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Abstract

Interactive oracle proofs (IOPs) are a generalization of probabilistically checkable proofs that can be
used to construct succinct arguments. Improvements in the efficiency of IOPs lead to improvements in
the efficiency of succinct arguments. Key efficiency goals include achieving provers that run in linear
time and verifiers that run in sublinear time, where the time complexity is with respect to the arithmetic
complexity of proved computations over a finite field F.

We consider the problem of constructing IOPs for any given finite field F with a linear-time prover and
polylogarithmic query complexity. Several previous works have achieved these efficiency requirements
with O(1) soundness error for NP-complete languages. However, constrained by the soundness error
of the sumcheck protocol underlying these constructions, the IOPs achieve linear prover time only for
instances in fields of size Ω(log n). Recent work (Ron-Zewi and Rothblum, STOC 2022) overcomes this
problem, but with linear verification time.

We construct IOPs for the algebraic automata problem over any finite field F with a linear-time prover,
polylogarithmic query complexity, and sublinear verification complexity. We additionally prove a similar
result to Ron-Zewi and Rothblum for the NP-complete language R1CS using different techniques. The
IOPs imply succinct arguments for (nondeterministic) arithmetic computations over any finite field with
linear-time proving (given black-box access to a linear-time collision-resistant hash function).

Inspired by recent constructions of reverse-multiplication-friendly embeddings, our IOP constructions
embed problem instances over small fields into larger fields and adapt previous IOP constructions to
the new instances. The IOP provers are modelled as random access machines and use precomputation
techniques to achieve linear prover time. In this way, we avoid having to replace the sumcheck protocol.

Keywords: interactive oracle proofs; succinct arguments; linear-time prover; sublinear verification
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1 Introduction

A succinct argument is a protocol where a prover aims to convince a verifier that a statement is correct,
by communicating a short and efficiently verifiable proof, rather than a witness to the correctness of the
statement. Succinct arguments have found numerous applications, such as verifiable computation schemes
and electronic voting systems. Motivated by these applications, researchers strive to improve the efficiency of
succinct arguments. The main efficiency measures are communication complexity, and prover and verifier
running time. Amazingly, prior work on succinct arguments [ ̸↷Groth10b; Lipmaa13; GennaroGPR12;
Groth16] culminates in constructions whose communication complexity and verifier time are independent of
the statement to be proved. However, the prover complexity of these constructions remains a major bottleneck
in practice, motivating research into linear-time prover algorithms.

All known constructions of succinct arguments with linear-time provers are interactive protocols where
the prover and the verifier interact over multiple rounds. Building on [GoldwasserKR15; Thaler13],
[XieZZPS19] constructed succinct arguments for layered arithmetic circuit evaluation with linear prover
time, later extended to all circuits in [ZhangWZZ20]. The drawback is that these protocols’ verify the
correctness of polynomial-time computations, rather than NP statements. Later constructions target NP
languages, and use the Interactive Oracle Proof (IOP) model, first introduced in [BenSassonCS16] and
[ReingoldRR16]. In the IOP model, the prover sends oracles to the verifier, who queries the oracles at
various points instead of reading them in their entirety. Various IOP constructions such as [AmesHIV17;
BenSassonBHR17] encode computations using polynomial encodings which require quasilinear time to
compute, and whose multiplicative properties facilitate protocol design. However, linear-time constructions
must employ linear-time encodings, for which no constructions with multiplicative properties are known.

The first construction of a linear-time IOP for general arithmetic circuits in [BootleCGGHJ17] had
square-root communication complexity in the circuit size, and was subsequently improved to sublin-
ear [BootleCG20] and finally polylogarithmic [BootleCL22], with comparable verification times, us-
ing techniques from [RonZewiR19; BenSassonBHR17]. However, as in [RonZewiR19], [BootleCG20;
BootleCL22] rely on the the [LundFKN92] sumcheck procotol. Due to implicit use of polynomial encod-
ings, the soundness error of the sumcheck protocol is O( logn|F| ), which limits [BootleCG20; BootleCL22]
to circuits defined over fields of size Ω(log n). Recently, [RonZewiR22] solved this problem with a new
multi-sumcheck protocol using linear-time encodings, which leads to an IOP for circuit satisfiability with
linear verification time and soundness error O(1) over any finite field. Thus, the development of IOPs with
linear-time provers so far is entirely based on eliminating polynomial arithmetic in favour of linear-time
encodings, at first, in order to avoid computational overheads, and later, to achieve non-trivial soundness
guarantees over constant-size fields.

On the other hand, [CascudoG21] successfully constructs sound IOPs for NP statements defined over F2

by reducing them to NP statements over polynomial-size fields using specialised encodings called reverse
multiplication-friendly embeddings (RMFEs) [CascudoCXY18]. They then apply IOP protocols over large
fields. Due to looseness in the reductions and overheads associated with the RMFEs, [CascudoG21] gives
a superlinear-time prover algorithm. However, their approach is attractive, as it allows reuse of existing
protocols and implementations. We revisit the embedding strategy of [CascudoG21] to see whether it can be
used to construct linear-time prover algorithms.

In this work, we construct IOPs with linear-time prover for the language of R1CS automata, and
the NP-complete language R1CS defined over F2, by combining techniques from [CascudoG21] and
previous works on linear-time IOPs, along with some new techniques that reduce the prover’s computational
overhead. Perhaps surprisingly, our work shows that linear-time proofs over constant-size fields can leverage
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multiplicative encodings of super-constant size, avoiding the computational overhead associated with encoding
the entire witness by using precomputation techniques. Furthermore, our IOP for R1CS automata achieves
sublinear verification. Previously, this was only known for R1CS for over large fields, and used preprocessing
techniques [BootleCG20; BootleCL22]. Note that preprocessing is essential for sublinear verification time
for R1CS, because merely reading the instance requires linear time for the verifier.

Though our result for R1CS is similar to that of [RonZewiR22], we use different computational models
and techniques. Our provers and verifiers are random-access machines while theirs are circuits. More
comparisons between the two approaches are given in Section 1.2.

1.1 Our results

We construct linear-time IOPs for computations over every field (including the boolean field). The first IOP
supports rank-1 constraint satisfiability (R1CS), a standard generalization of arithmetic circuit-SAT, where
the “circuit description” is encoded in coefficient matrices. This NP-complete problem is widely used in the
IOP literature since it efficiently expresses arithmetic circuits and is convenient for protocol design.

Definition 1.1. The R1CS problem over a finite field F is as follows: given matrices A,B,C ∈ FN×N with
at most M = Ω(N) non-zero entries, and an instance vector x over F, does there exist a witness w over F
such that z := (x,w) ∈ FN and Az ◦Bz = Cz? Here “◦” denotes the entry-wise product.

Merely checking the validity of a witness by directly checking the R1CS condition costsO(M) operations
over F, so “linear time” for R1CS means computations that cost no more than O(M) operations over F (or
the equivalent in bit operations).

The first main result of this paper is an IOP for R1CS, over any given field, that achieves linear-time
proving (thus also linear-size proofs) and polylogarithmic query complexity. The notion of linear time is
achieved over a random-access machine. A comparison with prior linear-time IOPs is given in Figure 1.

Theorem 1.2 (main). For every finite field F, there is a public-coin IOP (with point queries), for R1CS
instances whose matrices have M = Ω(N) nonzero entries, that has the following efficiency:
• soundness error is O(1);
• round complexity is O(logN);
• answer alphabet is F;
• proof length is O(N);
• query complexity is O(log(N)2/ log |F|);
• the prover is a RAM with word length Θ(logN) and O(1) registers that runs in O(M + N) time and
O(N) space;

• the verifier is a RAM with word length Θ(logN) and O(1) registers that runs in O(M + N) time and
O(N) space.

The theorem directly implies the existence of linear-time succinct arguments for R1CS over any field, via
a known implication that involves combining IOPs and linear-time collision resistant hash functions (used as a
black box) [BootleCGGHJ17]. Such hash functions are known to exist, e.g., under certain assumptions about
finding short codewords in linear codes [ApplebaumHIKV17]; moreover, these candidate hash functions are
not known to be insecure against quantum adversaries, making the succinct argument plausibly post-quantum
secure.

Corollary 1.3 (succinct argument). Using any linear-time collision-resistant hash function with security
parameter λ as a black box, there is an interactive argument for R1CS over any finite field F where:
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• soundness error is O(1);
• round complexity is O(logN);
• communication complexity is poly(λ, log(N)2/ log |F|);
• the prover is a RAM with word length Θ(logN) andO(1) registers that runs inO(λ log(M+N)+M+N)

time and O(N) space;
• the verifier is a RAM with word length Θ(logN) andO(1) registers that runs inO(λ log(M+N)+M+N)

time and O(N) space.

The second IOP supports the algebraic automata language, which verifies the transition function for an
automata using R1CS coefficient matrices. This problem is previously discussed in [BenSassonCGGRS19],
where they construct an IOP with linear proof length and polylogarithmic verification time with respect to the
computation time of the corresponding automata.

Definition 1.4. The algebraic automata problem over a finite field F is as follows: given matricesA,B,C ∈
Fw×2w, a vector x ∈ Fw, and a computation time T , does there exist an execution trace z : [T + 1]→ Fw

such that z(1) = x and A(z(t), z(t+ 1)) ◦B(z(t), z(t+ 1)) = C(z(t), z(t+ 1)) for every t ∈ [T ]?

Our second result is an IOP for the algebraic automata problem that achieves linear-time proving and
sublinear verification over any field. In comparison, [BenSassonCGGRS19] can only be extended to
constant-size fields with an additional logarithmic factor in the proof length. In the context of this problem,
since the automata encoded by the matrices are executed T times, we define “linear time” for algebraic
automata to be computations that cost no more than O(T ) operations in F.

Theorem 1.5 (main). For every finite field F, and for every positive constant ϵ > 0, there is a public-coin
IOP (with point queries), for the algebraic automata problem with instances with w = O(1), that has the
following efficiency:
• soundness error is O(1);
• round complexity is O(log T );
• answer alphabet is F;
• proof length is O(T );
• query complexity is O(log(T )2/ log |F|);
• the prover is a RAM with word length Θ(log T ) and O(1) registers that runs in O(T ) time and O(T )

space;
• the verifier is a RAM with word length Θ(log T ) and O(1) registers that runs in O(T ϵ) time and O(T ϵ)

space.

Figure 2 compares their IOP with the one we have in Theorem 1.5. As with R1CS, Theorem 1.5 directly
implies a succinct argument for R1CS automata.

Corollary 1.6 (succinct argument). For any constant ϵ > 0, using any linear-time collision-resistant hash
function with security parameter λ as a black box, there is an interactive argument for the algebraic automata
problem over any finite field F where:
• soundness error is O(1);
• round complexity is O(log T );
• communication complexity is poly(λ, log(T )2/ log |F|);
• the prover is a RAM with word length Θ(log T ) and O(1) registers that runs in O(λ log(T ) + T ) time and
O(T ) space;

• the verifier is a RAM with word length Θ(log T ) and O(1) registers that runs in O(λ log(T ) + T ϵ) time
and O(T ϵ) space.
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IOP execution model circuit encoding cost prover cost verifier cost query complexity field size

[BootleCGGHJ17] RAM O(N) F-ops O(N) F-ops O(
√
N) F-ops O(

√
N) Ω(N)

[BootleCG20] RAM O(N) F-ops O(N) F-ops O(N ϵ) F-ops O(N ϵ) Ω(N)

[BootleCL22] RAM O(N) F-ops O(N) F-ops polylog(N) F-ops O(logN) Ω(N)

[XieZS22] RAM O(N) F-ops O(N) F-ops O(log2N) F-ops† O(log2N) Ω(N)

[RonZewiR22] circuit not applicable O(N) F-ops O(N) F-ops‡ polylog(N) any

Theorem 1.2 RAM not applicable O(N) F-ops O(N) F-ops O(log2N) any

Figure 1: Comparison of known IOPs with a linear-time prover. The parameters are for an N -gate arithmetic
circuit defined over a field F; and ϵ is any positive constant. The sublinear verification in all cases is achieved in
the holographic setting (the verifier has oracle access to an encoding of the circuit). For the IOPs modelled using
RAM, prover and verifier costs are measured in terms of the equivalent number of operations over F, by dividing
the total number of basic RAM operations by the number required to perform a field operation. (†: we compare
against a preprocessing version of [XieZS22] incorporating techniques from [Setty20].) (‡: see Remark 1.8.)

IOP execution model prover cost verifier cost query complexity field size

[BenSassonCGGRS19] RAM O(T log T ) F-ops polylog(T ) F-ops O(1) Ω(T )

[HolmgrenR22] circuit O(T ) F-ops O(T ϵ) F-ops O(T ϵ) any

Theorem 1.5 RAM O(T ) F-ops* O(T ϵ) F-ops* O(log2 T ) any

Figure 2: Comparison of known IOPs for R1CS automata. The parameters are for an automata with computation
time T defined over a field F; and ϵ is any positive constant. For the IOPs modelled using RAM, prover and
verifier costs are measured in terms of the equivalent number of operations over F, by dividing the total number of
basic RAM operations by the number required to perform a field operation. (†: see Remark 1.8.)

1.2 Related works

[Page numbers for [HolmgrenR22] and [XieZS22] are missing in the bibliography as the proceedings does not
⋆

seem to be online yet. —Jonathan]

Prior work on linear-time IOPs. Our main results focus on constructing efficient interactive oracle
proofs with linear-time provers for R1CS. Several prior works have considered the same goal. First,
[BootleCGGHJ17] obtained an IOP with linear-time prover and square-root verification time for arithmetic
circuit satisfiability. Later, [BootleCG20] and [BootleCL22] improved this result by achieving sublin-
ear, and then polylogarithmic verification time for R1CS. These works, [BootleCGGHJ17; BootleCG20;
BootleCL22], all require non-constant-size fields. Recently, [RonZewiR22] proved a similar result to The-
orem 1.2, and constructed an IOP with a linear-time prover for boolean circuit satisfiability, via different
techniques. Figure 1 summarizes the properties of the IOPs obtained from these works.

We now carefully discuss how our result differs from the one proved by Ron-Zewi and Rothblum in
[RonZewiR22]. Note that the comparison below is only between Theorem 1.2 and Theorem 1.7, since their
work does not mention sublinear verification and targets only general but not staircase R1CS instances.

Theorem 1.7 ([RonZewiR22]). There is an IOP for proving the satisfiability of a boolean circuit C where:
soundness error is O(1); round complexity is O(log |C|); proof length is O(|C|) over the binary alphabet;
query complexity is polylog |C|; and the prover and verifier can be implemented via boolean circuits of size
|C| (that can be efficiently computed from C).

Both Theorem 1.2 and Theorem 1.7 extend the line of works on linear-time IOPs by contributing new

4



tools that enable a constant soundness error over boolean fields. The IOP in [RonZewiR22] works for the
satisfiability of boolean circuits; however, it could be extended to work with R1CS, the language our IOPs
are constructed for. Meanwhile, we note that the execution models of the IOPs differ. The IOP prover in
[RonZewiR22] is a boolean circuit that can be efficiently obtained from the boolean circuit whose satisfiability
is being proved. Our IOP prover is an algorithm for a random-access machine. The [RonZewiR22] result
would also imply a linear-time RAM prover if the linear-size prover circuit can be efficiently generated by a
linear-time RAM program. We do not know whether our result implies a corresponding result with circuit
prover.

More interestingly, the two results differ significantly in the underlying techniques.

• Multi-sumcheck. The IOP in [RonZewiR22] relies on a multi-sumcheck protocol based on code-switching
[RonZewiR19], in combination with an arithmetization inspired by [BootleCGGHJ17]. The multi-
sumcheck protocol foregoes the use of multiplication codes (the product of codewords is a codeword from
a related code) of super-constant length, relying instead on linear-time encodable codes and repeated use of
code-switching to avoid the computational overhead caused by multiplications of long codewords.

• Embedding and precomputation. Our IOP combines ideas from the tensor-to-point-query approach
[BootleCG20], which itself is an optimization of the code-switching technique in [RonZewiR19], and
the embedding techniques in [CascudoG21]. This leads to a construction over a field extension that
is not too large, and we rely on precomputation to avoid costly multiplications in the extension field.
Our IOP construction does use a generalization of the biased generator for boolean fields constructed in
[RonZewiR22].

Remark 1.8. The verifier of the IOP in [RonZewiR22] and the verifier of our IOP for R1CS both run in
linear time. This is optimal because the verifier must read the circuit/R1CS description. In both cases it
remains an open question whether sublinear verification can additionally be achieved for general R1CS
instances. Meanwhile, our IOP for algebraic automata achieve sublinear verification (without holography).
We remark that [RonZewiR22] additionally discuss a model where the verifier performs a private linear-time
computation in an offline phase followed by a sublinear-time computation in the online phase. This is a type
of preprocessing that many probabilistic proofs satisfy (including our IOP) but we do not discuss this model
since it is of limited use.

Concurrent work on linear-time IOPs. Recently, [XieZS22] developed new algorithms to improve the
efficiency of the linear-time encodings used in linear-time IOPs, modified the proof composition techniques
used in [BootleCL22], and produced an efficient implementation of the resulting arguments. Note that
while [XieZS22] presents a protocol with linear verification time, it is straightforward to extend this to the
results in Figure 1 using techniques from [Setty20], leading to the same dependence on large fields as in
[BootleCGGHJ17; BootleCG20; BootleCL22].

Our work and [RonZewiR22] achieve constant soundness error, but can achieve 2−λ soundness error
with O(λ) · N prover time via repetition. Recently, [HolmgrenR22] improved the trade-off between the
prover overhead and soundness error for special classes of R1CS instances including algebraic automata
(referred to as succinct R1CS). They construct an IOP with polylog(λ) · N prover time, 2−λ soundness
error, and sublinear verification time for R1CS instances whose matrices have a tensor structure. Setting
λ = O(1) leads to the results in Figure 2. Their general strategy is to improve the protocol in [RonZewiR22]
by transforming input vectors for several subprotocols into tensor products. They then reduce soundness
error by partitioning the tensors into Θ(λ) parts and applying the subprotocols to each part independently.
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Whether there are IOPs for general R1CS instances achieving the same trade-off between prover time and
soundness error is an open question.

Prior work on cryptographic proofs with linear-time provers. As previously discussed, constructions of
linear-time IOPs can be compiled into linear-time succinct arguments using suitable collision resistant hash
functions. One can also use more complex cryptographic compilers which involve further composition with
succinct arguments. Prior works [LeeSTW21; GolovnevLSTW21] apply this strategy to the arguments from
[BootleCG20]. Among other optimizations, they contribute improved constructions of linear-time encodable
codes, which improve the concrete efficiency of linear-time IOPs and lead to efficient implementations. These
works give arguments over large fields.

Another line of work focuses on achieving practical linear-size proofs with linear-time prover algo-
rithms. For example, [WengYKW20; BaumMRS21; YangSWW21] provide proof systems for verifying
arithmetic circuits over fields of any size, based on vector oblivious linear evaluation protocols. In particular,
[BaumMRS21] also employ embedding techniques. These protocols have a linear-time verifier. Another
strategy for achieving linear time prover and verifier complexity in earlier works comes from the MPC-in-the-
head paradigm [IshaiKOS09]. Other works such as [FranzeseKLO0W21; HeathK20a] provide linear-time
provers for statements about RAM executions.

6



2 Techniques

We describe the main ideas behind our result.

2.1 Starting point: the tensor-query to point-query paradigm

Our construction follows the same approach as [BootleCG20], first constructing a tensor IOP for R1CS
with linear time and then compiling it to a standard IOP. This approach is an optimization of both the
code-switching technique in [RonZewiR19], and the compiler for linear queries on vectors to point queries
in [BootleCGGHJ17], tailored to this type of construction.
Tensor IOP for R1CS. In a tensor IOP, the verifier makes tensor queries to oracle messages sent by
the prover. A tensor IOP is parametrized by a field Fp, where p is an arbitrary prime power, and positive
integers k and t. Given a proof message Π ∈ Fkt

p , the verifier can make tensor queries of the form
q = (q1, . . . , qt) ∈ (Fk

p)
t and receive answer ⟨q1 ⊗ · · · ⊗ qt,Π⟩. Recall that for standard IOPs, the verifier

uses point queries which allow them to query single locations of proof messages. For R1CS, the problem
decides whether for given coefficient matrices A,B,C ∈ FN×N

p and an instance vector x ∈ F∗p, there exists
a witness vector w such that z = (x,w) ∈ FN

p satisfies Az ◦ Bz = Cz. Following the standard approach
for designing IOPs for R1CS, it suffices for the prover P to send z and zA, zB, zC ∈ FN

p and convince the
verifier V that zA = Az, zB = Bz, zC = Cz, and zA ◦ zB = zC .

Twisted scalar product. All four conditions can be reduced to a relation called the twisted scalar product
relation introduced by [BootleCG20], which checks whether a⃗, b⃗, y⃗ ∈ Fn

p and τ ∈ Fp satisfy ⟨⃗a ◦ y⃗, b⃗⟩ = τ .
The tensor IOP constructed by [BootleCG20] for this relation achieves a soundness error of logN/ |Fp|.

• zU = Uz: To check this type of condition, the verifier sends a random challenge r with tensor structure,
reducing the conditions to ⟨r, zU ⟩ = ⟨r⊺U, z⟩, where the left-hand side can be obtained through a tensor
query to zU . Then set a⃗ = r⊺U, y⃗ = 1n, b⃗ = z and τ = ⟨r, zU ⟩ and invoke the tensor IOP protocol to check
that the right-hand side is equal to the left.

• zA ◦ zB = zC : This condition is checked by picking a random vector as the twist y⃗ and setting a⃗ = zA, b⃗ =
zB , and τ = ⟨zC , y⃗⟩.

Tensor IOP to point IOP compiler. After obtaining a tensor IOP for R1CS, [BootleCG20] provides a way
to efficiently convert the tensor IOP into a standard point IOP by simulating tensor queries via a number of
point queries. More specifically, [BootleCG20] designs a compiler that takes in a tensor IOP and any linear
code whose encoding function is represented by a circuit as inputs, and outputs a point IOP that decides the
same language as the tensor IOP up to an overhead in soundness error.
Bottlenecks from [BootleCG20]. We cannot directly apply the linear-time IOP of [BootleCG20] to constant-
size fields. This is because their final construction gives a tensor IOP with soundness error logN/ |Fp| due to
the soundness error of the twisted scalar product protocol, which compiles to a standard IOP with soundness
error N/ |Fp|. Therefore, the size of the underlying field has to be large in order for the soundness error to be
small. Therefore, to adapt this approach for small fields, we will use an embedding from a small field to a
larger field, inspired by [CascudoG21], and then design our IOPs in this larger field.

2.2 Overview of techniques

Recently, [CascudoCXY18] introduced embeddings called reverse-multiplication friendly embeddings
(RMFEs) which were later used by [CascudoG21] to construct a Reed-Solomon-encoded IOP for RR1CS
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over F2. RMFEs are embeddings that transform a vector over a small field to an element in a large field
while preserving multiplicative relations. More precisely, the encoding function ϕ : Fa

2 → F2b and decoding
function ψ : F2b → Fa

2 are such that x⃗ ◦ y⃗ = ψ(ϕ(x⃗)ϕ(y⃗)) for all x⃗, y⃗ ∈ Fa
2. The key idea behind the IOP

construction is to embed the RR1CS instance matrices and witness vectors into a large field F2b via the
encoding function. Note that the embedding function ϕ preserves multiplicative relations between embedded
vectors, which makes it possible for the IOP to check the relation Az ◦Bz = Cz.

Further, after the reduction, in addition to equations provingRR1CS over F2b , the prover needs to convince
the verifier of some new relations. For instance, the prover needs to show that some given vector x̃ is indeed a
valid encoding in Im(ϕ). To this end, [CascudoCXY18] introduces a subprotocol called a modular lincheck
protocol for all such relations.

Unfortunately the IOP construction in [CascudoCXY18] uses Reed–Solomon codes, which immediately
make the prover’s running time superlinear. Additionally, two places in the modular lincheck protocol also
incur superlinear operations already.

We get around using Reed–Solomon codes by applying the paradigm of [BootleCG20]. We first construct
a tensor IOP and then use a tensor-to-point query compiler to obtain an IOP for RR1CS over small fields.

The other two problems are caused by an inefficient use of randomized hashing in the modular lincheck
protocol, and we solve them by first using a RMFE that has a systematic property and second by replacing the
hash function with one that achieves smaller soundness error. The precise definition of a systematic RMFE
is given in Section 2.3. More details on the construction of our modular lincheck protocol can be found in
Section 2.4.

2.3 Systematic reverse-multiplication-friendly embeddings

In order to tackle the task for finite fields Fp, we use reverse-multiplication-friendly embeddings (RMFE)
introduced by [CascudoCXY18]. As mentioned before, we seek injective mappings from small fields to large
fields, to enable techniques similar to those developed in [BootleCG20] and [BootleCL22] and construct an
IOP protocol. More specifically, we use an efficient embedding that allows us to encode a elements in Fp

into one element in Fpb , where b = O(a). Then we construct IOPs with tensor queries for R1CS over Fp,
which make black-box use of tensor IOPs for the encoded R1CS over Fpb . One thing to be careful about is
that operations in the large field are more expensive than those in the original small field. Thus, in order to
keep our IOP efficient, we need to precompute the expensive operations, as we will describe in more detail in
Section 2.5.

Now we discuss what characteristics we want our RMFEs to possess. First, they should be efficiently
encodable to ensure the efficiency of the IOP where they will be used. Moreover, we want them to be
systematic. In particular, given a basis of the large field Fpb , we think of the element as a vector of length b,
where each entry in the vector is the coefficient of the i-th basis vector. We say that an RMFE is systematic if
the coefficient vector of the encoded element is the original element padded with zeros. This property ensures
that the tensor IOP has a linear-time prover. Lastly, we want the embeddings to preserve the component-
wise additions and products of the original vectors in the small field Fa

p so that relations such as ⟨x, y⟩ are
preserved. Keeping these properties in mind, we now present the formal definition of (a, b)p-RMFE given in
[CascudoCXY18] and also our definition of systematic (a, b)p-RMFE.

Definition 2.1 ([CascudoCXY18]). Let p be a prime power and Fp a field with p elements. Let a, b ≥ 1 be
integers. A pair (ϕ, ψ) is called a (a, b)p-reverse-multiplication-friendly embedding (RMFE) if ϕ : Fa

p →
Fpb and ψ : Fpb → Fa

p are both Fp-linear maps such that for all x⃗, y⃗ ∈ Fa
p,

x⃗ ◦ y⃗ = ψ(ϕ(x⃗) · ϕ(y⃗)) .
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Note that this definition ensures that RMFEs preserve component-wise additions and products, as
described in the previous paragraph. Therefore, in our later discussion, we on efficient encoding and the
systematic property.

Definition 2.2. An (a, b)p-RMFE (ϕ, ψ) is systematic if there exists a basis {ej}j∈[b] of the Fp-linear space
Fpb such that for every element x⃗ = (x1, . . . , xa) ∈ Fa

p it holds that ϕ(x⃗) = (x1, . . . , xa, 0, . . . , 0), where
the i-th entry of ϕ(x⃗) is the coefficient with respect to the i-th basis vector ei.

Note that this definition implies that systematic RMFE encodes a vector x⃗ over Fp into an element in Fpb

with ∥x⃗∥0 non-zero coefficients in basis E. Therefore, the cost of writing down the encoded vector is linear in
terms of the input vector, which we can afford.

Warmup: systematic RMFE based on polynomial interpolation. We outline a simple RMFE construction
based on polynomial interpolation from [CascudoCXY18], and explain how to make it systematic.

Fix k distinct elements (α1, . . . , αk) in Fp and ζ ∈ Fp2k−1 such that Fp2k−1 = Fp(ζ). The encoding
map ϕint works a follows: on input (x1, . . . , xa) ∈ Fa

p, compute the polynomial f over Fp[X]<k such that
f(αi) = xi for all 1 ≤ i ≤ k, and output f(ζ). The decoding map ψint takes an element β in Fp2k−1 and
determines the unique polynomial f in Fp[X]<2k−1 such that β = f(ζ) and outputs (f(α1), . . . , f(αk)).
Intuitively, this forms an RMFE because the image of ϕint is the set of elements β = f(ζ) ∈ Fp2k−1 where
deg f ≤ a − 1, which implies that the product of f(ζ), g(ζ) ∈ Imϕint is represented as (f · g)(ζ) since
deg f · g < 2k − 1. Therefore, applying ψint will evaluate f · g at αi as desired. Both maps are efficiently
computable because polynomial interpolation is efficient.

Is it systematic? This RMFE is, in general, not systematic. For example, consider the canonical basis
{1, ζ, . . . , ζk−1, . . . , ζ(2k−1)−1} for Fp2k−1 . Assume for the sake of contradiction that this basis satisfies the
systematic property. Then following Definition 2.2, it must be that ϕ′(α) = (α1, . . . , αa, 0, . . . , 0) =∑a

i=1 αiζ
i−1 for α = (α1, . . . , αa). However, according to the construction, we know that ϕ(α) =∑k

i=1 αiLi(ζ) where Li(ζ) = Π1≤j≤k
j ̸=i

ζ−αj

αi−αj
is the i-th Lagrange polynomial. One can find some α ∈ Fa

p

such that ϕ′(α) ̸= ϕ(α), which shows that this basis does not give us the systematic property.
Making it systematic. Suppose that we change the canonical basis such that the first k elements are

replaced by the Lagrange basis. Then each element in the image of the encoding can be represented as a
linear combination of the first k elements in the basis, and the coefficient vector in the linear combination
is exactly the input vector. With this change, the RMFE based on polynomial interpolation achieves the
systematic property.

Why the above RMFE does not suffice. The RMFE based on polynomial interpolation requires the base
field Fp to have size at least k (which can be improved to size at least k− 1 as in Section 4.1) as there have to
be enough distinct elements for the interpolation. However, in this paper we will need to use embeddings for
super-constant k and constant-sized base fields Fp. Therefore we cannot use this RMFE based on polynomial
interpolation.

A systematic RMFE based on AG codes. In this paper we use an RMFE based on algebraic geometry (AG)
codes from [CascudoCXY18], which we show can be made systematic. Informally, instead of using elements
of a finite field, the RMFE based on AG codes uses rational places in algebraic function fields. The embedding
outputs the evaluation of the polynomial uniquely determined by the input at a place with high degree, which
is similar to the case in the previous construction where it takes the value of the Lagrange-interpolated
polynomial at α. In the more detailed explanation of this construction in Definition 4.6, we use tools from
algebraic geometry, such as divisors, Riemann–Roch spaces, Ihara’s constant, etc. to justify the properties we
need. We postpone the full construction and detailed proof to Section 4.
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2.4 A tensor IOP for R1CS over small fields

We use RMFEs to construct a tensor-query IOP for R1CS over any field. Below we summarize the result and
construction, leaving technical details for Section 6.

Definition 2.3 (informal). A (F, k, t)-tensor IOP is an IOP in which the prover sends Πi ∈ Fℓi·kt for some
positive integer ℓi and the verifier queries ⟨v0 ⊗ v1 ⊗ · · · ⊗ vt,Πi⟩ for v0 ∈ Fℓi and v1, . . . , vt ∈ Fk.

Theorem 2.4 (informal). Let ϕ : Fa
p → Fpb be an RMFE, where b = O(a) and the finite field Fpb has size

pb ∈ Ω(logN). There exists a (Fpb , k, t)-tensor IOP for R1CS instances of size N with M non-zero entries
over Fp with the parameters below:
• soundness error is O(1);
• round complexity is O(log(N/a));
• proof length is O(N/a) elements in Fpb;
• query complexity is O(1);
• the prover sends O(log(N/a)) elements in Fpb as non-oracle messages;
• the prover uses O(M +N) Fp-operations and O(tN/a) Fpb-operations;
• the verifier uses O(M +N) Fp-operations and O(tk) Fpb-operations;
• the verifier has randomness complexity O(log(N/a)) over Fpb and O(log(N/a)) over Fp.

Prior constructions of tensor-query IOPs work only for large enough fields [BootleCGGHJ17; BootleCG20;
BootleCL22]. Briefly, the use of the sumcheck protocol introduces a soundness error of Ω( logN|F| ); moreover,

holographic techniques to achieve sublinear verification introduce an even larger soundness error of Ω( N
|F|).

Straightforwardly expressing an R1CS problem over Fp as an R1CS problem over a large enough
extension field leads to instances of more than linear size, and therefore does not suffice for our goal of
linear-time IOPs. We show that, nevertheless, a more refined embedding approach does suffice.

Starting point: embedding R1CS from [CascudoG21]. Cascudo and Giunta [CascudoG21] rely on
RMFEs to construct a linear-size IOP based on the Reed–Solomon code for RR1CS over Fp for p = 2. Their
IOP is not linear-time due to the use of the Reed–Solomon code. Yet their approach directly inspires our
linear-time tensor IOP construction, and so we summarize their approach here as a starting point, generalised
from p = 2 to any p.

The idea in [CascudoG21] is to use an RMFE embedding ϕ to embed the coefficient matrices A,B,C
and the witness vector z into a field Fpb where pb = Ω(log(N)), and then show that ϕ(A)ϕ(z)◦ϕ(B)ϕ(z) =
ϕ(C)ϕ(z), where ϕ is applied to matrices row-wise (so that the dimensions of the matrix multiplications
match). We call this new problem over the large field modular R1CS. Then one can construct an IOP for
modular RR1CS over the large field Fpb . To make this reduction work, the prover additionally needs to prove
relations of the form x̃ ∈ Im(ϕ) for x̃ that is claimed to be an embedded vector. Since ϕ is a linear function,
[CascudoG21] introduces a subprotocol called modular lincheck to prove statements of the form Ãx̃ ∈ V λ

where V is a Fp-linear subspace of Fpb and λ is the dimension of the resulting vector being checked. We will
now explain this subprotocol in more detail.

The modular lincheck in [CascudoG21]. Consider a matrix A ∈ FN×N
p with M non-zero entries, a vector

x ∈ FN
p , a (a, b)p-RMFE (ϕ, ψ), and a Fp-linear subspace V ⊆ Fpb . Let Ã ∈ FN×N/a

pb
and x̃ ∈ FN/a

pb
be the

alleged embeddings of A and x. The modular lincheck protocol checks whether Ãx̃ ∈ V N .
The usual approach to testing a linear relation of the form Ax = b is linear hashing: the IOP verifier

samples a random matrix R and then asks the prover to show that R(Ax − b) = 0. In the context of a
modular lincheck, the IOP verifier samples a random matrix R ∈ Fλ×N

pb
. It first checks that RÃx̃ = y for
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some y ∈ Fλ
pb

using a lincheck protocol adapted from the one in [BenSassonCRSVW19] with input matrix

RÃ and vector x̃ and designated matrix-vector product y. We define ϵLC to be the soundness error of this
check. Then the verifier checks that y ∈ V λ. Since V is a Fp-linear space, R needs to be sampled from
Fλ×N
p to ensure that RÃx̃ ∈ V λ whenever Ãx̃ ∈ V N .

The linear hashing matrix R ∈ Fλ×N
p in [CascudoG21] is sampled as follows. Sample an element

α ∈ Fpλ uniformly at random. The field Fpλ
∼= Fp[X]/(P ) for some irreducible polynomial P over Fp, and

every element f ∈ Fp[X]/(P ) has a matrix representation Mf ∈ Fλ×λ
p such that for any g =

∑λ−1
i=0 aiX

i ∈
Fp[X]/(P ) with associated coefficient vector g⃗, Mf · g⃗ is the coefficient vector for f · g ∈ Fp[X]/(P ). The
matrix R is then defined by horizontally concatenating the matrices Mα,Mα2 , . . . ,MαN .

This choice of R guarantees that this check has soundness error bounded by N/λ
pλ

. Here N/λ is the
highest degree of α that is used to generate R and pλ is the order of the field that α is sampled from. Thus,
the overall modular lincheck protocol has soundness error N/λ

pλ
+ ϵLC.

Finally we note that the modular lincheck protocol in [CascudoG21] is a Reed–Solomon encoded IOPP.
Namely the verifier’s oracle is encoded by a Reed–Solomon code, and the oracle is accessed via point queries.
This protocol can be converted to a tensor IOP by observing that a point query to a Reed–Solomon encoding
of Π can be simulated by a tensor query to Π. Thus we can extract a tensor IOP to test the same relation.

Our construction. It is tempting to directly combine the modular lincheck protocol from [CascudoG21]
and the linear-time tensor IOP from [BootleCG20] to get a linear-time tensor IOP for RR1CS over Fp. This,
however, does not work. We describe the main problems that arise and how we solve them.

Problem 1: computing ϕ(A) and Rϕ(A) takes superlinear time. For certain instance matrices A, a
naive (a, b)p-RMFE ϕ would make the prover’s time superlinear. Consider a matrix A ∈ FN×N

p with M
non-zero entries, and recall that ϕ is applied to A row-wise. If any two non-zero elements in the same row
of A are a-entries apart from each other, then ϕ(A) ∈ FN×N/a

pb
also has M non-zero elements in Fpb . The

embedding takes a matrix A with M elements in Fp to a matrix ϕ(A) with M elements in Fpb . If we naively
write down ϕ(A) as elements in Fpb , this step alone would take O(M) Fpb-operations which could cost at
least bM Fp-operations. Since

∣∣Fpb
∣∣ = Ω(logN), this step incurs superlinear cost in M .

Furthermore, passing ϕ(A) to the tensor IOP for the modular RR1CS over Fpb would result in the prover
having arithmetic complexity Θ(M) over Fpb : in the modular lincheck protocol the prover computes the

product Rϕ(A) (for R ∈ Fλ×N
p and ϕ(A) ∈ FN×N/a

pb
) which takes λM operations over Fpb . This step is also

superlinear in M over Fp when
∣∣Fpb

∣∣ = Ω(logN).

Solution: systematic RMFEs. We rely on a systematic RMFE with basis E (discussed in Section 2.3) in
order to write down ϕ(A) and compute Rϕ(A) in linear time. First we represent every element in Fpb in the
basis E. Recall that E is a basis for the Fp-linear space Fpb . For any field element f ∈ Fpb we use E(f) ∈ Fb

p

to denote f ’s coefficient vector under E, and for any matrix H in Fx×y
pb

we use E(H) ∈ Fx×by
p to denote the

representation of H such that each entry is encoded by the corresponding coefficient vector under E.
Since the RMFE ϕ is systematic with respect to E, for any matrix A with M non-zero entries, E(ϕ(A))

also has M non-zero entries. Thus writing down E(ϕ(A)) takes O(M) Fp-operations.
Additionally, since Fpb is Fp-linear, for every f ∈ Fpb and e ∈ Fp, E(ef) = eE(f) where the multi-

plication of e by E(f) is performed over Fp. Then computing E(Rϕ(A)) = RE(ϕ(A)) requires only λM
operations over Fp. For addition of two elements over the large field, as discussed in Section 2.3, given
a vector v ∈ Fa

p, the given systematic RMFE would encode it into an element in Fpb with ∥v∥0 non-zero
coefficients in basis E. Therefore, we only need to do a linear number of additions of the coefficients to
add two elements over the large field. Each addition requires a linear number of operations, which is not
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problematic.

Problem 2: super constant λ. Now that computing Rϕ(A) takes O(λM) Fp-operations, λ must be a
constant for the prover and the verifier to run in time linear in M . However, in the Boolean case, as analysed
in the modular lincheck protocol above, λ needs to be at least logN for the soundness error N

λpλ
to be

non-trivial.

Solution: subspace biased generators. We use an alternative random hashing matrix. We conceptualize
the linear hashing step, and come up with a useful definition of a (p, λ)-subspace ϵsub-biased generator Gsub,
which generates random hashing matrices R such that for any Fp-linear subspace V ⊆ Fpb and z ̸∈ V N ,
we have PrR←Gsub(Fs

pλ
)[Rz ∈ V λ] ≤ ϵsub. This definition fully captures the required property of the linear

hashing matrix. We also provide a generic construction of a (p, λ)-subspace ϵsub-biased generator for any
constant integers p and λ, and any constant soundness error ϵsub > 1

pλ
that additionally has arithmetic

complexity Oλ,p,ϵsub(N). So replacing the random R in [CascudoG21] with the output of such a generator
Gsub ensures that λ is a constant and that the soundness error is non-trivial.

2.5 Eliminating overhead through precomputation

In fact, the techniques described above generalise from binary fields to any finite field Fp. Given a systematic
(a, b)p-RMFE (ϕ, ψ) with basis E, where b = η · a for some constant η, we can construct an IOP with prover
arithmetic complexity O(M) operations over Fp and O(N/b) operations over Fpb . To offset the soundness
error mentioned in Section 2.1, we have b ∈ Ω(log logN).

Our main theorem requires prover arithmetic complexity O(M) operations over Fp. Consider the cost of
O(N/b) operations over Fpb measured over Fp. Clearly, addition operations over Fpb costs O(b) operations
over Fp, regardless of the Fp-basis used to represent elements of Fpb . Therefore, O(N/b) operations over
Fpb translates to O(M) operations over Fp.

However, since b is super-constant, each multiplication operation over Fpb costs a superlinear (in b)
number of basic operations over Fp. For example, in the standard basis, it costs O(b2) operations in Fp

to multiply x1 and x2 ∈ Fpb using a schoolbook multiplication algorithm. Since the IOP described above
uses O(N/b) operations over Fpb , this translates to O(bN) prover operations over Fp, which could be as
much as N log logN ! Even the best known multiplication algorithm by [HarveyH21]1 requires O(b log b)
operations, which would lead to N log3N prover operations. In fact, [AfshaniFKL19] gives evidence that
multiplication in O(b log b) operations is optimal under a central conjecture in network coding theory; any
improvement over this bound would be a breakthrough result. Therefore, we cannot hope for our tensor IOP
to achieve linear prover complexity simply by using better algorithms over Fpb .

Precomputing multiplication tables. We address this problem by observing that we can afford to precom-
pute every possible operation over Fpb in O(N) operations over Fp, if b is sufficiently small. Then, instead of
performing each of the O(N/b) operations over Fpb from scratch, one can simply retrieve the result of each
operation over Fpb from a precomputed look-up table. We formalize this approach by modeling algorithms as
random-access machines, and providing straightforward statements about precomputation.

The multiplication table for Fpb is a matrix of size pb × pb. Computing each entry of the matrix costs
O(b2) operations over Fp via the naive multiplication algorithm, leading to a total precomputation cost of
O(b2p2b) operations over Fp. Afterwards, the result of any multiplication over Fpb can be loaded from the
lookup table stored in memory in O(1) operations.

1This is an algorithm for integer multiplication
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For b = 1
2 logN − o(logN), we have O(b2p2b) = O(N), giving a linear time complexity. Note that this

places a strict upper limit of Fpb <
√
N on the size of the extension fields used in our tensor IOP.

The technical details for precomputation for RAM are in Section 9.

2.6 Algebraic automata

The previous sections strive to optimize the running time of the prover, but verification time is also an
important efficiency parameter that we want to improve. Although we do not know how to improve
verification time for general R1CS instances, we explain how to achieve sublinear verification for algebraic
automata.
From algebraic automata to R1CS. Since an algebraic automata instance is defined in a similar way to an
R1CS instance, we are able to reduce an algebraic automata instance to a special R1CS instance. Let M be a
matrix in {A,B,C} ⊂ Fw×2w and z : [T + 1]→ Fw. Definition 1.4 computes M(z(t), z(t+ 1)) for every
computation time step t. If we view z as a vector in Fw(T+1), right-multiplying z by a large matrix SM in
which the diagonal entries are T repeated blocks of M gives a tall vector with all desired M(z(t), z(t+ 1)).
More formally, SM = [M, . . . ,M ] is a diagonal matrix of dimension wT × w(T + 1). Therefore, we could
rewrite the algebraic automata constraints as SAz ◦ SBz = SCz, which is an R1CS instance where the
matrices have special structure.
Holographic tensor IOP for algebraic automata. We previously described a tensor IOP for general R1CS
instances. The tensor IOP has a linear-time verifier due to the subprotocol checking ϕ(A)x⃗ = x⃗A. The general
approach to checking equations of this form is to check that for some random vector r, r⊺ϕ(A)x⃗ = r⊺x⃗A.
While the right hand side can be verified efficiently by using relatively standard techniques, computing the
left hand side naively could take time linear in the number of non-zero entries in ϕ(A). One general strategy
taken by [BootleCG20] is to rewrite the quadratic form as

r⊺ϕ(A)x⃗ =
∑
i

r(rowA(i))valA(i)x⃗(colA(i)),

where valA is a vector of all the nonzero entries in ϕ(A), rowA is the vector of their row indices, and col is the
vector of their column indices. Given the vectors r(rowA(∗)), valA, and x⃗(colA(∗)) the verifier can efficiently
check the value of the right hand side via standard procedures. The hard part is to check that r(rowA(∗))
and x⃗(colA(∗)) are correctly generated given r and x⃗. Previous works [BootleCG20; Bootle2022] have
used look-up protocols to check this relation. However those protocols crucially rely on Ω(n) size fields.
We cannot afford to embed into such large fields due to the overhead in the precomputation phase. So
instead, we look at the special case of staircase matrices ϕ(A) for which r(rowA(∗)) and x⃗(colA(∗)) are
well-structured. Essentially, when ϕ(A) is a staircase matrix, it can be decomposed into two almost-diagonal
matrices ϕ(A)0 + ϕ(A)1. Their corresponding row index vectors satisfy r(row0(∗)) = r(row1(∗)) =
r([1, . . . , n]) = r, and their column index vectors satisfy x⃗(col0(∗)) = x⃗ = shift(x⃗(col1(∗))). Specifially,
col0(∗) = [1, 2 . . . , n− 1] and col0(∗) = [2, 3 . . . , n]. So we design a cyclic shift protocol to check this shift
relation for instances over small fields.
Shift protocol over small fields. We require a tensor IOP protocol for the following relation.

Definition 2.5. The shift relation R⟳ is the set of tuples

(i,x,w) = (⊥, (F, s,N), (a, b))

where N = kt, b ∈ FN is the cyclic shift of a ∈ FN , which we denote b = shift(a), if for all i ∈ [N − s], it
holds that ai = bi+s, and for i ≥ N − s, ai = 0.
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We explain how the new protocol works, using the shift protocol in [BootleCG20] as a starting point.
The shift protocol in [BootleCG20] (for s = 1) considers the polynomials A(X) :=

∑N
i=1 aiX

i−1 and
B(X) :=

∑N
i=1 biX

i−1, and uses the fact that X ·A(X) is approximately equal to B(X), up to some small
corrections involving a constant number of coefficients of A(X) and B(X). This follows from the fact that if
a = shift(b), then ai = bi+1 for i ≤ N − 1, and so the i-th coefficient of XA(X)−B(X) is equal to zero.

This leads to a test for R⟳, checking that a polynomial identity of degree N is satisfied at a random
point γ ∈ F. By the Schwartz–Zippel lemma, if b ̸= shift(a), then the probability that A(γ)− γ ·B(γ) =
(1− γN ) · bN is at most N/|F|.

This polynomial identity test relies on the structure of monomials Xi and the ability to scale two related
polynomials so that their coefficients match. However, we cannot use it in our setting since the polynomial
identity used has degree N , which may be larger than the number of elements in the finite field F, leading to
a trivial bound on the soundness error of the protocol. Therefore, we design a more complex solution.

Suppose that N = kt. In the tensor IOP setting, we can evaluate the polynomials A(X) and B(X) at any
point γ ∈ F using a tensor query:

(1, γ, γ2, . . . , γk−1)⊗ (1, γk, γ2k,...,γ
k(k−1)

)⊗ · · · ⊗ (1, γk
t−1
, γ2k

t−1
, . . . , γk

t−1(k−1)) .

However, as discussed, this leads to a polynomial identity of degree N = kt. A natural way to reduce the
polynomial dimension of this tensor query is to consider the following alternative query for random points
γ1, . . . , γt ∈ F :

(1, γ1, γ
2
1 , . . . , γ

k−1
1 )⊗ (1, γ2, γ

2
2 , . . . , γ

k−1
2 )⊗ · · · ⊗ (1, γt, γ

2
t , . . . , γ

k−1
t ) . (1)

This query provides evaluations of the polynomial A(X1, . . . , Xt) :=
∑

i1,...,it∈{0,...,k−1} ait,...,i1X
i1
1 . . . Xit

t ,
and similarly for B(X), where we have reindexed the N = kt entries of a using a k-ary representation.
However, it is no longer possible to scale A(X1, . . . , Xt) by a single monomial as in the univariate case in
order to get a polynomial approximately equal to B(X1, . . . , Xt).

In fact, the appropriate scaling factor now differs according to the k-ary representation of i. Let s < k,
and consider the number of carries when adding s to (it, . . . , i1).

• If 0 ≤ i1 ≤ k− 1− s, then there are no carries when adding s to the k-ary representation (it, . . . , i1). This
means that ait,...,i1 is equal to bit,...,i1+s. Since ait,...,i1 and bit,...,i1+s appear as coefficients of monomial
Xi1

1 . . . Xit
t when a and b are queried using the tensor query from Equation (1), these coefficients can be

related using the scaling factor Xs
1 .

• If k−s ≤ i1 ≤ k−1, and 0 ≤ i2 ≤ k−2, then there is one carry when adding s to the k-ary representation
(it, . . . , i1). This means that ait,...,i1 is equal to bit,...,i2+1,i1+s−k. Since ait,...,i1 and bit,...,i2+1,i1+s−k
appear as coefficients of monomial Xi1

1 . . . Xit
t when a and b are queried using the tensor query from

Equation (1), these coefficients can be related using the scaling factor Xs−k
1 X2.

Using similar reasoning to the above, it is possible to determine a suitable scaling factor for each possible
number of carries from 1 up to t. By setting certain coefficients of the tensor query in Equation (1) to zero, it
is possible to make queries which only involve the entries of a and b involved in the r-carry case. The verifier
must make a tensor query to a and b in each case, and multiply by scaling factors. This leads to a total of
O(t) queries. Furthermore, the maximum degree of polynomials used in the protocol is now O(tk), meaning
that by setting t large enough, we can use the shift protocol over small fields.
Checking the output of the biased generator. To achieve sublinear verification, we also need to find a
way to check the output of the biased generator efficiently. More specifically, in the protocol for general
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R1CS described in Section 2.4, we described the use of linear-time-computable subspace biased generators.
However, to achieve sublinear verification, the verifier cannot afford to naively check whether the output
of the subspace biased generator is consistent with the randomness chosen by the verifier. On the other
hand, it is possible to efficiently check that a vector has a tensor structure using protocols similar to the
tensor-consistency test in [BootleCG20], which has sublinear verification. Therefore, we will design our
subspace biased generator with tensor structure in mind.

Our subspace biased generator is constructed from ϵ-biased generators. Given an ϵ-biased generator
G : Fs

pλ
→ Fb′

pλ
, let G′(r1, . . . , rt) := G(r1)⊗ · · · ⊗G(rt) for r1, . . . , rt ∈ Fs

pλ
. Note that G′ is a tϵ-biased

generator. We then define the corresponding subspace biased generator to be the matrix representation of

G′. Let r = (r1, . . . , rt) ∈
(
Fs
pλ

)t
. Note that G′(r) can be viewed as a matrix in Fλ×λ

p for all i, and we
define Gsub(r)i to be this matrix. Viewed as a vector of field-extension elements, the biased generator output
has a tensor structure, which would be easy to check using the tensor-consistency test in [BootleCG20].
However, we require the matrix representation of G′ instead as parts of our protocol for algebraic automata
use calculations involving individual elements of the base field. The proof that this construction gives a
subspace biased generator with the desired property is explained more carefully in Section 5.1. Further, in
our real protocol, we use a slightly more complicated biased-generator construction, for reasons explained in
Section 7.

Now we can think of the output of our subspace biased generator Gsub :
(
Fs
pλ

)t
→ Fλ×λb′t

p as b′t

matrices in Fλ×λ
p . Define y(m0,mt) ∈ Fb′t

p to be such that its k-th entry is the (m0,mt)-th entry of the k-th
matrix of Gsub(r). We can write y(m0,mt) for all m0,mt ∈ [λ] as a sum of tensor products because of the
tensor structure of G′ and the properties of matrix multiplication. A detailed calculation is presented in
Section 7.4. Then, we successfully reduce the task of checking that the output of a subspace biased generator
was computed correctly, to checking that the output is a sum of tensor products, which can be done by
modifying an established protocol, the tensor-consistency test, in [BootleCG20] and meet our constraints on
verifier efficiency.

Bottleneck for improving on sublinear verification. With this approach, the bottleneck for verifier
efficiency is checking that the output of the biased generator was computed correctly. As explained above,
in this subprotocol the verifier uses O(t · oG) operations where oG is the time complexity of computing the
ϵ-biased generator G : Fs

pλ
→ Fb′

pλ
. By Corollary 5.10, we can construct such a biased generator for any

ϵ > 1
pλ

and time complexity oG = Θ(b′) Fpλ-operations. Since we need to pick λ ∈ O(1) in order to achieve
linear prover time for the IOP protocol, ϵ ∈ Ω(1). Therefore in order to obtain a nontrivial tensor-structured
tϵ-biased generator G′, we need to pick the tensor rank t < 1

ϵ < pλ. For such choices of t, the verifier
time for checking the output of G′ becomes Θ(t · oG) = Θ(t · (wT )1/t) Fpλ-operations which translates to
Θp,λ((wT )

1/t) operations over Fp.
This approach cannot achieve polylogarithmic verification time because we do not know how to construct

ϵ-biased generators over fields F with ϵ < 1
|F| . This fact holds true even for the trivial biased generator that

simply outputs the random seed. To summarize, there is a tradeoff between soundness and verification time
but since we are working over the small field Fpλ , the best verification time that we can achieve is sublinear.

2.7 Completing the point-query IOP construction

We explain how to combine the ingredients described in previous sections to obtain the IOP in Theorem 1.2.
The IOP described in Theorem 1.5 uses similar techniques.
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From tensor queries to point queries. We transform the tensor-query IOP from Section 2.4 into a point-
query IOP by following the strategy of [BootleCG20], which uses point queries to check the correctness
of claimed answers to tensor queries. The IOPP in [BootleCG20] encodes each proof message Π in the
tensor-query IOP using a suitable tensor code to obtain an encoded proof message Π̂ for the point-query IOP;
then the IOPP relies on a proximity test to ensure that each Π̂ is close to a valid tensor encoding.

The proximity test in [BootleCG20] relies on the fact that taking random linear combinations of noisy
codewords preserves their distance from the code up to some small error probability. Later, the proximity
test of [BootleCL22] replaced purely random linear combinations with certain structured combinations that
use a much smaller seed. Unfortunately, in either case, the error-probabilities associated with taking linear
combinations contribute O(N/ |F|) to the soundness error of the proximity test. This is unacceptable because
as explained in Section 2.5, we can only apply precomputation techniques in fields of size o(

√
N).

To solve this problem, we generalize the [BootleCG20; BootleCL22] proximity tests by replacing the
linear combinations with more general proximity generators, which are randomness generators whose outputs
obey the same distance preservation property. We then instantiate the proximity generator with a different
construction (given in Section 8.3) than those used in [BootleCG20; BootleCL22], which has better error
probability.

However, when applied to the tensor IOP from Section 2.4, the new consistency test IOPP has query
complexity O(N1/t) which is insufficient for Theorem 1.2.

Interactive proof composition. We follow [BootleCL22], by using interactive proof composition to reduce
the query complexity of the IOPP to polylog(N) over Fp. This involves robustifying the IOPP via a linear
code, and then applying the proof composition transformation in [BenSassonCGRS17] with the robustified
consistency check as the outer IOP and the PCPP from [Mie09] as the inner IOP. This yields an IOPP with
query complexity polylog(N).

When applied to the tensor IOP of Section 2.4, which is defined over Fpb , the resulting point-query
IOP for R1CS over Fp is an IOP over Fpb , with query complexity polylog(N), and prover and verifier
arithmetic complexity O(M) operations in Fp and O(N/a) multiplications in Fpb . This is still insufficient
for Theorem 1.2 because the overhead of performing arithmetic operations over Fpb leads to superlinear
prover costs over Fp.

Precomputing the multiplication table. We solve this problem using the precomputation techniques of
Section 2.5, precomputing the multiplication table of Fpb . Each of the O(N/a) multiplications over Fpb can
be replaced by looking up the product in the multiplication table. This means reading a single element of Fpb ,
which can be written as O(a) elements of Fp.

Thus, the O(N/a) multiplications in Fpb are replaced by O(N) operations over Fp, plus the O(b2p2b)

operations required to precompute the multiplication table. Setting b = 1
2 logN − o(logN) so that

O(b2p2b) = O(N), the O(N) operations over Fp dominate, giving an IOP with both prover and verifier
arithmetic complexity O(M +N) over Fp.

This gives a point-query IOP for RR1CS over Fp with linear-time prover and verifier. The construction of
the consistency test IOPP is given in Section 8. A formal explanation of precomputation techniques is given
in Section 9, and Section 10 gives a rigorous analysis of the final IOP and its parameters.
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3 Preliminaries

Definition 3.1. An indexed relation R is a set of triples (i,x,w) where i is the index, x the instance, and
w the witness. The corresponding indexed language L(R) is the set of pairs (i,x) for which there exists a
witness w such that (i,x,w) ∈ R.

Definition 3.2. A IOP with query class Q (some set of functions) is a tuple IOP = (I,P,V), where I is the
indexer, P the prover, and V the verifier. The indexer is a deterministic polynomial-time algorithm, while
the prover and verifier are probabilistic polynomial-time interactive algorithms.

In an offline phase, the indexer I is given an index i and outputs an encoding Π0 of i.
In an online phase, the prover P receives as input an index-instance-witness tuple (i,x,w) and the

verifier V receives as input the instance x; in addition, the verifier V has query access to Π0 (in a precise
sense specified below), which we denote as VΠ0(x). The online phase consists of multiple rounds, and in
each round the prover P sends a proof message Πi and the verifier V replies with a challenge message ρi.

The prover P may compute its proof message Πi based on its input (i,x,w) and all the verifier challenges
received thus far (none if i = 1 or ρ1, . . . , ρi−1 if i > 1). In contrast, the verifier V may compute its challenge
message ρi based on its input x and on answers obtained by querying (Π0,Π1, . . . ,Πi) via queries in Q.
In more detail, the answer of a query q ∈ Q to (Π0,Π1, . . . ,Πi) is v := q(x,Π0,Π1, . . . ,Πi) (this answer
could also be a special error value in case the proof messages are not according to an expected format).

After the interaction and all queries are concluded, the verifier V accepts or rejects.

Remark 3.3 (non-oracle messages). We allow the prover in an IOP to also send, at any point in the
interaction, arbitrary messages that the verifier will simply read in full (without making any queries) as in a
usual interactive proof. We refer to such messages as non-oracle messages, to differentiate them from the
oracle messages to which the verifier has query access. These non-oracle messages can typically be viewed as
degenerate cases of oracle messages, and we use them in protocol descriptions for convenience of exposition.

A holographic interactive oracle proof IOP = (I,P,V) for an indexed relation R has completeness 1
and soundness error ϵ if the following holds.

• Completeness. For every index-instance-witness tuple (i,x,w) ∈ R, the probability that P(i,x,w)
convinces VI(i)(x) to accept is 1.

• Soundness. For every index-instance tuple (i,x) /∈ L(R) and malicious prover P̃, the probability that P̃
convinces VI(i)(x) to accept is at most ϵ.

Public coins. A holographic IOP is public-coin if each verifier message to the prover is a random string.
This means that the verifier’s randomness is its challenge messages ρ1, . . . , ρrc. All verifier queries can be
postponed, without loss of generality, to a query phase that occurs after the interactive phase with the prover.

Non-adaptive queries. A holographic IOP is non-adaptive if all verifier queries depend solely on the input
instance x and the verifier’s randomness, as opposed to some queries depending on answers to prior queries.
For non-adaptive IOPs, the verifier V can be written as a pair of algorithms (Vq,Vd) where: (a) Vq is
probabilistic, takes as input the instance x, interacts with the prover P, and outputs a decision state σ and a
query set I (for the index oracle and proof oracles); and (b) Vd is deterministic, takes as input the decision
state σ and query answers v ∈ ΣI , and outputs a decision bit. For this case, we define the relation R(V) to
be all pairs (σ,v) such that there exist x and I with (σ, I) in the support of Vq(x) and Vd(σ,v) = 1.

Complexity measures. We consider several complexity measures:
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– round complexity rc is the number of back-and-forth message exchanges between the prover and verifier;
– answer alphabet Σ is the alphabet over which oracle messages are defined;
– proof length l = li + lp + lc where li := |Π0| is the number of alphabet symbols output by the indexer,
lp := |Π1|+ · · ·+ |Πrc| is the total number of alphabet symbols sent in oracle messages by the prover, and
lc is the total number of alphabet symbols sent in non-oracle messages by the prover;

– randomness r is the number of random bits used by the verifier;
– query complexity q is the total number of queries made by the verifier (to any oracle);
– running time ti is the running time of I, tp is the running time of P, and tv is the running time of V. In the

non-adaptive case, tq and td are the running times of the query and decision components of V respectively.

We define the two query classes that we use in this paper, point queries and tensor queries.

Definition 3.4. A holographic IOP with point queries is an IOP with the query class Qpoint defined as
follows: Qpoint is all functions of the form q(x,Π0,Π1, . . . ,Πi) = Πj [k] for some j ∈ {0, 1, . . . , i} and
location k. (If the location k does not exist, the answer is an error.) Namely, each query in the class Qpoint

returns the symbol at a location of the encoded index (j = 0) or of a specified prover message (j > 0).

Definition 3.5. Given a finite field F and positive integers k, t, a holographic IOP with (F, k, t)-tensor
queries is an IOP with the query class Qtensor(F, k, t) defined as follows: Qtensor(F, k, t) contains all
functions of the form q(x,Π0,Π1, . . . ,Πi) = ⟨q0⊗ q1⊗ · · · ⊗ qt,Πj⟩ for some j ∈ {0, 1, . . . , i} and vectors
q0 ∈ F∗ and q1, . . . , qt ∈ Fk. (If the lengths of the linear combination q0 ⊗ q1 ⊗ · · · ⊗ qt and proof string Πj

do not match, the answer is an error.) Namely, each query in the class Qtensor returns the scalar product of a
certain tensor vector and the encoded index (j = 0) or of a specified prover message (j > 0).

Remark 3.6. In the context of tensor IOPs, we often view a proof message Π ∈ Fℓ·kt as consisting of ℓ
“sub-messages” π1, . . . , πℓ each in Fkt . In this case, when describing a protocol, we may make a tensor query
q1 ⊗ · · · ⊗ qt to one of the sub-messages π, with the understanding that one can specify an indicator vector
q0 ∈ Fℓ so that ⟨q0 ⊗ q1 ⊗ · · · ⊗ qt,Π⟩ = ⟨q1 ⊗ · · · ⊗ qt, π⟩.
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4 Systematic reverse-multiplication-friendly embeddings

We recall the definition of an RMFE (from [CascudoCXY18]) and introduce the systematic property that
we use in this work. Then in Section 4.1 and in Section 4.2 we prove that two RMFE constructions from
[CascudoCXY18] are systematic. The first construction is based on polynomial interpolation and the second
construction is based on algebraic-geometry codes. The first construction is a warmup, and the second
construction is the one that we use in our IOP, via the asymptotic corollaries that we state in Section 4.3.

Definition 4.1. Let p be a prime power and Fp the field with p elements. Let a, b ≥ 1 be integers. A pair
(ϕ, ψ) is a (a, b)p-reverse-multiplication-friendly embedding (RMFE) if ϕ : Fa

p → Fpb and ψ : Fpb → Fa
p

are Fp-linear maps such that, for every x⃗, y⃗ ∈ Fa
p,

x⃗ ◦ y⃗ = ψ
(
ϕ(x⃗) · ϕ(y⃗)

)
.

Definition 4.2. An (a, b)p-RMFE (ϕ, ψ) is systematic if there exists an Fp-basis {ej}j∈[b] of Fpb such that
for all x = (x1, . . . , xa) ∈ Fa

p, we have ϕ(x) = (x1, . . . , xa, 0, . . . , 0), where the i-th entry of ϕ(x) is the
coefficient with respect to the i-th basis vector ei.

4.1 Systematic RMFE from polynomial interpolation

We show that the (k, 2k − 1)p-RMFE construction in [CascudoCXY18] based on polynomial interpolation
is systematic. We do not use this construction in our main theorem (as the RMFE requires p to be large);
however, this construction serves as a warm-up for the construction in the next section.

In the definition below we use this notation: for every positive integer t, the formal symbol∞t acts as an
evaluation point in that, for every f ∈ Fp[X]<t, we define f(∞t) to be the coefficient of Xt−1 in f .

Definition 4.3 ([CascudoCXY18]). Fix a choice of:

• positive integer k and arbitrary prime power p such that 1 ≤ k ≤ p+ 1;
• an element ζ ∈ Fp2k−1 such that Fp2k−1 = Fp[ζ];
• pairwise distinct elements {α1, . . . , αk} in Fp ∪ {∞k+1}.

The maps are as follows.

• Encoding map: ϕint : Fk
p → Fp2k−1 maps (x1, . . . , xk) 7→ f(ζ) where f is the unique polynomial in

Fp[X]<k such that f(αi) = xi for every i ∈ [k].

• Decoding map: ψint : Fp2k−1 → Fk
p maps β 7→ (f(α′1), . . . , f(α

′
k)) where f is the unique polynomial in

Fp[X]<2k−1 such that β = f(ζ). Here α′i := αi if αi ∈ Fp and α′i :=∞2k−1 if αi =∞k+1.

Lemma 4.4 ([CascudoCXY18]). (ϕint, ψint) in Definition 4.3 is a (k, 2k − 1)p-RMFE.

Theorem 4.5. (ϕint, ψint) in Definition 4.3 is systematic.

Proof. The interpolated polynomial for an input x⃗ = (x1, . . . , xk) ∈ Fk
p is f(X) =

∑k
i=1 xiLi(X) where

Li(X) =
∏

j∈[k]\{i}
X−xj

xi−xj
is the i-th Lagrange polynomial. By Definition 4.3, we know that ϕint(x⃗) =

f(ζ) =
∑k

i=1 xiLi(ζ) where ζ ∈ Fp2k−1 is such that Fp2k−1 = Fp[ζ].
It is well-known that Lagrange polynomials are a basis; specifically, {L1(X), . . . , Lk(X)} is a basis

for Fp[X]<k. We prove this claim for completeness. Consider any decomposition of the zero polynomial
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0 = a1L1(X) + · · ·+ akLk(X) under this Lagrange basis. By evaluating the zero polynomial at every xi
for i ∈ [k], we get that a1 = · · · = ak = 0. Since the zero polynomial has a unique decomposition in this
basis, we conclude that {L1(X), . . . , Lk(X)} are linearly independent. Thus, it forms a basis for Fp[X]<k.

We conclude by noting that {L1(ζ), . . . , Lk(ζ), ζ
k, . . . , ζ(2k−1)−1} is a basis for Fp2k−1 = Fp[ζ] and the

basis makes (ϕint, ψint) systematic since ϕint(x⃗) =
∑k

i=1 xiLi(ζ).

4.2 Systematic RMFE from algebraic geometry

We show that the (k,m)p-RMFE construction in [CascudoCXY18] based on algebraic-geometry codes is
systematic. Below, we assume familiarity with certain algebraic-geometry concepts: a function field F/Fp;
the genus g of function fields; places P associated with the function fields; the number of rational places
N1(F ) of a function field F ; Ihara’s constant A(p) of Fp; a divisor G; and the Riemann–Roch space L(G)
associated with G. We refer the reader to the book by Stichtenoth [Stichtenoth08] for explanations of these
notions.

Definition 4.6 ([CascudoCXY18]). Fix a choice of:

• a function field F/Fp of genus g;
• k distinct rational places P1, . . . , Pk in F/Fp;
• a divisor G of F such that supp(G)∩{P1, . . . , Pk} = ∅ and dimFp L(G)−dimFp L(G−

∑k
i=1 Pi) = k;

• a place R of degree m > 2 degG.

Define:

• π : L(G)→ Fk
p maps f 7→ (f(P1), . . . , f(Pk)) (π is surjective since kerπ = L(G−

∑k
i=1 Pi));

• W ⊆ L(G) with dimFp W = k such that π induces an isomorphism between W and Fk
p;

• τ : L(2G)→ Fpm maps f 7→ f(R) ∈ Fpm (τ is Fp-linear and injective since m = degR > deg 2G).

The maps are as follows.

• Encoding map: ϕag : π(W ) = Fk
p → Fpm maps (x1, . . . , xk) 7→ f(R) where f is the unique polynomial

in W such that f(Pi) = xi for every i ∈ [k].

• Decoding map: ψag to be the linear extension of ψ′ag from Im(τ) to Fpm where ψ′ag : Im(τ)→ Fk
p maps

f(R) 7→ (f(P1), . . . , f(Pk)) where f ∈ L(2G) is uniquely determined by f(R).

Lemma 4.7 ([CascudoCXY18]). (ϕag, ψag) in Definition 4.6 is a (k,m)p-RMFE.

Theorem 4.8. (ϕag, ψag) in Definition 4.6 is systematic.

Proof. We first assume that we have a basis {ej}j∈[m] for Fpm such that the subset {ej}j∈[k] of {ej}j∈[m]

(reordered if necessary) forms a basis for Im(ϕag) and prove that this basis makes the RMFE systematic.
Let {e′i}i∈[k] be the standard basis of Fk

p (the i-th entry of e′i is 1 and all other entries are 0). The map π
induces an isomorphism between W and Fk

p , which means that each e′i ∈ Fk
p uniquely determines some

fi ∈ W ⊆ L(G). Let yi := fi(R) ∈ Fpm . We know that yi =
∑k

j=1 aijej because yi ∈ Im(ϕag). Note
that {yi}i∈[k] is linearly independent since ϕag is an injective linear map, and if we replace {ej}j∈[k] with
{yi}i∈[k], the resulting set {y1, . . . , yk, ek+1, . . . , em} forms a basis that makes (ϕag, ψag) systematic since
{yi}i∈[k] are the image of basis vectors of the domain of ϕag.
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We are left to construct a basis for Fpm whose first k elements form a basis for Im(ϕag). Let B be
a basis for the Riemann–Roch space L(G −

∑k
i=1 Pi). Since L(G −

∑k
i=1 Pi) has finite dimension, B

is a finite set. Since we have kerπ = L(G −
∑k

i=1 Pi), with the fact that ϕag maps vectors in Fk
p to the

evaluation of the high degree placeR of a unique polynomial inW ⊆ L(G), we can conclude that Im(ϕag) ∼=
L(G)/L(G−

∑k
i=1 Pi). Therefore, if we found a basis for L(G)/L(G−

∑k
i=1 Pi), it would naturally give

a basis for Im(ϕag). To do that, we start with finding a basis for L(G−
∑k

i=2 Pi)/L(G−
∑k

i=1 Pi), then
we proceed inductively to obtain a basis for L(G)/L(G−

∑k
i=1 Pi). Let k(P1) be the residue field of P1.

Consider the linear map χ : L(G −
∑k

i=2 Pi)/L(G −
∑k

i=1 Pi) → k(P1) defined as χ(f) = f mod P1.
Since L(G −

∑k
i=2 Pi)/L(G −

∑k
i=1 Pi) is of dimension 1, any f not in ker(χ) would be a basis for

L(G−
∑k

i=2 Pi)/L(G−
∑k

i=1 Pi).

Remark 4.9. Theorem 4.5 is a special case of Theorem 4.8. We started with the canonical basis {1, ζ, . . . , ζ(2k−1)−1}
of Fp2k−1 and replace the first k elements by the evaluations of degree k Lagrange polynomials at ζ , which is
a basis for Fk

p and Im(ϕint) ⊆ Fk
p .

4.3 Asymptotic results

We need a family of systematic (a, b)p-RMFE such that b ∈ O(a). Below we explain how such a family
exists for every finite field Fp.

Proposition 4.10 ([Stichtenoth08]). For every function field F/Fp and b ∈ N with 2g+1 ≤ p(b−1)/2(√p−1),
there exists a place in F of degree b. In particular, this holds for every m ≥ 4g + 3, regardless of p.

Remark 4.11. For a ≥ 2, any b ≥ 2a+ 4g − 1 satisfies the inequality in Proposition 4.10. Therefore, as
long as F/Fp has at least a distinct rational places, we can construct (a, b)p-RMFE for any b ≥ 2a+ 4g − 1
according to Definition 4.6.

Theorem 4.12 ([CascudoCXY18]). For every prime power p, there exists a family of (a, b)p-RMFE (via the
construction in Definition 4.6) where lima→∞

b
a = 2 + 4

A(p) (here A(p) is Ihara’s constant).

Proof. Consider a family {Fl}l of function fields over Fp of growing genus gl →∞ such that N1(Fl)/gl →
A(p). Let a = N1(Fl) and b = 2a + 4gl − 1. Note that N1(Fl) is the number of distinct rational
places of Fl, let {P1, . . . , Pk} be these places. We take G to be a degree-(a + 2gl − 1) divisor such that
supp(G) ∩ {P1, . . . , Pk} = ∅. Since degG ≥ 2gl − 1 and degG−

∑k
i=1 Pi ≥ 2gl − 1, the Riemann

Theorem guarantees that dimFp L(G)− dimFp L(G−
∑k

i=1 Pi) = k. Then by Lemma 4.7, the construction
in Definition 4.6 yields a (a, b)p-RMFE.

Remark 4.13. For p = 2, [DuursmaM2011] proves the lower bound A(2) ≥ 0.31. So by Theorem 4.12
there exists a family of (a, b)2-RMFE with lima→∞

b
a ≤ 2+ 4

0.31 ≈ 14.903. The lower bound is constructive:
[DuursmaM2011] gives a construction for an infinite sequence of function fields {Fl}l over F2 such that
N1(Fl)/gl → 0.31.

[CascudoCXY18] also gives an explicit family of (a, b)2-RMFE with lima→∞
b
a → c ≈ 4.92. Instead

of finding a bound on A(2) and then applying Theorem 4.12, they build a family of (a, b)32-RMFE where
lima→∞

b
a = 62

21 , and then show that the concatenation of a (3, 5)2-RMFE and the family of (a, b)32-RMFE
is a family of (3a, 5b)2-RMFE where lima→∞

5b
3a ≈ 4.92.
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5 Biased generators

We define two biased generators that are later used in our constructions.

Definition 5.1. Let G : Fs → Fn be a function. We say that G is an ϵ-biased generator if

max
w∈Fn\{0}

Pr
x∈Fs

[⟨w,G(x)⟩ = 0] ≤ ϵ .

Lemma 5.2 ([BootleCL22]). Let G : Fs → Fn be an ϵ-biased generator and let G′ : Fs → Fn be an
ϵ′-biased generator. Then, the function G⊗G′ : (x, x′) 7→ G(x)⊗G′(x′) is an (ϵ+ ϵ′)-biased generator.

Definition 5.3. Let Gsub : Fs
pλ
→ Fλ×λb′

p be a function. We say that Gsub is a (p, λ)-subspace ϵsub-biased
generator if for any Fp-linear subspace H ⊆ Fpλ ,

max
v∈Fλb′\Hλb′

Pr
r←Fs

pλ

[
Gsub(r)v = 0⃗ mod Hλb′

]
≤ ϵsub .

We note that (p, λ)-subspace ϵsub-biased generators can be constructed from ϵ-biased generators. A proof
is given in Section 5.1.

5.1 A subspace biased generator from an ϵ-biased generator

In this section we provide a construction for the (p, λ)-subspace ϵ-biased generator for F which is used in the
modular lincheck protocol. The construction is done by doing transformation to an ϵ-biased generator over
Fpλ .

Before introducing the construction we make two observations about fields of the form Fpλ .

Observation 5.4. For an degree-λ irreducible polynomial P in Fp[X], Fpλ
∼= Fp[X]/(P ). Every element

f ∈ Fp[X]/(P ) has a matrix representation Mf ∈ Fλ×λ
p such that for any g =

∑λ−1
i=0 aiX

i ∈ Fp[X]/(P )
with associated coefficient vector g⃗, Mf · g⃗ is the coeffcient vector for f · g ∈ Fp[X]/(P ).

Construction 5.5. Given an ϵ-biased generator G : Fs
pλ
→ Fb′

pλ
as input. Fix r ∈ Fs

pλ
. Use G(r)i ∈ Fpλ

to denote the i-th element of G(r), and Gsub(r)i ∈ Fλ×λ
p to denote the i-th λ× λ block of Gsub(r). Then

Gsub(r)i is defined to be MG(r)i , the matrix representation of G(r)i from Observation 5.4.

Lemma 5.6. Given an ϵ-biased generator G : Fs
pλ
→ Fb′

pλ
, the construction in Construction 5.5 gives a

(p, λ)-subspace ϵ-biased generator Gsub for F.

Proof. By definition of an ϵ-biased generator, we know that for any z ∈ Fb′
p \ {⃗0},

Pr
r←Fs

pλ

[⟨G(r), z⟩ = 0] ≤ ϵ . (2)

We now show that Gsub in Construction 5.5 is indeed a (p, λ)-subspace ϵ-biased generator for F. Let
θ : Fλ

p → Fpλ be the isomorphism that maps a vector b ∈ Fλ
p to

∑λ−1
j=0 bjX

j ∈ Fpλ . Then we note that for
any x ∈ Fpλ and i = 1, . . . , λ,

G(r)i · θ(b) = θ
(
MG(r)i · b

)
= θ (Gsub(r)i · b)
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For any H ⊆ F a Fp-linear subspace of F, let j = dimH . We can find a base e1, . . . , ek of F such that
e1, . . . , ej is a basis for H . Consider any v ∈ Fλb′ \Hλb′ . Then represent v using this basis as

v =
k∑

i=1

eici

where ci ∈ Fλb′
p .

We have that

Gsub(r)v =
k∑

i=1

eiGsub(r)ci

=

k∑
i=1

eiθ
−1(⟨G(r), θ(ci)⟩)

Suppose Gsub(r)v = 0⃗ mod Hλ. Then for all i > j we have θ−1(⟨G(r), θ(ci)⟩) = 0⃗. Additionally, since
v ̸∈ Hλb′ , there exists some i∗ > j such that ci∗ ̸= 0⃗. Therefore

Pr
r←Fs

pλ

[
Gsub(r)v = 0⃗ mod Hλ

]
≤ Pr

r←Fs
pλ

[
θ−1(⟨G(r), θ(ci∗)⟩) = 0⃗

]
= Pr

r←Fs
pλ

[⟨G(r), θ(ci∗)⟩ = 0] ≤ ϵ

The last inequality holds by definition of G. Thereby we complete the proof.

Remark 5.7. Note that for our construction to work, a weaker ϵ-biased generator G suffices. We only
requires that Equation (2) holds for all z ∈ Fb′

p \ {⃗0} instead of for all z ∈ Fb′

pλ
\ {⃗0}.

We also note that computing Gsub(r) takes O(oG) Fpλ operations, where oG denotes the number of
operations needed to compute G(r).

5.2 A biased generator computable in linear time

We describe a biased generator that is computable in linear time, over any given field F. The construction
is a generalization of the biased generator in [RonZewiR22] for the boolean field F2. First we describe a
construction based on any linear error correcting code over F, and then we deduce the desired result via the
existence of linear codes of constant rate and relative distance that are efficiently encodable.

Lemma 5.8. Let C ⊆ Fn be a linear code with rate r and relative distance δ. If C’s generator matrix can
be computed in time O(nc), then for any integer t there exists a ( |F|−1|F| (1 − δc)t + 1

|F|)-biased generator

G : Ft × [n]tc → F(rn)c that is computable with O(tcnc) F-operations.

Proof. Let M ∈ Fn×rn be the generating matrix of the code C, and Mi be its i-th row. Then consider the
function S(i) =Mi. We observe that first S can be computed in time O(nc), and second S : [n]→ Frn is a
(1− δ)-biased generator. This is because for every y⃗ ∈ Frn \ {⃗0} it holds that

Pr
i←[n]

[⟨S(i), y⃗⟩ = 0] = Pr
i←[n]

[⟨Mi, y⃗⟩ = 0] = 1− ∥My⃗∥0 ≤ 1− δ .
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We prove that the tensor function S⊗i : i[n]→ F(rn)i is a (1− δi)-biased generator over F, b induction on i.
Base case. For i = 1, the result comes trivially.
Inductive step. Suppose this fact holds for i− 1. Consider any Y ∈ F(rn)i−1×rn that is not all zero. Use

Y⃗ to denote the vectorization of Y , which stacks the columns of Y to make it a column vector. Then we have

Pr
(x,x′)←[n]i−1×[n]

[⟨S⊗i(x)⊗ S(x′), Y⃗ ⟩ = 0]

= Pr
(x,x′)←[n]i−1×[n]

[S⊗i(x)TY S(x′) = 0]

= Pr
x′←[n]

[Y S(x′) = 0⃗] + Pr
x′←[n]

[Y S(x′) ̸= 0⃗] · Pr
x←[n]i−1

[⟨S⊗i(x), Y S(x′)⟩ = 0 | Y S(x′) ̸= 0⃗]

≤ (1− δ) + δ · (1− δi−1)
= 1− δi .

Therefore the function S⊗c[n]c → F(rn)c is a (1− δc)-biased generator.
We use S⊗c to construct the ϵ-biased generator G : Ft × [n]tc → F(rn)c with ϵ = |F|−1

|F| (1− δc)t + 1
|F| .

For any z ∈ Ft and x = (xi)i∈[t] where xi ∈ [k]c, we define G(z, x) :=
∑t

i=1 ziS
⊗c(xi). For every

y⃗ ∈ F(rn)c \ {⃗0},

Pr
z←Ft,x←[n]tc

[⟨G(z, x), y⃗⟩ = 0]

= Pr
z←Ft,x←[n]tc

[
t∑

i=1

zi⟨S⊗c(xi), y⃗⟩ = 0]

= Pr
x←[n]tc

[∀ i, ⟨S⊗c(xi), y⃗⟩ = 0] + Pr
x←[n]tc

[∃ i, ⟨S⊗c(xi), y⃗⟩ ≠ 0] · max
y⃗′∈Ft\{0⃗}

Pr
z∼Ft

[⟨z, y⃗′⟩ = 0]

≤ (1− δc)t + (1− (1− δc)t) · 1

|F|
=
|F| − 1

|F|
(1− δc)t + 1

|F|
.

To compute G, we call S tc times, compute t order c tensor products, and calculate the linear combination of
t vectors in F(rn)c . This in total takes O(tcnc + t(rn)c) = O(tcnc) operations in F.

Lemma 5.9 ([DrukI14]). There exist constants d1 > 1 and d2 > 0 such that for every finite field F there
exists a family of linear codes with code length ⌊d1k⌋, dimension k, and minimum distance ⌈d2k⌉ over F
which can be encoded by a uniform family of linear-size arithmetic circuits consisting of addition and fan-out
gates only.

Corollary 5.10. For every finite field F, and constant ϵ > 1
|F| , there exists a family of ϵ-biased generators

G : Flog|F|(n) → FO(n) that can be computed with O(n) F-operations.

Proof. Invoke Lemma 5.8 with the codes in Lemma 5.9.
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6 Tensor IOP for R1CS over every field

We construct a tensor-query IOP for R1CS over fields Fp for any prime power p.

Definition 6.1 (R1CS). The indexed relation RR1CS is the set of all triples

(i,x,w) =
(
(Fp, nrow, ncol, A,B,C), (nin, x), w

)
where Fp is a finite field, A,B,C are matrices in Fnrow×ncol

p each with at most M non-zero entries, x ∈ Fnin
p ,

w ∈ Fncol−nin
p , and z := (x,w) ∈ Fncol

p is a vector such that Az ◦ Bz = Cz. (Here “◦” is the entry-wise
product.)

Theorem 6.2. For all prime powers p, and every finite field Fpb such that pb ∈ Ω(log ncol), given a systematic
(a, b)p-RMFE (ϕ, ψ) such that a ∈ Θ(b), there is a (Fpb , k, t)-tensor IOP, with non-adaptive queries, for the
indexed relation RR1CS that supports instances over Fp with nrow = ncol = a · kt, nin = a · ℓin · ktin and has
the following parameters:
• soundness error is O(1);
• round complexity is O(log(nrow/a));
• proof length is O(nrow/a) elements in Fpb;
• query complexity is O(1);
• the prover sends O(log(nrow/a)) non-oracle messages over Fpb;
• the prover uses O(M + nrow) Fp-operations and O(tnrow/a) Fpb-operations;
• the verifier uses O(M + nrow) Fp-operations and O(tk) Fpb-operations;
• the verifier has randomness complexity O(log(nrow/a)) over Fpb and O(log(nrow/a)) over Fp.
Here M denotes the number of non-zero entries in the instance matrices A, B, C.

[where do we say that Theorem 6.2 is a corollary of Theorem 6.11 using certain biased generators? —
⋆

Jonathan]
Our construction involves first embedding the instance matrices into a large field Fpb using a systematic

RMFE, and then reducing the R1CS relation over Fp to a different relation over Fpb . This relation requires
the embedded instance matrices to satisfy a set of modular-linear equalities. So we need to construct a
protocol for the modular-linear relation. In its constructon, we make use of a tensor-query protocol for
the multi-lincheck relation. This section is organized as follows. We first introduce the protocol for the
multi-lincheck relation. Then based on that, we construct the modular-linear relation protocol. Building on
top of that, we provide a tensor IOP for RR1CS that achieves linear time.

6.1 Multi-lincheck

We describe a tensor-query IOP for the multi-lincheck relation, which tests the sum of several matrix products.
We first define the twisted scalar product relation, which is used as a subroutine in the multi-lincheck protocol.

Definition 6.3. The twisted scalar product relation RTSP is the set of triples

(i,x,w) = (⊥, (F, n, y⃗, τ), (⃗a, b⃗))

where a⃗, b⃗, y⃗ ∈ Fn, τ ∈ F, and ⟨⃗a ◦ y⃗, b⃗⟩ = τ .
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Lemma 6.4 ([BootleCG20]). For every finite field F and positive integers k, t, there is a (F, k, t)-tensor exact
IOPP for the indexed relation RTSP that supports instances over F with n = ℓ ·kt and y⃗ = y⃗0⊗ y⃗1⊗· · ·⊗ y⃗t
for y⃗0 ∈ Fℓ, y⃗1, . . . , y⃗t ∈ Fk, and has the following parameters: soundness error is O(log n/ |F|); round
complexity is O(log n); query complexity is O(1); the prover sends O(log n) non-oracle messages in F and
the proof length is O(n) elements in F; the prover uses O(n) field operations; the verifier uses O(ℓ + tk)
field operations; and the verifier has randomness complexity O(log n) elements in F.

Definition 6.5. The multi-lincheck relation Rmlin is the set of triples

(i,x,w) = (((Ui)i∈[h], b⃗), (F, nrow, ncol, h, (Mi)i∈[h]), (x⃗i)i∈[h])

where Ui ∈ Fnrow×ncol has Mi non-zero entries, x⃗i ∈ Fncol , b⃗ ∈ Fnrow , and
∑h

i=1 Uix⃗i = b⃗.

Theorem 6.6. For every finite field F and positive integers k, t, there is a (F, k, t)-tensor IOP, with non-
adaptive queries, for the indexed relation Rmlin that supports instances over F with ncol = ℓ ·kt and arbitrary
nrow and has the following parameters:
• perfect completeness;
• soundness error is O(log ncol/ |F|);
• round complexity is O(log ncol);
• proof length is O(hncol) elements in F;
• query complexity is O(h);
• the prover sends O(h(nrow + log ncol)) non-oracle messages;
• the prover uses O(hncol + hnrow +

∑h
i=1Mi) field operations;

• the verifier uses O(
∑h

i=1Mi + h · (ℓ+ kt)) field operations;
• the verifier has randomness complexity O(h log ncol) elements in F.

Construction 6.7 (tensor IOP for Rmlin). The prover P takes as input the index i = ((Ui)i∈[h], b⃗), instance
x = (F, nrow, ncol, h, (Mi)i∈[h]), and witness w = (x⃗i)i∈[h], while the verifier V takes as input i and x.

• The prover P computes b⃗i = Uix⃗i ∈ Fnrow . The prover P sends the oracle messages w and non-oracle
messages (⃗bi)i∈[h].

• The verifier V sends uniformly random challenge vector r⃗ ∈ Fnrow .

• The prover P computes τi = ⟨r⃗, b⃗i⟩ ∈ F and a⃗i = r⃗⊺Ui ∈ Fncol . The prover P sends the non-oracle
messages (τi)i∈[h] ∈ Fh.

• The verifier V computes a⃗i = r⃗⊺Ui ∈ Fncol .

• The prover P and the verifier V engage in h TSP protocols, each of which with i =⊥, x = (F, ncol, 1⃗, τi),
and w = (⃗ai, x⃗i) to check that ⟨⃗ai ◦ 1⃗, x⃗i⟩ = τi.

• The verifier V computes ⟨r⃗, b⃗i⟩ and checks that τi = ⟨r⃗, b⃗i⟩. The verifier computes ⟨r⃗, b⃗⟩ and checks that∑h
i=1 τi = ⟨r⃗, b⃗⟩.

Proof. We analyze the error and efficiency parameters of the above construction.
Completeness. Suppose

∑h
i=1 Uix⃗i = b⃗. The honest prover sends the correct values of (⃗bi)i∈[h] and

(τi)i∈[h]. Then by the completeness of the TSP protocol, each check of ⟨⃗ai, x⃗i⟩ = τi passes, and by definition,
the check for

∑h
i=1 τi = ⟨r⃗, b⃗⟩ also passes. Therefore, the construction is perfectly complete.

Soundness. The soundness error is O(log ncol/ |F|): Suppose
∑h

i=1 Uix⃗i ̸= b⃗. If the verifier accepts, then
there are two possible cases:
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• The honestly computed (τi)i∈[h] satisfies that
∑h

i=1 τi = ⟨r⃗, b⃗⟩: Consider
∑h

i=1 τi = ⟨r⃗, b⃗⟩ as a polynomial
with respect to the nrow coordinate of r⃗, each uniformly randomly sampled from F, by Schwartz–Zippel
Lemma, we have that Pr[

∑h
i=1 τi = ⟨r⃗, b⃗⟩] ≤ 1/ |F| < log ncol/ |F|.

• At least one value τi∗ is not honestly computed: the probability that the verifier accepts is at most the
soundness error of the TSP protocol, which is log ncol/ |F|.

Efficiency parameters.

• round complexity is O(log ncol): The round complexity of the protocol is dominated by the round complex-
ity of the TSP protocol, which is O(log ncol).

• proof length is O(hncol) elements in F: The proof length is the sum of length of x⃗i’s and the proof length
for the TSP protocols. We know that the proof length for one TSP protocol is O(ncol) elements in F, the
total proof length is O(hncol).

• query complexity is O(h): The query complexity is dominated by the TSP protocols, which is O(h) in
total.

• the prover sendsO(h(nrow+log ncol)) non-oracle messages: The non-oracle messages sent by the prover are
τi’s and b⃗i’s, and the non-oracle messages in the TSP protocols, which in total is O(hnrow) +O(h log ncol).

• the prover uses O(hncol + hnrow +
∑h

i=1Mi) field operations: The prover uses O(Mi) operations in F
to compute each b⃗i’s. Then the prover uses O(hnrow +

∑h
i=1Mi) to compute τi’s and a⃗i’s. Then it also

uses O(h · ncol) to finish the SP protocols. The total number of field operations is thus O(hncol + hnrow +∑h
i=1Mi).

• the verifier usesO(
∑h

i=1Mi+h ·(ℓ+kt)) field operations: The verifier usesO(
∑h

i=1Mi) field operations
to compute a⃗i’s. The total cost needs to account for the cost of the TSP protocols as well.

• the verifier has randomness complexity O(h log ncol) elements in F: The randomness complexity is
dominated by the randomness complexity of the TSP protocol.

6.2 Modular multi-lincheck protocol

Definition 6.8. The modular multi-lincheck relation RMlinh is the set of triples

(i,x,w) = ((H, (Ui)i∈[h]), (F,E, nrow, ncol, h), (x⃗i)i∈[h])

where H ⊆ F is a Fp-linear subspace of F, Ui ∈ Fnrow×ncol , E is a basis for the Fp linear space F, and
x⃗i ∈ Fncol such that

∑h
i=1 Uix⃗i = 0⃗ mod Hnrow . Additionally, Ui and x⃗i are given in the basis E, so they

can be written as Ui =
∑

j∈[|E|]Aijej and x⃗i =
∑

j∈[|E|] uijej where Aij ∈ Fnrow×ncol
p and uij ∈ Fncol

p .

We construct a tensor IOP for the relation RMlinh using a tensor IOP for Rmlin and a (p, λ)-subspace
ϵsub-biased generator for F. Let ϵLC denote the soundness error of the multi-lincheck protocol, rLC its round
complexity, lLC its proof length, qcLC its query complexity, cLC its communication complexity, tpLC its prover
arithmetic complexity, tvLC its verifier arithmetic complexity, and rdLC its randomness complexity. We also
use oGsub

to denote the arithmetic complexity of computing Gsub.

27



Theorem 6.9. For every prime power p, and every finite field Fpb , every Fp-linear subspace H ⊆ Fpb ,
and positive integers k, t, given a (p, λ)-subspace ϵsub-biased generator Gsub : Fs

pλ
→ Fλ×nrow

p , there is a
(Fpb , k, t)-tensor IOP, with non-adaptive queries, for the indexed relation RMlinh that supports instances
over Fpb with ncol = ℓ · kt, and has the following parameters:
• soundness error is max(ϵsub, ϵLC);
• round complexity is O(rLC);
• proof length is O(h · ncol + lLC) elements in Fpb;
• query complexity is O(qcLC);
• the prover sends O(λ+ cLC) non-oracle messages;
• the prover uses O(λ ·ME + oGsub

) Fp operations and O(h · λncol + tpLC) Fpb operations;
• the verifier uses O(λ · (ME + b3) + oGsub

) Fp-operations and O(tvLC) Fpb-operations;
• the verifier has randomness complexity O(s) over Fpλ and O(rdLC) elements in Fpb .
Here ME denotes the number of non-zero entries in Uis’ coefficient matrices.

Construction 6.10 (tensor IOP for RMlinh). We construct an interactive oracle proof IOP = (I,P,V) with
tensor queries for the indexed relation RMlinh .

The prover P takes as input the index i = (H, (Ui)i∈[h]), instance x = (F,E, nrow, ncol, h), and witness
w = (x⃗i)i∈[h], while the verifier takes as input i and x.

• The prover P sends the oracle message w.

• The verifier V sends uniformly random seeds r ∈ Fs
pλ

.

• The prover computes the matrix R = Gsub(r) ∈ Fλ×nrow
p and the vector b⃗ =

∑h
i=1RUix⃗i ∈ Fλ, and sends

the non-oracle message b⃗.

• The verifier first checks that b⃗ = 0⃗ mod Hλ, and rejects if the check fails.

• The prover and the verifier V compute the matrices Bi = RUi ∈ Fλ×ncol and Mi the number of non-
zero elements in Bi. Then they engage in a multi-lincheck protocol, with i =

(
(Bi)i∈[h], b⃗

)
, x =

(F, λ, ncol, h, (Mi)i∈[h]), and w = (x⃗i)i∈[h].

Proof. Completeness. Suppose the triple is in the relation and the prover is honest. Then
∑h

i=1 Uix⃗i = 0⃗

mod Hnrow , and the prover sends the correct value b⃗. By definition b⃗ = 0⃗ mod H , and
∑h

i=1RUix⃗i = b⃗.
So the construction is perfectly complete.
Soundness error. Suppose

∑h
i=1Mix⃗i ̸= 0⃗ mod Hnrow . Fix a malicious prover who sends the value b⃗′.

Then one of the following three cases happens.

• The verifier samples r such that
∑h

i=1Gsub(r)Uix⃗i = 0⃗ mod Hnrow . This case happens with probability
at most ϵsub by Definition 5.3.

• b⃗′ ̸= 0⃗ mod Hλ. In this case the verifier always rejects and so the soundness error is 0.

• b⃗′ ̸=
∑h

i=1Gsub(r)Uix⃗i. In this case, the multi-lincheck protocol guarantees a soundness error of ϵLC.

Thus the soundness error is the maximum of the three.
Prover arithmetic complexity. First, the prover computes (Bi)i∈[h] by multiplying the matrices Ui =∑

j∈[b]Aijej with the matrix R ∈ Fλ×nrow
p . So in total this procedure takes O(λ ·ME) Fp-operations. On
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top of this step, the prover also computes b⃗, which is done by multiplying Bis with x⃗is. Thus this step takes
O(h · λncol) F-operations. The other prover operations such as computing Gsub(r), and engaging in the
multi-lincheck protocol take oGsub

Fp-operations and tpLC-F operations.

Verifier arithmetic complexity. Checking that b⃗ = 0⃗ mod Hλ takes O(λ · logp(|F|)2 · (logp(|F|) −
dim(H))) Fp-operations. As shown above, computing R and Bis takes O(λ ·ME + oGsub

) Fp-operations,
and engaging in the multi-lincheck protocol take tvLC F-operations.
Other parameters. The other parameters follow directly from the construction.

6.3 A tensor IOP for R1CS

In this part, we construct a tensor IOP for R1CS from the modular multi-lincheck protocol and the twisted
scalar-product protocol. Write ϵMlinh for the soundness error of the modular multi-lincheck protocol, rMlinh

for its round complexity, lMlinh for its proof length, cMlinh for its communication complexity, tpMlinh
for

its prover operations, tvMlinh for its verifier operations, and rdMlinh for its randomness complexity. Use
ϵTSP, rTSP, lTSP, cTSP, tpTSP, tvTSP, rdTSP to denote the corresponding parameters of the twisted scalar-product
protocol. Define oG to be the arithmetic complexity of computing ϵ-biased generator G over Fpb .

[Notation could be better defined. e.g. in the soundness error, ϵSP needs to be defined for a particular
⋆

vector length over a particular field —Jonathan] [Is there a particular reason that we use SP not TSP? I don’t
⋆

think SP protocol is defined. —Ziyi]

Theorem 6.11. For any prime power p, integer a ∈ Ω(logp(log ncol)), and positive integers k, t, given a
systematic (a, b)p-RMFE (ϕ, ψ) with basis E that embeds vectors in Fa

p to elements in Fpb (where b = O(a)),
and an ϵ-biased generator G : Ss → Fk, there is a (Fpb , k, t)-tensor IOP, with non-adaptive queries, for the
indexed relation RR1CS that supports instances over Fp with nrow = ncol = a · kt, nin = a · ℓin · ktin , and has
the following parameters:
• soundness error is max(tϵ, ϵMlinh , ϵTSP);
• round complexity is O(max(rMlinh , rTSP));
• proof length is O(nrow/a+ lMlinh + lTSP) elements in Fpb;
• query complexity is O(qcMlinh

+ qcTSP);
• the prover sends O(cMlinh + cTSP) non-oracle messages over Fpb;
• the prover uses O(M + nrow) Fp-operations and O(t · (oG + nrow/a)) Fpb-operations in addition to the
O(tpMlinh

+ tpTSP) operations from the sub-protocols;
• the verifier uses O(M + nrow) Fp-operations and O(t · oG) Fpb-operations in addition to the O(tvMlinh +
tvTSP) operations from the sub-protocols;

• the verifier has randomness complexity O(ts) over S in addition to the O(rdMlinh + rdTSP) randomness
for the sub-protocols.

Here M denotes the number of non-zero entries in the instance matrices A,B,C.

The strategy here is to embed a R1CS instance over Fp into a larger field Fpb of cardinality
∣∣Fpb

∣∣ = pO(a).
Then the R1CS relation for matrices over Fp is translated into a relation over Fpb as stated in the following
lemma.

Lemma 6.12 ([CascudoG21]). Let (i,x) =
(
(Fp, nrow, ncol, A,B,C), (nin, x)

)
be a R1CS index-instance

pair, and let (ϕ, ψ) be a systematic (a, b)p-RMFE. Then there exists w ∈ Fncol−nin
p such that (i,x,w) ∈

RR1CS if and only if there exists z̃ ∈ Fncol/a

pb
and z̃A, z̃B, z̃C , b̃ ∈ Fnrow/a

pb
satisfying [clash b, b —Jonathan]

⋆

z̃A ◦ z̃B = b̃ (3)
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z̃ = 0⃗ mod (Imϕ)ncol/a (4)

z̃U = 0⃗ mod (Imϕ)nrow/a ∀U = A,B,C (5)

Ũ z̃ − Ĩnrow z̃U = 0⃗ mod

ker
a∑

j=1

⋆ψ

nrow

∀U = A,B,C (6)

b̃− uz̃C = 0⃗ mod (kerψ)nrow/a (7)

where z = (x,w), z̃U = Φ(Uz), z̃ = Φ(z), Ũ = Φ(U) and u = ϕ(1a). We use the notation Φ(U) to
denote the matrix obtained by applying ϕ row-wise to the matrix U , and the notation

∑a
j=1 ⋆ψ to denote the

operation of applying ψ to an element in Fpb and then sum up the entries of the resulting vector in Fa
p.

↫
DOUBLE

EMBEDDINGS

Now we construct an interactive oracle proof IOP = (P,V) with tensor queries for the indexed relation
RR1CS by checking whether the above relation holds over the larger field Fpb .

Construction 6.13 (tensor IOP for R1CS). The prover P takes as input (i,x,w) =
(
(Fp, nrow, ncol, A,B,C), (nin, x), w

)
,

while the verifier V takes as input (i,x).

• The prover P constructs the full assignment z := (x,w) ∈ Fncol
p and computes the vectors

z̃ := Φ(z) ∈ Fncol/a

pb
, z̃A := Φ(Az), z̃B := Φ(Bz), z̃C := Φ(Cz), b̃ := z̃A ◦ z̃B ∈ Fnrow/a

pb

The prover sends the oracle message Π1 := (z̃, z̃A, z̃B, z̃C , b̃).

• The verifier V sends uniformly random seeds ρ1, . . . , ρt ∈ Ss.

• The prover P computes the query vector r := G(ρ1)⊗ · · · ⊗G(ρt), and the field element νb := ⟨r, b̃⟩. The
prover P sends the non-oracle message νb ∈ Fpb .

• The verifier V performs consistency checks. First, V queries b̃ in Π1 at r = G(ρ1)⊗ · · · ⊗G(ρt) in order
to obtain the answer ⟨r, b̃⟩. Then, V checks that νb = ⟨r, b̃⟩, which shows that νb is the correct answer to
the query on b̃.

Moreover, V checks that the (claimed) embedded satisfying assignment z̃ is consistent with the partial
assignment x as follows: sample uniformly random seeds σ1, . . . , σtin+1 ∈ Ss; compute vectors si = G(σi)
for i ∈ [tin], and compute stin+1 by computing G(σtin+1) and changing all but the first ℓin entries to
zero. Set s′tin+1 to be the first ℓin entries. Then set each of the vectors stin+2, . . . , st ∈ Fk

pb
to equal

(1, 0, . . . , 0) ∈ Fk
pb

; query z̃ in Π1 at the tensor s := s1 ⊗ · · · ⊗ st in order to obtain the answer ⟨s, z̃⟩; and
check that ⟨s, z̃⟩ = ⟨s1 ⊗ · · · ⊗ stin ⊗ s′tin+1, x̃⟩.

• The prover P and verifier V engage in several sub-protocols to check equations (1)-(5) of Lemma 6.12.

– A twisted scalar-product protocol with instance x = (Fpb , nrow/a, r, νb) and witness w = (z̃A, z̃B) to
show that ⟨z̃A ◦ r, z̃B⟩ = νb.

– For everyU ∈ {A,B,C}, a modular multi-lincheck protocol with i = (Imϕ, Inrow/a), x = (Fpb ,E, nrow/a, nrow/a, 1),
and w = z̃U to show that z̃U = 0⃗ mod (Imϕ)nrow/a.

– For every U ∈ {A,B,C}, a modular multi-lincheck protocol with i = (ker
∑ncol/a

j=1 ⋆ϕ, (Ũ ,−Ĩnrow)),

x = (Fpb ,E, nrow, ncol/a, 2), andw = (z̃, z̃U ) to show that Ũ z̃−Ĩnrow z̃U = 0⃗ mod (ker
∑ncol/a

j=1 ⋆ϕ)nrow .
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– A modular multi-lincheck protocol with i = (kerψ, (Inrow/a, Inrow/a)), x = (Fpb ,E, nrow/a, nrow/a, 2),
and w = (̃b,−uz̃C) to show that b̃− uz̃C = 0⃗ mod (kerψ)nrow/a.

Proof. Completeness. Let z := (x,w) be a solution to the R1CS instance. The honest prover sends the
oracles z̃ := Φ(z), z̃U := Φ(Uz) and b̃ := z̃A ◦ z̃B , and the non-oracle message νb := ⟨r, b̃⟩. It implies that
we have νb = ⟨z̃A ◦ r, z̃B⟩, and that all the modular equations in Lemma 6.12 are satisified. This means that
the twisted scalar-product protocol and the modular multi-lincheck protocols succeed. Finally by construction,
z̃ is consistent with the partial assignment x. So it always holds that ⟨s, z̃⟩ = ⟨s1 ⊗ · · · ⊗ stin ⊗ s′tin+1, x̃⟩.
Soundness error. Let x = (Fp, nrow, ncol, A,B,C, x). Fix a malicious prover who sends oracle messages
Π1 := (z̃, z̃A, z̃B, z̃C , b̃). Then one of the following cases must hold.

• z̃ is not consistent with the embedded partial assignment x̃. In this case the verifier samples s such that
⟨s, z̃⟩ = ⟨s1 ⊗ · · · ⊗ stin ⊗ s′tin+1, x̃⟩ with probability at most (tin + 1)ϵ by the property of the ϵ-biased
generator.

• b̃ ̸= z̃A ◦ z̃B . In this case the verifier samples r such that ⟨r, b̃⟩ = ⟨z̃A ◦ r, z̃B⟩ with probability at most tϵ by
the property of the ϵ-biased generator. If this equality does not hold, then the twisted scalar-product protocol
gives the soundness error guarantee of ϵSP. Therefore the soundness error in this case is max(tϵ, ϵSP).

• At least one equation among Equations (2)-(5) in Lemma 6.12 does not hold. Then the modular lincheck
protocols give the soundness error guarantee of ϵMlinh .

Therefore altogether the protocol has soundness error max(tϵ, ϵSP, ϵMlinh).

Prover arithmetic complexity. In step 1, the prover computes Uz for U = A,B,C, encodes the resulting
vectors, and finally computes the entry-wise product b̃. The first part takes O(M) operations in Fp, the second
part takes O(3nrow + ncol) operations in Fp, and the last part takes O(nrow/a) operations in Fpb . In step 3,
the prover computes the query vector r and the field element νb. In total this step takes O(t(oG + nrow/a))
Fpb-operations. In step 5, the prover encodes the matrices A,B,C and Inrow and represents them in the basis
E before running the subprotocols. Since the encoding ϕ is systematic, the encoding time is linear in the
number of non-zero elements in the matrices. So this part takes O(M + nrow) operations in Fp in addition to
the operations in the subprotocols.

Verifier arithmetic complexity. In step 4, the verifier computes query vectors (G(ρi))i∈[t] and (si)i∈[t],
which takes O(t · oG) operations in Fpb . In step 5, the verifier encodes the matrices A,B,C and Inrow before
running the subprotocols, which takes O(M + nrow) operations in Fp in addition to the operations in the
subprotocols.

Other parameters. The other parameters follow directly from the construction.
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7 Algebraic automata

In this section, we focus on constructing a tensor IOP for R1CS automata, a relation that is similar to but
more structured than the R1CS relation. We slightly modify the notion of R1CS automata introduced in
[BenSassonCGGRS19] and explain how we adapt our tensor IOP for R1CS to construct an IOP for R1CS
automata achieving sublinear verifier while preserving the linear-time prover. The construction relies on a
cyclic-shift test that enables a multi-lincheck protocol with sublinear verification, which is the bottleneck for
the verification time in the IOP for R1CS.

Definition 7.1. The R1CS automata relation RR1CSA is the set of triples

(i,x,w) = (x, (Fp, A,B,C), (w, T ), z) .

Here, Fp is a finite field, T ∈ N is the computation time of the automata, and w is the computation width,
A,B,C ∈ Fw×2w

p define the time constraints, x ∈ Fw
p defines boundary conditions, and the execution trace

z : [T + 1] → Fw
p is a function that specifies the content of the w registers at each time step. The trace

satisfies z(1) = x, and for all t ∈ [T ], A(z(t), z(t+ 1)) ◦B(z(t), z(t+ 1)) = C(z(t), z(t+ 1)). (Here “◦”
is the entry-wise product and “(·, ·)” is the vector concatenation.)

Theorem 7.2. For every prime power p, and every finite field Fpb such that pb ∈ Ω(log ncol), given a
systematic (a, b)p-RMFE (ϕ, ψ) such that a ∈ Θ(b), there is a (Fpb , k, t)-tensor IOP, with non-adaptive
queries, for the indexed automata relation RR1CSA that supports instances over Fp with computation width
w, computation time T , (T + 1)w = a · kt and has the following parameters:
• soundness error is O(1);
• round complexity is O(log(wT/a));
• proof length is O(wT/a) elements in Fpb and O(wT/a) elements in Fp;
• query complexity is O(t);
• the prover sends O(log(wT/a)) non-oracle messages over Fpb;
• the prover uses O(w2T ) Fp-operations and O(twT/a)) Fpb-operations;
• the verifier uses O(b3) Fp-operations, O(t(wT )1/t) Fpλ-operations, and O(tk) Fpb-operations;
• the verifier has randomness complexity O(log(wT/a)) over Fpb and O(log(wT/a)) over Fp.

7.1 R1CS automata

As described in Section 2.6, in order to adapt the techniques we use when designing IOPs for R1CS, we
express the automata relation in terms of the R1CS relation. To do that, we rewrite the register-wise Hadamard
product constraints as a single matrix-vector-multiplication Hadamard product constraint by exploiting the
special structure of staircase matrices as described below.

Definition 7.3. The rectangular identity matrix IT×(T+1) ∈ FT×(T+1) is defined as

⇀
I T =


1 0

1 0
. . . . . .

1 0

 .
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Definition 7.4. The shifted identity matrix
⇀
I T×(T+1) ∈ FT×(T+1) is defined as

⇀
I T =


0 1

0 1
. . . . . .

0 1

 .

Definition 7.5. The staircase matrix of two matrices M,M ′ ∈ Fw×w is the matrix in FwT×w(T+1) defined
as

S(M,M ′) = IT×(T+1) ⊗M +
⇀
I T×(T+1) ⊗M ′ =


M M ′

M M ′

M M ′

. . . . . .
M M ′


where IT×(T+1) is the rectangular identity matrix and

⇀
I T×(T+1) is the shifted identity matrix.

Lemma 7.6 (Reduction from RR1CSA to staircase matrices). For any (i,x,w) = ((Fp, A,B,C), (w, T ), z),
consider SA = S(A1, A2), SB = S(B1, B2), SC = S(C1, C2) ∈ FwT×w(T+1)

p where M1 is the first w
columns of M and M2 is the remaining w columns for all M ∈ {A,B,C}. Viewing z as a vector in Fw(T+1)

p ,
(i,x,w) ∈ RR1CSA iff SAz ◦ SBz = SCz.

Proof. Note that we have

SAz = S(A1, A2) · z = (A(z(1), z(2)), A(z(2), z(3)), · · · , A(z(T ), z(T + 1)),

SBz = S(B1, B2) · z = (B(z(1), z(2)), B(z(2), z(3)), · · · , B(z(T ), z(T + 1)),

SCz = S(C1, C2) · z = (C(z(1), z(2)), C(z(2), z(3)), · · · , C(z(T ), z(T + 1)).

The lemma follows.

As in Section 6, we need to embed the instance matrices SA, SB, SC ∈ FwT×w(T+1)
p as defined in

Lemma 7.6 with a systematic (a, b)p-RMFE (ϕ, ψ) to S̃A, S̃B, S̃C ∈ FwT/a×w(T+1)

pb
such that w divides a.

Definition 7.7. For any staircase matrix S(M,M ′) ∈ FwT×w(T+1)
p and any systematic (a, b)p-RMFE such

that w divides a, we define the embedded staircase matrix to be

˜S(M,M ′) =


m0 m1

m0 m1

m0 m1

. . . . . .
m0 m1

 ∈ FwT×(wT/a+1)

pb

where m0,m1 ∈ Fa
pb

are the ϕ-embeddings of the following two square matrices

M0 =


M M ′

M M ′

M M ′

. . . . . .
M

 ∈ Fa×a
p , M1 =


0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
M ′ 0 0

 ∈ Fa×a
p
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Thus ˜S(M,M ′) = ITw/a×(Tw/a+1) ⊗m0 +
⇀
I Tw/a ⊗m1.

So for any instance matrices U ∈ {A,B,C}, the embedded staircase matrix S̃U has a simple decomposi-
tion into to two tensors.

7.2 Achieving sublinear verification for R1CS automata

Next we extend the tensor IOP for R1CS in Section 2.4 to achieve sublinear verification for the R1CS
automata relation RR1CSA.

In the current construction Construction 6.13, the verifier needs to perform matrix-matrix calculations
in the modular multi-lincheck protocols. To reduce the arithmetic complexity of the verifier, we make the
modular multi-lincheck protocol in Construction 6.10 to have sublinear verifier by making the prover prove
the correctness of the calculations to the verifier via a tensor-product protocol.

In the rest of the section we describe the construction of a modular lincheck protocol with sublinear
verification, in which we use several sub-protocols, including the cyclic shift protocol and the biased generator
consistency that are mentioned in Section 2.6 and will be discussed thoroughly in later sections.

We write ϵCS, ϵTSP, ϵBGC for the soundness error of the cyclic shift protocol, the twisted scalar-product
protocol, and the biased generator consistency test, rCS, rTSP, rBGC for their round complexity, lCS, lTSP, lBGC

for their proof length, qcCS, qcTSP, qcBGC for their query complexity, cCS, cTSP for communication complexity,
tpCS, tpTSP, tpBGC for prover arithmetic complexity, tvCS, tvTSP, tvBGC for verifier arithmetic complexity,
and rdCS, rdTSP, rdBGC for randomness complexity. We also use oGsub

to denote the arithmetic complexity of
computing Gsub.

Lemma 7.8 (Special case of Theorem 6.9). For every prime power p, and every finite field Fpb , every Fp-

linear subspace H ⊆ Fpb , and positive integers k, t, given a ϵ-biased generator G : Fs
pλ
→ F(wT/λt)1/t

pλ
, there

is a (Fpb , k, t)-tensor IOP, with non-adaptive queries, for the indexed relation RMlinh that supports staircase
instances over Fpb with block size w, nrow = wT , and ncol = ℓ · kt, and has the following parameters:
• soundness error is max(tϵ, λ log nrow

a /pb, ϵCS, ϵBGC);
• round complexity is O(λrTSP + rCS + rBGC);
• proof length is O(h · ncol + h · lCS + h · λ2 · lTSP) elements in Fpb and O(lBGC) elements in Fp;
• query complexity is O(h · qcCS + h · λ2 · qcTSP + qcBGC);
• the prover sends O(h · λ+ h · cCS + h · λ2 · cTSP) non-oracle messages;
• the prover uses O(λ ·ME + oGsub

) Fp-operations, O(h · λncol + h · tpCS + h · λ2 · tpTSP) Fpb-operations,
and O(tpBGC) Fpλ-operations;

• the verifier uses O(λ · b3) Fp-operations, O(h · tvCS + h · λ2 · tvTSP) Fpb-operations and O(tvBGC)
Fpλ-operations;

• the verifier has randomness complexity O(ts) over Fpλ , O(h · rdCS + h · λ2 · rdTSP) elements in Fpb , and
O(rdBGC) elements in Fp.

Here ME denotes the number of non-zero entries in Uis’ coefficient matrices (notations as defined in
Definition 6.8).

The construction mostly follows the steps in Construction 6.10. The only changes are the follow-
ing. For a randomly generated vector r⃗ the verifier needs to check that r⃗⊺SU x⃗ = τ where SU ∈
{S̃A, S̃B, S̃C , Ĩnrow , Ĩnrow/a} are embedded staircase matrice. We note that for any embedded staircase

matrix ˜S(M,M ′) the left hand of the equation can be written as
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r⃗⊺ ˜S(M,M ′)x⃗ = ⟨r⃗ ◦ (⃗1Tw/a ⊗m0) ◦ (x⃗0 ⊗ 1⃗a) + r⃗ ◦ (⃗1Tw/a ⊗m1) ◦ (x⃗1 ⊗ 1⃗a), 1⃗Tw⟩ (8)

where x⃗0 = x⃗[1 : Tw/a] and x⃗1 = x⃗[2 : Tw/a+ 1].
Now we present the construction.

Construction 7.9 (tensor IOP forRMlinh with sublinear verification). We construct an interactive oracle proof
IOP = (I,P,V) with tensor queries for the indexed relation RMlinh that achieves sublinear verification.

Given the index i = (H, (Ui)i∈[h]), the indexer I computes and outputs as oracle message Π0 =

(Ui,0, Ui,1)i∈[h], where Ui = ˜S(Mi,M ′i) are the embedded staircase matrices in Definition 7.7, Ui,0 =

1⃗Tw/a ⊗m0, and Ui,1 = 1⃗Tw/a ⊗m1.
The prover P takes as input the index i, instance x = (F,E, nrow, ncol, h), and witness w = (x⃗i)i∈[h],

while the verifier takes as input Π0 and x.

• P computes and sends the oracle message (x⃗i,0, x⃗i,1)i∈[h] where x⃗i,0, x⃗i,1 are as defined in Equation (8).

• The verifier V sends uniformly random seeds r ∈ Fst
pλ

.

• The prover uses the biased generator Gsub defined in Construction 7.16 to generate the matrix R =
Gsub(r) ∈ Fλ×nrow

p and then computes the vector b⃗ =
∑h

i=1RUix⃗i ∈ Fλ
pb

and sends the non-oracle

message b⃗.

• The verifier first checks that b⃗ = 0⃗ mod Hλ, and rejects if the check fails.

• The prover computes b⃗i = RUix⃗i for all i ∈ [h] , and sends (⃗bi)i∈[h] as non-oracle message and (Rj)j∈[λ]
as oracles to the verifier.

• The verifier checks that b⃗ =
∑h

i=1 b⃗i.

• For every i ∈ [h], the prover and the verifier engage in a cyclic shift protocol to check that x⃗i,1 is the 1-entry
cyclic shift of x⃗i,0 over Fpb . This relation and its protocol are explained in more detail in Section 7.3.

• For every i ∈ [h] and j ∈ [λ], the prover and the verifier engage in 2λ TSP protocols to check that
⟨Rj ◦ (x⃗i,0 ⊗ 1⃗a), Ui,0⟩+ ⟨Rj ◦ (x⃗i,1 ⊗ 1⃗a), Ui,1⟩ = (⃗bi)j (see Remark 7.10).

• The prover and the verifier enagage in the protocol from Construction 7.19 to check that R = Gsub(r).

Remark 7.10. By construction of Gsub, the j-th row of R has the following tensor structure (see Section 7.4
for more on the structure of R)

Rj =
∑

ℓt−1,ℓt∈[λ]

u(j,ℓt−1) ⊗ e(ℓt−1,ℓt) ,

where u(j,ℓt−1) ∈ FTw/a
p and e(ℓt−1,ℓt) ∈ Fa

p. Plugging this decomposition of Rj into the expression, we
obtain that

⟨Rj ◦ (x⃗i,0 ⊗ 1⃗a), Ui,0⟩+ ⟨Rj ◦ (x⃗i,1 ⊗ 1⃗a), Ui,1⟩

=
∑

ℓt−1∈[λ]

⟨u(j,ℓt−1) ◦ x⃗i,0, 1⃗Tw/a⟩ ·
∑
ℓt∈[λ]

⟨e(ℓt−1,ℓt) ◦ 1⃗a,m0⟩+
∑

ℓt−1∈[λ]

⟨u(j,ℓt−1) ◦ x⃗i,1, 1⃗Tw/a⟩ ·
∑
ℓt∈[λ]

⟨e(ℓt−1,ℓt) ◦ 1⃗a,m1⟩
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The verifier can compute the terms
∑

ℓt∈[λ]⟨e
(ℓt−1,ℓt) ◦ 1⃗a,mc⟩, c ∈ {0, 1} ℓt−1 ∈ [λ], with O(λ2 · a)

operations in Fpb . To check the values for the terms ⟨u(j,ℓt−1) ◦ x⃗i,c, 1⃗Tw/a⟩ = ⟨u(j,ℓt−1) ◦ 1⃗Tw/a, x⃗i,c⟩,
c ∈ {0, 1}, the verifer engages in 2λ TSP protocols checking. By Lemma 6.4, this step takes the prover
O(Tw/a) operations in Fpb and the verifier O

(
t t−1
√
Tw/a

)
operations in Fpb .

Proof. Completeness. Completeness is straightforward from the construction.
Soundness error. Suppose

∑h
i=1 Uix⃗i ̸= 0⃗ mod Hnrow . Fix a malicious prover who sends the messages

b⃗′, (x⃗′i,0, x⃗
′
i,1)i∈[h],(⃗b

′
i)i∈[h], and (Rj)j∈[λ]. Then one of the following six cases happens.

• The verifier samples r such that
∑h

i=1Gsub(r)Uix⃗i = 0⃗ mod Hnrow . This case happens with probability
at most ϵsub by Definition 5.3.

• b⃗′ ̸= 0⃗ mod Hλ. In this case the verifier always rejects and so the soundness error is 0.

• b⃗′ ̸=
∑h

i=1 b⃗
′
i. In this case the verifier always rejects and so the soundness error is 0.

• For some i ∈ [h], x⃗i,1 is not the 1-entry cyclic shift of x⃗i,0. In this the cyclic shift protocol guarantees a
soundness error of at most ϵCS.

• ⟨Rj ◦ (x⃗i,0 ⊗ 1⃗a), Ui,0⟩+ ⟨Rj ◦ (x⃗i,1 ⊗ 1⃗a), Ui,1⟩ ̸= b⃗′i,j for certain i and j. In this case, the TSP protocol

guarantees a soundness error of ϵTSP =
2λ·log nrow

a∣∣∣Fpb

∣∣∣ .

• R ̸= Gsub(r). In this case the soundness error is at most ϵBGC.

Thus the soundness error is the maximum of the six.
Prover arithmetic complexity. First, the prover computes (⃗bi)i∈[h] by multiplying the matrices Ui =∑

j∈[b]Aijej with the matrix R ∈ Fλ×nrow
p and the vector x⃗i. So in total this procedure takes O(λ ·ME)

Fp-operations and O(h · λncol) F-operations. Moreover, the prover computes Gsub(r), engages in the cyclic
shift protocols, the twisted scalar product protocols, and the test for subspace biased generator, which take
O(oGsub

) Fp-operations, O(h · tpCS + h · λ2 · tpTSP) Fpb-operations, and O(tpBGC) Fpλ-operations.

Verifier arithmetic complexity. Checking that b⃗ = 0⃗ mod Hλ takes O(λ · logp(
∣∣Fpb

∣∣)2 · (logp(∣∣Fpb
∣∣)−

dim(H))) Fp-operations. Engaging in the TSP protocols and cyclic shift protocols take h ·λ2 ·tvTSP+h ·tvCS

Fpb-operations. The check for the output of the subspace biased generator takes O(tvBGC) Fpλ-operations.
Other parameters. The other parameters follow directly from the construction.

So now, we can construct a tensor IOP for the R1CS automata relation RR1CSA from the modular
multi-lincheck protocol given in Lemma 7.8 as in Section 6.3. Write ϵMLA for the soundness error of the
modular multi-lincheck protocol, rMLA for its round complexity, lMLA for its proof length, cMLA for its
communication complexity, tpMLA for its prover operations, tvMLA for its verifier operations, and rdMLA

for its randomness complexity. Use ϵTSP, rTSP, lTSP, cTSP, tpTSP, tvTSP, rdTSP to denote the corresponding
parameters of the twisted scalar-product protocol. Define oG to be the arithmetic complexity of computing
ϵ-biased generator G over Fpb .

[Make description of parameters consistent with e.g. Theorem 6.2 —Jonathan] [Notation could be better
⋆

⋆
defined. e.g. in the soundness error, ϵSP needs to be defined for a particular vector length over a particular
field —Jonathan] [in section 6, we didn’t define these parameters over specific length/field, should we change

⋆
them all? —Ziyi]
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Theorem 7.11. For every prime power p, integer a ∈ Ω(logp ncol), and positive integers k, t, given a
systematic (a, b)p-RMFE (ϕ, ψ) with basis E that embeds vectors in Fa

p to elements in Fpb (where b = O(a)),
and an ϵ-biased generator G : Ss → Fk

pb
, there is a (Fpb , k, t)-tensor IOP, with non-adaptive queries, for the

indexed automata relationRR1CSA that supports instances over Fp with nrow = Tw, ncol = (T+1)w = a·kt,
nin = a · ℓin · ktin , and has the following parameters:
• soundness error is max(tϵ, ϵMLA, O(ϵTSP));
• round complexity is O(max(rMLA, rTSP));
• proof length is O(nrow/a+ lMLA + lTSP) elements in Fpb;
• query complexity is O(qcMLA + qcTSP);
• the prover sends O(cMLA + cTSP) non-oracle messages over Fpb;
• the prover uses O(M + nrow) Fp-operations and O(t · (oG + nrow/a)) Fpb-operations in addition to the
O(tpMLA + tpTSP) operations from the sub-protocols;

• the verifier uses O(b3) Fp-operations and O(t · oG) Fpb-operations in addition to the O(tvMLA + tvTSP)
operations from the sub-protocols;

• the verifier has randomness complexity O(ts) over S in addition to the O(rdMLA + rdTSP) randomness for
the sub-protocols.

Here M denotes the number of non-zero entries in the instance matrices A,B,C as in Section 6.3, and due
to the special structure of staircase matrices, we know M = w2T .

7.3 Cyclic-shift test

We construct a tensor IOP for the shift relation.

Definition 7.12. The shift relation R⟳ is the set of tuples

(i,x,w) = (⊥, (F, s,N), (a, b))

where N = kt, b ∈ FN is the cyclic shift of a ∈ FN , which we denote b = shift(a), if for all i ∈ [N − s], it
holds that ai = bi+s, and for i ≥ N − s, ai = 0.

Theorem 7.13. For every finite field F and positive integers k, t, s with s < k, there is a (F, k, t)-tensor IOP
for the indexed relation R⟳ that supports instances over F with N = kt and has the following parameters:
• soundness error is O(tk/|F|);
• round complexity is O(1);
• proof length is O(N) elements in F;
• query complexity is O(t);
• the verifier uses O(tk) field operations;
• the verifier has randomness complexity O(t).

We define vector notation which allows us to describe the protocol more succinctly.

Definition 7.14. For γ1, . . . , γt ∈ F, and v, w ∈ {0, 1, . . . , k−1} with v ≤ w, let Γj := (1, γj , . . . , γ
k−1
j ) ∈

Fk, and let Γ(v,w)
j := (0, . . . , 0, γvj , γ

v+1
j , . . . , γwj , 0, . . . , 0) ∈ Fk.

Construction 7.15 (tensor IOP for cyclic shift test). We construct an interactive oracle proof IOP = (I,P,V)
with tensor queries for the indexed relation R⟳. The indexer algorithm I is trivial. The prover P takes as
input the instance x = (nin, x), and witness w = w, while the verifier V takes as input the instance x.
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The verifier makes 2t+ 1 tensor queries to check the following expressions:

γs1⟨Γ
(0,k−1−s)
1 ⊗

t⊗
j=2

Γj , a⟩ = ⟨Γ(s,k−1)
1 ⊗

t⊗
j=2

Γj , b⟩

γ2γ
s−k
1 ⟨Γ(k−s,k−1)

1 ⊗ Γ
(0,k−2)
2 ⊗

t⊗
j=3

Γj , a⟩ = ⟨Γ(0,s−1)
1 ⊗ Γ

(1,k−1)
2 ⊗

t⊗
j=3

Γj , b⟩

...

γrγ
1−k
r−1 · · · γ

1−k
2 γs−k1 ⟨Γ(k−s,k−1)

1 ⊗
r−1⊗
j=2

Γ
(k−1,k−1)
j ⊗ Γ(0,k−2)

r ⊗
t⊗

j=r+1

Γj , a⟩

= ⟨Γ(0,s−1)
1 ⊗

r−1⊗
j=2

Γ
(0,0)
j ⊗ Γ(1,k−1)

r ⊗
t⊗

j=r+1

Γj , b⟩

...

γtγ
1−k
t−1 · · · γ

1−k
2 γs−k1 ⟨Γ(k−s,k−1)

1 ⊗
t−1⊗
j=2

Γ
(k−1,k−1)
j ⊗ Γ(0,k−2)

r , a⟩ = ⟨Γ(0,s−1)
1 ⊗

t−1⊗
j=2

Γ
(0,0)
j ⊗ Γ

(1,k−1)
t , b⟩

⟨Γ(k−s,k−1)
1 ⊗

t⊗
j=2

Γ
(k−1,k−1)
j , b⟩ = 0

Proof. We analyze the error and efficiency parameters of the above construction.
Completeness. Perfect completeness: Index the entries of a, b ∈ FN using the k-ary representation
(it, . . . , i1) ∈ {0, 1, . . . , k − 1}t (recall that N = kt). Consider how the k-ary representation of i changes
when adding s to get i+ s. Since s < k, the only possible options are as follows.

• If 0 ≤ i1 ≤ k− 1− s, then there are no carries when adding s to the k-ary representation (it, . . . , i1). This
means that ait,...,i1 is equal to bit,...,i1+s.

• If k−s ≤ i1 ≤ k−1, and 0 ≤ i2 ≤ k−2, then there is one carry when adding s to the k-ary representation
(it, . . . , i1). This means that ait,...,i1 is equal to bit,...,i2+1,i1+s−k.

• If k − s ≤ i1 ≤ k − 1, and 0 ≤ i2 ≤ k − 2, then there are two carries when adding s to the k-ary
representation (it, . . . , i1). This means that ait,...,i1 is equal to bit,...,i3+1,0,i1+s−k.

In the tensor queries in Construction 7.15, the (it, . . . , i1)-th entries of a and b either do not appear, or are
multiplied by the monomial γitt · · · γ

i1
1 . Therefore, the number of carries gives the monomial which the

(it, . . . , i1)-th term in a must be scaled by to give the corresponding term in b.
Soundness. Soundness error O(tk/|F|): Suppose that a ̸= shift(b). This means that either ai ̸= b for some
i ∈ [N − s], or ai ̸= 0 for some i ≥ N − s. In the latter case, the final verification equation consists of a
non-zero polynomial of degree at most kt evaluated at random points γ1, . . . , γt ∈ F. The stated soundness
error then follows from the Schwartz–Zippel lemma. In the former case, the number of carries in the k-ary
representation of i when adding s to i determines which of the verification equations consists of a non-zero
polynomial, and the stated soundness error follows in a similar fashion.
Efficiency parameters. All the efficiency parameters follow directly from the construction.
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7.4 Biased generator consistency test

We explain how to check the correctness of the output for the subspace biased generator efficiently, with the
assumption that we have a tensor-sum consistency test as described in Section 7.5.

Construction 7.16. Given an ϵ-biased generator G : Fs
pλ
→ Fb′

pλ
, let G′(r1, . . . , rt.rt+1) := G(r1)⊗ · · · ⊗

G(rt)⊗rt+1 for r1, . . . , rt ∈ Fs
pλ

and rt+1 ∈ Fa/λ

pλ
. Then, use Construction 5.5 to constructGsub :

(
Fs
pλ

)t
→

Fλ×b′ta
p from G′.

By Lemma 5.2, G′ is a (tϵ+ 1/pλ)-biased generator. Therefore, by Construction 5.5, Gsub :
(
Fs
pλ

)t
→

Fλ×λb′t
p is a (p, λ)-subspace (tϵ+ 1/pλ)-biased generator.

Lemma 7.17. Given an ϵ-biased generator G : Fs
pλ
→ Fb′

pλ
, let G′ :

(
Fs
pλ

)t
× Fa/λ

pλ
→ Fb′ta/λ

pλ
and

Gsub :
(
Fs
pλ

)t
× Fa/λ

pλ
→ Fb′ta

p be the outputs from Construction 7.16. The matrix representation of the
output of Gsub can be written as sums of tensor products.

Proof. For all r1, . . . , rt ∈ Fs
pλ

and rt+1 ∈ Fa/λ

pλ
, we haveG′(r1, . . . , rt.rt+1) = G(r1)⊗· · ·⊗G(rt)⊗rt+1.

Indexing the entries of each G(rj) over [b′], rt+1 over [a/λ], and G′(r1, . . . , rt) over [b′]t, we have

G′(r)i1,...,it,it+1 = G(r1)i1 · · · · ·G(rt)it · (rt+1)it+1 . (9)

Let M (i,j) ∈ Fλ×λ
p be the matrix representation of the j-th entry of G(ri) ∈ Fb′

pλ
or rt+1 ∈ Fa/λ

pλ
,

as defined by Observation 5.4. Similarly, let Y (i1,...,it+1) ∈ Fλ×λ
p be the matrix representation of the

(i1, . . . , it+1)-th entry of G′(r) ∈ Fb′ta/λ
pλ

.

Rewrite Equation (9) using the Y (i1,...,it+1) and matrix multiplications of the M (i,j). For all i1, . . . , it ∈
[b′], it+1 ∈ [a/λ],

Y (i1,...,it) =
t+1∏
k=1

M (k,ik) .

Writing out the matrix multiplication explicitly in terms of the entries of the M (k,ik), the (m0,mt+1)-th
entry of Y (i1,...,it+1) is equal to

Y (i1,...,it+1)
m0,mt+1

=

(
t+1∏
k=1

M (k,ik)

)
m0,mt+1

=
∑

m1,...,mt∈[λ]

t∏
k=1

M (k,ik)
mk−1,mk

, (10)

where the subscripts are row and column indices, respectively.
Now we explain how we to write the output of Gsub as a sum of tensor products. Define vectors

y(m0,mt+1) ∈ Fb′ta
p whose (i1, . . . , it+1)-th entries are defined to be y(m0,mt+1)

i1,...,it+1
:= Y

(i1,...,it+1)
m0,mt+1 . Define

vectors v(k,mk−1,mk) ∈ Fb′
p for k ∈ [t] and v(t+1,mt,mt+1) ∈ Fa/λ

p whose ik-th entries are defined to be

v
(k,mk−1,mk)
ik

:=M
(k,ik)
mk−1,mk . Equation (10) can be rewritten as

y(m0,mt+1) =
∑

m1,...,mt∈[λ]

t+1⊗
k=1

v(k,mk−1,mk) . (11)
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Equation (11) follows from Equation (10) by considering the (i1, . . . , it+1)-th components of the equation.
Since the output of Gsub is Y can be described using the vectors y(m0,mt+1) ∈ Fb′ta

p for m0,mt+1 ∈ [λ]

(using the Y (i1,...,it+1) as an intermediate step), we have succeeded in writing the output of Gsub as sums of
tensor products.

Now we are ready to construct a tensor IOP for checking the output of subspace-biased generator using a
tensor IOP for tensor-sum consistency in Section 7.5. Write ϵTS for the soundness error of the tensor-sum
consistency protocol, rTS for its round complexity, lTS for its proof length, qcTS for its query complexity, cTS

for its communication complexity, tpTS for its prover arithmetic complexity, tvTS for its verifier arithmetic
complexity, and rdTS for its randomness complexity. We also use oGsub

to denote the arithmetic complexity
of computing Gsub and oG to denote the arithmetic complexity of computing G.

Theorem 7.18. For every prime power p, and ϵ-biased generator G : Fs
pλ
→ Fb′

pλ
, there is a (Fp, b

′, t)-tensor

IOP, with non-adaptive queries, for the output of a (p, λ)-subspace biased generator Gsub :
(
Fs
pλ

)t
→

Fλ×b′ta
p constructed using Construction 7.16 from G, and has the following parameters:

• soundness error is ϵTS;
• round complexity is rTS;
• proof length is O(λ2b′ta) elements in Fp and lTS from subprotocols;
• query complexity is O(λ2qcTS);
• the prover uses oGsub

Fpλ-operations in addition to tpTS operations from the sub-protocols;
• the verifier uses (t · oG + a/λ) Fpλ-operations in addition to the tvTS operations from the sub-protocols;
• the verifier has randomness complexity rdTS from the sub-protocols.

Construction 7.19 (tensor IOP for subspace biased generator). We construct an interactive oracle proof
IOP = (I,P,V) with tensor queries for checking the output of Gsub in Theorem 7.18. The indexer algorithm
I is trivial.

The prover takes as input matrix R = Gsub(r) ∈ Fλ×b′ta
p ,and seed r = (r1, . . . , rt, rt+1) ∈

(
Fs
pλ

)t
×

Fa/λ

pλ
. The verifier takes as input r1, . . . , rt ∈ Fs

pλ
and rt+1 ∈ Fa/λ

pλ
.

• P sends oracle messages y(m0,mt+1) ∈ Fb′ta
p defined as in Lemma 7.17;

• V computes v(k,m,m′) for all k ∈ [t + 1],m,m′ ∈ [λ] such that v(k,m,m′)
ik

:= M
(k,ik)
m,m′ , where M (k,ik) is

the matrix representation of the ik-th entry of G(rik) ∈ Fb′

pλ
for k ∈ [t], and the matrix representation of

(rt+1)it+1 when k = t+ 1;

• P and V engage in λ2 tensor-sum consistency tests (defined in Section 7.5) to check if y(m0,mt+1) =∑
m1,...,mt

⊗t+1
k=1 v

(k,mk−1,mk).

Proof. We analyze the error and efficiency parameters of the above construction.
Completeness. If the output of Gsub is correctly computed, then all the tensor-sum consistency tests will
pass according to Lemma 7.17.
Soundness. The soundness error is ϵTS: Suppose the output of Gsub is not correctly computed. Then at
least one of the tensor-sum consistency passes incorrectly. The probability that this happens is ϵTS.
Efficiency parameters. The round complexity, query complexity, and verifier’s randomness complexity
are inherited from the tensor-sum consistency tests directly. The proof length is the length of the λ2
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oracle messages in Fb′t
p and the proof length from the sub-protocols. The prover’s and verifier’s arithmetic

complexities include the operations from the sub-protocols, and the operations to compute Gsub and G,
respectively.

7.5 Tensor-sum consistency test

In Construction 7.9, V knows r1,i, . . . , rt,i ∈ Fk for i ∈ [ℓ] and must check that P has sent r ∈ Fkt that
equals

∑ℓ
i=1 r1,i ⊗ · · · ⊗ rt,i. The test easily generalises to the case where the components r1,i, . . . , rt,i have

different lengths.
Let ri := r1,i ⊗ · · · ⊗ rt,i. Using the same strategy as [BootleCG20], note that for every tensor

s = s1 ⊗ · · · ⊗ st ∈ Fkt , we have ⟨ri, s⟩ = ⟨r1,i, s1⟩ · · · ⟨rt,i, st⟩, and if ri ̸= r1,i ⊗ · · · ⊗ rt,i, then by
the Schwartz–Zippel lemma, ⟨ri, s⟩ ̸= ⟨r1,i, s1⟩ · · · ⟨rt,i, st⟩ except with probability at most t/|F| over the
random choice of s. The same strategy can be applied to the sum of the ri.

To check that
∑ℓ

i=1 r1,i ⊗ · · · ⊗ rt,i, the verifier samples random s1, . . . , st ∈ Fk, and queries r at the
tensor s = s1 ⊗ · · · ⊗ st ∈ Fkt . The verifier computes

∑k
i=1⟨r1,i, s1⟩ · · · ⟨rt,i, st⟩ in O(ℓtk) arithmetic

operations, and checks that the two values are equal. This gives rise to the following claim.

Claim 7.20. In a (F, k, t)-tensor IOP, where V has oracle access to v ∈ Fkt and explicit input v1,i, . . . , vt,i ∈
Fk, V can check that v =

∑ℓ
i=1 v1,i ⊗ · · · ⊗ vt,i with soundness error t/|F|, using a single tensor query to v

and O(ℓtk) arithmetic operations.
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8 From point queries to tensor queries

We give a generalization of the compiler of [BootleCG20], which transforms a tensor-query IOP into a
corresponding point-query IOP. That compiler relies on a proximity test for tensor codes which “folds”
vectors via random linear combinations, using the fact that if any of the vectors is far from the code then the
random linear combination is likely to be far from the code. Our generalization enables folding via any linear
combination that satisfies the following distance preservation property.

Definition 8.1 ([ChiesaKLM22]). We say that G : Fs → Fℓ is a (δ0, ϵ)-proximity generator if for all n, all
codes C ⊆ Fn, all U ∈ Fℓ×n with (blockwise) relative distance δU = δ(U, Cℓ), and all ∆ ∈ [0, 1] such that
∆ < δ0(C, U), we have

Pr
w←Fs

[δ(G(w)⊺U, C) ≤ ∆] ≤ ϵ(∆) .

The proximity generators used in prior work do not suffice for us. In [BootleCL22], s = 1 but ϵ =
O(ℓ · n), which prevents the compiler from being used over fields with o(n) elements; and in [BootleCG20],
ϵ = O(1/|F|) but s = O(ℓ), which is too inefficient for our purposes, as the verifier must send the entire
seed for the proximity generator to the prover, and this incurs O(k) communication costs in the consistency
test. However, if we plug the proximity generator obtained in [ChiesaKLM22] (see Section 8.3) into our
generalized compiler, then we obtain a compiler that with suitable efficiency over not-too-large fields.

Definition 8.2. The indexed relation Rcons is the set of tuples

(i,x,w) =
(
⊥, (F, C, ℓ, q, t, {q(s)}s, {vs}s), c

)
such that c = EncC⊗t(f) ∈ Fℓ·nt

for some f ∈ Fℓ·kt , for each s ∈ [q], q(s) = (q
(s)
0 , . . . , q

(s)
t ) ∈ Fℓ ×

(
Fk
)t,

and for all s ∈ [q], ⟨⊗iq
(s)
i , f⟩ = v(s).

Remark 8.3. For notational simplicity, when proving Lemma 8.4 which follows, we assume that the function
δ0 associated with proximity generators G and G′ simply divides the relative distance δU of an interleaved
codeword U by a constant factor κ. The analysis still applies to more general functions δ0, resulting in
iterated δ0 functions in expressions for the soundness error.

Lemma 8.4. Consider the following ingredients.

• A linear code C over F with rate ρ = k
n , relative distance δ = d

n , and encoding arithmetic complexity
Ψ(k) · k.

• A function G : Fs → F(q+1)k such that for each r ∈ [t − 1], C⊗r has a (δ0, ϵ) proximity gap with
δ0(C⊗r, U) = δ(U, C⊗r)/κ, and G can be evaluated in oG operations over F.

• A function G′ : Fs′ → Fℓ with a (δ0, ϵ) proximity gap with threshold δ0(C⊗t, U) = δ(U, C⊗t)/κ, and G′

can be evaluated in oG
′ operations over F.

There exists an non-adaptive interactive oracle proof of proximity IOPP = (P, (Vq,Vd)) with point queries
for the relation Rcons(F, C, ℓ, q, t, {q(s)}s, {vs}s) with the following parameters:

• answer alphabet Fℓ for the witness, and Fk for the proof;
• soundness errorO

(∑t
r=1 ϵ(min{δt−r/4,∆⊗})

)
+
(
1− κ−2min{δt/4,∆⊗}

)λ
+
(
1−

(
δt − 2min{δt/4,∆⊗}

))λ;
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• round complexity O(t);
• proof length O(q · nt−1);
• query complexity O(λ) to the witness and O(λ · t · q) to the proof;
• prover time O(|C|+ q · tℓkt) + (t− 1) · oG + oG

′;
• verifier time O(|C|+ q · (ℓ+ kt)) + (t− 1) · oG + oG

′;
• verifier randomness complexity O(t · q) elements in F;
• Vd’s decision state σ = (x, r) where r is the verifier randomness;
• Vd time O(|C|+ q · (ℓ+ kt)) + (t− 1) · oG + oG

′.

8.1 Proximity test

Definition 8.5. The indexed relation R⊗ is the set of tuples

(i,x,w) =
(
⊥, (F, C, ℓ, q, t), (c(0)0 , {c(s)1 }s, . . . , {c

(s)
t−1}s)

)
such that c(0)0 ∈ (C⊗t)ℓ and, for all r ∈ [t− 1] and s ∈ [q], we have c(s)r ∈ (C⊗t−r)k.

Definition 8.6. Let w = (c
(0)
0 , {c(s)1 }s, . . . , {c

(s)
t−1}s) be such that c(0)0 ∈ Fℓ·nt

and, for all r ∈ [t − 1] and

s ∈ [q], we have c(s)r ∈ Fk·nt−r
. Given (i,x) = (⊥, (F, C, ℓ, q, t)), the ∆⊗-distance of w to Rcons|(i,x) is

∆⊗
(
w, Rcons|(i,x)

)
:= max{∆0,∆1, . . . ,∆t−1} where

{
∆0 := ∆(c

(0)
0 , C⊗t)

∀ r ∈ [t− 1] , ∆r := ∆({c(s)r }s, C⊗t−r)
.

Definition 8.7. The folding of a function c : [a]× [b1]× · · · × [bh]→ F by a linear combination α : [a]→ F
is the function Fold(c;α) : [b1]× · · · × [bh]→ F defined as follows:

Fold(c;α) :=
∑
i∈[a]

α(i)c(i, ·, . . . , ·) . (12)

Moreover, the folding of a set of functions {cs}s by a set of corresponding linear combinations {ζs}s is the
function Fold({cs}s; {ζs}s) : [b1]× · · · × [bh]→ F defined as follows:

Fold({cs}s; {ζs}s) :=
∑
s

Fold(cs; ζs) .

More generally, for r ∈ {0, 1, . . . , h}, we write Foldr to indicate a folding operation that is applied to the
r-th coordinate in the sum in Equation (12), as opposed to the 0-th coordinate.

Remark 8.8. For efficiency reasons, we assume that the honest prover P′ also receives the decodings
(f

(0)
0 , {f (s)1 }s, . . . , {f

(s)
t−1}s) of the witness elements (c(0)0 , {c(s)1 }s, . . . , {c

(s)
t−1}s) in the construction below.

Construction 8.9. We describe the construction of IOPP = (P′,V′). The prover P′ takes as input an index
i = ⊥, instance x = (F, C, ℓ, q, t), witness codewords w = (c

(0)
0 , {c(s)1 }s, . . . , {c

(s)
t−1}s) and underlying

messages (f (0)0 , {f (s)1 }s, . . . , {f
(s)
t−1}s), while the verifier V′ takes as input the index i and the instance x.

1. Interactive phase. For each round r ∈ [t]:

• V′ sends random challenge message w ∈ Fs. (For r = 1, V′ sends w ∈ Fs′ .)
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• P′ sends the proof message c(0)r ∈ Fk·nt−r
computed as

f (0)r := Foldr−1({f (s)r−1}s;G(w)) and c(0)r := Encr+1,...,t(f
(0)
r ) .

(For r = 1, P′ uses Foldr−1({f (s)r−1}s;G′(w)) instead.)

Note that when r = t the expression Encr+1,...,t is degenerate and no encoding takes place.

2. Query phase. The verifier V′ samples λ tuples of the form (j1, . . . , jt)← [n]t and proceeds as follows for
each tuple. For each s ∈ {0, 1, . . . , q}, V′ queries the function c(s)r : [k]× [n]t−r → F at (ir, jr+1, . . . , jt)
for each ir ∈ [k] and checks, for each r ∈ [t], the following equation (replacing G with G′ when r = 1):

Foldr−1({c(s)r−1}s;G(w))(jr, . . . , jt) = Enc(c(0)r )(jr, . . . , jt) . (13)

Lemma 8.10. The proximity test is sound with soundness error

O

(
t∑

r=1

ϵ(min{δt−r/4,∆⊗})

)
+
(
1− κ−2min{δt−1/4,∆⊗}

)λ
.

Proof sketch. If (i,x) /∈ L(R⊗), then the witness w and the oracle messages sent by a malicious prover
P′ define functions c(s)r for r ∈ [t] and s ∈ [q]. If P′ were honest, each oracle message c(s)r would lie in
(C⊗t−r)k and c(0)0 would lie in (C⊗t)ℓ.

As in [BootleCG20], the soundness analysis can be separated into two cases, each accounting for one of
the terms in the soundness error. For each r ∈ {0, 1, . . . , t}, we define ∆†r := min{δt−r/4,∆⊗}.

• Case 1: One of the proximity generators fails (described as distortion in [BootleCG20]). This means that
for some r ∈ [t], we have ∆(Fold({c(s)r }s;G(w)), C⊗t−r) < ∆†r/κ.

Since G is a proximity generator, this occurs with probability at most ϵ(min{∆r,∆
†
r}). This replaces the

use of a specific proximity generator from [AmesHIV17].

Applying a union bound, the probability that any proximity generator fails is bounded above by

O

(
t∑

r=1

ϵ(min{∆r,∆
†
r})

)
.

• Case 2: None of the proximity generators fail. At least one of the proof messages is far from being a
codeword, or the proof messages are close to being codewords but the decoded messages from different
rounds of the interactive phase are not consistent. Formally, for all r ∈ {0, 1, . . . , t − 1}, we have
∆(Fold({c(s)r }s;G(w)), C⊗t−r) ≥ ∆†r/κ but there exists r ∈ {0, 1, . . . , t − 1} such that one of the
following conditions is satisfied:

– ∆r ≥ ∆†r;

– ∆r < ∆†r and Foldr({c(s)r }s;G(w)) ̸= Encr+1(c
(0)
r+1).

Here, c(s)r is the closest codeword to c(s)r . This closest codeword exists and is unique if the second condition
is satisfied, since ∆r < ∆†r.
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In this case, the analysis from [BootleCG20] holds, with ∆†r∗ replaced by ∆†r∗/κ in [BootleCG20]. This
gives a lower bound of ∆†r∗/κ on the probability that verifier queries lie in “failure” and “error” sets. The
analysis from [BootleCG20] then adapts to shows that the verifier will reject at least a 1/κ fraction of all
queries in the failure or error sets, leading to a probability of minr{∆†r} = min{δt/4,∆⊗} that the verifier
will reject when λ = 1. This leads to the stated soundness error.

8.2 Consistency checks on tensor codes

Construction 8.11. We describe the construction of (Î, P̂, V̂). The indexer Î, given an index i, runs I
on i to produce Π0 ∈ Fℓ0·kt indexed by (i0, i1, . . . , it) ∈ [ℓ0] × [k]t; then computes and outputs Π̂0 :=
Enc1,...,t(Π0) ∈ Fℓ0·nt

.
The prover P̂ receives as input an instance x and witness w, while the verifier V̂ receives as input the

instance x. The construction has two phases, a simulation phase and a consistency phase. We describe each
in turn.

Simulation phase. For each i ∈ [rc], P̂ and V̂ simulate the i-th round of the interaction between P(x,w)
and V(x), as well as any tensor queries by V to the received proof strings.

1. Prover messages. P̂ receives from P a proof message Πi ∈ Fℓi·kt indexed by (i0, i1, . . . , it) ∈ [ℓi]× [k]t,
computes a new proof message Π̂i := Enct,...,t(Πi) ∈ Fℓi·nt

, and sends Π̂i to V̂. Also, P̂ forwards any
non-oracle messages from P to V via V̂.

2. Verifier messages. V̂ receives challenge message ρi from V and forwards it to P̂, who forwards it to P.

3. Tensor queries. If V̂ receives any tensor query (or queries) q ∈ Qtensor(F, k, t) on (Π0,Π1, . . . ,Πi) from
V, it sends the query q to P̂, who responds by computing q(x,Π0,Π1, . . . ,Πi) themselves and sending it
to V̂ as a non-oracle message. Then V̂ forwards this (alleged) query answer to V.

This completes the simulation of the tensor IOP. If at this point the tensor IOP verifier V rejects, then the IOP
verifier V̂ rejects too. (There is no need to check if the IOP prover P̂ answered tensor queries honestly.)

Consistency phase. In this phase the IOP verifier V̂ checks that the IOP prover P̂ honestly answered the
tensor queries of the tensor IOP verifier V in the simulation phase. Suppose that the tensor queries of V are
given by q(s) = (q

(s)
0 , q

(s)
1 , . . . , q

(s)
t ) for each s ∈ [q]. They are known to P̂ and V̂. They interact as follows.

1. Send codewords. The prover P̂ sends proof messages {c(1)r , . . . , c
(q)
r ∈ Fk·nt−r}r∈[t] that are computed as

described below.

• First, define the functions

f
(0)
0 := Stack (Π0, . . . ,Πrc) ∈ Fℓ·kt and c

(0)
0 (i0, j1, . . . , jt) := Stack

(
Π̂0, . . . , Π̂rc

)
∈ Fℓ·nt

.

Note that c(0)0 = Enc1,...,t(f
(0)
0 ). Moreover, P̂ already knows the value of f (0)0 and of c(0)0 at every point,

and V̂ has point-query access to every value of c(0)0 from the index or the messages sent during the
simulation phase.

45



• Next, for each r ∈ [t] and s ∈ [q], P̂ computes the following message and its encoding:

f (s)r := Foldr−1(f
(s)
r−1; q

(s)
r−1) ∈ Fk·kt−r

and c(s)r := Encr+1,...,t(f
(s)
r ) ∈ Fk·nt−r

.

For r = 1, Foldr−1(f
(0)
r−1; q

(s)
r−1) is used. When r = t, the expression Encr+1,...,t is degenerate and no

encoding takes place, and so c(1)t , . . . , c
(q)
t are vectors in Fk.

2. Proximity test. The prover P̂ and verifier V̂ engage in the IOP of proximity IOPP = (P′,V′) for
R⊗(F, C, ℓ, q, t) with index i = ⊥, instance x = (F, C, ℓ, q, t), and witnessw = (c

(0)
0 , {c(s)1 }s, . . . , {c

(s)
t−1}s)

to show that c(0)0 ∈ (C⊗t)ℓ (or at least close) and that c(s)r ∈ (C⊗t−r)k (or at least close) for all r ∈ [t] and
s ∈ [q]. (If V′ rejects in this sub-protocol, then V̂ rejects.)

3. Consistency checks. The verifier V̂ samples λ tuples of the form (j1, . . . , jt)← [n]t and, for each tuple
(j1, . . . , jt), proceeds as follows. For each r ∈ [t], each s ∈ [q], and each ir ∈ [k], the verifier V̂ queries
the function c(s)r : [k]× [n]t−r → F at (ir, jr+1, . . . , jt). Then, for each r ∈ [t] and s ∈ [q], V̂ checks the
following equation:

Foldr−1(c
(s)
r−1; q

(s)
r−1)(jr, . . . , jt) = Encr(c

(s)
r )(jr, . . . , jt) .

Finally, for each s[q], V̂ computes Foldt(c
(s)
t ; q

(s)
t ), and checks that it is equal to the answer to the s-th

tensor query q(s) = (q
(s)
0 , q

(s)
1 , . . . , q

(s)
t ) that was reported by P̂ in the simulation phase.

Lemma 8.12 (soundness). (Î, P̂, V̂) has soundness error

ϵ′ (∆⊗) +
(
1−

(
δt − 2min{δt/4,∆⊗}

))λ
.

Proof sketch. If (i,x) /∈ L(R) then the witness w and oracle messages sent by a malicious prover P̂ define a
word c(0)0 ∈ Fℓ·nt

which, in an honest proof, would be ℓ interleaved C⊗t-codewords, and word c(s)r ∈ Fk·nt−r

for each r ∈ [t] and s ∈ [q], where, in an honest proof, c(s)r would be k interleaved C⊗t−r-codewords.
We separate the soundness proof into different cases.

• Case 1: At least one of the proof messages is far from being a codeword. Formally, there exists r ∈
{0, 1, . . . , t− 1} such that ∆r ≥ δt−r/4. By soundness of the proximity test, it follows that (P′,V′), and
hence V̂, will accept with probability at most ϵ′(∆⊗).

• Case 2: The proof messages are close to being codewords but the decodings of words c(s)r from the
consistency phase are not consistent across values of r. Formally, for all r ∈ {0, 1, . . . , t − 1} we
have ∆r < δ0(C⊗t−r), but there exists r ∈ {0, 1, . . . , t − 1} and s ∈ [q] such that Foldr(c

(s)
r ; q

(s)
r ) ̸=

Encr+1(c
(s)
r+1).

In this case, the analysis in Case 2 of [BootleCG20] shows that Foldr(c
(s)
r ; q

(s)
r ) ̸= Encr+1(c

(s)
r+1) are at

least δt−r − 2min{δt/4,∆⊗} apart in relative distance, so that the verifier will reject with probability at
least this value. This follows from replacing δt−r/4 by min{δt/4,∆⊗} in the inequalities.

• Case 3: Every message is close to being a codeword, and the decodings of words c(s)r are all consistent over
different values of r. Formally, for all r ∈ {0, 1, . . . , t− 1}, we have ∆r < δ0(C⊗t−r) so in particular, for
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all r ∈ {0, 1, . . . , t− 1} and s ∈ [q], the closest codewords c(s)r are well-defined. Then, the consistency
checks are satisfied by the corrected words c(s)r i.e. for all r ∈ {0, 1, . . . , t− 1} and s ∈ [q],

Foldr(c
(s)
r ; q(s)r ) = Encr+1(c

(s)
r+1) .

Decoding the codewords c(s)r for each r ∈ {0, 1, . . . , t− 1} and s ∈ [q], gives functions f (s)r+1 consisting

of k vectors in Fkt−r
(or ℓ vectors for r = 0) satisfying f (s)r+1 = Foldr(f

(s)
r ; q

(s)
r ). This implies that

Foldt(c
(s)
t ; q

(s)
t ) is equal to ⟨⊗iq

(s)
i , f⟩ = v(s).

Efficiency parameters. The round complexity of the consistency test is the same as in [BootleCG20], with
O(rc) rounds for the simulation phase and O(t) rounds for the consistency phase, including the proximity
test.

The proof messages and queries are identical to those in the consistency test of [BootleCG20] but are
now measured in terms of two different alphabet sizes. In the consistency test, the prover sends a message
array of size ℓ · kt, parsed over the alphabet Fℓ, and O(q) messages for each of the array sizes kt, kt−1, . . . , k,
parsed over the alphabet Fk. Each message array is queried at O(λ) alphabet symbols.

Indexer time is the same as in [BootleCG20]. The prover and verifier time are the same except that the
random linear combinations used in [BootleCG20] are now replaced by the output of proximity generators,
which incur extra running time (t− 1) · oG + oG

′.
Contributions to the verifier randomness complexity in [BootleCG20] were dominated by various random

linear combinations of lengths ℓk and (q+ 1)k. In this construction, this contribution is replaced by the seed
length of the proximity generators used. The remaining randomness complexity is inherited from the tensor
IOP.

8.3 The proximity generator that we use

We rely on [ChiesaKLM22] to show that a multilinear generator is a proximity generator.

Definition 8.13. We say that a function G : Fs → F(s/k)k is a degree-k multilinear generator if for any input
{xj,h}j∈[k],h∈[s/k] the function outputs the string {yh1,...,hk

}h1,...,hk∈[s/k]k where yh1,...,hk
=
∏

j∈[k] xj,hj
.

Lemma 8.14 ([ChiesaKLM22]). A degree-k multilinear generator G : Fs → F(s/k)k is a (δ0, ϵ)-proximity
generator where δ0(C, U) = δ(U, C(s/k)k)/2k and ϵ = k

|F|−1 .

Proof. We prove the statement by induction on the degree k.
Base case. When k = 1, the generator G simply outputs the uniformly random distribution over Fs. Then

by [RothblumVW13], for any ∆ ≤ δ(U, C(s/k)k)/2

Pr
w←Fs

[δ(w⊺U, C) ≤ ∆] ≤ 1

|F| − 1
.

Inductive step. Suppose the statement holds for multilinear generators of degree k − 1. Then we
observe that the degree-k generator Gk : Fs → F(s/k)k can be constructed from the degree-(k − 1) generator
Gk−1 : Fs(1−1/k) → F(s/k)k−1

as follows. Let x ∈ Fs/k and w ∈ Fs(1−1/k)

Gk(x,w) = x1 ·Gk−1(w)∥x2 ·Gk−1(w)∥ . . . ∥xs/k ·Gk−1(w)
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For any matrix U ∈ F(s/k)k×n, let {Uh}h∈[s/k] be the (h − 1) · (s/k)k−1 + 1-th to h · (s/k)k−1-th rows
of U , and let uh be the random variable Gk−1(w)

⊺Uh where w ← Fs(1−1/k). Finally use U(k) ∈ F(s/k)×n

to denote the matrix whose h-th row is uh. Then for any ∆ ≤ δ(U, C(s/k)k)/2k, define the event Ek that
δ(U(k), Cs/k) ≥ δ(U, C(s/k)

k
)/2k−1. We then obtain

Pr
(x,w)←Fs

[δ(Gk(x,w)
⊺U, C) ≤ ∆]

= Pr
(x,w)←Fs

[
δ(x⊺U(k), C) ≤ ∆

]
≤ Pr

w←Fs
[Ek] · Pr

(x,w)←Fs

[
δ(x⊺Uk, C) ≤ δ(U(k), C(s/k)

k
)/2 | Ek

]
+ Pr

w←Fs

[
Ek

]
.

Let i∗ be the row in U with the maximum distance to C, and Uh∗ be the submatrix that contains row i∗. Then

Pr
w←Fs

[Ek] ≥ Pr
w←Fs

[
δ(Gk−1(w)

⊺Uh∗ , C) ≥ δ(U, Cℓ)/2k−1
]
≥ 1− k − 1

|F| − 1

The last inequality holds by observing that δ(U, Cℓ) = δ(Uh∗ , C(s/k)k−1
) and then applying the inductive

hypothesis. Then plugging this bound back to the inequality we obtain that

Pr
(x,w)←Fs

[δ(Gk(x,w)
⊺U, C) ≤ ∆] ≤

(
1− k − 1

|F| − 1

)
· 1

|F| − 1
+

k − 1

|F| − 1
≤ k

|F| − 1
.

Thus we complete the proof.

As a corollary we obtain proximity generators with exponential stretch by setting k = s/2.

Corollary 8.15. For any positive integer c and anym, there exists a (δ0, ϵ)-proximity generatorG : Fcm1/c →
Fm, where δ0(C, U) = δ(U, Cℓ)/2c and ϵ = c

|F|−1 .
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9 Random access machines and precomputation

The definition of a random access machine below captures the usual notion of “word RAM”, and is similar to
definitions in [AngluinV77; CookR72].

Definition 9.1. A random access machine M = (P,R,w, I) consists of:

• R working registers, each storing a word in {0, 1}w (and initially set to 0w);
• 2w memory registers, each storing a word in {0, 1}w (and initially set to 0w);
• a program P applying instructions in I to the working registers;
• a read-only input tape containing a list of words in {0, 1}w; and
• a write-only output tape, containing a list of words in {0, 1}w, with every word initially set to 0w.

Instructions in I are functions taking a fixed number of working registers as input and writing the output to a
single working register. In addition:

• memory instructions in I allow writing from a working register to a memory register, and vice versa;
• read instructions allow reading a word from the input tape to a working register (and move that tape’s

head forward);
• write instructions allow writing a word from a working register to the output tape (and move that tape’s

head forward); and
• a special Halt instruction halts the execution of the machine.

Definition 9.2. The time T of a random access machine is the number of instructions executed by the
machine before halting. The space S is the maximum number of non-zero memory registers throughout the
execution. The output consists of the contents of the output tape after the machine halts.

We assume that the instruction set I consists of standard RISC instructions (jumps, shifts, bitwise boolean
operators, certain integer arithmetic, and so on), all of which take O(1) registers as input.

The lemma below provides a generic way to precompute a specific operation, by computing its evaluation
table once and subsequently looking up the desired entries in the table as needed.

Lemma 9.3. Let (PO, R,w, I) be a machine that evaluates a function O : {0, 1}k×wO → {0, 1}wO in time
TO and space SO. Let M = (P,R,w, I ∪ {O}) be a RAM with word length w ≥ kwO that runs in time T
and space S. There exists a machine M ′ = (P ′, R,w, I) that produces the same output as M and runs in
time T ′ := T + 2kwO · TO and space S′ := S + 2kwO + SO.

Proof sketch. The program P ′ uses the program PO to evaluate O at every possible input (of which there are
2kwO ) and stores the results in memory in a look-up table. This can be done in time 2kwO · TO and space
2kwO +SO. The program P ′ then runs the program P but replaces “O” instructions with memory instructions
that read the relevant entries in the stored look-up table.

Precomputation of field operations. We define an instruction that realizes field operations, and then apply
precomputation to realize operations over an extension field in terms of operations over the base field.

The instruction OF defined below can be used to add or multiply elements of the finite field F. Note that
OF can be implemented using standard RISC instructions.

Definition 9.4. Let p be a prime power, b ∈ N, and F a finite field with pb elements. The field operation OF
is an instruction, compatible with a RAM with word length w ≥ b log p, that works as follows.
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• The first, second, and third registers are each parsed as ⌊ w
b log p⌋ “slots”, with each slot containing an

element of F stored as b elements of Fp in some fixed basis.

• The fourth register is parsed as a single bit denoting either addition or multiplication.

• The fifth, sixth, and seventh register are each parsed as three bit-strings of length log⌊ w
b log p⌋, each

addressing a single slot of the first, second, and third registers.

The instruction OF: parses the addressed slots of the first and second registers as elements of F; adds or
multiplies them over F according to the bit in the fourth register; and writes the result to the addressed slot in
the third register.

We use precomputation (Lemma 9.3) to replace applications of OF
pb

with applications of OFp .

Lemma 9.5. Let M = (P,R,w, I ∪ {OF
pb
}) be a RAM with word length w ≥ 2b log p that runs in time

T and space S. There is a RAM M ′ = (P ′, R,w, I ∪ {OFp}) that runs in time T +O(b2 · p2b) and space
S +O(p2b).

Proof. We discuss how to realize additions and then multiplications.

• Addition. An addition over Fpb is straightforwardly realized via b additions over Fp (no precomputed
lookup table is needed), since elements of Fpb are stored in a basis representation over Fp for OFp .

• Multiplication. We apply Lemma 9.3. The multiplication lookup table for Fpb has size p2b. The cost of
changing the basis representation of an element of Fpb into the standard basis over Fp is O(b2) operations
in Fp (using a stored change-of-basis matrix in Fb×b

p ). Then, the cost of multiplying two elements of Fpb

in the standard basis over Fp is O(b2) operations using a schoolbook multiplication algorithm. Finally,
converting the resulting Fpb element back into the desired basis over Fp costs O(b2) multiplications, again
using a stored change-of-basis matrix.
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10 Proof of main theorems

In this section, we explain how to construct linear-time point-query IOPs for R1CS and for automata
computations over any finite field.

Theorem 10.1 (main). For every prime power p, there is a public-coin IOP (with point queries) for the
indexed relation RR1CS that supports instances over Fp with N ×N matrices, each containing M = Ω(N)
non-zero entries, that has the following efficiency parameters:

• soundness error is O(1);
• round complexity is O(logN);
• answer alphabet is Fp;
• proof length is O(M +N);
• query complexity is O(log2N/ log p);
• the prover is a RAM with word length w = Θ(logN), R = O(1) registers that runs in O(M +N) time

and O(N) space;
• the verifier is a RAM with word length w = Θ(logN), R = O(1) registers that runs in O(M +N) time

and O(N) space.

Theorem 10.2 (main). For every prime power p, and constant t ∈ N, there is a public-coin IOP (with point
queries) for the indexed automata relation RR1CSA that supports instances over Fp with computation width
w and computation time T , that has the following efficiency parameters:

• soundness error is O(1);
• round complexity is O(log(wT ));
• answer alphabet is Fp;
• proof length is O(wT );
• query complexity is O(log2(wT )/ log p);
• the prover is a RAM with word length w = Θ(logwT ), R = O(1) registers that runs in O(w2T ) time and
O(w2T ) space;

• the verifier is a RAM with word length w = Θ(logN), R = O(1) registers that runs in O((wT )1/t) time
and O((wT )1/t) space.

We obtain these IOPs over Fp in four steps. Initially, we construct all protocols over an extension field
Fpb of Fp. In Section 10.1, we construct a robust IOPP for checking consistency between encoded proof
messages and answers to tensor queries. In Section 10.2 we use proof composition to improve the query
complexity of the IOPP. In Section 10.3, we use the IOPP to compile the tensor-query IOPs for RR1CS

(Theorem 6.2) and RR1CSA (Theorem 7.2) into point-query IOPs over Fpb . In Section 10.4, we use the
preprocessing techniques of Section 9 to convert them into point-query IOPs over Fp. The first three steps in
the proof are direct adaptations of results in [BootleCL22], so we provide proof sketches (and more details
can be found in [BootleCL22]).

10.1 Step 1: robustification

Corollary 10.3. Let C : Fk → FO(k) be a linear code with constant rate, constant relative distance, and
linear-time encoding, membership-deciding, and (error-free) decoding. For every c ∈ N the relation Rcons

has a non-adaptive point-query IOPP (Pr, (Vqr,Vdr)) with:

• soundness error O(t/ |F|) +O(1) with robustness Θ(1/(ℓ+ t));
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• round complexity O(t);
• answer alphabet F;
• proof length O(q · ℓkt);
• query complexity O(qk · (ℓ+ t));
• prover time O(q · tℓkt);
• verifier time O(qk · (ℓ+ t));
• verifier randomness complexity O(qk1/c(ℓ1/c + t));
• Vdr time O(qk · (ℓ+ t)).

The notion of robustness is explained in [BootleCL22].

Proof sketch. The proof of Corollary 10.3 uses Lemma 8.4 to construct an IOPP for the new relation R′cons,
before converting this into a robust IOPP for Rcons.

Definition 10.4. The indexed relation R′cons is the set of tuples

(i,x,w) =
(
⊥, (F, C, ℓ, q, t, {q(s)}s, {vs}s), c

)
such that c = EncC⊗(t−1)(f) ∈ Fℓk·nt−1

for some f ∈ Fℓ·kt , for each s ∈ [q], q(s) = (q
(s)
0 , . . . , q

(s)
t ) ∈

Fℓ ×
(
Fk
)t, and for all s ∈ [q], ⟨q(s), f⟩ = v(s).

First, instantiate the IOPP for Rcons in Lemma 8.4 using the proximity generator from Corollary 8.15, but
parsing the message f (0)0 as a t-dimensional array of size ℓk · kt−1 rather than a (t+ 1)-dimensional array
of size ℓ · kt. The first components q(s)0 ∈ Fℓ and q(s)1 ∈ Fk of each tensor query are grouped together as a
single component q(s)0 ⊗ q

(s)
1 ∈ Fℓk, and the first “folding” step applies q(s)0 ⊗ q

(s)
1 to f (0)0 . In Lemma 8.4, set

the constant κ = 2c. Use the proximity generators from Corollary 8.15 with seed lengths ck1/c and c(ℓk)1/c.
This gives an IOPP for R′cons with the stated soundness error and verifier randomness complexity.

Robustify this IOPP (using the transformation in [BootleCL22]) by encoding each witness symbol and
each proof symbol using the error-correcting code C. In Lemma 8.4, the witness has alphabet Fℓk, and will
be encoded in ℓ parts by applying C to blocks of length k. This converts a witness for the relation R′cons into a
witness for the relation Rcons. Thus the new witness can be viewed as ℓ codewords in C⊗t, or equivalently
O(ℓk) codewords in C⊗(t−1). Proof elements have alphabet Fk and will be encoded using C.

10.2 Step 2: composition

Lemma 10.5 ([Mie09; RonZewiR19]). Fix functions T (n) = Ω(n), δ(n) > 0, and ϵ(n) > 0. Every relation
R in NTIME(T ) has a PCPP for R with: answer alphabet {0, 1}; proof length T (n) · polylog(T (n)); query
complexity O(log(1/ϵ(n)) · log(1/δ(n))/δ(n)); soundness error ϵ(n) with proximity parameter δ(n); prover
time poly(T (n)); verifier time poly(n, log T (n)).

Lemma 10.6. Let ϵ ∈ (0, 1) be any constant. For instances of Rcons in which each query q(s) is described
using a seed of length at most O(t · k), there is a point-query IOPP (P,V) for Rcons with:

• soundness error O(t/ |F|) +O(1) + ϵ with proximity parameter Θ(1/t);
• round complexity O(t);
• answer alphabet F;
• proof length O(q · ℓkt);
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• query complexity Oϵ(t log t);
• prover time poly(qk · (ℓ+ t)) operations in F;
• verifier time poly(qk · (ℓ+ t)) operations in F.

Proof sketch. Apply proof composition (using the transformation in [BootleCL22]) to the robust outer IOP
provided by Corollary 10.3 with a properly chosen parameter c and the inner IOP of proximity provided by
Lemma 10.5.

The inner relation R(Vdr) has instance (x, r) := (F, C, ℓ, q, t, {q(s)}s, {vs}s, r), where r has size
O(q · k1/c(ℓ1/c + t)), and by assumption, the query set has a description of size O(q · t log k). This means
that the instance size is O(q · t log k). The witness size of R(Vdr) is equal to the query complexity of the
robust outer IOP and has size O(qk · (ℓ+ t)). The outer verifier’s decision time is T (|x|) = O(qk · (ℓ+ t)).
Choosing a c large enough and substituting these values into Lemma 10.5 gives the proof length, prover time
and verifier time written in the theorem.

The round complexityO(t) is inherited from the robust outer IOPP, while the query complexityOϵ(t log t)
is obtained from the applying Lemma 10.5 with the proximity parameter δ = Θ(1/t).

10.3 Step 3: tensor queries to point queries

We restate [BootleCL22], removing details related to zero-knowledge and error-correcting codes.

Lemma 10.7 ([BootleCL22]). There exists an explicit polynomial-time transformation T that satisfies the
following. The inputs to the transformation are as follows:

• A t-linear tensor code C⊗t over F with encoding function EncC⊗t , with rate ρ = kt

nt , relative distance
δ = dt

nt , encoding arithmetic complexity Ψ(k) · kt.

• An interactive oracle proof IOP = (P,V) with queries in Qtensor(F, k, t) for an indexed relation R with:
soundness error ϵ; round complexity rc; proof length l = li + lp = ℓkt; query complexity q; arithmetic
complexity ti for the indexer; arithmetic complexity tp for the prover; arithmetic complexity tv for the
verifier.

• An interactive oracle proof of proximity IOPP = (P′,V′) with queries in Qpoint for the indexed relation
Rcons(F, C, ℓ, q, t) with soundness error ϵ′; round complexity rc′; proof length l′; input query complexity
q′x, the number of verifier queries to the input oracle; proof query complexity q′π, the number of verifier
queries to the IOPP proof oracles; arithmetic complexity tp′ for the prover; arithmetic complexity tv′ for
the verifier.

The output of the transformation (Î, P̂, V̂) := T (C, IOP, IOPP) is an interactive oracle proof with queries in
Qpoint for the indexed relation R with the following parameters:

• soundness error max(ϵ, (1− 1/|F|)ϵ′(1/4) + 1/|F|);
• round complexity rc+ rc′ + 1;
• proof length O

(
nt

kt · l
)
+ l′;

• query complexity 2q′x + q′π, where 2q′x queries are to the IOP proof oracles, and q′π queries are to the
IOPP proof oracles;

• indexer time ti+ ti′;
• prover time tp+ tp′; and
• verifier time tv + tv′.
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Lemma 10.8. There is a constant η such that, for every prime power p, and every a ∈ Ω(log logN), there is
a point-query IOP, with non-adaptive queries, for the indexed relation RR1CS that supports instances over
Fp with N = a · kt and M = a · ℓ · kt and has the following parameters:
• answer alphabet is F := Fpηa;
• soundness error is O(t/ |F|) +O(1) + ϵ;
• round complexity is O(t+ log(N/a));
• proof length is O(N/a) elements in F;
• query complexity Oϵ(t log t);
• the prover sends O(log(N/a)) non-oracle messages over F;
• the prover uses O(M +N) Fp-operations and O(tN/a) + poly(qk · (ℓ+ t)) F-operations
• the verifier uses O(M +N) Fp-operations and O(tk) + poly(qk · (ℓ+ t)) F-operations.

Proof sketch. Set N = a · kt and M = a · ℓ · kt for some k, t ∈ N. Theorem 6.2 gives a (F, k, t)-tensor IOP
for RR1CS over Fp, which has query complexity q = O(1), and for which each query can be described by
a short seed of size O(tk). Applying Lemma 10.7 with Theorem 6.2 as the input tensor IOP, Lemma 10.6
as the input proximity test, using Spielman codes over F (for which δ,Ψ and ρ are all constant) yields the
desired complexity parameters.

Lemma 10.9. There is a constant η such that, for every prime power p, and every a ∈ Ω(log logwT ), there
is a point-query IOP, with non-adaptive queries, for the indexed relation RR1CSA that supports instances
over Fp with w(T + 1) = a · kt and has the following parameters:
• answer alphabet is F := Fpηa;
• soundness error is O(t/ |F|) +O(1) + ϵ;
• round complexity is O(t+ log(wT/a));
• proof length is O(wT/a) elements in F;
• query complexity Oϵ(t log t);
• the prover sends O(log(wT/a)) non-oracle messages over F;
• the prover uses O(w2T ) Fp-operations and O(twT/a) + poly(qk · (ℓ+ t)) F-operations
• the verifier uses O(a3) +O(t(wT )1/t) + poly(qk · (ℓ+ t)) Fp-operations and O(tk) F-operations.

Proof sketch. Set w(T + 1) = a · kt for some k, t ∈ N. Theorem 7.2 gives a (F, k, t)-tensor IOP for
RR1CSA over Fp, which has query complexity q = O(1), and for which each query can be described by a
short seed of size O(tk). Applying Lemma 10.7 with Theorem 7.2 as the input tensor IOP, Lemma 10.6
as the input proximity test, using Spielman codes over F (for which δ,Ψ and ρ are all constant) yields the
desired complexity parameters. Since λ = O(1), all Fpλ operations in Theorem 7.2 are counted as O(1) Fp

operations.

10.4 Step 4: Precomputing expensive operations

We complete the proofs of Theorem 10.1 and Theorem 10.2 by applying Lemma 9.5 to Lemma 10.8 and
Lemma 10.9 in order to precompute expensive operations over F.

Precomputing for Theorem 10.1. We justify each parameter of Theorem 10.1 in turn. Set the output
parameter for the RMFE to be a := 1

2η logpN −
1
η logp logpN .

• The answer alphabet F from Lemma 10.8 becomes Fp, simply by parsing each element of F = Fpηa as a
vector of ηa elements of Fp.
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• The soundness error becomes O(t/pηa) +O(1) + ϵ. Since a ∈ Ω(log logN), and ϵ can be an arbitrarily
small constant in (0, 1), the soundness error is O(1).

• The round complexity is O(t+ log(N/a)) which is O(logN).

• The proof length becomes O(N) elements in Fp, by parsing each element of F = Fpηa as a vector of ηa
elements of Fp as before.

• The query complexity becomes Oϵ(tηa log t) elements of Fp.

• The prover sends O(ηa log(N/a)) non-oracle messages over Fp.

• Consider the prover as a RAM with word length w = Θ(logN), which is sufficient to model calculations
over Fp and Fpηa . The prover uses O(M + N) Fp-operations from Fp operations in Lemma 10.8, and
O(tN)+a ·poly(qk · (ℓ+ t)) Fp-operations from looking up the results of F operations in Lemma 10.8. In
addition, the prover incurs an extra cost of O(a2p2ηa) operations in Fp for precomputing the multiplication
table of F. By choice of η, this requires O(N) operations and O(N) memory.

• Consider the verifier as a RAM with word length w = Θ(logN), which is sufficient to model calculations
over Fp and Fpηa . The verifier uses O(M +N) Fp-operations from Fp operations in Lemma 10.8, and
O(tka)+ηa ·poly(qk ·(ℓ+t)) Fp-operations from looking up the results of F operations in Lemma 10.8. In
addition, the verifier incurs an extra cost of O(a2p2ηa) operations in Fp for precomputing the multiplication
table of F. As before, this requires O(N) operations and O(N) memory.

Precomputation for Theorem 10.2. Setting a := 1
2η logpwT −

1
η logp logpwT as in Theorem 10.1, the

answer alphabet, soundness error, round complexity, proof length, query complexity, number of non-oracle
messages and prover complexity in Theorem 10.2 follow similarly to Theorem 10.1.

We justify the verifier complexity. Consider the verifier as a RAM with word lengthw = Θ(logN), which
is sufficient to model calculations over Fp and Fpηa . The verifier usesO(a3)+O(t(wT )1/t)+poly(qk ·(ℓ+t))
Fp-operations andO(tk) F-operations in Lemma 10.9. Since the verifier for Lemma 10.9 uses only a sublinear
number of operations, there is no need for the verifier to precompute the multiplication table of F. As such, the
verifier simply usesO(a3)+O(t(wT )1/t)+O(tk) ·polylog(tk)+poly(qk ·(ℓ+ t)) time and memory, where
the O(tk) · polylog(tk) cost comes from using multiplication algorithms such as the Schönhage-Strassen
algorithm to compute O(tk) F-operations using operations in Fp. Taking Lemma 10.9 with a larger value
of t than given in Theorem 10.2, we can subsume this polylogarithmic factor inside the O(t(wT )1/t) term,
which yields the result.
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