK proofs), compared to the usual
implementation of the protocol of Cramer et al. [10].

Fixed base exponentiation techniques showed dramatic speed improvements.
But, interestingly, these techniques reduced the potential benefits associated
to the use of multi-ElGamal encryption, which requires fewer exponentiations
but more bases: when the precomputation time is accounted for, we observe
essentially no benefit in using more than m = 4 ElGamal public keys.

We then turned to the ZK proofs. First, we observed that changing a base in
the ElGamal encryption, which is of no consequence there, brings a 25% speed-up
on the traditional proof of Cramer et al. Switching to product proofs rather than
disjunctive proofs, we observed no benefit for a single ElGamal ciphertext, but
new possibilities for batching that brought a speed-up by a factor close to 3
on the proof computation for multi-ElGamal ciphertexts: the total cost of the
encryption and proof comes close to 2 exponentiations per encrypted bit.

Eventually, we turned to a different proof strategy, in the line of the many
recent protocols aiming at bringing short (logarithmic size) proofs. Here, and
despite a worse asymptotic complexity, we again observed very important speed-
ups, making the cost of the proof almost negligible compared to the cost of an
ElGamal encryption, leading again to a cost close to 2 exp./encrypted bit.

This leaves a natural question for further works: can we go below a complexity
of around 2 exp./bit for DL based protocols and parameters useful for an election?
Another question comes from the choice of the group, Z∗p, which is by far the
most common choice in current voting system implementations: how would our
benchmarks evolve if ECC were considered?

17

Acknowledgements. This research was supported in part by the FNRS project
SeVote and by a Microsoft Research Award. Henri Devillez is supported by
a FRIA grant and Thomas Peters is a research associate of the FNRS. We
thank Josh Benaloh, Michael Naehrig and Dan Wallach for numerous interesting
discussions and useful feedback about this work.

References

1. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.: Electing a university
president using open-audit voting: Analysis of real-world use of helios. In: 2009
Electronic Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’09. USENIX Association (2009)

2. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: CCS ’97, Proceedings
of the 4th ACM Conference on Computer and Communications Security. pp. 78–91.
ACM (1997)

3. Benaloh, J., Byrne, M.D., Eakin, B., Kortum, P.T., McBurnett, N., Pereira, O.,
Stark, P.B., Wallach, D.S., Fisher, G., Montoya, J., Parker, M., Winn, M.: Star-vote:
A secure, transparent, auditable, and reliable voting system. In: 2013 Electronic
Voting Technology Workshop / Workshop on Trustworthy Elections, EVT/WOTE
’13. USENIX Association (2013)

4. Benaloh, J., Foote, K., Stark, P.B., Teague, V., Wallach, D.S.: Vault-style risk-
limiting audits and the inyo county pilot. IEEE Secur. Priv. 19(4), 8–18 (2021)

5. Benaloh, J.C., Yung, M.: Distributing the power of a government to enhance the
privacy of voters (extended abstract). In: Proceedings of the Fifth Annual ACM
Symposium on Principles of Distributed Computing. pp. 52–62. ACM (1986)

6. Bernstein, D.J.: Pippenger’s exponentiation algorithm. https://cr.yp.to/papers/
pippenger.pdf (Jan 2002)

7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Advances in
Cryptology - CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer (1992)

8. Cortier, V., Gaudry, P., Glondu, S.: Belenios: A simple private and verifiable
electronic voting system. In: Foundations of Security, Protocols, and Equational
Reasoning - Essays Dedicated to Catherine A. Meadows. LNCS, vol. 11565, pp.
214–238. Springer (2019)

9. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Advances in Cryptology - CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer (1994)

10. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Advances in Cryptology - EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer (1997)

11. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K. (ed.) Public Key Cryptography,
PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer (2001)

12. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Information Security and Privacy, ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer (2003)

13. ElectionGuard: https://www.electionguard.vote/ (May 2022)
14. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key

generation for semi-honest and malicious adversaries. In: Advances in Cryptology -
CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer (2018)

18

15. gmpy: gmpy2 module. https://github.com/aleaxit/gmpy
16. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Advances

in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer (2009)
17. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and

spend a coin. In: Advances in Cryptology - EUROCRYPT 2015. LNCS, vol. 9057,
pp. 253–280. Springer (2015)

18. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag, Berlin, Heidelberg (2003)

19. Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended ab-
stract). In: Advances in Cryptology - EUROCRYPT 1991. LNCS, vol. 547, pp.
522–526. Springer (1991)

20. Pippenger, N.: On the evaluation of powers and related problems (preliminary
version). In: 17th Annual Symposium on Foundations of Computer Science, 1976.
pp. 258–263. IEEE Computer Society (1976)

21. Ramchen, K., Culnane, C., Pereira, O., Teague, V.: Universally verifiable MPC
and IRV ballot counting. In: Financial Cryptography and Data Security - FC 2019.
LNCS, vol. 11598, pp. 301–319. Springer (2019)

22. Sandler, D., Derr, K., Wallach, D.S.: Votebox: A tamper-evident, verifiable electronic
voting system. In: van Oorschot, P.C. (ed.) Proceedings of the 17th USENIX Security
Symposium. pp. 349–364. USENIX Association (2008)

23. Schoenmakers, B.: Some efficient zeroknowledge proof techniques. In: Workshop on
cryptographic protocols (2001)

24. Wallach, D.: Anyscale connect: Encrypting and tabulating big elections. https:
//www.youtube.com/watch?v=m7r33EuN6Zw (Dec 2020)

25. Wikström, D.: Verificatum. https://www.verificatum.org/ (May 2022)
26. Wu, T.: Rsa and ecc in javascript. http://www-cs-students.stanford.edu/~tjw/

jsbn/ (2009)

19

