
A THEORETICAL FRAMEWORK FOR THE ANALYSIS OF PHYSICAL
UNCLONABLE FUNCTION INTERFACES AND ITS RELATION TO

THE RANDOM ORACLE MODEL

A PREPRINT

Marten van Dijk
CWI Amsterdam, the Netherlands

marten.van.dijk@cwi.nl

Chenglu Jin
CWI Amsterdam, the Netherlands

chenglu.jin@cwi.nl

August 17, 2022

ABSTRACT

Analysis of advanced Physical Unclonable Function (PUF) applications and protocols rely on assum-
ing that a PUF behaves like a random oracle, that is, upon receiving a challenge, a uniform random
response with replacement is selected, measurement noise is added, and the resulting response is
returned. In order to justify such an assumption, we need to rely on digital interface computation that
into some extent remains confidential – otherwise, information about PUF challenge response pairs
leak with which the adversary can train a prediction model for the PUF.
We introduce a theoretical framework that allows the adversary to have a prediction model (with
typical accuracy of 75% for predicting response bits for state-of-the-art silicon PUF designs). We
do not require any confidential digital computing or digital secrets while we can still prove rigorous
statements about the bit security of a system that interfaces with the PUF. In particular, we prove the
bit security of a PUF based random oracle construction; this merges the PUF framework with fuzzy
extractors.

Keywords Physical Unclonable Function (PUF) · Fuzzy Extractor · Random Oracle · Trusted Computing Base (TCB)

1 Introduction

A Physical Unclonable Function (PUF) is a device that takes a challenge as input and measures a corresponding
response bit as output [Pappu et al., 2002, Gassend et al., 2002]. Responses depend on manufacturing variations in the
PUF that are practically unclonable with current existing technology. Nevertheless, a PUF’s behavior may be modeled
by training a prediction model based on a set of challenge response pairs (CRPs). For this reason, a PUF design can be
broken if an attacker achieves a significant accuracy of a trained prediction model.1

Since physical unclonable functions have been introduced as a security primitive [Pappu et al., 2002, Gassend et al.,
2002], a variety of applications have been proposed [Lim et al., 2005, Suh and Devadas, 2007, Lee et al., 2004], including
many advanced cryptographic protocols, e.g. Key Agreement, Oblivious Transfer and Bit Commitment [Brzuska et al.,
2011, Rührmair, 2010, Ostrovsky et al., 2013]. The security analysis of these advanced applications and protocols2

relies on assuming that a PUF behaves like a random oracle; upon receiving a challenge, a uniform random response
with replacement is selected, measurement noise is added, and the resulting response is returned. This assumption turns
out to be too strong because (1) in practical implementations the PUF returns biased response bits, and (2) classical ML

1Public PUFs [Potkonjak and Goudar, 2014] and SIMPL systems [Rührmair et al., 2010a] which base their security on the time
differences between physical execution and model simulation is out of the scope of the paper and is not captured by our definitional
framework and analysis. They do not provide similar security properties as conventional PUFs, so they should be treated as a
different type of security primitives.

2PUF identification and authentication only relies on hypothesis testing based on comparing collected CRPs with re-measured
CRPs.
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and advanced ML attacks [Rührmair et al., 2010b, 2013, 2014, Ganji et al., 2016, Becker, 2015, Wisiol et al., 2020,
Tobisch et al., 2021] demonstrate that a prediction model for response bits with accuracy typically up to 75% can be
trained and this defeats the random oracle assumption.

To counter the response bit bias problem, literature introduces a PUF interface that implements a fuzzy extractor
(FE) [Dodis et al., 2004, Kang et al., 2014, Delvaux et al., 2016, Fuller et al., 2020, Ueno et al., 2020]. Upon sufficient
min entropy in response vectors, random (unbiased) bit strings can be extracted using a FE. To counter accurate training
of a prediction model by the attacker, we eliminate access to challenge response pairs by the attacker. In other words,
we have a Trusted Computing Base (TCB) that implements the PUF together with a FE interface isolated from the
attacker – it assumes that the interface computes in a confidential digital computing environment (confidential TCB).

The above solution is satisfactory if we use a weak PUF that only has a few CRPs for masking/obfuscating a secret key
based on a single response vector (we want to re-measure responses whenever we want access to the de-obfuscated
key – for this we already need a confidential TCB). The FE generates and publishes so-called helper information p
which is needed to extract a random bit string from the measured response vector with which the secret is masked. This
helper information does leak some information about the response vector – after all, we use FE because the response
vector does not have full min entropy (i.e., it is not uniformly distributed over bit vectors). If we only publish one or a
couple p, then it is realistic to assume that this does not help the adversary to gain sufficient information about challenge
response pairs for training an accurate prediction model.

On the other hand, if for other applications a strong PUF is used with an ‘exponentially large’ challenge space, then
many helper data p is published and in theory this can help the adversary in gathering statistical information about
CRPs and train a prediction model (even though, in practice, we have no idea how to accomplish this). The strong PUF
with FE interface still needs the confidential TCB in order to make it impossible for the adversary to observe processed
CRPs directly (otherwise, just based on these observed CRPs, a prediction model can be trained).

We notice that the computational FE based on the LPN problem in [Herder et al., 2016, Jin et al., 2017] also publishes
helper data, but here it can be proven that this data does not reveal underlying information about CRPs3 (in fact, the
computational FE is used to implement a random oracle based on a weak PUF with just one response vector). But also
here the LPN interface is in a confidential TCB (its digital computation is not allowed to be observed by the adversary).

This paper introduces a new framework for rigorously reasoning about the security of PUF interfaces. We get rid
of the confidential TCB and allow the adversary access to a training set of challenge response pairs. Only the way
how these pairs can be adaptively selected is restricted. We take a pre-challenge as input to a collision resistant hash
function to generate a challenge for the PUF; this is the only way the PUF may get accessed by both legitimate users
and adversaries, no confidential digital computing is required. We construct and analyze the bit security of a PUF based
Random Oracle.

The main problem that we solve is how to connect security definitions for PUFs to (computational) hardness problems
on which PUF interfaces (such as FE) are based. Our framework aims at strong PUFs with an ‘exponentially large’
challenge space.

• We define a PUF device in Section 3 followed by an extended PUF interface GETRESPONSE that first applies a
collision resistant hash to a pre-challlenge. We introduce the concept of (canonical) system induced CRP distribution,
where a system interfaces with the PUF and only uses CRPs of its ‘liking,’ i.e., have a ‘nice distribution.’

• We define reliability and bias with respect to system induced CRP distributions in Section 4. Conditioned on
previously collected CRPs, the bias of a new CRP may change due to correlation. We characterize the amount of change
by ϵcorbias and show how ϵcorbias gets amplified due to post-processing of CRPs (Lemma 6).

• In Section 5 we show an interface that improves reliability by using repeated measurements and we analyse ϵcorbias of
the resulting system induced CRP distribution. Similarly, in Section 6 we show an interface based on the Von Neumann
extractor for reducing bias [Von Neumann, 1951]. We show how resulting response bits behave as unbiased uniformly
drawn bits in Lemma 9 and as a consequence explain a condition in (5) which allows us to replace the Von Neumann
system induced CRP distribution by a ‘uniform’ one in a future reduction proof.

• We define PUF security with correlated CRPs in Section 7 and define the adversarial AU -model which does not
require a confidential TCB (i.e., we do not require any confidential digital computing or digital secrets), and only
requires the adversary to access the PUF through GETRESPONSE. We prove the ‘Ber transformation lemma’ (Lemma
12) which states that a (prediction) error reducing oracle can be constructed leading to error bits that are statistically
independent and Bernoulli distributed. The bit error rate is essentially equal to one minus the accuracy of the best
prediction model the adversary can construct (based on limited resources; number of collected CRPs and run time).

3Also the LPN construction does not suffer min entropy loss due to the leftover hash lemma as in FE.
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• Section 8 defines system security where the system interface has access to the PUF. We define a separation game and
argue this is at most an exponential factor more difficult than the original system security game. We provide a number
of definitions of properties of the underlying hardness problem. These definitions lead to the ‘PUF separation theorem’
in the AU -model (Theorem 19) where PUF assumptions and mathematical hardness assumptions are separated, still
leading to a bit security of the overall system.

• Section 9 constructs a PUF based random oracle (PRO). We characterize failure probabilities and analyse the security
using Theorem 19. In order to prove some of the needed properties of the underlying hardness problem, we show how
the Von Neuman system induced distribution can be replaced by a uniform one, how the Ber transformation lemma
can be used to construct a problem instance without needing access to the PUF, and how the hardness of the resulting
problem is related to residual min entropy (as in secure sketches but now related to Bernoulli noise). This results in the
final ‘PUF based random oracle theorem’ in the AU -model (Theorem 22).

The final PRO primitive justifies how a PUF can be used to simulate a random oracle as explained at the start of the
introduction, even in the presence of an adversary who is able to achieve a typical accuracy of a prediction model of
75%, and even if no confidential TCB (i.e., no confidential digital computing and no digital secrets) is assumed. The
latter allows PRO to execute in the presence of an adversary who can observe all digital computation and digital secrets.
PRO only requires PUF access control through GETRESPONSE. Our results can be easily plugged into the analysis
of PUF-based protocols, like key exchange [Brzuska et al., 2011], oblivious transfer [Brzuska et al., 2011, Rührmair,
2010], bit commitment [Damgård and Scafuro, 2013], and multi-party computation [Badrinarayanan et al., 2017],
where PUFs are all assumed to be random oracles. The presented work closes a major gap in current PUF literature.

2 Related Work

Existing PUF definitional frameworks. Since the introduction of PUFs, many attempts have been made to formally
define PUFs. Most of the existing PUF definitional frameworks oversimplified the reality and omitted the fact that
real PUFs produce errors in their responses due to environmental/measurement noises [Rührmair et al., 2009, Jin
et al., 2020, 2022]. Rührmair et al. first partitioned PUFs into weak PUFs and strong PUFs based on the sizes
of their challenge spaces, and then they defined strong PUFs as a physical random function that produce perfectly
reliable outcomes and cannot be physically or mathematically cloned within a certain amount of time given to the
adversary [Rührmair et al., 2009]. Jin et al. extended the framework to include stateful erasable PUFs and stateful
programmable access-controlled PUFs, where the stateful PUFs can keep an internal state and alter CRPs based on its
internal state and certain policies [Jin et al., 2020, 2022]. However, in the above definitions, PUFs are always assumed
to be noise-free with help from some error-correcting mechanisms. Our framework takes noises into account and
precisely discusses how the noises/biases will affect the security of the PUFs.

Noisy PUF behaviours are modelled in [Armknecht et al., 2010, Brzuska et al., 2011, Armknecht et al., 2011]. Brzuska
et al. defined PUFs as a noisy random function whose error rate for any given challenge response pair is within a noise
bound [Brzuska et al., 2011]. However, the definition did not capture the bias presented in PUF responses. Armknecht
et al. briefly discussed a PUF definition in [Armknecht et al., 2010] and further extended it in [Armknecht et al.,
2011]. The definitions in [Armknecht et al., 2010] and [Armknecht et al., 2011] captured both physical properties and
algorithmic properties of PUFs, including the reliability of PUFs. However, the definitions also over simplified the
reality and assumed no bias or correlations in PUF responses.

Fuzzy extractors. Fuzzy extractors are used to extract a reliable and uniformly distributed output from a noisy and
biased output, e.g., biometrics [Dodis et al., 2004] and PUF responses [Delvaux et al., 2016, Kang et al., 2014, Ueno
et al., 2020]. All existing fuzzy extractor studies focus on improving their capability of error correcting and the
min-entropy left in the final output of the fuzzy extractors, assuming the distribution/bias of the PUF responses are
known to the adversary and that there is no or only spatial correlation between responses. These assumptions effectively
constrained the fuzzy extractor theory to be applied to only weak PUFs rigorously. In our work, we consider a much
stronger adversary who has a prediction model with a meaningful prediction accuracy, e.g., 75% accuracy of a one-bit
PUF output. This is a realistic case for strong PUFs under modeling attacks; even some strong PUFs are claimed
to be secure against certain attacks, the adversary can still build a prediction model of the PUF with a meaningful
accuracy better than random guess using the concerned attacks [Nguyen et al., 2019, Rührmair et al., 2010b]. Our work
effectively closes the gap and provides a solid foundation for using fuzzy extractors on strong PUFs securely.

Existence of strong PUFs. In this work, we are mainly interested in conventional strong PUFs whose challenge space
is exponentially large with respect to the physical size of the PUFs [Rührmair et al., 2009]. However, if one wants
to use a weak PUF in our interface, one needs to assume a confidential computing environment, where no leakage is
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allowed directly from the weak PUF to the adversary. This security assumption is not ideal when we want to minimize
(or eliminate) the confidential computing environment for stronger security.

Given the recent development in the lightweight strong PUF area, the existence of strong PUFs may be deemed unclear.
For example, XOR arbiter PUFs [Suh and Devadas, 2007] have been considered as a standard lightweight strong PUF
design, until they were broken by reliability-based attacks [Becker, 2015]. The introduction of interpose PUF (iPUF)
showed new hope for realizing a practical lightweight strong PUFs that are secure agianst both classical modelling
attacks and reliability-based attacks [Nguyen et al., 2019]. However, the security of iPUFs has been proved to be
weaker than the authors originally thought in novel attacks [Wisiol et al., 2020, Tobisch et al., 2021, Wisiol et al., 2022].
Although the existence of a secure lightweight strong PUF design is still unclear, our framework is still needed as soon
as (just like in designs for symmetric key encryption) a strong PUF design survives for a significant number of years.
Indeed, strong PUF design is still an active research area and many new designs show great potential in defending
against known attacks [Wisiol, 2021].

3 Physical Unclonable Functions

In this section we formally define a PUF and introduce an extended PUF functionality (which is a PUF with a small
interface). In the next sections we define reliability, bias, and security.

Definition 1 (Physical Unclonable Functions [Jin et al., 2022]) A PUF P is a physical system that can be stimulated
with so-called challenges ci from a challenge set CP = {0, 1}λ, upon which it reacts by producing corresponding
responses ri from a response set RP ⊆ {0, 1}m. Each response ri shall depend on the applied challenge, but also on
manufacturing variations in P that are practically unclonable with currently existing technology. The tuples (ci, ri) are
called the challenge response pairs (CRPs) of P . We often refer to λ as the security parameter of the PUF. ■

This definition explicitly mentions that a hardware copy or clone of a PUF P cannot be manufactured due to uncon-
trollable manufacturing variations which provide the randomness from which responses are extracted. This leaves in
question whether, rather than hardware cloning P , a software simulator, which sufficiently accurately predicts responses,
can be constructed and learned. Here, we assume that the adversary has access to P and can use P as an oracle to query
a list of challenge response pairs which are used to train a simulator in the form of a machine learning model which
predicts responses given input challenges.

The querying of P can be adaptive and this can possibly be exploited by the adversary. For example, comparing
responses of neighboring challenges that have small Hamming distance may reveal detailed information about small
subsets of manufacturing variations in the PUF design. In order to eliminate this possibility in practice, we process
challenges by applying a one-way function before giving it as input to the PUF circuitry where the manufacturing
variations are used to extract response bits. This leads to the extended PUF discussed next.

Extended PUF. We consider an extended PUF design, called GETRESPONSE in Algorithm 1, which first applies
a collision resistant hash function (which implies one-wayness, see Appendix A) to an input cpre which we call a
pre-challenge. The output of the hash function serves as the input challenge c to a PUF P . The extended PUF
functionality returns P’s response. The input-output pair (cpre, r) of GETRESPONSE can be used to compute a CRP

(c = Hash(cpre), r).

The extended PUF design describes a small PUF interface that cannot be circumvented by the adversary; we assume the
interface is immutable with respect to the adversary, hence, the adversary cannot freely choose the processed challenges
that are input to P . It can observe all intermediate digital computation of the PUF interface and see (or compute itself)
the processed challenges that lead to CRPs for training a machine learning model.

The adversary cannot exert ‘fine-grained’ control over the output of the hash function. Therefore, from a practical
perspective, the adversary cannot adaptively choose challenges whose hashes are designed to be equal or even close in
Hamming distance. This property is not formally implied by requiring the hash to be collision resistant, but it is used
in related literature like Controlled PUFs [Gassend et al., 2008]. We will formalize the security of GETRESPONSE
as a whole in later sections – and argue that from a practical perspective the best known methods for predicting a
silicon PUF’s behavior is by using machine learning techniques based on CRPs that were generated without searching
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for pre-challenges that lead to hash evaluations that are close4 in Hamming distance, but just use randomly5 chosen
pre-challenges that lead to random challenges (according to the uniform distribution over the challenge space).

Algorithm 1 Extended PUF interface
1: procedure GETRESPONSE(cpre)
2: c = Hash(cpre)
3: r ← P(c)
4: return r
5: end procedure

CRP distributions from the legitimate user/system perspective. We will analyze the security of a system that calls
PUF P through GETRESPONSE. We will assume that such a system will always call GETRESPONSE for either (1) a
new true random pre-challenge cpre or (2) a previously selected pre-challenge cpre (this yields multiple measurements
of the same response bit and, as we will explain, can be used to enhance reliability). To select new pre-challenges
according to a uniform distribution turns out to be important in our security analysis (for proving a reduction step). For
this reason we define the canonical distribution of GETRESPONSE that corresponds to a system calling GETRESPONSE
for new true random pre-challenges:

Definition 2 (System induced canonical CRP distribution) By Y∗ we define the distribution of CRPs generated by
GETRESPONSE when called by a system S for new pre-challenges:

Pr((c, r)← Y∗) = Pr(c← Y)Pr(r ← P (c) | c).
We call Y∗ the system induced canonical CRP distribution and Y the system induced canonical challenge distribution.

If system S only calls GETRESPONSE for new pre-challenges cpre that are uniform random, then Pr(c← Y) = 1/2λ

for CP = {0, 1}λ, i.e., Y is the uniform distribution over {0, 1}λ. ■

In practice, a system S does not want to generate a true random pre-challenge for every new GETRESPONSE call.
Instead pre-challenges will be generated in batches using a formula of the kind

cpre,u = Hash(seed∥u), (1)

where seed is a true random bit string and u is simply an nu-bit index representing some integer in {0, . . . , 2nu − 1}.
Since different batches of pre-challenges use their own truly random seed, these batches are statistically independent.
Within a batch, since Hash is collision resistant and therefore one-way, we may assume in practice that the different
cpre,u are ‘independent’ and ‘random.’ The set of corresponding challenges generated by GETRESPONSE,

{Hash(cpre,u)}2
nu−1

u=0 ,

defines some ‘distribution’ Y . And for practical purposes we may assume that Y is close to a uniform distribution
over {0, 1}λ (in the context of e.g. the statistical distance). We will simply assume that Y is the uniform distribution.
Nevertheless, Definition 2 is sufficiently general to capture arbitrary Y (and we will see that the security analysis of our
main theorems will not explicitly depend on Y and hold for a wide range of Y). A cryptographically secure PRG based
scheme for generating pre-challenges is sketched in Appendix B.

Our framework in the remainder of the paper is formulated for general system induced canonical challenge distributions
Y . We notice that a system S may use the system induced canonical distribution Y∗ over CRPs, to extract another
distribution over CRPs. In the setting above, corresponding to each batch, system S may decide to only use a subset of
challenges generated by GETRESPONSE,

{Hash(cpre,u)}u∈U ,
for some U ⊆ {0, . . . , 2nu − 1}. For example, by using repeated measurements, only ‘reliable’ CRPs corresponding to
the challenges indexed by U are selected. This will correspond to another (non-canonical) system induced distribution
over CRPs since r ← P(c) for reliable challenges c is less vulnerable to measurement noise, hence, most of the time the
same response r is output by P(c). For this reason, next definitions will be for arbitrary CRP distributions Y∗ and we
always say system induced distribution to indicate that in our context the definitions are from the system’s perspective,
i.e., from how the system uses GETRESPONSE (and not how the adversary uses GETRESPONSE to find an accurate
prediction model for PUF P). See Appendix C for more detail.

4We can enforce a large Hamming distance between challenges if we encode Hash(cpre) into a code word c by using a binary
error correcting code with large enough minimum Hamming distance. Code word c serves as the challenge for PUF P .

5We can enforce this strategy by simply modeling Hash as a hash function in the random oracle model. But we wish to avoid
such a strong assumption, since it is generally not true in theory (even though it is usually considered true in practice).
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4 Reliability and Bias

Reliability. The GETRESPONSE interface does not fully eliminate an adaptive attack. Even though we argued that the
adversary cannot adaptively choose distinct challenges whose hashes are designed to fit a-priori defined properties, the
adversary can still repeat the same challenge. Since PUF P is a physical device, it suffers from measurement noise
(due to temperature and voltage variations, and aging). This means that repeating the same input challenge to P (the
most basic form of an adaptive attack) can result in different response bits. This allows an adversary to measure the
‘reliability’ according to the next definition and construct challenge-reliability pairs rather than challenge-response pairs.
Since the reliability of a response bit teaches more information compared to a single sample of a response bit, this can
lead to more advanced and more efficient machine learning of a PUF simulator. So, reliability information helps the
adversary.

Definition 3 (PUF Reliability) Due to measurement noise, the responses of the same challenge may not always be the
same. We define the failure probability pc of PUF P with respect to a challenge c ∈ CP as

pc = Pr(r ̸= r′, r ← P(c), r′ ← P(c)),
where r, r′ ∈ RP and the probability is over measurement noise.

From the legitimate user/system perspective we define the reliability of P with respect to c as 1− pc. Let Y be a system
induced challenge distribution. The overall reliability of P with respect to Y is defined as 1− δ with δ = EY [pc] where
the expectation is over c← Y . ■

In Arbiter PUF [Gassend et al., 2002] like designs such as the iPUF [Nguyen et al., 2019] or XOR Arbiter PUF [Suh
and Devadas, 2007], two stimuli race against each other following complementary paths indicated by a challenge c.
Which stimulus arrives first determines the response bit r ∈ {0, 1}. The difference in arrival times of the stimuli is
modeled as a difference in aggregated delays that characterize each of the two paths. Without measurement noise, this
is a deterministic function. With measurement noise, the arrival times may vary and as a result the response bit flips.
Let pc be the probability that the response bit flips due to measurement noise given a selected challenge c. Different
challenges indicate different complementary paths over which stimuli race against each other. And for this reason the
pc are generally different for different c. We assume that challenge c is selected uniformly from the challenge space,
denoted by {0, 1}λ. This gives rise to a distribution of pc with respect to the uniform distribution of c over the challenge
space {0, 1}λ. So, if r is a first measurement, r′ a second measurement, and e = r + r′ (XOR operation) represent the
error between the two, then the probability r ̸= r′ is equal to

δ = Pr[e = 1] =
1

2λ

∑
c∈{0,1}λ

pc = EY [pc], (2)

where the probability is over uniformly selected c, which defines distribution Y (in this example). We denote this
probability by δ and assume δ ≤ 1/2. In practice, we have δ ≤ 10% (in general, temperature variations, voltage
variations, and aging keep δ below 10% [Herder et al., 2014]).

Bias. In practice, PUF produces biased responses, due to systematic design (architectural) biases [Wisiol and Pirnay,
2020, SAHOO et al., 2016] or manufactured biases [Zhou et al., 2017]. This leads to system induced distributions over
CRPs that experience bias. The next definition formalizes this concept.

Definition 4 (PUF Bias) Let Y∗ be a system induced distribution over challenge response pairs CP ×RP defined as
a ppt algorithm with oracle access to PUF P . We may project Y∗ to a distribution Y over the challenge space CP by
defining

Pr(c← Y) =
∑
r∈RP

Pr((c, r)← Y∗).

We define bias qY
∗

r of PUF P with respect to a response r ∈ RP as

qY
∗

r =
∑
c∈CP

Pr((c, r)← Y∗),

where the probability is over measurement noise and c← Y . We may also introduce knowledge of side information in
the form of other known CRPs that affects the bias (because it is correlated with Y and Y∗):

qY
∗

r (side) =
∑
c∈CP

Pr((c, r)← Y∗ | side).

6



A PREPRINT

The bias of P with respect to Y and side information side is defined as

qY(side) = max
r∈RP

qYr (side).

By qY we denote the bias for empty side information side. ■

From a legitimate user/system’s perspective, we want a high overall reliability and a bias close to 1/|RP | such that
responses (corresponding to c← Y) used by the system have the most information content. Notice that if the bias is
close to 1, then the PUF always generates the same response regardless the input challenge. Hence, the PUF becomes
predictable. In order to use a PUF for the purpose of identification, authentication, key masking, etc., it needs to be
unpredictable, that is, a bias sufficiently close to 1/|RP |.

Correlation. In order to model correlation among CRPs, we need a definition that takes a distribution over multiple
challenges into account and considers correlation between their responses. As an example in Section 5, this allows us to
reason about how the bias is effected if one uses only ‘reliable’ CRPs where reliable CRPs are extracted by a (simple)
interface with access to GETRESPONSE.

Definition 5 (PUF Correlation) Let ΥP be a set of system induced distributions over challenge response pairs. Let λ
be the security parameter of PUF P , that is, CP = {0, 1}λ. Suppose that there exists an ϵcorbias ≥ 0 such that for all
d ≥ 1 with d = poly(λ), for all distributions Y∗(j) ∈ ΥP , 0 ≤ j ≤ d− 1, over challenge response pairs CP ×RP , for
all h ∈ {0, . . . , d− 1}, ∣∣∣qY(h)

r

(
{(cj , rj)← Y∗(j)}

d−1
j=0,̸=h

)
− q
Y(h)
r

∣∣∣
≤ ϵcorbias · q

Y(h)
r ,

where {(cj , rj) ← Y∗(j)}
d−1
j=0,̸=h reflects knowledge of explicit CRP values drawn from the other distributions Y∗(j),

j ̸= h. Then we say that PUF P has correlation bias at most ϵcorbias over set of distributions ΥP . ■

In this definition we talk about using the PUF from a legitimate user’s perspective. Here, a system may want to query
the PUF multiple (d) times and want to use the outputted response to e.g. extract some keys. It is important to know
whether the outputted response bits are correlated or whether they can be assumed more or less statistically independent.
The latter is often assumed even if e.g. only ‘reliable challenge-response pairs’ are used by the system (corresponding
to a specific distribution Y∗).
The definition given above does not yet model security, that is, there is no adversarial algorithm trying to use ‘intelligence’
to predict responses. This will be discussed in Section 7. Here, we model the amount of correlation among CRPs
due to the intrinsic properties of the PUF itself. For example, consider the case where two CRPs are independently
chosen according to the canonical system induced Y∗, that is, (c0, r0)← Y∗ and (c1, r1)← Y∗. If c0 and c1 happen
to be close in Hamming distance, then values r0 and r1 are correlated. If the Hamming distance between c0 and c1 is
large, then r0 and r1 behave as statistically independent variables. For large λ, challenges c0 ← Y and c1 ← Y chosen
uniformly from CP = {0, 1}λ generally have large Hamming distance. So, from a practical implementation perspective
only with probability exponentially small in λ we observe correlation among r0 and r1. We can extend this argument to
d CRPs if d = poly(λ). Therefore, ϵcorbias decreases in parameter λ and is exponentially small in λ for ΥP = {Y∗}.
Next sections will show that non-canonical system induced CRP distributions (used in this paper) have an ϵcorbias that
scales ‘linearly’ with the exponentially small ϵcorbias for the canonical system induced CRP distribution. This allows us
to conclude that ϵcorbias is exponentially small for the whole set ΥP of system induced CRP distributions (used in this
paper).

The next lemma shows how Definition 5 can be used to analyse ϵcorbias for more general distributions. Its proof is in
Appendix D.

Lemma 6 Suppose that PUF P has correlation bias at most ϵcorbias over set of system induced distributions ΥP and
let λ be the security parameter of P . Consider products Ȳ∗(i) = Y∗(i,0) × . . . × Y∗(i,d−1) with {Y∗(i,j)} ⊆ ΥP and
d = poly(λ). Let X be a distribution statistically independent of all Ȳ∗(i). For each i, define a new distribution

(ĉi, r̂i) ← Ŷ∗(i) over the CRP space represented by some ppt algorithm that takes a drawing (c̄i, r̄i) ← Ȳ∗(i) and a
drawing x← X as input. Let side be a random variable statistically independent of x← X such that

(r̄h, {(c̄i, r̄i)}d̂−1i=0,̸=h) → {(c̄i, r̄i)}d̂−1i=0,̸=h

→ {(ĉi, r̂i)}d̂−1i=0,̸=h → side

7
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is a Markov chain with d̂ = poly(λ). Then, for all r̂, q
Ŷ∗

(h)

r̂ (side) satisfies6∣∣∣∣qŶ∗
(h)

r̂ (side)− q
Ŷ∗

(h)

r̂

∣∣∣∣ ≤ ((1 + ϵcorbias)
d − 1) · qŶ

∗
(h)

r̂ .

■

5 Improving Reliability

Algorithm 2 Get reliable CRPs
1: procedure GETRELIABLECRPh

2: Found =false
3: while Found =false do
4: cpre ←R CP
5: for j ∈ {1, . . . , h} do
6: rj = GETRESPONSE(cpre)
7: end for
8: if all rj are equal then
9: c = Hash(cpre); r = r1

10: Found =true
11: end if
12: end while
13: return (cpre, r)
14: end procedure

In Algorithm 2 we present a simple interface that improves reliability. The interface changes a uniform selection from
challenges to a selection among challenges that lead to ‘reliable responses.’

For h > 1, GETRELIABLECRPh reduces probability δ = EY [pc] as defined in Definition 3. The same measurement
rj = GETRESPONSE(cpre) is repeated h times and only if all measured responses are equal, the agreed upon response r
is returned. The probability that all h measurements agree is equal to phc +(1− pc)

h where c = Hash(cpre). This shows
that the while loop will take (EY [phc + (1− pc)

h])−1 iterations in expectation over the canonical system distribution
c← Y . For sufficiently small h, this is a small enough number and the GETRELIABLECRPh interface can be used in
practice.

In order to avoid using a True Random Number Generator (TRNG) for selecting cpre ←R CP = {0, 1}λ, we will
generate a sequence of pre-challenges cpre,a as defined in (1) (for u = a), where a is the iteration count of the while
loop. In order to do this we need to know how to a-priori represent a, i.e., we select a fixed na-bit representation of a
for use in (1). This limits GETRELIABLECRPh to at most 2na loop iterations. As argued above we may choose na

small and still have low failing probability (the probability that no reliable CRP is found after 2na loop iterations).

Seed seed in (1) can be given as input to GETRELIABLECRPh and selected at random by the system calling
GETRELIABLECRPh. Since the hash function is collision resistant and therefore one-way, an adversary who observes
the outputted cpre cannot extract seed and a. However, knowledge about seed and a would in addition teach the
adversary a − 1 unreliable CRPs corresponding to cpre,u, 0 ≤ u ≤ a − 1. If this needs to be avoided (in order to
limit the adversary in applicable attack techniques), then the legitimate user/system should discard seed as soon as
GETRELIABLECRPh(seed) has been called (otherwise seed can be leaked to an adversary and the adversary can
extract a from seed and cpre = Hash(seed∥a) by using repeated hash evaluations).

The outputted r corresponds to a reliable challenge c, that is, a challenge which has demonstrated to give rise to
repeated consistent measurements of the response. This means that such challenges lead to an increased reliability: If
GETRESPONSE(cpre) measures a response r′ for c = Hash(cpre) at a later time, then with probability pc we have r ̸= r′

(i.e., e = 1). However, for h > 1, the challenges are picked from the ‘subset of reliable challenges,’ that is, c is selected
with probability

Pr(c← Yh) =
(phc + (1− pc)

h) · Pr(c← Y1)∑
c′∈{0,1}λ(p

h
c′ + (1− pc′)h) · Pr(c′ ← Y1)

,

which defines a new distribution Yh, where Y1 denotes the canonical system induced distribution. This implies:
6It is possible to refine Lemma 6 and make d itself a random variable depending on drawings from distributions in ΥP .
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Lemma 7 Let Y∗h be the system induced distribution that generates CRPs according to GETRELIABLECRPh. Then,
the overall reliability with respect to Yh is equal to 1− δh with

δh = EYh
[pc] =

EY1
[ph+1

c ] + EY1
[(1− pc)

hpc]

EY1
[phc ] + EY1

[(1− pc)h]
. (3)

■

δh reduces the original δ1 = δ since the smaller pc are counted more in the sum because of the larger (1 − pc)
h

term. δ1 = δ has a typical value of 10% [Herder et al., 2014] and we may assume that for relatively small h,
GETRELIABLECRPh achieves a couple percentage points smaller δh [Zhou et al., 2017].

Our argument shows how the legitimate user may want to use an interface that selects reliable CRPs. The adversary can
still use the GETRESPONSE interface which covers the whole CRP space uniformly with respect to Y1. The task of the
adversary is to use access to GETRESPONSE (possibly emulating GETRELIABLECRPh) to learn a model with which
s/he can predict the reliable response used by the legitimate user.

The new distribution Y∗h yields a new bias qY
∗
h . From a mathematics perspective, we cannot conclude qY

∗
h = qY

∗

for Y∗ = Y∗1 . However, in practice there is no reason to assume that reliable challenges according to Y∗h will have a
different bias.

Lemma 8 Let Y∗h be the system induced distribution that generates CRPs according to GETRELIABLECRPh where
the while loop iterates at most 2na times (and a failure is returned if no reliable CRP is found after 2na iterations).
Suppose that PUF P has correlation bias at most ϵcorbias over distribution Y∗1 . Then, P has correlation bias at most

ϵcorbias,h = (1 + ϵcorbias)
h·2na − 1

= h2naϵcorbias +O((h2naϵcorbias)
2)

over distribution Y∗h. ■

The proof follows from Lemma 6 by noting that GETRELIABLECRPh uses at most 2na iterations and within each
iteration Y∗1 corresponding to GETRESPONSE is sampled h times. As discussed before, we expect ϵcorbias = negl(λ)
where λ is the security parameter of PUF P . Then, for 2na = poly(λ), we also have a correlation bias negl(λ) over
distribution Y∗h.

6 Reducing Bias

Algorithm 3 Creating CRPs with reduced bias
1: procedure NEUMANN-GETRELIABLECRPh

2: Found =false
3: while Found =false do
4: (cpre, r)←GETRELIABLECRPh

5: (c′pre, r
′)←GETRELIABLECRPh

6: if r ̸= r′ then Found =true
7: end if
8: end while
9: return (cpre, r)

10: end procedure

In order to reduce bias significantly, we can use the Von Neumann trick which we also use in TRNG designs [Von Neu-
mann, 1951]. Algorithm 3 lists the pseudo code of a simple Von Neumann interface where we use GETRELIABLECRPh

twice in each while loop iteration until the two responses r and r′ are different. We only output the first generated
pre-challenge response pair. The second application of GETRELIABLECRPh is used to simulate a probability distribu-
tion of a coin that tells the algorithm when to accept the first generated pre-challenge response pair. Given the first
generated pre-challenge response pair (cpre, r), the algorithm accepts and outputs this pair only if the second generated
pre-challenge response pair is of the form (c′pre, r

′ = r + 1). The probability that this happens is equal to∑
c′∈CP

Pr((c′, r + 1)← Y∗h | (c, r)), (4)

9
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where Y∗h is the system induced distribution of challenge response pairs generated by GETRELIABLECRPh (here,
c′ = Hash(c′pre) and c = Hash(cpre) are selected according to distribution Yh, and (c, r)← Y∗h). The probability that
(c, r) is generated in the first pre-challenge response pair is equal to Pr((c, r) ← Y∗h). Together with (4) this can be
used to characterize Y∗neu,h, the probability that NEUMANN-GETRELIABLECRPh leads to CRP (c, r).

In NEUMANN-GETRELIABLECRPh we will use an iteration count b for the while loop, an index i ∈ {0, 1} for cpre
and c′pre in a loop iteration, and an iteration count a for the while loop in GETRELIABLECRPh. This allows us to use a
seed seed as input and generate a sequence of pre-challenges Hash(seed∥a∥i∥b) as in (1). The proof of the lemma
below is in Appendix E.

Lemma 9 (Bias Von Neumann Trick) Let (Y∗neu,h)×d denote the system induced distribution that generates challenge
response vectors c = (c0, . . . , cd−1) and r = (r0, . . . , rd−1) according to NEUMANN-GETRELIABLECRPh where
the while loop is at most called 2nb times. Suppose that PUF P has correlation bias at most ϵcorbias over a canonical
system induced distribution Y∗1 . Then,∣∣∣∣q(Y∗

neu,h)
×d

r − 2−d
∣∣∣∣ ≤ dh2na+1−d(1 + 2nb)ϵcorbias

+O((dh2na+nb+1ϵcorbias)
22−d)

and
q
Y∗

neu,h
r ≤ 1

2
+ h2naϵcorbias +O((h2naϵcorbias)

2).

Finally, since NEUMANN-GETRELIABLECRPh outputs reliable CRPs, Lemma 7 shows that the overall reliability with
respect to Yneu,h is equal to 1− δh with δh = EYh

[pc] defined by (3). ■

An interesting notion is the so-called Hellinger distance between distribution q
(Y∗

neu,h)
×d

r over response vectors in {0, 1}d
and the uniform distribution over {0, 1}d, see [Yasunaga, 2021]. Application of Lemma 9 shows that this is bounded by√√√√1−

∑
r∈{0,1}d

√
q
(Y∗

neu,h)
×d

r · 2−d

≤
√
1−

∑
r∈{0,1}d

2−d
√

1− dh2na+1(1 + 2nb)ϵcorbias

=

√
1−

√
1− dh2na+1(1 + 2nb)ϵcorbias

≤
√

dh2na+1(1 + 2nb)ϵcorbias,

if the latter is ≤ 1. In Section 9 we will want to have this Hellinger distance at most 2−(κ+5.946)/2, where κ represents
the number of secure bits extracted from the PUF, and apply the theory of [Yasunaga, 2021]; we will use this to show

that we can replace distribution q
(Y∗

neu,h)
×d

r by the uniform distribution in our setting. This translates to the condition

ϵcorbias ≤
2−(κ+5.946)

dh2na+1(1 + 2nb)
. (5)

As a final remark, we notice that the adversary can still use the biased responses from GETRESPONSE to train a machine
learning model for predicting responses. The Von Neumann trick only helps the legitimate user/system to get close to
uniformly generated response bits.

7 PUF Security

The following definition, inspired by [Jin et al., 2022], defines the hardness of being able to software clone a PUF, i.e.,
the hardness of training an adversarial algorithm with oracle access to the PUF such that it can reliably predict responses
for new randomly chosen challenges. Here, we only consider adversaries who can learn/observe digital information.

Definition 10 (PUF Security with Correlated CRPs (inspired by [Jin et al., 2022])) We define a security game
SecGamePUFCor(P,ΥP ,A, k, t) for PUF P , where ΥP is a set of system induced distributions Y∗ over challenge
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response pairs in CP × RP (each Y∗ is represented as a ppt algorithm with oracle access to P), A is a ppt poly(t)
algorithm7, and k represents the number of queries to P by A:

1. For j = 1, . . . , k, A adaptively selects a challenge ĉj ∈ CP and receives8 r̂j ← P(ĉj). Note that, A is not
able to get more responses beyond r̂1, ..., r̂k, due to the hardware unclonability of PUF P .

2. For 0 ≤ j ≤ d − 1, let CRPs (cj , rj) ← Y∗(j) for distributions selected from ΥP . A is given set D =

{(cj ,Y∗(j))}.

3. A outputs guesses {r′j}
d−1
j=0 , and selects an index 0 ≤ h ≤ d− 1. Notice that A knows distributions Y∗(j), that

is, A knows the ppt algorithm which simulates Y∗(j) with oracle access to P . Even though A has no access to
P in this step, A can make use of the knowledge that cj ← Y(j) (where Y(j) is the projection of Y∗(j) on the
challenge space).

A ‘wins’ the game if r′h = rh. Notice that the XOR value r′j + rj is equal to the prediction error of the guess r′j
outputted by A. We want to model how the probability of winning is conditioned on prediction errors, in other words,
how are prediction errors for j ̸= h correlated with not making a prediction error for h (i.e., r′h = rh).

P is called a (k, t, ϵcorpred)-secure PUF for correlations with respect to A and set of distributions ΥP if A has an
ϵcorpred advantage in predicting (any) rh: Let λ be the security parameter of PUF P . For all d = poly(λ), advantage

AdvPUFCorA

= Pr
(
r′h = rh | {r′j + rj}d−1j=0,̸=h

)
− qY

∗
(h)

≤ ϵcorpred,

where ϵcorpred represents the security9, and qY
∗
(h) is the bias with respect to Y∗(h) of P . The probabilities are taken over

(cj , rj)← Y∗(j), over measurement noise, and over all random procedures that A employs in the security game. A’s
advantage defines the software unclonability of PUF P when P’s responses for challenges from distribution Y(j) need
to be predicted. ■

Notice that the security game captures the scenario where the adversary has access to the PUF and uses this time to
gather CRPs with which a machine learning model is trained. At a later moment access to the PUF is lost and the
adversary uses its machine learning model to predict responses in order to impersonate the PUF or learn sensitive
information whose confidentiality depends on private PUF responses. The predictive advantage ϵcorpred mainly depends
on the amount of training data represented by k. The amount of computing time for training the ‘best’ model is a less
important resource. For this reason we do not specify an explicit bound on the running time T of adversary A in our
definition, other than it being poly(t) large enough for covering all practical adversaries.

Soundness. The special case d = 1 defines advantage

Pr(r′0 = r0)− qY
∗
(0) . (6)

This advantage does not take into account the additional advantage about correlations among different responses
corresponding to randomly chosen challenges.

Our definition of ϵcorpred is sound in that we can always realize ϵcorpred = 0 by defining the following simple adversary:

The adversary always outputs the response r that maximizes q
Y∗

(0)
r , that is, q

Y∗
(0)

r = qY
∗
(0) . Then, Pr(r′0 = r0) = Pr(r =

r0) =
∑

c0∈CP
Pr((c0, r0)← Y∗, r0 = r) = q

Y∗
(0)

r = qY
∗
(0) in (6). This achieves10 ϵcorpred = 0.

7The cumulative number T of computational steps needed by A to play the security game (T represents the running time of A) is
T = poly(t).

8Additional side channel leakage of the PUF itself can be modeled by having P(cj) output sidej in addition to response rj .
However, we do not consider this type of attack in our adversarial model where the adversary can only learn digitally processed
information.

9A larger challenge size λ generally corresponds to lower ϵcorpred. From this perspective λ can be considered a security parameter
of PUF P .

10We notice that the security game captures ϵcorbias: See Definition 5 and Lemma 25, the intrinsic correlation present in the PUF
can contribute at most ϵcorbias · qY

∗
(h) to ϵcorpred.
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Adversary AU . For both the legitimate user as well as the adversary, we consider the hash based interface GETRE-
SPONSE as the sole means for accessing PUF P:

In order to access PUFP , the adversary cannot circumvent
GETRESPONSE; in addition GETRESPONSE is immutable
with respect to the adversary.

This assumption can be realized by means of ‘hardware isolation’ where PUF P is only accessible through the hardware
interface defined by GETRESPONSE. For example, in a secure processor architecture like Intel SGX [Costan and
Devadas, 2016] this access control can be implemented by micro code which represents GETRESPONSE and only allow
access to the PUF by this micro code.

Given that adversary A can only access P through the GETRESPONSE interface in step 1, we essentially restrict A’s
adaptive strategy by forcing access to P through the collision resistant hash Hash. We will denote this type of adversary
by AU . Notice that because of the hash function, it is not clear how the adversary can search for good challenges that
help best in training an accurate prediction model. Current state of the art analysis seems to indicate that the adversary
may simply consider the hash function as an obstacle limiting selection of challenges cj ∈ CP according to a uniform
distribution (just like the canonical system induced distribution) with the possibility to repeat challenges.

Definition 11 An adversarial model for a PUF P defines how adversarial ppt algorithms A can have access to
P . By Ax-model for P we denote a specific adversarial model where superscript x is a commonly understood
abbreviation/name of the access restrictions to P imposed on adversaries A that are within the Ax-model.

Adversarial ppt algorithms A within the AU -model for P cannot circumvent GETRESPONSE in order to access P (this
includes the implicit assumption that GETRESPONSE is immutable with respect to the adversary).

We write Ax ⊆ AU to mean that the Ax-model is weaker than the AU -model, i.e., when compared to the AU -model,
the Ax-model imposes more restrictions on how adversaries can access P . ■

In practiceAU is powerful enough to train a machine learning model for P with a typical accurate prediction probability
at most 75% (as in the iPUF paper [Nguyen et al., 2019]) for practical values of k (the amount of training data) and any
practical run time T . This means that ϵcorpred is at most 25% in the worst case. Notice that this is quite different from
the intrinsic PUF correlation modeled by ϵcorbias. Given such a large ϵcorpred in practice, we need to be careful when
designing a secure system that relies on a PUF.

We refer to Appendix H for an extensive discussion on weaker adversarial models Ax ⊆ AU .

Ber Transformation Lemma. We are ready to define a special oracle O with knowledge of all prediction errors
ej = r′j + rj , 0 ≤ j ≤ d− 1, and who uses this knowledge to correct errors ej = 1 as follows (see Appendix F for the
proof):

Lemma 12 (Ber transformation lemma) Let P be a (k, t, ϵcorpred)-secure PUF for correlations with respect to A
and set of system induced distributions ΥP . Let us consider SecGamePUFCor(P,ΥP ,A, k, t) where A outputs
predictions {r′j}

d−1
j=0 of responses {rj}d−1j=0 corresponding to distributions Y∗(j) ∈ ΥP . Then there exists an oracle O

which takes predictions {r′j}
d−1
j=0 as input and outputs partially corrected predictions {r”j}d−1j=0 such that

• if r′j is without error, then also r”j is without error, that is, r”j = rj and

• each r”j = rj + êj where êj cannot be distinguished from a Bernoulli distribution

Ber(1− (qY
∗
(j) + ϵcorpred))

with all êj statistically independent.

■

The Ber transformation lemma is the main tool for proving our main theorem on the hardness of solving problem
instances related to system security guarantees for a system with oracle access to P .

8 Interface Security

Imagine a system S with oracle access to a PUF P . Suppose that proving a security guarantee of S entails proving
the hardness of solving an instance of some class of problems. Explicitly, we want to prove that any problem instance
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generated by some problem distribution Q is hard. The difficulty of showing this hardness comes from the fact that
system S has oracle access to P , hence, also Q uses P to generate the parameters of a problem instance that corresponds
to the security guarantee of S. We denote this by QP .

Definition 13 (System Security) Let QP be a ppt algorithm with oracle access to a PUF P that generates ‘problem
instances.’ Let VER(q, s) be an algorithm that takes a problem q ← QP and a solution s as input and outputs whether
s is a correct solution to q.

We define SecGameSys(Q,P,ΥP ,A, k, T ), where ΥP is a set of system induced distributions Y∗ over challenge
response pairs in CP ×RP (each Y∗ is represented as a ppt algorithm with oracle access to P), A is a ppt algorithm,
k represents the number of queries to P by A, and T indicates the cumulative number of computational steps needed
by A to play the security game:

1. For j = 1, . . . , k, A adaptively selects a challenge ĉj ∈ CP and receives r̂j ← P(ĉj). (This is step 1 of
security game SecGamePUF.)

2. A problem instance g ← QP is generated. Let {r0, . . . , rd−1} be the responses on which g depends. Let
{c0, . . . , cd−1} be the set of distinct challenges queried to P by Q that correspond to {r0, . . . , rd−1}. Let
Y∗(j) ∈ ΥP be the distributions implemented by Q for generating CRPs (cj , rj)← Y∗(j).

3. A is given set D = {(cj ,Y∗(j))}; here, Y∗(j) indicates the ppt algorithm that uses oracle access to P which Q

uses to draw challenges cj and collect a corresponding response. A also receives problem instance g (which
parameters depend on the CRPs collected by Q) and computes a solution s.

A ‘wins’ the game if VER(g, s) returns true.

QP is called (k, T, ϵwin)-system secure with respect to A and set of probability distributions ΥP if the probability of
winning is at most

Pr(true← VER(g, s)) ≤ ϵwin.

■

Even though the adversary may have ϵcorpred up to 25% in SecGamePUFCor, we want ϵwin to be exponentially
small in some security parameter that defines Q.

Seperating the PUF. On one hand we want Q to generate instances of a hard problem if P cannot be simulated by
an adversary in probabilistic polynomial time. On the other hand this requires us to show that such simulation cannot
be accurate enough even given the generated problem instance by QP . But this may reveal through the generated
problem instance information about the responses generated by P that were used by Q, and as a result prediction of
these responses can be more accurate.

We have cyclic reasoning: In a sense we want to assume that the problem instance itself is hard so that it cannot be
used in the prediction of the used responses in the formulation of the problem instance. And if this is true, then the
adversary can discard the problem instance when predicting the used responses, which leads to a ϵcorpred. This can in
turn be used to prove that the problem instance of Q is indeed hard to begin with. To break this cyclic reasoning we
need a separability assumption as defined below where we reformulate the steps of SecGameSys in an equivalent
new way and a slightly modified ‘separated’ way as follows:

Definition 14 (Separation Game) We reformulate SecGameSys(Q,P,ΥP ,A, k, T ) by splitting A in two algo-
rithms A0 and A1 where A0 is in charge of step 1 and step 3 is split into

• A0 is given set D and problem g and outputs a prediction {r′j} of the responses {rj} measured in step 2 by Q.

• A1 is given set D, problem g, and {r′j} and computes a solution s of g.

Let Ax-model be some adversarial model for P . Clearly, A1 can play the role of the original A all by itself, hence,
the probability of winning is still (equivalently) at most ϵwin if QP is (k, T, ϵwin)-system secure with respect to all
A = (A0,A1) in the Ax-model and set of probability distributions ΥP .

The separated game SecGameSysSep(Q,P,ΥP ,A, k, T ) for a pair A = (A0,A1) is defined as the game above
where

• A0 does not have access to problem g, and
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• A1 does not have access to set D.

Let ϵwinsep be an upper bound on the probability of winning SecGameSysSep over all A = (A0,A1) within the
Ax-model.

If there exists a constant csep such that
ϵwin ≤ csep · ϵwinsep,

then we call QP csep-separable within the Ax-model. ■

Our ultimate goal is to separate PUF P out of the equation, that is, we want to reduce QP to QB where B is
some predefined probability distribution over CRPs. This allows us to consider the hardness of QB which is a pure
mathematical problem which does not involve a concrete physical device.

Let λ be a security parameter related to the class of problems QB. We will see that in order to prove αλ-bit security of
QP it suffices to have csep = O(2(1−α)·λ). Hence, csep can be as large as exponential in λ. Notice that csep measures
the multiplication factor increase in winning the system security game compared to winning the ‘separated’ system
security game. As we have no idea how to design an adversarial strategy that combines all information (CRP pairs
and problem instance g) in a more intelligent way than what is proposed in the separation game, it is unlikely that an
attacker will be able to realize a multiplicative factor gain that is exponential in λ. Setting csep = 2λ/2 in the worst-case
seems large enough.

Hardness of Q. In order to separate the problem of predicting P from solving problems g ← QP , we introduce the
next definition. It defines under what circumstances solving g, given predictions of responses from P that were sampled
by QP to formulate g, is equivalent to solving a similar problem as a function of only the prediction errors.

This is a reasonable assumption since in practice the system that measures responses of the PUF will for example
use these to mask a key or store it as secret information for later use in an authentication or identification protocol.
When demasking the key or when the identity of a PUF is verified, the PUF is measured a second time. The difference
between the first and the second measurements should have a small number of measurement errors allowing demasking
and identity verification. The adversary cannot measure the PUF a second time but tries to predict/estimate the used
responses. Its success in demasking and extracting the key or impersonating the identity of the PUF depends on the
number of prediction errors. This is exactly what we formalize in the next definitions.

Definition 15 (Error based reduction) In step 4 of SecGameSep adversary A1 solves problem instance g ← QP

given guesses {r′j}
d−1
j=0 of the responses {rj}d−1j=0 queried by Q to P in order to generate g. In this sense g can be

thought of as a function of {rj}d−1j=0 , denoted by
g({rj}d−1j=0),

and A1 can be thought of as solving an extended problem instance

gext = (g({rj}d−1j=0), {r
′
j}d−1j=0).

Let R be the distribution that generates the vector pair ({rj}d−1j=0 , {r′j}
d−1
j=0). We define QR as the distribution that

generates problems gext.

Suppose that there exists another formulation of a problem instance g′ such that solving gext can be reduced to solving

g′({r′j + rj}d−1j=0),

where g′ has no other dependency on {r′j}
d−1
j=0 or {rj}d−1j=0 except through the ‘errors’ {ej = r′j + rj}d−1j=0 . That is,

• there exists a ppt algorithm s← TRAN(s′, {r′j}
d−1
j=0) and an algorithm VERE(g′, s′) which returns true if and

only if VER(g, TRAN(s′, {r′j}
d−1
j=0)) returns true.

If the above property holds, then we call g′ an error based reduction of g. Let E be the distribution that generates
the error vector {ej = r′j + rj}d−1j=0 . We define QE as the distribution that generates problems g′ (by replaying
SecGameSep as explained above). We call QE with (TRANS, VERE) the error based reduction of QR with VER in
SecGameSep. If such QE exists, then we say that QR has an error based reduction.

■
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Reasoning about the hardness of Q̂ = QE for a known representation of an error vector distribution E is a pure
mathematical problem that does not depend on a concrete physical PUF device P – we have not yet accomplished this
as the error vector distribution is implicitly defined by the exact functioning of P . The next definition formalizes the
hardness of Q̂ = QE or Q̂ = QR.

Definition 16 (Mathematical hardness assumption for Q̂) Define HardnessQError(Q̂, VERH,A, T ) as a game
where A is a ppt algorithm that takes a problem instance ĝ ← Q̂ as input and runs at most T computational steps after
which it outputs a guess ŝ. Adversary A wins the game if VERH(ĝ, ŝ) returns true, that is, ŝ is a solution of problem ĝ.
We call Q̂ (T, ϵhard)-hard if the probability of winning HardnessQError is at most ϵhard.

We may consider ϵhard to be a function of T . If for all T ,

ϵhard(T ) ≤ T · 2−λ,

then we say that Q̂ is λ-bit secure. ■

In HardnessQError A plays the role of A1 in SecGameSep without access to set D. In other words, A only
knows that parameters have been generated using distributions R and E respectively. A does not know to which
challenges these correspond to and as a consequence does not know a distribution R or E conditioned on the used
challenges, which could have given A more information for finding a solution ŝ. In SecGameSep we model the
increased probability of winning, if such knowledge were available, by the multiplicative factor csep.

We next define how the bit securities of Q̂ = QE and Q̂ = QR are related.

Definition 17 (Error based equivalent of QP ) Let QE be an error based reduction of QR. We say QE is an error
based equivalent of QR up to factor eequiv if

[QE is κ-bit secure]⇒ [QR is (κ− eequiv)-bit secure].

In the remainder of the paper, rather than referring toR, we say QE is an error based equivalent of QP up to factor
eequiv and if such QE exists, then we say that QP has an error based equivalent up to factor eequiv. ■

The next definition defines what it means when problems QE become easier to solve if some of the errors produced by
E are magically corrected.

Definition 18 (Q in the presence of an error reducing oracle) Let E be a distribution that generates error vector
{ej}d−1j=0 . Let O be an oracle that takes as input an error vector {ej}d−1j=0 and corrects some of the errors ej = 1 by
computing a new error vector {êj}d−1j=0 with êj = 0 if ej = 0 is already without error, and êj ∈ {0, 1} if ej = 1
(depending on O’s strategy this may correct the error to êj = 0). We call such oracle O an error reducing oracle.

We say that QO◦E is easier to solve than QE if

[QO◦E is κ-bit secure]⇒ [QE is κ-bit secure].

If QO◦E is easier to solve than QE for all error reducing oracles O, then we say that QE becomes simpler in the
presence of an error reducing oracle. ■

This assumption seems to be a natural one since fewer prediction errors for the adversary should make it easier for the
adversary to, for example, demask a key or impersonate a PUF. The above framework for reasoning about the hardness
of QP will allow us to prove precise security guarantees. Our framework allows the following main separation theorem
(its proof is in Appendix G), which we apply in the next section (where we prove the validity of some of the conditions
in the theorem):

Theorem 19 (PUF separation theorem) • Let Ax-model be some adversarial model with Ax ⊆ AU .

• Suppose that P is a (k, t, ϵcorpred)-secure PUF for correlations with respect to all A that are within the
Ax-model and with respect to a set of system induced CRP distributions ΥP . Let qΥ = supY∗∈Υ qY

∗
and

define τ = 1− (qΥ + ϵcorpred).

• Define B to be the distribution that generates statistically independent errors êj ← Ber(τ). Assume that QB
is λ-bit secure.
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• Assume that QP has an error based equivalent QE up to factor eequiv = O(log2 λ). And assume that QE
becomes simpler in the presence of an error reducing oracle.

• Assume that QP is csep-separable within the Ax-model with csep = 2αλ for some α ∈ [0, 1).

Then, for T = poly(t), QP is (k, T, ϵwin)-system secure with respect to all A within the Ax-model and set of system
induced distributions ΥP with

ϵwin ≤ csep · T2eequiv2−λ,
which is negl(λ). ■

9 PUF based Random Oracle

Algorithms 4 and 5 code the interface of an RO primitive based on a PUF P . To get an input output pair, GETRE-
SPONSE is called multiple times through GETRELIABLECRPh which is in turn called multiple times in NEUMANN-
GETRELIABLECRPh. This leads to a pre-challenge vector cprevec of λn bits (we will discuss how to compress this in a
next remark).

We follow the code-offset sketch construction [Dodis et al., 2004] based on a suitable code, see Definition 20 below,
to compute helper data p and we hash the corresponding response vector rvec down to κ bits, where κ is the residual
min entropy of code C with respect to an appropriate Bernoulli distribution (discussed later). See Appendix I for a
discussion on how suitable codes relate to secure sketches.

Definition 20 (Suitable Codes) Let C be a set of M binary code words of length n, i.e., C ⊆ {0, 1}n and |C| = M .
Let Dec be a decoding algorithm for C.

We define the decoding failure probability of C with respect to measurement noiseM as

ρ = Pr(w ̸= Dec(w + e), w ←R C, e←M).

We define the residual min entropy of C with respect to B as

κ = H̃∞(e | p) = − log2 Ep[max
e

Pr(e | p)],

where e and p are jointly distributed according to e← B, p = w + e with w ←R C.

We define the min entropy loss of C due to coset imbalance with respect to B and subset size T as θ = log2(1 + θ′) for

θ′ = max
l∈{0,1}n

max
T ⊆C+l,|T |=T

Pr(e ∈ T )
Pr(e ∈ C + l)− Pr(e ∈ T )

,

where e← B; θ is a function of subset size T . ■

To get an output from an input, we first call GETRESPONSE multiple times to get an estimate r̃vec of rvec. We use the
code-offset sketch construction to first decode p+ r̃vec to a code word w̃ which is then used to recover r̂vec. The result
is hashed down to ŝ. The failure probability Pr(ŝ ̸= s) = Pr(r̂vec ̸= rvec) = Pr(ŵ ̸= w) is equal to the decoding
failure probability ρ of C with respect to a distributionM representing measurement noise: Since only reliable CRPs
from GETRELIABLECRPh are used, we may assume thatM behaves like Ber(δh) and ρ(δh) is a function of δh.

The RO interface represented by GETIO-ROh and GETOUTPUT-RO should have a small (decoding) failure probability
ρ for typical PUF measurement noise and should produce a secret s that has κ bits, where κ is at least the security
parameter (bit security) of the system using secret s (as a result of interfacing with RO).

In Algorithms 4 and 5 we us a hash Hashκ which extracts a random κ-bit string s from an n-bit response vector. For
simplicity we assume Hashκ in the random oracle model, but note that this can be replaced by a strong randomness
extractor based on a universal family of hash functions [Micciancio and Walter, 2018], see our security analysis below.

Pre-challenge vector compression. As for GETRELIABLECRPh and NEUMANN-GETRELIABLECRPh we generate a
sequence of pre-challenges based on an input seed. This will avoid the use of a TRNG; notice that we can also use
seed as input to a hash function for selecting a random code word w ←R C. In addition we compress the λn-bit
representation of cprevec down to (na + nb) · n bits.

Failure detection. We notice that GETIO-RO may also output another hash Hash′(s) of s. GETOUTPUT-RO can use
this hash of s to verify against the same hash of ŝ. This allows it to detect whether there is a failure to produce ŝ = s. If
detected, then GETOUTPUT-RO outputs a fail.
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Algorithm 4 Generating RO input output pairs
1: procedure GETIO-ROh

2: for j ∈ {0, . . . , n− 1} do
3: (cpre,j , rj)←NEUMANN-GETRELIABLECRPh

4: end for
5: cprevec = {cpre,j}n−1j=0 ; rvec = {rj}n−1j=0

6: w ←R C; p = rvec + w
7: s = Hashκ(rvec)
8: return ((cprevec, p), s)
9: end procedure

Algorithm 5 Recovering RO output from input
1: procedure GETOUTPUT-RO(cprevec, p)
2: {cpre,j}n−1j=0 = cprevec
3: for j ∈ {0, . . . , n− 1} do
4: r̃j ←GETRESPONSE(cpre,j)
5: end for
6: r̃vec = {r̃j}n−1j=0

7: w̃ ← Dec(p+ r̃vec); r̂vec = p+ w̃; ŝ = Hashκ(r̂vec)
8: return ŝ
9: end procedure

PUF based RO. We formally define a PUF based Random Oracle (PRO) and show in our next theorem how Algorithms
4 and 5 realize a PRO; see Appendix J for its proof.

Definition 21 (PUF based Random Oracle (PRO)) We define a PUF-based random oracle as a triple

PRO = (GETRESPONSE, GETIO, GETOUTPUT)

with the following properties

• Functionality. Algorithms (GETIO, GETOUTPUT) have access to a PUF P through GETRESPONSE; let ΥP be the
set of corresponding system induced distributions over CRPs of P . Upon input seed, GETIO either generates a pair
(aux, s)← GETIO(seed) or fails. Upon input aux, GETOUTPUT either generates ŝ← GETOUTPUT(aux) or fails.

• Correctness. We call (Fio−ro, Fout−ro) a pair of failure probabilities for PRO if

• the probability GETIO(seed) fails over a random uniformly chosen seed is at most Fio−ro,

• the probability that GETOUTPUT(aux) fails over (aux, ·)← GETIO(seed) is at most Fout−ro, and

• if (aux, s)← GETIO(seed) and ŝ← GETOUTPUT(aux) (both do not fail), then ŝ = s.

• Security. Let QP output problem instances aux by calling (aux, s) ← GETIO-ROh; the associated prob-
lem for an adversary A is to guess the correct solution s (when GETIO-ROh does not fail) by playing
SecGameSys(Q,P,ΥP ,A, k, T ), where ΥP is the set of system induced CRP distributions used by PRO. Suppose
that the probability that the adversary wins is at most ϵwin(k, T ) as a function of k (number of PUF queries by A) and
T (run time of A). We say that PRO has κ-bit security for k PUF queries with respect to A with run time poly(t) if, for
T = poly(t),

ϵwin ≤ T2−κ.

■

Theorem 22 (PUF based Random Oracle theorem) GETRESPONSE with GETIO-RO and GETOUTPUT-RO of Al-
gorithms 4 and 5 with pre-challenge vector compression and a hash Hash′ for failure detection define a PUF-based
random oracle PRO:
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• With respect to correctness, PRO has a pair of failure probabilities (Fio−ro,h, Fout−ro,h) defined by

Frel,h = (1− EY1
[phc + (1− pc)

h])2
na
,

Fneu,h ≤ (1− 2qYh
0 qYh

1 · (1− ϵcorbias,h)(1− 2Frel,h)

+2Frel,h)
2nb

,

Fio−ro,h ≤ n · Fneu,h,

Fout−ro,h ≈ ρ(δh).

• With respect to security,

• Suppose that P has challenge space CP = {0, 1}λ with correlation bias at most

ϵcorbias ≤
2−(κ+5.946)

nh2na+1(1 + 2nb)
.

over canonical system induced CRP distributions Y∗1 , where n is the length of the code words in C and
λ = Ω(κ).

• Let Ax be an adversarial model with Ax ⊆ AU .

• Suppose that P is a (k, t, ϵcorpred)-secure PUF for correlations with respect to A that are within the Ax-model
and with respect to system induced CRP distribution Y∗neu,h. Define

τ = 1/2− (h2naϵcorbias + ϵcorpred)

and let B be the distribution that generates statistically independent errors êj ← Ber(τ).

• Assume that QP is csep-separable within the Ax-model for csep = 2κ−5.946.

• Suppose that C is a binary linear code and has a min entropy loss of at most θ due to coset imbalance with
respect to B and subset size 2κ (for θ to be a small constant, this requires the dimension of C to be Ω(κ)).
Suppose that the residual min entropy of C with respect to B is at least 2κ+ θ.

Then, for T = poly(t) we have QP is (k, T, ϵwin)-system secure with respect to all A within the Ax-model for
system induced distribution Y∗neu,h for

ϵwin ≤ T2−κ.

We may replace hash Hashκ in the random oracle model by a strong randomness extractor; this requires
csep = 2κ−10.892 and residual min entropy at least 3κ+ θ+ 10.892 (an additional min entropy loss due to the
leftover hash lemma). ■

Concrete parameter setting. Appendix J discusses Theorem 22 and shows a concrete parameter setting.

10 Conclusion

In literature we have seen how a FE interface on top of a weak PUF uses CRPs for obfuscating a single key; this requires
confidential computing. Computational FE based on the LPN problem still requires confidential computing but can
extract many random bit strings out of a weak PUF. We may also apply FE to a strong PUF in order to generate many
random bit strings; even though this also requires and uses confidential computing, the generated helper data can in
theory be used to learn information about CRPs for training a prediction model – no rigorous security analysis capturing
this attack possibility exists. Our framework allows rigorous security proofs for PUF interfaces. In particular, the PRO
design leads to a random oracle with small failure probability for which the bit security is precisely characterized. PRO
does not rely on any confidential digital computing or digital secrets and the adversary is allowed to train and use a
PUF prediction model with accuracy typically up to 75%. This closes a major gap in PUF literature. Our framework,
lemmas and theorems can be used to analyse the security of other PUF interfaces as well.
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A Cryptographic Hash Function

Definition 23 (Cryptographic Hash Functions) A cryptographic hash function y = Hash(x) with a security param-
eter λ is a cryptographic primitive that takes as input a message x ∈ {0, 1}lx and generates (in poly(lx) time) a
digest y ∈ {0, 1}ly , where lx ≥ ly. A family of cryptographic hash functions with parameters lx and ly is a set of
cryptographic hash functions {Hashs(x)}s∈{0,1}lx , where s plays the role of ’seed.’ The family of cryptographic hash
functions is secure if lx = O(λ) and satisfies the following three properties:

1. Preimage Resistance. Given y = Hashs(x) : x←R {0, 1}lx , s←R {0, 1}lx , the probability AdvHashPre that
there exists a ppt adversary A(1lx , s) who can output x′ ∈ {0, 1}lx : y = Hashs(x

′) is negligible in λ. A
pre-image resistant hash function is also called a one-way function.

2. Second-Preimage Resistance. Given x←R {0, 1}lx and s←R {0, 1}lx , the probability AdvHashSec that there
exists a ppt adversary A(1lx , s) who can output x′ ∈ {0, 1}lx : Hashs(x) = Hashs(x

′), x ̸= x′ is negligible
in λ.

3. Collision Resistance. Given the hash function Hashs() : s ←R {0, 1}lx , the probability AdvHashCol that
there exists a ppt adversary A(1lx , s) who can output x, x′ ∈ {0, 1}lx : Hashs(x) = Hashs(x

′), x ̸= x′ is
negligible in λ.

Based on [Rogaway and Shrimpton, 2004], we know

AdvHashPre ≤ 2AdvHashSec + 2ly−lx

≤ 2AdvHashCol + 2ly−lx .

■

Definition 24 (Hash Function in the Random Oracle Model) We define a random oracle with respect to the uniform
distribution over {0, 1}ly as a function RO(x) that takes as input a message x ∈ {0, 1}lx and outputs a message y that
is uniformly selected from {0, 1}ly with replacement (meaning that if an input x is queried twice then RO returns the
same output value y for both queries) – letR(lx, ly) be the set of all such random oracle functions.

We may define a hash function in the random oracle model as follows:

HashRO(·)(x) = RO(x).

This defines the standard random oracle model and this definition of the hash function satisfies AdvHashCol ≤ T 2/2lx

where T = poly(lx) is the number of queries by adversary A(1lx) to HashRO(·)(x) = RO(x) [Canetti et al., 2004].

If we consider a family of hash functions with parameters lx = O(λ) and ly in the random oracle model, then we have
the property that for all ppt distinguishers D the following distinguishing advantage is negligible in lx:∣∣∣∣ Prs←R{0,1}lx (DHashs(·)(1lx) = 1)

−PrRO←RR(lx,ly)(DRO(·)(1lx) = 1)

∣∣∣∣ .
■

B Using a PRG for Generating Pre-Challenges

From a cryptographic perspective we want to provide a solid provable pre-challenge generation scheme that leads
to uniform Y . A cryptographically secure solution is to use a Pseudo Random Generator (PRG) based on e.g. the
subset iterate construction using a hash from a hash function family that has collision resistant hashes [Boldyreva and
Kumar, 2012]. Based on a seed, PRG(seed) can be efficiently computed and the resulting bit sequence can be split
into a sequence of 2nu pre-challenges. The resulting distribution of challenges is computationally indistinguishable
from a uniform distribution over {0, 1}λ with respect to some security parameter and related advantage. By choosing
appropriate parameters, the resulting distribution over challenges is ϵ-close in statistical distance to the uniform
distribution for some ϵ exponentially small in the security parameter. By using the method in [Yasunaga, 2021] we can
replace the resulting distribution over challenges by the uniform distribution in our security analysis of the system’s
security guarantee.11 We do not detail this construction and in the paper we simply assume that the Hash-based solution
yields a system induced canonical challenge distribution Y close enough to the uniform distribution.

11Notice that the PRG-based solution is more computational intensive compared to the simpler Hash-based solution since
reconstructing Hash(cpre,u) needs reconstruction of the whole PRG sequence up to and including cpre,u.

19



A PREPRINT

C System Induced CRP Distributions

Since we assume that system S can only access the PUF through GETRESPONSE, this means that S can only query PUF
P by challenges drawn from a canonical system induced distribution Y1 with replacement. That is, S can repeatedly
ask the PUF for responses for the same challenge c. And whenever the PUF is queried for a new challenge, then this
challenge must be chosen according to Y1. This induces certain types of distributions over the challenge space: If S
asks for a response of the same challenge c exactly h times and observes for some i ≤ h/2 that h− i have the same
response bit r and the other i response bits are the complement r + 1 (xor), then it is as if the challenge c with response
r is drawn from a distribution over the challenge space CP = {0, 1}λ which causes either i or h − i measurement
errors (each with probability pc). In other words, c← Yh,i with

Pr(c← Yh,i) =(
h
i

)
(ph−ic (1− pc)

i + pic(1− pc)
h−i) · Pr(c← Y1)∑

c′∈{0,1}λ
(
h
i

)
(ph−ic′ (1− pc′)i + pic′(1− pc′)h−i) · Pr(c′ ← Y1)

.

System S cannot a-priori decide to choose c← Yh,i, but after its repeated measurements it will turn out that c← Yh,i
for some h and i that match observations. We may define the response of c to be the majority vote of the observed
responses (or if there is no majority, 0 or 1 is selected as response with probability 1/2). Denote this majority vote by r.
Then this process defines (c, r)← Y∗h,i. System S draws Y∗h,i from the set

ΥP = {Y∗h′,i′}h′≥1,0≤i′≤h′/2

according to some probabilistic process. Our security game SecGameSys gives the adversary the exact knowledge of
which Y∗(j) ∈ ΥP was selected.

D Correlation among CRPs

Definition 5 about correlation among CRPs is sound in that we can prove natural properties given by the next lemmas.
First, rather than conditioning on knowledge of explicit CRP values {(cj , rj)}d−1j=0,̸=h, we may have partial knowledge
about the CRP values in the form of a random variable side which is correlated to {(cj , rj)}d−1j=0,̸=h but independent
from (ch, rh) given {(cj , rj)}d−1j=0,̸=h, and we expect to still have the same ϵcorbias. Second, we may define response
vectors of multiple bits by calling GETRESPONSE multiple times; we also want to know the bias of such response
vectors which we expect to be the product of the biases of each of the response bits separately corrected with ϵcorbias.
Third, we may define a new distribution which post-processes random drawings from distributions in ΥP and want to
characterize ϵcorbias.

Lemma 25 Suppose that PUF P has correlation bias at most ϵcorbias over set of system induced distributions ΥP and
let λ be the security parameter of P . Let (cj , rj) ← Y∗(j) ∈ ΥP be random variables12 and let side be a random
variable such that

(rh, {(cj , rj)}d−1j=0,̸=h)→ {(cj , rj)}
d−1
j=0, ̸=h → side

is a Markov chain with d = poly(λ). Then, in Definition 5 we have for all r,∣∣∣qY(h)
r (side)− q

Y(h)
r

∣∣∣ ≤ ϵcorbias · q
Y(h)
r .

■

Proof of Lemma 25. Let r represent the random variable (·, r)← Y∗(h), that is, Pr(r) =
∑

c∈CP
Pr((c, r)← Y∗(h)).

Let y be the random variable y = {(cj , rj)}d−1j=0,̸=h ← Y∗(0) × . . . × Y∗(h−1) × Y
∗
(h+1) × . . . × Y∗(d−1). We have

12By abuse of notation we mean by Pr((c, r)) the probability that the random variables represented by (c, r) realize the values
(c, r).
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(r, y)→ y → side. By Definition 5 we have Pr(r|y) = Pr(r) · (1± ϵcorbias). We use these properties to derive

Pr(r | side) =
Pr(r, side)

Pr(side)
=

∑
y Pr(r, y, side)∑
y Pr(y, side)

=

∑
y Pr(y)Pr(r|y)Pr(side|r, y)∑

y Pr(y, side)

=

∑
y Pr(y)Pr(r)(1± ϵcorbias)Pr(side|y)∑

y Pr(y, side)

=

∑
y Pr(y, side)Pr(r)(1± ϵcorbias)∑

y Pr(y, side)

= Pr(r)(1± ϵcorbias).

Notice that the lemma follows from q
Y(h)
r (side) = Pr(r|side) and q

Y(h)
r = Pr(r).

The next lemma generalizes Lemma 25 to system induced distributions over vectors of CRPs:

Lemma 26 Suppose that PUF P has correlation bias at most ϵcorbias over set of system induced distributions ΥP and
let λ be the security parameter of P . Consider the product Ȳ∗(i) = Y

∗
(i,0) × . . .×Y∗(i,d−1) with {Y∗(i,j)} ⊆ ΥP and d =

poly(λ) which outputs a vector of challenges c̄i = (ci,0, . . . , ci,d−1) and a vector of responses r̄i = (ri,0, . . . , ri,d−1).
Let side be a random variable such that

(r̄h, {(c̄i, r̄i)}d̂−1i=0,̸=h)→ {(c̄i, r̄i)}
d̂−1
i=0, ̸=h → side

is a Markov chain with d̂ = poly(λ). Then, q
Ȳ∗

(h)

r̄ (side) with r̄ = (r0, . . . , rd−1) satisfies∣∣∣∣∣∣qȲ
∗
(h)

r̄ (side)−
d−1∏
j=0

q
Y∗

(h,j)
rj

∣∣∣∣∣∣ ≤ ((1 + ϵcorbias)
d − 1) ·

d−1∏
j=0

q
Y∗

(h,j)
rj .

■

Proof of Lemma 26. The proof of the lemma follows by generalizing the following argument: For d = 2 we have
r̄i = (r0, r1) and by Lemma 25 we have

q
Y∗

(h,0)×Y
∗
(h,1)

r̄ (side)

=
∑

c0,c1∈CP

Pr((c0, r0)← Y∗(h,0), (c1, r1)← Y
∗
(h,1) | side)

=
∑

c0∈CP

Pr((c0, r0)← Y∗(h,0) | side) ·∑
c1∈CP

Pr((c1, r1)← Y∗(h,1) | (c0, r0), side)

=
∑

c0∈CP

Pr((c0, r0)← Y∗(h,0) | side) · q
Y∗

(h,1)
r1 (1± ϵcorbias)

= q
Y∗

(h,0)
r0 (1± ϵcorbias) · q

Y∗
(h,1)

r1 (1± ϵcorbias).

Generalizing this argument to d > 2 yields

q
Ȳ∗

(h)

r̄ (side) =

d−1∏
j=0

q
Y∗

(h,j)
rj · (1± ϵcorbias)

d.

The lemma follows from
1− (1− ϵcorbias)

d ≤ (1 + ϵcorbias)
d − 1.

Lemma 6 generalizes the previous lemma to system induced distributions over post-processed vectors of CRPs:
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Proof of Lemma 6. We may characterize Pr(r̂ ← Ŷ∗(h)) as a distribution

Pr(r̂ ← G(rh,0, . . . , rh,d−1, x), {rh,j ← Y∗(h,j)}
d−1
j=0 , x← X ),

where G is a polynomial time algorithm that represents distribution Ŷ∗(h). In a way G defines a set of tuples
(rh,0, . . . , rh,d−1, x) that lead to outputting r̂ (G is not probabilistic, it uses randomness x in a deterministic way).
Let G(x, r̂) be the set of response bit vectors (rh,0, . . . , rh,d−1) for which G together with input x outputs r̂. Let
px = Pr(x← X ). Then, by using the statistical independence of x and by using the notation of the previous Lemma
26,

q
Ŷ∗

(h)

r̂ (side)

= Pr(r̂ ← Ŷ∗(h) | side)

= Pr

(
(rh,0, . . . , rh,d−1) ∈ G(x, r̂),
{rh,j ← Y∗(h,j)}

d−1
j=0 , x← X

| side
)

=
∑
x

px · Pr
(

(rh,0, . . . , rh,d−1) ∈ G(x, r̂),
{rh,j ← Y∗(h,j)}

d−1
j=0

| x,
side

)
=

∑
x

px · Pr
(

r̄h ∈ G(x, r̂),
r̄h ← Ȳ∗(h)

| x,
side

)
=

∑
x

px ·
∑

r̄∈G(x,r̂)

Pr
(
r̄ ← Ȳ∗(h) | side

)
=

∑
x

px ·
∑

r̄∈G(x,r̂)

q
Ȳ∗

(h)

r̄ (side).

This derivation holds for side and also for the special case where side is empty. By using Lemma 26, this shows that∣∣∣∣qŶ∗
(h)

r̂ (side)− q
Ŷ∗

(h)

r̂

∣∣∣∣
≤

∑
x

px ·
∑

r̄∈G(x,r̂)

|qȲ
∗
(h)

r̄ (side)− q
Ȳ∗

(h)

r̄ |

≤ ((1 + ϵcorbias)
d − 1) ·

∑
x

px ·
∑

r̄∈G(x,r̂)

q
Ȳ∗

(h)

r̄

= ((1 + ϵcorbias)
d − 1) · qŶ

∗
(h)

r̂ .

E Bias Von Neumann Trick

Suppose that PUF P has correlation bias at most

ϵcorbias,h = h2naϵcorbias +O((h2naϵcorbias)
2)

over distribution Y∗h, see Lemma 8. Then, according to Definition 5, probability (4) is equal to qYh
r+1 · (1± ϵcorbias,h).

The probability that r is generated in the first pre-challenge response pair is equal to∑
c∈CP

Pr((c, r)← Y∗h) = qYh
r .

We conclude that the probability of an iteration producing the final output r is equal to

qYh
r qYh

r+1 · (1± ϵcorbias,h). (7)

This is the same for r = 0 and r = 1. The probability that an iteration is not yet producing the final output is therefore
equal to

1− 2qYh
0 qYh

1 (1± ϵcorbias,h).

This teaches that it takes the while loop at most (1− 2qYh
0 qYh

1 (1 + ϵcorbias,h))
−1 iterations in expectation to finish.
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From (7) we infer ∑
c∈CP

Pr((c, r)← Y∗neu,h)

=
qYh
r qYh

r+1(1± ϵcorbias,h)

qYh
r qYh

r+1(1± ϵcorbias,h) + qYh
r+1q

Yh
r (1± ϵcorbias,h)

=
1

2

1± ϵcorbias,h
1± ϵcorbias,h

=
1

2
· (1± 2ϵcorbias,h/(1− ϵcorbias,h)).

This shows how the Von Neumann trick reduces the bias qYh down to only ϵcorbias,h/(1− ϵcorbias,h) above 1/2. This
trick helps the legitimate user/system to generate close to unbiased bits.

Let Y∗neu,h indicate the distribution of a single CRP outputted by NEUMANN-GETRELIABLECRPh. Our derivation
above proves

q
Y∗

neu,h
r ≤ 1

2
+

ϵcorbias,h
1− ϵcorbias,h

=
1

2
+ h2naϵcorbias +O((h2naϵcorbias)

2).

Now assume that NEUMANN-GETRELIABLECRPh has at most 2nb loop iterations where in each iteration
GETRELIABLECRPh is called twice. Applying Lemma 6 (see also the resemblance to Lemma 8) teaches us that the
correlation bias over distribution Y∗neu,h is at most

ϵcorbiasneu,h = (1 + ϵcorbias,h)
2·2nb − 1

= 2nb+1ϵcorbias,h +O((2nb+1ϵcorbias,h)
2)

= h2na+nb+1ϵcorbias +O((h2na+nb+1ϵcorbias)
2)

Let c = (c0, . . . , cd−1) and r = (r0, . . . , rd−1) be vectors of challenges and responses generated by NEUMANN-
GETRELIABLECRPh. Let (Y∗neu,h)×d denote the distribution that generates such challenge response vectors. By the
triangle inequality, ∣∣∣∣q(Y∗

neu,h)
×d

r − 2−d
∣∣∣∣

≤

∣∣∣∣∣∣q(Y
∗
neu,h)

×d

r −
d−1∏
j=0

q
Y∗

neu
rj

∣∣∣∣∣∣+
∣∣∣∣∣∣
d−1∏
j=0

q
Y∗

neu
rj − 2−d

∣∣∣∣∣∣ .
By Lemma 26, ∣∣∣∣∣∣q(Y

∗
neu,h)

×d

r −
d−1∏
j=0

q
Y∗

neu
rj

∣∣∣∣∣∣
≤ ((1 + ϵcorbiasneu,h)

d − 1) ·
d−1∏
j=0

q
Y∗

neu
rj

≤ ((1 + ϵcorbiasneu,h)
d − 1) · (1

2
+

ϵcorbias,h
1− ϵcorbias,h

)d

= (dϵcorbiasneu,h +O((dϵcorbiasneu,h)
2)) ·

2−d(1 +O(dϵcorbias,h))

= (dh2na+nb+1ϵcorbias +O((dh2na+nb+1ϵcorbias)
2)) ·

2−d(1 +O(dh2naϵcorbias))

≤ dh2na+nb+1−dϵcorbias +O((dh2na+nb+1ϵcorbias)
22−d).
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Our previous analysis proves ∣∣∣∣∣∣
d−1∏
j=0

q
Y∗

neu
rj − 2−d

∣∣∣∣∣∣
≤ (

1

2
+

ϵcorbias,h
1− ϵcorbias,h

)d − 2−d

= ((1 + 2
ϵcorbias,h

1− ϵcorbias,h
)d − 1) · 2−d

= 2dϵcorbias,h2
−d +O((2dϵcorbias,h)

22−d)

= dh2na+1−dϵcorbias +O((dh2na+1ϵcorbias)
22−d).

Combining derivations proves Lemma 9.

F The Ber Transformation Lemma

By using the same proof technique that shows Lemma 25, we can prove the next lemma.

Lemma 27 Let P be (k, t, ϵcorpred)-secure for correlations. Then

Pr (r′h = rh | side)− qY
∗
(h) ≤ ϵcorpred

for any random variable side such that

{r′j + rj}d−1j=0 → {r
′
j + rj}d−1j=0,̸=h → side

is a Markov chain. ■

This lemma shows that the advantage holds for all side information side that correlates with {ej}d−1j=1,̸=h but is
statistically independent of eh given {ej}d−1j=1,̸=h, where ej = rj + r′j for j ̸= h are the prediction/guess errors (addition
here is XOR): The adversary can select its own challenges and request corresponding measurements of responses in
step 1 of the game in order to train a prediction model. A-priori the adversary cannot indicate a predicate (in the form
of side information) of its own choice that should be satisfied by the measured responses in step 2 and corresponding
prediction errors in step 3. So, one cannot merge in step 1 the conditional knowledge of such a predicate (side).

The security game states that guess r′h for challenge ch cannot be improved by adversary A beyond advantage ϵcorpred
even if a combination of challenges (excluding ch) is known that corresponds to a joint statistical distribution of
responses that satisfies a certain specified relation (or predicate), coded by side, with respect to guesses/predictions of
these responses by A.

We are ready to define a special oracle O with knowledge of all errors ej = r′j + rj , 0 ≤ j ≤ d− 1, and who uses this
knowledge to correct errors ej = 1 as follows: Suppose ej for 0 ≤ j ≤ h− 1 have already been corrected to ej + corj
using the next randomized process implemented by O. The oracle considers

sideh = {ej + corj}h−1j=0

(sideh is empty for h = 0) and computes

τh = qY
∗
(h) + ϵcorpred ≤ 1

and13

αh = Pr(eh = 0 | sideh).
O uses τh and αh to define

bh = max{0, (τh − αh)/(1− αh)} ∈ [0, 1].

Oracle O computes

• corh = 0 if eh = 0, or
13Here, we mean random variable eh takes on value 0 while in sideh we mean that the random variable corresponding to ej +corj

take on the values ej + corj .
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• corh ← Ber(bh) if eh = 1, that is,

Pr(corh = 1 | eh = 1) = bh.

The corrected error vector {ej + corj}d−1j=0 has the property that only errors eh = 1 are corrected (with probability bh)
and no new errors that did not exist before are introduced.

Notice that this correction procedure has the property (eh, sideh)→ corh. In particular, (eh−1, sideh−1)→ corh−1
for h ≥ 1. Hence, for h ≥ 1 we have the Markov chain

sideh = (eh−1 + corh−1, sideh−1)

← (eh−1, corh−1, sideh−1)← (eh−1, sideh−1)

and, by using induction in h, we have

sideh ← (eh−1, sideh−1)

← (eh−1, eh−2, sideh−2)← . . .← {ej}h−1j=0 .

This shows that Lemma 27 applies and we conclude αh ≤ τh, hence,

bh = (τh − αh)/(1− αh).

Now we are ready to derive

Pr({ej + corj}d−1j=0)

=

d−1∏
h=0

Pr(eh + corh | {ej + corj}h−1j=0 )

=

d−1∏
h=0

Pr(eh + corh | sideh)

with

Pr(eh + corh = 0 | sideh) =
Pr(eh = 0 | sideh)Pr(eh + corh = 0 | sideh, eh = 0)

+Pr(eh = 1 | sideh)Pr(eh + corh = 0 | sideh, eh = 1),

where

Pr(eh = 0 | sideh) = αh,

Pr(eh = 1 | sideh) = 1− αh,

Pr(eh + corh = 0 | sideh, eh = 0)

= Pr(corh = 0 | sideh, eh = 0)

= Pr(corh = 0 | eh = 0) = 1, and

Pr(eh + corh = 0 | sideh, eh = 1)

= Pr(corh = 1 | sideh, eh = 1)

= Pr(corh = 1 | eh = 1) = bh.

Combining all equations yields

Pr(eh + corh = 0 | sideh) = αh + (1− αh)bh = τh

and, for the partially corrected errors êj = ej + corj ,

Pr({êj}d−1j=0) =

d−1∏
j=0

τ
1−êj
j (1− τj)

êj .

This shows that {êj}d−1j=0 cannot be distinguished from a distribution where êj ← Ber(1−τj) and the êj are statistically
independent from one another. This proves the Ber transformation Lemma 12.
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G PUF Separation Theorem

We now prove Theorem 19:

Proof. Suppose that QP is (k, T, ϵwin)-system secure with respect to all A within the Ax-model and set of distributions
ΥP . We first apply Definition 14 which states that

ϵwin ≤ csep · ϵwinsep (8)

where ϵwinsep is an upper bound on the probability of winning SecGameSysSep(Q,P,ΥP ,A, k, T ) over all A =
(A0,A1) within the Ax-model.

In separation game SecGameSysSep adversary A0 disregards the knowledge of the problem instance g ← QP .
This means that A0 plays the steps of SecGamePUFCor(P,ΥP ,A0, k, T ), see Definition 10. The goal of A0 is to
provide estimates {r′j} which are most useful for A1.

In separation game SecGameSysSep adversary A1 disregards knowledge D and solves problem instance g as a
function of {rj} with knowledge of estimates {r′j}. This is equivalent to solving the extended problem gext from QR,
see Definition 15. The theorem states thatQP has an error based equivalent QE up to factor eequiv, where, see Definition
15, E is the distribution that generates error vector {ej = r′j + rj}. According to Definition 17, if QE is λ′-bit secure,
then QR is (λ′ − eequiv)-bit secure. That is, adversary A1 wins SecGameSysSep with probability at most

ϵwinsep ≤ T2−(λ
′−eequiv). (9)

See Definition 18, since QE is assumed to become simpler in the presence of an error reducing oracle, A0 will help A1

in achieving the largest upper bound on the winning probability in (9) by minimizing the number of prediction errors.
We conclude that A0 plays SecGamePUFCor where A0’s goal is to maximize AdvPUFCorA0

.

The theorem states that P is a (k, t, ϵcorpred)-secure PUF for correlations with respect to A0 (which is within the
Ax-model) and with respect to a set of CRP distributions ΥP . (Notice that T = poly(t) and indeed ϵcorpred applies to
A0 which runs at most T accumulative computation steps.) Now we apply the Ber transformation lemma (Lemma
12): There exists an error reducing oracle O, see Definition 18, with the additional property that O ◦ E outputs an
error vector {êj} where each entry êj cannot be distinguished from a Bernoulli distribution Ber(1− (qY

∗
(j) + ϵcorpred))

with all êj statistically independent. This in turn implies the existence of an error reducing oracle O which reduces
errors even more such that E ◦ O outputs an error vector {êj} where each entry êj cannot be distinguished from a
Bernoulli distribution Ber(τ) (where τ is defined in the theorem statement) and all êj statistically independent. We
have QO◦E = QB.

The theorem assumes that QB is λ-bit secure, see Definition 16. Since QE is assumed to become simpler in the presence
of an error reducing oracle, if QO◦E = QB is λ-bit secure, then QE is λ-bit secure, see Definition 18. This means that
we can substitute λ′ = λ in (9). Together with (8), eequiv = O(log λ), and csep = 2αλ for some α < 1, the theorem
follows.

Interpretation. The list of assumptions made by the separation theorem starts by assuming an adversarial model that
is at least restricted by AU meaning that the PUF must be accessed through the GETRESPONSE functionality. There
may be further restrictions for the adversary. We further assume that P is a secure PUF for correlations; see our earlier
discussion, an adversary who uses ML for constructing a response prediction model for the interpose PUF generally
will see prediction errors with probability τ ≤ 25%. This covers the best known methods for creating a prediction
model. The theorem shows how such a large τ can still lead to a secure scheme.

For the scheme we assume an underlying hardness problem Q that uses responses as input. In practice, the legitimate
user re-measures responses and is able to perform some ‘decoding’ operation which mathematically means that the
re-measured responses can be xorred with the responses in the instance of the hardness problem. This will naturally
transform the problem into an equivalent one that only depends on the measurement errors. The adversary can do the
same for its predicted responses and his problem will become equivalent to one that only depends on prediction errors
(predicted responses can be discarded if the actual responses are nearly uniform, e.g., due to application of the Von
Neumann trick). Section 9 demonstrates our main example. Generally, the smaller the expected number of errors, the
more efficient algorithms for finding solutions become. From this perspective, it is natural to assume that the equivalent
problem becomes simpler in the presence of an error reducing oracle.

The assumption that states that QP is separable simply stems from the observation that known attacks and their analysis
in literature always perform or assume this two step attack approach where first PUF responses are predicted (separate
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from the actual problem instance), after which the problem instance is solved using the predicted responses. By only
requiring a large csep = 2αλ this assumption is likely satisfied.

All of the above reduces the analysis of the system’s security to a mathematical problem: By proving that QB is hard,
we can use the theorem to show that QP is system secure. Here, we generally assume T = poly(λ).

Security protocols that use PUFs. SecGameSys models a general system S whose security guarantee reduces to the
hardness of some problem statement QP . Here, S does not need to be limited to the non-interactive setting. S can be
an interactive protocol between colluding or non-colluding participants that each own or transmit PUFs from one party
to another. When using multiple PUFs, we need to generalize oracle access to multiple PUFs in SecGameSys. When
modeling multiple participants in a protocol, S replays protocol executions. Typically, different hardness problems
QP model the different honest-but-curious or malicious parties. And oracle access to an underlying PUF P by such a
hardness problem may be further constrained by the protocol implemented by S . This would imply that in our game(s)
adversary AU is further restricted by assuming a larger Trusted Computing Base (TCB) for the PUF interface; the TCB
implements some extended immutable interface (with or without including confidential processing) which restricts the
adversary in its access to CRPs (ĉi, r̂i) (in step 1 of SecGameSys).

H Adversarial PUF Models

We have already provided a detailed discussion on the AU -model (representing adversaries who cannot circumvent
GETRESPONSE for accessing PUF P). In this section we discuss other more restricted adversarial models, explain the
role of k, and compare our definition with that of [Jin et al., 2022].

Adversary AN . This adversary has no access to the PUF at all and cannot learn any CRPs in step 1 of
SecGamePUFCor or SecGameSys; we have k = 0. In particular, this means that its best strategy is predicting
response bits according to the bias of the PUF, that is, ϵcorpred = 0.

For example, in the LPN-PUF [Herder et al., 2016, Jin et al., 2017], a PUF with only one CRP14 is used and the
corresponding response is assumed to remain private with respect to an adversary. The whole LPN-PUF interface is
assumed to be in a TCB while powered on. In powered off mode, the LPN-PUF interface circuitry can be observed and
this allows the adversary to learn fused-in keys. The LPN-PUF solves this problem by not depending on fused-in keys.

A second example is a simple masked memory which essentially obfuscates one single key key by using hardware
circuitry that has (1) a pre-challenge fused in with which a vector r of response bits corresponding to a sequence of
different challenges can be queried from a PUF, and (2) has fused in the vector key+ r from which key can be extracted
given15 r. In this setting the TCB disallows the adversary to observe r when the key masking interface is powered
on. When powered off, the adversary can read the fused in challenge and key + r. This is the same model as for the
LPN-PUF (with the difference that the LPN-PUF can generate many input output pairs).

Adversary ANR. If we disallow repeated measurements in step 1 of SecGamePUFCor or SecGameSys, then
we have adversary ANR ⊆ AU . Here, we assume that whenever the adversary is present, it cannot freely query PUF
P , it can only query or observe queries of CRPs that are new to the adversary; they have distinct challenges, hence,
challenges and CRPs are not repeated in the adversary’s observation.

The imposed restriction on the adversary may be due to a system implementation which has a secure initialization phase
where we assume no presence of an adversary at all, and a normal mode of operation which never repeats queries to the
PUF and which resulting CRPs can be observed by the adversary. Here, we make the adversary weaker, rather than
being able to call GETRESPONSE, only the digital computations (including CRPs) of past normal mode operation can
be observed by the adversary. This restriction can be enforced by hardware isolation mechanisms for access control16

where for example only the system ‘enclave’ is allowed access to GETRESPONSE.

Such a system may execute a series of ‘sessions’ and the considered adversary may observe all but one session. The
security guarantee is about the unobserved session for which we want to prove that the adversary cannot impersonate the
session or extract sensitive information from the session. All the other observed sessions give the adversary a number of
CRPs with non-repeating challenges (in step 1 of SecGamePUFCor or SecGameSys). We find ourselves in the
ANR model. To guarantee this model, normal operation of the system may include a mechanism for checking whether

14The used PUF is a ring oscillator PUF which can be used to measure the same response again and again.
15Circuitry for correcting measurement noise may also be included.
16Not for implementing confidential computing.
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challenges have not yet been queried in normal operation before. This can be done by using a Merkle tree very much
like the logical erasable PUF interface of [Jin et al., 2022].

The weaker ANR can only learn challenge response pairs but cannot learn challenge reliability pairs for which a
response for a challenge needs to be repeatedly measured. This means that the adversary can only use classical machine
learning to train a prediction model for the PUF. This reduces ϵcorpred. In fact silicon PUF designs, such as the XOR
Arbiter PUF, that may have ϵcorpred closer to 40-50% (i.e., the adversary has very accurate predictions) for advanced
(reliability based) machine learning, can have a much lower ϵcorpred around 25% for classical machine learning. We
conclude that the XOR Arbiter PUF can possibly be used in the ANR model, while we may consider it broken in the
AU model.

If we are allowed to use the XOR Aribiter PUF, then we prefer this design over the iPUF since it has smaller area size
and is more reliable, but more important we prefer the XOR Arbiter PUF for the following reason: AU corresponds to
an adversary who can use CRPs for repeated challenges. This means that advanced ML attacks based on challenge-
reliability pairs can be utilized. In this context, the current state-of-the-art strong silicon PUF design is the Interpose
PUF (iPUF)[Nguyen et al., 2019]. The iPUF is a combination of two XOR Arbiter PUFs that are connected through
a kind of forwarding mechanism (where the response bit of the ‘top’ XOR Arbiter PUF is inserted in the middle of
the challenge for the ‘lower’ XOR Arbiter PUF). The iPUF has seen recent ML based attacks [Tobisch et al., 2021,
Wisiol et al., 2020, 2022] and calls the existence of a strong PUF into question. Even though the published attacks still
seem to leave concrete parameter settings for which the iPUF attacks have not yet been demonstrated, it remains an
open problem for how long such settings remain secure (and parameter settings cannot be chosen too ‘large’ as this
hurts the reliability of the iPUF). It may very well be, that the iPUF design itself will need to be adapted by replacing
Arbiter PUFs with Feed Forward Arbiter PUFs together with an extended new ML based security analysis. For this
reason, rather than assuming the security of the iPUF will not be broken, i.e., AdvPUFCorAR ≤ ϵcorpred ≈ 25% for the iPUF
in Definition 10, for all practical parameter settings, we assume the ANR setting where we can rely on the XOR Arbiter
PUF. The security under classical machine learning attacks of the XOR Arbiter PUF has been well studied.

Notice that in a XOR Arbiter PUF design with λ = 64 challenge bits per Arbiter PUF and say x = 10 Arbiter PUFs
in total, we can use a pre-challenge as input to a hash function or PRG that outputs the concatenation of x different
challenges for each of the x Arbiter PUFs. This means that the Hamming distance argument for ϵcorbias in Section 3 is
over xλ = 640 bits and we expect ϵcorbias to be exponentially small in xλ even though we only use challenges of size
λ for the individual Arbiter PUFs. We notice that the XOR Arbiter PUF and iPUF are defined by copying the same
challenge to the different component Arbiter PUFs. We strongly suggest to use a hash function or PRG as described in
Section 3 and Appendix B in order to compute different challenges for each of the Arbiter PUFs as this will allow us to
argue a ‘negligibly’ small ϵcorbias for practical parameter settings17.

As a final remark, suppose that only GETRESPONSE is in the TCB together with a Merkle tree interface used
for checking that challenges have not yet been queried in normal operation before. The secure initialization phase
GETRELIABLECRPh produces reliable CRPs that will be consumed in normal operation in the presence of an adversary,
who, if h > 1 and if GETRELIABLECRPh is implemented using a seed which is published by the system (we describe
such an example in Section 9, see (12)), can extract information about repeated response measurements (the adversary
can reconstruct challenges that were found not to produce reliable responses as well as observe the used reliable
challenge; this allows a form of advanced ML that uses reliability information). Therefore, in the ANR model the
initialization phase can only use GETRELIABLECRPh if h = 1.

Adversary AR−x. In the AU -model adversaries can repeat measurements of CRPs as they wish. AR−x defines a slight
restriction where the number of repeated measurements is controlled/restricted to x. This can be implemented by using
a Merkle tree very much like the programmable access controlled PUF interface of [Jin et al., 2022].

For example, we may consider a system with initialization phase and normal operation as discussed above where we
now allow the adversary to also be sometimes present to and observe the digital computations done in the initialization
phase (we still want to prove a security guarantee for normal system operation based on CRPs generated during the
initialization phase when no adversary was present). If the initialization phase is such that CRPs are only measured
at most once during initialization, then in total the adversary may obtain two measurements for each challenge: One
coming from the initialization phase and the other coming from normal operation. In this example we have x = 2. This
provides only limited reliability information to the adversary and it is an open problem whether ϵcorpred remains around
25% (or slightly higher) for the XOR Arbiter PUF.

If we use GETRELIABLECRPh in initialization mode and if we do not assume its computations are confidential,
then x = h+ 1 reflecting h measurements in GETRELIABLECRPh during the initialization phase and one repeated

17This will also likely slow down or make classical and advanced ML attacks on the XOR Arbiter PUF or iPUF more difficult.
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measurement using GETRESPONSE during normal operation. (If in normal mode a measurement is repeated as in
GETRELIABLECRPh′ in order to use the majority vote which is more reliable, then x = h+ h′.)

Role of k. Our definitions explicitly include parameter k in the first steps of our security games. It indicates the
maximum number of responses an adversary is allowed to measure. Upper bound k is of crucial importance as this
indicates the amount of CRPs an adversary can use to build a prediction model.

For example, when using ML to train a prediction model for a silicon PUF, then the amount of training data indicates
the accuracy of the resulting prediction model. That is, the more training data (the larger k), the higher the prediction
advantage AdvPUFCorA and the higher ϵcorpred as a result. Parameter k indicates how often the adversary can have access
to the PUF. See [Nguyen et al., 2019, Wisiol et al., 2022, Tobisch and Becker, 2015, Rührmair et al., 2010b] for studies
on the trade-off between the amount of training data and prediction accuracy.

The most effective implemented attack18 on the iPUF turns out to be a classical ML attack [Wisiol et al., 2022] (by
combining the multilayer perceptron attack [Mursi et al., 2019] with the splitting attack [Wisiol et al., 2020]). This is in
line with the original iPUF security analysis where it was shown that state-of-the-art reliability based attacks at that
moment cannot be applied, and therefore the security of the iPUF is reduced to the best known classical ML attack
on the XOR Arbiter PUF. In [Wisiol et al., 2022] it is shown that the 9,10,11-XOR Arbiter PUFs can be learned with
98% accuracy by using 45M, 119M, and 325M CRPs respectively. This leads to breaking the (11,11)-iPUF using
2 · 325 = 750M CRPs. Extrapolating shows that to accurately learn a (20,20)-iPUF one needs roughly 1 week CRP
data collection at 1MHz CRP frequency for a total of about 605B CRPs. If the legitimate user plans to query the iPUF
at most twice (for e.g. initialization and normal operation) for 150B CRPs (the maximum number expected to be used
in a 10-year time frame), then additional access control can be added in order to limit the querying of the iPUF to 300B
CRPs (after which it locks). This means that the attacker can only collect a smaller portion of the needed 605B CRPs
for 98% accuracy, hence, the prediction accuracy will be significantly lower. This fits our framework.

However, due to the many component Arbiter PUFs, the (20,20)-iPUF will suffer overall reliability. Formula (26)
in [Nguyen et al., 2019] shows that the measurement noise rate (20,20)-iPUF is equal to β10 + β10

2 (1 − 2β10) =
3
2β10−β2

10 where β10 = (1− (1− 2β)10)/2 with β the noise rate of a single Arbiter PUF. If we want to achieve a 10%
noise rate for the (20,20)-iPUF, then we need to be able to implement very reliable Arbiter PUFs with measurement
noise rate β = 0.75%. This is an engineering problem that needs to be solved unless a new follow-up PUF design
avoids the XOR operation (which amplifies measurement noise) and as a result is much more reliable by design.

As another example, when using a so-called weak PUF with at most (typically) one CRP, we assume the adversary
cannot access the PUF at all and we are in the AN -model. For a weak PUF that has a ‘polynomial’ number of CRPs
which can possibly be read out one-by-one, we may explicitly mention the number k of CRPs an adversary is able to
query. In practice this may be established by introducing a throttling time added to each PUF measurement in normal
operation; assuming an adversary can at most have access to the PUF for a small amount of time implies a small enough
k. Another option is to implement a logical erasable PUF like interface that keeps track in a Merkle tree of how many
times a challenge has been queried.

Since, for weak PUFs, we are in the AN -model or have restricted access by the adversary to a small k (lots smaller
than the number of CRPs of the weak PUF), a crypto protocol or primitive that relies on the weak PUF must make use
of the fact that the adversary can gather such little knowledge about CRPs that no accurate prediction model can be
constructed at all19. That is, we assume ϵcorpred is much closer to a couple percent points (rather than 25% for Arbiter
PUF based designs where machine learning can be used to train on a large number of CRPs).

Comparison to [Jin et al., 2022]. The security definition of [Jin et al., 2022] merges steps 1 and 2 of
SecGamePUFCor in multiple rounds. In our definition this is equivalent to having d rounds, where each round i
implements part of step 1 for an adaptive selection of ki challenges and at the end generates (ci, ri)← Y∗(i) of step 2
and gives a (ci,Y∗(i)) to the adversary. Each step 1 of a round is restricted in that the adversary may not query P(ci)

18The reliability based attack presented in [Tobisch et al., 2021] needs careful iterative tuning of parameters and objectives in
order to be able to converge to a component Arbiter PUF that has low reliability information leakage at the output (of the iPUF), in
particular, the Arbiter PUFs in the upper layer of the iPUF which determine the interpose bit value. The iPUF design relies on a
reliability attack to almost never converge to an Arbiter PUF that has low reliability information leakage compared with other Arbiter
PUFs (in the lower layer of the iPUF). [Tobisch et al., 2021] shows the potential of breaking the iPUF with a reliability based attack.
As it seems to require a lot of manual parameter tuning, it depends on some luck in having a successful attack. It is also unclear how
the attack scales to larger parameters e.g. the (11,11)-iPUF discussed here. The feasibility of this has not yet been demonstrated.

19A weak PUF which can (partially) reconfigure its polynomial sized CRP space at regular intervals can possibly allow a larger k
like a strong PUF.
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for any i. At the end in step 3 the adversary picks one of the ch and predicts the corresponding response. In our AU

model we may combine all the rounds together into a single step 1 and single step 2 as is done in our definition: Due to
the statistically independent selection of new challenges by AU in step 1 of each round, AU cannot use the received
information (challenges ci) in step 2 of each round for improving an adaptive strategy for querying the PUF in step 1
for subsequent rounds. Since the adversary is in this way limited in its adaptive strategy, the steps of each round may as
well be reordered by bundling all steps 1 into one step 1 as in SecGamePUFCor and bundling all steps 2 into one
step 2. This gives the exact formulation of SecGamePUF. That is, the definition in [Jin et al., 2022] does explicitly
talk about information gained from physical side channels, which we do not explicitly cover. A rigorous modeling of
how challenge response pairs (cj , rj) are distributed according to some Y∗(j) due to how a system interfaces with the
PUF lacks in [Jin et al., 2022]. Also correlation among CRPs is not explicitly considered. The definition in [Jin et al.,
2022] corresponds to using empty side information side in Lemma 27.

I Secure Sketches and Suitable Codes

By adding an appropriate interface between a PUF and the system using the PUF, PUFs can be used by the system to
extract random secret bit strings. The interface is designed to correct measurement errors and at the same time amplify
the privacy of the corrected responses with respect to adversaries. The main tool for accomplishing this goal is called a
secure sketch [Dodis et al., 2004]:

Definition 28 A sketch is a pair (SSGen,SSRep) of efficient ppt algorithms. For x ← X , p ← SSGen(x) computes
helper data p ∈ P . We assume x ∈ {0, 1}n. Let x̃ be a noisy measurement of x, i.e., x̃ = x + e for some error
vector e←M. On input x̃ and p, x̂← SSRep(x̃, p) computes an error corrected version of x. We have the following
properties:

• Correctness: If the Hamming weight of error vector e is wt(e) ≤ t, then x̂ = x is correctly reconstructed. If
the Hamming weight of e is wt(e) > t, no guarantee can be made, hence, the failure probability is at most
Pr(wt(e) > t) where e←M andM is a probability distribution representing measurement noise.

• Security: The sketch is L-secure if the min-entropy loss

H∞(x)− H̃∞(x | p) ≤ L.

Here,
H∞(x) = − log2 max

x
Pr(x← X ), and

H̃∞(x | p) = − log2 Ep[max
x

Pr(x | p)], (10)

where x and p are jointly distributed according to x ← X and p ← SSGen(x). H̃∞(x | p) is called the
residual min entropy.

■

A secure sketch can be used to construct a fuzzy extractor which outputs a string that is nearly uniform and can therefore
be used as a secret key. The main idea is to use a so-called (strong) randomness extractor to output a nearly uniform
string on input x from the secure sketch. Universal hash functions lead to good randomness extractors but add a
significant min entropy loss (due to the left-over hash lemma). By using a cryptographic hash function in the random
oracle, which we do in this paper (for simplicity), the added min entropy loss is zero. The hash function reduces the
reconstructed x̂ down to the number of bits given by (10).

The code-offset secure sketch [Dodis et al., 2004] uses a binary code C with decoding algorithm Dec (e.g., a BCH code,
or the more recent Polar code achieve small decoding failure probability in practice [Arikan and Telatar, 2009]). It
defines

• p← SSGen(x) as p = x+ w for a uniformly random code word w ∈ C, and
• x̂← SSRep(x̃, p) as x̂ = p+Dec(x̃+ p). Here, x̃+ p = x̃+ x+w = e+w and decoding e+w returns w

if wt(e) is small enough. If w is returned, then x̂ = p+ w = x.

The failure probability of the sketch is equal to the decoding failure probability of the decoding algorithm for code C
under noise e←M.

The code-offset secure sketch construction can be combined with a PUF if we require a code C with the properties
listed in Definition 20. These properties will allow us to prove a stronger security guarantee than what is offered by a
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secure sketch. A secure sketch only assumes that the adversary knows the helper data p while in our case the adversary
can also predict responses that were used by the sketch in the first place.

To remind the reader,

1. We define the decoding failure probability of C with respect to measurement noiseM as

ρ = Pr(w ̸= Dec(w + e), w ←R C, e←M).

2. We define the residual min entropy of C with respect to B as

κ = H̃∞(e | p) = − log2 Ep[max
e

Pr(e | p)],

where e and p are jointly distributed according to e← B, p = w + e with w ←R C.

3. We define the min entropy loss of C due to coset imbalance with respect to B and subset size T as θ =
log2(1 + θ′) for

θ′ = max
l∈{0,1}n

max
T ⊆C+l,|T |=T

Pr(e ∈ T )
Pr(e ∈ C + l)− Pr(e ∈ T )

,

where e← B; θ is a function of subset size T .

For the PUF based Random Oracle construction, we assume that the decoding failure probability ρ of C with respect to
measurement noiseM can be sufficiently accurately simulated (for practical purposes) by modelingM as a Ber(δh)
Bernoulli distribution with δh defined in (3) that generates error vectors e ← Ber(δh) where each error entry has
probability δh to be equal to 1. This makes the decoding failure probability ρ a function of δh.

Also, (in our security analysis) B will be defined as a Ber(τ) Bernoulli distribution that generates error vectors e← B
where each error entry has probability τ > δ to be equal to 1. Hence, the residual min entropy κ is a function of τ .
Below we prove a lower bound on the residual min entropy for a binary linear code and distribution Ber(τ).

Lower bound on the residual min entropy. Consider a [n, k] binary linear code C. For each x ∈ {0, 1}n, the set
x+ C defines a coset of C. Let l ∈ x+ C be of minimal weight; we call this the coset leader. Let L be the set of all
coset leaders. Since C is linear, we can write C + L = {0, 1}n. Hence, we can write p = c+ l for c ∈ C and l ∈ L in
a unique way. For T ⊆ {0, 1}n with cardinality |T | = T , this allows us to derive

Ep[max
e

Pr(e | p, e ̸∈ T )]

=
∑
p

Pr(p)[max
e ̸∈T

Pr(e, p)

Pr(p, e ̸∈ T )
]

≤
∑
p

Pr(p)

Pr(p, e ̸∈ T )
[max

e
Pr(e, p)]

=
∑
c∈C

∑
l∈L

Pr(p = c+ l)

Pr(p = c+ l, e ̸∈ T )
[max

e
Pr(e, p = c+ l)]

=
∑
c∈C

∑
l∈L

Pr(p = c+ l)

Pr(p = c+ l, e ̸∈ T )
Pr(e = l, p = c+ l)

=
∑
c∈C

∑
l∈L

Pr(e ∈ C + l)/2k

Pr(e ∈ C + l, e ̸∈ T )/2k
Pr(e = l, c)

=
∑
l∈L

Pr(e ∈ C + l)

Pr(e ∈ C + l, e ̸∈ T )
Pr(e = l).
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By assuming a min entropy loss of θ = log2(1 + θ′) of C due to coset imbalance with respect to Ber(τ) and subset
size T , we have

max
T

Pr(e ∈ C + l)

Pr(e ∈ C + l, e ̸∈ T )

≤ max
T ⊆C+l

Pr(e ∈ C + l)

Pr(e ∈ C + l, e ̸∈ T )

= max
T ⊆C+l

Pr(e ∈ C + l)

Pr(e ∈ C + l)− Pr(e ∈ T )

= 1 + max
T ⊆C+l

Pr(e ∈ T )
Pr(e ∈ C + l)− Pr(e ∈ T )

≤ 1 + θ′ = 2θ.

This allows us to continue the previous derivation and obtain

Ep[max
e

Pr(e | p, e ̸∈ T )]

≤
∑
l∈L

2θ · Pr(e = l)

= 2θ · Pr(e ∈ L).

We notice that, for T equal to the empty set, we have equalities in the derivations above for θ = 0. This proves

H̃∞(e | p, e ̸∈ T ) ≥ −θ + H̃∞(e | p), and

H̃∞(e | p) = − log2 Pr(e ∈ L).

Notice that the cardinality |L| = 2n−k and for r/n ≤ 1/2,

2h(r/n)n√
2n

≤ 2h(r/n)n√
8r(1− r/n)

≤
r∑

i=0

(
n

i

)
≤ 2h(r/n)n.

By choosing
h(r/n) = 1− (k − log2

√
2n)/n,

we have that L covers at most as many vectors as the Hamming sphere around the all-zero vector of radius r. In truth L
represents a Voronoi region and may not be spherical in shape; nevertheless, for upper bounding Pr(e ∈ L) this is a
reasonable approximation (in order to get an idea of how to set parameters). By morphing the actual Voronoi region L
into a sphere, we exchange less likely error probabilities by more likely error probabilities. For r/n < τ < 1/2, this
implies

Pr(e ∈ L) ≤
r∑

i=0

(
n

i

)
τ i(1− τ)n−i

≤ e−n(τ−r/n)
2·(1−2τ)−1 log2((1−τ)/τ)

≤ e−2n(τ−r/n)
2

,

where the right hand side upper bounds follows from Hoeffding’s inequality20. We have

H̃∞(e | p) ≥ − log2 e
−2n(τ−r/n)2

= 2n(τ − r/n)2/ ln 2

= 2n(τ − h−1(1− (k − log2
√
2n)/n))2/ ln 2.

20Hoeffding [Hoeffding, 1994] proved a stronger upper bound: The binomial sum is upper bounded by(
τ

r/n

)(r/n)n (
1− τ

1− r/n

)(1−r/n)n

≤ e−n(h(τ)−h(r/n)−(τ−r/n) log2((1−τ)/τ))

≤ e−n(τ−r/n)2·(1−2τ)−1 log2((1−τ)/τ),

where h(.) is the binary entropy function.
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In order to have a small enough decoding failure probability, we cannot exceed the capacity of the Bernoulli distribution
with bit error rate δ, i.e., k ≤ (1− h(δ))n. Let

k = (1− h(δ′))n+ log2
√
2n with δ < δ′ ≤ τ.

This yields the following lemma.

Lemma 29 Let C be a binary linear [n, k] code. Suppose that dimension k = (1− h(δ′))n+ log2
√
2n, where h(.) is

the binary entropy function. Let B be the Bernoulli distribution with bit error rate 1/2 > τ ≥ δ′. Then, the residual
min entropy of C with respect to e← B has lower bound

H̃∞(e | p) ≥ (τ − δ′)2n

ln 2

1

1− 2τ
log2

(
1− τ

τ

)
≥ 2

ln 2
(τ − δ′)2n.

Suppose that C has a min entropy loss of θ due to coset imbalance with respect to B and subset size T = |T |. Then,

H̃∞(e | p, e ̸∈ T ) ≥ −θ + H̃∞(e | p).
■

Coarse upper bound on the min entropy loss due to coset imbalance. By the triangle inequality, we have
wt(c+ l) ≤ wt(c) + wt(l). This allows us to derive

Pr(e ∈ C + l) =
∑
c∈C

τwt(c+l)(1− τ)n−wt(c+l)

≥ τwt(l)(1− τ)n−wt(l) ·
∑
c∈C

(
τ

1− τ
)wt(c)

and, since l is the coset leader in C + l with T ⊆ C + l,

Pr(e ∈ T ) ≤ T · τwt(l)(1− τ)n−wt(l).

We define the weight enumerator of code C as the polynomial

W (x) =
∑
c∈C

xwt(c).

This proves
Pr(e ∈ T )

Pr(e ∈ C + l)
≤ T

W ( τ
1−τ )

.

From this we conclude
1 + θ′ ≤ 1

1− T/W ( τ
1−τ )

.

Let us assume that C looks like a Binomial distribution. That is, for small x, the weight enumerator of code C is
approximately a scaled version of the polynomial corresponding to the whole space C = {0, 1}n,

W (x) ≈ 1

2n−k

n∑
i=0

(
n

i

)
xi.

Assume therefore that there exists a constant γ such that

W (x) ≤ γ

2n−k

n∑
i=0

(
n

i

)
xi.

This assumption gives
W (

τ

1− τ
) ≤ γ

2n−k
(1 +

τ

1− τ
)n = γ2− log2(1−τ)n+(n−k).

For k = (1− h(δ′))n+ log2
√
2n, we have

1 + θ′ ≤ 1

1− γT · 2−(− log2(1−τ)+1−h(δ′))n−log2

√
2n

.

33



A PREPRINT

For δ′ = 0.147 and τ = 0.25, this yields

1 + θ′ ≤ 1/(1− γT · 2−0.0173·n−log2

√
2n).

For n = 213, we have that if γT ≤ 20.0173·n+7−1 = 2147.8, then 1 + θ′ ≤ 2, hence, θ ≤ 1. This holds for T ≤ 2κ and
γ ≈ 220 for κ = 128.

Lemma 30 Let C be a binary linear [n, k] code. Suppose that dimension k = (1− h(δ′))n+ log2
√
2n, where h(.) is

the binary entropy function. Let B be the Bernoulli distribution with bit error rate 1/2 > τ ≥ δ′. Suppose that the
weight enumerator polynomial W (x) of C behaves like a scaled version of the Binomial distribution

W (x) ≤ γ

2n−k

n∑
i=0

(
n

i

)
xi

for some constant γ. Then, for
γT ≤ 2(− log2(1−τ)+1−h(δ′))n+(log2

√
2n)−1,

the min entropy loss of C due to coset imbalance with respect to B and subset size T is at most θ ≤ 1. ■

Secrecy capacity. We notice that a polar code can be used to achieve the so-called secrecy capacity of the wire-tap
channel asymptotically [Mahdavifar and Vardy, 2011]. Here, the legitimate user receives messages over the main
channel which produces noise according toM (in our notation). The adversary receives the same messages over a
wire-tap channel which add noise from B (in our notation). Since δ < τ , the secrecy capacity is equal to h(τ)− h(δ),
where h(.) is the binary entropy function. This means that messages of length (h(τ)− h(δ)) · n bits can be encoded
in n-bit polar code words such that the legitimate receiver can reconstruct the message bits after receiving the noisy
message over the main channel, and the adversary receives a noisy version of the message which has close to zero
mutual (Shannon) information with the reconstructed message. In our definition we work with min entropy as this has
shown to model the best possible prediction of adversaries (for more understanding, see literature on fuzzy extractors
and secure sketches).

J PUF based Random Oracle Theorem

Pre-challenge vector compression. We discussed how GETRELIABLECRPh can use a random input seed which which
pre-challenges are computed. We argued that this avoids the use of a TRNG. Here, we may also extend GETIO-ROh

with an input seed with as goal to not only avoid the use of a TRNG in the underlying calls to GETRELIABLECRPh,
but also to provide a compressed representation of the generated vector of pre-challenges cprevec. The main idea is to
keep loop count number j for the loop that calls NEUMANN-GETRELIABLECRPh, the loop count number b for the
loop that defines NEUMANN-GETRELIABLECRPh, the index i = 0 or i = 1 for the two calls to GETRELIABLECRPh

in a single loop in NEUMANN-GETRELIABLECRPh, and a loop count number a in GETRELIABLECRPh. In
GETRELIABLECRPh we call GETRESPONSE(cpre) for

cpre = Hash(seed∥a∥i∥b∥j). (11)

We remember the loop counts a and b for each j of the associated cpre = Hash(seed∥a∥0∥b∥j) returned by NEUMANN-
GETRELIABLECRPh in GETIO-ROh. We denote these loop counts by aj and bj . The sequence of pre-challenges
returned by GETIO-ROh are now defined by

cpre,j = Hash(seed∥aj∥0∥bj∥j).
Hence, rather than storing cprevec, we store

(seed, {(aj , bj)}nj=1). (12)
Notice that we can also use seed as input to a hash function for selecting a random code word w ←R C; also here we
can avoid using a TRNG.

In order to avoid collisions in the hash function, we need all aj to be of fixed length/size, say na bits, and all bj to be
of fixed size, say nb bits. This means that the respective loops may run out before a ‘good’ pre-challenge was found,
and this leads to a failure probability for GETIO-ROh. We will analyse this next. As a remark we note that we have
compressed the λn bits of cprevec down to (na + nb) · n bits.

Failure probabilities. See Definition 3, the probability that all h measurements for a c = Hash(cpre) in
GETRELIABLECRPh agree is equal to phc + (1 − pc)

h. Since we assume Hash in the random oracle model with
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respect to Y1 (corresponding to GETRESPONSE), the different challenges c = Hash(cpre) for cpre defined by (11) for
0 ≤ j ≤ n− 1, 0 ≤ a ≤ 2na − 1, 0 ≤ b ≤ 2nb − 1, and i ∈ {0, 1} are randomly drawn from Y1. This shows that each
while loop in GETRELIABLECRPh called during the execution of GETIO-ROh will take (EY1

[phc + (1− pc)
h])−1

iterations in expectation. For small h, this is a small number and for this reason we can set na to a small number. If
GETRELIABLECRPh cannot find a reliable CRP after 2na loop iterations, then GETRELIABLECRPh fails. This leads
to failing probability

Frel,h = (1− EY1 [p
h
c + (1− pc)

h])2
na
, (13)

which we can design to be very small for na large enough. (Notice that Frel,1 = 0.)

Our analysis of NEUMANN-GETRELIABLECRPh shows in (7) that, conditioned on GETRELIABLECRPh not failing,
the probability that an iteration in NEUMANN-GETRELIABLECRPh produces a final output is equal to

2qYh
0 qYh

1 · (1± ϵcorbias,h).

Hence, the failing probability of NEUMANN-GETRELIABLECRPh not being able to find distinct responses r0 ̸= r1
(that lead to the final output) in 2nb loop iterations is equal to

Fneu,h (14)

=

(
(1− 2qYh

0 qYh
1 · (1± ϵcorbias,h))(1− Frel,h)

2

+(1− (1− Frel,h)
2)

)2nb

≤ (1− 2qYh
0 qYh

1 · (1− ϵcorbias,h)(1− 2Frel,h) + 2Frel,h)
2nb

,

which can be made small for large enough nb.

This leads in turn to the failing probability Fio−ro,h of GETIO-ROh. Since GETIO-ROh does not fail only if none of
the n calls to NEUMANN-GETRELIABLECRPh fail, we have

Fio−ro,h = 1− (1− Fneu,h)
n ≤ n · Fneu,h. (15)

For appropriately chosen na and nb in relation to n, this can be made small in practice.

We already discussed the failure probability Fout−ro,h of GETOUTPUT-RO which is equal to the decoding failure proba-
bility ρ of C with respect to distributionM representing measurement noise. We may assume that ρ is approximately
equal to the failure probability of C with respect to distribution Ber(δh):

Fout−ro,h ≈ ρ(δh), (16)
where δh indicates the dependency of ρ on δh for the Bernoulli distribution.

Correctness. Our analysis shows that Algorithms 4 and 5 define an RO-like correctness property according to the
following lemma.

Lemma 31 We define a random oracle with failure probability ROP as the pair (GETIO-RO, GETOUTPUT-RO)
of Algorithms 4 and 5 where cprevec is compressed by means of a seed and where another hash of s is used to
detect a failure in GETOUTPUT-RO. Algorithms (GETIO-RO, GETOUTPUT-RO) have access to a PUF P through
GETRESPONSE. Upon input seed, GETIO-RO either generates a pair (aux, s) ← GETIO-RO(seed) (where aux
represents cprevec, helper data p, and the other hash of s) or fails. Upon input aux, GETOUTPUT-RO either generates
ŝ← GETOUTPUT-RO(aux) or fails.

We call ROP correct with respect to the pair of failure probabilities (Fio−ro,h, Fout−ro,h) if

• the probability GETIO-RO(seed) fails over a random uniformly chosen seed is at most Fio−ro,h,

• the probability that GETOUTPUT-RO(aux) fails over (aux, ·)← GETIO-RO(seed) is at most Fout−ro,h, and

• if (aux, s)← GETIO-RO(seed) and ŝ← GETOUTPUT-RO(aux) (both do not fail), then ŝ = s.

Fio−ro,h is upper bounded by the combination of (13), (14) and (15) which can be made small for large enough na and
nb. Fout−ro,h is approximated by (16). ■

Security. Larger h for a given code C implies smaller Fout−ro,h. One needs to design a good combination of h with a
suitable code C such that Fout−ro,h is small enough and the residual min entropy κ is large enough21 for generating
secrets. We analyse the security in the next lemma.

21Even if κ is small, we can use code C multiple, say m, times to scale κ up to mκ. This does mean that Fout−ro,h will be
multiplied with m as well.
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Lemma 32 Let P be a PUF and let QP output problem instances aux by calling (aux, s) ←GETIO-ROh; the
associated problem for the adversary is to guess the correct solution s (when GETIO-ROh does not fail).

• Suppose that P has challenge space CP = {0, 1}λ with correlation bias at most

ϵcorbias ≤
2−(κ+5.946)

nh2na+1(1 + 2nb)
.

over a canonical system induced CRP distribution Y∗1 , where n is the length of the code words in C and
λ = Ω(κ).

• Let Ax-model be some adversarial model with Ax ⊆ AU .

• Suppose that P is a (k, t, ϵcorpred)-secure PUF for correlations with respect to all A that are within the
Ax-model and with respect to system induced CRP distribution Y∗neu,h. Define

τ = 1/2− (h2naϵcorbias + ϵcorpred)

and let B be the distribution that generates statistically independent errors êj ← Ber(τ).

• Assume that QP is csep-separable within the Ax-model for csep = 2κ−5.946.

• Suppose that C is a binary linear code and has a min entropy loss of θ due to coset imbalance with respect to
B and subset size 2κ (for θ to be a small constant, this requires the dimension of C to be Ω(κ)). Suppose that
the residual min entropy of C with respect to B is at least 2κ+ θ.

Then, for T = poly(t), we have that QP is (k, T, ϵwin)-system secure with respect to all A within the Ax-model for
system induced distribution Y∗neu,h for

ϵwin ≤ T2−κ,

which is negl(κ). We may call κ the bit security of QP for k queries (or training data for learning a prediction model
of the PUF) within the Ax-model. ■

A useful reduction result. We notice that HardnessQError fits the definition of a security game, see [Yasunaga,
2021]: “An n-bit security game is a game played by an adversary interacting with a challenger. At the beginning of the
game, the challenger chooses a uniformly random secret x ∈ {0, 1}n, represented by the random variable X . At the
end of the game, the adversary outputs some value v, represented by the random variable V . The goal of the adversary
is to output v such that R(x, v) = 1, where R is a Boolean function. The adversary may output a special symbol ⊥
such that R(x,⊥) = 0 for any x. During the game, adversary or challenger may obtain a sample from a distribution
Q. The success probability of the adversary is Pr(R(X,V ) = 1, V ̸= ⊥), where the probability is taken over the
randomness of the entire security game, including the randomness of the adversary." In our case the challenger obtains
a sample ĝ ← Q̂ (the role of X) and the adversary guesses ŝ ̸= ⊥ (the role of V ) given ĝ. The success probability of
the adversary is Pr(VERH(ĝ, ŝ)) ≤ ϵhard (VERH plays the role of R). (The ⊥ symbol can capture the special case in
which Q̂ fails to produce a proper problem instance ĝ or the adversary declares a failure of attack.) The definition of bit
security is consistent with the so-called bit security for a primitive based on a security game.

Q̂ may query some probability distribution (other than the E or R mentioned above). For example, Q̂ may query

q
(Y∗

neu,h)
×d

r as a distribution over response vectors r of length d. Now we can apply Theorem 1 in [Yasunaga, 2021]

together with (5) and noting that the derivation of Lemma 9 proves that q
(Y∗

neu,h)
×d

r and the uniform distribution U over
{0, 1}d form a so-called 2−(κ+5.946)/2-Hellinger close pair:

Lemma 33 Let Q̂ with query access to the uniform distribution U over {0, 1}d be (κ+5.946)-bit secure. Suppose that
PUF P has correlation bias at most ϵcorbias over the distribution Y∗1 of CRPs generated by GETRESPONSE. Consider

q
(Y∗

neu,h)
×d

r with na and nb satisfying (5). Then, Q̂ with query access to q
(Y∗

neu,h)
×d

r is κ-bit secure. ■

In the the proof of our security lemma we will see how QE also queries a uniform distribution U and how QR can be

seen as querying q
(Y∗

neu,h)
×d

r instead.

Proof of Lemma 32. See Definition 15, in order to win QR, adversary A1 needs to guess the correct extracted secret s
given knowledge of aux = (cprevec, p), where p = rvec + w with w ←R C, and given a predicted response vector r′vec.
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Since s is a result of a hash evaluation in the random oracle model, the adversary either needs to guess the correct rvec
(by computing/solving information about rvec) or guess s according to a uniform distribution (and verify against the
hash of s used for detecting failures). The latter has a success probability of q2−κ, where q ≤ T is the total number of
guesses and T is the running time of the adversary (hence, the adversary can at most guess and verify T values for s).

The remaining time T − q can be used for computing information about rvec. Since s is a result of the random oracle
model, the adversary can at best use s in combination with its hash for detecting failures to exclude at most T vector
values rvec (if there is a successful attempt, then this is covered by the q2−κ probability above). In other words,
knowledge about s translates in the best case to knowing a set T of cardinality |T | = T for which rvec /∈ T . This is
used in the next derivation (instead of knowledge of s).

Let evec = r′vec + rvec. We derive

Pr(rvec | cprevec, rvec + w, r′vec, rvec ̸∈ T )
= Pr(rvec | cprevec, rvec + w, rvec + evec, rvec ̸∈ T )
= Pr(evec | cprevec, rvec + w, rvec + evec, rvec ̸∈ T )
= Pr(evec | cprevec, evec + w, rvec + evec, rvec ̸∈ T ).

We may equivalently cast problem instances of QR as the task to guess the correct evec given cprevec, evec+w, rvec+evec,
and rvec ̸∈ T . In order to create such a problem instance, QR can be simulated by (1) querying rvec = r according

to probability q
(Y∗

neu,h)
×n

r conditioned on r ̸∈ T , where n is the length of the response vector, and (2) querying evec
according to distribution E as defined in Definition 15 (and draw w ←R C).

Now consider QRu where distribution q
(Y∗

neu,h)
×n

r is replaced by the uniform distribution U . By Lemma 33 for d = n
and the assumed upper bound on ϵcorbias, if QRu is (κ′ + 5.946)-bit secure, then QR is κ′-bit secure. Let T ′ =
{(rvec + evec) + r | r ∈ T }. Notice that for QRu ,

Pr(evec | cprevec, evec + w, rvec + evec, rvec ̸∈ T )
= Pr(evec | cprevec, evec + w, evec ̸∈ T ′)
= Pr(evec | evec + w, evec ̸∈ T ′).

In other words, given evec + w and evec ̸∈ T ′, the adversary needs to guess evec. We redefine this problem as QE and
conclude that QE is an error based equivalent of QR up to factor eequiv = 5.946, see Definition 15. Also, clearly, QE
becomes simpler in the presence of an error reducing oracle. These properties satisfy one of the conditions of Theorem
19.

Lemma 9 shows that q
Y∗

neu,h
r ≤ 1

2 + h2naϵcorbias +O((h2naϵcorbias)
2), hence, τ has the same form as the one defined in

Theorem 19.

For B = Ber(τ), we define QB as a distribution that generates problem instances where the adversary needs to guess
evec given evec + w, evec ̸∈ T ′, and evec ← B.

The residual min entropy of code C with respect to B is assumed to be 2κ+ θ bits. The min entropy loss of C due to
coset imbalance with respect to B and subset size T is at most θ. By Lemma 29, we have

H̃∞(e | p, e ̸∈ T ) ≥ −θ + H̃∞(e | p) ≥ 2κ,

where e and p are jointly distributed according to e ← B, p = w + e with w ←R C. We may conclude that QB is
2κ-bit secure (notice that this means that we use κ′ = 2κ for λ in Theorem 19).

We satisfy all conditions of Theorem 19 and conclude that for running time T − q, the probability of winning

ϵwin ≤ csep · (T − q)25.9462−2κ = (T − q)2−κ.

Adding the guessing probability q2−κ proves the lemma.

Strong randomness extractor. The construction also depends on the hash function Hashκ used for extracting secret
s in GETIO-ROh and GETOUTPUTh. Hashκ can be replaced by a strong randomness extractor and this eliminates
assuming Hashκ in the random oracle model.

The main idea is to use a universal family H of hash functions ∈ {0, 1}n → {0, 1}m of size |H| = 2d. Universal
means that for all x, x′ ∈ {0, 1}n with x ̸= x′, the probability that H(x) = H(x′) is at most 2−m where the
probability is taken over uniform random H ∈ H. The randomness extractor is defined as Ext(x,H) = H(x). If
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m = k + 1− 2 log(1/ϵ), then Ext is a (k, ϵ)-Hellinger extractor according to the Leftover Hash Lemma for Hellinger,
see Theorem 3 in [Yasunaga, 2021]. This means that for every random variable X over {0, 1}n with min entropy at least
k, it holds that the Hellinger distance between distribution (Ext(X,Ud), Ud) and Um+d is at most ϵ. Here, Ud is the
random variable representing a uniform drawing from {0, 1}d indicating the used hash function H ∈ H and Um+d can
be regarded as an (m+ d)-bit output of a function evaluated in X that cannot be distinguished from a random oracle,
hence, Um+d draws uniform (m+d)-bit strings. In GETIO-ROh we select H ←R H (this can also be given as input to
GETIO-ROh together with seed as discussed earlier in this section) and evaluate s = Ext(rvec, H) = H(rvec) instead
of s = Hashκ(rvec) and return ((cprevec, p,H), s). GETOUTPUT-RO receives the additional input H and computes
ŝ = H(r̂vec). By setting ϵ = 2−(κ”+5.946)/2, we require m = k − κ”− 4.946, i.e., k = m+ κ” + 4.946. We want to
output m = κ random bits (coded in s), hence, k = κ” + κ+ 4.946. This means that we require a residual min entropy
of C with respect to B of at least k.

By setting ϵ = 2−(κ”+5.946)/2, we may conclude from Theorem 1 in [Yasunaga, 2021] that if our RO construction
with distribution (Ext(X,Ud), Ud) replaced by Um+d leads to a QR which is (κ” + 5.946)-bit secure, then QR with
randomness extractor Ext is κ”-bit secure. In our proof above this implies that QR with randomness extractor has error
based equivalent QE up to a factor eequiv = 2 · 5.946; we now apply Theorem 1 in [Yasunaga, 2021] twice and set
κ” = κ′ + 5.946 in the proof of our security lemma. We compensate for this by requiring csep = 2κ−2·5.946. Also
notice that in the proof of our security lemma we set κ′ = 2κ+ θ, hence, the residual min entropy of C with respect to
B must be at least k = κ”+κ+4.946 = κ′+κ+10.892 = 3κ+ θ+10.892 (rather than 2κ+ θ in our security lemma
for Hashκ in the random oracle model). This shows how the leftover hash lemma introduces an extra (significant) min
entropy loss.

Interpretation – A TCB without confidential digital computing or digital secrets. Assuming that current-state-of-
the-art advanced ML attacks on the iPUF train prediction models with accuracy at most a concrete number of percentage
points less than 100%, then concrete parameter settings exist for meeting the conditions of Lemma 32 with Ax = AU .
The parameter setting gives rise to a more efficient PUF-based random oracle PRO (in computation and number of calls
to GETRESPONSE) if the prediction accuracy is lower (e.g., more in the range of 75%).

The adversarial AU -model is very strong: The TCB does not include any confidential digital computing or digital
secrets. For example, using a fuzzy extractor (that is, a combination of a secure sketch with a randomness extractor)
without considering the adversarial capability of being able to train a prediction model for the underlying PUF means
that no CRPs should be revealed to the adversary – the very weak AN -model. This means that the fuzzy extraction
computation must be done in a confidential computing environment, e.g., implemented by specialized isolated hardware
or a general purpose secure processor architecture. But even in this weak model, helper data can reveal information
about the bits in the response vector, after all we only require a residual min entropy of a much smaller number of bits
compared to the length of the vector out of which a secret bit string is extracted. And information about response bits
may allow an adversary to train some sort of prediction model – at least in theory this may be possible22 (although we
do not know how to do this in practice). Our framework clarifies the situation. Our analysis shows that an PUF based
random oracle can be constructed and implemented, and without a TCB that requires some form of confidential digital
computing.

We notice that we may use hardware isolation to further restrict access to the PUF. For example the PRO primitive may
execute in its own ‘enclave’ and allowing only the PRO enclave access to GETRESPONSE. The PRO enclave may use
a Merkle tree approach like the one for programmable erasable PUFs in [Jin et al., 2022] to limit the GETRESPONSE
usage per challenge. This enforces the AR−x-model (with x at least h+ 1). Other system applications may connect
to the PRO-primitive through local attestation (which can be made secret-free by using Sanctum’s approach that
implements a physical isolated channel between enclaves using the concept of mailboxes).

The AR-model (AR = AR−1) can only be realized if h = 1 and GETIO-ROh computations cannot be observed. This
either assumes PRO is part of a system enclave where adversaries can only be present during ‘normal operation’ (during
which only GETOUTPUT-RO is called) or we have a TCB that computes GETIO-RO1 in a confidential executing
environment.

Concrete parameter setting. The various conditions of Theorem 22 are realistic: We already discussed why ϵcorbias is
expected to be negl(λ) for Y1 close to the uniform distribution (and for this reason we assume λ = Ω(κ) so that the
upper bound (5) on ϵcorbias can hold). We are in the AU model where the adversary has access to GETRESPONSE (and
may have additional access restrictions). We expect τ ≥ 25% for reasonable training data set sizes k and large t, hence,

22The computational fuzzy extractor, called LPN PUF, does show that its published helper data cannot be used to extract underlying
response information. But it still needs confidential computing in its TCB.
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the condition T = poly(t) just translates into assuming feasible computing times for a real adversary in practice. The
separability assumption states in this context that we do not know how to find a much more efficient method that learns
how to predict the response vector r′vec from training data together with the helper data aux (the winning probability
cannot be improved beyond an exponentially large multiplicative factor of order 2κ).

For δ = 0.1, τ = 0.25, and 2qY1
0 qY1

1 ≈ 2 · 0.55 · 0.45 = 0.495, we may choose parameters h = 1 (δ1 = δ), na = 0,
nb = log κ, and θ = 1. We use a strong randomness extractor and this requires a residual min entropy of at least
3κ+ θ + 10.982.

As a first example, we choose a polar code of length n = 213 and dimension k = (1 − h(δ))n + log2
√
2n =

0.531 · n+ 7 = 4357 (the polar code is known for achieving capacity for large n). This leads to an estimated κ ≤ 173,
see Lemma 29 with δ′ = δ. By choosing κ = 128 we are allowed to choose a larger δ′ = 0.147 > δ in Lemma 29
(by using the stronger lower bound) and this decreases k to k = 0.398 · n+ 7 = 3266 which improves the decoding
capability of the polar code achieving a smaller decoding failure probability ρ for measurement noise δ = 0.1.

Also notice that k is 25.5 times larger than κ making θ ≤ 1 a realistic assumption on the min entropy loss due to coset
imbalance (the size of a coset is about 225.5·κ, where T = poly(t)≪ 2κ). If the weight enumerator polynomial of C
looks like a scaled version of the Binomial distribution (i.e., C looks like a random code), then a precise argument
follows from Lemma 30 (with γ ≈ 220).

We require ϵcorbias ≤ 2−(κ+5.946)/(2n(1 + κ)), which is realized if λ is a multiple of κ. Each component Arbiter PUF
in e.g. the iPUF design gets its own challenge of 64 bits generated out of a pre-challenge. Since there is a multiple
number of component Arbiter PUFs, we have that λ is indeed a multiple larger than κ = 128.
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