
Fixing Issues and Achieving Maliciously Secure Verifiable Aggregation in

“VeriFL: Communication-Efficient and Fast Verifiable Aggregation for

Federated Learning”
∗

Xiaojie Guo

Nankai University

xiaojie.guo@mail.nankai.edu.cn

August 18, 2022

Abstract

This work addresses the security flaw in the original VeriFL protocol and proposes a patched protocol that is secure against

any static malicious adversary with a certain threshold and only introduces moderate modifications to the original protocol.

1 Introduction

In this work, we fix the security flaw in our original VeriFL protocol [GLL
+
21] and show that the patched VeriFL protocol can

achieve malicious security. This work is a supplementary material of the original work, and we do not claim its contribution.

The patched protocol preserves the efficiency feature (i.e., the overall communication between each party and the server is

dominated by sending the masked input and receiving the masked aggregate result, no other dimension-dependent communi-

cation is required) claimed in the original work. This communication seems to be asymptotically optimal with respect to the

input dimension since even insecure aggregation consumes the same dimension-dependent bandwidth.

The security flaw. We discuss the security flaw as follows. In brief, the published homomorphic hash values in the verification

phase may help the adversary guess the input vector of an honest client if this vector itself does not have sufficient entropy

(i.e., has only a few possible values). Note that a linearly homomorphic hash is a deterministic function of a input vector. This

means that, in the ideal execution, the simulator without knowing the actual inputs of honest parties cannot simulate some

hash values such that their distribution is exactly that in the real execution. Even if secret sharing scheme and commitment

scheme help us hide the distribution of simulated hash values in the aggregation phase, these values still need to be revealed

in the verification phase. Therefore, the distinguisher can distinguish the two executions, failing the security proof.

What CANNOT be achieved by maliciously secure verifiable aggregation? The patched VeriFL protocol is maliciously

secure in the sense of secure computation and does not prevent attacks that are out of the scope of secure computation, e.g.,

the poisoning attacks by changing the inputs of corrupt parties or the inference attacks that use (securely) aggregate results

and the inputs of corrupt parties. Moreover, since our protocol performs aggregation over Zd
q , we do not prevent the attacker

from using crafted inputs to make aggregate results wrap around the modulus q. This wrap-around issue may be (inefficiently)

addressed by additionally using range proof (see, e.g., [Bou00]) or other non-cryptographic mechanisms.

2 Preliminaries

2.1 Notations

We use κ to denote the computational security parameter. We use [n] to denote the set {1, . . . , n} for some integer n ∈ N. We

denote the set of integers by Z and the quotient ring of integers modulo an integer q ∈ N by Zq . For a finite set X, we use |X|
to denote its size. We write negl(κ) for an unspecified negligible function in κ.

2.2 Security Model

We consider the static malicious adversary in the standard simulation-based proof (see, e.g., [Gol04, Lin16]).

∗
On May 20, 2022, we found that there is a flaw in the security proof of VeriFL. We thank Jinhyun So for helping us spot this issue. Please cite this work

as well if you would like to cite our original paper [GLL
+
21].

1

mailto:xiaojie.guo@mail.nankai.edu.cn


2.3 Linearly Homomorphic Hash

For dimension d ∈ N, a linearly homomorphic hash (LHH) scheme with domain Gd
in and range Gout, where Gin and Gout are

Abelian groups, consists of two PPT algorithms with the following syntax:

• LHHpp ← LHH.Setup(1κ). On input 1κ, output a public parameter LHHpp. For simplicity, we assume that the other

algorithm implicitly takes this public parameter as input.

• h← LHH.Hash(x). On input a vector x ∈ Gd
in, output its hash value h ∈ Gout.

We require the above LHH scheme satisfies the following properties:

• Linearity. For any two vectors x,y ∈ Gd
in, it holds that

Pr

[
hx + hy = LHH.Hash(x+ y)

∣∣∣∣ LHHpp← LHH.Setup(1κ),
hx ← LHH.Hash(x), hy ← LHH.Hash(y)

]
= 1.

• Collision resistance. For any d ∈ N and any PPT adversary A, it holds that

Pr
[
Exptd,A,LHH

coll (1κ) = 1
]
≤ negl(κ),

where the collision experiment Exptd,A,LHH
coll (1κ) is defined as follows:

Experiment Exptd,A,LHH
coll (1κ)

1. Generate LHHpp← LHH.Setup(1κ) and send it to A.

2. Receive two distinct x0,x1 ∈ Gd
in from A.

3. Output 1 if LHH.Hash(x0) = LHH.Hash(x1); otherwise output 0.

In this work, we can instantiate this LHH scheme with [BGG95] under the hardness assumption of discrete logarithm over

some finite group G with prime order q. The resulting LHH scheme sets Gin = Zq and Gout = G.

2.4 Non-interactive Commitment with Equivocality and Straight-line Extractability

We focus on the non-interactive commitment scheme in the random oracle model (ROM) [BR93]. In ROM, a non-interactive

commitment scheme with message spaceM, randomness space R, commitment space C, and a random oracle O = OM,R,C ,

consists of two PPT algorithms with the access to O and the following syntax:

• com← COM.CommitO(m, r). On input a messagem ∈M and a randomness r ∈ R, output a commitment com ∈ C.

• {0, 1} ← COM.OpenO(com,m′, r′). On input a commitment string com ∈ C, a message m′ ∈ M, and a randomness

r′ ∈ R, output whether or not the three transcripts are consistent, i.e., com = COM.CommitO(m′, r′).

We require the above commitment scheme satisfies the following properties:

• Hiding. For any PPT adversary AO , it holds that∣∣∣Pr [ExptAO ,COM,0
hiding (1κ) = 1

]
− Pr

[
ExptA

O ,COM,1
hiding (1κ) = 1

]∣∣∣ ≤ negl(κ),

where the hiding experiment ExptA
O ,COM,b

hiding (1κ) for b ∈ {0, 1} is defined as follows:

Experiment ExptA
O ,COM,b

hiding (1κ)

1. Receive two distinct m0,m1 ∈M from AO , sample r ← R, and send com← COM.CommitO(mb, r) to A
O
.

2. Output the guessing bit b′ output by AO .

2



• Binding. For any PPT adversary AO , it holds that

Pr
[
ExptA

O ,COM
binding (1κ) = 1

]
≤ negl(κ),

where the binding experiment ExptA
O ,COM

binding (1κ) is defined as follows:

Experiment ExptA
O ,COM

binding (1κ)

1. Receive (com, (m, r), (m′, r′)) from AO , where m ̸= m′
.

2. Output 1 if (COM.OpenO(com,m, r) = 1) ∧ (COM.OpenO(com,m′, r′) = 1); otherwise output 0.

• Equivocality. In the ideal world, there exists a PPT equivocation algorithm COM.EquivO such that, for anym,m′ ∈M,

Pr

[
COM.OpenO(com,m′, r′) = 1

∣∣∣∣ r ← R, com← COM.CommitO(m, r),
r′ ← COM.EquivO(com, (m, r),m′)

]
≥ 1− negl(κ).

• Straight-line extractability. In the ideal world, there exists a PPT straight-line extractor COM.ExtractO such that, for any

m ∈M and r ∈ R,

Pr

[
m = m∗

∣∣∣∣ com← COM.CommitO(m, r),
m∗ ← COM.ExtractO(com)

]
≥ 1− negl(κ).

It is known in [Pas03] that, by using O :M × R → C, the folklore commitment scheme, where COM.CommitO(m, r) :=
O(m, r), is secure (i.e., hiding and binding) and straight-line extractable in ROM. This scheme also satisfies the equivocality

due to the programmability of random oracle: given a well-formed commitment com = COM.CommitO(m, r) and a message

m′
, the equivocation algorithm COM.EquivO samples a fresh randomness r′ ← R and programs O such that O(m′, r′) = com.

It is clear that the equivocality holds if this programming succeeds. The probability that the programming fails is bounded by

that for the event that com is not a uniform value or O(m′, r′) was defined. Taking a union bound, this probability is at most

2q/ |R| = negl(κ) since we only make q = poly(κ) commitments/decommitments and |R| can be exponentially large in κ.
We instantiate this folklore commitment scheme withM = R = C = {0, 1}κ and have the following lemma.

Lemma 1. For any C such that |C| ≈ 2κ and any PPT algorithm A′O(1κ) that returns a commitment com ∈ C and an opening

string (m, r) ∈M × R, it holds for the folklore commitment scheme in ROM that

Pr

[
COM.OpenO(com,m, r) = 1

∣∣∣∣ (com,m, r)← A′O(1κ),
((m, r), com) /∈ L

]
≤ negl(κ),

where L denotes the list that records A′O
’s queries to O and their responses.

Proof. Note that the event COM.OpenO(com,m, r) = 1 happens if and only if com = COM.CommitO(m, r) = O(m, r),
which in turn occurs with probability at most 1/ |C| (exactly equaling 1/ |C| if O(m, r) was not defined) according to the

randomness of O. By using an exponentially large C, we can see this lemma holds.

2.5 Key Agreement

A key agreement scheme with secret key space Ksk, public key space Kpk, and agreed key space K , consists of three PPT

algorithms with the following syntax:

• KApp← KA.Setup(1κ). On input 1κ, output a public parameter KApp. For simplicity, we assume that the other algorithms

implicitly take this public parameter as input.

• (sk, pk)← KA.KeyGen(1κ). On input 1κ, output a key pair (sk, pk) ∈ Ksk ×Kpk.

• aki,j ← KA.Agree(ski, pkj). On input a secret key ski and a public key pkj , output an agreed key aki,j ∈ K .

We require the above key agreement scheme satisfies the following properties:

• Correctness. It holds that

Pr

[
KA.Agree(ski, pkj) = KA.Agree(skj , pki)

∣∣∣∣ KApp← KA.Setup(1κ),
(ski, pki)← KA.KeyGen(1κ), (skj , pkj)← KA.KeyGen(1κ)

]
= 1.

3



• Security. For any PPT adversary A, it holds that∣∣∣Pr [ExptA,KA,0
key (1κ) = 1

]
− Pr

[
ExptA,KA,1

key (1κ) = 1
]∣∣∣ ≤ negl(κ),

where the experiment ExptA,KA,b
key (1κ) for b ∈ {0, 1} is defined as follows:

Experiment ExptA,KA,b
key (1κ)

1. Generate KApp← KA.Setup(1κ), (ski, pki)← KA.KeyGen(1κ), and (skj , pkj)← KA.KeyGen(1κ).

2. If b = 0, sample aki,j ← K . If b = 1, generate aki,j ← KA.Agree(ski, pkj).

3. Send (KApp, pki, pkj , aki,j) to A and give A the oracle access to KA.Agree(ski, ·) and KA.Agree(skj , ·).
4. Output the guessing bit b′ output by A.

This key agreement scheme can be instantiated with [BIK
+
17] under the two oracle Diffie-Hellman (2ODH) assumption

over some finite group G with order q. This scheme is with Ksk = Zq , Kpk = G, and K = {0, 1}κ.

2.6 Secret Sharing

For threshold t ∈ N and number n ∈ N of parties where t ≤ n, a (t, n)-secret sharing scheme with secret spaceM, and share

space S, consists of three PPT algorithms with the following syntax:

• {⟨s⟩i}i∈P ← SS.Share(s,P). On input a secret s ∈ M and an n-sized set P of parties, output a set of secret shares

{⟨s⟩i}i∈P ⊆ S.

• {s′,⊥} ← SS.Combine({⟨s⟩i}i∈P′ ,P′). On input a set of secret shares {⟨s⟩i}i∈P′ ⊆ S and a set P′
of parties, output a

secret s′ ∈M or an abort symbol ⊥.

We require the above secret sharing scheme satisfies the following properties:

• Correctness. For any t, n ∈ N where t ≤ n, any s ∈M, any n-sized set P, and any P′ ⊆ P where |P′| ≥ t, it holds that

Pr

[
s = s′

∣∣∣∣ {⟨s⟩i}i∈P ← SS.Share(s,P),
s′ ← SS.Combine({⟨s⟩i}i∈P′ ,P′)

]
= 1.

• Reverse samplability. For the secret sharing scheme SS, there also exists a PPT algorithm SS.RSample such that, for any

t, n ∈ N where t ≤ n, any s ∈ M, any n-sized set P, any subsets P′,P⊥ ⊆ P where |P′| ≥ t and |P⊥| < t, and any

(unqualified) set of shares {⟨s⟩i}i∈P⊥ ∈ S|P⊥|
, it holds that

Pr

[
s = s′

∣∣∣∣ {⟨s⟩i}i∈P\P⊥ ← SS.RSample(s,P,P⊥, {⟨s⟩i}i∈P⊥),
s′ ← SS.Combine({⟨s⟩i}i∈P′ ,P′)

]
= 1.

• Security. For any t, n ∈ N where t ≤ n, and any PPT adversary A, it holds that∣∣∣Pr [Exptt,n,A,SS,0
share (1κ)

]
− Pr

[
Exptt,n,A,SS,1

share (1κ)
]∣∣∣ ≤ negl(κ),

where the experiment Exptt,n,A,SS,b
share (1κ) for b ∈ {0, 1} is defined as follows:

Experiment Exptt,n,A,SS,b
share (1κ)

1. Receive from A a secret s ∈M, an n-sized set P, and a subset P⊥ ⊆ P where |P⊥| < t.

2. If b = 0, sample {⟨s⟩i}i∈P⊥ ← S|P⊥|
; otherwise generate {⟨s⟩i}i∈P ← SS.Share(sb,P). Send {⟨s⟩i}i∈P⊥ to A.

3. Output the guessing bit b′ output by A.

This secret sharing scheme can be instantiated with the well-known Shamir’s secret sharing [Sha79] withM = S = F2
,

where F is a finite field such that |F| ≥ max(2κ, q).

4



2.7 Symmetric Encryption

A symmetric encryption schemewith key spaceK , plaintext spaceM, and ciphertext space C, consists of three PPT algorithms

with the following syntax:

• k ← SE.KeyGen(1κ). On input 1κ, output a key k ∈ K .

• c← SE.Enc(k,m). On input a key k ∈ K and a plaintextm ∈M, output a ciphertext c ∈ C.

• {m′,⊥} ← SE.Dec(k′, c). On input a key k′ ∈ K and a ciphertext c ∈ C, output a plaintextm′ ∈M or an abort symbol ⊥.
We require the above symmetric encryption scheme satisfies the following properties:

• Correctness. For any m ∈M, it holds that

Pr

[
m = m′

∣∣∣∣ k ← SE.KeyGen(1κ),
c← SE.Enc(k,m),m′ ← SE.Dec(k, c)

]
= 1.

• IND-CCA security. For any PPT adversary A, it holds that∣∣∣Pr [ExptA,SE,0
IND-CCA(1

κ) = 1
]
− Pr

[
ExptA,SE,1

IND-CCA(1
κ) = 1

]∣∣∣ ≤ negl(κ),

where the IND-CCA experiment ExptA,SE,b
IND-CCA(1

κ) for b ∈ {0, 1} is defined as follows:

Experiment ExptA,SE,b
IND-CCA(1

κ)

1. Generate k ← SE.KeyGen(1κ) and giveA the oracle access to LRk,b(·, ·) and SE.Dec(k, ·), where (i) LRk,b(·, ·) takes
two m0,m1 ∈ M as input and outputs SE.Enc(k,mb), and (ii) A cannot queries SE.Dec(k, ·) with any ciphertext

output by LRk,b(·, ·).
2. Output the guessing bit b′ output by A.

This symmetric encryption scheme can be instantiated with AES with 128-bit keys.

2.8 Digital signature

A digital signature scheme with message spaceM, signing key space Ksigk, verification key space Kverk, and signature space

S, consists of three PPT algorithms with the following syntax:

• (sigk, verk)← SIG.KeyGen(1κ). On input 1κ, output a key pair (sigk, verk) ∈ Ksigk ×Kverk.

• Σ← SIG.Sign(sigk,m). On input a signing key sigk ∈ Ksigk and a message m ∈M, output a signature Σ ∈ S.

• {0, 1} ← SIG.Ver(verk,m,Σ). On input a verification key verk ∈ Kverk, a message m ∈M, and a signature Σ ∈ S, output
whether or not Σ is a valid signature on m.

We require the above digital signature scheme satisfies the following properties:

• Correctness. For any m ∈M, it holds that

Pr

[
SIG.Ver(verk,m,Σ) = 1

∣∣∣∣ (sigk, verk)← SIG.KeyGen(1κ),
Σ← SIG.Sign(sigk,m)

]
= 1.

• Security. For any PPT adversary A, it holds that

Pr
[
ExptA,SIG

forge (1κ) = 1
]
≤ negl(κ),

where the experiment ExptA,SIG
forge (1κ) is defined as follows:

Experiment ExptA,SIG
forge (1κ)

1. Generate (sigk, verk)← SIG.KeyGen(1κ), send verk to A, and give A the oracle access to SIG.Sign(sigk, ·).
2. Receive (m,Σ) ∈M × S from A.

3. Output 1 if SIG.Ver(verk,m,Σ) = 1 and A never queried SIG.Sign(sigk,m); otherwise output 0.

In this work, we assume that each party has registered its public verification key in a public bulletin board provided by

some trusted public key infrastructure (PKI). The underlying digital signature scheme is standard.

5



Functionality FSecVerAgg

Parameters: The threshold t, the number N of parties, the batch size ℓ, and the domain Zd
q .

Aggregate: This procedure can be executed ℓ times. Upon receiving (aggregate, σ, i,vi), where vi ∈ Zd
q , from some party i ∈ [N ]:

1. Assert σ ∈ [ℓ] is the identifier of the current execution. If this is NOT the first (aggregate) message from i under the identifier σ,
ignore this message; otherwise, record (σ, i,vi), send (σ, i) to the server and the adversary, and wait for the server’s input:

• If the server sends (ready, σ,U3) such that (i)U3 ⊆ [N ] and |U3| ≥ t, and (ii) all {(σ, i,vi)}i∈U3 tuples were recorded, compute

a :=
∑

i∈U3
vi ∈ Zd

q , send (σ,a) to the adversary, and wait for the adversary’s input for each honest party i ∈ U3:

– If the server is corrupt and the adversary sends (deliver, σ, i,a′) for a′ ̸= a, set Cheat[σ, i] = 1 and send (σ,a′) to the party i.

– If the adversary sends (deliver, σ, i,a), set Cheat[σ, i] = 0 and send (σ,a) to the party i.

– Otherwise, send (abort, i) to the party i and stop sending/receiving messages to/from it.

After the message delivery, ignore future messages to the σ-th execution and move to the (σ + 1)-th execution.

• Otherwise, ignore this message.

Verify: Upon receiving (verify, i) from a party i ∈ [N ], send (success, i) to the party i if ∀σ ∈ [ℓ] : Cheat[σ, i] = 0; otherwise, send
(abort, i) to the party i.

Abort: Upon receiving (abort, i) from the adversary, send (abort, i) to the party i and stop sending/receiving messages to/from it.

Figure 1: Functionality of secure verifiable aggregation.

3 Protocol

3.1 High-level Overview

The technique behind our malicious-secure patched protocol is “commit-publish-unmask”. More specifically, all parties should

first commit their seeds used to mask their actual inputs and send their masked inputs as well as the LHH values of these

masked inputs. Then, the server publishes the masked aggregate result to all parties, and the LHH values are broadcast for

the future verification that this masked aggregate result is correctly computed. Since the LHH scheme is applied to masked

inputs rather than actual inputs, we get rid of the information leakage in the original VeriFL protocol, where the adversary can

see the LHH values dependent on the actual inputs of honest parties. Finally, all parties jointly unmask their received masked

aggregate result by opening and using the seeds committed before publishing the masked aggregate result.

Roughly speaking, the commitments of these seeds ensure that the corrupt parties should choose the sum of their inputs

before seeing the aggregate result, and they cannot change this sum after the aggregate result is implicitly determined in the

published masked aggregate result without being detected with overwhelming probability. From the perspective of security

proof, the use of commitment allows the simulator to extract the seeds to be used by the corrupt parties before it opening the

commitments of honest parties. Using these seeds and the published masked aggregate result, the simulator can extract the sum

of the corrupt parties’ inputs, which is sufficient for the simulation.

3.2 Security Proof

We model the ideal secure verifiable aggregation in the functionality FSecVerAgg in Figure 1. For simplicity, we focus on the

dropout model where any dropped party will never be online again. We consider the case where the server is corrupt (note

that the malicious security for an honest server is easier to prove since the simulator can extract the input of each corrupt party

and the view of the adversary is much simpler). Our patched VeriFL protocol Π
VeriFL

+ is given in Figure 2 and Figure 3. The

security is stated in the following theorem.

Theorem 1. For any prime modulus q ≈ 2κ and any set C of corrupt parties such that |C| < min(t, 2t −N), Π
VeriFL

+ securely

realizes FSecVerAgg against any static malicious adversary that also corrupts the server.

Proof. Let C ⊆ [N ] ∪ {server} denote the set of corrupt parties such that |C \ {server}| ≤ t, and H := ([N ] ∪ {server}) \ C
denote the complement. We focus on server ∈ C. Without loss of generality, we assume the deterministic real-world adversary

A that simply outputs the joint view of corrupt parties and the ideal-world simulator S that internally runsA. We prove that

the ideal execution with respect to S is computationally indistinguishable from the real execution with respect to A via the

following hybrid argument, which implicitly gives out the construction of S.

• Hybrid0. This is the real execution.

• Hybrid1. Same as the previous one, except that all honest parties are played by a simulator that is given the inputs of honest

parties, emulates the random oracle H on-the-fly, “interacts” with the real-world adversary A internally run by itself, and

6



Protocol Π
VeriFL

+ (Part 1)

Setup: The security parameter κ, the threshold t, the number N of parties, the batch size ℓ, and the domain Zd
q . All cryptographic

primitives defined in Section 2 and two public parameters: LHHpp ← LHH.Setup(1κ) and KApp ← KA.Setup(1κ). A random oracle

H : {0, 1}κ → Zd
q . Each party i ∈ [N ] has a signing key sigki and receives from PKI the other parties’ verification keys {verkj}j∈[N ]\{i}.

Verify: In the σ-th execution, the party i ∈ [N ] has input vσ
i ∈ Zd

q and interacts with the server as follows:

• Round 0 (Advertising keys)

For each party i ∈ [N ]:

1. Generate (skσi , pk
σ
i )← KA.KeyGen(1κ), (mskσi ,mpkσi )← KA.KeyGen(1κ), and Σ

key,σ
i ← SIG.Sign(sigki, (σ, pk

σ
i ,mpkσi )).

2. Send (pkσi ,mpkσi ,Σ
key,σ
i ) to the server and move to the next round.

Server:

1. Receive messages from at least t parties; otherwise abort. LetUσ
1 ⊆ [N ] denote the set of surviving parties.

2. Send to each party i ∈ Uσ
1 the set Kσ

i := {(j, pkσj ,mpkσj ,Σ
key,σ
j )}j∈Uσ

1 \{i} and move to the next round.

• Round 1 (Sharing metadata)

For each party i ∈ [N ]:

1. ReceiveKσ
i from the server, deduce the setU

σ
1 implicit in Kσ

i , and assert

(Uσ
1 ⊆ [N ]) ∧ (|Uσ

1 | ≥ t) ∧ (∀j ∈ Uσ
1 \ {i} : SIG.Ver(verkj , (σ, pkσj ,mpkσj ),Σ

key,σ
j ) = 1).

2. Sample a self-mask seed bσi ← {0, 1}κ.
3. Generate comseed,σ

i ← COM.CommitO(bσi , r
σ
i ) and commsk,σ

i ← COM.CommitO(mskσi , s
σ
i ), where r

σ
i , s

σ
i ← {0, 1}κ.

4. Generate t-out-of-|Uσ
1 | shares of (bσi , rσi ): {⟨(bσi , rσi )⟩j}j∈Uσ

1
← SS.Share((bσi , r

σ
i ),U

σ
1 ).

5. Generate t-out-of-|Uσ
1 | shares of (mskσi , s

σ
i ): {⟨(mskσi , s

σ
i )⟩j}j∈Uσ

1
← SS.Share((mskσi , s

σ
i ),U

σ
1 ).

6. For j ∈ Uσ
1 \ {i}, compute kσ

i,j ← KA.Agree(skσi , pk
σ
j ) and ciphertext cσi,j ← SE.Enc(kσ

i,j , (⟨(bσi , rσi )⟩j , ⟨(mskσi , s
σ
i )⟩j)).

7. Generate Σcom,σ
i ← SIG.Sign(sigki, (σ, com

seed,σ
i , commsk,σ

i )).

8. Send ({(j, cσi,j)}j∈Uσ
1 \{i}, com

seed,σ
i , commsk,σ

i ,Σcom,σ
i ) to the server and move to the next round.

Server:

1. Receive messages from at least t parties; otherwise abort. LetUσ
2 ⊆ Uσ

1 denote the set of surviving parties.

2. Send to each party i ∈ Uσ
2 the set Cσ

i := {(j, cσj,i, comseed,σ
j , commsk,σ

j ,Σcom,σ
j )}j∈Uσ

2 \{i} and move to the next round.

• Round 2 (Publishing hash & masked aggregate result)

For each party i ∈ [N ]:

1. Receive Cσ
i from the server, deduce the setU

σ
2 implicit in Cσ

i , and assert

(Uσ
2 ⊆ Uσ

1 ) ∧ (|Uσ
2 | ≥ t) ∧ (∀j ∈ Uσ

2 \ {i} : SIG.Ver(verkj , (σ, comseed,σ
j , commsk,σ

j ),Σcom,σ
j ) = 1).

2. For j ∈ Uσ
2 \ {i}, compute makσi,j ← KA.Agree(mskσi ,mpkσj ).

3. Generate the masked input pσ
i := vσ

i + H(bσi ) +
∑

j∈Uσ
2
∆i,j · H(makσi,j) ∈ Zd

q , where ∆i,j = 1 if i < j, ∆i,j = −1 if i > j,

and∆i,j = 0 if i = j, the linearly homomorphic hash hσ
i ← LHH.Hash(pσ

i ), and Σ
input,σ
i ← SIG.Sign(sigki, (σ, h

σ
i )).

4. Send (pσ
i , h

σ
i ,Σ

input,σ
i ) to the server and move to the next round.

Server:

1. Receive messages from at least t parties; otherwise abort. LetUσ
3 ⊆ Uσ

2 denote the set of surviving parties.

2. Send to each party i ∈ Uσ
3 the transcript Hσ

i := ({(j, hσ
j ,Σ

input,σ
j )}j∈Uσ

3 \{i},p
σ), where pσ :=

∑
j∈Uσ

3
pσ
j , and move to the

next round.

Figure 2: Patched VeriFL protocol. If any assertion fails, a party will abort without output.

outputs whatever A outputs. This hybrid is syntactically the same as the real execution, and the joint output distributions

in the two hybrids are identical.

• Hybrid2. Same as the previous one, except that the simulator additionally aborts if there exist two honest parties i, j ∈ H
such that (i) Kσ

i contains different (pkσj ,mpkσj ) from that used by the party j in the σ-th Round 0, and (ii) the party i’s

7



Protocol Π
VeriFL

+ (Part 2)

• Round 3 (Checking consistency)

For each party i ∈ [N ]:

1. ReceiveHσ
i from the server, deduce the setU

σ
3 implicit inHσ

i , and assert

(Uσ
3 ⊆ Uσ

2 ) ∧ (|Uσ
3 | ≥ t) ∧ (∀j ∈ Uσ

3 \ {i} : SIG.Ver(verkj , (σ, hσ
j ),Σ

input,σ
j ) = 1).

2. Define sync message syncMsgσi := ({(j, hσ
j , com

seed,σ
j ,mpkσj )}j∈Uσ

3
, {(j, commsk,σ

j )}j∈Uσ
2 \Uσ

3
).

3. Send Σ
sync,σ
i ← SIG.Sign(sigki, (σ, syncMsgσi )) to the server and move to the next round.

Server:

1. Receive messages from at least t parties; otherwise abort. LetUσ
4 ⊆ Uσ

3 denote the set of surviving parties.

2. Send to each party i ∈ Uσ
4 the set Sσ

i := {(j,Σsync,σ
j )}j∈Uσ

4 \{i} and move to the next round.

• Round 4 (Opening commitments)

For each party i ∈ [N ]:

1. Receive Sσ
i from the server, deduce the setU

σ
4 implicit in Sσ

i , and assert

(Uσ
4 ⊆ Uσ

3 ) ∧ (|Uσ
4 | ≥ t) ∧ (∀j ∈ Uσ

4 \ {i} : SIG.Ver(verkj , (σ, syncMsgσi ),Σ
sync,σ
j ) = 1).

2. For j ∈ Uσ
2 \ {i}, compute (⟨(bσj , rσj )⟩i, ⟨(mskσj , s

σ
j )⟩i)← SE.Dec(kσ

i,j , c
σ
j,i).

3. Send ((bσi , r
σ
i ), {(j, ⟨(bσj , rσj )⟩i)}j∈Uσ

3
, {(j, ⟨(mskσj , s

σ
j )⟩i)}j∈Uσ

2 \Uσ
3
) to the server and move to the next round.

Server:

1. Receive messages from at least t parties; otherwise abort. LetUσ
5 ⊆ Uσ

4 denote the set of surviving parties.

2. For i ∈ Uσ
3 \Uσ

5 , reconstruct (b
σ
i , r

σ
i )← SS.Combine({⟨(bσi , rσi )⟩j}j∈Uσ

5
,Uσ

5 ).

3. For i ∈ Uσ
2 \Uσ

3 , reconstruct (mskσi , s
σ
i )← SS.Combine({⟨(mskσi , s

σ
i )⟩j}j∈Uσ

5
,Uσ

5 ).

4. Send to each party i ∈ Uσ
5 the transcript Tσ

i := ({(j, bσj , rσj )}j∈Uσ
3
, {(j,mskσj , s

σ
j )}j∈Uσ

2 \Uσ
3
).

• Round 5 (Unmasking)

For each party i ∈ [N ]:

1. Receive Tσ
i from the server and assert that “the two sets in Tσ

i are indexed byU
σ
3 andU

σ
2 \Uσ

3 , respectively” and

(∀j ∈ Uσ
3 \ {i} : COM.OpenO(comseed,σ

j , bσj , r
σ
j ) = 1) ∧ (∀j ∈ Uσ

2 \Uσ
3 : COM.OpenO(commsk,σ

j ,mskσj , s
σ
j ) = 1).

2. For j ∈ Uσ
3 and k ∈ Uσ

2 \Uσ
3 , compute makσj,k ← KA.Agree(mskσk ,mpkσj ).

3. Compute the aggregate result aσ := pσ −
∑

j∈Uσ
3
H(bσj )−

∑
j∈Uσ

3 ,k∈Uσ
2 \Uσ

3
∆j,k · H(makσj,k) and output (σ,aσ).

Verify: The party i ∈ [N ] locally proceeds as follows:

1. For σ ∈ [ℓ], compute hσ :=
∑

j∈Uσ
3
hσ
j and sample a random coefficient ασ ← Zq (note that Zq is included in LHHpp).

2. Compute hp ← LHH.Hash(
∑

σ∈[ℓ] ασ · pσ) and h′
p :=

∑
σ∈[ℓ] ασ · hσ

.

3. Assert hp = h′
p and output (success, i).

Figure 3: Patched VeriFL protocol. If any assertion fails, a party will abort without output.

signature verification for (σ, pkσj ,mpkσj ) passes in the σ-th Round 1.

Any adversaryA that can trigger this abort with non-negligible probability implies an efficient attacker against the security

of the digital signature scheme. As a failure event, the simulator aborts only with negligible probability. Using the difference

lemma, the joint output distributions in the two hybrids are computationally indistinguishable.

• Hybrid3. Same as the previous one, except that, for every two honest parties i, j ∈ H , the simulator replaces the agreed key

kσi,j with a uniformly random key in the σ-th Round 1.

Conditioned on that the simulator does not abort, kσi,j is identical between the two parties in the previous hybrid due to the

correctness of the key agreement scheme. Under this condition, any adversary A that can distinguish the two hybrids with

non-negligible probability implies an efficient attacker against the security of the key agreement scheme. Using the law of

8



total probability, the joint output distributions in the two hybrids are computationally indistinguishable
1
.

• Hybrid4. Same as the previous one, except that, for every two honest parties i, j ∈ H , the simulator uses an equivalent way

to decrypt the ciphertext cσj,i on behalf of the party i in the σ-thRound 4: if cσj,i equals that generated by the simulator in the

σ-thRound 1, the simulator retrieves (⟨(bσj , rσj )⟩i, ⟨(mskσj , s
σ
j )⟩i) from its memory without actually performing decryption;

otherwise, the simulator honestly decrypts cσj,i as per the previous hybrid.

This hybrid is syntactically the same as the previous one due to the correctness of the symmetric encryption scheme.

• Hybrid5. Same as the previous one, except that, for every two honest parties i, j ∈ H , the simulator replaces the ciphertext

cσj,i with an encryption of 0 in the σ-th Round 1.

From the view of A, the only difference between the two hybrids is the distribution of cσj,i. Any adversary A that can

distinguish the two hybrids with non-negligible probability implies an efficient attacker against the IND-CCA security of the

symmetric encryption scheme. The joint output distributions in the two hybrids are computationally indistinguishable.

• Hybrid6. Same as the previous one, except that, for every two honest parties i, j ∈ H , the simulator uses an equivalent way

to define the share (⟨(bσj , rσj )⟩i, ⟨(mskσj , s
σ
j )⟩i) in the σ-th Round 1: instead of directly generating this share, the simulator

“lazily samples” it by running SS.RSample on ((bσj , r
σ
j ), (mskσj , s

σ
j )) and the shares given to all corrupt parties.

This hybrid is syntactically the same as the previous one due to the reverse samplability of the secret sharing scheme.

• Hybrid7. Same as the previous one, except that, for every honest party j ∈ H and corrupt party i ∈ C, the simulator replaces

the ciphertext cσj,i with an encryption of random shares in the σ-th Round 1.

From the view of A, the only difference between the two hybrids is the distribution of the shares given to the corrupt

parties. Since |C| < t, any adversary A that can distinguish the two hybrids with non-negligible probability implies an

efficient attacker against the security of the secret sharing scheme. The joint output distributions in the two hybrids are

computationally indistinguishable.

• Hybrid8. Same as the previous one, except that, for every honest party i ∈ H , the simulator (i) generates

commsk,σ
i ← COM.CommitO(0, sσi )

in the σ-th Round 1, and (ii) replaces the lazy sampling for (mskσi , s
σ
i ) with that for (mskσi , s

′σ
i ), where

s′σi ← COM.EquivO(commsk,σ
i , (0, sσi ),mskσi ).

The simulator additionally aborts if the equivocation algorithm fails.

The equivocality of the commitment scheme ensures that the simulator can obtain s′σi with overwhelming probability, i.e.,

the probability that the simulator aborts only increases by a negligible value. Conditioned on the successful equivocation,

from the view ofA, the only difference between the two hybrids is the distribution of the commitment commsk,σ
i . Under this

condition, any adversary A that can distinguish two hybrids with non-negligible probability implies an efficient attacker

against the hiding property of the commitment scheme. Using the law of total probability, the joint output distributions in

the two hybrids are computationally indistinguishable.

• Hybrid9. Same as the previous one, except that the simulator additionally aborts if there exist two honest parties i, j ∈ H
such that (i) Cσ

i contains different (comseed,σ
j , commsk,σ

j ) from that used by the party j in the σ-th Round 1, and (ii) the party

i’s signature verification for (σ, comseed,σ
j , commsk,σ

j ) passes in the σ-th Round 2.

Any adversaryA that can trigger this abort with non-negligible probability implies an efficient attacker against the security

of the digital signature scheme. Using the difference lemma, the joint output distributions in the two hybrids are computa-

tionally indistinguishable.

• Hybrid10. Same as the previous one, except that the simulator additionally aborts if there exist two honest parties i, j ∈ H
such that (i) Hσ

i contains different hσ
j from that used by the party j in the σ-th Round 2, and (ii) the party i’s signature

verification for (σ, hσ
j ) passes in the σ-th Round 3.

Any adversaryA that can trigger this abort with non-negligible probability implies an efficient attacker against the security

of the digital signature scheme. Using the difference lemma, the joint output distributions in the two hybrids are computa-

tionally indistinguishable.

1
Note that the transition in this hybrid is independent of the probability that the simulator aborts due to the conditions in the previous hybrid so that the

established indistinguishability between any two previous adjacent hybrids will not be skewed by the transition. As a result, the simulator still aborts in

this hybrid with the same negligible probability due to these conditions. This requirement simplifies the probability analysis, and it is also maintained in the

subsequent hybrids by carefully arranging their orders.

9



• Hybrid11. Same as the previous one, except that the simulator additionally aborts if there exist two honest parties i, j ∈ H
such that (i) syncMsgσi ̸= syncMsgσj in the σ-th Round 3, and (ii) the party i’s signature verification for (σ, syncMsgσi )
passes in the σ-th Round 4.

Any adversaryA that can trigger this abort with non-negligible probability implies an efficient attacker against the security

of the digital signature scheme. Using the difference lemma, the joint output distributions in the two hybrids are computa-

tionally indistinguishable.

Note that the sync message syncMsgσi is locally defined by the party i. For any two distinct honest parties i, j ∈ H such

that syncMsgσi ̸= syncMsgσj , they cannot both survive the assertion in the σ-th Round 4 conditioned on that the simulator

does not abort. Otherwise, there must be at least t − |C| distinct honest parties are required to sign each sync message,

contradicting the assumption 2(t− |C|) > N − |C|.
That is, for the honest parties that do not abort and need to send messages to the server in the σ-th Round 4, their sync

messages must be identical if the simulator does not abort. The transcripts in this identical sync message, which is denoted

by syncMsgσ , are authenticated so thatA cannot forge the entries of the honest parties. From syncMsgσ , the simulator can

defineUσ
2 andUσ

3 that are consistent for the surviving honest parties before sending any message to A in this round.

• Hybrid12. Same as the previous one, except that the simulator additionally aborts if (i) there exists some honest party i ∈
Uσ

3 ∩H such that A queries H(bσi ) before the simulator sends any message in the σ-th Round 4, or (ii) there exists some

honest party i ∈ H \Uσ
3 such that A queries H(bσi ).

In these two hybrids, only the commitment comseed,σ
i depends on the concrete value of bσi . Any adversaryA can trigger this

abort with non-negligible probability must be able to guess the committed bσi with non-negligible probability before seeing

the valid opening string. Such an adversary implies an efficient attacker against the hiding property of the commitment

scheme. Using the difference lemma, the joint output distributions in the two hybrids are computationally indistinguishable.

• Hybrid13. Same as the previous one, except that the simulator additionally aborts if there exist two distinct honest parties

i, j ∈ Uσ
3 ∩H such that A queries H(makσi,j).

Conditioned on that the simulator does not abort, makσi,j = KA.Agree(mskσi ,mpkσj ) = KA.Agree(mskσj ,mpkσi ) is well-
defined for the two parties. Also, only the agreed key makσi,j depends on the concrete values of mskσi and mskσj in these

two hybrids. Any adversary A can trigger this abort with non-negligible probability must be able to guess makσi,j with

non-negligible probability, i.e., implying an efficient attacker against the security of the key agreement scheme. Using the

difference lemma, the joint output distributions in the two hybrids are computationally indistinguishable.

• Hybrid14. Same as the previous one, except that the simulator (i) sets a random pσ
i ← Zd

q for every honest party i ∈ H in

the σ-th Round 2, and (ii) programs H(bσi ) for every honest party i ∈ Uσ
3 ∩H before sending any message toA in the σ-th

Round 4 such that the following consistency holds:

H(bσi ) = pσ
i − vσ

i −
∑
j∈Uσ

2

∆i,j · H(makσi,j).

Conditioned on that the simulator does not abort, we claim that the joint output distributions in the two hybrids are identical.

On the one hand, for i ∈ Uσ
3 ∩H , pσ

i is uniform from the view ofA until receiving messages from the simulator in the σ-th
Round 4 due to (i) the never queried H(bσi ) in the previous hybrid, or (ii) the uniform sampling in this hybrid. Since H(bσi )
was not queried byA before the simulator sends any message in the σ-th Round 4, the programming must succeed so that,

when the opening string is reconstructed, the consistency holds in both two hybrids from the view ofA. On the other hand,

for i ∈ H \Uσ
3 , no programming is performed to maintain the consistency. However, since A never queries H(bσi ), this

inconsistency cannot be observed by A, and the resulting pσ
i in the previous hybrid is as uniform as that in this hybrid.

It is worth noting that the identical distribution of pσ
i , which is a part of the view of A and affects the abort probability of

the simulator, ensures that the transition in this hybrid does not skew the previous computational indistinguishability. Using

the law of total probability, the joint output distributions in the two hybrids are identical.

• Hybrid15. Same as the previous one, except that, for every honest party i ∈ Uσ
3 ∩H , the simulator instead programs

H(bσi ) = pσ
i − sumσ

honest,i −
∑

j∈Uσ
2 \(Uσ

3 ∩H )

∆i,j · H(makσi,j),

where {sumσ
honest,i}i∈Uσ

3 ∩H are uniform conditioned on

∑
i∈Uσ

3 ∩H sumσ
honest,i =

∑
i∈Uσ

3 ∩H vσ
i .

Conditioned on that the simulator does not abort, the joint output distributions in the two hybrids are identical. We define

sumσ
honest,i := vσ

i +
∑

j∈Uσ
3 ∩H

∆i,j · H(makσi,j),

10



which is uniform from the view of A since it never queries H(makσi,j) for any j ̸= i and j ∈ Uσ
3 ∩H under the condition.

The above definition satisfies the condition on the sum given that

∑
i,j∈Uσ

3 ∩H ∆i,j · H(makσi,j) = 0. Using the law of total

probability, the joint output distributions in the two hybrids are identical.

• Hybrid16. Same as the previous one, except that the simulator additionally aborts if (i) there exist some honest party i ∈ H
and some corrupt party j ∈ Uσ

3 ∩ C (or, j ∈ (Uσ
2 \ Uσ

3 ) ∩ C) such that Tσ
i contains different bσj (or, mskσj ) from that

committed by the party j in the σ-th Round 1, and (ii) the party i does not abort in the σ-th Round 5.

Any adversaryA that can trigger this abort with non-negligible probability implies an efficient attacker against the binding

property of the commitment scheme. Using the difference lemma, the joint output distributions in the two hybrids are

computationally indistinguishable.

• Hybrid17. Same as the previous one, except that the simulator additionally aborts if (i) there exist two honest parties i ∈ H
and j ∈ (Uσ

3 ∩H ) \ {i} (or, j ∈ (Uσ
2 \Uσ

3 ) ∩H ) such that Tσ
i contains different bσj (or, mskσj ) from that chosen by the

simulator on behalf of the party j in the σ-th Round 1, and (ii) the party i does not abort in the σ-th Round 5.

Any adversaryA that can trigger this abort with non-negligible probability implies an efficient attacker against the binding

property of the commitment scheme
2
. Using the difference lemma, the joint output distributions in the two hybrids are

computationally indistinguishable.

• Hybrid18. Same as the previous one, except that the simulator additionally aborts if (i) there exists some corrupt party j ∈
Uσ

2 ∩ C such that syncMsg contains a malformed comσ
j , which is not obtained fromA’s invocation of COM.CommitO(·, ·),

and (ii) all honest parties do not abort in the σ-th Round 5.

By Lemma 1, the probability that the simulator aborts due to this condition is negligible (i.e., at most the negligible probability

in the lemma times a polynomial number of the opening strings of the corrupt parties’ commitments). Using the difference

lemma, the joint output distributions in the two hybrids are computationally indistinguishable.

• Hybrid19. Same as the previous one, except that the simulator is no longer given the inputs of honest parties and interacts

with the functionality FSecVerAgg to complete the simulation. More specifically,

– Whenever some honest party i played by the simulator aborts, the simulator sends (abort, i) to FSecVerAgg.

– Note that syncMsg is identical for all parties inH σ
survive ⊆ Uσ

3 ∩H , the set of the honest parties that are still played by the

simulator just before sending any message to A in the σ-th Round 4. At this time, the simulator learns {hσ
i }i∈Uσ

3
from

syncMsg and checks, for each honest party i ∈ H σ
survive, the consistency∑

i∈Uσ
3

hσ
i = LHH.Hash(pσ,i),

where pσ,i
is the the masked aggregate result in Hσ

i received by the party i in the σ-th Round 3. Let H σ
pass ⊆ H σ

survive

denote the set of the honest parties whose pσ,i
pass this consistency check. There are three cases for each σ ∈ [ℓ]:

1. Case (i): H σ
pass = ∅. AfterH σ

survive andH
σ
pass are determined, the simulator sends (aggregate, σ, j, ṽj) to FSecVerAgg on

behalf of each corrupt party j ∈ Uσ
3 ∩ C, where ṽj is uniform. Then, the simulator sends (ready, σ,Uσ

3 ) to FSecVerAgg
on behalf of the corrupt server, receives back (σ,a), and programs H in the σ-th Round 4 using∑

i∈Uσ
3 ∩H

vσ
i := a−

∑
j∈Uσ

3 ∩C

ṽj .

Finally, for each honest party i ∈ H σ
out ⊆ H σ

survive, whereH
σ
out is the set of the honest parties surviving the assertion in

the σ-th Round 5, the simulator sends (deliver, σ, i,aσ,i) to FSecVerAgg, where

aσ,i := pσ,i −
∑
j∈Uσ

3

H(bσj )−
∑

j∈Uσ
3 ,k∈Uσ

2 \Uσ
3

∆j,k · H(KA.Agree(mskσk ,mpkσj ))

and ({bσj }j∈Uσ
3
, {mskσk}k∈Uσ

2 \Uσ
3
) is included in Tσ

i . Other honest parties in (Uσ
3 ∩H ) \H σ

out aborts.

2. Case (ii): ∃i, j ∈ H σ
pass : p

σ,i ̸= pσ,j
. The simulator aborts in this case.

3. Case (iii): (H σ
pass ̸= ∅) ∧ (∀i, j ∈ H σ

pass : p
σ,i = pσ,j). Let pσ

denote this identical pσ,i
for i ∈ H σ

pass. The simulator

is identical to that in Case (i) except that it defines ṽj for each corrupt party j ∈ Uσ
3 ∩ C as follows:

First, the simulator runs the straight-line extractor COM.ExtractO on the corrupt parties’ commitments

{comseed,σ
j }j∈Uσ

3 ∩C, {commsk,σ
j }j∈(Uσ

2 \Uσ
3 )∩C

2
The reduction uses the fact that, before sending Tσ

i to the party i, A is given the commitment of the honest party j ̸= i and its opening string.

11



to extract the committed values in these commitments, i.e., {bσj }j∈Uσ
3 ∩C and {mskσj }j∈(Uσ

2 \Uσ
3 )∩C . If the extractor fails,

the simulator immediately aborts all honest parties still played by it by sending (abort, ·) to FSecVerAgg and terminates.

Then, the simulator extracts the sum of the inputs of the corrupt parties inUσ
3 ∩ C:

∑
j∈Uσ

3 ∩C

vσ
j :=

pσ −
∑

j∈Uσ
3 ∩H

pσ
j −

∑
j∈Uσ

3 ∩C,k∈Uσ
2 ∩H

∆j,k · H(KA.Agree(mskσk ,mpkσj ))


−

∑
j∈Uσ

3 ∩C

H(bσj )−
∑

j∈Uσ
3 ∩C,k∈(Uσ

2 \Uσ
3 )∩C

∆j,k · H(KA.Agree(mskσk ,mpkσj )).

Finally, the simulator samples random {ṽj}j∈Uσ
3 ∩C conditioned on that

∑
j∈Uσ

3 ∩C ṽj =
∑

j∈Uσ
3 ∩C v

σ
j .

We claim that the joint output distributions in the two hybrids are computationally indistinguishable. Note that all aborted

parties behave identically in the two hybrids. First, we consider this distribution conditioned on that the simulator does not

abort due to either the conditions in the previous hybrid or the condition in this hybrid. For any fixed σ ∈ [ℓ]:

– Case (i). The joint distribution of the honest parties’ outputs and the corrupt parties’ views is identically distributed in the

two hybrids by the end of Aggregate phase since (i) the simulator also uses the sum

∑
i∈Uσ

3 ∩H vσ
i , and (ii) the simulator

sets the honest parties’ outputs as per the previous hybrid. It is left to consider the cheating flags maintained in FSecVerAgg

and to be used in Verify phase. For each i ∈ H σ
out, Cheat[σ, i] = 0 if and only if

aσ,i := a+

pσ,i −
∑

j∈Uσ
3 ∩H

pσ
j

− ∑
j∈Uσ

3 ∩C

ṽj + H(bσj ) +
∑

k∈Uσ
2 \(Uσ

3 ∩C)

∆j,k · H(KA.Agree(mskσk ,mpkσj ))

 = a,

where “:=” comes from that {bσj }j∈Uσ
3 ∩H given to the party i are the same as those chosen by the simulator and used in

the programming on H(bσj ) for each j ∈ Uσ
3 ∩H (otherwise the simulator will abort). For any i ∈ H σ

out, Cheat[σ, i] = 0

happens with probability 1/qd due to the randomness of {ṽj}j∈Uσ
3 ∩C .

– Case (iii). We consider the following two sub-cases.

On the one hand, if A never uses malformed commitments on behalf of the corrupt parties, the straight-line extractor

always succeeds. The reason is that A cannot open the corrupt parties’ commitments to other values than those being

committed in the σ-th Round 1 (otherwise the simulator will abort) and thus there will be only one record in the list

maintained by O for each commitment. Like Case (i), the joint output distribution by the end of Aggregate phase is

identical. One can also check that, for i ∈ H σ
out ∩ H σ

pass, a
σ,i = a always holds due to (i) the successful straight-line

extraction, (ii) the party-wise consistent pσ
(by the case definition) and {mpkσj }j∈Uσ

3 ∩C (by the consistent syncMsg for

Hsurvive), and (iii) the binding ({bσj }j∈Uσ
3 ∩C, {mskσk}k∈(Uσ

2 \Uσ
3 )∩C) and ({bσj }j∈Uσ

3 ∩H , {mskσk}k∈(Uσ
2 \Uσ

3 )∩H ) (otherwise

the simulator will abort). In this sub-case, Cheat[σ, i] = 0 happens with probability 1 for i ∈ H σ
out ∩ H σ

pass; p
σ,i ̸= pσ

ensures that Cheat[σ, i] = 0 happens with probability 0 for i ∈ H σ
out \H σ

pass.

On the other hand, if A uses malformed commitments in the σ-th execution, all honest parties will abort in the σ-th
Round 5 from the view ofA. In the previous hybrid, this abort is due to the assertion in the σ-th Round 5 (otherwise the

simulator will abort). In this hybrid, this abort is due to the simulator sending (abort, ·) to FSecVerAgg (since the straight-
line extractor fails). In this sub-case, the joint output distribution in the two hybrids is trivially identical since all honest

parties abort before Verify phase and the joint output distribution until the previous Aggregate phase is identical.

Now, we put these two cases together and, for non-triviality, consider that A never uses malformed commitments so that

H ℓ
out ∩H ̸= ∅ for Verify phase. For each honest party i ∈ H ℓ

out ⊆ · · · ⊆ H 1
out, there must exist a set Ii ⊆ [ℓ] such that

∀σ ∈ Ii : i ∈ H σ
out \H σ

pass and ∀σ ∈ [ℓ] \ Ii : i ∈ H σ
out ∩H σ

pass. On the one hand, if Ii = ∅, the party i always outputs
(success, i) in this hybrid since Ii = ∅ implies, for every σ ∈ [ℓ], i ∈ H σ

out ∩H σ
pass ̸= ∅ and Cheat[σ, i] = 0. In the previous

hybrid, Ii = ∅ also makes the party i output (success, i) due to the definition ofH σ
pass and the linearity of the LHH scheme.

On the other hand, it is left to considerIi ̸= ∅. By union bound, the party i in this hybrid outputs (success, i)with probability
at most (1/qd)|Ii|. In the previous hybrid with Ii ̸= ∅, the party i outputs (success, i) with probability at most 1/q, which is

taken over the random coefficients. The statistical distance between the two joint distributions in Verify phase is bounded

by 1/q, which is negligible. In other words, conditioned on that the simulator does not abort, A can only distinguish this

hybrid from the previous one with negligible advantage.

Then, we bound the probability that the simulator aborts. We have seen from the previous hybrids that the simulator aborts

due to the conditions in these hybrids with negligible probability, and this probability is not skewed by the transition in this

hybrid. In this hybrid, the simulator additionally aborts due to Case (ii). Note that Case (ii) happens with negligible prob-

ability; otherwise A implies an efficient attacker against the collision resistance of the LHH scheme. Overall, the simulator

still aborts with negligible probability.

Using the law of total probability, the joint output distributions in the two hybrids are computationally indistinguishable.

12



• Hybrid20. Same as the previous one, except that the abort conditions for the simulator are removed. This hybrid is compu-

tationally indistinguishable from the previous one since it is known from the previous hybrid that the simulator aborts only

with negligible probability. This simulator is essentially the simulator S in the ideal execution.

The above hybrid argument completes this proof.

References

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography and application to virus protection.

In 27th ACM STOC, pages 45–56, Las Vegas, NV, USA, May 29 – June 1, 1995. ACM Press.

[BIK
+
17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel

Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning. In

Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1175–1191,

Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Bart Preneel, editor, EURO-

CRYPT 2000, volume 1807 of LNCS, pages 431–444, Bruges, Belgium, May 14–18, 2000. Springer, Heidelberg, Ger-

many.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In

Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages

62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

[GLL
+
21] Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, Boyu Hou, Changyu Dong, and Thar Baker. Verifl: Communication-

efficient and fast verifiable aggregation for federated learning. IEEE Trans. Inf. Forensics Secur., 16:1736–1751, 2021.

[Gol04] OdedGoldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University Press, Cambridge,

UK, 2004.

[Lin16] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. Cryptology ePrint Archive,

Report 2016/046, 2016. https://eprint.iacr.org/2016/046.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model. In Dan Boneh, editor,

CRYPTO 2003, volume 2729 of LNCS, pages 316–337, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidel-

berg, Germany.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery, 22(11):612–613,

November 1979.

13

https://eprint.iacr.org/2016/046

	Introduction
	Preliminaries
	Notations
	Security Model
	Linearly Homomorphic Hash
	Non-interactive Commitment with Equivocality and Straight-line Extractability
	Key Agreement
	Secret Sharing
	Symmetric Encryption
	Digital signature

	Protocol
	High-level Overview
	Security Proof


