
Rapidash: Improved Constructions for Side-Contract-Resilient

Fair Exchange

Hao Chung Elisaweta Masserova Elaine Shi
Sri AravindaKrishnan Thyagarajan

Carnegie Mellon University

Abstract

The recent work of Chung et al. suggested new formal foundations for side-contract-resilient
fair exchange protocols. In this paper, we suggest new constructions that achieve a coalition-
resistant Nash equilibrium, and moreover, our constructions improve over Chung et al. in
the following senses: 1) we achieve optimistic reponsiveness; and 2) we reduce the amount of
collateral from the parties.

1 Introduction

Fair exchange protocols [BBSU12,Her18,MMS+,vdM19,MD19,Max,CGGN,BDM,Fuc,BK,MES16,
MMA,Bis,ZHL+19,JMM14,TYME21,PD] have been widely adopted in cryptocurrency systems, in
the form of atomic swaps [Her18,MMS+, vdM19,MD19], contingent payment [Max,CGGN,BDM,
Fuc,BK], payment channels [PD,DW15,GM,MMSH,MBB+,DFH18,DEFM19], or vaults [MES16,
MMA, Bis, ZHL+19]. Recently, the community are increasingly concerned that potential user-
miner collusion can completely break the fairness guarantees promised by fair exchange proto-
cols [TYME21, WHF19, Bon, MMS+, MHM18, JSZ+21, Ham]. This phenomenon is also commonly
referred to as Miner Extractable Value (MEV): since the miner has the power to decide which
transactions to include in the block and their relative ordering, a user colluding with a miner may
be able to jointly benefit and harm the counterparty.

Very recently, the works of Wadhwa et al. [WSZN22] and Chung et al. [CMST22] were the first
to explore side-contract-resilient fair exchange. In particular, with the goal of building a formal
foundation for studying side-contract-resilient fair exchange, Chung et al. [CMST22] suggested two
game-theoretic fairness notions:

• Cooperative strategy proofness (CSP-fairness): CSP fairness was initially adopted in a line of
work at the intersection of game theory and cryptography [PS17a, CGL+18, WAS22, CCWS21,
KMSW22]. Informally speaking, a blockchain-based fair exchange protocol between two parties
Alice and Bob is said to be CSP-fair, iff an Alice-miner coalition or a Bob-miner coalition cannot
increase the coalition’s joint gain through any deviation. In other words, the honest strategy is
a coalition-resistant Nash equilibrium, and is the coalition’s best response assuming no external
incentives.

In particular, CSP fairness considers the coalition’s joint payoff. This is a good fit for a blockchain
environment since the user and the colluding miner may employ arbitrary smart contract mech-
anisms to split off their joint gains off the table, and moreover, the payoff division mechanism
is binding.

1

• Safe participation in the presence of external incentives: Chung et al. [CMST22] suggest a new
notion called “safe participation in the presence of external incentives”, aiming to protect the
honest player even when the counterparty, possibly colluding with the miners, may have external
incentives that incentivize them to behave maliciously in a way that may lead to losses in the
present protocol. Essentially, the external incentives may cover for the loss in the present proto-
col. In particular, in Chung et al. [CMST22]’s protocol, an honest player’s utility is guaranteed
to be non-negative, even when the other player (possibly colluding with some miners) may have
arbitrary but bounded external incentives.

The two game-theoretic notions above are both desirable but incomparable in nature. Chung
et al. [CMST22] aimed to achieve both properties in their fair exchange protocols called Ponyta.
However, their approach suffers from a few drawbacks. To understand their drawbacks, consider a
cross-chain atomic swap scenario where Alice wants to exchange x′ amount of Bitcoins (henceforth
denoted Bx′) for Bob’s x′ amount of Ethers (henceforth denoted Ex).

1. No optimistic responsiveness. Ideally, we want that when both parties and the miners are
honest, the exchange should complete responsively, i.e., as soon as a new block is mined on
each chain. Unfortunately, in Chung et al.’s Ponyta protocol, even in the optimistic case,
both players must wait for a preset timeout value for the exchange to complete.

2. Collateral in both Bitcoin and Ether for both parties. Using Chung et al. [CMST22]’s protocol,
besides Alice and Bob’s intended payment for each other, i.e., Bx′ and Ex, Alice and Bob
must prepare additional collateral in both Bitcoin and Ether. At a very high level, should
Alice or Bob misbehave in the protocol, part of their collateral may be taken away, and this
helps the protocol achieve the aforementioned game-theoretic fairness notions.

1.1 Our Results and Contributions

In this paper, we show that if we opt for only CSP fairness and are not concerned about resilience
against external incentives, then, we can construct improved protocols that avoid the aforemen-
tioned two drawbacks. Specifically, we have the following main results:

1. Single-instance Rapidash: We construct fair exchange protocol that allows Alice to exchange
a secret for Bob’s coins, and prove the protocol to satisfy CSP-fairness. Moreover, the protocol
satisfies optimistic responsiveness, and does not require Alice to put in any collateral.

2. Cross-chain atomic swap: We construct a cross-chain atomic swap protocol that allows Alice
to exchange her Bitcoins with Bob’s Ether, and prove the protocol CSP-fair. Moreover,
the protocol satisfies optimistic responsiveness, and requires Alice to have collateral only in
Bitcoins and Bob to have collateral only in Ether. The currencies exchanged can be other
currencies but we shall use Bitcoin and Ether as an example for convenience.

3. Instantiation atop Bitcoin: Our contracts are easy to implement if the cryptocurrency involved
has a general programming language like Ethereum. Interestingly, since our contracts use
simple logic, they can be instantiated even atop Bitcoin which has a very limited scripting
language.

Our cross-chain atomic swap can be viewed as an application of the single-instance Rapidash,
since at a very high level, it composes two instances of Rapidash, one on Bitcoin and one on
Ethereum. What is technically intriguing is that direct composition fails as we explain in more

2

detail in Section 4.2. This means that our single-instance Rapidash does not readily give rise to
the atomic swap application as one might anticipate initially. In Section 4, we describe the new
tricks that are necessary to overcome the compositional issues thus leading to our atomic swap
construction.

1.2 Related Work

Various works showed that user-miner collusion is possible through bribery mechanisms [TYME21,
WHF19,HZ20,MHM18,JSZ+21,Ham]. Such bribery attacks may be instantiated in various ways [TYME21,
WHF19,HZ20,MHM18,JSZ+21,Ham], e.g., by exploiting decentralized smart contracts.

Tsabary et al. [TYME21] made a pioneering attempt to defend against such bribery attacks.
They proposed a fair exchange protocol called a Mutual-Assured Destruction Hash Timelock Con-
tract (MAD-HTLC). Unfortunately, their work defends only against one specific type of bribery
attack, but in turn opens up new attacks. They acknowledge in their paper that their scheme does
not defend against user-miner collusion. In particular, their protocol is blatantly flawed when one
of the users is a miner itself.

The elegant work of Wadhwa et al. [WSZN22] and Chung et al. [CMST22] the most closely
related to our work1. As mentioned earlier, our work directly builds on top of the formal models
and definitions introduced by Chung et al [CMST22]. The work of Wadhwa et al. [WSZN22]
describes in greater details techniques to instantiate attacks against MAD-HTLC [TYME21]. The
also suggest a new protocol that defends against these attacks. Although they did not explicitly
define CSP-fairness, their construction also seems to satisfy CSP fairness. Their protocol (as of the
version dated 5/10/2022, see footnote 1) does not satisfy optimistic responsiveness.

Both MAD-HTLC [TYME21] and Wadhwa et al. [WSZN22] consider only a single-instance ex-
change where one party exchanges a digital secret for the other party’s coins. Chung et al. [CMST22]
is the first to consider an end-to-end application (specifically, atomic swap) in the study of side-
contract-resilient fair exchange. As shown in our work and the earlier work of Chung et al. [CMST22],
due to composition issues that arise for game-theoretic fairness notions, a CSP-fair single-instance
protocol does not readily lead to any actual application that uses the building block.

2 Preliminaries

We use the same protocol execution model and fairness definitions as Chung et al. [CMST22].
For completeness, we describe the formal definitions below, where some of the description is taken
verbatim from Chung et al. [CMST22].

2.1 Blockchain Execution Model

Smart contracts and transactions. We assume that smart contracts are ideal functionalities
1) enriched with a special type of variable used to denote money; and 2) whose states are publicly
observable. A smart contract can have one or more activation points. Each transaction is associated
with a unique identifier, and consists of the following information: 1) an arbitrary message, 2) some
non-negative amount of money, and 3) which activation point of which smart contract it wants to
be sent to. When the transaction is executed, the corresponding activation point of the smart

1The version dated 5/10/2022 of Wadhwa et al. [WSZN22] is prior work to this paper, and any substantial technical
change in later versions is concurrent to our work.

3

contract will be invoked, and then, some arbitrary computation may take place accompanied by
the possible transfer of money.

Money can be transferred from and to the following entities: smart contracts and players’
pseudonyms. Without loss of generality, we may assume that players cannot directly send and
receive money among themselves; however, they can send money to or receive money from smart
contracts. The balance of a smart contract is the amount of money it has received minus the
amount of money it has sent out. The balance of any smart contract must always be non-negative.

We assume that each smart contract has a unique name, and each player may have multiple
pseudonyms — in practice, a pseudonym is encoded as a public key. A miner is also a special player
who is capable of mining blocks.

Mining. In this paper, we do not consider strategies that involve consensus- or network-level
attacks — there is an orthogonal and complementary line of work that focuses on this topic [GKL15,
PSS17,PS17b], For example, a 51% miner can possibly gain by performing a double spending attack.

For simplicity, we assume an idealized mining process, that is, in each time step t, an ideal
functionality picks a winning miner with probability proportional to each miner’s mining power (or
amount of stake for Proof-of-Stake blockchains). The winning miner may choose to include a set of
transactions in the block, and order these transactions in an arbitrary order. At this moment, a new
block is mined, and all (valid) transactions contained in the block are executed. Any transaction
that has already been included in the blockchain before is considered invalid and will be ignored.
The above idealized mining process can capture standard Proof-of-Work blockchains and Proof-of-
Stake blockchains where the next proposer is selected on the fly with probability proportional to
the stake held by the miner.

2.2 Players and Strategy Spaces

There are three kinds of players in the model: Alice, Bob, and the miners. We also call Alice and
Bob the users to differentiate from miners. We consider the following strategy space for players.

Anyone, including Alice, Bob, or the miners, is allowed to do the following at any point of time:

1. Post a transaction to the network at the beginning of any time step. We assume that the network
delay is 0, such that transactions posted are immediately seen by all other users and miners.
When miners pick which transactions to include in some time step t, they can see transactions
posted by users for time step t.

2. Create an arbitrary smart contract and put an arbitrary amount of money into the smart
contract. For example, a smart contract can say, “if the state of the blockchain satisfies some
predicate at some time, send some pseudonym some amount of money, where the recipient and
the amount of money can also be dependent on the state of the blockchain.

Additionally, the miners are allowed the following actions: whenever it is chosen to mine a
block, it can choose to include an arbitrary subset of the outstanding transactions into the block,
and order them arbitrarily. The miner can also create new transactions on the fly and include them
in the block it mines.

Coalition. Alice or Bob can form a coalition with some of the miners. When the coalition is
formed, all members in the coalition share their private information. The coalition’s strategy space
is the union of the strategy space of each member in the coalition. Notice that once Alice and Bob
are in the same coalition, they can exchange the secret s privately without using the blockchain.
Thus, we do not consider the coalition consists of Alice and Bob.

4

2.3 Protocol Execution

In our paper, an honest protocol is always a simple protocol that does not create additional smart
contracts in the middle of the execution. Strategic parties can deviate from the honest protocol
and create new smart contracts on the fly during the execution.

A protocol execution involves Alice, Bob, and the miners who are modeled as interactive Turing
machines who can send and receive a special type of variables called money. Additionally, the
protocol may involve one or more smart contracts which can be viewed as ideal functionalities
whose states are publicly visible to anyone. Ideal functionalities are also interactive Turing machines
capable of sending and receiving money.

For the honest protocol, we always want the miners’ honest behavior to be consistent with their
honest behavior in typical consensus protocols, i.e., the miner’s honest behavior should include all
outstanding transactions in the mined block.

Finally, since we consider probabilistic polynomial time (PPT) players, we assume that the
protocol execution is parametrized by a security parameter λ.

Throughout this paper, we assume that the total utility of all players from the protocol cannot
exceed a polynomial function in the security parameter λ.

2.4 Smart Contract Notation

We use the same smart contract notation as Chung et al. [CMST22]. In particular, each activation
point is given a type denoted by a single letter. All activation points of the same type are mutually
exclusive, i.e., at most one of them can be invoked, and at most once.

Our smart contracts can be instantiated atop either Ethereum or Bitcoin. Note that some extra
tricks are needed to instantiate the contracts using Bitcoin since it does support a general-purpose
programming language.

2.5 Definition of Game-Theoretic Fairness

We often use C to denote a coalition, and use −C to denote all parties of the protocol that are
not part of the coalition. We use HSC or HS−C to denote the honest strategy executed by either
the coalition C or its complement. Let SC and S′−C be the strategies of the coalition C and its

complement. We use utilC(SC , S
′
−C) to denote the expected utility of C when the coalition C adopts

the strategy SC and the remaining parties adopt the strategy S′−C .

CSP fairness. We define a game-theoretic fairness notion called cooperative strategy proofness
(CSP fairness) — the same notion was formalize earlier in a recent line of works [PS17a,CGL+18,
WAS22]. Intuitively, CSP fairness says that a coalition that is profit-driven and wants to maximize
its own utility has no incentive to deviate from the honest protocol, as long as all other players play
by the book. In this sense, the honest protocol achieves a coalition-resistant Nash Equilibrium.

Definition 2.1 (CSP fairness). We say that a protocol satisfies γ-cooperative-strategy-proofness
(or γ-CSP-fairness for short), iff the following holds. Let C be any coalition that controls at most
γ ∈ [0, 1) fraction of the mining power, and possibly includes either Alice or Bob. Then, for any
probabilistic polynomial-time (PPT) strategy SC of C, there exists a negligible function negl(·) such
that

utilC(SC , HS−C) ≤ utilC(HSC , HS−C) + negl(λ)

where we use HS to mean the honest strategy.

5

The atomic swap application in Section 4 involves two separate blockchains. In this case, the γ
parameter above is an upper bound on the coalition’s mining power in both chains.

Dropout resilience. We now define a property called dropout resilience which guarantees that
an honest party’s utility is non-negative even when the other party is honest but may drop out in
the middle.

Definition 2.2 (Dropout resilience). A protocol is said to be dropout resilient, iff the following
holds: as long as at least 1/poly(λ) fraction of the mining power is honest, except with 1− negl(λ)
probability, an honest Alice (or Bob) is guaranteed to have non-negative utility even when Bob (or
Alice) is honest but may drop out in the middle of the protocol execution.

As Chung et al. [CMST22] pointed out, achieving CSP-fairness without dropout resilience is
easy. However, requiring the combination of the two properties makes the problem technically
challenging. For the atomic swap application in Section 4 which involves two separate blockchains,
the 1/poly(λ) honest mining power constraint in Definition 2.2 should hold for each chain.

3 Rapidash: Single Instance

3.1 Definitions

Problem definition. Imagine that Alice has some secret prea and Bob offers to pay Alice $v
amount of coins in exchange for the secret. For example, prea may be a secret value that Bob can
later use to unlock some other coins, e.g., through a smart contract.

We assume that the secret prea is worth $va and $vb to Alice and Bob, respectively. That is,
Alice will lose utility $va if prea is released to someone else, and Bob will gain $vb if he learns prea.
We assume that $vb > $v > $va, such that Alice wants to sell the secret prea to Bob at a price of
$v.

Players’ utility. Let β ∈ {0, 1} be an indicator such that β = 1 if and only if Bob outputs the
secret prea at the end of the protocol. Let $da ≥ 0 and $db ≥ 0 be the amount of money Alice and
Bob deposit into the smart contract, respectively. Let $ra ≥ 0 and $rb ≥ 0 be the payments that
Alice and Bob obtain from all smart contracts during the protocol.

Then, Alice’s utility, $ua, is defined as

$ua = −$da + $ra − β · $va

and Bob’s utility, $ub, is defined as

$ub = −$db + $rb + β · $vb

Similar to Alice and Bob, we can also define the utility for any miner. Fix some miner. Let
$dm be the money that the miner deposits into the smart contracts belonging to this protocol, and
let $rm be the payment received by the miner in the current protocol instance. A miner’s utility,
denoted $um, is defined as

$um = −$dm + $rm

Finally, the joint utility of the coalition is simply the sum of every coalition member’s utility.

6

3.2 Construction

Before deploy the Rapidash contract, Alice and Bob sample prea ∈ {0, 1}λ and preb ∈ {0, 1}λ
uniformly at random, respectively. Let γ ∈ [0, 1] be the upper bound of the fraction of the mining
power that the coalition can control. Let H(·) be a cryptographic hash function. The parameters
(ha, hb, T1, T2, $v, $cb, $ε) of the Rapidash contract must satisfy the following constraints.

Parameter Constraints for Rapidash

• ha = H(prea) and hb = H(preb).

• $0 < $ε < $v, $cb > $ε.

• T1 ≥ 1 and T2 ≥ 1 such that γT2 ≤ $cb
$cb+$v

In Rapidash, T1 is the time interval such that the seller Alice can redeem the payment $v. For
the security, we only require T1 ≥ 1. In practice, however, one may want to choose a larger T1 to
account for the network delay. The choice of T2 allows a tradeoff between waiting time and the
amount of the collateral. For example, suppose $cb = $v. Then, we need to ensure γT2 ≤ 1/2. This
means if γ = 90%, we can set T2 = 7; and if γ = 49.9%, we can set τ = 1. Asymptotically, for any
γ = O(1), T2 is a constant. Increasing $cb also helps to make T2 smaller.

The Rapidash contract is specified as follow.

Rapidash contract
Parameters: ha, hb, T1, T2, $v, $cb, $ε

Preparation phase: Bob deposits $v + $cb

Execution phase:

Payment:

P1: On receive prea from Alice such that H(prea) = ha, send $v to Alice and $cb to Bob.

P2: Time T1 or greater: on receive preb from Bob such that H(preb) = hb, do nothing.

Collateral:

C1: At least T2 after P2 is activated: on receiving from anyone, send $v + $cb to Bob.

C2: On receive (prea, preb) from anyone P such that H(prea) = ha and H(preb) = hb, send
$ε to player P . All remaining coins are burnt.

The Rapidash protocol. During the preparation phase, the buyer Bob deposits $cb + $v into
the Rapidash contract. When Bob’s deposit transaction is confirmed, we define the current block
number (i.e., time) to be t = 0. The execution phase proceeds as follows — henceforth, we use
the phrase “a player sends a message to an activation point” to mean that “the player posts a
transaction containing the message and destined for the activation point”:

• Alice: Alice sends prea to activation point P1 at t = 0.

• Bob: If Alice failed to send prea to P1 before time T1, then Bob sends preb to P2 at time t = T1.
T2 time after P2 is activated, he sends an empty message to C1.

7

If either P1 or C2 is successfully activated, Bob outputs the corresponding prea value included
in the corresponding transaction. If P2 and C1 are successfully activated, Bob outputs ⊥.

• Miner: The miner watches all transactions posted to P1, P2, and C2. If the miner has observed
the correct values of both prea and preb from these posted transactions, then it sends (prea, preb)
to C2. Further, any miner always includes all outstanding transactions in every block it mines.
If there are multiple transactions posted to C2, the miner always places its own ahead of others
(and thus invalidating the others).

Intuition. We now explain the intuition behind our construction.

• In addition to Bob’s intended payment $v, he has to put down additional collateral $cb into the
contract.

• The contract has four activation points named P1, P2, C1, and C2. P1 is the normal path.
When Alice, Bob, and the miners all act honestly, the exchange can be completed and both
users get their collateral back as soon as the next block is mined. Clearly, once P1 is activated,
the contract holds no more money and thus none of the remaining activation points can be
activated.

• Should Alice drop out the protocol, Bob can get his deposit back in the following way: first, Bob
posts preb to P2 to express his intention to cancel the exchange; however, when P2 is activated,
Bob cannot immediately get his deposit back yet. Only after a timeout T2 has passed, can Bob
finally get all of his deposit $v+$cb refunded by posting an empty message to C1. This timeout
T2 is important for achieving fairness as we explain shortly.

• Finally, the activation point C2 is also called the “bomb”. Should the honest Alice post prea to
P1 and Bob still tries to get his money back by posting preb to P2 and later invoking C1, then
both secrets prea and preb will be publicly known. At this moment, any miner can post the pair
(prea, preb) to C2 (i.e., trigger the bomb) to earn a positive amount ε. At the same time, the
rest of Bob’s deposit will be burnt.

We shall prove that our protocol satisfies CSP-fairness as long as the collateral cb and the
timeout T2 are suitably large. As mentioned earlier, we need the following two constraints to hold,
and we explain the intuition below.

• $cb > $ε: this condition makes sure that a sufficient amount is burnt should the bomb C2 be
triggered, such that if a Bob-miner coalition activates P2 and C2 at the same time (e.g., in the
same block it mines), it will lose to the honest case.

• $γT2 ≤ $cb
$cb+$x : if the honest Alice posts prea to P1, this condition makes sure that it is not

worth it for the Bob-miner coalition to take a gamble and try to invoke both P2 and C1 to get
all of Bob’s deposit back. Basically, once the Bob-miner coalition has invoked P2, both prea
and preb become publicly known. So unless the coalition can mine all blocks within the next
T2 window, it cannot invoke C1. This is because any non-colluding miner who mines a block
during this T2 window will trigger the bomb C2 in which case Bob’s collateral will be burnt.

8

3.3 Proofs

Lemma 3.1 (Alice-miner coalition). Let C be any coalition that consists of Alice and an arbitrary
subset of miners2 (possibly no miner). Then, for any (even unbounded) coalition strategy SC,

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

where HS−C denotes the honest strategy for everyone not in C.

Proof. When the coalition C follows the protocol, they will send prea at t = 0, and P1 will be
activated in the next block. In this case, the utility of C is $v − $va.

Now, consider the case that the coalition C deviates from the honest strategy. We may assume
that the coalition does not post any new smart contract on the fly and deposit money into it3 —
if it did so, it cannot recover more than its deposit since any player not in C will not invoke the
smart contract. There are two possibilities:

• First, P1 is activated at some point. In this case, nothing else can be activated. Thus, the
utility of C is $v − $va, which the same as the honest case.

• Second, P1 is never activated. The Alice-miner coalition cannot cash out from P2 or C1, it
can only cash out ε from C2. However, when C2 is activated, prea is publicly known, so the
utility of C is $ε− $va, which is less than the honest case since $ε < $v.

Lemma 3.2 (Bob-miner coalition). Let C be any coalition that consists of Bob and a subset of
miners controlling at most γ fraction of mining power. Then, as long as γT2 ≤ $cb

$cb+$v , for any
(even unbounded) coalition strategy SC, it must be that

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

Proof. The honest Alice will always send prea to P1. Thus, when C follows the protocol, P1 will
be activated in the next block, and the utility of C is $vb − $v.

Now, suppose C may deviate from the protocol. As in Lemma 3.1, we may assume that the
coalition does not post any new smart contract on the fly and deposit money into it. There are
three cases.

• First, neither P1 nor P2 is activated. Because P2 is not activated, C1 cannot be activated.
The Bob-miner coalition can only get $ε from C2. Thus, the coalition’s utility is at most
$vb − $v − $cb + $ε < $vb − $v where the inequality is due to the constrant $cb > $ε.

• Second, P1 is activated. In this case, nothing else can be activated, and the utility of C is
$vb − $v, which the same as the honest case.

2We assume that the coalition cannot break the underlying consensus layer. If the underlying consensus actually
secures against, say, honest majority, then essentially the lemma holds for any coalition that wields minority of the
mining power.

3However, the coalition C itself could be facilitated by smart contracts, our modeling of coalition already captures
any arbitrary side contract within the coalition.

9

• Third, P2 is activated. Let t∗ ≥ T1 be the time at which P2 is activated. There are two
subcases. In the first subcase, the coalition also gets $ε from C2 at time t∗. In this case, the
coalition’s utility is at most $vb−$cb−$v+$ε, and since $cb > $ε, this is less than the honest
case. Henceforth, we may assume that the coalition does not invoke C2 also at time t∗. Since
the honest Alice posts prea at t = 0 and t∗ ≥ T1, both prea and preb are publicly known at
t∗. Since all non-colluding miners are honest, after t∗, they will activate C2 themselves when
they mine a new block if C2 has not already been activated before. If a non-colluding miner
mines a new block during (t∗, t∗ + T2], we say that the coalition loses the race. Otherwise,
we say that the coalition wins the race. If the coalition loses the race, then it gets nothing
from C1 or C2, and thus its utility is at most $vb− $cb− $v. Else if it wins the race, then the
coalition’s utility is at most $vb. The probability p that the coalition wins the race is upper
bounded by p ≤ γT2 . Therefore, the coalition’s expected utility is at most

($vb − $cb − $v) · (1− p) + $vb · p.

For ($vb − $cb − $v) · (1 − p) + $vb · p to exceed the honest utility $vb − $v, it must be that
p > $cb

$cb+$v which contradicts our assumption.

We thus conclude that C cannot increase its utility through any deviation.

Theorem 3.3 (CSP fairness). Suppose that the hash function H(·) is a one-way function and that
γT2 ≤ $cb

$cb+$v . Then, the Rapidash protocol satisfies γ-CSP-fairness.

Proof. Lemmas 3.1 and 3.2 proved γ-CSP-fairness for the cases when the coalition consists of either
Alice or Bob, and possibly some miners. Since by our assumption, Alice and Bob are not in the
same coalition, it remains to show γ-CSP-fairness for the case when the coalition consists only of
some miners whose mining power does not exceed γ. Since both Alice and Bob are honest, the
coalition’s utility is 0 unless C2 is activated. However, C2 requires that C to find preb on its own
— the probability of this happening is negligibly small due to the one-wayness of the hash function
H(·).

We now prove that Rapidash is dropout resilient.

Theorem 3.4 (Dropout resilience). Suppose that H(·) is a one-way function and that all players are
PPT machines. Rapidash is dropout resilient. In other words, suppose at least 1/poly(λ) fraction
of the mining power is honest. If either Alice or Bob plays honestly but drops out before the end of
the protocol, then with 1− negl(λ) probability, the other party’s utility should be non-negative.

Proof. Throughout the proof, for any X ∈ {prea, preb}, we ignore the negligible probability that
the miners can find the preimage X by itself if Alice and Bob have never sent X before.

We first analyze the case where Alice drops out. There are two possible case: 1) Alice drops out
before posting a transaction containing prea; 2) Alice drops out after she already posted a transac-
tion containing prea at t = 0. In the first case, as long as 1/poly(λ) fraction of the mining power is
honest, Bob would activate P2 and C1 in polynomial time except with negligible probability, and
his utility is 0 since he simply gets all his deposit back. In the second case, the honest Bob will not
post preb to P2. An honest miner would include Alice’s transaction and activate P1. As long as
1/poly(λ) fraction of the mining power is honest, P1 will be activated in polynomial time except
with negligible probability. As a result, Bob’s utility is $vb − $v > 0.

Next, we analyze the case where Bob drops out. In this case, Alice always posts a transaction
containing prea, and except with negligible probability, P1 will always be activated. Thus, Alice’s
utility is always $v − $va > 0.

10

To sum up, in all cases, the utility of the remaining party is always non-negative except with
negligible probability.

Remark 3.5 (Why the protocol does not defend against external incentives). As mentioned, Chung
et al. [CMST22]’s protocol provides an additional fairness property called “safe participation against
external incentives” — however, they also pay a price to provide resilience against external incen-
tives in the sense that both parties have to put down collateral.

Specifically, Chung et al. [CMST22] show that no matter how large and how arbitrary the
external incentives may be, as long as there is an explicit bound on the amount of external incentive,
one can always increase the parties’ collaterals accordingly such that their construction would
provide resilience. By contrast, we want that Alice should not have to put down collateral. In
this case, if the external incentive is sufficiently large, we cannot provide safe participation for the
honest player even when we are allowed to increase Bob’s collateral arbitrarily.

Suppose that Bob is honest, and the external incentive encourages the Alice-miner coalition
to post prea to P1 after T1, i.e., after Bob has timed out and posted preb. The coalition will
be incentivized to do so as long as the external incentive is $v + δ for an arbitrarily small $δ.
Unfortunately, in this case, the honest Bob will have expected negative utility. If we insist that
Alice does not put down any collateral, no matter how much we increase Bob’s collateral, we cannot
defend against $v + $δ amount of external incentive.

4 Side-Contract-Resilient Cross-Chain Atomic Swap

4.1 Definition

We use the same problem definition as in Chung et al. [CMST22]. For completeness, below, we
state the definitions using some description from Chung et al. [CMST22] verbatim.

Suppose that Bob has x amount of Ethers denoted Ex, and Alice as x′ amount of Bitcoins
denoted Bx′. Bob wants to exchange his Ex with Alice’s Bx′. The currencies exchanged may be
other currencies but we shall use Bitcoin and Ether as an example.

We may assume that Alice and Bob are not in the same coalition. Therefore, we effectively con-
sider the following three types of strategic players or coalitions: 1) Alice-miner coalition (including
Alice alone); 2) Bob-miner coalition (including Bob alone); and 3) miner-only coalition.

Given some strategic player or coalition, we assume that it has some specific valuation of each
unit of Bitcoin and each unit of Ether. For convenience, we use the notation $AV(·) to denote the
valuation function of Alice of an Alice-miner coalition; specifically, $AV(Ex+Bx′) = $va ·x+$v′a ·x′
where $va ≥ 0 and $v′a ≥ 0 denote how much Alice or the Alice-miner coalition values each Ether
and Bitcoin, respectively. Similarly, we use the notation $BV(·) to denote the valuation function of
Bob or a Bob-miner coalition, and we use $MV(·) to denote the valuation function of a miner-only
coalition. Throughout this section, we may make the following assumption which justifies why
Alice wants to exchange her Bx′ with Bob for Ex, and vice versa.

Assumption: $AV(Ex− Bx′) > 0, $BV(Bx′ − Ex) > 0

Utility. Let Bd′a,Eda ≥ 0 be the cryptocurrencies that Alice or an Alice-miner coalition deposit
into the smart contracts. Let Br′a,Era ≥ 0 be the payment Alice or an Alice-miner coalition receive
from the smart contracts during the protocol. Now, we can define the utility $ua of Alice or the
Alice-miner coalition as follows:

$ua = $AV(Br′a − Bd′a + Era − Eda)

11

Similarly, we can define the utility $ub of Bob or a Bob-miner coalition, and the utility $um of
a miner-only coalition as follows:

$ub = $BV(Br′b − Bd′b + Erb − Edb)

$um = $MV(Br′m − Bd′m + Erm − Edm)

where Br′b,Erb ≥ 0, denote the payment the Bob-miner coalition or Bob receives during the protocol,
and Bd′b,Edb ≥ 0 denote the deposit the Bob-miner coalition or Bob sends to any smart contract
during the protocol. The variables Br′m,Erm,Bd

′
m,Edm ≥ 0 are similarly defined but for the miner-

only coalition.
Like before, we assume that the total utility of all players from the protocol cannot exceed a

polynomial function in the security parameter λ.

Modeling time. In our cross-chain atomic swap application, since the two blockchains have dif-
ferent block intervals, we use the following convention for denoting time. Without loss of generality,
we may assume that the moment the protocol execution begins, the current lengths of the Bitcoin
and Ethereum chains are renamed to 0. We use the terminology Ethereum time T to refer to the
moment the Ethereum chain reaches length T , and similarly, we use the terminology Bitcoin time
T ′ to refer to the moment when the Bitcoin chain reaches length T ′.

4.2 Strawman Idea

The strawman idea is to directly compose two instances of the basic Rapidash contract described
in Section 3, one on Ethereum, and one on Bitcoin. We describe the strawman protocol informally
leaving out some parameter details, such that it is already sufficient to see the flaw. Henceforth, we
refer to the contract on Ethereum as Rapidash and the contract on Bitcoin as Rapidash’. The
activation points of Rapidash are referred to as P1, P2, C1, and C2; whereas the activation points
of Rapidash’ are referred to as P1’, P2’, C1’, and C2’.

During the preparation phase, Alice makes the first move and deposits Bx′+Bc′a into Rapidash’
where Bx′ denotes the intended payment and Bc′a denotes Alice’s collateral. Bob then deposits
Ex+ Ecb into Rapidash where Ex denotes the intended payment and Ecb denotes Bob’s collateral.
During the execution phase, Alice posts a secret prea to P1 of Rapidash which allows her to get
Bob’s payment Ex and Bob gets back his collateral Ecb. Now, Bob also knows prea so he can post
the same secret prea to P1’ of Rapidash’, such that he can get Alice’s payment Bx′ and Alice
would get back her collateral Bc′a.

If Alice fails to post prea to P1 of Rapidash on time, then Bob can invoke P2 and C1 to get
his intended payment Ex and Ecb back. Similarly, if Bob fails to post pre ′a to P1’ of Rapidash’ on
time, then Alice can get her intended payment Bx′ and Bc′a back by invoking P2’ and C1’.

Why the strawman is insecure. It turns out that composing two instances of the basic Rapi-
dash of Section 3 introduces tricky technicalities. The strawman protocol described above is subject
to the following attack by a Alice-miner coalition. First, Alice does not post prea on time, such
that the honest Bob will post preb to P2 of Rapidash. At this moment, the Alice-miner coalition
suppresses Bob’s transaction from being confirmed. After sufficiently long, the Alice-miner coali-
tion can trigger P2’ and C1’ of Rapidash’ such that they get back all of Alice’s deposit (including
intended payment and collateral) from Rapidash’. At this moment, the secret prea is no longer
valuable, so the Alice-miner coalition can invoke either P1 or C2, such that it can get Ex. This
way, the coalition basically obtained Ex for nothing.

12

In summary, the fundamental reason why direct composition of two basic Rapidash contracts
fails is because the secret prea loses its value once the Rapidash’ contract has been redeemed,
whereas in the earlier Section 3, the assumption is that prea’s value is permanent.

4.3 Our Construction

Intuition. A straightforward idea to fix the aforementioned problem is require that P1 of Rapi-
dash be activated early enough. This is possible with general smart contracts such as Ethereum,
but does not seem possible with Bitcoin. Instead, we want to have a unified approach that can
be instantiated using either Ethereum or Bitcoin. Our idea is to ensure that Alice does not have
incentives to invoke P2’ of Rapidash’ should the honest Bob post preb to P2 of Rapidash. To
achieve this, we modify the C2’ activation point such that Alice’s collateral will be burnt if anyone
submits the pair (pre ′a, preb).

Unfortunately, this modification harms the dropout resilience of the protocol. Suppose that
both Alice and Bob are honest but some miners may act strategically so transactions confirmation
may be delayed. Now, if Bob’s deposit transaction into Rapidash is confirmed late in time, Bob
will post preb to P2. At this moment, we can no longer have Alice post pre ′a to P2’ to get her
deposit back from Rapidash’. One idea is to let Bob post an empty message P2’ to help Alice
get her deposit back from Rapidash’— to defend against a strategic Alice-miner coalition, it is
only safe for Bob to do this after he gets all of his deposit back from Rapidash. However, if the
honest Bob drops offline immediately after posting preb to P2, then the honest Alice would have
no means to get her deposit back from Rapidash’.

To fix this issue, we introduce a new two-phase deposit trick. Unlike all known existing atomic
swap protocols, we have Bob first deposit into Rapidash, and only then will Alice deposit into
Rapidash’. Importantly, at this moment, Bob must give explicit consent to unfreeze the activation
points P1 and C2 of Rapidash— this is necessary since otherwise Alice can get Bob’s Ex without
even depositing into Rapidash’. To achieve this, we have Bob post another secret prec if Alice’s
deposit transaction into Rapidash’ is confirmed in time; and moreover, the secret prec is necessary
for activating. P1 and C2. With the above modification, it is as if Bob’s deposit into Rapidash
is performed in two-phases: first by locking his coins into Rapidash and then by posting prec to
give explicit consent to unfreeze the activation points P1 and C2.

With this two-phase deposit trick, should the execution enter the abort phase prior to the
unfreezing of P1 and C2, Bob can help Alice invoke P2’ first before it activates P2 to get his own
deposit back — this is now safe for Bob because Bob knows that without him posting prec, the
Alice-miner coalition cannot cash out from Rapidash. Should Bob fail to help Alice invoke P2’ by
some deadline (and if Bob is honest he will not have posted preb to P2 either), Alice can then post
pre ′a to P2’ to get her deposit back herself.

Finally, there is just one remaining issue: we do not want a strategic Bob-miner coalition to
wait for Alice to post pre ′a and then post preb to cash out from C2. Thus, to make the protocol
finally work, we also need to augment the activation point C2 such that Bob will be punished
should (pre ′a, preb) be presented to C2.

Parameters. Before deploying the Rapidash contract, Alice samples prea ∈ {0, 1}λ and pre ′a ∈
{0, 1}λ uniformly at random. Similarly, Bob samples preb ∈ {0, 1}λ and prec ∈ {0, 1}λ uniformly
at random. As in Section 3, let γ ∈ [0, 1] be the upper bound of the fraction of the mining power
controlled by the coalition (for either chain), and let H(·) be a one-way function. In our protocol
below, Alice needs to have an extra Bc′a as collateral besides her intended payment to Bob Bx′;
similarly, Bob needs to have an extra Eca as collateral besides his intended payment Ex to Alice.

13

The parameters used in our atomic swap protocol must respect the following constraints.

Parameter Constraints for Atomic Swap
Constraints for Rapidash (on Ethereum):

• ha = H(prea), hb = H(preb) and hc = H(prec).

• T1 > T0 > T > 0.

• E0 < Eε < Ex, Ecb > Eε

Constraints for Rapidash’ (on Bitcoin):

• h′b = H(prea) = ha and h′a = H(pre ′a).

• Ethereum time T < Bitcoin time T ′ < Ethereum time T0, i.e., the Ethereum block of
length T is mined before the Bitcoin block of length T ′, and the Bitcoin block of length
T ′ is mined before the Ethereum block of length T0.

a

• Bitcoin time T ′1 > Ethereum time T1, i.e., the Bitcoin block of length T ′1 is mined after
the Ethereum block of length T1.

• B0 < Bε′ < Bx′, Bc′a > Bε′

Choice of timeouts: // γ is the coalition’s fraction of mining power

• τ ≥ 1, τ ′ ≥ 1.

• γτ ′ ≤ Bc′a
Bc′a+Bx′

, γτ ≤ Ecb
Bcb+Bx

aIn practice, this constraint should be respected except with negligible probability despite the the variance
in inter-block times.

In the above, T, T0, T1, T
′, T ′1 are timeout values that Alice and Bob wait for during the protocol.

The choices stated above are for our theoretical model where the network delay is assumed to be
zero. In practice, we should adjust these parameters accordingly to account for the network delay.
Concretely, let ∆ denote the network delay. Then, T1 − T0, T0 − T, T amount of Ethereum time
should all be larger than ∆. Similarly, the interval between Ethereum time T and Bitcoin time T ′,
the interval between Bitcoin time T ′ and Ethereum time T0, and the interval between Ethereum
time T1 and Bitcoin time T ′1 should all be larger than ∆. Importantly, even if the actual network
delay is greater than the anticipated network delay, the CSP fairness of the protocol still holds, but
we may lose liveness (i.e., Alice and Bob may simply get refunded and not complete the exchange).

In our protocol, if both parties and the miners are honest, then the exchange completes re-
sponsively, i.e., as soon as a new block is mined on each chain. If, however, one of the players
drops out and the exchange is cancelled as a result, the remaining player may incur some delay
to get its deposit back. Similarly, if the miners are delaying Alice and/or Bob’s transactions, then
the exchange may be cancelled and Alice and/or Bob may need to wait to get their deposit back.
Specifically, in the worst case, Bob may wait up to T1 + τ Ethereum time to get his deposit back,
and Alice may wait T ′1 + τ ′ Bitcoin time to get her deposit back.

The timeouts τ and τ ′ must be sufficiently large w.r.t. γ, such that a coalition involving Alice or
Bob would never want to take any gamble that would risk getting their collateral (partially) burnt.
For example, suppose we choose Ecb = Ex. Then, we need to make sure γτ ≤ 1/2. This means if

14

γ = 90%, we can set τ = 7; if γ = 49.9%, we can set τ = 1. Asymptotically, for any γ = O(1), τ
is a constant. Increasing Ecb helps to make τ smaller. A similar calculation also works for τ ′ and
Bc′a.

Contracts. We now describe the contracts for both chains.

Rapidash contract (on Ethereum) // Parameters: (ha, hb, T1, τ , Ex, Ecb, $ε)

Preparation phase: Bob deposits Ex+ Ecb.

Execution phase:

P1: On receive prea from Alice and prec from Bob such that H(prea) = ha and H(prec) = hc,
send Ex to Alice and Ecb to Bob.

P2: Time T1 or greater: On receive preb from Bob such that H(preb) = hb, do nothing.

C1: At least τ after P2 is activated: on receiving from anyone, send Ex+ Ecb to Bob.

C2: On receive (prea, preb, prec) or (pre ′a, preb) from anyone P such that H(prea) = ha,
H(preb) = hb, H(prec) = hc, and H(pre ′a) = h′a, send Eε to player P . All remaining
coins are burnt.

Rapidash’ contract (on Bitcoin) // Parameters: (h′b, h
′
a, T

′
1, τ
′,Bx′,Bc′a, $ε

′)

Preparation phase: Alice deposits Bx′ + Bc′a.

Execution phase:

P1’: On receiving pre ′b from Boba such that H(pre ′b) = h′b or on receiving from Alice, send
Bx′ to Bob and send Bc′a to Alice.

P2’: Time T ′1 or greater: on receiving pre ′a from Alice such that H(pre ′a) = h′a or on receiving
from Bob, do nothing.

C1’: At least τ ′ after P2’ is activated: on receiving from anyone, send Bx′ + Bc′a to Alice.

C2’: On receiving (pre ′b, pre ′a) or (pre ′a, preb) from anyone P such thatH(pre ′b) = h′b, H(pre ′a) =
h′a and H(preb) = hb, send Bε′ to player P . All remaining coins are burnt.

aBob will let pre ′
b be the prea he learns in the Rapidash instance.

The atomic swap protocol. We describe the atomic swap protocol below.

• Miner. The miner’s honest protocol is described below.

– The miner watches all transactions posted to P1, P2, C1, C2, P1’, P2’, C1’, and C2’ (i.e.,
all the P-type and C-type activation points for both contracts), to see if they contain a valid
prea = pre ′b, preb, pre ′a, and prec.

– As soon as the miner has observed prea, preb and prec, it posts (prea, preb, prec) to C2; as
soon as the miner has observed both pre ′a and pre ′b, it posts (pre ′a, pre ′b) to C2’; as soon as
the miner has observed pre ′a and preb, it posts (pre ′a, preb) to C2 and C2’.

– Whenever the miner mines a block, it always includes its own transactions ahead of others.

• Alice and Bob. Below, we define the honest protocol for Alice and Bob. The moment that both
contracts have been posted and take effect is defined to be the start of the execution (i.e. t = 0).

15

We define Ethereum time 0 and Bitcoin time 0 to be the length of Ethereum and Bitcoin when
the execution starts, respectively.

Atomic Swap Protocol — Alice and Bob
Preparation Phase:

1. At t = 0, Bob sends the deposit transaction of Ex+ Ecb to Rapidash.

2. At Ethereum time T : If Bob’s deposit transaction has not been confirmed, Alice and Bob
go to the abort phase; otherwise, if Bob’s deposit transaction is confirmed, Alice sends the
deposit transaction of Bx′ + Bc′a to Rapidash’.

3. At Bitcoin time T ′: If Alice’s deposit transaction has not been confirmed, Alice and Bob go
to the abort phase; otherwise, if Alice’s deposit transaction is confirmed, Bob sends prec to
P1.

4. At Ethereum time T0: if Bob has not sent prec to P1, Alice and Bob go to the abort phase;
else, both parties go to the execution phase.

Execution Phase:

1. At Ethereum time T0, Alice sends prea to P1. As soon as P1 has been activated, Alice sends
an empty message to P1’.

2. If Alice does not send prea to P1 before Ethereum time T1, Bob sends preb to P2.

3. If Alice sends prea to P1 before Ethereum time T1, Bob sends pre ′b = prea to P1’ at Ethereum
time T1.

Abort Phase:

1. At Ethereum time T0, Bob sends to P2’ and preb to P2.

2. At Ethereum time T1, if Bob has not sent to P2’, Alice sends pre ′a to P2’.

3. If τ ′ Bitcoin time has passed since P2’ is activated, Alice sends to C1’; similarly, if τ
Ethereum time has passed since P2 is activated, Bob sends to C1.

Remark 4.1. At Step 4 of the preparation phase, which phase does Alice go depends on whether
Bob has sent prec to P1. In this work, we assume Alice can always observe the fact that Bob
sent prec to P1 immediately if Alice and Bob are both honest. In practice, Bob can sign the
transaction, and send the signature to Alice. Then, Alice is responsible for sending prec to P1 on
behalf of Bob. Consequently, as long as Alice and Bob are both honest, they always make the
same decision (regarding whether to go to the abort phase) when they both reach Step 4 of the
preparation phase.

4.4 Proofs

Lemma 4.2 (Alice-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let C be any coalition that consists of Alice and an arbitrary subset of miners controlling at most

γ fraction of mining power. Then, as long as γτ
′ ≤ Bc′a

Bc′a+Bx′
, for any PPT coalition strategy SC,

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

where HS−C denotes the honest strategy for everyone not in C.

16

Proof. When the coalition C follows the protocol, P1 and P1’ will be activated, and the utility of
C is $AV(Ex− Bx′) > 0. Now, suppose C may deviate from the protocol. We analyze the possible
cases depending on which phase Bob enters. Notice that if Alice’s deposit transaction is confirmed
before Bitcoin time T ′, the honest Bob always sends prec to P1, and enters the execution phase at
Ethereum time T0.

Bob enters the abort phase at Ethereum time T or at Bitcoin time T ′. In this case, Bob
never sends prec to P1, so except with the negligible probability that C finds prec by itself, P1 and
C2 can never be activated. C can earn coins from Rapidash only through P1 and C2. Thus, except
with the negligible probability, the utility of C is at most zero, which is less than the honest case.

Bob enters the execution phase. C can earn coins from Rapidash either from P1 or from C2
but not both, and in either case, C gains at most Ex since Eε < Ex. Thus, if P1’ is activated
(in which case no other activation points of Rapidash’ can be activated), the utility of C cannot
be more than the honest case. Henceforth we assume P1’ is not activated. If P2’ is also not
activated, then only C2’ can be activated in which case the coalition gets Bε′ < Bx′ — in this case
the coalition’s utility must be smaller than the honest case.

Therefore, for the coalition’s utility to exceed the honest case, the only possibility is that P2’
+ C1’ are both activated. Suppose that P2’ is activated at Bitcoin time t∗ ≥ T ′1. If Bob enters
the execution phase, P2’ can only be activated by Alice posting pre ′a to P2’. So pre ′a is publicly
known after Bitcoin time t∗. Depending on whether Alice sends prea to P1 before Ethereum time
T1, there are two subcases.

• Case 1: Alice sends prea to P1 before Ethereum time T1. Since Ethereum time T1 is earlier
than Bitcoin time T ′1, prea and pre ′a are both publicly known at Bitcoin time t∗. Recall
that prea = pre ′b. Thus, during Bitcoin time (t∗, t∗ + τ ′], any miner in −C will activate C2’ if
it wins a block. We say C loses the race if a non-colluding miner mines a new block during
Bitcoin time (t∗, t∗+τ ′]. Otherwise, we say C wins the race. If C loses the race, it gets nothing
from C1’ or C2’, and its utility is at most $AV(E− Bx′ − Bc′a). Else if C wins the race, then
its utility is at most $AV(Ex). which can be achieved by activating P2’, C1’ and P1. The
probability p that C wins the race is upper bounded by p ≤ γτ

′
. Therefore, the expected

utility of C is upper bounded by

$AV((Ex− Bx′ − Bc′a) · (1− p) + Ex · p). (1)

Since p ≤ γτ ′ ≤ Bc′a
Bc′a+Bx′

, we have

$AV((Ex− Bx′ − Bc′a) · (1− p) + Ex · p) < $AV(Ex− Bx′).

• Case 2: Alice does not send prea to P1 before Ethereum time T1. In this case, the honest Bob
will send preb to P2 at Ethereum time T1. Because P2’ is activated at Bitcoin time t∗ ≥ T ′1,
which is later than Ethereum time T1, pre ′a and preb are both publicly known at Bitcoin time
t∗. Thus, during Bitcoin time (t∗, t∗+τ ′], any miner in −C will activate C2’ if it wins a block.
As before, we say C loses the race if a non-colluding miner mines a new block during Bitcoin
time (t∗, t∗+ τ ′] and C wins the race otherwise. If C loses the race, it gets nothing from C1’ or
C2’, and it gets at most $AV(Ex−Bx′−Bc′a) which can be achieved if P1 is activated. Else if
C wins the race, then its utility is at most $AV(Ex) which can be achieved by activating P2’,

C1’ and P1. By the same calculation as the previous case, since p ≤ γτ
′ ≤ $AV(Bc′a)

$AV(Bc′a+Bx′)
, we

have $AV((Bx′ − Bc′a + Ex) · (1− p) + Ex · p) < $AV(Ex− Bx′).

17

Lemma 4.3 (Bob-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let C be any coalition that consists of Bob and a subset of miners controlling at most γ fraction of

mining power. Then, as long as γτ ≤ Ecb
Ecb+Ex

, for any PPT coalition strategy SC, it must be that

there is a negligible function negl(·) such that

utilC(SC , HS−C) ≤ utilC(HSC , HS−C) + negl(λ) .

Proof. When the coalition C follows the protocol, P1 and P1’ will be activated, and the utility of C
is $BV(Bx′−Ex) > 0. Now, suppose C may deviate from the protocol. We analyze the two possible
cases depending on whether Alice sends prea to P1.

Alice enters the abort phase. In this case, Alice never sends prea to P1. In this proof, we ignore
the negligible probability that C can find prea by itself. C can earn coins from Rapidash’ only
through P1’ and C2’. However, C has to send prea to P1’ to make it activated, while C does not
know prea. Thus, to make C’s utility positive, C2’ must be activated by C. C2’ can be activated by
sending (pre ′b, pre ′a) or (pre ′a, preb). Because C does not know pre ′b = prea, C2’ must be activated
by (pre ′a, preb). Henceforth, we assume C2’ is activated by (pre ′a, preb) sent by C. To activate C2’
by (pre ′a, preb), C must know pre ′a. Ignoring the negligible probability that C finds pre ′a by itself,
Alice must send a transaction containing pre ′a, which must be at Ethereum time T1.

Next, because Alice never sends prea to P1, P1 can never be activated. Moreover, C1 can be
activated only if P2 has been activated. Thus, if P2 is not activated, C2 is the only activation point
that can be activated in Rapidash, and C’s utility is at most $BV(Bx′−Ex−Ecb+ Eε) which is no
more than the honest case $BV(Bx′ − Ex) since Ecb > Eε. Henceforth, we assume P2 is activated
at some Ethereum time t∗ ≥ T1. Because Alice sends pre ′a at Ethereum time T1, preb and pre ′a are
both publicly known at Ethereum time t∗. Thus, during Ethereum time (t∗, t∗ + τ], any miner in
−C will activate C2 if it wins a block. We say C loses the race if a non-colluding miner mines a new
block during Ethereum time (t∗, t∗ + τ]. Otherwise, we say C wins the race. If C loses the race, it
gets nothing from C1 or C2, and its utility is at most $BV(Bε′−Ex−Ecb) which can be attained if
C2’ is activated. Else if C wins the race, then its utility is at most $BV(Bx′) which can be achieved

by activating P2, C1 and C2’. Since p ≤ γτ ≤ $BV(Ecb)
$BV(Ecb+Ex)

and Bε′ < Bx′, we have

$BV((Bε′ − Ex− Ecb) · (1− p) + Bx′ · p) < $BV(Bx′ − Ex).

Alice enters the execution phase. In this case, Bob must have sent prec to P1, and Alice sends
prea to P1 at Ethereum time T0. C can gain coins from Rapidash’ either from P1’ or from C2’,
but not both, and in either case, C gains at most Bx′ since Bε′ < Bx′. Thus, if P1 is activated,
the utility of C is at most the same as the honest case (which can be achieved if P1 and P1’ are
activated). Henceforth, we assume P1 is not activated. If P2 is also not activated, then C1 cannot
be activated. Therefore, the coalition can cash out at most Eε < Ecb from Rapidash by invoking
C2, and the coalition’s utility is less than the honest case.

Therefore, we may assume that P2 is activated at Ethereum time t∗ ≥ T1, and preb is publicly
known after Ethereum time t∗. Because Alice sends prea to P1 at Ethereum time T0 and T0 < T1,
prea and preb are both publicly known at Ethereum time t∗. Thus, during Ethereum time (t∗, t∗+τ],
any miner in −C will activate C2 if it wins a block. We say C loses the race if a non-colluding miner
mines a new block during Ethereum time (t∗, t∗ + τ]. Otherwise, we say C wins the race. If C loses
the race, it gets nothing from C1 or C2, and its utility is at most $BV(Bx′ − Ex− Ecb) which can

18

be achieved if P1’ is activated. Else if C wins the race, then its utility is at most $BV(Bx′) which

can be achieved by activating P2, C1 and (P1’ or C2’). Since p ≤ γτ ≤ $BV(Ecb)
$BV(Ecb+Ex)

, we have

$BV((Bx′ − Ex− Ecb) · (1− p) + Bx′ · p) < $BV(Bx′ − Ex).

Theorem 4.4 (CSP fairness). Suppose that the hash function H(·) is a one-way function. More-

over, suppose γτ
′ ≤ Bc′a

Bc′a+Bx′
and γτ ≤ Ecb

Ecb+Ex
. Then, the atomic swap protocol satisfies γ-CSP-

fairness.

Proof. In Lemma 4.2 and Lemma 4.3, we show that the atomic swap protocol satisfies γ-CSP-
fairness when the coalition consists of Alice or Bob, and possibly with some miners. Because we
assume that Alice and Bob are not in the same coalition, it remains to show γ-CSP-fairness when
the coalition C only consists of miners controlling at most γ fraction of the mining power.

Henceforth, we assume Alice and Bob are both honest. It is clear from the protocol that the
honest Alice and honest Bob always make the same decision whether to enter the execution phase
or abort phase.

Next, when C follows the protocol, its utility is always zero. Suppose C may deviate from the
protocol. Notice that the utility of C can be positive only when C2 or C2’ is activated. There are
two possible cases.

• Case 1: both Alice and Bob enter the execution phase. In this case, Alice always sends prea
to P1 at Ethereum time T0, and she never sends any transaction containing pre ′a. Ignoring
the negligible probability that C finds pre ′a by itself, C2’ can never be activated. Moreover,
once in the execution phase, Alice always sends prea to P1 at Ethereum time T0, and thus
Bob will not post any transaction containing preb. Ignoring the negligible probability that C
finds preb by itself, C2 can never be activated. To sum up, except the negligible probability,
the utility of C is at most zero, which is the same as the honest case.

• Case 2: both Alice and Bob enter the abort phase. In this case, Alice never sends any trans-
action containing prea. Ignoring the negligible probability that C finds prea by itself, C2 and
C2’ can be activated only by (pre ′a, preb). However, Bob always sends to P2’ and preb to P2
at Ethereum time T0, so Alice never sends any transaction containing pre ′a. Ignoring the neg-
ligible probability that C finds pre ′a by itself, C2 and C2’ cannot be activated by (pre ′a, preb).
To sum up, except the negligible probability, the utility of C is at most zero, which is the
same as the honest case.

Theorem 4.5 (Dropout resilience of atomic swap). Suppose that H(·) is a one-way function and
that all players are PPT machines. Our atomic swap protocol is dropout resilient. In other words,
suppose at least 1/poly(λ) fraction of the mining power is honest on either chain; if either Alice or
Bob plays honestly but drops out before the end of the protocol, then with 1 − negl(λ) probability,
the other party’s utility must be non-negative.

Proof. Throughout the proof, for any X ∈ {prea, preb, prec, pre ′a}, we ignore the negligible prob-
ability that the miners can find the preimage X by itself if Alice and Bob have never sent X
before.

We first analyze the cases where Alice drops out. There are three possible cases.

19

• Case 1: Alice drops out before she sends the deposit transaction to Rapidash’. In this case,
Bob will go to the abort phase and send preb to P2 at Ethereum time T0. When τ Ethereum
time has passed since P2 is activated, Bob sends to C1. Bob will not send any transaction
afterward, so P2 and C1 are the only activation points that can be activated. As long as
1/poly(λ) fraction of the mining power is honest, Bob’s deposit transaction will be confirmed
and P2 and C1 will be activated in polynomial time except with negligible probability, and
his utility is 0 since he simply gets all his deposit back.

• Case 2: Alice already sent the deposit transaction to Rapidash’, but drops out at or before
Ethereum time T0. If Bob enters the execution phase, he will send preb to P2 at Ethereum
time T1. If Bob enters the abort phase, he will send preb to P2 at Ethereum time T0. In both
cases, when τ Ethereum time has passed since P2 is activated, Bob sends to C1. Bob will
not send any transaction afterward, so P2 and C1 are the only activation points in Rapidash
that can be activated. In either case, as long as 1/poly(λ) fraction of the mining power is
honest, P2 and C1 must be activated in polynomial time except with negligible probability,
and his utility is 0 since he simply gets all his deposit back.

• Case 3: Alice drops out after Ethereum time T0. If Bob enters the execution phase, Alice will
send prea to P1 at Ethereum time T0, and Bob will send prea to P1’ at Ethereum time T1.
Alice and Bob will not send any transaction afterward, so P1 and P1’ are the only activation
points that can be activated. As long as 1/poly(λ) fraction of the mining power is honest, P1
and P1’ will be activated in polynomial time except with negligible probability, and Bob’s
utility is $BV(Bx′ − Ex) > 0.

On the other hand, if Bob enters the abort phase, Bob will send to P2’ and preb to P2 at
Ethereum time T0. When τ Ethereum time has passed since P2 is activated, Bob sends
to C1. Alice and Bob will not send any transaction afterwards, so P2 and C1 are the only
activation points that can be activated (unless the miners can break the one-wayness of H(·)).
As long as 1/poly(λ) fraction of the mining power is honest, P2 and C1 will be activated in
polynomial time except with negligible probability, and his utility is 0 since he simply gets
all his deposit back.

Next, We first analyze the case where Bob drops out. There are four possible cases.

• Case 1: Bob drops out before he sends the deposit transaction to Rapidash. In this case,
Alice does not even send the deposit transaction to Rapidash’, so Alice has nothing to lose.

• Case 2: Bob already sent the deposit transaction to Rapidash, but drops out at or before
Bitcoin time T ′. In this case, Bob never sends prec to P1, so Alice must go to the abort
phase. Since Bob drops out at or before Bitcoin time T ′, he will not send to P2’. Then,
Alice will send pre ′a to P2’ at Ethereum time T1. When τ ′ Bitcoin time has passed since P2’
is activated, Alice sends to C1’. Alice will not send any transaction afterward, so P2’ and
C1’ are the only activation points that can be activated. As long as 1/poly(λ) fraction of
the mining power is honest, P2’ and C1’ will be activated in polynomial time except with
negligible probability, and her utility is 0 since she simply gets all her deposit back.

• Case 3: Bob drops out after Bitcoin time T ′ but at or before Ethereum time T0. If Bob
already sent prec to P1, Alice must go to the execution phase. In the execution phase, Alice
sends prea to P1 at Ethereum time T0, and she sends to P1’ as soon as P1 is activated.
Alice will not send any transaction afterward, so P1 and P1’ are the only activation points
that can be activated. As long as 1/poly(λ) fraction of the mining power is honest, P1 and

20

P1’ will be activated in polynomial time except with negligible probability, and her utility is
$AV(Ex− Bx′) > 0.

On the other hand, if Bob does not send prec to P1 before he drops out out, Alice must go
to the abort phase. Then, by the same argument as the previous case, Alice’s utility is 0.

• Case 4: Bob drops out after Ethereum time T0. If Bob already sent prec to P1, by the same
argument as the previous case, Alice’s utility is $AV(Ex−Bx′) > 0. If Bob does not send prec
to P1, Alice and Bob must go to the abort phase. In the abort phase, Bob will send to P2’
at Ethereum time T0. When τ ′ Bitcoin time has passed since P2’ is activated, Alice sends
to C1’. Because Alice never sends any transaction containing prea, P1’ and C2’ can never be
activated except the negligible probability. As long as 1/poly(λ) fraction of the mining power
is honest, P2’ and C1’ will be activated in polynomial time except with negligible probability,
and Alice’s utility is 0.

5 Bitcoin Instantiation

In this section we describe how Rapidash can be instantiated in Bitcoin with its limited scripting
features.

5.1 Notation and Background

As described earlier, with general smart contracts, users send coins to contracts, the contracts
then hold the coins until some logic is triggered to pay part to all of the coins to one or more
user(s). Instead, Bitcoin uses an Unspent Transaction Output (UTXO) model, where coins are
stored in addresses denoted by Adr ∈ {0, 1}λ and addresses are spendable (i.e., used as input to a
transaction) exactly once. Transactions can be posted on the blockchain to transfer coins from a
set of input addresses to a set of output addresses, and any remaining amount of coin is collected
by the miner of the block as transaction fee.

More precisely, in Bitcoin transactions are generated by the transaction function tx . A trans-
action txA, denoted

txA := tx

(
[(Adr1,Φ1, $v1), . . . , (Adrn,Φn, $vn)],
[(Adr ′1,Φ

′
1, $v

′
1), . . . , (Adr ′m,Φ

′
m, $v

′
m)]

)
,

charges vi coins from each input address Adr i for i ∈ [n], and pays v′i coins to each output address
Adr ′j where j ∈ [m]. It must be guaranteed that

∑
i∈[n] $vi ≥

∑
j∈[m] $v

′
j . The difference $f =∑

i∈[n] $vi −
∑

j∈[m] $v
′
j is offered as the transaction fee to the miner who includes the transaction

in his block.
An address in Bitcoin is typically associated with a script Φ : {0, 1}λ → {0, 1} which states

what conditions need to be satisfied for the coins to be spent from the address. In contrast to smart
contracts that can verify arbitrary conditions for coins to be transacted, the scripting language of
Bitcoin has limited expressiveness. A transaction is considered authorized if it is attached with
witnesses [x1, . . . , xn] such that Φi(xi) = 1 (publicly computable) for all i ∈ [n]. A transaction is
confirmed if it is included in the blockchain.

Thus, for Bitcoin, the logic of Rapidash must be encoded in scripts of addresses where the
scripts are of limited expressiveness and the addresses are spendable exactly once. As we show, our
Rapidash instantiation only requires some of the most standard scripts used currently in Bitcoin.

21

We largely rely on the following scripts: (1) computation of hash function4 H : {0, 1}∗ → {0, 1}κ,
(2) transaction timestamp verification wrt. current height of the blockchain denoted by NOW5

and (3) digital signature verification. The signature scheme consists of the key generation algorithm
KGen(1λ) generating the signing key sk and the verification key pk, the signing algorithm Sign(sk,m)
generating a signature σ on the message m using sk, and the verification algorithm Vf(pk,m, σ)
validating the signature wrt. pk. 6 We say an address Adr (associated script Φ) is controlled by a
user if the user knows a witness x s.t. Φ(x) = 1.

5.2 Instantiating Rapidash Single Instance

We provide the list of all transactions in Table 1, the scripts associated with all addresses in Fig-
ure 1, and the relationship between the transactions, addresses, and scripts is depicted in Figure 2.
Basically, Bob uses the transaction tx stp to put his deposit $v + $cb into the address Adr stp. The
script on the address Adr stp allows three ways to spend the deposit:

1. Use prea to pay $v amount to an address AdrA1 owned by Alice, and $cb to an address AdrB1
owned by Bob.

2. After a timeout T1 since the address Adr stp comes into existence, use preb to pay the entire
deposit amount $v + $cb to the address AdrP2, which is associated with the script ΦP2. ΦP2

says that when T2 time has passed after the address comes into existence, the $v + $cb coins
in AdrP2 can be paid to Bob’s address AdrB2 .

3. Use the pair (prea, preb) to pay $v + $cb − $ε amount to some burn address Adrburn whose
private key is known to nobody, the remaining $ε is paid as fee to the miner who mines the
block.

To make sure that Alice and Bob cannot unilaterally spend from the address Adr stp, and AdrP2,
their associated scripts require signatures from both Alice and Bob to spend from these addresses.
Note also that the transactions txP1, txP2, and txC2 needed to spend from P1, P2, and C2 are signed
with different public keys of Alice and Bob, i.e., (pka, pkb), (pk′a, pk

′
b), and (pk′′a, pk

′′
b) respectively.

This makes sure that each transaction can invoke only the intended activation point.

Protocol flow. Before setting up Rapidash on the blockchain, Alice and Bob agree on the setup
transaction tx stp. The transaction must be signed by Bob to take effect. However, before signing
tx stp, Alice and Bob agree on and sign all redeeming transactions, including txP1, txP2, txC1, and
txC2. Alice and Bob now broadcast all these transactions (not including tx stp) and both of their
signatures — notice that they cannot be published on the Bitcoin blockchain yet because the
addresses they depend on, Adr stp or AdrP2, are not ready yet.

At this moment, Bob reveals his signatures on tx stp. Once tx stp is published on the Bitcoin
blockchain, the execution phase starts. During the execution phase, either Alice reveals prea and
publishes transaction txP1 (along with signatures on the transaction), or Bob reveals preb and
publishes transaction txP2 (along with signatures on the transaction) after T1 time has passed since
the confirmation of tx stp. In the honest run of the protocol, if txP1 is confirmed, Bob gets back his

4κ = 160 in Bitcoin when using the opcode OP HASH160.
5Instantiated using the opcode OP CHECKSEQUENCEVERIFY in Bitcoin checking if the height of the

blockchain has increased beyond some threshold after the script first appeared on the blockchain. It can also
be instantiated with opcode OP CHECKLOCKTIMEVERIFY in Bitcoin that checks if the current height of the
blockchain is beyond a threshold.

6 The signature scheme can be instantiated with either Schnorr or ECDSA in Bitcoin. ECDSA signatures are
verified using the opcode OP CHECKSIG and Schnorr signatures via the taproot fork.

22

Table 1: Rapidash’s transactions in Bitcoin. Here (ΦB
0 ,Φ

B
1 ,Φ

B
2) are the script that requires the

signature under Bob’s public key while ΦA
1 is the script that requires the signature under Alice’s

public key.

Description

tx stp tx

(
[(AdrB0 ,Φ

B
0 , $v + $cb)],

[(Adr stp,Φstp, $v + $cb)]

)
txP1 tx

(
[(Adr stp,Φstp, $v + $cb)],

[(AdrA1 ,Φ
A
1 , $v), (AdrB1 ,Φ

B
1 , $cb)]

)
txP2 tx

(
[(Adr stp,Φstp, $v + $cb),
[(AdrP2,ΦP2, $v + $cb)]

)
txC1 tx

(
[(AdrP2,ΦP2, $v + $cb)

[(AdrB2 ,Φ
B
2 , $v + $cb)]

)
txC2 tx

(
[(Adr stp,Φstp, $v + $cb)],

[(Adrburn,Φburn, $v + $cb − $ε)]

)

Φstp(tx , prea, preb, σa, σb)

P1: if (H(prea) = ha) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

P2: if (NOW > T1) ∧ (H(preb) = hb) ∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

then return 1

C2: if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1) ∧ (H(prea) = ha) ∧ (H(preb) = hb)

then return 1

// Values ha, hb, pka, pkb, T1, pk
′
a, pk

′
b, pk

′′
a , pk

′′
b are hardwired

ΦP2(tx , σa, σb)

C1: if (NOW > T2) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1) then return 1

// Values T2, pka, pkb are hardwired

Figure 1: The description of scripts Φstp and ΦP2. Here tx is the transaction spending from the
script. Keys pka, pk

′
a and pk′′a belong to Alice, pkb, pk

′
b and pk′′b belong to Bob.

collateral immediately. If not, Bob can redeem the collateral after waiting for time T1 + T2 using
txP2 and txC1. In the event of misbehavior leading to both prea and preb being revealed, any miner
in the system can immediately spend from the C2 branch of φ, and burn all coins except $ε coins
as transaction fee for itself.

5.3 Instantiating Atomic Swap: Rapidash and Rapidash’ in Bitcoin

In this section we show how we can instantiate both Rapidash and Rapidash’ in Bitcoin’s scripting
language for the atomic swap protocol from Section 4.3. The techniques for the instantiations follow
quite closely to the techniques from above.

23

Figure 2: The transaction flow of Rapidash in Bitcoin absent external incentives. Rounded boxes
denote transactions, rectangles within are outputs of the transaction. Incoming arrows denote
transaction inputs, outgoing arrows denote how an output can be spent by a transaction at the
end of the arrow. Solid lines indicate the transaction output can be spent only if both users sign
the spending transaction. Dashed arrows indicate that the output can be spent by one user (A for
Alice, and B for Bob). The timelock (T1 and T2) associated with a transaction output is written
over the corresponding outgoing arrow.

5.3.1 Instantiating Rapidash in Bitcoin

The only difference between the Rapidash in the atomic swap compared to the single instance
Rapidash is in the following transactions: a modified payment redeem transaction txP1, and
a modified collateral redeem transaction txC2. For ease of understanding, we only explain the
concrete modifications.

Transactions. As in the single instance case, we have tx stp, txP2 and txC1. The first change is in
the transaction txP1 which now additionally requires prec to be (by Bob) released along with prea.
This is reflected in the modified P1 branch of the script Φstp (described in Figure 3).

We modify the collateral redeem transaction txC2 that either requires (pre ′a, preb) or (prea, preb,
prec) to be released, such that H(pre ′a) = h′a, H(prea) = ha, H(preb) = hb, and H(prec) = hc, apart
from the signatures from Alice and Bob. This is again reflected in the C2 branch of the Φstp script
(described in Figure 3). The change in ΦP2 is that we replace T2 with τ .

A pictorial description of the transaction flow is described in Figure 4.

Protocol Flow. Alice and Bob, proceed as before, where they first agree on the setup transaction
tx stp and sign all the payment redeem and collateral redeem transactions txP1, txP2, txC1, and txC2

as described above. They broadcast all these transactions and the respective signatures, like before.
Finally, Bob signs the setup transaction tx stp and publish it on the blockchain which marks the
start of the execution phase. Rest of the protocol flow follows exactly the protocol for the atomic
swap.

24

Φstp(tx , prea, preb, σa, σb)

P1: if (H(prea) = ha) ∧ (H(prec) = hc) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

thenreturn 1

P2: if (NOW > T1) ∧ (H(preb) = hb) ∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

thenreturn 1

C2: if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1)∧((
(H(pre ′

a) = h′a) ∧ (H(preb) = hb)
)
∨
(

(H(prea) = ha) ∧ (H(preb) = hb) ∧ (H(prec) = hc)
))

then return 1

// Values h′a, ha, hb, hc, pka, pkb, T1, pk
′
a, pk

′
b, pk

′′
a , pk

′′
b are hardwired

Figure 3: The description of script Φstp. Here tx is the transaction spending from the script. Keys
(pka, pk

′
a, pk

′′
a) and (pkb, pk

′
b, pk

′′
b) belong to Alice and Bob, respectively.

(or)

Figure 4: The transaction flow of Rapidash in Bitcoin for atomic swap. Rounded boxes denote transactions,
rectangles within are outputs of the transaction. Incoming arrows denote transaction inputs, outgoing arrows
denote how an output can be spent by a transaction at the end of the arrow. Solid lines indicate the
transaction output can be spent only if both users sign the spending transaction. Dashed arrows indicate
that the output can be spent by one user (A for Alice, and B for Bob).

5.3.2 Instantiating Rapidash’ in Bitcoin

We describe all the transactions, addresses and scripts needed in the Rapidash’ instantiation
for the atomic swap case. Notice that roles of Alice and Bob are reversed compared to Rapidash
above. Specifically, in Rapidash’, Bob can use pre ′b to retrieve the coins from the payment address,
while Alice can use pre ′a after a timeout of T ′1 to retrieve the coins. The main difference between
this instantiation and the Rapidash instantiation above is that, in the execution phase both the

25

payment address activation points P1′ and P2′ can be activated by empty message calls. We also
have a modified collateral redeem of the C2′ branch of the Φ′stp similar in manner to the Rapidash
instantiation above.

Table 2: Description of additional transactions in Bitcoin for Rapidash’ atomic swap. Here
(ΦA

1 ,Φ
A
2) and ΦB

1 are scripts that require a signature from Alice’s and Bob’s public key, respectively.

Description

tx empty
P1′

tx

(
[(Adr ′stp,Φ

′
stp, $x

′ + $c′a)],

[(AdrB1 ,Φ
B
1 , $x

′), (AdrA1 ,Φ
A
1 , $c

′
a)]

)
tx empty

P2′
tx

(
[(Adr ′stp,Φ

′
stp, $x

′ + $c′a)],

[(AdrP2′ ,ΦP2′ , $x
′ + $c′a)]

)
tx empty

C1′
tx

(
[(AdrP2′ ,ΦP2′ , $x

′ + $c′a)],

[(AdrA2 ,Φ
A
2 , $x

′ + $c′a)]

)

Φ′stp(tx , pre ′a, pre ′b, σa, σb)

P1’: if (H(pre ′
b) = h′b) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

P2’: if (NOW > T ′
1) ∧ (H(pre ′

a) = h′a) ∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

then return 1

E1: if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1) then return 1

E2: if (NOW > T ′
1) ∧ (Vf(pk3a, tx , σb) = 1) ∧ (Vf(pk3b , tx , σb) = 1) then return 1

C2: if (Vf(pk4a, tx , σa) = 1) ∧ (Vf(pk4b , tx , σb) = 1) ∧((
(H(pre ′

a) = h′a) ∧ (H(preb) = hb)
)
∨
(

(H(pre ′
a) = h′a) ∧ (H(pre ′

b) = h′b)
))

then return 1

// Values h′a, h
′
b, hb, pka, pkb, T1, pk′a, pk′b, pk′′a , pk′′b , pk3a, pk3b , pk4a, pk4b are hardwired

Figure 5: The description of script Φ′stp.

Transactions. We describe below the different transactions needed for our Rapidash’ instantia-
tion.

• We now have two additional payment redeem transactions, tx empty
P1′

and tx empty
P2′

(see Table 2)
apart from txP1′ and txP2′ that redeem from the payment address Adr ′stp. We have the

transaction tx empty
P1′

that redeems $x′ coins to Bob’s address and $c′a coins are paid to Alice’s

address. The transaction tx empty
P2′

redeems $x′+ $c′a coins to an auxiliary address AdrP2′ . The
description of Φ′stp is given below in Figure 5 with Alice and Bob’s roles being reversed in

Rapidash’. We set the two transactions tx empty
P1′

and tx empty
P2′

to redeem the coins from the (E1)
and (E2) branches, respectively. These transactions will correspond to the empty message
calls to the Rapidash’ contract in activation points P1′ and P2′, respectively. The script Φ′stp
has a modification in the C2′ branch, where we require either (pre ′a, pre ′b) or (pre ′a, preb) along

26

(or)

Figure 6: The transaction flow of Rapidash’ in Bitcoin for atomic swap. Rounded boxes denote
transactions, rectangles within are outputs of the transaction. Incoming arrows denote transaction
inputs, outgoing arrows denote how an output can be spent by a transaction at the end of the
arrow. Solid lines indicate the transaction output can be spent only if both users sign the spending
transaction. Dashed arrows indicate that the output can be spent by one user (A for Alice, and
B for Bob). The timelock (T ′1 and τ ′) associated with a transaction output is written over the
corresponding outgoing arrow.

with the signatures of Alice and Bob. Similarly the script ΦP2′ of the auxiliary addresses are
the same as ΦP2 from Rapidash, except we replace the timeout value τ with τ ′.

• In addition to the collateral redeem transaction txC1′ we have the transaction tx empty
C1′

and a

modified txC2′ (see Table 2). The new transaction tx empty
C1′

redeem coins from the C1′ activation

point, if transaction tx empty
P2′

was activated earlier. Similar to the Rapidash instantiation, C1′

branch timeout of τ ′ for tx empty
C1′

is implemented via the auxiliary addresses created by tx empty
P2′

.
Finally the transaction txC2′ is modified to require either (pre ′a, pre ′b) or (pre ′a, preb), apart

27

from the signatures from Alice and Bob. Intuitively, this transaction is set to activate the
modified C2′ branch of Φ′stp. The change in ΦP2′ is that we replace T2 with τ ′.

A pictorial description of the transaction flow for payment and collateral redeem is given in Fig-
ure 6.

Protocol Flow. Alice and Bob, first agree on the setup transaction tx ′stp and sign the redeeming

transactions txP1′ , txP2′ , txC1′ , txC2′ , and tx empty
C1′

. They broadcast all these transactions and the

respective signatures, like before. However, this time Alice and Bob sign the transaction tx empty
P1′

such
that only Alice has both signatures. She does not broadcast the signatures and keeps it privately.
Similarly, Alice and Bob sign the transaction tx empty

P2′
such that only Bob has both signatures. He

keeps them privately and does not broadcast them. Notice that none of the transaction can be
published on the blockchain yet as the setup transaction is not yet published. Finally, they sign
the setup transaction tx ′stp and publish it on the blockchain, thus starting the execution phase.

Whenever Alice wishes to activate P1′ in Rapidash’ with an empty message, she publishes the
transaction tx empty

P1′
along with the valid signatures she has in her possession. Similarly, whenever

Bob wishes to activate P2′ in Rapidash’ with an empty message, he publishes the transaction
tx empty

P2′
along with the valid signatures he has in his possession. If tx empty

P2′
is published on the

blockchain, activation point C1′ can be activated by tx empty
C1′

after a timeout of τ ′ time units.
Conditional burning via tx ′C2 activates C2′ if the parties misbehave, which proceeds exactly as the
description of the atomic swap protocol.

References

[BBSU12] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better – how to
make bitcoin a better currency. In Financial Cryptography and Data Security (FC),
2012.

[BDM] Wac law Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient zero-knowledge
contingent payments in cryptocurrencies without scripts. In Computer Security – ES-
ORICS 2016.

[Bis] Bryan Bishop. Bitcoin vaults with anti-theft recovery/clawback mechanisms.
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/

017231.html.

[BK] Sergiu Bursuc and Steve Kremer. Contingent payments on a public ledger: Models
and reductions for automated verification. In ESORICS 2019.

[Bon] Joseph Bonneau. Why buy when you can rent? - bribery attacks on bitcoin-style
consensus. In Financial Cryptography Workshops 2016.

[CCWS21] Kai-Min Chung, T-H. Hubert Chan, Ting Wen, and Elaine Shi. Game-theoretic fairness
meets multi-party protocols: The case of leader election. In CRYPTO. Springer-Verlag,
2021.

[CGGN] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-
knowledge contingent payments revisited: Attacks and payments for services. In ACM
CCS 2017.

28

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html

[CGL+18] Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi. Game theoretic
notions of fairness in multi-party coin toss. In TCC, volume 11239, pages 563–596,
2018.

[CMST22] Hao Chung, Elisaweta Masserova, Elaine Shi, and Sri AravindaKrishnan Thyagara-
jan. Ponyta: Foundations of side-contract-resilient fair exchange. Cryptology ePrint
Archive, Paper 2022/582, 2022. https://eprint.iacr.org/2022/582.

[DEFM19] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual payment hubs over cryptocurrencies. In IEEE Symposium on Security and
Privacy, 2019.

[DFH18] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel
networks. In ACM CCS, CCS ’18, page 949–966, 2018.

[DW15] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with
bitcoin duplex micropayment channels. In Stabilization, Safety, and Security of Dis-
tributed Systems, 2015.

[Fuc] Georg Fuchsbauer. Wi is not enough: Zero-knowledge contingent (service) payments
revisited. In ACM CCS 2019.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Eurocrypt, 2015.

[GM] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized
currencies. In ACM CCS 2017.

[Ham] Matthew Hammond. Blockchain interoperability series: Atomic swaps. https://

medium.com/@mchammond/atomic-swaps-eebd0fa8110d.

[Her18] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM Sym-
posium on Principles of Distributed Computing, PODC ’18, page 245–254, New York,
NY, USA, 2018. Association for Computing Machinery.

[HZ20] Jona Harris and Aviv Zohar. Flood & loot: A systemic attack on the lightning network.
In AFT, 2020.

[JMM14] Danushka Jayasinghe, Konstantinos Markantonakis, and Keith Mayes. Optimistic fair-
exchange with anonymity for bitcoin users. In 2014 IEEE 11th International Conference
on e-Business Engineering, pages 44–51, 2014.

[JSZ+21] Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Pe-
ter Gazi, Sarah Meiklejohn, and Edgar Weippl. Pay to win: Cheap, crowdfundable,
cross-chain algorithmic incentive manipulation attacks on pow cryptocurrencies. In FC
WTSC, 2021.

[KMSW22] Ilan Komargodski, Shin’ichiro Matsuo, Elaine Shi, and Ke Wu. log*-round game-
theoretically-fair leader election. 2022.

[Max] Gregory Maxwell. The first successful zero-knowledge con-
tingent payment. https://bitcoincore.org/en/2016/02/26/

zero-knowledge-contingent-payments-announcement/.

29

https://eprint.iacr.org/2022/582
https://medium.com/@mchammond/atomic-swaps-eebd0fa8110d
https://medium.com/@mchammond/atomic-swaps-eebd0fa8110d
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/

[MBB+] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry.
Sprites and state channels: Payment networks that go faster than lightning. In Finan-
cial Cryptography 2019.

[MD19] Mahdi H. Miraz and David C. Donald. Atomic cross-chain swaps: Development, trajec-
tory and potential of non-monetary digital token swap facilities. In Annals of Emerging
Technologies in Computing (AETiC), 2019.

[MES16] Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In Financial Cryptog-
raphy Workshops, volume 9604 of Lecture Notes in Computer Science, pages 126–141.
Springer, 2016.

[MHM18] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for bribing
miners. In Financial Cryptography Workshops, 2018.

[MMA] Patrick McCorry, Malte Möser, and Syed Taha Ali. Why preventing a cryptocurrency
exchange heist isn’t good enough. In Security Protocols Workshop 2018.

[MMS+] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and Mat-
teo Maffei. Anonymous multi-hop locks for blockchain scalability and interoperability.
In NDSS 2019.

[MMSH] Patrick Mccorry, Malte Möser, Siamak F. Shahandasti, and Feng Hao. Towards bitcoin
payment networks. In Proceedings, Part I, of the 21st Australasian Conference on
Information Security and Privacy - Volume 9722, 2016.

[PD] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. https://lightning.network/lightning-network-paper.pdf.

[PS17a] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, 2017.

[PS17b] Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In CSF, pages 115–129.
IEEE Computer Society, 2017.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part II, pages 643–673, 2017.

[TYME21] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. MAD-HTLC: because
HTLC is crazy-cheap to attack. In IEEE Symposium on Security and Privacy, pages
1230–1248. IEEE, 2021.

[vdM19] Ron van der Meyden. On the specification and verification of atomic swap smart
contracts. In IEEE ICBC, 2019.

[WAS22] Ke Wu, Gilad Asharov, and Elaine Shi. A complete characterization of game-
theoretically fair, multi-party coin toss. In Eurocrypt, 2022.

[WHF19] Fredrik Winzer, Benjamin Herd, and Sebastian Faust. Temporary censorship attacks
in the presence of rational miners. In IEEE European Symposium on Security and
Privacy Workshops, pages 357–366, 2019.

30

https://lightning.network/lightning-network-paper.pdf

[WSZN22] Sarisht Wadhwa, Jannis Stoeter, Fan Zhang, and Kartik Nayak. He-htlc: Revisiting
incentives in htlc. Cryptology ePrint Archive, Paper 2022/546, 2022. https://eprint.
iacr.org/2022/546.

[ZHL+19] A Zamyatin, D Harz, J Lind, P Panayiotou, A Gervais, and W Knottenbelt. Xclaim:
trustless, interoperable, cryptocurrency-backed assets. In IEEE S& P, 2019.

31

https://eprint.iacr.org/2022/546
https://eprint.iacr.org/2022/546

	Introduction
	Our Results and Contributions
	Related Work

	Preliminaries
	Blockchain Execution Model
	Players and Strategy Spaces
	Protocol Execution
	Smart Contract Notation
	Definition of Game-Theoretic Fairness

	Rapidash: Single Instance
	Definitions
	Construction
	Proofs

	Side-Contract-Resilient Cross-Chain Atomic Swap
	Definition
	Strawman Idea
	Our Construction
	Proofs

	Bitcoin Instantiation
	Notation and Background
	Instantiating Rapidash Single Instance
	Instantiating Atomic Swap: Rapidash and Rapidash' in Bitcoin
	Instantiating Rapidash in Bitcoin
	Instantiating Rapidash' in Bitcoin

