
Rapidash: Foundations of Side-Contract-Resilient Fair Exchange

Hao Chung Elisaweta Masserova Elaine Shi
Sri AravindaKrishnan Thyagarajan

Carnegie Mellon University

Abstract

Fair exchange is a fundamental primitive enabled by blockchains, and is widely adopted in
applications such as atomic swaps, payment channels, and Decentralized Finance (DeFi). Most
existing designs of blockchain-based fair exchange protocols consider only the participating users
as strategic players, and assume the miners of the blockchain system are honest and passive.
However, recent works revealed that the fairness of commonly deployed fair exchange protocols
can be broken entirely in the presence of user-miner collusion. In particular, a user can bribe the
miners to help it cheat — a phenomenon also referred to as Miner Extractable Value (MEV).

In this work, we provide the first formal treatment of side-contract-resilient fair exchange
where users and miners may enter into arbitrary contracts on the side. We propose a new fair
exchange protocol called Rapidash, and prove that the protocol is incentive compatible in the
presence of user-miner collusion. In particular, we show that Rapidash satisfies a coalition-
resistant Nash equilibrium absent external incentives. Further, even when there exist arbitrary
but bounded external incentives, Rapidash still protects honest players and ensures that they
cannot be harmed. Last but not least, our game-theoretic formulations also lay the theoretical
groundwork for studying side-contract-resilient fair exchange protocols. Finally, to showcase the
instantiability of Rapidash with a wide range of blockchain systems, we present instantiations
of Rapidash that are compatible with Bitcoin and Ethereum while incurring only a minimal
overhead in terms of costs for the users.

1

Contents

1 Introduction 1
1.1 Our Results and Contributions . 2
1.2 Additional Related Work . 4

2 Problem Statement and Prior Approaches 5
2.1 Problem Statement . 5
2.2 Strawman and Prior Approaches . 5

3 Definitions 7
3.1 Blockchain, Transaction, and Smart Contracts . 7
3.2 Players and Strategy Spaces . 8
3.3 Protocol Execution . 8
3.4 Game Theoretic Definitions . 9

4 Our Constructions: Informal Technical Roadmap 10
4.1 Warmup: CSP-Fair Knowledge-Coin Exchange . 10
4.2 CSP-Fair Atomic Swap Protocol . 12

4.2.1 Strawman: Direct Composition . 12
4.2.2 Our Atomic Swap Protocol . 12

4.3 Achieving Bounded Maximin Fairness . 14
4.4 Coalition Forming Meta-Game . 15

5 Definitions of Atomic Swap and Dropout Resilience 16
5.1 Definition: Atomic Swap . 16
5.2 Definition of Dropout Resilience . 17
5.3 Convention for Writing Smart Contracts . 18

6 CSP-fair Knowledge-Coin Exchange 19
6.1 Definitions . 19
6.2 The Rapidash Knowledge-Coin Exchange Protocol. 19
6.3 Proofs: CSP Fairness and Dropout Resilience . 20

7 Atomic Swap: Achieving CSP-Fairness 22
7.1 Proofs . 25

8 Atomic Swap: Achieving Bounded Maximin Fairness 30
8.1 Constructions . 30
8.2 Proof for Bounded Maximin Fairness . 34

8.2.1 Utilities When Bombs Are Triggered . 35
8.2.2 Non-Rational Strategies . 36
8.2.3 Against Externally Incentivized Bob-Miner Coalition 37
8.2.4 Against Externally Incentivized Alice-Miner Coalition 42
8.2.5 Proof of Theorem 8.2 . 46

8.3 Proof for Dropout Resilience . 47

2

9 Rapidash Disincentivizes a 100% Coalition 48
9.1 The Meta-Game of Coalition Formation . 48
9.2 Comparison with Prior Approaches . 49

10 Bitcoin Instantiation 49
10.1 Notation and Background . 49
10.2 Instantiating Rapidash Single Instance . 50
10.3 Instantiating Atomic Swap . 52

10.3.1 Instantiating Rapidash from Section 7 . 52
10.3.2 Instantiating Rapidash’ from Section 7 . 54
10.3.3 Instantiating Rapidash from Section 8.1 . 58
10.3.4 Instantiating Rapidash’ from Section 8.1 . 59

11 Ethereum Instantiation 63
11.1 Comparison of Rapidash’s Knowledge-Coin Exchange to HTLC, MAD-HTLC, and

He-HTLC . 63
11.2 Evaluation of Rapidash’s Atomic Swap Protocols 64

A Proof of CSP Fairness (Theorem 8.1) 69

1 Introduction

Consider the following scenario between mutually distrusting Alice and Bob: Alice possesses some-
thing that Bob wants, and Bob possesses something that Alice wants. A fair exchange proto-
col enables an exchange between Alice and Bob such that either both of them get the desired
item or neither of them does. Fair exchange is a problem that has been studied for a long
time [Mic03, Aso98, ASW97]. In particular, it has been shown that fair exchange is impossi-
ble to achieve without further assumptions [PG99, Mic03]. One way to circumvent this limita-
tion is to rely on a trusted third party, such as a blockchain [BBSU12, Her18, MMS+, vdM19,
MD19,Max,CGGN,BDM16,Fuc,BK,MES16,MMA,Bis,ZHL+19,JMM14,TYME21,PD]. Indeed,
the fair exchange is a fundamental primitive in blockchain applications [BBSU12, Her18, MMS+,
vdM19, MD19, Max, CGGN, BDM16, Fuc, BK, MES16, MMA, Bis, ZHL+19, JMM14, TYME21, PD],
and has been widely adopted in the form of atomic swaps [Her18,MMS+,vdM19,MD19], contingent
payment [Max, CGGN, BDM16, Fuc, BK], payment channels [PD, DW15, GM, MMSH16, MBB+19,
DFH18,DEFM19], or vaults [MES16,MMA,Bis,ZHL+19].

Most existing blockchain-based fair exchange protocols consider only Alice and Bob as poten-
tially strategic players, and the miners are assumed to be honest [EFS20,DEF18,AHS22,CGJ+17,
GKM+22, BK14]. Recently, however, the community has become increasingly concerned that po-
tential user-miner collusion can completely break the fairness guarantees promised by fair exchange
protocols [TYME21, WHF19, Bon16, MMS+, MHM18, JSZ+21, Ham] — a phenomenon commonly
referred to as Miner Extractable Value (MEV). As a concrete example, a Hash Timelock Contract
(HTLC) is one of the commonly employed mechanisms for realizing fair exchange in blockchain
environments. Imagine that Alice has a secret s and she wants to sell it to Bob at a price $v. A
standard HTLC contract is parametrized with the hash of the secret h = H(s), a timeout value
T , and the price $v. In the preparation phase, Bob deposits $v coins into the contract. The con-
tract now allows Alice to redeem the $v coins by posting the secret s whose hash should equal h.
However, if Alice fails to redeem $v by time T , Bob can get his deposit $v back. Since the HTLC
contract can protect Bob from an offline Alice, we also say that it is dropout resilient.

Unfortunately, a number of recent works have pointed out that the standard HTLC is vulnerable
to user-miner collusion. In particular, Bob may collude with some miners in an attempt to starve
Alice’s redeeming transaction. If Bob’s coalition can suppress the transaction till the timeout
T , then they can get the $v deposit back after learning the secret s! Various works have shown
that such user-miner collusion is indeed possible in practice through bribery mechanisms [TYME21,
WHF19,HZ20,MHM18,JSZ+21,Ham]. Such attacks can be instantiated in various ways [TYME21,
WHF19,HZ20,MHM18,JSZ+21,Ham], e.g., by exploiting the decentralized smart contracts available
in blockchain environments. Moreover, with some clever tricks, they can be instantiated in a fairly
inexpensive manner [TYME21].

Therefore, the status quo raises a natural and important question:

Can we have a blockchain-based fair exchange protocol that resists user-miner collusion?

If a fair exchange protocol is incentive compatible even in the presence of user-miner coalitions, we
also say that it is side-contract-resilient.

Tsabary et al. [TYME21] made a pioneering attempt at answering the above question. They pro-
posed a new fair exchange mechanism called a Mutual-Assured Destruction Hash Timelock Contract
(MAD-HTLC). Unfortunately, their scheme secures only against a couple of specific forms of bribery
attacks. At the same time, it opens up some new attacks (see Section 2.2 for a more detailed dis-
cussion). Indeed, the authors of the MAD-HTLC paper acknowledge themselves that MAD-HTLC
does not provide any provable guarantee in the presence of user-miner collusion [TYME21].

1

1.1 Our Results and Contributions

To the best of our knowledge, we are the first to give a formal treatment of side-contract-resilient
fair exchange. Specifically, we make the following contributions:

Rapidash: a side-contract resilient fair exchange protocol. We propose a new, side-contract
resilient cross-chain atomic swap protocol called Rapidash1, which works atop any standard Proof-
of-Work blockchain or a Proof-of-Stake blockchain where the next block proposer is selected on the
fly with the probability proportional to the miner’s stake. Rapidash allows two players to exchange
one cryptocurrency token for another, while offering the following game-theoretic guarantees (in-
formally stated2):

• Cooperative strategy proofness (i.e., CSP fairness). We prove that absent any external
incentives, any coalition of players (that does not simultaneously contain Alice and Bob3) is
incentivized to play honestly as long as the rest of the world is playing honestly, and the coalition
does not control 100% of the mining power. In other words, honest behavior is a coalition-
resistant Nash equilibrium.

• Bounded maximin fairness. We prove that our protocol protects honest players even when
other players may have arbitrary but bounded external incentives that may encourage them
to deviate from the honest protocol, a notion which we call “bounded maximin fairness”. In
particular, we show that as long as 1) the externally incentivized coalition plays rationally, 2)
their external incentives are bounded, and 3) they do not control 100% mining power, then
honest players will not get negative utility. In other words, simple-minded, non-strategic players
can always feel safe participating as long as they believe that the present protocol has only
bounded externalities.

• Drop-out resilience. An honest player is protected from loss even if the counterparty drops
offline in the middle of the protocol (e.g., due to loss of password or network outage).

Besides offering provable game-theoretic guarantees, our Rapidash atomic swap protocol enjoys
good efficiency properties. We achieve a property called optimistic responsiveness, i.e., when both
parties are honest and online, the protocol completes as soon as c = O(1) number of blocks are
mined on each chain. Specifically, we only need c = 1 to achieve CSP-fairness, and we need c = 3
if we additionally require bounded maximin fairness.

Definitional and conceptual contributions. Our work lays the formal groundwork for studying
side-contract-resilient fair exchange protocols. In general, mechanism design in the blockchain
world is complicated by the existence of decentralized smart contracts, which can be used to solicit
coalitions openly, as well as implement potentially arbitrary side contracts among players.

Our modeling approach follows a line of recent works [PS17a,CGL+18,WAS22,CS21] and can
capture arbitrary side contracts among coalitions of players. We assume that the goal of a rational
coalition is to maximize its joint utility, i.e., the sum of the utilities of all coalition members.
Equivalently, we assume that there is some binding side contract that allows the coalition to split
their joint gains among themselves, and moreover the enforcement of this side contract is ensured.
Besides capturing arbitrary binding side contracts between different players, we also capture the
coalitions that are naturally formed when the same player controls multiple pseudonyms, such

1Rapiddash is a fire-type Pokémon who can control its flames such that its rider is not burnt. Our Rapidash
contract incentivizes honest behavior and protects the players’ collateral from being burnt.

2For Proof-of-Stake, the percentage of the mining power is measured in terms of stake.
3If Alice and Bob were in the same coalition, they would not need the fair exchange.

2

as public keys. For example, Alice or Bob may well be the pseudonym of some miner (c.f. the
assumption made in earlier works [TYME21], that Bob must not be a miner, is clearly unenforceable
in the real world).

We adopt two central incentive-compatibility notions.

1. The first one, CSP-fairness (or equivalently, coalition-resistant Nash Equilibrium), was proposed
and adopted in a line of recent works [PS17a, CGL+18, WAS22, CS21]. This notion implicitly
assumes that that the players do not have external incentives outside the current protocol in-
stance, and thus, a strategic individual or coalition is incentivized to act in a way that maximizes
its profit.

2. Our second notion, bounded maximin fairness, is a new notion that may be of independent
interest in a broader context, especially in cases where external incentives may lead players
to behave maliciously from the perspective of the current protocol. However, security against
arbitrarily malicious behavior is difficult to attain. In this respect, the strongest possible game-
theoretic notion one can hope for is that even when the strategic coalition can be arbitrarily
malicious, honest players should not be harmed. Indeed, this notion was termed as maximin
fairness in a line of recent works [PS17a,CGL+18,WAS22]. In maximin fairness, we implicitly
assume that the external incentives may be arbitrary and unbounded, and this is why the
strategic players’ behavior may appear arbitrarily malicious from the perspective of the present
protocol. Maximin fairness, however, is a very stringent requirement, and insisting on such a
strong notion of fairness may severely constrain the design space or even lead to impossibility
results in some applications.

In fair exchange, we currently do not know how to achieve maximin fairness. Instead, we
suggest a meaningful relaxation called bounded maximin fairness. Unlike the stringent notion,
in bounded maximin fairness, we assume that the external incentives may still be arbitrary, but
the total amount is bounded. We want to guarantee that honest participation will not lead to
negative utility as long as the other strategic players behave rationally in light of the arbitrary
but bounded external incentives.

Finally, our definitional approach models players and coalitions as interactive Turing Machines
which can send and receive a special type of variable called money. This allows us to capture a
most general strategy space, i.e., deviating players can not only send arbitrary messages, but also
post new smart contracts on the fly during protocol execution.

On the use of collateral and the “burning” technique. To achieve our game theoretic
guarantees, we have the parties deposit collateral upfront, and the protocol is designed such that
if a strategic user or miner-user coalition misbehaves, the remaining non-colluding miners will be
incentivized to invoke a path that slashes the collateral — we discuss how slashed collateral can be
used shortly after. This creates disincentives for a strategic user or coalition to deviate from the
honest protocol.

We stress that while the use of collateral is common in both layer-1 protocols (e.g., proof-of-
stake) and layer-2 protocols (e.g., Optimism [opt], Polygon/Matic [mat], Loopring [loo]). Further,
many real-world protocols are heuristic-based designs and offer no provable guarantees [opt, mat,
loo]. For this reason, there seems to be an urgent need to establish a theoretical foundation
for formal reasoning about the fairness of such incentive-driven protocols. Our work makes an
important step forward in achieving this goal in the following ways: 1) we identify new game-
theoretic notions that may be suitable for analyzing a broader class of incentive-based protocols;
and 2) we demonstrate a new paradigm for achieving provable security in such protocols. The

3

many technical subtleties we encounter along the way show that while the idea of using collateral
and slashing is not new, achieving provable security turns out to be challenging!

We use the word “burning” to refer to the slashing of the collateral. We stress, however, that
despite the terminology, the slashed collateral actually need not be burnt and removed out of
circulation. In fact, as Roughgarden [Rou20] pointed out, “burning” coins means that they can
be used for any purpose that is independent of the game. For example, they can be donated to
charity or paid to an account that is jointly governed by the community. Last but not least, since
our protocols incentivize honest behavior even in the presence of a miner-user coalition, in practice,
the expectation is that burning should not happen.

Instantiation atop Bitcoin and Ethereum. For ease of understanding, we first describe Rap-
idash, assuming the existence of generic smart contracts. We then go on to give instantiations of
the atomic swap protocols (for both CSP-fairness and bounded maximin fairness) that are compat-
ible even with the limited scripting language of Bitcoin. To achieve this, we only use some of the
most commonly used scripts in Bitcoin and exploit the transaction model of Bitcoin, where coins
in addresses can be spent precisely once, and excess coins in a transfer are treated as a transaction
fee for the miners. We also instantiate our atomic swap protocols in Solidity [Eth22], Ethereum’s
smart contract language, and deploy them on the Goerli testnet [goe22]. Additionally, we imple-
ment and evaluate a CSP-fair Rapidash contract which allows a user to sell a secret, and provide a
comparison of this contract to HTLC, MAD-HTLC, and He-HTLC [WSZN], which aim to achieve
similar functionality.

1.2 Additional Related Work

We now review additional related work besides those already mentioned. Our work is related to
financially fair protocols [BK14,MB17,BZ17,CGJ+17,KB16,KMS+16], where it is common to use
collateral and penalty mechanisms to incentivize honest behavior. For some specific applications
such as lottery and leader election, a few works showed that collateral is not necessary to achieve
game-theoretic fairness [MB17, BZ17, CCWS21]. To the best of our knowledge, almost all prior
works consider only the users as potentially strategic players, the miners are assumed to be honest.

One notable exception is MAD-HTLC [TYME21], which similar to us allows honest miners to
extract the value should any cheating behavior take place. However, as we explain in Section 2.2,
MAD-HTLC [TYME21] only protects against a specific type of bribing attacks, without providing
guarantess in the presence of general user-miner collusion.

Concurrent work. The concurrent work Helium [WSZN] has results that are very closely re-
lated to ours. Both works were initially completed in May 2022, and since then both works have
undergone several revisions. The main differences between the two works are the following:

• Helium [WSZN] considers only the knowledge-coin exchange primitive which is the warmup
of our paper. As we show, the main technical challenges arise in the construction of the
atomic swap. In particular, we show that directly composing two knowledge-coin instances
do not yield a secure atomic swap protocol. This exposes intriguing technicalities regarding
the composition of game-theoretically secure primitives.

• Helium [WSZN] considers only a fairness notion similar to our CSP fairness, but they provide
no guarantee in the presence of external incentives. As stated above, one of our main contri-
butions is the new formulation of bounded maximin fairness along with an efficient protocol
that can be proven in the model.

4

2 Problem Statement and Prior Approaches

We now discuss the problem statement in more detail and highlight the issues of prior proposals.

2.1 Problem Statement

Our goal is to realize cross-chain atomic swap, where two parties wish to exchange one cryptocur-
rency with another.

First, we consider a simpler primitive henceforth called knowledge-coin exchange. In a knowledge-
coin exchange, Bob wants to buy a secret s of Alice at a price of $v coins. Such exchanges are useful
in many applications. In particular, existing cross-chain atomic swap constructions [Her18,MMS+,
vdM19, MD19] (without side-contract resilience) work by composing two instances of knowledge-
coin exchange. Henceforth we assume that Alice loses value $va for revealing s, and Bob gains
value $vb if he learns s. If $va < $v < $vb, both parties benefit from Alice selling s to Bob at price
$v.

Basic Assumptions. In this work, we will assume that Alice or Bob may collude with a subset
of the miners, and the coalition may adopt arbitrary probabilistic polynomial-time strategies to
maximize its joint utility. The only restriction we impose on the strategy space is that the coalition
does not perform a consensus-level or network-level attack. For example, we do not consider 51%
attacks that aim to make profit through double-spending. There is an orthogonal line of work that
focuses on consensus security [GKL15,PSS17,PS17b].

Therefore, we assume an idealized mining process. In every time step, an ideal functionality
picks the next winning miner at random with probability proportional to its mining power (or
stake). The winning miner may choose a set of transactions to include in the next block. We
assume that the network delay is 0, i.e., any message posted by Alice, Bob or any new block mined
will be immediately seen by other players.

We formalize the transactions notion and a smart contract execution model in Section 3.1.

2.2 Strawman and Prior Approaches

Throughout the paper, we will write smart contracts using pseudocode. Since all existing and new
smart contracts in this paper use simple logic, it does not necessitate a general smart contract
language like Ethereum to instantiate them — even Bitcoin’s restricted scripting language works,
as we show in Section 10.

Näıve protocol. The most straightforward idea is for Alice and Bob to agree on a smart contract
which knows hs = H(s) where H(·) denotes a cryptographic hash function, and for Bob to deposit
$v into the contract upfront. The smart contract’s logic is very simple:

On receiving s from Alice such that H(s) = hs, send $v to Alice.

In the protocol, Alice sends s to the smart contract (using a transaction) as soon as Bob has
deposited $v into the contract. Honest miners always include all outstanding transactions in any
block they mine.

Surprisingly, this näıve protocol satisfies CSP-fairness, i.e., any coalition consisting of either
Alice or Bob as well as an arbitrary subset of the miners have no incentive to deviate from the
honest protocol; and following the honest strategy maximizes the coalition’s utility.

The näıve protocol, however, has two drawbacks. 1) Alice can harm Bob without incurring
any cost to herself. Simply by withholding s, Bob will lose its deposit $v; and 2) even if Alice is

5

well-meaning, she may accidentally drop offline (e.g., due to an unforeseen circumstance such as
losing her password) in which case Bob also loses $v. Note that the first drawback can be overcome
by requiring Alice to make a deposit of $v′ too besides Bob’s deposit of $v, such that Alice can
claim $v+ $v′ if she sends s to the smart contract. However, this does not fix the second problem,
that is, the protocol is not dropout resilient.

Hash timelock Contract. A line of work called hash timelock contracts (HTLCs) [atob, atoa,
Her18,CGGN,Max] focus on addressing this very problem, i.e., achieve dropout resilience. HTLCs
are prevalently deployed today, and indeed they work well absent miner-user collusion.

A standard HTLC works as follows, where Bob is still required to deposit $v into the contract
upfront, and the contract is parametrized with a timeout T1:

HTLC

• On receiving s from Alice such that H(s) = hs, send $v to Alice.

• After T1, on receiving ok from Bob: send $v to Bob.

Above, the two activation points are mutually exclusive, i.e., only one of them can be activated
and only once.

This contract allows Bob to recover its deposit if Alice drops offline. However, the HTLC-based
protocol is not CSP fair in the presence of user-miner coalitions. Suppose there is no transaction
fee, then a coalition of Bob and some miners should never include Alice’s transaction: if Alice’s
transaction is blocked till time T1, then Bob’s coalition can get both the secret s and the $v deposit
back!

If Alice offers a transaction fee of $f , then as long as Bob bribes each miner $f + $ε (for some
small $ε > 0) for excluding Alice’s transaction, rational miners will take the bribe [TYME21]. This
bribery attack makes sense for Bob as long as $v > $f ·T1. It may seem like HTLC is secure as long
as T1 · $f is sufficiently large. However, Tsabary et al. [TYME21] showed new attacks where the
cost to Bob is not dependent on T1. We provide more details on Tsabary et al.’s attack [TYME21]
in Section 9. In particular, using our terminology, such attacks are viewed as strategies in the
coalition forming meta-game. The HTLC contract is undesirable because there exist meta-games
where 100% of the miners taking the “bribe” is an equilibrium, thus encouraging 100% coalitions
— see Section 9 for details.

MAD-HTLC. Tsabary et al. [TYME21] suggest a new contract called MAD-HTLC described
below. Bob deposits $v upfront, and the contract works as follows4:

MAD-HTLC

• On receive prea from Alice such that H(prea) = ha: send $v to Alice.

• After T , on receive preb from Bob such that H(preb) = hb: send $v to Bob.

• On receive (prea, preb) from anyone P such that H(prea) = ha and H(preb) = hb: send $v
to P .

All activation points in the above contract are again mutually exclusive, and here we use the
notation prea to denote the secret Alice wants to sell.

In MAD-HTLC, if Alice has disclosed prea and yet Bob still attempts to get his deposit back
by posting preb, then the miner easily preempts Bob’s transaction and claims $v itself by posting

4MAD-HTLC has some extra logic to defend against a spiteful Bob which we omit for simplicity, as this logic does
not mitigate the coalition attacks we point out.

6

the pair (prea, preb). MAD-HTLC thus defends against the simple bribery attack mentioned above
as well as the attack of Tsabary et al. [TYME21] — or in our language, MAD-HTLC removes
the undesirable 100%-colluding-equilibrium in the coalition forming meta-game (see Section 9).
Unfortunately, as the authors acknowledge themselves, MAD-HTLC is NOT incentive compatible
in the presence of binding side contracts between miners and users.

A binding side contract allows the coalition to split off their joint utility in a binding manner.
Such a side contract can be implemented e.g via a smart contract in some blockchain or real-life
physical contract. In MAD-HTLC, Bob can collude with some miners, and as soon as Alice posts
prea, if the colluding miners happen to mine the next block, they can exclude Alice’s transaction
and redeem the $v coins for themselves by posting both prea and preb. Then, using the binding
side contract, the coalition can split off the $v coins among its members. It could also be that Bob
is a miner himself. In this case, if Bob happens to mine the next block after Alice posts prea, Bob
can get the secret for free.

3 Definitions

Before we explain our protocol, we elaborate on our model, and give formal definitions which we
will later use to formally prove that our protocol is indeed fair.

Computationally bounded players and difference from classical game theory modeling.
While classical game theory focuses more on existence rather than computation, in our model, we
need to capture computationally bounded players since the protocol uses cryptography. In this sense,
our modeling techniques are akin to a recent line of works at the intersection of cryptography
and game theory [PS17a, CGL+18, WAS22, CS21]. In comparison with these prior works, our
execution model additionally captures “smart contracts” which are modeled as cryptographic ideal
functionalities.

3.1 Blockchain, Transaction, and Smart Contracts

Smart contracts and transactions. We assume that smart contracts are ideal functionalities
that are 1) aware of money; and 2) whose states are publicly observable. A smart contract can have
one or more activation points. Each transaction is associated with a unique identifier, and consists
of the following information: 1) an arbitrary message, 2) some non-negative amount of money, and
3) which activation point of which smart contract it wants to be sent to. When the transaction is
executed, the corresponding activation point of the smart contract will be invoked, and then, some
arbitrary computation may take place accompanied by the possible transfer of money.

Money can be transferred from and to the following entities: smart contracts and players’
pseudonyms. Without loss of generality, we may assume that players cannot directly send and
receive money among themselves; however, they can send money to or receive money from smart
contracts. The balance of a smart contract is the amount of money it has received minus the
amount of money it has sent out. The balance of any smart contract must always be non-negative.

We assume that each smart contract has a unique name, and each player may have multiple
pseudonyms — in practice, a pseudonym is encoded as a public key. A miner is also a special player
who is capable of mining blocks.

Mining. We do not consider strategies that involve consensus- or network-level attacks — there is
an orthogonal and complementary line of work that focuses on this topic [GKL15, PSS17, PS17b].
For example, a 51% miner can possibly gain by performing a double spending attack.

7

For simplicity, we assume an idealized mining process, that is, in each time step t, an ideal
functionality picks a winning miner with probability proportional to each miner’s mining power (or
amount of stake for Proof-of-Stake blockchains). The winning miner may choose to include a set of
transactions in the block, and order these transactions in an arbitrary order. At this moment, a new
block is mined, and all (valid) transactions contained in the block are executed. Any transaction
that has already been included in the blockchain before is considered invalid and will be ignored.
The above idealized mining process can capture standard Proof-of-Work blockchains and Proof-of-
Stake blockchains where the next proposer is selected on the fly with probability proportional to
the stake held by the miner.

3.2 Players and Strategy Spaces

There are three kinds of players in the model: Alice, Bob, and the miners. We also call Alice and
Bob the users to differentiate from miners. We consider the following strategy spaces.

Anyone, including Alice, Bob, and miners, is allowed to do the following at any time:

1. Post a transaction to the network at the beginning of any time step. We assume that the network
delay is 0, such that transactions posted are immediately seen by all other users and miners.
When miners pick which transactions to include in some time step t, they can see transactions
posted by users for time step t.

2. Create an arbitrary smart contract and put an arbitrary amount of money into the smart
contract. For example, a smart contract can say, “if the state of the blockchain satisfies some
predicate at some time, send some pseudonym some amount of money, where the recipient and
the amount of money can also be dependent on the state of the blockchain.

Every miner is further allowed the following: whenever it gets to mine a block, it can include
an arbitrary subset of the outstanding transactions into the block, and order them arbitrarily. The
miner can also create new transactions and include them in the mined block.

Coalition. Alice or Bob can form a coalition with some of the miners. When the coalition is
formed, all members of the coalition share their private information. The coalition’s strategy space
is the union of the strategy space of each member in the coalition. Notice that once Alice and Bob
are in the same coalition, they can exchange the secret s privately without using the blockchain
and do not have the incentive to misbehave and harm their coalition. Thus, we do not consider the
coalition consists of Alice and Bob.

3.3 Protocol Execution

In our paper, an honest protocol is always a simple protocol that does not create additional smart
contracts in the middle of the execution (even though the strategic players are allowed to create
smart contracts on the fly). A protocol execution involves Alice, Bob, and the miners who are
modeled as interactive Turing machines who can send and receive a special type of variables called
money. The protocol may involve one or more smart contracts which can be viewed as ideal
functionalities whose states are publicly visible to anyone. Ideal functionalities are also interactive
Turing machines capable of sending and receiving money.

For the honest protocol, we want the miners’ honest behavior to be consistent with their hon-
est behavior in typical consensus protocols, i.e., the miner’s honest behavior should include all
outstanding transactions in the mined block.

Finally, since we consider probabilistic polynomial time (PPT) players, we assume that the
protocol execution is parametrized by a security parameter λ.

8

3.4 Game Theoretic Definitions

CSP fairness. We first review the notion of cooperative strategy proofness (CSP fairness), for-
mulated in earlier works [PS17a, CGL+18, WAS22]. Intuitively, CSP fairness says that a coalition
that is profit-driven and wants to maximize its own utility has no incentive to deviate from the
honest protocol, as long as all other players play by the book. In this sense, the honest protocol
achieves a coalition-resistant Nash Equilibrium.

Definition 3.1 (CSP fairness). We say that a protocol satisfies γ-cooperative-strategy-proofness
(γ-CSP-fairness), iff the following holds. Let C be any coalition that controls at most γ ∈ [0, 1)
fraction of the mining power, and possibly includes either Alice or Bob. Then, for any PPT strategy
SC of C, there exists a negligible function negl(·) such that except with negl(λ) probability, where
λ is the security parameter, we have

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

where we use HS to mean the honest strategy, and utilC(SC , HS−C) means the expected utility of
the coalition C when the coalition is executing the strategy SC and the remaining players (denoted
−C) execute the honest strategy.

While our game-theoretic notions are general, the exact utility function is application-dependent,
and we define the utility functions for knowledge-coin exchange and atomic swap in Section 6.1 and
Section 5.1, respectively.

Motivating bounded maximin fairness. CSP-fairness assumes that players do not have ex-
ternal incentives outside the present protocol. We additionally want to achieve resilience against
external incentives. In particular, external incentives may lead strategic players to adopt a broader
class of strategies, including ones where players suffer a loss within the protocol, but get compen-
sated by the external incentives. When the external incentive may be arbitrary and unbounded,
strategic players can behave arbitrarily (e.g., they can behave like a “malicious” adversary using
standard cryptographic terminology). The strongest game theoretic notion one can hope for is that
honest players do not get harmed even others behave arbitrarily. This notion is called maximin
fairness in some recent works [PS17a,CGL+18,WAS22].

Maximin fairness, however, can be too stringent and challenging to satisfy. Thus, many real-
world protocols that leverage collateral and slashing to incentivize honest behavior aim to provide
incentive compatibility only when the parties’ external incentives are bounded. Specifically for
fair exchange, it is unclear whether there exist a protocol that achieves maximin fairness given
user-miner coalitions. We define a relaxed notion of fairness called bounded maximin fairness, that
protects honest individuals from rational players that may have arbitrary but bounded external
incentives. Although we focus on applying this notion to fair exchange, it would be interesting
apply it more broadly to formally analyze real-world protocols that use colateral and slashing with
the goal of providing some heuristic “bounded maximin fairness” guarantee.

Defining bounded maximin fairness. Imagine a set of players C′ who have external incentives
that might incentivize them to deviate from honest behavior. We want to argue that even when C′
may have arbitrary external incentives, as long as these are bounded and C′ is rational, any group
of players without external incentives should feel safe to participate honestly — as long as they
participate honestly, their utility will not be negative.

Regarding how to define rationality of the externally incentivized coalition, some interesting
technicalities arise due to the fact that we model players and contracts as PPT Interactive Turing

9

Machines. A strawman idea is to assume that the externally incentivized coalition C′ plays the
optimal strategy that maximizes its expected utility, and recall that we want to ensure no harm
for any honest group or individual. The problem with this definition is that it makes the possibly
unrealistic assumption that C′ knows the optimal strategy based on the external incentive function,
even though finding the optimal strategy may be computationally hard since the external incentive
function can take an arbitrary form.

Instead, we want to protect honest individuals and groups against any PPT strategy of the
coalition C′ as long as the strategy is not blatantly non-rational. A family of strategies R̄ is
blatantly non-rational, if for any strategy S ∈ R̄, one can find another strategy S′ efficiently, such
that S′ does strictly better than S.5 We can often show that some strategies are blatantly non-
rational without finding the optimal strategy. Indeed, later in our formal proofs, we show that a
class of strategies is blatantly non-rational, since simple modifications of such strategies lead to
better outcomes for C′. We then show that as long as C′ does not adopt a blantantly non-rational
strategy, an honest individual or group is protected.

We therefore devise the following definition which is parametrized by a strategy space R that
contains all possible PPT strategies except a set of blatantly non-rational strategies R.

Definition 3.2 (Bounded maximin fairness). We say that a protocol satisfies α-bounded maximin
fairness w.r.t. some strategy space R, iff for any set of PPT players denoted C without external
incentives, and any externally incentivized PPT coalition C′ that is disjoint from C, controlling at
most α fraction of mining power, and playing any strategy SC′ ∈ R, there is a negligible function
negl(·) such that except with negl(λ) probability6, it holds

utilC(HSC , SC′ , HSD) ≥ 0

where D denotes all players not in C ∪C′, HSC and HSD denote the honest strategy of C and D, re-
spectively, and utilC(HSC , SC′ , HSD) denote the utility of C given that the strategy (HSC , SC′ , HSD)
is adopted.7

4 Our Constructions: Informal Technical Roadmap

4.1 Warmup: CSP-Fair Knowledge-Coin Exchange

With the goal of building a fair atomic swap protocol, we first design a fair knowledge-coin exchange
protocol. Our atomic swap protocol will compose two instances of this primitive — at this moment,
some non-trivial compositional issues arise which we will discuss later.

The single instance Rapidash protocol consists of a description of a smart contract along with a
description of the protocol specifying the course of action for the honest Alice, Bob, and the miner.
Below, we give the formal contract and explain the protocol informally, for the formal protocol
description see Section 6.

First, Bob deposits the intended payment $v, and an additional $cb amount of collateral into
the contract shown below.

5A formal definition of blatantly non-rational strategies is given in Section 8.2.2, and how one can find a better
strategy efficiently is explained in Theorem 8.5 and Theorem 8.8.

6The negligible failure probability in our proofs arises due to the following bad events: 1) either the hash is
inverted, or 2) honest miners have never mined a block even polynomially many blocks have been mined.

7The formal definition of the utility function is given in Section 5.1.

10

Rapidash contract
/*parametrized with ha, hb, T1, T2, $v, $cb, $ε, Bob deposits $v + $cb*/

P1: On receive prea from Alice such that H(prea) = ha, send $v to Alice and $cb to Bob.

P2: Time T1 or greater: on receive preb from Bob such that H(preb) = hb, do nothing.

C1: At least T2 after P2 is activated: on receiving from anyone, send $v + $cb to Bob.

C2: On receive (prea, preb) from anyone P such that H(prea) = ha and H(preb) = hb, send
$ε to player P . All remaining coins are burnt.

Then, Alice posts prea as soon as Bob’s deposit takes effect. If Alice fails to post prea by time T1,
Bob posts preb to P2 at time T1 to request a refund. Note that the activation point P2 merely
allows Bob to express his intent to request a refund. The actual refund happens when T2 time
has passed since the activation of P2 — at this point, Bob sends to C1 which actually sends him
the refund. An honest miner always includes all outstanding transactions in any block it mines.
Importantly, if an honest miner has observed both prea and preb contained in the transactions
posted, it will immediately post (prea, preb) to C2, and this transaction will always be ordered in
front of others in the block it mines.

Intuition. The key insight here is that the activation point C2 serves as a “bomb”. Suppose that
the honest Alice has posted prea. Now, should a strategic Bob-miner coalition post preb to P2 in
an attempt to get refunded and thus get the secret prea for free, both prea and preb will be publicly
known. Note that the coalition has to wait at least T2 amount of time before the actual refund
C1 can be activated. During this T2 window, if any non-colluding miner mines a block, it will
trigger the bomb by posting (prea, preb) to C2, which will cause Bob to lose its collateral. Thus, if
a Bob-miner coalition wishes to get the secret for free, it has to take a gamble that it will be able
to mine all blocks in the T2 window.

Full protocol and proof. While the description above contains the full contract, so far we only
informally explained the behavior of honest Alice and Bob. We give a formal protocol in Section 6,
and fully specify the honest actions for Alice, Bob, and the miners in every possible situation.
Further, we formally prove (Section 6) that the above protocol satisfies CSP-fairness as long as the
parameters respect the following constraints:

• $cb > $ε, and $v > $ε: the former makes sure that a sufficient amount is burnt should the bomb
C2 be triggered, and thus activating P2 + C2 does not make sense for Bob; the latter ensures
that Alice prefers to activate P1 rather than C2.

• $γT2 ≤ $cb
$cb+$v where γ is an upper bound on the fraction of mining power controlled by the

coalition: if the honest Alice posts prea to P1, this condition makes sure that it is not worth
it for the Bob-miner coalition to take a gamble and try to invoke both P2 and C1 to get all of
Bob’s deposit back. As mentioned, once the Bob-miner coalition has invoked P2, both prea and
preb become publicly known. Now, the coalition must mine all blocks within the next T2 window
to guarantee that C1 is invoked, since any non-colluding miner who mines a block during this
T2 window will trigger the bomb C2.

For example, suppose we choose Ecb = Ev. Then, we need to make sure γT2 ≤ 1
2 . This means

if γ = 90%, we can set T2 = 7; if γ = 49.9%, we can set T2 = 1. Asymptotically, for any γ = O(1),
T2 is a constant. Increasing Ecb helps to make T2 smaller. For CSP fairness to hold, Eε can be
arbitrarily small. However, as we discuss later when analyzing the coalition-forming meta-game (see

11

Section 9), we may want that Eε is not too small, such that 100% coalition is NOT an equilibrium
in the coalition-forming meta-game. In practice, we can set Eε to be slightly smaller than Ev.

4.2 CSP-Fair Atomic Swap Protocol

Henceforth, we use Bitcoin and Ethereum as examples of the two cryptocurrencies being ex-
changed8. Suppose Bob wants to exchange his Ex amount of Ethers for Alice’s Bx′ Bitcoins.

4.2.1 Strawman: Direct Composition

Existing cross-chain atomic swap protocols [Her18,MMS+,vdM19,MD19] work by composing two
instances of knowledge-coin exchange, one on each blockchain. Thus, it is natural to see whether
this approach will work in our context.

The approach works as follows. We run one instance of the knowledge-coin exchange protocol
on Ethereum. We call this instance Rapidash, and refer to its four activation points as P1, P2, C1,
and C2. We run another instance called Rapidash’ on Bitcoin, and its four activation points are
P1’, P2’, C1’, and C2’. Both instances use the same prea. In Rapidash Alice is the one posting it
on blockchain, and in Rapidash’ Bob is the one who must publish it (after obtaining it from Alice).
Initially, Alice deposits Bx′+ Bc′a into Rapidash’ where Bx′ is the intended exchange amount, and
Bc′a is the collateral. Similarly, Bob deposits Ex+ Ecb into Rapidash: Ex is the intended exchange
amount, and Ecb is the collateral.

Now, Alice posts prea to the activation point P1 of Rapidash. This allows Alice to get Bob’s
Ex Ethers, while Bob gets his collateral Ecb back. As prea is now public, Bob can now post it to
P1’. This allows Bob to get Alice’s Bx′, and Alice also gets her collateral Bc′a back.

If Alice drops out, Bob can ask for a refund by posting preb to P2. Similarly, Alice can ask for
a refund by posting pre ′a to P2’ in case Bob drops out. As before, once Alice has posted prea to
P1, a strategic Bob-miner coalition is disincentivized from posting preb to P2, and once Bob has
posted prea to P1’, a strategic Alice-miner coalition is disincentivized from posting pre ′a to P2’.

Flaw in the strawman approach. Unfortunately, this approach suffers from a major flaw.
Intriguingly, even though the underlying knowledge-coin exchange protocol is CSP-fair, the composed
atomic swap protocol is NOT CSP-fair! More generally, the technicality described below suggests
that interesting subtleties arise during the composition of game-theoretically fair primitives. Indeed,
the composibility of such primitives is a major open question.

The problem is that a strategic Alice-miner coalition can fail to post prea, and get refunded from
Rapidash’ by invoking P2’+C1’. Of course, the honest Bob will also try to get refunded by posting
preb to P2. However, with some noticeable probability, Alice may be able to get refunded faster
than Bob. At this moment, the coalition can attempt to invoke P1 with prea, and if successful, the
coalition can essentially get Bob’s Ex for free!

The reason why composition breaks fairness is because when Alice has got her deposit back from
Bitcoin, the value prea loses its value! Recall that our earlier knowledge-coin exchange protocol is
only proven to be fair assuming that prea has timeless value!

4.2.2 Our Atomic Swap Protocol

Our first idea is to punish Alice if she fails to post prea to P1 at the right time, and then tries
to invoke P2’ with pre ′a. This can be achieved by allowing the bomb C2’ to be triggered with the
pair (preb, pre ′a), since the honest Bob will post preb to P2 if Alice fails to post prea. However,

8Note that our protocol can be used to exchange other cryptocurrencies too.

12

Rapidash contract (on Ethereum)
/* Parameters: (ha, hb, hc, T1, τ , Ex, Ecb, $Eε), Bob deposits Ex+ Ecb. */

P1: On receive prea from Alice and prec from Bob such that H(prea) = ha and H(prec) = hc,
send Ex to Alice and Ecb to Bob.

P2: Time T1 or greater: On receive preb from Bob such that H(preb) = hb or on receiving
from Alice, do nothing.

C1: At least τ after P2 is activated: on receiving from anyone, send Ex+ Ecb to Bob.

C2: On receive (prea, preb, prec) from anyone P such that H(prea) = ha, H(preb) = hb, and
H(prec) = hc send Eε to player P . All remaining coins are burnt.

Rapidash’ contract (on Bitcoin)
/* Params: (h′b, h

′
a, T

′
1, τ
′,Bx′,Bc′a, $Bε′), Alice deposits Bx′ + Bc′a, Bob deposits Bc′b */

P1’: On receiving pre ′b from Boba such that H(pre ′b) = h′b or on receiving from Alice, send
Bx′ + Bc′b to Bob and send Bc′a to Alice.

P2’: Time T ′1 or greater: on receiving pre ′a from Alice such that H(pre ′a) = h′a or on receiving
from Bob, do nothing.

C1’: At least τ ′ after P2’ is activated: on receiving from anyone, send Bx′+ Bc′a to Alice and
Bc′b to Bob

C2’: On receiving (pre ′b, pre ′a) or (pre ′a, preb) from anyone P such that H(pre ′b) = h′b,
H(pre ′a) = h′a and H(preb) = hb, send Bε′ to player P . All remaining coins are burnt.

aWe set h′
b = ha, and Bob will let pre ′

b be the prea he learns in the Rapidash instance.

Figure 1: Contracts for atomic swap.

this extra trigger breaks dropout resilience for Alice: If the deposit transactions take too long to
confirm (see also Theorem 5.2), Bob will attempt to get refunded by posting preb to P2. Suppose
Bob drops out at this point. In this case, Alice cannot get her own deposit back since if she posted
pre ′a to P2’, it would trigger the bomb C2’.

To address this, we introduce a “two-phase preparation” stage. Initially, P1 and C2 are locked
with prec known only to Bob. Bob publishes the secret prec if the deposits into both contracts
take effect in a timely manner. Once the secret prec is released, Alice is supposed to post prea
immediately. Now, if, for some reason, Bob ever wants to back out by posting preb to P2, he will
either help Alice get her deposit back or not, depending on the situation:

• If the honest Bob decides to back out because the deposit transactions took too long to confirm,
before posting preb to P2, Bob will post to P2’ to help Alice get her deposit back. This resolves
the aforementioned dropout resilience issue where Alice was not able to get her deposit back
once Bob has posted preb. Note that it is safe for Bob to help Alice get refunded before getting
refunded himself because he has not opened the lock by releasing prec yet, and thus no one else
can cash out his coins in Rapidash.

• If Bob has already opened the lock with prec, then, should the honest Bob ever post preb to P2,
it must be due to Alice’s failure to post prea to P1. In this case, Bob will not help Alice get her
deposit back by posting to P2’. Since Alice is not honest in this case, we do not care about

13

protecting Alice.

Based on these ideas, we show the contracts for atomic swap in Figure 1, and we specify the
full protocol in Section 7. In Figure 1, T1 and T ′1 denote the earliest times at which the refund
paths P2 and P2’ can be invoked, expressed in Ethereum time and Bitcoin time, respectively. It is
important that Bitcoin time T ′1 happens later than Etheurem time T1. Otherwise, Alice could get
refunded in Rapidash before Bob even posts preb to P2, and then trigger P1 to get Bob’s Ex for
free. Observe that when Alice and Bob are both honest, Alice will post prea to P1 immediately and
then Bob will learn prea and post it to P1’ immediately. Therefore, both players get their desired
cryptocurrency and all their collateral back as soon as new block is confirmed on both Ethereum
and Bitcoin — in this sense, the protocol satisfies optimistic responsiveness.

As mentioned, it is important that in the honest protocol, Bob differentiates the reason should
he ever want to post preb to P2. If he has not posted prec yet, he will first help Alice get refunded
first before getting his own refund. Otherwise, he need not help Alice get refunded. As before,
honest miners include all outstanding transactions in any block they mine. Moreover, whenever
honest miners observe sufficient information to trigger either of the bombs (C2 or C2’), they will
indeed do so, and the corresponding transaction will be ordered ahead of all other transactions in
the block they mine.

Regarding the asymmetry in collateral. There is one final subtlety remaining in our protocol.
Notice that the protocol is asymmetric in the sense that Alice has to put down collateral only in
Rapidash’, but Bob has to put down collateral in both Rapidash and Rapidash’. The reason for
this is that Bob can fail to deposit into Rapidash and then try to trigger C2’ to get Bε′ from Alice
for free. To defend against this, we require that Bob deposits his collateral $c′b into Rapidash’
before Alice sends her deposit. This way, Bob will be incentivized against triggering C2’ even when
he has not deposited into Rapidash. The full honest protocol in Section 7 makes the order of the
deposit transactions clear.

It would be desirable for Bob to not have to put down collateral into Rapidash’, the cryp-
tocurrency he is trying to buy. However, currently we do not know any approach that is CSP-fair
and allows both parties to not put down collateral in the cryptocurrency that they want. We
therefore leave this as an open question. We stress, however, that assuming that a party has some
collateral in the other cryptocurrency is reasonable in many real-world applications. For example,
an analogy is that to mine Ether, one must already have some Ether as stake. Furthermore, our
approach would be a great fit for atomic swap between a client and an exchange. In this case, it
is natural to expect that the exchange already has some collateral in the cryptocurrency that it is
trying to buy.

Parameter choices. The parameter choices of both Rapidash and Rapidash’ are similar to
those in the knowledge-coin exchange, with the additional constraint that Bc′b > Bε, which ensures
that Bob cannot benefit from failing to deposit into Rapidash and triggering C2’.

Full protocol and proof. In Section 7, we describe the full protocol for Alice, Bob, and the
miners, which specify a complete course of actions for these players in every possible situation. We
also leave the detailed parameters and formal proofs to Section 7.

4.3 Achieving Bounded Maximin Fairness

We show that a variant of our CSP-fair protocol achieves bounded maximin fairness.
First, note that our CSP-fair protocol as is does not satisfy bounded maximin fairness: Say

that Bob is honest, Alice is externally incentivised to hurt Bob, and consider the following attack.

14

First, Alice honestly submits her deposit, thus both instances go into the execution phase, and in
particular, Bob posted prec. Instead of posting prea to P1, Alice posts to P1’, thus obtaining
her collateral back. Alice waits until Bob attempts to get refunded via posting preb to P2. At this
point, Alice posts prea, and triggers C2. Note that this is not an issue in the CSP-fair construction,
as without the external incentive to hurt Bob, Alice’s utility would have been higher if she just
behaved honestly. Also, notice that simply increasing Alice’s collateral on Bitcoin does not help
here – the reason why she is able to pull of the attack is because there is nothing at stake for her
on Ethereum.

Because of this, to achieve bounded maximin fairness, we require both parties to put down
collateral on both blockchains. While the idea to adjust collateral accordingly to defend against
external incentives is natural and even commonly adopted in real-world applications like proof-
of-stake, to the best of our knowledge, we are the first to provide provable guarantees of this
general paradigm — prior to our work, it was not even clear how to define fairness (except for the
aforementioned maximin fairness notion that is typically too stringent in real-world applications).
We hope that our definitional approach can lend to the formal reasoning of a wider class of protocols
that also use this “staking in” paradigm.

Besides the increase in collateral, in the formal description of our bounded maximin-fair proto-
col, we introduce new activation points. These points disincentive Alice posting pre ′a, and Bob from
posting preb, prec, at an incorrect time (earlier than specified in the honest protocol). Note that
these are the messages that can contribute to triggering C2 and C2’. The extra disincentivisation
is needed for technical reasons in the proof:

The high-level idea of the proof is to show that if a strategy ever triggers any of the bombs,
it must be non-rational, in the sense that there is a simple modification to this strategy which
improves the utility of the coalition. Having the extra activation points ensures that C2 and C2’
are never triggered due to the message of the honest party in combination with some old message
posted by the strategic players in the past. In other words, we ensure that if C2 or C2’ are ever
triggered, the trigger is a message sent by the strategic coalition. Then, it is easy for us to show
that if the coalition simply drops the message that triggers the bomb, its utility will improve.
Intuitively, this ensures that the strategic coalition does not want to trigger bombs. We finilize the
proof by showing that for any strategy that does not trigger the bombs, the honest players’ utilities
must be non-negative (barring the negligible probability that cryptography fails). We conjecture
that even the protocol without these extra activation points satisfy bounded maximin fairness —
however, the proof will likely become much more elaborate and we leave an exploration of this to
future work. We defer the full description of our bounded maximin fair protocol and its proofs to
Section 8.

4.4 Coalition Forming Meta-Game

To prove that our protocol satisfies CSP and bounded maximin fairness, we assumed that the
coalition does not wield 100% of the mining power. We justify this assumption by analyzing the
coalition forming meta-game in Section 9. Consider the knowledge-coin exchange. In the coalition
forming meta-game, imagine that Bob posts a smart contract that promises to split the gains with
any miner who helps him get the $v back, after Alice has posted prea. We argue that 100% miner
participation is not an equilibrium in this meta-game. A miner has the option of not joining the
coalition, in which case it has some probability (proportional to its mining power) of claiming the
$ε itself by posting (prea, preb) — should Bob ever decide to cheat. To incentivize the miners to
join, Bob must offer more than the expected gain of the miner had it not joined the coalition.
However, to do so, the cost incurred for Bob would be greater than the price $v of the secret. We

15

defer the details to Section 9.
In Section 9, we also show that this meta-game approach is not only a good complement to

the definition of CSP-fairness and bounded maximin-fairness, but also helpful for reasoning about
the known bribery attacks [TYME21,WHF19,HZ20,MHM18,JSZ+21] that pertain to the standard
HTLC.

5 Definitions of Atomic Swap and Dropout Resilience

5.1 Definition: Atomic Swap

Earlier in Section 3, we formally defined our execution model and game theoretic notions. While our
game theoretic notions, namely, CSP fairness and bounded maximin fairness are general, the utility
functions are application-dependent. We now formally define what is an atomic swap protocol, and
the players’ utility functions.

Suppose that Bob has x amount of Ethers denoted Ex, and Alice as x′ amount of Bitcoins
denoted Bx′. Bob wants to exchange his Ex with Alice’s Bx′. The currencies exchanged may be
other currencies but we shall use Bitcoin and Ether as an example.

We may assume that Alice and Bob are not in the same coalition. Therefore, we effectively con-
sider the following three types of strategic players or coalitions: 1) Alice-miner coalition (including
Alice alone); 2) Bob-miner coalition (including Bob alone); and 3) miner-only coalition.

Given some strategic player or coalition, we assume that it has some specific valuation of each
unit of Bitcoin and each unit of Ether. For convenience, we use the notation $AV(·) to denote the
valuation function of Alice of an Alice-miner coalition; specifically, $AV(Ex+Bx′) = $va ·x+$v′a ·x′
where $va ≥ 0 and $v′a ≥ 0 denote how much Alice or the Alice-miner coalition values each Ether
and Bitcoin, respectively. Similarly, we use the notation $BV(·) to denote the valuation function of
Bob or a Bob-miner coalition, and we use $MV(·) to denote the valuation function of a miner-only
coalition. Throughout this section, we may make the following assumption which justifies why
Alice wants to exchange her Bx′ with Bob for Ex, and vice versa.

Assumption: $AV(Ex− Bx′) > 0, $BV(Bx′ − Ex) > 0

Utility. Let C be any subset of players, and −C to denote all parties of the protocol that are not
in C. Let SC and S′−C be the strategies of C and −C. We use utilC(SC , S

′
−C) to denote the expected

utility of C when C adopts the strategy SC and the remaining parties adopt the strategy S′−C .
When the strategies SC , S

′
−C is adopted, let Bd′a,Eda ≥ 0 be the cryptocurrencies that Alice or

an Alice-miner coalition deposit into the smart contracts; let Br′a,Era ≥ 0 be the payment Alice
or an Alice-miner coalition receive from the smart contracts during the protocol; let $ea(. . .) ≥ 0
denote the external incentives of Alice or the Alice-miner coalition, where . . . means that the
external incentives can depend arbitrarily on the blockchain’s state. Now, we can define the utility
utilC(SC , S

′
−C) when C consists of Alice or the Alice-miner coalition as follows:

utilC(SC , S
′
−C) = $AV(Br′a − Bd′a + Era − Eda) + $ea(. . .).

Similarly, when the strategies SC , S
′
−C is adopted, let Bd′b,Edb ≥ 0 be the deposit the Bob-miner

coalition or Bob sends to any smart contract during the protocol; let Br′b,Erb ≥ 0, be the payment
the Bob-miner coalition or Bob receives during the protocol; and let $eb(. . .) ≥ 0 denote any external
incentives for the Bob-miner coalition or Bob. The variables Br′m,Erm,Bd

′
m,Edm, $em(. . .) ≥ 0 are

similarly defined but for the miner-only coalition.

16

We define the utility utilC(SC , S
′
−C) when C consists of Bob or a Bob-miner coalition as

utilC(SC , S
′
−C) = $BV(Br′b − Bd′b + Erb − Edb) + $eb(. . .),

and the utility utilC(SC , S
′
−C) when C is a miner-only coalition as

utilC(SC , S
′
−C) = $MV(Br′m − Bd′m + Erm − Edm) + $em(. . .).

Modeling time. In our cross-chain atomic swap application, since the two blockchains have dif-
ferent block intervals, we use the following convention for denoting time. Without loss of generality,
we may assume that the moment the protocol execution begins, the current lengths of the Bitcoin
and Ethereum chains are renamed to 0. We use the terminology Ethereum time T to refer to the
moment the Ethereum chain reaches length T , and similarly, we use the terminology Bitcoin time
T ′ to refer to the moment when the Bitcoin chain reaches length T ′.

Regarding external incentives. For bounded maximin fairness, we care about players’ external
incentives. Our modeling of external incentives is general and can capture external incentives of any
form. Precisely, any side contract where money is redistributed to players of the present protocol
is considered external incentive if 1) the contract is pre-existing, i.e., created before the start of
the present protocol; or 2) the contract is created any time, and an outsider, i.e., not a player of
the present protocol, deposited money into it. As an example of the former, imagine that Alice
was involved in some bet prior to the fair exchange protocol that bets on the state of a future
block, and the outcome of the present protocol may affect the state. As an example of the latter,
imagine that Alice is Mallory’s competitor, and Mallory is offering external incentives for anyone
who can cause financial loss to Alice, such that Alice can become bankrupt. We stress that for a
pre-existing side contract, it does not matter who funded the contract — any money deposited into
a pre-existing contract is sunk cost w.r.t. this protocol. For a similar reason, assuming that the
external incentive is non-negative is without loss of generality.

In our protocol, honest players will not create new contracts on the fly and deposit money into
them during the protocol execution. However, in our strategy space, we allow strategic players to
create new contracts on the fly and deposit money into them. Such contracts that are initiated
and funded solely by strategic players of the present protocol after the start of the protocol are
not considered external incentives, since our utility model takes into account the gains from these
contracts — we say that such contracts “belong to” the present protocol.

Jumping ahead, to prove our protocols game theoretically fair, we do not care where the external
incentives are coming from — we just need an upper-bound on the maximum amount of external
incentives possible. In practice, for high-value transactions, we may want to assume a larger upper
bound on the amount of external incentives; and in this case, our protocol will require the players
to place a larger collateral.

5.2 Definition of Dropout Resilience

In fair exchange protocols such as atomic swap, we want to guarantee dropout resilience, which
protects an honest player when the counterparty drops out from the protocol. In practice, a dropout
can happen due to mistakes, misconfiguration, or unforeseen circumstances, e.g., Alice may lose
her hardware wallet. Our notion of dropout resilience requires the following. Suppose that at
least 1/poly(λ) fraction of the mining power is honest. Then, if either Alice or Bob plays honestly
but drops out before the end of the protocol, then with 1 − negl(λ) probability where negl(·) is a
negligible function, the other party’s utility must be non-negative.

17

Definition 5.1 (Dropout resilience). A protocol is said to be dropout resilient, iff the following
holds: as long as at least 1/poly(λ) fraction of the mining power is honest, then with 1 − negl(λ)
probability an honest Alice (or Bob) is guaranteed to have non-negative utility even when Bob (or
Alice) is honest but may drop out in the middle of the protocol execution.

Remark 5.2 (On our dropout resilience notion). We emphasize that our dropout resilience notion
is very strong: we want it to hold even when many miners (up to 1 − 1/poly(λ)) fraction) are
not necessarily playing honestly. In such a scenario, transactions may take polynomially long to
confirm, and players may time out during the protocol and try to back out. Therefore, Theorem 5.1
requires that dropout resilience hold even when the transactions are taking a long time to confirm.

5.3 Convention for Writing Smart Contracts

We use the following style of pseudo-code to express smart contracts. Since the contracts employed
in this paper use simple logic, it does not take a general smart contract language like Ethereum to
instantiate them. We can even instantiate them using Bitcoin’s limited scripting language. Below
we give a toy contract to explain the notation.

A toy contract

• Parameters: T .

• Preparation phase: Alice and Bob each deposits $da and $db + $d′b, respectively.

• Execution phase:

A1: On receive (msg, $c) from Alice: send $d < $da + $db to Bob.

A2: After T , on receive (msg, $c) from Bob: send $da + $db − $d to Alice.

B1: On receive (msg, $c) from Bob: send $d′b to Bob.

In our notational system, every activation point is given a unique name that consists of a letter
followed by a number. The leading letter defines the type of the activation point. All activation
points of the same type are mutually exclusive. For example, if A1 has been invoked, then neither
A1 nor A2 can be invoked any more; however, B1 can still be invoked (as long as it has not
been invoked yet). If an activation point constrained some time interval (e.g., after T), then any
attempted invocation that happens outside the specified time interval is considered invalid and not
counted.

Our example toy contract above has a standard preparation phase where Alice and Bob each
deposits some coins into the contract. In a practical implementation, the contract should allow
each player to withdraw its deposit if the other player has not made its deposit yet. However, once
both players have made their deposits, the redistribution of money is only possible through the
activation points of the execution phase. Later in our paper, the preparation phase may also have
customized logic — in this case, we will spell out the logic of the preparation phase explicitly.

In our contract notation, we simply assume that there is an authenticated channel from each
user to the smart contract. In practice, each party involved is actually identified by their public
keys. The party can sign the message sent to the activation point to authenticate itself. In a
practical instantiation, each party may also need to pay a typically small transaction fee for their
transaction to be confirmed. For simplicity, we ignore the transaction fee in our theoretical model

18

since we need not rely on transaction fees to achieve our game theoretic guarantees. Adding an ε-
small transaction fee in a practical instantiation will only introduce O(ε)-slack to our game theoretic
guarantees.

6 CSP-fair Knowledge-Coin Exchange

In this section, we prove the warmup knowledge-coin protocol of Section 4.1 CSP-fair. Before that,
we first give the formal utility definitions in 6.1.

6.1 Definitions

Imagine that Alice has some secret prea and Bob offers to pay Alice $v amount of coins in exchange
for the secret. For example, prea may be a secret value that Bob can later use to unlock some other
coins, e.g., through a smart contract.

We assume that the secret prea is worth $va and $vb to Alice and Bob, respectively. That is,
Alice will lose utility $va if prea is released to someone else, and Bob will gain $vb if he learns prea.
We assume that $vb > $v > $va, such that Alice wants to sell the secret prea to Bob at a price of
$v.

Players’ utility. Let β ∈ {0, 1} be an indicator such that β = 1 if and only if Bob outputs the
secret prea at the end of the protocol. Let $da ≥ 0 and $db ≥ 0 be the amount of money Alice and
Bob deposit into the smart contract, respectively. Let $ra ≥ 0 and $rb ≥ 0 be the payments that
Alice and Bob obtain from all smart contracts during the protocol.

Then, Alice’s utility, $ua, is defined as

$ua = −$da + $ra − β · $va

and Bob’s utility, $ub, is defined as

$ub = −$db + $rb + β · $vb

Similar to Alice and Bob, we can also define the utility for any miner. Fix some miner. Let
$dm be the money that the miner deposits into the smart contracts belonging to this protocol, and
let $rm be the payment received by the miner in the current protocol instance. A miner’s utility,
denoted $um, is defined as

$um = −$dm + $rm

Finally, the joint utility of the coalition is simply the sum of every coalition member’s utility.

6.2 The Rapidash Knowledge-Coin Exchange Protocol.

During the preparation phase, the buyer Bob deposits $cb + $v into the Rapidash contract. When
Bob’s deposit transaction is confirmed, we define the current block number (i.e., time) to be t = 0.
The execution phase proceeds as follows — henceforth, we use the phrase “a player sends a message
to an activation point” to mean that “the player posts a transaction containing the message and
destined for the activation point”:

• Alice: Alice sends prea to activation point P1 at t = 0.

19

• Bob: If Alice failed to send prea to P1 before time T1, then Bob sends preb to P2 at time t = T1.
T2 time after P2 is activated, he sends an empty message to C1.

If either P1 or C2 is successfully activated, Bob outputs the corresponding prea value included
in the corresponding transaction. If P2 and C1 are successfully activated, Bob outputs ⊥.

• Miner: The miner watches all transactions posted to P1, P2, and C2. If the miner has observed
the correct values of both prea and preb from these posted transactions, then it sends (prea, preb)
to C2. Further, any miner always includes all outstanding transactions in every block it mines.
If there are multiple transactions posted to C2, the miner always places its own ahead of others
(and thus invalidating the others).

6.3 Proofs: CSP Fairness and Dropout Resilience

Lemma 6.1 (Alice-miner coalition). Let C be any coalition that consists of Alice and an arbitrary
subset of miners9 (possibly no miner). Then, for any (even unbounded) coalition strategy SC,

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

where HS−C denotes the honest strategy for everyone not in C.

Proof. When the coalition C follows the protocol, they will send prea at t = 0, and P1 will be
activated in the next block. In this case, the utility of C is $v − $va.

Now, consider the case that the coalition C deviates from the honest strategy. We may assume
that the coalition does not post any new smart contract on the fly and deposit money into it10 —
if it did so, it cannot recover more than its deposit since any player not in C will not invoke the
smart contract. There are two possibilities:

• First, P1 is activated at some point. In this case, nothing else can be activated. Thus, the
utility of C is $v − $va, which is the same as the honest case.

• Second, P1 is never activated. The Alice-miner coalition cannot cash out from P2 or C1, it
can only cash out ε from C2. However, when C2 is activated, prea is publicly known, so the
utility of C is $ε− $va, which is less than the honest case since $ε < $v.

Lemma 6.2 (Bob-miner coalition). Let C be any coalition that consists of Bob and a subset of
miners controlling at most γ fraction of mining power. Then, as long as γT2 ≤ $cb

$cb+$v , for any
(even unbounded) coalition strategy SC, it must be that

utilC(SC , HS−C) ≤ utilC(HSC , HS−C)

Proof. The honest Alice will always send prea to P1. Thus, when C follows the protocol, P1 will
be activated in the next block, and the utility of C is $vb − $v.

Now, suppose C may deviate from the protocol. As in Theorem 6.1, we may assume that the
coalition does not post any new smart contract on the fly and deposit money into it. There are
three cases.

9We assume that the coalition cannot break the underlying consensus layer. If the underlying consensus actually
secures against, say, honest majority, then essentially the lemma holds for any coalition that wields minority of the
mining power.

10However, the coalition C itself could be facilitated by smart contracts, our modeling of coalition already captures
any arbitrary side contract within the coalition.

20

• First, neither P1 nor P2 is activated. Because P2 is not activated, C1 cannot be activated.
The Bob-miner coalition can only get $ε from C2. Thus, the coalition’s utility is at most
$vb − $v − $cb + $ε < $vb − $v where the inequality is due to the constrant $cb > $ε.

• Second, P1 is activated. In this case, nothing else can be activated, and the utility of C is
$vb − $v, which the same as the honest case.

• Third, P2 is activated. Let t∗ ≥ T1 be the time at which P2 is activated. There are two
subcases. In the first subcase, the coalition also gets $ε from C2 during [t∗, t∗ + T2]. In this
case, the coalition’s utility is at most $vb − $cb − $v+ $ε, and since $cb > $ε, this is less than
the honest case. Henceforth, we may assume that the coalition does not invoke C2 after time
t∗ as after time t∗ + T2 it is always better to invoke C1. Since the honest Alice posts prea
at t = 0 and t∗ ≥ T1, both prea and preb are publicly known at t∗. Since all non-colluding
miners are honest, after t∗, they will activate C2 themselves when they mine a new block if
C2 has not already been activated before. If a non-colluding miner mines a new block during
(t∗, t∗ + T2], we say that the coalition loses the race. Otherwise, we say that the coalition
wins the race. If the coalition loses the race, then it gets nothing from C1 or C2, and thus
its utility is at most $vb − $cb − $v. Else if it wins the race, then the coalition’s utility is at
most $vb. The probability p that the coalition wins the race is upper bounded by p ≤ γT2 .
Therefore, the coalition’s expected utility is at most

($vb − $cb − $v) · (1− p) + $vb · p.

For ($vb − $cb − $v) · (1 − p) + $vb · p to exceed the honest utility $vb − $v, it must be that
p > $cb

$cb+$v which contradicts our assumption.

We thus conclude that C cannot increase its utility through any deviation.

Theorem 6.3 (CSP fairness). Suppose that the hash function H(·) is a one-way function and that
γT2 ≤ $cb

$cb+$v . Then, the Rapidash protocol satisfies γ-CSP-fairness.

Proof. Lemmas 6.1 and 6.2 proved γ-CSP-fairness for the cases when the coalition consists of either
Alice or Bob, and possibly some miners. Since by our assumption, Alice and Bob are not in the
same coalition, it remains to show γ-CSP-fairness for the case when the coalition consists only of
some miners whose mining power does not exceed γ. Since both Alice and Bob are honest, the
coalition’s utility is 0 unless C2 is activated. However, C2 requires that C to find preb on its own
— the probability of this happening is negligibly small due to the one-wayness of the hash function
H(·).

We now prove that Rapidash is dropout resilient.

Theorem 6.4 (Dropout resilience). Suppose that H(·) is a one-way function and that all players are
PPT machines. Rapidash is dropout resilient. In other words, suppose at least 1/poly(λ) fraction
of the mining power is honest. If either Alice or Bob plays honestly but drops out before the end of
the protocol, then with 1− negl(λ) probability, the other party’s utility should be non-negative.

Proof. Throughout the proof, for any X ∈ {prea, preb}, we ignore the negligible probability that
the miners can find the preimage X by itself if Alice and Bob have never sent X before.

We first analyze the case where Alice drops out. There are two possible case: 1) Alice drops out
before posting a transaction containing prea; 2) Alice drops out after she already posted a transac-
tion containing prea at t = 0. In the first case, as long as 1/poly(λ) fraction of the mining power is

21

honest, Bob would activate P2 and C1 in polynomial time except with negligible probability, and
his utility is 0 since he simply gets all his deposit back. In the second case, the honest Bob will not
post preb to P2. An honest miner would include Alice’s transaction and activate P1. As long as
1/poly(λ) fraction of the mining power is honest, P1 will be activated in polynomial time except
with negligible probability. As a result, Bob’s utility is $vb − $v > 0.

Next, we analyze the case where Bob drops out. In this case, Alice always posts a transaction
containing prea, and except with negligible probability, P1 will always be activated. Thus, Alice’s
utility is always $v − $va > 0.

To sum up, in all cases, the utility of the remaining party is always non-negative except with
negligible probability.

7 Atomic Swap: Achieving CSP-Fairness

In Section 5.1, we defined the problem of cross-chain atomic swap. Further, we gave an overview of
our CSP-fair protocol in Section 4.2. In this section, we formally specify the detailed parameters
and the protocol, and we then prove CSP fairness.

Contracts. Our atomic swap protocol involve two contracts, called Rapidash and Rapidash’,
executed on the Ethereum and Bitcoin blockchains, respectively. The specification of the contracts
were presented in Section 4.2. Below, we specify the detailed parameter constraints and the full
protocol.

Parameter constraints. We first specify the parameter constraints. The parameters Bc′a and Bc′b
denote Alice and Bob’s collateral into Rapidash’, respective; and Ecb denotes Bob’s collateral into
Rapidash. Our protocol uses a few timeouts including T0, T1, and T expressed in Ethereum time
(i.e., the length of the Ethereum blockchain), and T ′1 expressed in Bitcoin time. T is a timeout by
which Alice and Bob should deposit into the Rapidash and Rapidash’ contracts; if not, honest
players would invoke an abort procedure. T0 is a timeout for Bob to post prec to Rapidash—
if Bob does not send prec in time, the honest Alice will invoke the abort procedure. Recall that
prec is an explicit signal from Bob to proceed with contract execution. Only when Bob releases
prec can the P1 and C2 be activated. T1 and T ′1 denote the earliest times at which P2 and P2’
can be activated, expressed in Ethereum time and Bitcoin time, respectively. As mentioned earlier,
it is important that Bitcoin time T ′1 happens later than Etheurem time T1, since otherwise, Alice
could get refunded from the Bitcoin contract Rapidash before Bob even posts preb to P2, and then
trigger P1 to get Bob’s Ex for free. The parameter τ denotes the window of time that must elapse
between P2 and C1 of Rapidash, i.e., between when Bob expresses his intent to back out, and
when the refund actually happens. The parameter τ ′ is similarly defined for Rapidash’. Below,
we explain the parameter choices under which CSP-fairness holds.

Parameter Constraints for Atomic Swap
Constraints for Rapidash (on Ethereum):

• ha = H(prea), hb = H(preb) and hc = H(prec).

• T1 > T0 > T > 0.

• E0 < Eε < Ex, and Ecb > Eε

Constraints for Rapidash’ (on Bitcoin):

22

• h′b = H(prea) = ha and h′a = H(pre ′a).

• Bitcoin time T ′1 > Ethereum time T1, i.e., the Bitcoin block of length T ′1 is mined after
the Ethereum block of length T1.

a

• B0 < Bε′, Bc′a > Bε′ and Bc′b > Bε′.

Choice of timeouts: // γ is the coalition’s fraction of mining power

• τ ≥ 1, τ ′ ≥ 1.

• γτ ′ ≤ Bc′a
Bc′a+Bx′

, γτ ≤ Ecb
Ecb+Ex

aIn practice, this constraint should be respected except with negligible probability despite the the variance
in inter-block times.

Intuitively, the constraint Eε < Ex makes sure that Alice, who does not have collateral in
Rapidash, always prefers P1 to the bomb C2. The constraint Ecb > Eε makes sure that if Bob gets
Alice’s Bx′ and triggers the bomb C2, he still loses to the honest case, and the constraint Bc′a > Bε′

serves a similar purpose. The condition Bc′b > Bε′ makes sure that Bob does not want to trigger the
bomb C2’ even when he can get all of his deposit into Rapidash refunded. Finally, the constraint

γτ < Ecb
Ecb+Ex

makes sure that the window between P2 and C1 is sufficiently long such that once

the honest Alice has posted prea, it is not worth it for Bob to take a gamble to trigger P2 and C1.
In particular, if during the τ window, any honest miner mines a block, then the bomb C2 will be

triggered and Bob will lose his collateral. The condition γτ
′
< Ec′a

Ec′a+Ex′
serves a similar purpose,

but now for Alice and Rapidash’.
We give some typical parameter choices below. For example, suppose we choose Ecb = Ex.

Then, we need to make sure γτ ≤ 1/2. This means if γ = 90%, we can set τ = 7; if γ = 49.9%, we
can set τ = 1. Asymptotically, for any γ = O(1), τ is a constant. Increasing Ecb helps to make τ
smaller. A similar calculation also works for τ ′ and Bc′a.

Full protocol. We describe the full atomic swap protocol below, which specifies Alice, Bob, and
the miners’ honest behavior. Note that the protocol is complete: We specify actions that parties
should take according to the protocol, however, we do not assume that both Alice and Bob follow
the protocol. Instead, for every action that Alice should take according to the protocol, we specify
not only what Bob should do if Alice has indeed executed this action, but also what Bob should do
if Alice has not executed the action until a certain time, same vice versa. Note that parties ignore
events which happen outside those specified in the protocol execution, e.g., if Bob creates a smart
contract with some third party on the side, Alice simply ignores it.

• Miner. The miner’s honest protocol is described below.

– The miner watches all transactions posted to P1, P2, C1, C2, P1’, P2’, C1’, and C2’ (i.e.,
all the P-type and C-type activation points for both contracts), to see if they contain a valid
prea = pre ′b, preb, pre ′a, and prec.

– As soon as the miner has observed prea, preb and prec, it posts (prea, preb, prec) to C2; as
soon as the miner has observed both pre ′a and pre ′b, it posts (pre ′a, pre ′b) to C2’; as soon as
the miner has observed pre ′a and preb, it posts (pre ′a, preb) to C2’.

– Whenever the miner mines a block, it always includes its own transactions ahead of others.

23

• Alice and Bob. Below, we define the honest protocol for Alice and Bob. The moment that both
contracts have been posted and take effect is defined to be the start of the execution (i.e. t = 0).
We define Ethereum time 0 and Bitcoin time 0 to be the length of Ethereum and Bitcoin when
the execution starts, respectively. Note that whenever parties are required to “Wait”, they wait
until the specified event happens, and then execute the corresponding action. Note that when
they start waiting, they also verify whether (one of) the specified events took place already, and
execute the corresponding action if this is the case.

Atomic Swap Protocol — Alice and Bob
Preparation Phase:

1. At t = 0, Alice sends the deposit transaction of Bx′ + Bc′a to Rapidash’; Bob sends the
deposit transaction of Ex+ Ecb to Rapidash and sends the collateral transaction of Bc′b to
Rapidash’.a

2. Wait until one of the following happens:

• Both Rapidash and Rapidash’ enter the execution phase: Bob sends prec to P1 and
enters the execution phase.

• Either Rapidash or Rapidash’ has not entered the execution phase, and it is at least
Ethereum time T : Alice and Bob go to the abort phase.

3. Wait until one of the following happens:

• Bob sent prec to P1: Alice enters the execution phase.

• Bob has not sent prec to P1, and it is at least Ethereum time T0: Alice enters to the
abort phase.

Execution Phase:

1. Alice sends prea to P1. As soon as P1 has been activated, Alice sends an empty message
to P1’.

2. Wait until one of the following happens:

• Alice already sent prea to P1, and it is before Ethereum time T1: Bob sends pre ′b = prea
to P1’.

• Alice has not send prea to P1, and it is at least Ethereum time T1: Bob sends preb to
P2 at Ethereum time T1.

3. If τ Ethereum time has passed since P2 is activated, Alice and Bob send to C1. As soon
as C1 is activated, Bob sends to P2’.

4. If τ ′ Bitcoin time has passed since P2’ is activated, Alice and Bob send to C1’.

Abort Phase:

1. At Ethereum time T0, Bob sends to P2’ and preb to P2; Alice sends to P2.

2. Wait until Ethereum time T1. If Bob has not sent to P2’, Alice sends pre ′a to P2’.

24

3. If τ ′ Bitcoin time has passed since P2’ is activated, Alice and Bob send to C1’; similarly,
if τ Ethereum time has passed since P2 is activated, Alice and Bob send to C1.

Ignore all other events.

aNotice that only Bob needs to put collateral on both chains, as we explained in Section 4.2.

7.1 Proofs

Before proving CSP fairness of the protocol, we give some useful lemmas. CSP fairness is formally
proven by Theorem 7.5.

We define the net profit of C from Rapidash to be the coins that C gets from Rapidash minus
the coins that C deposits into Rapidash. The net profit of C from Rapidash’ is defined similarly.
Notice that the net profit might be negative, which means C deposits more coins than what it gets.

Lemma 7.1. Suppose Rapidash and Rapidash’ both enter the execution phase. Suppose the
coalition A consists of Alice and an arbitrary γ ∈ [0, 1] fraction of the mining power. If Bc′a > Bε′,
the utility of A can be more than the honest case, that is, $AV(Ex−Bx′), only if one of the following
holds

• P1, P2’ and C1’ are activated;

• C2, P2’ and C1’ are activated.

Proof. First, we prove that either P1 or C2 is the necessary condition for the utility of A to be
more than the honest case. For the sake of reaching a contradiction, suppose neither of P1 or C2
is activated. Because A cannot get any coin from P2 or C1, the net profit from Rapidash is at
most 0. However, because Bc′a > Bε′, we have Bε′ − Bx′ − Bc′a < −Bx′ < 0. Thus, the net profit
from Rapidash’ is also at most 0. Consequently, the utility of A is at most zero, which is less than
$AV(Ex− Bx′). Thus, one of P1 and C2 must be activated.

Next, we prove that P2’ and C1’ must be activated for the utility of A to be more than
the honest case. For the sake of reaching a contradiction, suppose one of them is not activated.
Because Bc′a > Bε′ > 0, the net profit from Rapidash’ is at most −Bx′ since P2’ or C1’ is not
activated. However, the net profit from Rapidash is at most Ex. Thus, the utility of A is at
most $AV(Ex − Bx′), which is the same as the honest case. Thus, both of P2’ and C1’ must be
activated.

Lemma 7.2 (Alice-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let A be any coalition that consists of Alice and γ ∈ [0, 1] fraction of mining power. Then, as long

as γτ
′ ≤ Bc′a

Bc′a+Bx′
, for any PPT coalition strategy SA, except with negligible probability, it must be

utilA(SA, HS−A) ≤ utilA(HSA, HS−A),

where HSA and HS−A denotes the honest strategy for coalition A and everyone not in A, respec-
tively.

Proof. Recall that the utility of A is $AV(Ex− Bx′) > 0 under an honest execution. Now, suppose
A may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it (see the definition of strategy space in Section 3.2)
–— if it did so, it cannot recover more than its deposit since any player not in A will not invoke
the smart contract. We analyze the possible cases depending on which phase Bob enters.

25

Bob enters the abort phase. If Rapidash never enters the execution phase, the net profit of
A from Rapidash is at most zero. Now, assume Rapidash enters the execution phase. When
Bob enters the abort phase, he never sends any transaction containing prec. Ignoring the negligible
probability that A finds prec by itself, P1 or C2 can never be activated. Because Alice does not
get any coin from P2 or C1, the net profit of A from Rapidash is at most zero. On the other
hand, because Bc′a > Bε′, the net profit of A from Rapidash’ is at most zero, no matter whether
Rapidash’ enters the execution phase or not.

To sum up, except with negligible probability, the utility of A is at most zero, which is less than
the honest case.

Bob enters the execution phase. If Bob enters the execution phase, both Rapidash and
Rapidash’ must enter the execution phase. By Theorem 7.1, the utility of A can exceed the
honest case only when (P1 + P2’ + C1’) or (C2 + P2’ + C1’) are activated. Henceforth, we
assume either (P1 + P2’ + C1’) or (C2 + P2’ + C1’) are activated. Notice that in either case, P2’
must be activated. When Bob enters the execution phase, P2’ can be activated only either 1) by
Bob sending to P2’ after C1 has been activated, or 2) by Alice sending pre ′a to P2’. Consider the
first scenario. In this case, since C1 has been activated, Alice can’t get any money from Rapidash.
However, from Rapidash’, Alice can get at most zero. Thus, the utility of A is less than the honest
case. Now consider the second case. Suppose that P2’ is activated at Bitcoin time t∗ ≥ T ′1, so pre ′a
is publicly known after Bitcoin time t∗.

Now, notice that if P1 or C2 is activated, A has to send a transaction containing prea.

• Case 1: A sends a transaction containing prea to P1 or C2 before Ethereum time T1. Since
Ethereum time T1 is earlier than Bitcoin time T ′1, prea and pre ′a are both publicly known at
Bitcoin time t∗. Recall that prea = pre ′b. Thus, during Bitcoin time (t∗, t∗+τ ′], any miner in
−A will activate C2’ if it wins a block. We say A loses the race if a non-colluding miner mines
a new block during Bitcoin time (t∗, t∗+τ ′]. Otherwise, we say A wins the race. If A loses the
race, it gets nothing from C1’ or C2’, and its utility is at most $AV(Ex− Bx′ − Bc′a). Else if
A wins the race, then its utility is at most $AV(Ex), which can be achieved by activating P2’,
C1’ and P1. The probability p that A wins the race is upper bounded by p ≤ γτ ′ . Therefore,
the expected utility of A is upper bounded by

$AV((Ex− Bx′ − Bc′a) · (1− p) + Ex · p).

Since p ≤ γτ ′ ≤ Bc′a
Bc′a+Bx′

, we have

$AV((Ex− Bx′ − Bc′a) · (1− p) + Ex · p) < $AV(Ex− Bx′).

• Case 2: A does not send any transaction containing prea to P1 or C2 before Ethereum time
T1. In this case, the honest Bob will send preb to P2 at Ethereum time T1. Because P2’ is
activated at Bitcoin time t∗ ≥ T ′1, which is later than Ethereum time T1, pre ′a and preb are
both publicly known at Bitcoin time t∗. Thus, during Bitcoin time (t∗, t∗ + τ ′], any miner
in −A will activate C2’ if it wins a block. By the same calculation as the previous case, since

p ≤ γτ ′ ≤ Bc′a
Bc′a+Bx′

, we have $AV((Bx′ − Bc′a + Ex) · (1− p) + Ex · p) < $AV(Ex− Bx′).

Lemma 7.3. Suppose Rapidash and Rapidash’ both enter the execution phase. Suppose the
coalition B consists of Bob and an arbitrary γ ∈ [0, 1] fraction of the mining power. If Ecb > Eε

26

and Bc′b > Bε′, the utility of B can be more than the honest case, that is, $BV(Bx′ − Ex), only if
P2, C1 and P1’ are activated.

Proof. First, note that P1 and P2 are mutually exclusive, and neither C1 nor C2 can be activated
after P1 because not enough money is available in the contract. Moreover, C1 and C2 are mutually
exclusive. Thus, all the possible cases for the net profit of Bob’s coalition from Rapidash can be
summarized as shown in Table 1.

which is activated net profit of Bob’s coalition

none or only P2 −Ex− Ecb
P1 −Ex

P2 + C1 0

C2 or P2 + C2 ≤ Eε− Ex− Ecb

Table 1: The net profit of Bob’s coalition from Rapidash, assuming that Rapidash enters the
execution phase.

Similarly, if P1’ is activated, no other activation points of Rapidash’ can be activated. More-
over, C1’ and C2’ are mutually exclusive. Thus, all the possible cases for the net profit of Bob’s
coalition from Rapidash can be summarized as shown in Table 2.

which is activated net profit of Bob’s coalition

none or only P2’ −Bc′b
P1’ Bx′

P2’ + C1’ 0

C2’ or P2’ + C2’ ≤ Bε′ − Bc′b

Table 2: The net profit of Bob’s coalition from Rapidash’, assuming that Rapidash’ enters the
execution phase.

Suppose the coalition C consists of the miners and Bob. If C follows the protocol, P1 and P1’
will be activated, and the utility of C is $BV(Bx′ − Ex) > 0. When P2, C1 and P1’ are activated,
C’s utility is $BV(Bx′). Now, we will show that it is the only scenario for C’s utility to exceed the
honest case. For the sake of reaching a contradiction, suppose C’s utility is strictly greater than
$BV(Bx′ − Ex), while one of P2, C1 and P1’ is not activated. There are two subcases.

• Subcase 1: P1’ is not activated. Because Bc′b > Bε′, we have Bε′ − Bc′b < 0. Thus, if
P1’ is not activated, the net profit from Rapidash’ is at most 0. Because Ecb > Eε, we have
Eε− Ex− Ecb < −Ex. Thus, the net profit from Rapidash is also at most 0. Consequently,
the utility of C is at most zero, which is less than $BV(Bx′ − Ex).

• Subcase 2: P2 or C1 is not activated. Because Ecb > Eε ≥ 0, the net profit from
Rapidash is at most −Ex since P2 or C1 is not activated. However, the net profit from
Rapidash’ is at most Bx′. Thus, the utility of C is at most $BV(Bx′−Ex), which is the same
as the honest case.

Therefore, we conclude that if C’s utility is strictly greater than $BV(Bx′ − Ex), P2, C1 and P1’
must be activated.

Lemma 7.4 (Bob-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let B be any coalition that consists of Bob and a subset of miners controlling at most γ ∈ [0, 1]

27

fraction of mining power. Then, as long as γτ ≤ Ecb
Ecb+Ex

, for any PPT coalition strategy SB, except

with negligible probability, it must be

utilB(SB, HS−B) ≤ utilB(HSB, HS−B),

where HSB and HS−B denotes the honest strategy for coalition B and everyone not in B, respec-
tively.

Proof. Recall that the utility of B is $BV(Bx′ − Ex) > 0 under an honest execution. Now, suppose
B may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it –— if it did so, it cannot recover more than its deposit
since any player not in B will not invoke the smart contract. We analyze the two possible cases
depending on which phase Alice enters.

Alice enters the abort phase. If Rapidash’ never enters the execution phase, the net profit
of B from Rapidash’ is at most zero. Now, assume Rapidash’ enters the execution phase. When
Alice enters the abort phase, she never sends any transaction containing prea = pre ′b. Ignoring the
negligible that B finds pre ′b by itself, P1’ can never be activated. Because Bc′b > Eε′, the net profit
of B from Rapidash’ is at most zero. On the other hand, because Ex > Eε, the net profit of B
from Rapidash is at most zero, no matter Rapidash enters the execution phase or not.

To sum up, except with negligible probability, the utility of B is at most zero, which is less than
the honest case.

Alice enters the execution phase. By Theorem 7.3, the utility of B can be more than the
honest case only if P2, C1 and P1’ are activated, so we assume it is the case. Therefore, we may
assume that P2 is activated at Ethereum time t∗ ≥ T1, and preb is publicly known after Ethereum
time t∗. If Alice enters the execution, Bob must have sent prec before Ethereum time T0. Moreover,
Alice sends prea to P1 at Ethereum time T0 and T0 < T1. Therefore, prea, preb and prec are all
publicly known at Ethereum time t∗. Thus, during Ethereum time (t∗, t∗ + τ], any miner in −B
will activate C2 if it wins a block. We say B loses the race if a non-colluding miner mines a new
block during Ethereum time (t∗, t∗ + τ]. Otherwise, we say B wins the race. If B loses the race, it
gets nothing from C1 or C2, and its utility is at most $BV(Bx′−Ex−Ecb) which can be achieved if
P1’ is activated. Else if B wins the race, then its utility is at most $BV(Bx′) which can be achieved

by activating P2, C1 and P1’. Since p ≤ γτ ≤ Ecb
Ecb+Ex

, we have

$BV((Bx′ − Ex− Ecb) · (1− p) + Bx′ · p) < $BV(Bx′ − Ex).

Theorem 7.5 (CSP fairness). Suppose that the hash function H(·) is a one-way function. For
any γ ∈ [0, 1], if the parameters satisfy the constraints specified in Section 7, then, the atomic swap
protocol satisfies γ-CSP-fairness.

Proof. In Theorem 7.2 and Theorem 7.4, we show that the atomic swap protocol satisfies γ-CSP-
fairness when the coalition consists of Alice or Bob, and possibly with some miners. Because we
assume that Alice and Bob are not in the same coalition, it remains to show γ-CSP-fairness when
the coalition C consists only of miners controlling at most γ fraction of the mining power.

Henceforth, we assume Alice and Bob are both honest. It is clear from the protocol that the
honest Alice and honest Bob always make the same decision whether to enter the execution phase
or abort phase. We may assume that the coalition does not post any new smart contract on the fly

28

and deposit money into it –— if it did so, it cannot recover more than its deposit since any player
not in B will not invoke the smart contract.

Next, when C follows the protocol, its utility is always zero. Suppose C may deviate from the
protocol. Notice that the utility of C can be positive only when C2 or C2’ is activated. There are
two possible cases.

• Case 1: both Alice and Bob enter the execution phase. In this case, Alice always sends prea to
P1, and she never sends any transaction containing pre ′a. Ignoring the negligible probability
that C finds pre ′a by itself, C2’ can never be activated. Moreover, Alice always sends prea to
P1 at latest at Ethereum time T0, and thus Bob will not post any transaction containing preb.
Ignoring the negligible probability that C finds preb by itself, C2 can never be activated. To
sum up, except the negligible probability, the utility of C is at most zero, which is the same
as the honest case.

• Case 2: both Alice and Bob enter the abort phase. In this case, Alice never sends any trans-
action containing prea. Ignoring the negligible probability that C finds prea by itself, C2 can
never be activated, and C2’ can be activated only by (pre ′a, preb). However, Bob always sends

to P2’ and preb to P2 at Ethereum time T0, so Alice never sends any transaction containing
pre ′a. Ignoring the negligible probability that C finds pre ′a by itself, C2’ cannot be activated
by (pre ′a, preb). To sum up, except with negligible probability, the utility of C is at most zero,
which is the same as the honest case.

Theorem 7.6 (Dropout resilience of atomic swap). Suppose that H(·) is a one-way function and
that all players are PPT machines. Then, the atomic swap protocol is dropout resilient.

Proof. Throughout the proof, for any X ∈ {prea, preb, prec, pre ′a}, we ignore the negligible prob-
ability that the miners can find the preimage X by itself if Alice and Bob have never sent X
before.

We first analyze the cases where Alice drops out. There are three possible cases.

• Case 1: Bob enters the abort phase. In this case, Bob will send preb to P2 and to P2’ at
Ethereum time T0. When τ Ethereum time has passed since P2 is activated, Bob sends
to C1; when τ ′ Bitcoin time has passed since P2’ is activated, Bob sends to C1’. When
Bob enters the abort phase, he never sends any transaction containing prec, and thus Alice
never enters the execution phase and never sends any transaction containing prea no matter
when she drops out. Because Bob sends to P2’ at Ethereum time T0, Alice never sends any
transaction containing pre ′a. Without knowing prea, prec and pre ′a, the miner cannot activate
P1, C2, P1’ and C2’.

As long as 1/poly(λ) fraction of the mining power is honest, P2, C1, P2’ and C1’ must be
activated in polynomial time except with negligible probability, and Bob’s utility is 0 since
he simply gets all his deposit back.

• Case 2: Bob enters the execution phase, and Alice sent prea before Ethereum time T1. In this
case, Bob will send pre ′b = prea to P1’ at Ethereum time T1 at latest. Moreover, Alice and
Bob never send any transaction containing preb and pre ′a. Without knowing preb and pre ′a,
the miner cannot activate P2, P2’, C2 and C2’. If P2 and P2’ are not activated, C1 and C1’
cannot be activated either.

As long as 1/poly(λ) fraction of the mining power is honest, P1 and P1’ must be activated in
polynomial time except with negligible probability, and Bob’s utility is $BV(Bx′ − Ex) > 0.

29

• Case 3: Bob enters the execution phase, while Alice drops out before sending prea. In this
case, Bob will send preb to P2 at Ethereum time T1. When τ Ethereum time has passed since
P2 is activated, Bob sends to C1. As soon as C1 is activated, Bob sends to P2’. When
τ ′ Bitcoin time has passed since P2’ is activated, Bob sends to C1’. Without knowing prea
and pre ′a, the miner cannot activate P1, C2, P1’ and C2’.

As long as 1/poly(λ) fraction of the mining power is honest, P2, C1, P2’ and C1’ must be
activated in polynomial time except with negligible probability, and Bob’s utility is 0 since
he simply gets all his deposit back.

Next, we analyze the case where Bob drops out. There are two cases.

• Case 1: Alice enters the abort phase. If Alice enters the abort phase, Bob must drop out
before Ethereum time T0, so Bob has not sent preb to P2. Then, Alice will send to P2
at Ethereum time T0, and pre ′a to P2’ at Ethereum time T1. When τ Ethereum time has
passed since P2 is activated, Alice sends to C1; when τ ′ Bitcoin time has passed since
P2’ is activated, Alice sends to C1’. If Alice enters the abort phase, she never sends any
transaction containing prea. Without knowing prea and preb, the miner cannot activate P1,
C2, P1’ and C2’.

As long as 1/poly(λ) fraction of the mining power is honest, P2, C1, P2’ and C1’ must be
activated in polynomial time except with negligible probability, and Alice’s utility is 0 since
she simply gets all her deposit back.

• Case 2: Alice enters the execution phase. In this case, Bob must have sent prec to P1. Alice
will send prea to P1 before Ethereum time T1, and thus Bob never sends any transaction
containing preb. As soon as P1 is activated, she will send to P1’. In the execution phase,
Alice never sends any transaction containing pre ′a. Without knowing preb and pre ′a, the miner
cannot activate P2, P2’, C2 and C2’. If P2 and P2’ are not activated, C1 and C1’ cannot be
activated either.

As long as 1/poly(λ) fraction of the mining power is honest, P1 and P1’ must be activated in
polynomial time except with negligible probability, and Alice’s utility is $AV(Ex− Bx′) > 0.

8 Atomic Swap: Achieving Bounded Maximin Fairness

So far, we have seen how to achieve CSP fairness. However, when there are some external incentives,
the strategic player may be encouraged to deviate from the protocol, and the honest player could be
harmed. In this section, we specify how to modify the contracts, the protocol, and the parameters,
so that we can also achieve bounded maximin fairness. Henceforth, let α ∈ [0, 1−1/poly(λ)] denote
the maximum fraction of mining power controlled by the set of externally incentived players, and
let $E be an upper bound on any individual or coalition’s valuation of the total possible external
incentive.

8.1 Constructions

Parameter constraints. Compared to the constraints in Section 7, we further require Alice to
put the collateral Eca into Rapidash, so that Alice and Bob both put the collateral into Rapidash
and Rapidash’. The choices of the time out T, T0, T1 on Ethereum and and T ′1 on Bitcoin subject
to the same constraints as in Section 7.

30

Parameter Constraints for Atomic Swap
Constraints for Rapidash (on Ethereum):

• ha = H(prea), hb = H(preb) and hc = H(prec).

• T1 > T0 > T > 0.

• Eε > E0, Eca > Eε, and Ecb > Eε.

• $AV(Eca) >
$AV(Bx′+αEx)+$E

1−α and $BV(Ecb) >
$BV(Bx′+αEx)+$E

1−α

Constraints for Rapidash’ (on Bitcoin):

• h′b = H(prea) = ha and h′a = H(pre ′a).

• Bitcoin time T ′1 > Ethereum time T1, i.e., the Bitcoin block of length T ′1 is mined after
the Ethereum block of length T1.

a

• Bε′ > B0, Bc′a > Bε′, and Bc′b > Bε′.

• $AV(Bc′a) >
$AV(Ex+αBx′)+$E

1−α and $BV(Bc′b) >
$BV(Ex+αBx′)+$E

1−α .

Choice of timeouts:

• τ ≥ 1, τ ′ ≥ 1.

aIn practice, this constraint should be respected except with negligible probability despite the the variance
in inter-block times.

Intuitively, if the externally incentivized individual or coalition tries to take advantage of the
honest player, the 1 − α fraction of honest miners may trigger the bomb. Thus, the collateral
amounts Eca,Ecb,Bc

′
a,Bc

′
b should be large enough relative to the mining power it controls so that a

coalition involving Alice or Bob would never want to take any gamble that would risk getting their
collateral (partially) burnt even if they are compensated by $E.

Rapidash contract (on Ethereum)
/* parametrized with (ha, hb, hc, T1, τ , Ex, Ecb, $Eε)*/

Preparation phase: Bob deposits Ex+ Ecb, and Alice deposits Eca. Once both parties make
the correct amount of deposits, the preparation phase ends and the execution phase starts.

Execution phase:

B1: On receiving from anyone, do nothing.

B2: On receiving prec from anyone P such that H(prec) = hc, send Eε to player P . All
remaining coins are burnt.

P1: On receive prea from Alice such that H(prea) = ha and prec from Bob such that
H(prec) = hc, send Ex+ Eca to Alice and Ecb to Bob.

P2: Time T1 or greater: On receive preb from Bob such that H(preb) = hb or on receiving
from Alice, do nothing.

C1: At least τ after P2 is activated: on receiving from anyone, send Ex + Ecb to Bob and
Eca to Alice.

31

C2: On receive (prea, preb, prec) from anyone P such that H(prea) = ha, H(preb) = hb, and
H(prec) = hc send Eε to player P . All remaining coins are burnt.

Rapidash’ contract (on Bitcoin)
/* parametrized with (h′b, h

′
a, T

′
1, τ
′,Bx′,Bc′a, $Bε′)*/

Preparation phase: Alice deposits Bx′+Bc′a, and Bob deposits Bc′b. Once both parties make
the correct amount of deposits, the preparation phase ends and the execution phase starts.

Execution phase:

A1’: Time T ′1 or greater: on receiving from Alice or Bob, do nothing.

A2’: On receiving pre ′a from anyone P such that H(pre ′a) = h′a, or on receiving preb from
anyone P such that H(preb) = hb, send Bε′ to player P . All remaining coins are burnt.

P1’: On receiving pre ′b from Boba such that H(pre ′b) = h′b or on receiving from Alice, send
Bx′ + Bc′b to Bob and send Bc′a to Alice.

P2’: Time T ′1 or greater: on receiving pre ′a from Alice such that H(pre ′a) = h′a or on receiving
from Bob, do nothing.

C1’: At least τ ′ after P2’ is activated: on receiving from anyone, send Bx′+ Bc′a to Alice and
Bc′b to Bob.

C2’: On receiving (pre ′b, pre ′a) from anyone P such that (pre ′b) = h′b and H(pre ′a) = h′a, or on
receiving (pre ′a, preb) from anyone P such that H(pre ′a) = h′a and H(preb) = hb, send Bε′

to player P . All remaining coins are burnt.

aBob will let pre ′
b be the prea he learns in the Rapidash instance.

Compared to the CSP-fair atomic swap, we use the extra activation points B2 and A2’ to ensure
that messages which can contribute to triggering the bombs C2 and C2’ are not posted too early by
the strategic players. This is needed for technical reasons in our proof, specifically, it ensures that
the message which triggers the bomb C2 or C2’ is a message of the strategic coalition, not that of an
honest party. Adding B2 and A2’, however, requires further changes to ensure that honest parties
can proceed with the protocol as usual once the danger of the coalitions’s messages being posted
too early has passed. This is achieved by adding B1 and A1’. Recall that the activation points
of the same type are mutually exclusive. Once B1 has been activated, B2 cannot be activated.
Thus, the purpose of B1 is to “defuse” the bomb of B2. Similarly, once A1’ has been activated,
A2’ cannot be activated, so activating A1’ is to defuse the bomb of A2’.

The atomic swap protocol. We describe the atomic swap protocol below.

• Miner. The miner’s honest protocol is described below.

– The miner watches all transactions posted to B1, B2, P1, P2, C1, C2, A1’, A2’, P1’, P2’,
C1’, and C2’ (i.e., all the activation points for both contracts), to see if they contain a valid
prea = pre ′b, preb, pre ′a, and prec.

– If C1 has not been activated, as soon as the miner has observed prea, preb and prec, it posts
(prea, preb, prec) to C2. Similarly, if C1’ has not been activated, as soon as the miner has
observed both pre ′a and pre ′b, it posts (pre ′a, pre ′b) to C2’; as soon as the miner has observed
pre ′a and preb, it posts (pre ′a, preb) to C2’.

32

– If B1 has not been activated, as soon as the miner has observed prec, it posts prec to B2. If
A1’ has not been activated, as soon as the miner has observed pre ′a or preb, it posts pre ′a or
preb to A2’.

– Whenever the miner mines a block, it always includes its own transactions ahead of others.

• Alice and Bob. Below, we define the honest protocol for Alice and Bob. The moment that both
contracts have been posted and take effect is defined to be the start of the execution (i.e. t = 0).
We define Ethereum time 0 and Bitcoin time 0 to be the length of Ethereum and Bitcoin when
the execution starts, respectively.

Atomic Swap Protocol — Alice and Bob
Preparation Phase:

1. At t = 0, Alice sends the deposit transaction of Bx′ + Bc′a to Rapidash’ and sends the
collateral transaction of Eca to Rapidash. Similarly, Bob sends the deposit transaction of
Ex+ Ecb to Rapidash and sends the collateral transaction of Bc′b to Rapidash’.

2. Wait until one of the following happens:

• Both Rapidash and Rapidash’ enter the execution phase: Bob sends to B1. As
soon as B1 is activated, Bob sends prec to P1 and enters the execution phase.

• Either Rapidash or Rapidash’ has not entered the execution phase, and it is at least
Ethereum time T : Alice and Bob go to the abort phase;

3. Wait until one of the following happens:

• Bob sent prec to P1: Alice enters to the execution phase.

• Bob has not sent prec to P1, and it is at least Ethereum time T0: Alice and Bob go to
the abort phase.

Execution phase:

1. Alice sends prea to P1. As soon as P1 has been activated, Alice sends an empty message
to P1’.

2. Wait until one of the following happens:

• Alice sent prea to P1: Bob sends pre ′b = prea to P1’.

• Alice has not send prea to P1, and it is at least Ethereum time T1: Bob sends to A1’.
As soon as A1’ is activated, Bob sends preb to P2.

3. If τ Ethereum time has passed since P2 is activated, Alice and Bob send to C1. As soon
as C1 is activated, Bob sends to P2’.

4. If τ ′ Bitcoin time has passed since P2’ is activated, Alice and Bob send to C1’.

Abort Phase:

1. If Rapidash (Rapidash’, resp.) has not entered the execution phase, Alice and Bob
withdraw their deposits from Rapidash (Rapidash’, resp.).

2. At Bitcoin time T ′0, Bob sends to P2’ and to A1’; Alice sends to P2 and and to A1’.

33

3. If Bob has not sent to P2’ by Bitcoin time T ′1, Alice waits until A1’ is activated and sends
pre ′a to P2’. Similarly, if Alice has not sent to P2 by Bitcoin time T ′1, Bob waits until A1’
is activated and sends preb to P2.

4. If τ ′ Bitcoin time has passed since P2’ is activated, Alice and Bob send to C1’; similarly,
if τ Ethereum time has passed since P2 is activated, Alice and Bob send to C1.

Ignore all other events.

Observe that when Alice and Bob are both honest, Bob will send to B1 immediately when
both Rapidash and Rapidash’ enter the execution phase, and send prec to P1 as soon as B1 is
activated. Then, Alice will post prea to P1 immediately and then Bob will learn prea and post it to
P1’ immediately. Therefore, both players get their desired cryptocurrency and all their collateral
back as soon as a new block is confirmed on both Ethereum and Bitcoin —– in this sense, the
protocol satisfies optimistic responsiveness.

Theorem 8.1 shows that the above modified version of the atomic swap protocol still satisfies
CSP fairness absent external incentives.

Theorem 8.1 (CSP fairness). Suppose that the hash function H(·) is a one-way function. Suppose

the choice of the parameters satisfy the constraints in Section 8.1, and further satisfy γτ
′ ≤ Bc′a

Bc′a+Bx′

and γτ ≤ Ecb
Ecb+Ex

. Then, the atomic swap protocol satisfies γ-CSP-fairness.

Proof. Deferred to Appendix A.

Next, we show that the atomic swap protocol satisfies bounded maximin fairness. Formally, we
prove the following theorem.

Theorem 8.2 (Bounded maximin fairness). Suppose that H(·) is a one-way function and suppose
the parameters Eca,Bc

′
a,Ecb,Bc

′
b, α ∈ [0, 1− 1/poly(λ)] satisfy the relations specified in Section 8.1.

Then, the atomic swap protocol satisfies α-bounded maximin fairness against external incentives. In
other words, for any set of PPT players denoted C without external incentives, and any externally
incentivized PPT coalition C′ that is disjoint from C, controlling at most α fraction of mining power,
and playing any strategy SC′ ∈ R, there is a negligible function negl(·) such that except with negl(λ)
probability, it must be that

utilC(HSC , SC′ , HSD) ≥ 0

where D denotes all players not in C ∪ C′.

The entire Section 8.2 dedicates to proving Theorem 8.2.

8.2 Proof for Bounded Maximin Fairness

Proof Roadmap. Conceptually, because Alice and Bob both put the collateral on both Rapidash
and Rapidash’, none of them wants to trigger any of the bomb (B2, C2, A2’ and C2’). In
Section 8.2.1, we analyze players’ utilities when the bomb is triggered. In Section 8.2.2, we define a
set of “bad events” that leads to the activation of the bomb. The bad events are defined such that
if any of the bad events is about to happen, it must be that a strategic invidual or coalition is about
to send a transaction that does not follow from the honest protocol. In Section 8.2.3, we show that
whenever the Bob-miner coalition B is about to send a message that makes a bad event happen,
B’s expected utility can be strictly improved if B simply stops sending any messages (including the

34

message that is about to trigger the bad event) from that moment on (Theorem 8.5). Hence, any
strategy that makes the bad event happen is a blatantly non-rational strategy for B, so a rational
player would never make the bad events happen. Then, we show that as long as none of the bad
events happens, the honest Alice’s utility is never negative (Theorem 8.4 and Theorem 8.6). A
similar argument can be made for the case of an Alice-miner coalition (see Section 8.2.4). Finally,
in Section 8.2.5, we combine all the arguments above, and prove that the atomic swap protocol
achieves bounded maximin fairness.

8.2.1 Utilities When Bombs Are Triggered

Normally, when Alice and Bob follow the protocol, P1 and P1’ will be activated, and they exchange
the coins successfully. However, if one of the parties drops out, the other party will trigger (P2 +
C1) and (P2’ + C1’) to get refunded. Finally, B2, C2, A2’ and C2’ are the bombs, and both Alice
and Bob lose their collateral when a bomb is triggered. We define the following events.

• Normal: P1 is activated.

• Refund: either (P2 + C1) are activated, or one of Alice and Bob withdraws their deposits
from Rapidash successfully before Rapidash enters the execution phase.

• Bomb: B2 or C2 is activated.

• Normal′: P1’ is activated.

• Refund′: either (P2’ + C1’) are activated, or one of Alice and Bob withdraws their deposits
from Rapidash’ successfully before Rapidash’ enters the execution phase.

• Bomb′: A2’ or C2’ is activated.

Lemma 8.3. Suppose the coalition B consists of Bob and possibly some miners. Let $E be an
upper bound on B’s valuation of the total possible external incentive. If Ecb > Eε, Bc′b > Bε′, then,
the following statements hold.

• The utility of B is at most $BV(Bx′) + $E.

• If Bomb is activated by an honest miner /∈ B, the utility of B is at most $BV(Bx′ − Ex −
Ecb) + $E.

• If Bomb′ is activated by an honest miner /∈ B, the utility of B is at most $BV(−Bc′b) + $E.

Similarly, suppose the coalition A consists of Alice and possibly some miners. Let $E be an
upper bound on A’s valuation of the total possible external incentive. If Eca > Eε, Bc′a > Bε′, then,
the following statements hold.

• The utility of A is at most $AV(Ex) + $E.

• If Bomb is activated by an honest miner /∈ A, the utility of A is at most $AV(−Eca) + $E.

• If Bomb′ is activated by an honest miner /∈ A, the utility of A is at most $AV(Ex − Bx′ −
Bc′a) + $E.

Proof. First, consider the coalition B consisting of Bob and possibly some miners. Note that since
Ecb > Eε the best option for Bob when considering Rapidash separately (not considering how this
potentially affects Rapidash’) is to obtain his money back via Refund (i.e., his utility in Rapidash

35

is zero). In Rapidash’, as Bc′b > Bε′, Bob can obtain at most Bx′ (via Normal′). Thus, besides the
external incentive, Bob can obtain at most Bx′ from both contracts together.

Next, if Bomb is activated by an honest miner /∈ B, Bob loses all money he desposited into
Rapidash, i.e., Ex + Ecb. Thus, besides the external incentive, in total Bob can obtain at most
Bx′ − Ex− Ecb from both contracts (again using Normal′ in Rapidash’).

Then, if Bomb′ is activated by an honest miner /∈ B, Bob loses all money he deposited into
Rapidash’, i.e., Bc′b. Thus, besides the external incentive, Bob’s utility is at most −Bc′b in this
case (using Refund in Rapidash).

Now, consider the coalition A consisting of Alice and possibly some miners. Since Eca > Eε,
Alice can obtain at most Ex in Rapidash (via Normal). In Rapidash’, as Bc′a > Bε′, the best
option for Alice is to obtain her money back via Refund′. Thus, besides the external incentive, Alice
can obtain at most Ex from both contracts together.

If Bomb is activated by an honest miner /∈ A, Alice loses all money she deposited into Rapidash,
i.e., Eca. Thus, besides the external incentive, in total Alice’s utility is at most −Eca.

Finally, if Bomb′ is activated by an honest miner /∈ A, Alice loses all money she deposited into
Rapidash’, i.e., Bx′ + Bc′a. Thus, besides the external incentive, in total Alice can obtain at most
Ex− Bx′ − Bc′a from both protocols.

8.2.2 Non-Rational Strategies

Terminologies. We define a family of PPT strategies denoted R, and we will show given any
strategy S ∈ R, we can give a simple modification of S, resulting in a new PPT strategy which
makes the externally incentivized coalition better off — in this sense, the strategy space R is
blatantly non-rational.

Consider an externally incentivized coalition Alice-miner A (the case for Bob-miner coalition B
is similarly defined). Given an activation point X, we say that X is guaranteed to be activated at
some time t, iff either X was already activated before t, or a colluding miner has been chosen as
the winning miner at time t, and it activates X in the new block it mines. We say Rapidash is
guaranteed to enter the execution phase at some time t, iff either Rapidash was already entered
the execution phase before t, or a colluding miner has been chosen as the winning miner at time t,
and it includes Alice’s and Bob’s deposit transactions for Rapidash in the new block it mines. The
case of Rapidash’ is defined similarly. We say Alice is guaranteed to withdraw her deposit from
Rapidash at some time t, iff either Alice already withdrew her deposit from Rapidash before t,
or all the following conditions hold.

• Rapidash is still in the preparation phase before time t.

• At time t, a colluding miner is chosen as the winning miner, and Alice’s withdrawal transaction
is included in the block at time t.

The cases that Alice is guaranteed to withdraw her deposit from Rapidash’, and Bob is guaranteed
to withdraw his deposit from Rapidash or Rapidash’ are defined similarly.

Non-rational strategies. The set R of non-rational strategies for the externally incentivized
Bob-miner coalition (including Bob alone) B is the set of strategies such that with non-negligible
probability, any of the following happens:

E1: Before B1 is guaranteed to be activated and before Bob is guaranteed to withdraw his deposit
from Rapidash, anyone in B sends any transaction containing prec to (B2, P1 or C2) and
the deposit transaction to Rapidash.

36

E2: Rapidash and Rapidash’ are guaranteed to enter the execution phase before Ethereum time
T . Additionally, anyone in B sends prec to (B2, P1 or C2) before Ethereum time T0, and
sends preb to (P2, C2, A2’ or C2’) before (P1 or C1) is guaranteed to be activated.

E3: Before A1’ is guaranteed to be activated and before Bob is guaranteed to withdraw his deposit
from Rapidash’, anyone in B sends any transaction containing preb to (P2, C2, A2’ or C2’)
and the deposit transaction to Rapidash’.

E4: Alice enters the abort phase, and Bob does not send to P2’ before Bitcoin time T ′1. Ad-
ditionally, at Bitcoin time T ′1 or later, anyone in B sends any transaction containing preb to
(P2, C2, A2’ or C2’) before (P1’ or C1’) is guaranteed to be activated.

The set R of non-rational strategies for the externally incentivized Alice-miner coalition (in-
cluding Alice alone) A is the set of strategies such that with non-negligible probability, any of the
following happens:

E5: Bob sends prec to P1 before Ethereum time T0, and Alice does not send prea to P1 until
Ethereum time T1. However, at Ethereum time T1 or later, anyone in A sends a transaction
containing prea to (P1, C2, P1’ or C2’) before (P1 or C1) is guaranteed to be activated.

E6: Before A1’ is guaranteed to be activated and before Alice is guaranteed to withdraw her
deposit from Rapidash’, anyone in A sends any transaction containing pre ′a to (A2’, P2’ or
C2’) and the deposit transaction to Rapidash’.

E7: Anyone inA sends any transaction containing prea to (P1, C2, P1’ or C2’) and any transaction
containing pre ′a to (A2’, P2’ or C2’) before (P1’ or C1’) is guaranteed to be activated.

E8: Any one of the conditions holds.

– Bob enters the execution phase, and Alice does not send prea to P1 before Ethereum
time T1. Additionally, at Bitcoin time T ′1 or later, anyone in A sends any transaction
containing pre ′a to (A2’, P2’ or C2’) before (P1’ or C1’) is guaranteed to be activated.

– Bob enters the abort phase, and Alice does not send to P2 before Bitcoin time T ′1.
Additionally, at Bitcoin time T ′1 or later, anyone in A sends any transaction containing
pre ′a to (A2’, P2’ or C2’) before (P1’ or C1’) is guaranteed to be activated.

8.2.3 Against Externally Incentivized Bob-Miner Coalition

Lemma 8.4. Let B be the coalition consisting of Bob and miners controlling no more than α
fraction of the mining power where α ∈ [0, 1− 1/poly(λ)]. Suppose Alice and at least 1−α fraction
of mining power are honest. For any PPT strategy by B, except with negligible probability, as long
as none of E1,E2,E3,E4 happens, then, one and only one of the following statement holds.

1. Normal and Normal′ happen in polynomial time.

2. Normal and Refund′ happen in polynomial time.

3. Refund and Refund′ happen in polynomial time.

Proof. First, we are going to show that one of Normal and Refund will happen. There are two cases.

37

• Case 1: Alice enters the execution phase.

We are going to show that P1 must be activated in polynomial time except with negligible
probability. Once P1 is activated, Normal happens. In the execution phase, Alice always
sends prea to P1. If B2, P2 and C2 are not activated, the honest miners will include Alice’s
transaction, prea to P1, once they mine a block. Thus, it suffices to show that B2, P2, C2
(all activations points that P1 is mutually exclusive with) cannot be activated except with
negligible probability. First, because E1 does not happen, B never sends prec before B1 is
guaranteed to be activated. Thus, B2 can never be activated.

Next, because Alice enters the execution phase, Rapidash and Rapidash’ must enter the
execution phase, and Bob already sent prec to P1 before Ethereum time T0. Because E2 does
not happen, no one in B sends preb to C2 before P1 or C1 is guaranteed to be activated.
Thus, C2 cannot be activated.

It remains to show that P2 cannot be activated. In the execution phase, Alice never sends
to P2, so P2 can be activated only if Bob sends preb to P2. Because E2 does not happen, Bob
never sends preb to P2 before P1 or C1 is guaranteed to be activated. If P1 is guaranteed to
be activated, P2 cannot be activated as they are mutually exclusive. On the other hand, if
C1 is guaranteed to be activated, P2 must have been activated τ ≥ 1 Ethereum time before.
Thus, by the time P2 is activated, C1 has not been guaranteed to be activated. However,
and Bob never sends preb to P2 before C1 is guaranteed to be activated. Therefore, P2 can
never be activated.

• Case 2: Alice enters the abort phase. In this case, Alice will send the withdrawal transaction
to Rapidash, and to P2. Notice that when Rapidash is still in the preparation phase,
the honest miner will include Alice’s withdrawal transactions once they mine a block. Thus,
except with negligible probability, in polynomial time, either Rapidash enters the execution
phase, or Alice successfully withdraws her deposit from Rapidash. If Alice withdraws her
deposit from Rapidash, Refund happens.

Henceforth, we assume Rapidash enters the execution phase. Because E1 does not happen,
B never sends prec before B1 is guaranteed to be activated. Thus, B2 can never be activated.
Then, notice that Alice never sends prea when she enters the abort phase. Ignoring the
negligible probability that B finds prea by itself, C2 can never be activated.

Thus, since 1 − α fraction of mining power is honest, either P1 or P2 will be activated in
polynomial time. If P1 is activated, Normal happens. If P2 is activated, Alice will send to
C1 when τ Ethereum time has passed since P2 is activated. Again, the honest miner will
include Alice’s transaction to C1, once they mine a block. Thus, Refund will happen in
polynomial time.

Next, we are going to show that one of Normal′ and Refund′ will happen. There are two cases.

• Case 1: Alice enters the execution phase. As we have shown, when Alice enters the execution
phase, P1 must be activated in polynomial time. Then, Alice will send to P1’ as soon as P1
is activated. Because E3 does not happen and Alice never sends pre′a when in the execution
phase, A2’ cannot be activated. Ignoring the negligible probability that B finds pre ′a by itself,
C2’ cannot be activated. Because 1− α fraction of mining power is honest, either P1’ or P2’
will be activated in polynomial time. If P1’ is activated, Normal′ happens, If P2’ is activated,
Alice will send to C1’. Again, the honest miner will include a transaction to C1’, once
they mine a block. Thus, C1’ will be activated in polynomial time, and Refund′ happens.

38

• Case 2: Alice enters the abort phase. In this case, Alice will send the withdrawal transaction
to Rapidash’, and to A1’. If Rapidash’ is still in the preparation phase, the honest miner
will include Alice’s withdrawal transactions once they mine a block. Thus, in polynomial time,
either Rapidash’ enters the execution phase, or Alice successfully withdraws her deposit from
Rapidash’, and so Refund′ happens.

Henceforth, we assume Rapidash’ enters the execution phase in polynomial time. Because
E3 does not happen, B never sends preb before A1’ is guaranteed to be activated. As A1’
and A2’ are mutually exclusive, A2’ can not be activated via preb. Since Alice sends pre′a
to P2’ only after A1’ is activated, 1) A2’ can not be activated via pre′a, and 2) C2’ can not
happen before A1’ is activated. If either P1’ or C1’ are activated, Normal′ or Refund′ happens.
Otherwise, the honest miner will include the transaction to A1’ once they mine a block.
Because 1− α fraction of mining power is honest, A1’ will be activated in polynomial time.

When Alice is in abort phase, either Bob sends to P2’ before Bitcoin time T ′1 or Alice sends
pre ′a to P2’ when A1’ is activated. If Bob sends to P2’ before Bitcoin time T ′1, Alice never
sends pre ′a, and thus C2’ can not be activated. When Alice enters the abort phase, she never
sends prea, and thus P1’ can not be activated. As we showed before, A2’ can not be activated
either, and thus the honest miner will include Bob’s transaction, to P2’, once they mine a
block, so P2’ will be activated in polynomial time.

On the other hand, suppose Bob does not send to P2’ before Bitcoin time T ′1, so Alice sends
pre ′a to P2’. Because E4 does not happen, B never sends preb before P1’ or C1’ is guaranteed
to be activated. If P1’ is activated, Normal′ happens, if C1’ is activated, P2’ must have been
activated previously, and thus Refund′ happens. Otherwise, recall that Alice never sends prea
in the abort phase. Without prea and preb, P1’ and C2’ cannot be activated, and as A2’ can
not be activated either as shown before, the honest miner will include Alice’s transaction,
pre ′a to P2’, once they mine a block. Thus, P2’ will again be activated in polynomial time.

Then, Alice will send to C1’ when τ ′ Bitcoin time has passed since P2’ is activated. Again,
the honest miner will include Alice’s transaction, to C1’, once they mine a block. Thus,
Refund′ will happen in polynomial time.

So far, we have shown one of Normal and Refund will happen and one of Normal′ and Refund′

will happen. To prove the lemma statement, it suffices to show that Refund and Normal′ never
happen simultaneously. For the sake of reaching a contradiction, suppose Refund and Normal′

happen. Event Normal′ happens implies P1’ is activated. Notice that P1’ can be activated only
when pre ′b = prea is given. Ignoring the negligible probability that B can find prea by itself, Alice
must enter the execution phase and send prea to P1 at Ethereum time T0. On the other hand,
event Refund happens implies either (P2 + C1) are activated or Bob withdraws his deposit from
Rapidash. Because Alice enters the execution phase, both Rapidash and Rapidash’ must also
enter the execution, and thus we exclude that Bob withdraws his deposit from Rapidash. Thus,
event Refund happens only when (P2 + C1) are activated. Moreover, because Alice enters the
execution phase, Bob must have sent prec to P1. Therefore, to activate P2, Bob has to send preb
before C1 is guaranteed to be activated, which implies event E2 happens.

Lemma 8.5 (Blatant non-rationality of R for Bob-miner coalition). Suppose that the parameter
constraints in Section 8.1 hold and that the coalition B consists of Bob and miners controlling no
more than α fraction of the mining power where α ∈ [0, 1 − 1/poly(λ)]. Given any PPT strategy

39

SB ∈ R for some (externally incentivized) coalition B, there is a PPT strategy ŜB such that

utilB(ŜB, HS−B) > utilB(SB, HS−B).

Proof. Suppose the coalition B adopts a strategy in which E1,E2,E3 or E4 happens with non-
negligible probability. We can construct a new strategy for B with strictly better expected utility.
Specifically, consider a modified PPT strategy denoted ŜB: whenever by the original strategy, the
first of E1,E2,E3 or E4 is about to happen, B simply stops sending any messages (including the
message that is about to trigger E1,E2,E3 or E4) to the contract from that moment on.

Now, notice that by definition, when E1 or E3 happens, it must due to a message sent by B.
According to the protocol, honest Alice always enters the execution or the abort phase no later than
Ethereum time T0. Because Bitcoin time T ′1 is later than Ethereum time T0 by the choice of the
parameters, when E4 happens, it must also due to a message sent by B. Next, if Rapidash’ has not
been guaranteed to enter the execution phase, A1’ cannot be guaranteed to be activated. Similarly,
if Rapidash has not been guaranteed to enter the execution phase, B1 cannot be guaranteed to
be activated. Thus, if anyone in B sends prec to (B2, P1 or C2) and sends preb to (P2, C2, A2’
or C2’) before Rapidash and Rapidash’ both are guaranteed to enter the execution phase, one
of E1 and E3 must happen. Consequently, if E1 and E3 do not happen while E2 happens, it must
due to a message sent by B. Thus, as long as B stops sending any messages before the first of
E1,E2,E3 or E4 is about to happen, none of E1,E2,E3 and E4 can happen in the future. By
Theorem 8.4, in polynomial time, one of (Normal + Normal′), (Normal + Refund′) and (Refund +
Refund′) must happen. By direct calculation, we have the following table. Among (Normal +

Normal Refund Bomb

Normal′ −Ex+ Bx′ Bx′ −Ex− Ecb + Bx′

Refund′ −Ex 0 −Ex− Ecb
Bomb′ −Ex− Bc′b −Bc′b −Ex− Ecb − Bc′b

Table 3: Bob’s net profit under all possible cases.

Normal′), (Normal + Refund′) and (Refund + Refund′), B’s utility is at least $BV(−Ex). In other
words, we have utilB(ŜB, HS−B) ≥ $BV(−Ex). Thus, to show utilB(ŜB, HS−B) ≥ utilB(SB, HS−B),
we only need to show utilB(SB, HS−B) < $BV(−Ex).

We consider four cases, depending on whether E1,E2,E3 or E4 happens first in the original
strategy SB.

Event E1 happens first. Now, consider some strategy S1 ∈ R with non-negligible probability
that E1 happens. When E1 happens, because Bob is not guaranteed to withdraw his deposit from
Rapidash, the 1 − α fraction of honest miners would send the deposit to Rapidash and prec
to B2 (and potentially C2 as well if prea and preb are available), if they are chosen to mine a
block. By Theorem 8.3, if B2 or C2 is activated by an honest miner, the utility of B is at most
$BV(Bx′ − Ex − Ecb) + $E. On the other hand, if neither B2 nor C2 is activated by an honest
miner, the utility of B is at most $BV(Bx′) + $E. When E1 happens, the probability that B2 or
C2 is activated by an honest miner is at least 1− α. Thus, the utility of B is at most

(1− α)($BV(Bx′ − Ex− Ecb) + $E) + α($BV(Bx′) + $E) < $BV(−Ex),

where the inequality arises from the fact that $BV(Ecb) >
$BV(Bx′+αEx)+$E

1−α .

Event E2 happens first. Now, consider some strategy S2 ∈ R with non-negligible probability
that E2 happens. When E2 happens, because both Rapidash and Rapidash’ enter the execution

40

phase before Ethereum time T and Bob sends prec before Ethereum time T0, Alice enters the
execution phase. In this case, Alice always sends prea to P1 at Ethereum time T0. However, Bob
also sends preb before C1 is guaranteed to be activated. Thus, the 1− α fraction of honest miners
would send (prea, preb, prec) to C2 (and potentially send prec to B2), if they are chosen to mine
a block. By Theorem 8.3, if C2 or B2 is activated by an honest miner, the utility of B is at most
$BV(Bx′ − Ex − Ecb) + $E. On the other hand, if neither C2 nor B2 is activated by an honest
miner, the utility of B is at most $BV(Bx′) + $E. When E2 happens, the probability that C2 or
B2 is activated by an honest miner is at least 1−α. Thus, by the same calculation as the previous
case, the utility of B is strictly less than $BV(−Ex).

Event E3 happens first. Now, consider some strategy S3 ∈ R with non-negligible probability
that E3 happens. When E3 happens, because Bob is not guaranteed to withdraw his deposit from
Rapidash’, the 1− α fraction of honest miners would send the deposit to Rapidash’ and preb to
A2’ (and to C2’ if pre′a is available as well), if they are chosen to mine a block. By Theorem 8.3,
if A2’ or C2’ is activated by an honest miner, the utility of B is at most $BV(−Bc′b) + $E. On
the other hand, if neither A2’ nor C2’ is activated by an honest miner, the utility of B is at most
$BV(Bx′)+$E. When E3 happens, the probability that A2’ or C2’ is activated by an honest miner
is at least 1− α. Thus, the utility of B is at most

(1− α)($BV(−Bc′b) + $E) + α($BV(Bx′) + $E) < $BV(−Ex),

where the inequality arises from the fact that $BV(Bc′b) >
$BV(Ex+αBx′)+$E

1−α .

Event E4 happens first. Now, consider some strategy S4 ∈ R with non-negligible probability
that E4 happens. When E4 happens, because Alice enters the abort phase and Bob does not send

to P2’ before Bitcoin time T ′1, Alice will send pre ′a as soon as A1’ is activated. However, Bob
also sends preb before P1’ or C1’ is guaranteed to be activated. If Bob sends preb before A1’ is
activated, the 1 − α fraction of honest miners would send preb to A2’, if they are chosen to mine
a block. If Bob sends preb after A1’ is activated, the 1 − α fraction of honest miners would send
(pre ′a, preb) to C2’, if they are chosen to mine a block. By Theorem 8.3, if A2’ or C2’ is activated
by an honest miner, the utility of B is at most $BV(−Bc′b) + $E. On the other hand, if neither
A2’ nor C2’ is activated by an honest miner, the utility of B is at most $BV(Bx′) + $E. When E4

happens, the probability that A2’ or C2’ is activated by an honest miner is at least 1 − α. Thus,
by the same calculation as the previous case, the utility of B is strictly less than $BV(−Ex).

Finally, notice that the above analysis holds even if B may post a new contract on the fly during
the protocol execution, since all other players are honest and will not deposit money into the new
contract.

Lemma 8.6 (Against Externally Incentivized Bob-Miner Coalition). Suppose that the hash function
H(·) is a one-way function. Let C be a group consisting of Alice and possibly any subset of the
miners, and let B be a disjoint coalition consisting of Bob and at most α fraction of the mining
power where α ∈ [0, 1 − 1/poly(λ)]. Suppose that C does not have external incentives but B may
have up to $E amount of external incentives. Let SB be an arbitrary PPT strategy of B that is
not in R. Then, there exists a negligible function negl(·) such that except with negligible probability
negl(λ), it holds that

utilC(HSC , SB, HSD) ≥ 0,

where D denotes everyone else not in C ∪ B.

Proof. By Theorem 8.5, any strategy that makes one of E1,E2,E3,E4 happen is blatantly non-
rational. By direct calculation, we have the following table. By Theorem 8.4, if none of E1,E2,E3,E4

41

Normal Refund Bomb

Normal′ Ex− Bx′ −Bx′ −Eca − Bx′

Refund′ Ex 0 −Eca
Bomb′ Ex− Bx′ − Bc′a −Bx′ − Bc′a −Eca − Bx′ − Bc′a

Table 4: Alice’s net profit under all possible cases.

happens, then one of (Normal+Normal′), (Normal+Refund′) and (Refund+Refund′) must happen.
Because $AV(Ex − Bx′) > 0, except with some negligible probability, for all three possible cases
Alice’s utility is non-negative.

8.2.4 Against Externally Incentivized Alice-Miner Coalition

Lemma 8.7. Let A be the coalition consisting of Alice and miners controlling no more than α
fraction of the mining power where α ∈ [0, 1− 1/poly(λ)]. Suppose Bob and at least 1− α fraction
of mining power are honest. For any PPT strategy by A, except with negligible probability, as long
as none of E5,E6,E7,E8 happens, then, one and only one of the following statement holds.

1. Normal and Normal′ happen in polynomial time.

2. Refund and Normal′ happen in polynomial time.

3. Refund and Refund′ happen in polynomial time.

Proof. First, we are going to show that one of Normal and Refund will happen. There are two cases.

• Case 1: Bob enters the execution phase. In this case, Rapidash and Rapidash’ must enter
the execution phase, and Bob already sent prec to P1 before Ethereum time T0. There are
two subcases.

– Subcase 1: Alice sends prea to P1 before Ethereum time T1. In this case, Bob never
sends any transaction containing preb. Without preb, C2 can never be activated. As
Bob is in the execution phase, B1 was activated and thus B2 can never be activated.
As Alice sent prea to P1 and Bob sent prec to P1, either P1 is activated in polynomial
time, or P2 is activated instead. If P1 is activated, Normal happens. If P2 is activated,
Bob sends an empty message to C1, and thus C1 is activated in polynomial time and
Refund happens.

– Subcase 2: Alice does not send prea to P1 before Ethereum time T1. In this case, Bob
will send to A1’. As E6 does not happen, Alice never sends any transaction containing
pre ′a before A1’ is guaranteed to be activated, and thus A2’ is never activated. Thus,
A1’ is activated in polynomial time and Bob sends preb to P2 as soon as A1’ is activated.
Because E5 does not happen, Alice never sends any transaction containing prea before
P1 or C1 is activated. Thus, C2 can never be activated. As Bob is in the execution
phase, B2 can never be activated. Thus, either P1 is activated (Normal happens), or
C1 is activated (thus P2 has been activated before and Refund happens), or the honest
miner will include Bob’s transaction, preb to P2, once they mine a block. Then, when τ
Ethereum time has passed since P2 is activated, Bob will send to C1 and thus Refund
happens.

42

• Case 2: Bob enters the abort phase. In this case, Bob will send the withdrawal transaction
to Rapidash, and to A1’. If Rapidash is still in the preparation phase, the honest miner
will include Bob’s withdrawal transactions once they mine a block. Thus, in polynomial time,
either Rapidash enters the execution phase, or Bob successfully withdraws his deposit from
Rapidash, which implies Refund happens.

Henceforth, we assume Rapidash enters the execution phase in polynomial time. Note that
as Bob is in the abort phase, Bob never sent prec and thus, up to negligible probability, B2
and C2 can not be activated. Because E6 does not happen, A never sends pre ′a before A1’
is guaranteed to be activated. Thus, A1’ is activated in polynomial time. Then, either Alice
sends to P2 before Bitcoin time T ′1, or Bob sends preb to P2. Either way, either P1 is
activated (thus Normal happens), or P2 is activated in polynomial time. When τ Ethereum
time has passed since P2 is activated, Bob will send to C1. Thus, C1 will be activated, and
so Refund happens.

Next, we are going to show that one of Normal′ and Refund′ will happen. There are two cases.

• Case 1: Bob enters the execution phase. First, note that because E6 does not happen, Alice
never sends any transaction containing pre ′a before A1’ is guaranteed to be activated, and as
Bob sends preb only after A1’ is activated, it follows that A2’ is never activated.

Suppose Alice sends prea to P1 before Ethereum time T1. Then, Bob never sends preb, and
so C2’ can not be activated via (pre′a, preb). Because E7 does not happen, C2’ can not be
activated via (prea, pre

′
a). Thus, C2’ is never activated. As Bob sends pre′b = prea to P1’,

either Normal′ happens, or P2’ is activated. In the latter case, Bob sends to C1’, and so
Refund′ happens.

Henceforth, we assume Alice does not send prea to P1 before Ethereum time T1. As we have
shown before, in this case either Normal happens, or Refund happens. If Normal happens, Bob
sends prea to P1’. If Refund happens, Bob will send to P2’ as soon as C1 is activated. As
E8 does not happen, C2’ can not be activated using pre′a after Bitcoin time T ′1. As E6 does
not happen, C2’ can not be activated using pre′a before Bitcoin time T ′1 either. Thus, C2’ is
never activated. Thus, in both cases (Normal and Refund), either P1’ or P2’ will be activated
in polynomial time. If P1’ is activated, Normal′ happens. If P2’ is activated, Bob will send
to C1’. The honest miners will include Bob’s transaction, to C1’, once they mine a block.
Thus, C1’ will be activated in polynomial time, so Refund′ happens.

• Case 2: Bob enters the abort phase. In this case, Bob will send the withdrawal transaction
to Rapidash’, to P2’ and to A1’. If Rapidash’ is still in the preparation phase, the
honest miner will include Bob’s withdrawal transactions once they mine a block. Thus, in
polynomial time, either Rapidash’ enters the execution phase, or Bob successfully withdraws
his deposit from Rapidash’, which implies Refund′ happens.

Henceforth, we assume Rapidash’ enters the execution phase in polynomial time. Because
E6 does not happen, A never sends pre ′a before A1’ is guaranteed to be activated. As Bob’s
sends to A1’, A1’ will be activated in polynomial time. If Alice sends to P2 by Bitcoin
time T ′1, Bob never sends preb, and thus C2’ can be activated only via (prea, pre

′
a) (excluded

by E7). If Alice does not send to P2 by Bitcoin time T ′1, because E8 does not happen,
Alice does not send any transaction containing pre ′a before P1’ or C1’ is guaranteed to be
activated. Thus, C2’ can not be activated via pre′a. Thus, C2’ is never activated. As Bob
sends to P2’, or Alice’s transaction, either P1’ or P2’ will be activated in polynomial time.

43

If P1’ is activated, Normal′ happens. If P2’ is activated, Bob will send to C1’. Thus, C1’
will be activated in polynomial time, so Refund′ happens.

So far, we have shown one of Normal and Refund will happen and one of Normal′ and Refund′ will
happen. To prove the lemma statement, it suffices to show that Normal and Refund′ never happen
simultaneously. For the sake of reaching a contradiction, suppose Normal and Refund′ happen.
Event Normal happens implies P1 is activated. If Bob enters the abort phase, Bob never sends prec
to P1. Ignoring the negligible probability that A finds prec by itself and forges Bob’s signature,
Bob must enter the execution, which implies both Rapidash and Rapidash’ enter the execution
phase. On the other hand, event Refund′ happens implies either (P2’ + C1’) are activated or Alice
withdraws her deposit from Rapidash’. As we have shown, Rapidash’ must enter the execution
phase, so event Refund′ happens implies (P2’ + C1’) are activated. In the execution phase, Bob
will send to P2’ only if C1 is activated, which is impossible given that P1 is activated. Thus, P2’
can be activated only if Alice sends pre ′a to P2’. Because C1’ can be activated when τ ′ Bitcoin
time has passed since P2’ is activated, Alice must send pre ′a to P2’ before C1’ is guaranteed to be
activated. There are two subcases.

• Subcase 1: prea is sent to P1 before Ethereum time T1. Because P2’ must be activated after
Bitcoin time T ′1 which is later than Ethereum time T1, A must send prea to P1 and pre ′a to
P2’ before C1’ is guaranteed to be activated. Thus, depends on whether A1’ is guaranteed to
be activated, either E6 or E7 happens.

• Subcase 2: prea has not been sent to P1 before Ethereum time T1. Because Bob enters the
execution phase, he will send preb to P2 as soon as A1’ is activated. Thus, depending on
whether A1’ is guaranteed to be activated, either E6 or E8 happens.

Because we assume none of E5,E6,E7,E8 happens, either subcase leads to a contradiction.

Lemma 8.8 (Blatant non-rationality of R for Alice-miner coalition). Suppose that the parameter
constraints in Section 8.1 hold and that the coalition A consists of Alice and miners controlling no
more than α fraction of the mining power where α ∈ [0, 1 − 1/poly(λ)]. Given any PPT strategy
SA ∈ R for some (externally incentivized) coalition A, there is a PPT strategy ŜA such that

utilA(ŜA, HS−A) > utilA(SA, HS−A).

Proof. Suppose the coalition A adopts a strategy in which E5,E6,E7 or E8 happens with non-
negligible probability. We can construct a new strategy for A with strictly better expected utility.
Specifically, consider a modified PPT strategy denoted ŜA: whenever by the original strategy, the
first of E5,E6,E7 or E8 is about to happen, A simply stops sending any messages (including the
message that is about to trigger E5,E6,E7 or E8) to the contract from that moment on.

Notice that by definition, when E5,E6,E7 or E8 happens, it must be caused by a message sent
by A. Thus, as long as A stops sending any messages before the first of E5,E6,E7 or E8 is about to
happen, none of E5,E6,E7 and E8 can happen in the future. By Theorem 8.7, in polynomial time,
one of (Normal + Normal′), (Refund + Normal′) and (Refund + Refund′) must happen. According
to Table 4, among (Normal + Normal′), (Refund + Normal′) and (Refund + Refund′), A’s utility
is at least $AV(−Bx′). In other words, we have utilA(ŜA, HS−A) ≥ $AV(−Bx′). Thus, to show
utilA(ŜA, HS−A) ≥ utilA(SA, HS−A), we only need to show utilA(SA, HS−A) < $AV(−Bx′).

We consider four cases, depending on whether E5,E6,E7 or E8 happens first in the original
strategy SA.

44

Event E5 happens first. Now, consider some strategy S5 ∈ R with non-negligible probability
that E5 happens. When E5 happens, the honest Bob will send preb to P2 as soon as A1’ is activated.
Thus, when A sends a transaction containing prea, the 1− α fraction of honest miners would send
(prea, preb, prec) to C2, if they are chosen to mine a block. By Theorem 8.3, if C2 is activated by
an honest miner, the utility of A is at most $AV(−Eca) + $E. On the other hand, if C2 is not
activated by an honest miner, the utility of A is at most $AV(Ex) + $E. When E5 happens, the
probability that C2 is activated by an honest miner is at least 1 − α. Thus, the utility of A is at
most

(1− α)($AV(−Eca) + $E) + α($AV(Ex) + $E) < $AV(−Bx′),

where the inequality arises from the fact that $AV(Eca) >
$AV(Bx′+αEx)+$E

1−α .

Event E6 happens first. Now, consider some strategy S6 ∈ R with non-negligible probability
that E6 happens. When E6 happens, the 1 − α fraction of honest miners would send pre ′a to A2’
(or to C2’ if additionally either pre′b or preb is known), if they are chosen to mine a block. By
Theorem 8.3, if either A2’ or C2’ is activated by an honest miner, the utility of A is at most
$AV(Ex − Bx′ − Bc′a) + $E. On the other hand, if neither A2’ nor C2’ is activated by an honest
miner, the utility of A is at most $AV(Ex) + $E. When E6 happens, the probability that A2’ or
C2’ is activated by an honest miner is at least 1− α. Thus, the utility of A is at most

(1− α)($AV(Ex− Bx′ − Bc′a) + $E) + α($AV(Ex) + $E) < $AV(−Bx′),

where the inequality arises from the fact that $AV(Bc′a) >
$AV(Ex+αBx′)+$E

1−α .

Event E7 happens first. Now, consider some strategy S7 ∈ R with non-negligible probability
that E7 happens. When E7 happens, the 1 − α fraction of honest miners would send (prea, pre ′a)
to C2’, if they are chosen to mine a block. By Theorem 8.3, if C2’ is activated by an honest miner,
the utility of A is at most $AV(Ex − Bx′ − Bc′a) + $E. On the other hand, if C2’ is not activated
by an honest miner, the utility of A is at most $AV(Ex) + $E. When E7 happens, the probability
that C2’ is activated by an honest miner is at least 1 − α. Thus, by the same calculation as the
previous case, the utility of A is strictly less than $AV(−Bx′).

Event E8 happens first. Now, consider some strategy S8 ∈ R with non-negligible probability
that E8 happens. If Bob enters the execution phase, because Alice does not send prea to P1 before
Ethereum time T1, Bob will send preb to P2 as soon as A1’ is activated. On the other hand, if Bob
enters the abort phase, because Alice does not send to P2 before Bitcoin time T ′1, Bob will send
preb to P2 as soon as A1’ is activated. In either case, Bob always sends preb to P2 as soon as A1’
is activated.

Notice that if A1’ is guaranteed to be activated at time Bitcoin time t∗, it must be activated
no later than Bitcoin time t∗ + 1. When E8 happens, A1’ has been guaranteed to be activated.
Thus, when E8 happens, pre ′a and preb are both publicly known. Then, the 1−α fraction of honest
miners would send (pre ′a, preb) to C2’, if they are chosen to mine a block. By Theorem 8.3, if C2’ is
activated by an honest miner, the utility of A is at most $AV(Ex− Bx′ − Bc′a) + $E. On the other
hand, if C2’ is not activated by an honest miner, the utility of A is at most $AV(Ex) + $E. When
E8 happens, the probability that C2’ is activated by an honest miner is at least 1 − α. Thus, by
the same calculation as the previous case, the utility of A is strictly less than $AV(−Bx′).

Finally, notice that the above analysis holds even if A may post a new contract on the fly during
the protocol execution, since all other players are honest and will not deposit money into the new
contract.

45

Lemma 8.9 (Against Externally Incentivized Alice-Miner Coalition). Suppose that the hash func-
tion H(·) is a one-way function. Let C be a coalition consisting of Bob and possibly any subset of
the miners, and let A be a disjoint coalition consisting of Alice and at most α fraction of the mining
power where α ∈ [0, 1 − 1/poly(λ)]. Suppose that C does not have external incentives but A may
have up to $E amount of external incentives. Let SA be an arbitrary PPT strategy of A that is
not in R. Then, there exists a negligible function negl(·) such that except with negligible probability
negl(λ), it holds that

utilC(HSC , SA, HSD) ≥ 0,

where D denotes everyone else not in C ∪ A.

Proof. By Theorem 8.5, any strategy that makes one of E5,E6,E7,E8 happen is blatantly non-
rational. By Theorem 8.7, if none of E5,E6,E7,E8 happen, the one of (Normal+Normal′), (Refund+
Normal′), and (Refund+Refund′) must happen. According to Table 3, because $BV(−Ex+Bx′) > 0,
for all three possible cases, Bob’s utility is never negative.

8.2.5 Proof of Theorem 8.2

Now, we are ready to prove Theorem 8.2. We can divide into the following cases:

Case 1: Alice ∈ C and Bob ∈ C′: covered by Theorem 8.6.

Case 2: Bob ∈ C and Alice ∈ C′: covered by Theorem 8.9.

Case 3: C is miner-only: It is straightforward to see that no matter how players outside C
behave, as long as C behaves honestly, its utility is non-negative.

Case 4: Alice ∈ C and C′ is miner-only: Notice that both Alice and Bob are assumed to be
honest. In the protocol, Alice and Bob decide whether they will go to the abort phase according
to whether Bob sends prec to P1. Thus, when Alice and Bob are both honest, both of them enter
to the execution phase or both of them enter to the abort phase. There are two subcases.

• Subcase 1: Both Alice and Bob enter to the execution phase. Bob only sends prec to P1
when B1 has been activated. Ignoring the negligible probability that C′ finds prec by itself,
B2 can never be activated. Alice would send prea to P1 as soon as she enters the execution
phase, and Bob would send pre ′b = prea to P1’ as soon as Alice sent prea to P1. Because
Alice always sends prea to P1 before Ethereum time T1, Bob never sends any transaction
containing preb. Besides, Alice never sends any transaction containing pre ′a. Ignoring the
negligible probability that C′ finds preb or pre ′a by itself, A2’, C2 and C2’ can never be
activated. When Alice and Bob are in the execution phase, P2 can be activated only by Bob
sending preb. As we have shown, Bob never sends any transaction containing preb, so P2 can
never be activated. Moreover, when Alice and Bob are in the execution phase, P2’ can be
activated only by Bob sending . However, Bob will only send to P2’ if C1 is activated.
Because P2 cannot be activated, C1 cannot be activated either. Thus, P2’ cannot ever be
activated. The 1− α fraction of honest miner will include Alice’s and Bob’s transactions, so
except the negligible probability, P1 and P1’ will be activated in polynomial time. Thus, the
honest C obtains non-negative utility.

• Subcase 2: Both Alice and Bob go to the abort phase. In this case, Bob never sends any
transaction containing prec. In the abort phase Alice always sends to P2 at Bitcoin time
T ′0, so Bob never sends any transaction containing preb. Similarly, Bob always sends to P2’

46

at Bitcoin time T ′0, so Alice never sends any transaction containing pre ′a. Moreover, Alice
never sends any transaction containing prea. Ignoring the negligible probability that C′ finds
prea, preb, prec, pre ′a by itself, A2’, B2, P1, C2, P1’, C2’ can never be activated.

If Rapidash (Rapidash’, resp.) has not entered the execution phase, Alice and Bob send the
withdrawal transaction to Rapidash (Rapidash’, resp.). The 1−α fraction of honest miner
will include Alice’s and Bob’s withdrawal transactions, so except the negligible probability,
they can get their deposit back unless the contract enters the execution phase. Next, we
analyze different cases depending which contract enters the execution phase.

– Rapidash enters the execution phase. As we have shown, B2, P1, C2 cannot be acti-
vated. The 1− α fraction of honest miner will include Alice’s transaction, to P2, once
they mine a block. Thus, P2 will be activated in polynomial time. When τ Ethereum
time has passed since P2 is activated, Alice and Bob will send to C1. Again, the 1−α
fraction of honest miner will include Alice’s and Bob’s transactions, to C1, once they
mine a block. Thus, C1 will be activated in polynomial time.

– Rapidash’ enters the execution phase. As we have shown, A2’, P1’, C2’ cannot be
activated. The 1 − α fraction of honest miner will include Bob’s transaction, to P2’,
once they mine a block. Thus, P2’ will be activated in polynomial time. When τ ′ Bitcoin
time has passed since P2’ is activated, Alice and Bob will send to C1’. Again, the 1−α
fraction of honest miner will include Alice’s and Bob’s transactions, to C1’, once they
mine a block. Thus, C1’ will be activated in polynomial time.

In all cases, C’s utility is non-negative except with negligible probability.

Case 5: Bob ∈ C and C′ is miner-only: The argument is the same as Case 4.

8.3 Proof for Dropout Resilience

Theorem 8.10 (Dropout resilience of atomic swap). Suppose that H(·) is a one-way function and
that all players are PPT machines. Our atomic swap protocol is dropout resilient. In other words,
suppose at least 1/poly(λ) fraction of the mining power is honest on either chain; if either Alice or
Bob plays honestly but drops out before the end of the protocol, then with 1 − negl(λ) probability,
the other party’s utility must be non-negative.

Proof. Throughout the proof, for any X ∈ {prea, preb, prec, pre ′a}, we ignore the negligible prob-
ability that the miners can find the preimage X by itself if Alice and Bob have never sent X
before.

We first analyze the cases where Alice drops out. Notice that if any of E5,E6,E7,E8 is about
to happen, it must be that Alice deviates from the protocol and is about to send a transaction
that does not follow from the honest protocol. Because Alice is honest, no matter when does
Alice drop out, none of E5,E6,E7,E8 would happen. By Theorem 8.7, one and only one of
(Normal+Normal′), (Refund+Normal′) and (Refund+Refund′) will happen. According to Table 3,
because $BV(Bx′ − Ex) > 0, for any of the three cases, Bob’s utility is non-negative.

Next, we analyze the cases where Bob drops out. Notice that if any of E1,E2,E3,E4 is about
to happen, it must be that Bob deviates from the protocol and is about to send a transaction that
does not follow from the honest protocol. Because Bob is honest, no matter when does Bob drop
out, none of E1,E2,E3,E4 would happen. By Theorem 8.4, one and only one of (Normal+Normal′),
(Normal + Refund′) and (Refund + Refund′) will happen. According to Table 4, because $AV(Ex−
Bx′) > 0, for any of the three cases, Alice’s utility is non-negative.

47

9 Rapidash Disincentivizes a 100% Coalition

So far, to prove our coalition-resistant fairness notions, we assumed that the coalition wields strictly
less than 100% of the mining power. Take the knowledge-coin protocol for example: if Bob can
solicit a coalition of 100% of the mining power, then its best strategy is to wait for Alice to post
prea, and then activate P2 and C1. In this way, Bob and the coalition effectively learns the secret
prea for free.

In this section, we provide some justification about this assumption, and some evidence why
100% coalition is difficult to form in permissionless environment for Rapidash. We also compare
Rapidash with existing approaches like HTLC and explain why existing approaches are susceptible
to a 100% coalition.

9.1 The Meta-Game of Coalition Formation

We argue that in a permissionless proof-of-work setting and under some mild assumptions, Rapi-
dash provides disincentives for a 100% coalition to form, even in a world where one can post bribery
contracts [Bon16,JSZ+21,MHM18,WHF19] or other smart contracts in an attempt to openly solicit
everyone.

More specifically, suppose that 100% of the miners are colluding with Bob through some joint
strategy S, which invokes P2 and C1 with some non-negligible probability (since invoking P2 and
C1 is the only way for a Bob-coalition to gain). One should think of the strategy as a general
Turing Machine that can adaptively decide how to act based on the view in the protocol so far.

We make a few mild assumptions for our analysis. We assume that there exists some small
miner i∗ with a relatively small fraction of mining power such that its influence to the block
generation process is small, and moreover, the small miner receives no more than its fair share of
profit if it joined the coalition (where fair means proportional to mining power). We also assume
a permissionless setting where the strategy S cannot tell if all miners have joined and make use
of this information. Now, if i∗ joins the coalition and cooperates, its expected reward is at most
pγ · $v, where p is the probability P2 is invoked and γ denotes its mining power. Note that $v
is the coalition’s maximum total gain possible. Now, suppose i∗ chooses to not join the coalition,
since its influence to the block generation process is small, we may assume that P2 is invoked with
probability p or more. Now, the moment P2 is activated, i∗ has a T2 lead in time to mine a block
in which i∗ can redeem $ε from the C2 branch. In particular, without loss of generality, we may
assume that every miner in the coalition commits to starving C2 in every block they mine, e.g.,
by placing a collateral that it will honor its commitment — if not, then the coalition will not be
stable since a coalition member will be incentivized to defect from the coalition and claim C2 itself.
This means that if i∗ mines a block during the T2 window after the activation of P2, i∗ can claim
$ε from C2 for itself. Suppose that T2 > 1. The probability that i∗ mines a block in a window
of T2 length is 1 − (1 − γ)T2 . Therefore, if i∗ do not join the coalition, its expected gain would
be at least p · $ε · (1 − (1 − γ)T2). If i∗ joins the coalition, its expected gain is γ · $v. Thus, as
long as p · $ε · (1 − (1 − γ)T2) > pγ · $v, i∗’s best strategy is to not join the coalition. This means
that if everyone else joins the coalition, some small user i∗ wants to defect. In other words, a
100% coalition is not an equilibrium of the coalition-forming meta-game. For example, if we choose
T2 = 2, then it suffices to choose $ε > $v · 1

2−γ .
As a special case and sanity check, the parameter constraints above implies that $ε > $v/T2.

If $ε < $v/T2, Bob would be able bribe every miner that starves Alice’s transaction $v/T2 such
that every miner would want to cooperate — as explained shortly afterwards, the standard HTLC
contract is subject to such a bribery attack.

48

The above argument is for the knowledge-coin exchange protocol. For our atomic swap protocol,
essentially the same meta-game analysis would apply.

9.2 Comparison with Prior Approaches

Using this coalition formation meta-game perspective, we can give a (hopefully clearer) re-exposition
of some incentive attacks described in prior works [MHM18,Bon16,WHF19]. In particular, the ear-
lier work of MAD-HTLC [TYME21] is motivated by the fact that the standard HTLC contract (see
Section 2.2), has some coalition formation meta-games in which a 100% coalition is the equilibrium.

Meta-games for HTLC. Bob can post a bribery contract soliciting participation of miners: if
Alice’s redeeming transaction is censored until Bob claims the $v back through preb, then, Bob
will equally re-distribute $(v − ε) to every miner that helped to mine a block that starved Alice’s
transaction where $ε is a small amount Bob keeps for himself. Suppose the transaction fees are 0,
then every miner’s best strategy is to join the coalition, and thus a 100% coalition is an equilibrium
of the meta-game.

If Alice is offering a transaction fee of $f for her transaction, and assuming that $f < $v/T1.
Then, Bob can offer $(v−ε)/T1 to everyone who helps to censor Alice’s transaction until Bob could
claim the $v back for himself. In this case, every miner’s best strategy is to take the bribe which
also effectively leads to a 100% coalition.

Tsabary et al. [TYME21] also describe the following meta-game. Suppose that the mining power
of the smallest miner is γmin. Bob can offer to pay $f ′ to whoever mines the block immediately
after T1 that helps him claim his $v back. Let $f be the fee offered by Alice. Suppose that
$f ′ · γmin > $f , then everyone joining is also an equilibrium of this meta-game (assuming non-
myopic miners), effectively leading to a 100% coalition. Roughly speaking, this is because if I give
up on my immediate gain $f right now, there is at least γmin probability that I will be the miner
who mines the first block after T1 which allows me to claim the richer reward $f ′ instead.

MAD-HTLC. The result of MAD-HTLC [TYME21] can be viewed as follows: by allowing the
miner to claim $v itself through (prea, preb), it removes the undesirable 100%-coalition equilibrium
in the coalition formation meta-game — the design of Rapidash is inspired by this elegant idea.
Unfortunately, the design of MAD-HTLC incentivizes coalitions (with binding side contracts) to
deviate in the protocol game itself. As mentioned earlier in Section 2.2, Bob colluding with a miner
should always deviate: if it happens to be the miner when Alice posts prea, the coalition should
always starve Alice’s transaction and claim the $v itself by posting (prea, preb).

10 Bitcoin Instantiation

In this section we describe how Rapidash can be instantiated in Bitcoin with its limited scripting
features.

10.1 Notation and Background

As described earlier, with general smart contracts, users send coins to contracts, the contracts
then hold the coins until some logic is triggered to pay part to all of the coins to one or more
user(s). Instead, Bitcoin uses an Unspent Transaction Output (UTXO) model, where coins are
stored in addresses denoted by Adr ∈ {0, 1}λ and addresses are spendable (i.e., used as input to a
transaction) exactly once. Transactions can be posted on the blockchain to transfer coins from a

49

set of input addresses to a set of output addresses, and any remaining amount of coin is collected
by the miner of the block as transaction fee.

More precisely, in Bitcoin transactions are generated by the transaction function tx . A trans-
action txA, denoted

txA := tx

(
[(Adr1,Φ1, $v1), . . . , (Adrn,Φn, $vn)],
[(Adr ′1,Φ

′
1, $v

′
1), . . . , (Adr ′m,Φ

′
m, $v

′
m)]

)
,

charges vi coins from each input address Adr i for i ∈ [n], and pays v′i coins to each output address
Adr ′j where j ∈ [m]. It must be guaranteed that

∑
i∈[n] $vi ≥

∑
j∈[m] $v

′
j . The difference $f =∑

i∈[n] $vi −
∑

j∈[m] $v
′
j is offered as the transaction fee to the miner who includes the transaction

in his block.
An address in Bitcoin is typically associated with a script Φ : {0, 1}λ → {0, 1} which states

what conditions need to be satisfied for the coins to be spent from the address. In contrast to smart
contracts that can verify arbitrary conditions for coins to be transacted, the scripting language of
Bitcoin has limited expressiveness. A transaction is considered authorized if it is attached with
witnesses [x1, . . . , xn] such that Φi(xi) = 1 (publicly computable) for all i ∈ [n]. A transaction is
confirmed if it is included in the blockchain.

Thus, for Bitcoin, the logic of Rapidash must be encoded in scripts of addresses where the
scripts are of limited expressiveness and the addresses are spendable exactly once. As we show, our
Rapidash instantiation only requires some of the most standard scripts used currently in Bitcoin.

We largely rely on the following scripts: (1) computation of hash function11 H : {0, 1}∗ →
{0, 1}κ, (2) transaction timestamp verification wrt. current height of the blockchain denoted by
NOW12 and (3) digital signature verification. The signature scheme consists of the key generation

algorithm KGen(1λ) generating the signing key sk and the verification key pk, the signing algorithm
Sign(sk,m) generating a signature σ on the message m using sk, and the verification algorithm
Vf(pk,m, σ) validating the signature wrt. pk. 13 We say an address Adr (associated script Φ) is
controlled by a user if the user knows a witness x s.t. Φ(x) = 1.

10.2 Instantiating Rapidash Single Instance

We provide the list of all transactions in Table 5, the scripts associated with all addresses in Fig-
ure 2, and the relationship between the transactions, addresses, and scripts is depicted in Figure 3.
Basically, Bob uses the transaction tx stp to put his deposit $v + $cb into the address Adr stp. The
script on the address Adr stp allows three ways to spend the deposit:

1. Use prea to pay $v amount to an address AdrA1 owned by Alice, and $cb to an address AdrB1
owned by Bob.

2. After a timeout T1 since the address Adr stp comes into existence, use preb to pay the entire
deposit amount $v + $cb to the address AdrP2, which is associated with the script ΦP2. ΦP2

says that either (1) T2 time has passed after the address came into existence, in which case
the $v+ $cb coins in AdrP2 can be paid to Bob’s address AdrB2 , or (2) the pair (prea, preb) is

11κ = 160 in Bitcoin when using the opcode OP HASH160.
12Instantiated using the opcode OP CHECKSEQUENCEVERIFY in Bitcoin checking if the height of the

blockchain has increased beyond some threshold after the script first appeared on the blockchain. It can also
be instantiated with opcode OP CHECKLOCKTIMEVERIFY in Bitcoin that checks if the current height of the
blockchain is beyond a threshold.

13 The signature scheme can be instantiated with either Schnorr or ECDSA in Bitcoin. ECDSA signatures are
verified using the opcode OP CHECKSIG and Schnorr signatures via the taproot fork.

50

Table 5: Rapidash’s transactions in Bitcoin. Here ΦB is the script that requires the signature
under Bob’s public key while ΦA is the script that requires the signature under Alice’s public key.

Description

tx stp tx

(
[(AdrB0 ,Φ

B, $v + $cb)],
[(Adr stp,Φstp, $v + $cb)]

)
txP1 tx

(
[(Adr stp,Φstp, $v + $cb)],

[(AdrA1 ,Φ
A, $v), (AdrB1 ,Φ

B, $cb)]

)
txP2 tx

(
[(Adr stp,Φstp, $v + $cb),
[(AdrP2,ΦP2, $v + $cb)]

)
txC1 tx

(
[(AdrP2,ΦP2, $v + $cb)

[(AdrB2 ,Φ
B, $v + $cb)]

)
txC2 tx

(
[(Adr stp,Φstp, $v + $cb)],

[(Adrburn,Φburn, $v + $cb − $ε)]

)
txP2

C2 tx

(
[(AdrP2,ΦP2, $v + $cb)

[(Adrburn,Φburn, $v + $cb − $ε)]

)

revealed, in which case $v + $cb − $ε coins can be paid to some burn address Adrburn whose
private key is known to nobody, and the remaining $ε is paid as fee to the miner who mines
the block.

3. Use the pair (prea, preb) to pay $v + $cb − $ε amount to some burn address Adrburn whose
private key is known to nobody, the remaining $ε is paid as fee to the miner who mines the
block.

To make sure that Alice and Bob cannot unilaterally spend from the address Adr stp, and AdrP2,
their associated scripts require signatures from both Alice and Bob to spend from these addresses.
Note also that the transactions txP1, txP2, and txC2 needed to spend from Adr stp via activation
points P1, P2, or C2 are signed with different public keys of Alice and Bob for each activation
point, i.e., (pka, pkb), (pk′a, pk

′
b), and (pk′′a, pk

′′
b) respectively. This makes sure that each transaction

can invoke only the intended activation point. Similarly for transactions txC2 and txP2
C2 spending

from AdrP2.

Protocol flow. Before setting up Rapidash on the blockchain, Alice and Bob agree on the setup
transaction tx stp. The transaction must be signed by Bob to take effect. However, before signing
tx stp, Alice and Bob agree on and sign all redeeming transactions, i.e., txP1, txP2, txC1,tx

P2
C2, and

txC2. Alice and Bob now broadcast all these transactions (not including tx stp) and both of their
signatures — notice that they cannot be published on the Bitcoin blockchain yet because the
addresses they depend on, Adr stp or AdrP2, are not ready yet.

At this moment, Bob reveals his signatures on tx stp. Once tx stp is published on the Bitcoin
blockchain, the execution phase starts. During the execution phase, either Alice reveals prea and
publishes transaction txP1 (along with signatures on the transaction), or Bob reveals preb and
publishes transaction txP2 (along with signatures on the transaction) after T1 time has passed since
the confirmation of tx stp. In the honest run of the protocol, if txP1 is confirmed, Bob gets back his
collateral immediately. If not, Bob can redeem the collateral after waiting for time T1 + T2 using
txP2 and txC1. In the event of misbehavior leading to both prea and preb being revealed, any miner

51

Φstp(tx , prea, preb, σa, σb)

P1: if (H(prea) = ha) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

P2: if (NOW > T1) ∧ (H(preb) = hb) ∧ (Vf(pk′a, tx , σa) = 1)∧
(Vf(pk′b, tx , σb) = 1) then return 1

C2: if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1) ∧ (H(prea) = ha)∧
(H(preb) = hb) then return 1

// Values ha, hb, pka, pkb, T1, pk
′
a, pk

′
b, pk

′′
a , pk

′′
b are hardwired

ΦP2(tx , prea, preb, σa, σb)

C1: if (NOW > T2) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

C2: if (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1) ∧ (H(prea) = ha)

∧ (H(preb) = hb) then return 1

// Values T2, ha, hb, pka, pkb, pk
′
a, pk

′
b are hardwired

Figure 2: The description of scripts Φstp and ΦP2. Here tx is the transaction spending from the
script. Keys pka, pk

′
a and pk′′a belong to Alice, pkb, pk

′
b and pk′′b belong to Bob.

in the system can immediately spend from the C2 branch of either Adrstp, or AdrP2, and burn all
coins except $ε coins as transaction fee for itself.

10.3 Instantiating Atomic Swap

In this section we show how we can instantiate both Rapidash and Rapidash’ in Bitcoin’s scripting
language for the atomic swap protocol from Section 7 and Section 8.1. The techniques for the
instantiations follow quite closely to the techniques from above.

10.3.1 Instantiating Rapidash from Section 7

We have minor differences compared to the single instance instantiation.

Transactions. We describe below the different transactions needed for our Rapidash instantia-
tion.

• We now have an additional payment redeem transaction, tx empty
P2 (see Table 6) apart from

txP1 and txP2 that redeem from the payment address Adr stp. We have the transaction tx empty
P2

that redeems $x + $cb coins to an auxiliary address AdrP2. The description of Φstp is given
below in Figure 4. We set the transaction tx empty

P2 to redeem the coins from the (E2) branch.
This transaction will correspond to the empty message call to the Rapidash contract in
activation point P2. The script Φstp has a modification in the C2 branch, where we require
either (prea, preb, prec) along with the signatures of Alice and Bob. Similarly the script ΦP2

of the auxiliary addresses is modified in its C2 branch.

• In addition to the collateral redeem transaction txC1 we have the transaction tx empty
C1 which

redeems the coins to Bob from the auxiliary address generated by tx empty
P2 . We have modified

52

Figure 3: The transaction flow of Rapidash in Bitcoin absent external incentives. Rounded boxes
denote transactions, rectangles within are outputs of the transaction. Incoming arrows denote
transaction inputs, outgoing arrows denote how an output can be spent by a transaction at the
end of the arrow. Solid lines indicate the transaction output can be spent only if both users sign
the spending transaction. Dashed arrows indicate that the output can be spent by one user (A for
Alice, and B for Bob). The timelock (T1 and T2) associated with a transaction output is written
over the corresponding outgoing arrow.

transactions txP2
C2 and txC2 which can be redeemed only if prea, preb and prec are revealed,

such that H(prea) = ha, H(preb) = hb, and H(prec) = hc. We have an additional transaction
txP2,empty

C2 that redeems the coins from the auxiliary address of tx empty
P2 if prea, preb and prec

are revealed. Unlike the single instance, here we replace T2 with τ . A pictorial description of
the transaction flow is described in Figure 5.

Protocol Flow. Alice and bob first agree on the setup transaction tx stp and sign the redeeming

transactions txP1, txP2, txC1, tx
P2
C2, tx

empty
C1 , txP2,empty

C2 and txC2 and broadcast all these transactions

and the respective signatures, like before. They sign the transaction tx empty
P2 such that only Alice

has both signatures and she keeps them privately for now. Finally, they sign the setup transaction
tx stp and publish it on the blockchain, starting the execution phase.

Whenever Alice wishes to activate P2 branch with an empty message call, she publishes the
transaction tx empty

P2 along with the valid signatures she has in her possession. If tx empty
P2 is published

on the blockchain, activation point C1 can be activated by tx empty
C1 after a timeout of τ time units.

The rest of the protocol proceeds exactly as the description of the swap protocol.

53

Table 6: Description of additional transactions in Bitcoin for Rapidash atomic swap with CSP
fairness. Here ΦB is a script that requires a signature from Bob’s public key, respectively.

Description

tx empty
P2 tx

(
[(Adr stp,Φstp, $x+ $cb)],
[(AdrP2,ΦP2, $x+ $cb)]

)
tx empty

C1 tx

(
[(AdrP2,ΦP2, $x+ $cb)],

[(AdrB2 ,Φ
B, $x+ $cb)]

)
txP2,empty

C2 tx

(
[(AdrP2,ΦP2, $x+ $cb)],

[(Adrburn,Φburn, $x+ $cb − $ε)]

)

Φstp(tx , prea, preb, σa, σb)

P1: if (H(prea) = ha) ∧ (H(prec) = hc)∧
(Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

P2: if (NOW > T1) ∧ (H(preb) = hb)

∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

then return 1

E2: if (NOW > T1) ∧ (Vf(pk3a, tx , σb) = 1) ∧ (Vf(pk3b , tx , σb) = 1)

then return 1

C2: if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1)∧(
(H(prea) = ha) ∧ (H(preb) = hb) ∧ (H(prec) = hc)

)
then return 1

// Values h′a, ha, hb, hc, pka, pkb, T1, pk
′
a, pk

′
b, pk

′′
a , pk

′′
b , pk

3
a, pk

3
b are hardwired

ΦP2(tx , pre ′a, preb, prea, prec, σa, σb)

C1: if (NOW > τ) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

C2: if (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)∧(
(H(prea) = ha) ∧ (H(preb) = hb) ∧ (H(prec) = hc)

)
then return 1

// Values τ, ha, hb, hc, pka, pkb, pk
′
a, pk

′
b are hardwired

Figure 4: The description of script Φstp and ΦP2 for atomic swap with CSP fairness. Here tx is
the transaction spending from the script. Keys (pka, pk

′
a, pk

′′
a, pk

3
a) and (pkb, pk

′
b, pk

′′
b , pk

3
b) belong to

Alice and Bob, respectively.

10.3.2 Instantiating Rapidash’ from Section 7

We describe all the transactions, addresses and scripts needed in the Rapidash’ instantiation for
the atomic swap case. Notice that the roles of Alice and Bob are reversed compared to Rapidash
above. Specifically, in Rapidash’, Bob can use pre ′b to retrieve the coins from the payment address,

54

Figure 5: The transaction flow of Rapidash in Bitcoin for atomic swap with CSP fairness. Rounded boxes
denote transactions, rectangles within are outputs of the transaction. Incoming arrows denote transaction
inputs, outgoing arrows denote how an output can be spent by a transaction at the end of the arrow. Solid
lines indicate the transaction output can be spent only if both users sign the spending transaction. Dashed
arrows indicate that the output can be spent by one user (A for Alice, and B for Bob).

while Alice can use pre ′a after a timeout of T ′1 to retrieve the coins. The main difference between
this instantiation and the Rapidash instantiation above is that in the execution phase both the
payment address activation points P1′ and P2′ can be activated by empty message calls. We also
have modified collateral redeem transactions that redeem the coins from the C2′ branch of the Φ′stp.

Transactions. We describe below the different transactions needed for our Rapidash’ instantia-

55

Table 7: Description of additional transaction in Bitcoin for Rapidash’ atomic swap with CSP
fariness. Here ΦA and ΦB are scripts that require a signature from Alice’s and Bob’s public key,
respectively.

Description

tx empty
P1′

tx

(
[(Adr ′stp,Φ

′
stp, $x

′ + $c′a + $c′b)],

[(AdrA1 ,Φ
A, $c′a), (AdrB1 ,Φ

B, $x′ + $c′b)]

)

Φ′stp(tx , pre ′a, pre ′b, preb, σa, σb)

P1’: if (H(pre ′
b) = h′b) ∧ (Vf(pka, tx , σa) = 1)

∧ (Vf(pkb, tx , σb) = 1) then return 1

P2’: if (NOW > T ′
1) ∧ (H(pre ′

a) = h′a)

∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

thenreturn 1

E1’: if (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1)

then return 1

E2’: if (NOW > T ′
1) ∧ (Vf(pk3a, tx , σb) = 1)∧

(Vf(pk3b , tx , σb) = 1) then return 1

C2’: if (Vf(pk4a, tx , σa) = 1) ∧ (Vf(pk4b , tx , σb) = 1) ∧((
(H(pre ′

a) = h′a) ∧ (H(preb) = hb)
)
∨
(

(H(pre ′
a) = h′a) ∧ (H(pre ′

b) = h′b)
))

then return 1

// Values h′a, h
′
b, hb, pka, pkb, T1, pk

′
a, pk

′
b, pk

′′
a , pk

′′
b , pk

3
a, pk

3
b , pk

4
a, pk

4
b are hardwired

ΦP2′(tx , pre ′a, preb, pre ′b, σa, σb)

C1’: if (NOW > τ ′) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

C2’: if (Vf(pk4a, tx , σa) = 1) ∧ (Vf(pk4b , tx , σb) = 1) ∧((
(H(pre ′

a) = h′a) ∧ (H(preb) = hb)
)
∨
(

(H(pre ′
a) = h′a) ∧ (H(pre ′

b) = h′b)
))

then return 1

// Values τ ′, h′a, hb, h
′
b, pka, pkb, pk

′
a, pk

′
b are hardwired

Figure 6: The description of script Φ′stp for Rapidash’ in atomic swap with CSP fairness.

tion. We have the same set of transactions that are analog of the Rapidash instantiation, except
for one additional transaction tx empty

P1′
(see Table 7). The transaction redeems the coins from the

payment address Adr ′stp using the (E1’) branch of Φ′stp. The description of Φ′stp is given below in Fig-
ure 6 with Alice and Bob’s roles being reversed in Rapidash’. This transaction will correspond to
the empty message call to Rapidash’ activation point P1′. The script Φ′stp (and correspondingly
ΦP2′) has a modification in the C2′ branch, where we require either (pre ′a, pre ′b) or (pre ′a, preb)
along with the signatures of Alice and Bob. We have the corresponding redeeming transactions as

txP2′

C2′
, txP2′,empty

C2′
and txC2′ similar to Rapidash. A pictorial description of the transaction flow for

56

(or)

(or)

(or)

Figure 7: The transaction flow of Rapidash’ in Bitcoin for atomic swap with CSP fairness.
Rounded boxes denote transactions, and rectangles within are outputs of the transaction. In-
coming arrows denote transaction inputs, outgoing arrows denote how an output can be spent by
a transaction at the end of the arrow. Solid lines indicate the transaction output can be spent only
if both users sign the spending transaction. Dashed arrows indicate that the output can be spent
by one user (A for Alice, and B for Bob). The timelock (T ′1 and τ ′) associated with a transaction
output is written over the corresponding outgoing arrow.

payment and collateral redeem is given in Figure 7.

Protocol Flow. Alice and Bob, first agree on the setup transaction tx ′stp and sign the redeeming
transactions. They broadcast all these transactions and the respective signatures, like before.
However, this time Alice and Bob sign the transaction tx empty

P1′
such that only Alice has both

57

signatures. She does not broadcast the signatures and keeps them private. Similarly, Alice and
Bob sign the transaction tx empty

P2′
such that only Bob has both signatures. He keeps them private and

does not broadcast them. Notice that none of the transactions can be published on the blockchain
yet as the setup transaction is not yet published. Finally, they sign the setup transaction tx ′stp and
publish it on the blockchain, thus starting the execution phase.

Whenever Alice wishes to activate P1′ in Rapidash’ with an empty message, she publishes the
transaction tx empty

P1′
along with the valid signatures she has in her possession. Similarly, whenever

Bob wishes to activate P2′ in Rapidash’ with an empty message, he publishes the transaction
tx empty

P2′
along with the valid signatures he has in his possession. If tx empty

P2′
is published on the

blockchain, activation point C1′ can be activated by tx empty
C1′

after a timeout of τ ′ time units. Rest
of the flow follows exactly the description of the atomic swap protocol.

10.3.3 Instantiating Rapidash from Section 8.1

We have minor differences compared to the Rapidash instantiation from Section 10.3.1 including
the fact that Alice additionally locks collateral of ca. Another point of difference is the setup
transaction tx stp additionally transfers a small amount $η coins (for example $η = 1 Satoshi) to an
output address AdrB1. This new address will aid us in realizing the activation points B1 and B2.

Transactions. We describe below the different transactions needed for our Rapidash instantia-
tion. In addition to the above transaction, we have two new transactions txB1 and txB2, correspond-
ing to the activation points B1 and B2, respectively. Transaction txB1 redeems $η coins from the
address AdrB1 provided a timeout of T1 has passed since the setup transaction was published on the
blockchain. The other transaction txB2 redeems the $η coins from AdrB1, as well as the coins from
the setup address Adr stp provided prec is released. The transaction burns ($x+ $ca+ $cb+ $η−$ε)
coins leaving behind $ε coins as transaction fees. The description of the script ΦB1 associated with
AdrB1 is given below in Figure 8.

A pictorial description of the transaction flow is described in Figure 9.

Table 8: Description of additional transactions in Bitcoin for Rapidash atomic swap with bounded
maximin fairness. Here ΦA and ΦB are scripts that require a signature from Alice’s public key and
Bob’s public key, respectively. Other transactions are the same as in prior Rapidash instantiations.

Description

tx stp tx

(
[(AdrA0 ,Φ

A, $ca)(AdrB0 ,Φ
B, $x+ $cb + $η)],

[(AdrB1,ΦB1, $η)(Adr stp,Φstp, $v + $ca + $cb)]

)
txB1 tx

(
[(AdrB1,ΦB1, $η)],
[(AdrB,Φ

B, $η)]

)
txB2 tx

(
[(AdrB1,ΦB1, $η), (Adr stp,Φstp, $x+ $ca + $cb)],

[(Adrburn,Φburn, $x+ $ca + $cb + $η − $ε)]

)

Protocol Flow. Alice and bob first agree on the setup transaction tx stp and sign all other redeem-
ing transactions. They ensure that the signatures on the transaction txB1 are only with Bob, and
the signatures on tx empty

P2 are only with Alice. Alice and Bob keep these signatures privately and
broadcast all other transactions and signatures into the network. By posting the setup transaction
on the blockchain, we enter the execution phase.

Whenever Bob wishes to activate B1 branch of Rapidash, he publishes txB1 along with the
corresponding signatures on the blockchain. Notice that since txB1 and txB2 spend from the address

58

ΦB1(tx , prec, σa, σb)

B1: if (NOW > T1) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

B2: if (H(prec) = hc) ∧ (Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

then return 1

// Values hc, T1, pka, pkb, pk
′
a, pk

′
b are hardwired

Φstp(tx , prea, preb, σa, σb)

B2: if (H(prec) = hc) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

P1: if (H(prea) = ha) ∧ (H(prec) = hc)∧
(Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

then return 1

P2: if (NOW > T1) ∧ (H(preb) = hb)

∧ (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1)

then return 1

E2: if (NOW > T1) ∧ (Vf(pk3a, tx , σb) = 1) ∧ (Vf(pk3b , tx , σb) = 1)

then return 1

C2: if (Vf(pk4a, tx , σa) = 1) ∧ (Vf(pk4b , tx , σb) = 1)∧(
(H(prea) = ha) ∧ (H(preb) = hb) ∧ (H(prec) = hc)

)
then return 1

// Values h′a, ha, hb, hc, pka, pkb, T1pk
′
a, pk

′
b, pk

′′
a , pk

′′
b

// pk4a, pk
4
b , pk

5
a, pk

5
b are hardwired

Figure 8: The description of script Φstp and ΦB1 for an atomic swap with bounded maximin
fairness. Here tx is the transaction spending from the script. Keys (pka, pk

′
a, pk

′′
a, pk

3
a, pk

4
a, pk

5
a) and

(pkb, pk
′
b, pk

′′
b , pk

3
b , pk

4
b , pk

5
b) belong to Alice and Bob, respectively. The script ΦP2 is the same as

in Figure 4.

AdrB1, they are mutually exclusive, meaning only one of them can be posted on the blockchain.
Notice that any of the other branches can be activated if and only if B1 was activated (or in other
words B2 was not activated with txB2). The rest of the protocol proceeds exactly as the description
of the swap protocol and previously described in Section 10.3.1.

10.3.4 Instantiating Rapidash’ from Section 8.1

Similar to the case of instantiations for CSP fairness, the roles of Alice and Bob are reversed.
The only difference between the instantiation here and the one for Rapidash’ with CSP fairness
from Section 10.3.2 is the addition of two transactions that activate A1′ and A2′ branches of
Rapidash’. Similar to the Rapidash instantiation with bounded maximin fairness, we have an
additional address AdrA1′ that is created by the setup transaction to facilitate the activation points
A1′ and A2′.

Transactions. We describe below the two additional transactions txA1′ and txA2′ that activate
A1′ and A2′, respectively. Transaction txA1′ spends the $η coins from the address AdrA1′ after a

59

Figure 9: The transaction flow of Rapidash in Bitcoin for an atomic swap with bounded maximin fairness.
Rounded boxes denote transactions, and rectangles within are outputs of the transaction. Incoming arrows
denote transaction inputs, outgoing arrows denote how an output can be spent by a transaction at the end
of the arrow. Solid lines indicate the transaction output can be spent only if both users sign the spending
transaction. Dashed arrows indicate that the output can be spent by one user (A for Alice, and B for Bob).

timeout of T ′1 to an address of Alice. Transaction txA2′ redeems the coins from both AdrA1′ and
Adr ′stp and burns all but ε′ coins. This transaction requires either pre ′a or preb to be revealed along
with the signatures of Alice and Bob. The transactions are described in Table 9 and the script ΦA1′

and the modified script Φ′stp are described in Figure 10. A pictorial description of the transaction
flow is described in Figure 11.

60

Table 9: Description of additional transaction in Bitcoin for Rapidash’ atomic swap with bounded
maximin fairness. Here ΦA is the script that requires a signature from Alice’s public key.

Description

tx ′stp tx

(
[(AdrA0 ,Φ

A, $x′ + $ca + $η)(AdrB0 ,Φ
B, $cb)],

[(AdrA1′ ,ΦA1′ , $η)(Adr ′stp,Φ
′
stp, $x

′ + $c′a + $c′b)]

)
txA1′ tx

(
[(AdrA1′ ,ΦA1′ , $η)],

[(AdrA,Φ
A, $η)]

)
txA2′ tx

(
[(AdrA1′ ,ΦA1′ , $η), (Adr ′stp,Φ

′
stp, $x

′ + $c′a + $c′b)],

[(Adrburn,Φburn, $x
′ + $c′a + $c′b + $η − $ε′)]

)

ΦA1′(tx , pre ′a, preb, σa, σb)

A1’: if (NOW > T ′
1) ∧ (Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

A2’: if ((H(pre ′
a) = h′a) ∨ (H(preb) = hb))∧

(Vf(pk′a, tx , σa) = 1) ∧ (Vf(pk′b, tx , σb) = 1)

then return 1

// Values h′a, hb, T
′
1, pka, pkb, pk

′
a, pk

′
b are hardwired

Φ′stp(tx , pre ′a, pre ′b, preb, σa, σb)

A2’: if ((H(pre ′
a) = h′a) ∨ (H(preb) = hb))∧

(Vf(pka, tx , σa) = 1) ∧ (Vf(pkb, tx , σb) = 1)

then return 1

P1’: if (H(pre ′
b) = h′b) ∧ (Vf(pk′a, tx , σa) = 1)

∧ (Vf(pk′b, tx , σb) = 1) then return 1

P2’: if (NOW > T ′
1) ∧ (H(pre ′

a) = h′a)

∧ (Vf(pk′′a, tx , σa) = 1) ∧ (Vf(pk′′b , tx , σb) = 1)

then return 1

E1’: if (Vf(pk3a, tx , σa) = 1) ∧ (Vf(pk3b , tx , σb) = 1)

then return 1

E2’: if (NOW > T ′
1) ∧ (Vf(pk4a, tx , σb) = 1)∧

(Vf(pk4b , tx , σb) = 1) then return 1

C2’: if (Vf(pk5a, tx , σa) = 1) ∧ (Vf(pk5b , tx , σb) = 1) ∧((
(H(pre ′

a) = h′a) ∧ (H(preb) = hb)
)
∨
(

(H(pre ′
a) = h′a) ∧ (H(pre ′

b) = h′b)
))

then return 1

// Values h′a, h
′
b, hb, pka, pkb, T1, pk

′
a, pk

′
b, pk

′′
a , pk

′′
b , pk

3
a, pk

3
b , pk

4
a, pk

4
b , pk

5
a, pk

5
b are hardwired

Figure 10: The description of scripts ΦA1′ and Φ′stp for Rapidash’ in atomic swap with bounded
maximin fairness.

61

(or)

(or)

(or)

(or)

(or)

Figure 11: The transaction flow of Rapidash’ in Bitcoin for an atomic swap with bounded maximin
fairness. Rounded boxes denote transactions, and rectangles within are outputs of the transaction.
Incoming arrows denote transaction inputs, outgoing arrows denote how an output can be spent by
a transaction at the end of the arrow. Solid lines indicate the transaction output can be spent only
if both users sign the spending transaction. Dashed arrows indicate that the output can be spent
by one user (A for Alice, and B for Bob). The timelock (T ′1 and τ ′) associated with a transaction
output is written over the corresponding outgoing arrow.

Protocol Flow. We proceed exactly as the Rapidash’ instantiation from Section 10.3.2, except
for the two additional transactions in txA1′ and txA2′ . Alice and Bob sign the two transactions prior
to signing the setup transaction. Alice has the signatures on txA1′ that she keeps privately, while

62

txA2′ and the signatures on this transaction are broadcast to the network like in Section 10.3.2.
After the setup transaction tx ′stp is published on the blockchain and the execution phase begins,
whenever A1′ is to be activated, Alice publishes txA1′ and the signatures on the blockchain. To
activate A2′, transaction txA2′ along with the corresponding signatures, and either pre ′a or preb
are published on the blockchain. Notice that as required, only one of these two transactions can
be posted allowing us to realize that A1′ and A2′ are mutually exclusive. The rest of the protocol
proceeds as the description for the atomic swap and is similar to the one from Section 10.3.2.

Table 10: Ethereum gas cost comparison.

Contract Deploy (Gas) Redeem path Gas

HTLC 380,159
Alice redeem 35,851
Bob redeem 34,932

MAD-HTLC 581,002

Optimistic case, Alice and Bob 102,505
Refund, Bob 104,611

Deposit bomb, Miner 61,008
Collateral bomb, Miner 46,063

He-HTLC 894,346
Optimistic case, Alice and Bob 72,723

Refund, Bob 123,337
Collateral bomb, Miner 70,327

Rapidash 934,958
Optimistic case (P1), Alice and Bob 73,246

Refund (P2 + C1), Bob 123,543
Bomb (C2), Miner 70,327

11 Ethereum Instantiation

We implemented the knowledge-coin exchange, the CSP-fair atomic swap and the bounded maximin
fair atomic swap Rapidash protocols from Section 6, Section 7, and Section 8.1 in Solidity, the
smart contract language used in Ethereum which supports general smart contracts. We deployed
each Rapidash protocol on Goerli, an Ethereum’s testnet.

In Ethereum, the price of a transaction depends on its gas usage, which describes the cost of
each operation performed by the transaction in units specific to Ethereum implementation. First,
we evaluate our knowledge-coin exchange protocol, and compare its costs to those of HTLC, MAD-
HTLC, and He-HTLC. Then, we evaluate our two atomic swap protocols.

11.1 Comparison of Rapidash’s Knowledge-Coin Exchange to HTLC, MAD-
HTLC, and He-HTLC

Our implementation of the knowledge-coin exchange Rapidash contract consists of a single contract
which includes the initialization as well as all redeem paths. In Table 10, we compare the gas costs
of various operations of the knowledge-coin exchange Rapidash contract with those of MAD-
HTLC and HTLC. First, note that the gas cost for the initial deployment of each contract far
outweighs those of the redeem transactions. As expected, Rapidash incurs deployment costs that
are a bit higher than those of MAD-HTLC, as Rapidash contains slightly more code (80 LoC in
Rapidash vs. 72 in MAD-HTLC). Also as expected, costs of Rapidash, are very similar to those
of He-HTLC, which is concurrent to Rapidash. However, note that the total redeem cost in the

63

optimistic case (when both Alice and Bob behave honestly) in Rapidash is actually lower than
that of MAD-HTLC – 73,246 in Rapidash vs. 102,505 in MAD-HTLC, as the latter consists of
Alice obtaining the deposit, and Bob retrieving the collateral.

11.2 Evaluation of Rapidash’s Atomic Swap Protocols

For each atomic swap protocol, our implementation in Ethereum consists of two contracts, one for
Rapidash, and one for Rapidash’. Each of these includes the initialization as well as all redeem
paths. Note that only one of these contracts will be deployed on Ethereum, the other will be
deployed on another blockchain 14.

In Table 11, we specify the gas costs of various operations of our CSP-fair atomic swap protocol.
In Table 12, we show the gas costs of various operations of our atomic swap protocol which satisfies
bounded maximin fairness. As expected, gas costs of the CSP-fair version are lower than those of
the bounded maximin fairness version, as the former has slightly less code than the latter (252 LoC
for the CSP-fair atomic swap, 340 LoC for the atomic swap which satisfies the bounded maximin
fairness property).

Table 11: CSP-fair atomic swap, gas cost.

Contract Deploy (Gas) Redeem path Gas

Rapidash 1,097,177

Normal path (P1), Alice 52,279
Normal path (P1), Bob 56,681

Refund path (P2 + C1), Bob 123,631
Bomb path (C2), Miner 42,266

Rapidash’ 1,514,861

Input, Alice 50,465
Input, Bob 55,817

Withdraw, Alice 38,228
Withdraw, Bob 35,911

Optimistic case (P1’), Alice 54,904
Optimistic case (P1’), Bob 58,656
Refund (P2’ + C1’), Alice 118,379
Refund (P2’ + C1’), Bob 114,647

Bomb (C2’), Miner 53,431

Acknowledgments

This work is in part supported by NSF awards 2212746, 2044679, 1704788, a Packard Fellowship, a
generous gift from the late Nikolai Mushegian, a gift from Google, and an ACE center grant from
Algorand Foundation.

References

[AHS22] Sepideh Avizheh, Preston Haffey, and Reihaneh Safavi-Naini. Privacy-preserving fair-
swap: Fairness and privacy interplay. Proc. Priv. Enhancing Technol., 2022.

14Users can choose which contract to employ on Ethereum, and which on another blockchain

64

Table 12: Bounded maximin fair atomic swap, gas cost.

Contract Deploy (Gas) Redeem path Gas

Rapidash 1,617,281

Input, Alice 48,355
Input, Bob 50,583

Withdraw, Alice 35,956
Withdraw, Bob 38,271

Optimistic case (P1), Alice 35,405
Optimistic case (B1 + P1), Bob 88,399

Refund (P2 + C1), Alice 114,662
Refund (B1 + P2 + C1), Bob 147,567

Early Bomb (B2), Miner 50,295
Bomb (C2), Miner 57,152

Rapidash’ 1,514,861

Input, Alice 50,650
Input, Bob 48,333

Withdraw, Alice 38,251
Withdraw, Bob 35,912

Optimistic case (P1’), Alice 54,925
Optimistic case (P1’), Bob 58,679

Refund (A1’ + P2’ + C1’), Alice 149,634
Refund (A1’ + P2’ + C1’), Bob 145,894

Early bomb (A2’), Miner 49,956
Bomb (C2’), Miner 53,475

[Aso98] N. Asokan. Fairness in Electronic Commerce. PhD thesis, 1998.

[ASW97] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. In ACM CCS, 1997.

[atoa] Submarine swap in lightning network. https://wiki.ion.radar.tech/tech/

research/submarine-swap.

[atob] What is atomic swap and how to implement it. https://www.axiomadev.com/blog/

what-is-atomic-swap-and-how-to-implement-it/.

[BBSU12] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better – how to
make bitcoin a better currency. In Financial Cryptography and Data Security (FC),
2012.

[BDM16] Wac law Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient zero-knowledge
contingent payments in cryptocurrencies without scripts. In ESORICS, 2016.

[Bis] Bryan Bishop. Bitcoin vaults with anti-theft recovery/clawback mechanisms. https://
lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html.

[BK] Sergiu Bursuc and Steve Kremer. Contingent payments on a public ledger: Models and
reductions for automated verification. In ESORICS 2019.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to Use Bitcoin to Design Fair Protocols. In
CRYPTO, 2014.

65

https://wiki.ion.radar.tech/tech/research/submarine-swap
https://wiki.ion.radar.tech/tech/research/submarine-swap
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html

[Bon16] Joseph Bonneau. Why buy when you can rent? In FC, 2016.

[BZ17] Massimo Bartoletti and Roberto Zunino. Constant-deposit multiparty lotteries on bit-
coin. In Financial Cryptography and Data Security, 2017.

[CCWS21] Kai-Min Chung, T-H. Hubert Chan, Ting Wen, and Elaine Shi. Game-theoretic fairness
meets multi-party protocols: The case of leader election. In CRYPTO, 2021.

[CGGN] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-
knowledge contingent payments revisited: Attacks and payments for services. In ACM
CCS 2017.

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers.
Fairness in an unfair world: Fair multiparty computation from public bulletin boards.
In ACM CCS, 2017.

[CGL+18] Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi. Game theoretic
notions of fairness in multi-party coin toss. In TCC, volume 11239, pages 563–596,
2018.

[CS21] Hao Chung and Elaine Shi. Foundations of transaction fee mechanism design, November
2021. arXiv:2111.03151. URL: https://arxiv.org/pdf/2111.03151.pdf.

[DEF18] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly exchange
digital goods. In ACM CCS, 2018.

[DEFM19] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual payment hubs over cryptocurrencies. In IEEE Symposium on Security and
Privacy, 2019.

[DFH18] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel
networks. In ACM CCS, CCS ’18, page 949–966, 2018.

[DW15] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with
bitcoin duplex micropayment channels. In Stabilization, Safety, and Security of Dis-
tributed Systems, 2015.

[EFS20] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. Optiswap: Fast optimistic fair
exchange. In ASIA CCS, 2020.

[Eth22] Ethereum. The Solidity contract-oriented programming language, 2022. URL: https:
//github.com/ethereum/solidity.

[Fuc] Georg Fuchsbauer. Wi is not enough: Zero-knowledge contingent (service) payments
revisited. In ACM CCS 2019.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Eurocrypt, 2015.

[GKM+22] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song.
Storing and retrieving secrets on a blockchain. In PKC, 2022.

[GM] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized
currencies. In ACM CCS 2017.

66

https://arxiv.org/pdf/2111.03151.pdf
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity

[goe22] Goerli testnet, 2022. URL: https://goerli.net.

[Ham] Matthew Hammond. Blockchain interoperability series: Atomic swaps. https:

//medium.com/@mchammond/atomic-swaps-eebd0fa8110d.

[Her18] Maurice Herlihy. Atomic cross-chain swaps. In PODC, 2018.

[HZ20] Jona Harris and Aviv Zohar. Flood & loot: A systemic attack on the lightning network.
In AFT, 2020.

[JMM14] Danushka Jayasinghe, Konstantinos Markantonakis, and Keith Mayes. Optimistic fair-
exchange with anonymity for bitcoin users. In International Conference on e-Business
Engineering, 2014.

[JSZ+21] Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal, Pe-
ter Gazi, Sarah Meiklejohn, and Edgar Weippl. Pay to win: Cheap, crowdfundable,
cross-chain algorithmic incentive manipulation attacks on pow cryptocurrencies. In FC
WTSC, 2021.

[KB16] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penalties.
In CCS, 2016.

[KMS+16] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts.
In S&P, 2016.

[loo] What is cryptocurrency loopring (lrc) and how does it work? https://kriptomat.

io/cryptocurrencies/loopring/what-is-loopring/.

[mat] Matic network staking economics. https://medium.com/the-polygon-blog/

matic-network-staking-economics-7439571f2784.

[Max] Gregory Maxwell. The first successful zero-knowledge con-
tingent payment. https://bitcoincore.org/en/2016/02/26/

zero-knowledge-contingent-payments-announcement/.

[MB17] Andrew Miller and Iddo Bentov. Zero-collateral lotteries in bitcoin and ethereum. In
EuroS&P Workshops, 2017.

[MBB+19] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick McCorry.
Sprites and state channels: Payment networks that go faster than lightning. In FC,
2019.

[MD19] Mahdi H. Miraz and David C. Donald. Atomic cross-chain swaps: Development, tra-
jectory and potential of non-monetary digital token swap facilities. In AETiC, 2019.

[MES16] Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In FC Workshops,
2016.

[MHM18] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts for bribing
miners. In FC Workshops, 2018.

[Mic03] Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In
PODC, 2003.

67

https://goerli.net
https://medium.com/@mchammond/atomic-swaps-eebd0fa8110d
https://medium.com/@mchammond/atomic-swaps-eebd0fa8110d
https://kriptomat.io/cryptocurrencies/loopring/what-is-loopring/
https://kriptomat.io/cryptocurrencies/loopring/what-is-loopring/
https://medium.com/the-polygon-blog/matic-network-staking-economics-7439571f2784
https://medium.com/the-polygon-blog/matic-network-staking-economics-7439571f2784
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/

[MMA] Patrick McCorry, Malte Möser, and Syed Taha Ali. Why preventing a cryptocurrency
exchange heist isn’t good enough. In Security Protocols Workshop 2018.

[MMS+] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and Mat-
teo Maffei. Anonymous multi-hop locks for blockchain scalability and interoperability.
In NDSS 2019.

[MMSH16] Patrick Mccorry, Malte Möser, Siamak F. Shahandasti, and Feng Hao. Towards bitcoin
payment networks. In Australasian Conference on Information Security and Privacy,
2016.

[opt] How does optimism’s rollup really work? https://research.paradigm.xyz/

optimism.

[PD] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. https://lightning.network/lightning-network-paper.pdf.

[PG99] Henning Pagnia and Felix C. Gartner. On the impossibility of fair exchange without a
trusted third party. Technical report, 1999.

[PS17a] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, 2017.

[PS17b] Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In CSF, 2017.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Eurocrypt, 2017.

[Rou20] Tim Roughgarden. Transaction fee mechanism design for the Ethereum blockchain: An
economic analysis of EIP-1559. Manuscript, https://timroughgarden.org/papers/
eip1559.pdf, 2020.

[TYME21] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. MAD-HTLC: because
HTLC is crazy-cheap to attack. In S&P, 2021.

[vdM19] Ron van der Meyden. On the specification and verification of atomic swap smart
contracts. In IEEE ICBC, 2019.

[WAS22] Ke Wu, Gilad Asharov, and Elaine Shi. A complete characterization of game-
theoretically fair, multi-party coin toss. In Eurocrypt, 2022.

[WHF19] Fredrik Winzer, Benjamin Herd, and Sebastian Faust. Temporary censorship attacks in
the presence of rational miners. In IEEE European Symposium on Security and Privacy
Workshops, 2019.

[WSZN] Sarisht Wadhwa, Jannis Stoeter, Fan Zhang, and Kartik Nayak. He-htlc: Revisiting
incentives in htlc. Cryptology ePrint Archive, Paper 2022/546.

[ZHL+19] A Zamyatin, D Harz, J Lind, P Panayiotou, A Gervais, and W Knottenbelt. Xclaim:
trustless, interoperable, cryptocurrency-backed assets. In S& P, 2019.

68

https://research.paradigm.xyz/optimism
https://research.paradigm.xyz/optimism
https://lightning.network/lightning-network-paper.pdf
https://timroughgarden.org/papers/eip1559.pdf
https://timroughgarden.org/papers/eip1559.pdf

Supplementary Materials

A Proof of CSP Fairness (Theorem 8.1)

For our bounded maximin fair protocol, we also want to prove that it still respects CSP fairness,
as stated in Theorem 8.1. Before proving Theorem 8.1, we first give some useful lemmas.

Lemma A.1. Suppose the parameters are set according to Section 8.1. Then, the following state-
ments hold.

• Suppose the coalition A consists of Alice and an arbitrary γ ∈ [0, 1] fraction of the mining
power. The utility of A can be more than the honest case, that is, $AV(Ex − Bx′), only if
Normal and Refund′ both happen.

• Suppose the coalition B Bob and an arbitrary γ ∈ [0, 1] fraction of the mining power. The
utility of B can be more than the honest case, that is, $BV(Bx′ − Ex), only if Refund and
Normal′ both happen.

Proof. Notice that if any of Normal, Refund and Bomb happens, no coin is left in Rapidash, so no
one can get more coin from Rapidash anymore. Thus, consider all possible cases, including none
of Normal, Refund and Bomb happens, we have the following table.

which is activated net profit of Alice’s coalition net profit of Bob’s coalition

none −Eca −Ex− Ecb
Normal Ex −Ex

Refund 0 0

Bomb ≤ Eε− Eca ≤ Eε− Ex− Ecb

Table 13: The net profit of Bob’s coalition from Rapidash.

Similarly, if any of Normal′, Refund′ and Bomb′ happens, no coin is left in Rapidash’, so no
one can get more coin from Rapidash’ anymore. Thus, consider all possible cases, including none
of Normal′, Refund′ and Bomb′ happens, we have the following table.

which is activated net profit of Alice’s coalition net profit of Bob’s coalition

none −Bx′ − Bc′a −Bc′b
Normal′ −Bx′ Bx′

Refund′ 0 0

Bomb′ ≤ Bε′ − Bx′ − Bc′a ≤ Bε′ − Bc′b

Table 14: The net profit of Alice’s coalition and Bob’s coalition from Rapidash’.

Alice-miner coalition. Suppose the coalition A consists of Alice and an arbitrary γ ∈ [0, 1]
fraction of the mining power. If A follows the protocol, Normal and Normal′ will happen, and
the utility of C is $AV(Ex − Bx′) > 0. When Normal and Refund′ both happen, A’s utility is
$AV(Ex). Now, we will show that that this is the only possible scenario for A’s utility to exceed the
honest case. For the sake of reaching a contradiction, suppose A’s utility is strictly greater than
$AV(Ex− Bx′) while one of Normal and Refund′ does not happen. There are two cases.

69

• Case 1: Normal does not happen. Because Eca > Eε, we have Eε − Eca < 0. Thus,
if Normal does not happen, the net profit from Rapidash is at most 0. However, because
Bx′ > Bε′, we have Bε′ −Bx′ −Bc′a < 0. Thus, the net profit from Rapidash’ is also at most
0. Consequently, the utility of C is at most zero, which is less than $AV(Ex− Bx′).

• Case 2: Refund′ does not happen. Because Bc′a > Bε′, we have Bε′ − Bx′ − Bc′a < −Bx′.
Thus, assuming Refund′ does not happen, the net profit from Rapidash’ is at most −Bx′.
However, the net profit from Rapidash is at most Ex. Thus, the utility of C is at most
$AV(Ex− Bx′), which is the same as the honest case.

Bob-miner coalition. Using a completely symmetric proof, we can show that the only way for a
Bob-miner coalition’s utility to exceed the honest case is when Refund and Normal′ both happen.

Lemma A.2 (Alice-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let A be any coalition that consists of Alice and γ fraction of mining power. Then, as long as

γτ
′ ≤ Bc′a

Bc′a+Bx′
, for any PPT coalition strategy SA, except with negligible probability, it must be

utilA(SA, HS−A) ≤ utilA(HSA, HS−A)

where HS−A denotes the honest strategy for everyone not in A.

Proof. Recall that the utility of A is $AV(Ex− Bx′) > 0 under an honest execution. Now, suppose
A may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it –— if it did so, it cannot recover more than its
deposit since any player not in A will not invoke the smart contract. We analyze the possible cases
depending on which phase Bob enters.

Bob enters the abort phase. If Rapidash never enters the execution phase, the net profit of
A from Rapidash is at most zero. Now, assume Rapidash enters the execution phase. When
Bob enters the abort phase, he never sends any transaction containing prec. Ignoring the negligible
probability that A finds prec by itself, B2, P1, and C2 can never be activated. Because Alice does
not get any coin from B1, P2 or C1, the net profit of A from Rapidash is at most zero. On the
other hand, because Bx′ > Bε′, the net profit of A from Rapidash’ is at most zero, no matter
whether Rapidash’ enters the execution phase or not.

To sum up, except with negligible probability, the utility of A is at most zero, which is less than
the honest case.

Bob enters the execution phase. If Bob enters the execution phase, both Rapidash and
Rapidash’ must enter the execution phase. By Theorem A.1, the utility of A can exceed the
honest case only when Normal and Refund′ both happen, so we assume it is the case. Because
Rapidash’ enters the execution phase, for Refund′ to happen, P2’ must be activated. When Bob
enters the execution phase, P2’ can be activated only either 1) by Bob sending to P2’ after C1 has
been activated, or 2) by Alice sending pre ′a to P2’. Consider the first scenario. In this case, since
C1 has been activated, Alice cannot get any money from Rapidash. However, from Rapidash’,
Alice can get at most zero. Thus, the utility of A is less than the honest case.

Now consider the second case. Suppose that P2’ is activated at Bitcoin time t∗ ≥ T ′1, so pre ′a
is publicly known after Bitcoin time t∗. By assumption, Normal happens, so P1 must be activated.
In this case, A has to send prea to P1.

70

• Case 1: A sends prea to P1 before Ethereum time T1. Since Ethereum time T1 is earlier than
Bitcoin time T ′1, prea and pre ′a are both publicly known at Bitcoin time t∗. Recall that
prea = pre ′b. Thus, during Bitcoin time (t∗, t∗ + τ ′], any honest miner will activate C2’ if it
wins a block. We say A loses the race if a non-colluding miner mines a new block during
Bitcoin time (t∗, t∗ + τ ′]. Otherwise, we say A wins the race. If A loses the race, it gets
nothing from C1’ or C2’, and its utility is at most $AV(Ex − Bx′ − Bc′a). Else if A wins the
race, then its utility is at most $AV(Ex). which can be achieved by activating P2’, C1’ and
P1. The probability p that A wins the race is upper bounded by p ≤ γτ

′
. Therefore, the

expected utility of A is upper bounded by

$AV((Ex− Bx′ − Bc′a) · (1− p) + Ex · p). (1)

Since p ≤ γτ ′ ≤ Bc′a
Bc′a+Bx′

, we have

$AV((Ex− Bx′ − Bc′a) · (1− p) + Ex · p) < $AV(Ex− Bx′).

• Case 2: A does not send any transaction containing prea before Ethereum time T1. In this
case, the honest Bob will send to A1’ at Ethereum time T1. If A1’ has not been activated at
Bitcoin time t∗ ≥ T ′1, then, during Bitcoin time (t∗, t∗+τ ′], any honest miner will activate A2’
if it wins a block. On the other hand, if A1’ has been activated at Bitcoin time t∗ ≥ T ′1, the
honest Bob will send preb to P2 as soon as A1’ is activated. Thus, at Bitcoin time t∗ ≥ T ′1,
pre ′a and preb are both publicly known. Thus, during Bitcoin time (t∗, t∗ + τ ′], any honest
miner will activate C2’ if it wins a block. By the same calculation as the previous case, since

p ≤ γτ ′ ≤ Bc′a
Bc′a+Bx′

, we have $AV((Bx′ − Bc′a + Ex) · (1− p) + Ex · p) < $AV(Ex− Bx′).

Lemma A.3 (Bob-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let B be any coalition that consists of Bob and a subset of miners controlling at most γ fraction

of mining power. Then, as long as γτ ≤ Ecb
Ecb+Ex

, for any PPT coalition strategy SB, except with

negligible probability, it must be

utilB(SB, HS−B) ≤ utilB(HSB, HS−B).

Proof. Recall that the utility of B is $BV(Bx′ − Ex) > 0 under an honest execution. Now, suppose
B may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it –— if it did so, it cannot recover more than its deposit
since any player not in B will not invoke the smart contract. We analyze the two possible cases
depending on which phase Alice enters.

Alice enters the abort phase. If Rapidash’ never enters the execution phase, the net profit
of B from Rapidash’ is at most zero. Now, assume Rapidash’ enters the execution phase. When
Alice enters the abort phase, she never sends any transaction containing prea = pre ′b. Ignoring
the negligible that B finds pre ′b by itself, P1’ can never be activated, which means Normal′ never
happens. According to Table 14, if Normal′ does not happens, the net profit of B from Rapidash’
is at most zero. On the other hand, because Ex > Eε, the net profit of B from Rapidash is at
most zero, no matter Rapidash enters the execution phase or not.

To sum up, except with negligible probability, the utility of B is at most zero, which is less than
the honest case.

71

Alice enters the execution phase. By Theorem A.1, the utility of B can be more than the
honest case only if Refund and Normal′ both happen, so we assume it is the case. Because Alice
enters the execution phase, both Rapidash and Rapidash’ must enter the execution phase. In
this case, Refund happens only if P2 is activated. When Alice enters the execution phase, she never
sends to P2, so P2 must be activated by preb sent by Bob. Therefore, we may assume that P2 is
activated at Ethereum time t∗ ≥ T1, and preb is publicly known after Ethereum time t∗. If Alice
enters the execution, Bob must have sent prec before Ethereum time T0. Moreover, Alice sends prea
to P1 at Ethereum time T0 and T0 < T1. Therefore, prea, preb and prec are all publicly known at
Ethereum time t∗. Thus, during Ethereum time (t∗, t∗+ τ], any honest miner will activate C2 if it
wins a block. We say B loses the race if a non-colluding miner mines a new block during Ethereum
time (t∗, t∗ + τ]. Otherwise, we say B wins the race. If B loses the race, it gets nothing from C1 or
C2, and its utility is at most $BV(Bx′ − Ex− Ecb) which can be achieved if P1’ is activated. Else
if B wins the race, then its utility is at most $BV(Bx′) which can be achieved by activating P2, C1

and P1’. Since p ≤ γτ ≤ Ecb
Ecb+Ex

, we have

$BV((Bx′ − Ex− Ecb) · (1− p) + Bx′ · p) < $BV(Bx′ − Ex).

Proof of Theorem 8.1 Now, we are ready to to prove Theorem 8.1. In Theorem A.2 and
Theorem A.3, we show that the atomic swap protocol satisfies γ-CSP-fairness when the coalition
consists of Alice or Bob, and possibly with some miners. Because we assume that Alice and Bob
are not in the same coalition, it remains to show γ-CSP-fairness when the coalition C consists only
of miners controlling at most γ fraction of the mining power.

Henceforth, we assume Alice and Bob are both honest. It is clear from the protocol that the
honest Alice and honest Bob always make the same decision whether to enter the execution phase
or abort phase.

Next, when C follows the protocol, its utility is always zero. Suppose C may deviate from the
protocol. Notice that the utility of C can be positive only when A2’, B2, C2 or C2’ is activated.
Because Bob only sends prec when B1 has been activated, ignoring the negligible probability that
C find prec by itself, B2 can never be activated. In the following, we will show that A2’, C2 and
C2’ are never activated except with negligible probability. There are two possible cases.

• Case 1: both Alice and Bob enter the execution phase. In this case, Alice always sends prea to
P1, and she never sends any transaction containing pre ′a. Ignoring the negligible probability
that C finds pre ′a by itself, C2’ can never be activated, and A2’ can only be activated by preb.
Moreover, Alice always sends prea to P1 at latest at Ethereum time T0, and thus Bob will
not post any transaction containing preb. Ignoring the negligible probability that C finds preb
by itself, A2’ and C2 can never be activated. To sum up, except the negligible probability,
the utility of C is at most zero, which is the same as the honest case.

• Case 2: both Alice and Bob enter the abort phase. In this case, Bob always sends to P2’
and Alice always sends to P2. Thus, Bob never sends any transaction containing preb, and
Alice never sends any transaction containing pre ′a. Ignoring the negligible probability that C
finds preb or pre ′a by itself, A2’, C2 and C2’ cannot be activated by (pre ′a, preb). Thus, except
with negligible probability, the utility of C is at most zero, which is the same as the honest
case.

72

	Introduction
	Our Results and Contributions
	Additional Related Work

	Problem Statement and Prior Approaches
	Problem Statement
	Strawman and Prior Approaches

	Definitions
	Blockchain, Transaction, and Smart Contracts
	Players and Strategy Spaces
	Protocol Execution
	Game Theoretic Definitions

	Our Constructions: Informal Technical Roadmap
	Warmup: CSP-Fair Knowledge-Coin Exchange
	CSP-Fair Atomic Swap Protocol
	Strawman: Direct Composition
	Our Atomic Swap Protocol

	Achieving Bounded Maximin Fairness
	Coalition Forming Meta-Game

	Definitions of Atomic Swap and Dropout Resilience
	Definition: Atomic Swap
	Definition of Dropout Resilience
	Convention for Writing Smart Contracts

	CSP-fair Knowledge-Coin Exchange
	Definitions
	The Rapidash Knowledge-Coin Exchange Protocol.
	Proofs: CSP Fairness and Dropout Resilience

	Atomic Swap: Achieving CSP-Fairness
	Proofs

	Atomic Swap: Achieving Bounded Maximin Fairness
	Constructions
	Proof for Bounded Maximin Fairness
	Utilities When Bombs Are Triggered
	Non-Rational Strategies
	Against Externally Incentivized Bob-Miner Coalition
	Against Externally Incentivized Alice-Miner Coalition
	Proof of thm:swapsafepart

	Proof for Dropout Resilience

	Rapidash Disincentivizes a 100% Coalition
	The Meta-Game of Coalition Formation
	Comparison with Prior Approaches

	Bitcoin Instantiation
	Notation and Background
	Instantiating Rapidash Single Instance
	Instantiating Atomic Swap
	Instantiating Rapidash from section:one-side-collateral
	Instantiating Rapidash' from section:one-side-collateral
	Instantiating Rapidash from section:safe-construction
	Instantiating Rapidash' from section:safe-construction

	Ethereum Instantiation
	Comparison of Rapidash's Knowledge-Coin Exchange to HTLC, MAD-HTLC, and He-HTLC
	Evaluation of Rapidash's Atomic Swap Protocols

	Proof of CSP Fairness (thm:swapCSP-safe)

