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Abstract. In this work, we evaluate the security of Merkle-Damgård
(MD) hash functions and their combiners (XOR and concatenation
combiners) in quantum settings. Two main quantum scenarios are
considered, including the scenario where a substantial amount of
cheap quantum random access memory (qRAM) is available and
where qRAM is limited and expensive to access. We present generic
quantum attacks on the MD hash functions and hash combiners, and
carefully analyze the complexities under both quantum scenarios. The
considered securities are fundamental requirements for hash functions,
including the resistance against collision and (second-)preimage. The
results are consistent with the conclusions in the classical setting,
that is, the considered resistances of the MD hash functions and their
combiners are far less than ideal, despite the significant differences
in the expected security bounds between the classical and quantum
settings. Particularly, the generic attacks can be improved signifi-
cantly using quantum computers under both scenarios. These results
serve as an indication that classical hash constructions require careful
security re-evaluation before being deployed to the post-quantum
cryptography schemes.
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1 Introduction

In light of recent and projected progress in building quantum com-
puters [16, 19], more and more quantum algorithms have recently
been applied to cryptanalysis against classical cryptography systems
to assess their security strength against quantum computers. In the
past, most if not all crypto-systems were designed to resist attacks by
conventional computers taking advantage of the limited computation
power the real world may possess in the classical setting. In other
words, these crypto-systems are only computationally secure, not infor-
mation theoretically secure, under conventional computers. However,
quantum computers have significant advantage of speedup computing
(a.k.a. quantum supremacy) over conventional ones, which results in
complete broken of some crypto-systems, and others with security
strength weakened. For instance, Shor’s factoring algorithm [27] is a



powerful quantum algorithm to factorize an integer M in polynomial
time with respect to the bit length of M , which can be used to break
all current RSA standards and many other public-key crypto-systems.
Therefrom, public-key crypto-systems have attracted a lot of atten-
tion from the research community and government agencies, e.g., the
on-going effort by NIST on post-quantum cryptography standardiza-
tion [26]. On the other hand for symmetric-key cryptography, Grover’s
search algorithm [17] is able to find a marked data in an unstructured
database of size N in just O(

√

N) time, v.s. O(N) for brute-force
search in classical setting. This generally reduces the security strength
in bits by half of most keyed symmetric-key crypto-systems, e.g., the
secret key of AES-128 can be recovered within a complexity of roughly
264 v.s. 2128 in the classical setting by brute-force search.

In this paper, we re-assess the fundamental security properties,
i.e., collision, preimage, and second-preimage resistance, of some hash
constructions that have existed for long in the classical setting of
the real world, under some quantum settings. We focus on iterated
hash functions, in particular those following the Merkle-Damgård
construction (MD) [10, 25], where a single compression function is
called iteratively in order to extend the input domain from a fixed
length to arbitrary length and the digest length is the same as that
of internal state as for most of the standards like MD5, SHA-1, and
SHA-2.

The security of hash constructions has been well studied in the
classical setting in the past few decades. For Merkle-Damgård con-
struction, it is known that the collision resistance of the hash function
can be reduced to that of the underlying compression function [10,25].
The existence of multi-collisions was formally introduced by Joux [22]
in 2004, and the first generic second-preimage was found by Kelsey and
Schneier [23] in 2005 and later improved by Andreeva et al. [3, 4]. It is
noted that second-preimage attacks is utilizing collisions and hence
complexities are well above birthday bound.

In the quantum setting, the security of these hash constructions
has also received some investigations. In [30], Zhandry proved that
the Merkle-Damgård construction with ideal (cannot be distinguished
from a random oracle) underlying compression function cannot be
distinguished from a random oracle with more than negligible advan-
tage. In [18], Hosoyamada and Yasuda proved that Merkle-Damgård
construction with Davies-Meyer (DM-mode) compression function is
quantum one-way function, and the lower bound of the number of
queries required by preimage attacks is O(2n/2

) — that given by the
generic Grover’s search algorithm. It is reckoned in [8] that similar
proof to that in [18] could be done also with the Matyas–Meyer–Oseas
(MMO) mode compression function. These works provide provable
security lower bound for the Merkle-Damgård constructions in quan-
tum settings. Yet, the rich set of tools invented in previous work to
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do generic attacks, which provide security upper bound, on Merkle-
Damgård hash constructions in classical settings still remain to be
fully exploited in quantum settings.

Besides the single hash functions, we also re-evaluate the security
of hash combiners in quantum settings. We focus on two typical
hash combiners, i.e., the concatenation combiner and the exclusive-or
(XOR) combiner. Given two (independent) hash functions H1 and
H2, the concatenation combiner returns H1(M)∥H2(M), and the
XOR combiner returns H1(M)⊕H2(M). In practice, people may
wonder whether we can combine existing hash functions to achieve
long term security instead of replacing existing infrastructure to new
ones (in SSL v3 [15] and TLS 1.0/1.1 [11,12], MD5 and SHA-1 were
combined in various ways, including concatenation combiner and XOR
combiner [14]). The main purpose of hash combiners might be to
achieve security amplification, i.e., the hash combiner offers higher
security strength than its component hash functions, or to achieve
security robustness, i.e., the hash combiner remains secure as long as at
least one of its component hash functions is secure. We know from the
results of previous cryptanalyses that in the classical setting, the hash
combiners are not as secure as expected (e.g., guarantee its security
if either underlying hash function remains secure, or as secure as a
single ideal hash function). Concretely, the attacks on XOR combiners
by Leurent and Wang [24] in 2015 and on concatenation combiners
by Dinur [13] in 2016 showed surprising weaknesses, which either
contradicts the intended purposes of security robustness or security
amplification. These results were then improved and summarized
by Bao et al. in [5, 6]. However, some techniques used in previous
cryptanalyses of hash combiners in the classical setting cannot be
directly accelerated using quantum computers (e.g., those attacks on
combiners exploiting properties of random functional graphs). Whereas
generic attack is accelerated in the quantum setting, that is, the
security upper bound of an ideal hash function is lower. Thus, the
broken primitives (e.g., the investigated hash combiners) in the classical
setting might be unbroken (no better attacks than the most generic
attack) in the quantum setting. So, we investigate this question and
aim to provide references.

1.1 Our Contributions

In this paper, we port most of the important and generic attacks
in the classical settings against Merkle-Damgård construction and
hash combiners, make adjustments of the attack algorithms whenever
necessary, and carefully evaluate the complexities in the quantum
setting. Table 1 summarizes detailed complexities. Surprisingly, most
of the (second-)preimage attacks in the classical setting still constitute
valid attacks in the quantum setting.
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Target Property
CS Scenario R1 Scenario R2 Reference

CTime CMem QTimeQMem QTime QMemCMem

H

Collision 2n/2 O(1) 2n/3 2n/3 22n/5 O(n) 2n/5 [7, 9]
Preimage 2n O(1) 2n/2 O(n) 2n/2 O(n) O(1) [17]
2nd Preimage2n/2 [23] 2n/2 2n/3 2n/3 23n/7 O(n) 23n/7 Sect. 3.2

H1⊕H2

Collision 2n/2 O(1) 2n/3 2n/3 22n/5 O(n) 2n/5 [7, 9]
Preimage 211n/18 [5]211n/18 210n/21 2n/3 252n/105 2n/7 2n/5 Sect. 4.1
2nd Preimage211n/18 [5]211n/18 210n/21 2n/3 252n/105 2n/7 2n/5 Sect. 4.1

H1∥H2

Collision 2n/2 [22] O(n) 2n/3 2n/3 23n/7 2n/7 2n/5 Sect. 4.2
Preimage 2n [22] O(n) 2n/2 2n/3 2n/2 O(n) 2n/5 Sect. 4.2
2nd Preimage225n/34 [5]225n/34 2n/2 2n/3 2n/2 O(n) 2n/5 Sect. 4.2

CS: Classical Setting QTime: Quantum Time
QMem: Quantum Memory CMem: Classical Memory

Table 1: Security status of Merkle-Damgånd hash functions and hash combiners
(polynomial factors are ignored for exponential complexities)

The attacks in quantum settings are divided into two scenarios,
depending on whether cheaply accessible quantum random access
memory is available or not, and they are named Scenario R1 and
Scenario R2. Scenario R1 refers qRAM supporting access in constant
time regardless of the size of the memory, while it costs O(R) time
for each access to quantum memory of size O(R) and also linear time
for each access to classical memory in Scenario R2.

This article is organized as follows. In the next Section 2, we
introduces some basic notions and algorithms used in quantum com-
putation. Section 3 and 4 are the demonstration of several attacks on
Merkle-Damgård structures and hash combiners. Section 5 concludes
the results and presents some open problems. We revise some impor-
tant techniques for our attack belong with the quantum version of
these techniques in Appendix A.

2 Basic Quantum Algorithms for Collision and Search

In this section, we briefly introduce hash functions, hash combiners,
qRAM, and quantum algorithms used throughout this paper.

2.1 Merkle-Damgård Hash Construction

Define H for a cryptographic hash function that maps arbitrarily long
messages to an n bit digest, i.e., H ∶ {0, 1}∗ → {0, 1}n. Like most
iterated hash functions, to hash a message M , the Merkle-Damgård
(MD) construction first pads and splits the message bits into message
blocks of fixed length (e.g., b bits), i.e., M = m1∥m2∥⋯∥mL, where
the last message block mL comprises the bit encoding of the original
message length. Then, starting from a public initial value IV = x0,
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the message block with the intermediate state is hashed by the same
compression function H iteratively, i.e., xi = h(xi−1, mi) for i = 1, . . . , L
(see Fig 1). In the quantum setting, the MD hash functions are proven
to be quantum one-way functions [18], while other security properties
remain largely un-exploited in the quantum setting.
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Figure 1: Merkle-Damgård hash function

The XOR combiner and concatenation combiner based hash func-
tions following MD structure are demonstrated in the following figures.
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Figure 2: The XOR combiner
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Figure 3: The concatenation combiner

2.2 QRAM

Quantum random access memory (qRAM) can be considered as a
quantum counterpart of random access memory (RAM) from the
classical setting, which allows accessing (read or write) the elements
in memory with constant time regardless of storage size. There are
two types of qRAM: quantum-accessible classical memory (QRACM),
which allows to access the classical data in quantum superpositions,
and quantum-accessible quantum memory (QRAQM), where the data
is stored in quantum memory. Suppose that we want to store a list
of data (classical or quantum) D = (x0, x1,⋯, x2k−1), where xi is an
n-bit data. Then the qRAM for accessing data D is constructed as a
quantum gate and defined via a unitary operator UqRAM(D) by

UqRAM(D) ∶ ∣i⟩ ∣y⟩↦ ∣i⟩ ∣y ⊕ xi⟩

where i ∈ {0, 1}k and y is an n-bit value. Since qRAM is a power-
ful model with requirement of specific physical architecture, many
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Property
Classical Setting Quantum Setting
CTime CMem QTime qRAM CMem Optimal Reference

Collision 2n/2 O(1)
2n/3 2n/3 - YES Scenario R1 [7, 29]
22n/5 O(n) 2n/5 unknown Scenario R2 [9]

Preimage 2n O(1) 2n/2 O(n) O(1) YES Scenario R2 [17, 28]

Table 2: Comparison of security upper bounds of ideal hash functions in classical
and quantum settings (polynomial factors are ignored for exponential complexities).

quantum algorithms take advantage of it to reduce time complexity,
such as the algorithm for collision search [7] requires QRACM and
element distinctness [2] requires QRAQM. Though qRAM is still a
controversial issue, it is essential to evaluate the cryptography systems
in the scenario that qRAM is big and cheap to access (we will call
this quantum model as Scenario R1). On the other hand, a relatively
more realistic model is to assume that qRAM is costly and accessing
to R quantum qubit memory costs O(R) time as in [9,20] (we will call
this quantum model as Scenario R2). We will analyze the complexities
of our attacks in both Scenario R1 and Scenario R2 with respective
optimal choices of attack parameters.

2.3 Grover’s Search Algorithm
The quantum algorithm for searching a marked point in a database is
firstly introduced by Grover in [17]. In 1999, Zalka [28] proved that
Grover’s algorithm is optimal for the searching problem. It considers
the following problem.

Problem 1. Let F be a Boolean function, F ∶ {0, 1}n → {0, 1}. Suppose
that there is only one x such that F (x) = 1. Then, find x.

In the classical setting, the number of queries to find x is approximately
2n, while Grover’s algorithm can find x by making only O(

√

2n
= 2n/2

)

queries. That is, in the quantum setting, the time complexity for the
database search problem is quadratic faster than the classical ones.
Due to the optimality of the algorithm, the 2n/2 complexity is the tight
security level of preimage resistance of hash functions in quantum
setting, as summarized in Table 2.

Some variants of Problem 1 involve the general case with ∣{x ∶
F (x) = 1}∣ = 2t. Then, with high probability, Grover’s algorithm
returns x after making O(

√

2n
/2t
) quantum queries to F .

2.4 Quantum Collision Finding Algorithms
Brassard, Høyer, and Tapp in [7] first introduced a quantum algorithm
(so-called BHT algorithm) to find a collision for a (2-to-1) random func-
tion in time O(2n/3

) and O(2n/3
) quantum queries, with an additional
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assumption that quantum random access memory (qRAM) is available.
Subsequently, Zhandry in [29] extended this result to any random
function with the size of the domain at least the square root of the
size of the codomain, which is more relevant for hash functions or per-
mutations in cryptographic settings. It considers the following problem.

Problem 2. Let H ∶ {0, 1}n → {0, 1}n be a random function. Find
x and x′ such that H(x) =H(x′).

In the classical setting, finding collisions of a random function in
range {0, 1}n can be done after making O(2n/2

) queries, following the
Birthday Paradox. While the BHT algorithm makes use of Grover’s
algorithm to find a collision in O(2n/3

) queries. Due to the optimality
of the algorithm, 2n/3 is also the tight security level of the collision
resistance of hash functions, in Scenario R1. In this paper, we consider
the situation where qRAM is available, and the BHT algorithm can be
applied efficiently for the collision finding problem of hash functions.

Scenario R2. In this situation, each lookup operation within the
memory of size O(2n/3

) costs O(2n/3
) time, hence resulting in an

inefficient algorithm even slower than the birthday attack. Chailloux
et al. [9] proposed an efficient algorithm (denoted by CNS) to find a
collision of hash function in time Õ(22n/5

) with a quantum computer
of O(n) qubits, but large classical memory of size Õ(2n/5

).

2.5 Quantum Walk Algorithm for the Element Distinctness
Problem

In the quantum setting, it is proven in [1] that the number of quan-
tum queries for solving this problem is at least O(N2/3

). Up to now,
only one algorithm, named as the quantum walk algorithm proposed
in [2] reaches this bound. Recall this quantum walk algorithm for the
following problem.

Problem 3. Given a set S = {x1, x2, ..., xN}, does it exist i, j such
that 1 ≤ i < j ≤ N and xi = xj? If yes, return i, j.

The element distinctness problem cannot be solved by an algorithm
more efficiently than a brute force approach in the classical setting.
This is because, only after O(N) queries and sorting can one find
two elements of the same value in a set of N elements. The Ambai-
nis’s quantum walk algorithm makes O(N2/3

) queries and requires
O(N2/3 log N) qubits memory.

Scenario R2. The Ambainis’s quantum walk algorithm for element
distinctness problem can work efficiently and better than other al-
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gorithms in the scenario where the qRAM is available and it costs
constant time to access qRAM gates (i.e., Scenario R1). Very recently,
to tackle with the situation that qRAM is not cheap and accessing
R qubits quantum memory costs O(R) operators or quantum gates,
Jaques and Schrottenloher in [20] improved the quantum walk algo-
rithm for golden collision problem (a more general case of the element
distinctness problem), there the new algorithm requires O(N6/7

) com-
putations and O(N2/7

) quantum memory, without using the qRAM.
More explicitly, the assumption on the memory model in the quantum
walk algorithm in [20] is that quantum memory is costly to access but
free to maintain, which seems more realistic than Scenario R1. Thus, in
this paper, when discussing the complexities of the presented attacks
that calling a quantum walk algorithm in Scenario R2, we follow this
assumption.

3 Security of Merkle-Damgård Structure in Quantum
Settings

In this section, we explicate baselines for the security of Merkle-
Damgård hash functions with respect to basic requirements in quantum
settings, considering both Scenario R1 and Scenario R2. That includes
the resistance against multi-collision, preimage, and second-preimage
attacks.

3.1 Multi-Collision Attack

For the multi-collision attack on the Merkle-Damgård structure, as
has been introduced in App. A, following Joux’s method and using
BHT algorithm for each collision search, finding 2t-collisions requires
O(t ⋅ 2n/3

) quantum computations and O(2n/3
) qRAM in Scenario R1.

Since the time complexity to find a collision of any hash function is
O(2n/3

) in Scenario R1, we can see that, same as in the classical setting,
the quantum security of MD structure against multi-collision attack is
only polynomial higher than the collision resistance of its compression
function. In Scenario R2, 2t-collisions of an MD hash function can be
obtained by combining Joux’s method and CNS algorithm with time
complexity O(t ⋅ 22n/5

) and requires O(2n/5
) classical memory.

3.2 Preimage and Second-Preimage Attack

For an n-bit hash function, a security upper bound with respect to
(second-) preimage attack in the quantum setting is directly provided
by a plain Grover’s algorithm, that is O(2n/2

) quantum computations.
Thus, only attacks with complexity lower than the Grover’s search
algorithm can be seen as successful attacks. For the preimage resistance
of MD hash construction, we cannot achieve better attacks than a plain
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Grover’s search on an ideal hash. For the second-preimage resistance
of MD hash construction, basing on the long-message second-preimage
attack in [23], one can launch a quantum attack with the complexity
lower than the generic Grover’s attack.

Given message Mtarget of length 2k
+ k + 1, the goal is to find a

second-preimage whose hash value is equal to that of the Mtarget. The
quantum attack is described in Algorithm 1.

Algorithm 1: Second-Preimage Attack on MD Hash in Quan-
tum Settings
1. Build a set of expandable messages to cover the whole range of [k, k+2k

−1]
using the quantum algorithm as described in App. A.2. Denote this set by
MEM, and the hash value after processing expandable message in MEM by x̄.

2. Let x0 = IV , Mtarget =m1∥m2∥⋯∥m2k+k+1.
Compute xi = h(xi−1, mi) for i from 1 to 2k

+ k + 1.
This step is to compute 2k intermediate hash values of Mtarget and store
results xk+1 . . . x2k+k+1 to qRAM.

3. Use Grover’s algorithm to find a message block to link the iterated hash
value of expandable message to one of the intermediate hash values of
Mtarget, i.e. find Mlink such that h(x̄, Mlink) = xj for some j. Since the
probability of the appearance of Mlink is 2k−n, we proceed π/4 ⋅ 2(n−k)/2

Grover steps before measure the superposition state to get Mlink.
4. Find a message M∗ of length j − 1 in MEM.
5. Return the second-preimage M∗

∥Mlink∥mj+1∥⋯∥m2k+k+1

x0 = IV

x0 = IV

x1

m1

x2

m2

xj

mj

x̄

Mlink

M∗

MEM

mj+1

x2k+k+1

H(M)
m2k+k+1

(Step 1)

(Step 2)

(Step 3)

(Step 4)

Attack in Scenario R1. The total complexity includes the complexity
to build the expandable message with 2k

+k ⋅2n/3 computations, O(2k
)

evaluations of compression function to compute the intermediate hash
values of Mtarget and π/4 ⋅2(n−k)/2 evaluations to find Mlink. Therefore,
the total workload to find a second-preimage for a given message of
length 2k

+k + 1 is 2k+1
+k ⋅ 2n/3

+π/4 ⋅ 2(n−k)/2 quantum computations.
Since the complexity of this attack in the classical setting is about
k ⋅ 2n/2+1

+ 2k
+ 2n−k+1, the quantum version speeds up the attacks in

classical setting when the given message is of length less than 2n/2.

The best-case Complexity. The minimum attack complexity is
achieved when n

3
=

n − k

2
, i.e., k =

n

3
. Therefore, the second-preimage

attack for a long message of length O(2n/3
) requires O(n ⋅ 2n/3

) quan-
tum computations and O(2n/3

) quantum memory. This complexity is
only higher than that of the collision attack by BHT algorithm by a
polynomial factor.
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Attack in Scenario R2. The set of expandable messages can be
built with 2k

+ k ⋅ 22n/5 quantum computations, using O(2n/5
) classical

memory. In Step 2, we store 2k intermediate hash values of Mtarget

to classical memory. In Step 3, different from using the Grover’s
algorithm as in Scenario R1, we apply the multi-target preimage search
algorithm in [9] to search for message block Mlink. The other steps
do not change in this model, then the total work can be done in time
2k+1

+ k ⋅ 22n/5
+ 2n/2−k/6

+ 2k.

The best-case Complexity. The best-case complexity of this attack
in Scenario R2 is achieved when k =

n

2
−

k

6
, i.e., k =

3n

7
. The optimal

time complexity is O(23n/7
), with classical memory of size O(23n/7

).

4 Security of Hash Combiners in Quantum Settings

In this section, we present quantum attacks on hash combiners. For
preimage and second-preimage, the ideal quantum security are all 2n/2

(resp. 2n) for XOR (resp. concatenation) combiners, which are bounded
by attacks directly using Grover’s search algorithm. For collision attack,
the ideal quantum security bound is 2n/3 (resp. 22n/3) for XOR (resp.
concatenation) combiners, which is provided by the BHT’s algorithm.

In the following, we present a quantum preimage attack on XOR
combiners, which provides updated security upper bound in quantum
settings for its resistance against (second-) preimage attack. We then
present quantum collision, (second-) preimage attacks on concatenation
combiners.

In the sequel, we denote by H1 and H2 the underlying hash func-
tions, h1 and h2 their compression functions, and h∗1 and h∗2 the
arbitrary times of iterations of h1 and h2, respectively.

4.1 Preimage Attack on XOR Combiners in Quantum
Settings

In this section, we extend the preimage attack on XOR combiners
in [24] to its quantum version. Let V denote the target value. The
goal is to find a message M such that H1(M)⊕H2(M) = V . The
framework of the attack in the quantum setting is the same as that
in the classical setting, which can be described as follows, and also
detailed in Algorithm 2.

1. Build an interchange structure starting from the initialization
vectors (IV1, IV2) and ending up with two sets of terminal states
A = {Aj ∣ j = 1, . . . , 2k

} and B = {Bi ∣ i = 1, . . . , 2k
}.

2. Launch a meet-in-the-middle procedure between the two sets A
and B, to find a message block m, and a state Aj∗ ∈ A and a state
Bi∗ ∈ B, such that h1(Aj∗ , m) = V ⊕h2(Bi∗ , m).
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This procedure contains two levels of iteration. The outer level of
iteration is on the message block m, and the inner level of iteration
is on the pairs of states (Ai, Bj) ∈ A × B under a fixed value of m.
In the quantum version, the inner lever of iteration is implemented
using a quantum walk algorithm, and the outer level of iteration is
implemented using Grover’s search algorithm.
The details of the quantum algorithm is described in Algorithm 2.

Algorithm 2: Preimage attack on XOR combiners in Quan-
tum Settings
1. Build a 2k-interchange structure using the quantum algorithm described

in App. A.3. This structure starts with IV1 and IV2 and ends with two
ending point sets {Aj ∣j = 1⋯2k

} and {Bi∣i = 1⋯2k
}, so that for any state

pair (Aj , Bi), we can easily find a message linking from starting points to
it.

2. For each message block m, let F (m) be the indicator function that F (m) = 1
if there exist a pair (Aj∗ , Bi∗) in the two sets of ending points such that
h1(Aj∗ , m) = V ⊕h2(Bk∗ , m), and F (m) = 0 otherwise. To calculate F (m),
we use the quantum walk algorithm to find a collision between the two sets
{A′j = h1(Aj , m)∣j = 1⋯2k

} and {B′i = V ⊕h2(Bi, m)∣i = 1⋯2k
}. Denote

this step by UQW-test and the ancillary qubit to indicate the value of F by
∣b⟩.

3. Use Grover’s algorithm to find a message block m∗ satisfying F (m∗
) = 1

in the space of 2n−2k message blocks. Since the probability of finding a
match between the above two sets is 22k−n, it requires performing about
π

4
⋅ 2(n−2k)/2 Grover’s steps.

4. Return M = M∗
∥m∗ where M∗ is the message mapping (IV1, IV2) to

(Aj∗ , Bi∗) corresponding to the hash values of H1 and H2.

H1

H2

IV1

IV2

A1

B1

A2

B2

A3

B3

A4

B4

M ′ M M M M M ′ M M M M M

⊕
= V

|m〉

|b〉

|m〉

|b or b⊕ 1〉

{h1(Aj ,m) | j
= 1, . . . , 2k}

UQW-test

{V ⊕ h2(Bi,m) |
i = 1, . . . , 2k}

π
4 · 2(n−2k)/2 Grover iterations

Attack in Scenario R1. Since the evaluation of F (m) is performed
during Grover’s algorithm, the total computational complexity is
the multiplication of the complexity of evaluating F (m) and the
total number of Grover’s steps plus the complexity of building the
interchange structure. It requires approximately n

2
⋅ 22k+n/3 quantum

computations to build a 2k-interchange structure, (2 ⋅ 2k
)

2/3 quantum
computations to find a collision between the two sets of 2k+1 elements,
and π

4
⋅2n−2k iterations in Grover’s algorithm. Then, the total workload
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required is
n

2
⋅ 22k+n/3

+ 22(k+1)/3
⋅
π

4
⋅ 2(n−2k)/2

≈
n

2
⋅ 22k+n/3

+ 2n/2−k/3.

The best-case Complexity. The minimum complexity of the quan-
tum preimage attack on XOR combiners based on the interchange
structure can be achieved by selecting a message block that makes
two parts of the complexity equal. When n is large enough that n

2
is

negligible compared to 2n/3, we select the parameter k such that

2k +
n

3
=

n

2
−

k

3
,

i.e., k =
n

14
. This results in a total complexity O(210n/21

), which is
slightly faster than Grover’s algorithm.When n is small, we choose the
value of k such that

log2 n − 1 + 2k +
n

3
=

n

2
−

k

3
,

i.e., k =
3
7
⋅ (

n

6
+ 1 − log n). For the attack to be faster than Grover’s,

it requires k > 0 and the value of n should be large enough to satisfy
n

6
+ 1 − log2 n > 0, e.g., n ≥ 20.

Attack in Scenario R2. As analyzed in App. A.3, the complexity of
building a 2k-interchange structure in this situation is O(22k+3n/7

) time,
O(2n/5

) classical memory and O(2n/7
) quantum memory. Step 3 of Al-

gorithm 2 can be done after O (26(k+1)/7
⋅
π

4
⋅ 2(n−2k)/2

) = O(2n/2−k/7
)

evaluations, since the quantum walk to search a collision in a set of
2k+1 elements requires O(26(k+1)/7

) computations and O(2k/7
) quan-

tum memory. Combined with the complexity of Step 1, the total
computational complexity is O(22k+3n/7

+ 2n/2−k/7
).

The best-case Complexity. Choosing k such that 2k +
3n

7
=

n

2
−

k

7
,

i.e., k =
n

30
can minimize the time complexity of the preimage attack

on XOR combiners to 252n/105.

4.2 Collision Attack, Preimage Attack, and
Second-Preimage attack on Concatenation Combiners
in Quantum Settings

In this section, we present the collision attack and preimage attack on
concatenation combiners in the quantum setting, which are directly
converted from the classical attacks in [22]. Both quantum attacks use

12



the quantum algorithm for building the Joux’s multi-collision (refer
to App. A.1) and the quantum walk algorithm (refer to Sect. 2.5)
for finding a collision from a set, which is different from the classical
method by brute-force search.

Collision Attack. Here we introduce the quantum collision attack,
which aims to find a pair of message blocks (M, M ′

) such thatH1(M)∥H2(M) =
H1(M

′
)∥H2(M

′
). The collision attack follows two steps:

Step 1: Apply Algorithm 1 to build 2n/2-Joux’s multi-collision for
the first compression hash function. Denote this set byMMC. This step
can be done in O (

n

2
⋅ 2n/3

) time complexity.

Step 2: Apply quantum walk algorithm to find a collision of the
second hash function in a set of 2n/2 message blocks constructed from
MMC. This step can be done in O ((2n/2

)
2/3
) = O(2n/3

) time.
The time complexities of the two steps are balanced at Õ(2n/3

),
using O(2n/3

) quantum memory. In Scenario R2, Step 1 can be done
in O (

n

2
⋅ 22n/5

) time, using O(2n/5
) classical memory; Step 2 can be

done in O ((2n/2
)

6/7
) = O(23n/7

) time, using O(2n/7
) memory. The

total time and classical memory complexities under this scenario are
O(23n/7

) and O(2n/5
), respectively.

Preimage Attack. Let V1∥V2 be a prefix of 2n bits. The goal of
a preimage attack is to find a message M such that the concatenation
of the outputs of the hash functions, H1 and H2 acting on M , is equal
to V , i.e., H1(M)∥H2(M) = V1∥V2. We can directly generate a quan-
tum attack based on Grover’s algorithm to search for M in a space of
22n message blocks. With high probability, there exists one message M
that satisfies the above condition; this attack require approximately
π/4 ⋅ 2n Grover steps to find M . This attack is considered as a generic
quantum attack on any ideal hash construction of 2n output bits.

To devise a more efficient attack on concatenation combiners of
MD hashes than the above most generic attack, we extend the attack
in [22] to its quantum version. That is, we first build a 2n-Joux’s
multi-collision for the first hash function H1 by Algorithm 3, and
denote this set byMMC. All messages inMMC have the same hash value
as x. From the hash value x, we find a message block m among 2n

message blocks so that h(x, m) = V1. This step can be done by Grover’s
algorithm in O(2n/2

) time. For the hash function H2, search M1 from
the set MMC such that H2(M1∥m) = V2. Since the cardinality of MMC
is 2n, it is expected there is at least one such message M1. This step
can be done by Grover’s algorithm searching in the space of messages
in MMC with time complexity O(2n/2

). Therefore, the total workload
required is O(n ⋅2n/3

+2n/2
) = O(2n/2

), using O(2n/3
) quantum memory

in Scenario R1. In Scenario R2, the time complexity of a quantum
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attack does not change so much, which is O(n ⋅ 22n/5
+ 2n/2

) = O(2n/2
);

because it is dominated by the searching step, in which we can simply
replace the quantum memory by a classical memory of size O(2n/5

).
This attack exponentially speeds up the plain quantum attack using
Grover’s search, and also exponentially improves the classical attack,
of which the time complexity is O(2n

).
Compared to the quantum preimage attack on one MD hash func-

tion of n bits, the attack on concatenated combiners only require a
constant factor of more evaluations.

Second-Preimage Attack. Since the second-preimage attack can
be implied from the preimage attack, the complexity is similar to the
preimage attack.

5 Conclusions and Future Work

In this paper, we studied the security of various constructions of
hash functions in quantum settings with respect to important attacks:
collision attacks and (second-) preimage attacks. We analyzed the
complexities of these attacks under two main models: when the quan-
tum computer allows access to an exponential amount of quantum
memory in constant time and when such memory access is costly
and the amount is limited. The results show that our attacks in both
models have better time complexity than that of the generic attacks
by directly applying Grover’s algorithm, and exponentially reduce
both time and memory complexities compared to the classical attacks.
The cryptanalysis results of hash combiners in quantum settings is
consistent with that in the classical setting, that is, the security of
most hash combiners are not as high as commonly expected, and
can be even lower than that of a single underlying hash function.
Table 1 summarizes the current security status of the analyzed hash
constructions in various models. These results serve as an indication
that, to achieve long-term security to the post-quantum era, current
symmetric-key crypto-systems require careful security re-evaluation or
even re-design before being adopted by post-quantum cryptography
schemes.

The presented results set baselines for quantum generic attacks on
the considered hash constructions and combiners. The exhibited basic
tools and attacks are direct conversions from the classical setting to
the quantum setting by calling existing quantum collision or search
algorithms as black-boxes. Yet, it is remained to look into the inside of
these quantum algorithms and combine fruitful ideas and techniques
of cryptanalysis for the classical setting, to provide updated upper
bound for the post-quantum security of hash constructions.
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A Collision-Search-Based Tools and Their Quantum
Versions

In this section, we introduce several collision-search-based tools com-
monly used in generic attacks in classical settings. For each of them,
we discuss how to transform it into a tool in quantum settings and
re-evaluate the complexity. In the sequel, we denote by H an MD hash
function, h for its compression function, and h∗ for arbitrary times of
iteration on h.

A.1 Multi-Collision (MC [22]).
Joux in [22] proposes an efficient way to obtain a large set of messages
mapping a starting state to a common ending state on iterated hash
functions, which is known as Joux’s multi-collisions.
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Figure 4: Multi-collision and its condensed representation in R.H.S. [21]

Multi-Collision (MC) in Quantum Settings. In Scenario R1, the t
birthday attacks for finding t collisions to build a 2t-MMC can be done
by calling t times of BHT algorithm. As a result, the total complexity,
which is t ⋅2n/2 in the classical setting, is t ⋅2n/3 in the quantum setting.
The quantum counterpart of building a 2t-MMC is given in Algorithm 3.

The complexity of Algorithm 3 is dominated by calling the BHT algo-

Algorithm 3: Building a 2t-Joux’s MC in Quantum Settings
Require: Given an oracle of the compression hash function h, an initial value
x0 and qRAM.
1. Initialize the data structure MMC to store pairs of message blocks.
2. For i = 1, ..., t:

(a) Start a BHT algorithm by querying 2n/3 message blocks m′

j to the
oracle of h, sort according to the second entry and store all the pairs
in list L, if L contains a collision, output the collision immediately.
Store all pairs (m′

j , h(xi−1, m′

j)) in L to qRAM.
Construct the oracle: F ∶ {0, 1}n

→ {0, 1} by defining F (m) = 1 if and
only if there exist (m′

j , h(xi−1, m′

j)) in qRAM such that h(xi−1, m′

j) =

h(xi−1, m) and m′

j ≠m.
(b) In the BHT algorithm, apply the Grover’s search algorithm using oracle

F :
i. Initialize the state of the Grover’s search to be the uniform super-

position of 2n messages;
ii. After running about π

4
⋅ 2n/3 Grover steps, measure the state and

return a pair of message blocks (mi, m′

i) such that h(xi−1, mi) =

h(xi−1, m′

i).
(c) Obtain xi = h(xi−1, mi), append (mi, m′

i) to MMC.
3. Output (xt,MMC).

rithm t times; hence, it requires O(t ⋅2n/3
) quantum queries, O(t ⋅2n/3

)

computations, and O(2n/3
) qRAM.

In Scenario R2, we can replace the BHT algorithm with the al-
gorithm in [9], which requires O(22n/5

) computations and O(2n/5
)

classical memory. Then, the resulted quantum algorithm 3 requires
O (t ⋅ 22n/5

) quantum queries and O(2n/5
) classical memory.

Note that this quantum version of the Joux’s multi-collision will
be used in building more complex structures (interchange structure in
App. A.3), and in the presented preimage attacks (Sect. 4.1 and 4.2).

A.2 Expandable Message (EM [23]).

Kelsey and Schneier in [23] invented the expandable message, which
is similar to Joux’s multi-collision. By generating t collisions with
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pairs of message fragments of length (1, 2i
+ 1) for i ∈ {0, 1, . . . , t − 1},

one can get 2t colliding messages whose lengths cover the range of
[t, t+2t

−1] (see Fig. 5). The complexity is of 2t
+ t ⋅2n/2 computations.

This expandable message can be used to bypass the Merkle-Damgård
strengthening and carry out a long message second-preimage attack
on MD with roughly 2n

/L computations for a given challenge of L
blocks.

x0

m1

[0]2
0‖m′

1

m2

[0]2
1‖m′

2

xt

mt

[0]2
t−1‖m′

t

≡ x0 xt

t

Figure 5: Expandable message and its condensed representation in R.H.S. [21]

Expandable Message (EM) in Quantum Settings. Since the main idea
of building a 2t-expandable message is finding the collision between a
message of a single block and a message of length 2i

+1 for 0 ≤ i ≤ t−1,
this step can be done by applying the BHT algorithm in quantum
setting. Similar to finding collisions in quantum setting for building
Joux’s multi-collision, for each i, we calculate the hash value x∗i−1 of
message [0]2i from the hash value xi−1 , and find a pair of message
blocks (mi, m′i) such that h(xi−1, mi) = h(x∗i−1, m′i) = xi. Then the
constructing a message of length s ∈ [t, t + 2t

− 1] step is proceeded in
the same way as in the classical setting, as we look at the decomposition
of s− t in t-bit binary base. We select the long message [0]2i

∥m′i in the
iteration i if the i-th LSB of s − t is equal to 1, otherwise, we select
the single block message mi instead. The complexity of this quantum
algorithm is different from classical expandable message algorithm
just by the collision search step; hence, it is of 2t

+ t ⋅ 2n/3 quantum
computations in Scenario R1, or of 2t

+ t ⋅ 22n/5 quantum computations
using CNS algorithm in Scenario R2.

This quantum version of the expandable message will be used
in the presented quantum second-preimage attack on the MD hash
function (Sect. 3.2).

A.3 Interchange Structure (IS [24]).
Leurent and Wang in [24] invented the interchange structure, which
is used to devise a preimage attack on the XOR combiner. The inter-
change structure contains a set of messagesMIS and two sets of states
A and B, such that for any pair of states (Ai, Bj ∣ Ai ∈ A, Bj ∈ B),
one can pick a message M from MIS such that Ai =H1(IV1, M) and
Bi =H2(IV2, M). To build a 2t-interchange structure (with 2t states
for each hash function), one can cascade 22t

− 1 building modules
named switches. The effect of a switch is that a state in one compu-
tation chain of one hash function can make pair with two states in
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two computation chains of the other hash function. A switch can be
built using multi-collisions and the birthday attack (see Fig. 6a). The
total complexity to build a 2t-interchange structure is of Õ(22t+n/2

)

computations.

H2

H1

bk

ai

aj

b′kMMC

MMC

MMC
a′j

a′i

M̂

M̂ ′

M̂

(a) Building a switch

H1

H2

IV1

IV2

A0

B0

A1

B1

A2

B2

A3

B3

M ′ M M M M M ′ M M M M M

(b) Interchange structure

Figure 6: Interchange structure and its building block

Interchange Structure (IS) in Quantum Settings. The interchange
structure starts with building a single switch, which is constructed
by building a 2n/2-Joux’s multi-collision for the hash function H2 and
finding a collision between the hash value of H1 from different states
(ai, aj) and some pair of message (M̂, M̂ ′

). These two steps can be
replaced by the quantum algorithm for building Joux’s multi-collisions
and the quantum walk algorithm for the element distinctness problem.
The quantum algorithm for building a single switch is described as
follows in Algorithm 4.

Algorithm 4: Building a Single Switch in Quantum Settings
1. Use the quantum Joux’s multi-collision algorithm to build a set MMC of

2n/2 messages for h∗2 that link the starting state bk to the same state b′k,
i.e., ∀M ∈MMC, h∗2(bk, M) = b′k.

2. Use a quantum walk algorithm to find a collision in the set of 2n/2+1 elements
which are h∗1(ai, M) and h∗1(aj , M) for all the messages M in MMC. With
high probability (constant), the algorithm return a pair of messages denoted
as (Mi, M ′

i) that h∗1(ai, Mi) = h∗1(aj , M ′

i).
3. Use the message Mi to compute the missing chains: b′j = h∗2(bj , Mi), a′j =

h∗1(aj , Mi). With high probability, all the chains reach distinct values; if
not, restart the algorithm with a new multi-collision.

In Scenario R1, the complexity of Algorithm 4 is dominated by the
building a multi-collision in Step 1, since Step 2 requires O((2n/2+1

)
2/3
) =

O(2n/3
) quantum computations and O(2n/3

) quantum memory. Hence,
Algorithm 4 requires O (

n

2
⋅ 2n/3

) quantum queries to the compression

functions, O (
n

2
⋅ 2n/3

) quantum time and O(2n/3
) quantum memory.
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In Scenario R2, Step 1 needs O (
n

2
⋅ 22n/5

) quantum computations

and O(2n/5
) classical memory, but when it comes to Step 2, the number

of computations is higher, that is, O((2n/2+1
)

6/7
= O(23n/7

) quantum
computations and O((2n/2

)
2/7
) = O(2n/7

) quantum memory. There-
fore, in this model, the time complexity for Algorithm 4 to build a
single switch is of O(23n/7

).

The framework for building a 2t-interchange structure in quantum
setting is the same as in the classical setting. One builds the required
22t
−1 switches as the following: first, build a single switch from (a0, b0)

to each of (a0, bk); then, for each k, build switches from (a0, bk) to
all (aj , bk) for all j = 0, ..., 2t

− 1. To reach the chain (aj , bk) from
(a0, b0), we first find the switch to jump from (a0, b0) to (a0, bk) in the
first step, then find the switch to jump from (a0, bk) to (aj , bk) in the
second step. Then the complexity to build an interchange structure
is O (

n

2
⋅ 22t+n/3

) for both quantum queries and time and O(2n/3
)

quantum memory in Scenario R1, or O(22t+3n/7
) and O(2n/5

) classical
memory, O(2n/7

) quantum memory in Scenario R2.
This quantum version of the interchange structure will be used in

the presented quantum preimage attack on the XOR-combiners (Sect.
4.1).
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