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ABSTRACT

This work addresses expressive queries over encrypted data by pre-
senting the first systematic study of multi-attribute range search on
a symmetrically encrypted database outsourced to an honest-but-
curious server. Prior work includes a thorough analysis of single-
attribute range search schemes (e.g. Demertzis et al. 2016) and a
proposed high-level approach for multi-attribute schemes (De Capi-
tani di Vimercati et al. 2021). We first introduce a flexible framework
for building secure range search schemes with an arbitrary number
of attributes (dimensions) by adapting a broad class of geometric
search data structures to operate on encrypted data. Our framework
encompasses widely used data structures such as multi-dimensional
range trees and quadtrees, and has strong security properties that
we formally prove. We then develop six concrete highly paralleliz-
able range search schemes within our framework that offer a sliding
scale of efficiency and security tradeoffs to suit the needs of the
application. We evaluate our schemes with a formal complexity and
security analysis, a prototype implementation, and an experimental
evaluation on real-world datasets.
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1 INTRODUCTION

With the rise of cloud services, there is a growing need for schemes
that support complex privacy-preserving queries. In this paper, we
study the security of schemes that support range-queries over multi-
attribute data. We consider a two party setting in which a client
outsources their data to a cloud provider. The server is untrusted
and assumed to be a persistent, honest-but-curious adversary,
and the client wishes to query their data privately. One solution
is to use strong cryptographic primitives like fully-homomorphic
encryption [22] or oblivious RAM [24]. While they offer the best
security guarantees, these solutions are not yet practical. As an
alternative, solutions for private range queries have been proposed
using searchable symmetric encryption (SSE) (see, e.g., [7–11, 13,
23, 34–36, 51, 53, 59]). SSE schemes offer the following tradeoff: in
exchange for efficiency they reveal some well-defined information,
or leakage, about the queries and underlying data.

Existing efficient schemes support range queries on only single-
attribute (1D) data or lack formal leakage analysis. In this paper,
we present the security of a broad class of schemes that support
range queries over multi-attribute data. We first give a general
framework for building such schemes and give a security proof
for all schemes that fit this framework. The schemes from prior
work most related to those developed within our framework are
by Demertzis et al. [14, 15], who present 1D range schemes with
∗Both authors contributed equally to this research. Preliminary eprint in [20].

storage and security trade-offs, and by Faber et al. [18], who build on
the SSE scheme in [10] to support 1D range, substring, wild-card,
and phrase queries. We extend these schemes to support multi-
attribute range queries, formalize the leakage of our schemes, and
evaluate our schemes using real-world datasets. Our work is the
first to systematically study schemes for encrypted range search
on more than two attributes.

At a high level, our framework operates by decomposing the
multi-dimensional domainD into subranges. Given a database over
domain D, each subrange can be mapped to the corresponding set
of records with values in that subrange. The resulting map can
then be encrypted using a standard SSE (e.g. [10]). The schemes
within our framework are highly parallelizable and updates can be
supported by batching updates as done in [14].

Our work systematizes the construction of schemes that sup-
port private range queries. For our concrete schemes, we opted for
data-independent data structures – such as balanced range trees –
since this prevents the adversary from inferring information about
the data distribution from the underlying data structure. This is a
consequence of the fact that leakage mitigation and scheme effi-
ciency are fundamentally at odds with each other; that said, our
framework encompasses a wide range of classical data structures
including data-dependent data structures such as 𝑘𝑑-trees.

In our work, we address a number of challenges from phenomena
that arise only in multiple dimensions, also known as the curse of
dimensionality. Classic range-supporting data structures in multiple
dimensions are significantly more complex than their 1D variants.
Extending such data structures and their range covering algorithms
to better suit the encrypted setting requires new techniques.

Despite a large body of work on SSE-based range schemes span-
ning 7 years and dating back to 2015 [18], there are only a handful
of papers on 2D schemes, and none in higher dimensions (see
Section 1.1). We present the first concrete SSE range schemes in
arbitrary dimensions, providing a number of efficiency and security
tradeoffs. We give a thorough performance and leakage analysis of
our schemes, thus aiding practitioners to make informed choices in
the deployment of encrypted range search based on the application
context and risk assessment. Our schemes are rooted in classic data
structures that are well studied, optimized, efficient, extendable to
other query types, and easily implementable.

1.1 Prior and Related Work

Schemes. Order preserving encryption (OPE) supports range queries
by enabling order comparisons of the underlying plaintexts with out
decrypting. However, OPE schemes have been shown vulnerable to
several leakage abuse attacks [4, 17, 28, 50]. SSE leaks strictly less
than order preserving encryption, and a number of range schemes us-
ing SSE have also been suggested (e.g., [14, 18, 31, 64]). SSE achieves
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its efficiency by using light-weight cryptographic primitives like
pseudorandom functions (PRFs) and hash functions.

Several SSE schemes have been developed for single-attribute
(1D) range queries on encrypted databases (see, e.g., [31, 33, 57, 64]
and for a comparative evaluation of secure range schemes see [6].
The schemes most related to those developed within our framework
are by Demertzis et al. [14, 15], who present a 1D range schemes
with storage and security trade-offs, and by Faber et al. [18], who
extend the SSE scheme in [10] to support range, substring, wild-
card, and phrase queries. Both works build a binary tree on the
domain, build an index based on this tree, and then use a black-box
SSE scheme to encrypt the index. Bogatov et al. [5] present a differ-
entially private solution that combines oblivious RAM and differen-
tially private sanitizers to mitigate leakage.Wang and Chow [63] de-
scribe a framework for range-supporting schemes, however, they do
not prove different properties of different range covering schemes
as we do here. They then describe two forward-secure, dynamic
schemes for 1D range queries. Falzon et al. [19] sketch out what we
refer to as the quadratic scheme, however, this scheme is inefficient
and does not scale well to higher dimensions.

De Capitani di Vimercati et al. [16] propose to index multi-
dimensional symmetrically encrypted data by recursively partition-
ing records into boxes, thus taking steps toward a general scheme.
However, their approach doesn’t fall into the standard SSE defi-
nition [13]. Also, they do not provide a formal leakage analysis.
Thus, we do not include [16] in our comparison with prior work.
Additional prior work on multi-attribute range query schemes does
not use symmetric encryption: Shi et al. [58] and Wang et al. [62]
use public-key cryptography, whereas Kermanshahi et al. [39] use
homomorphic encryption to support multi-attribute range queries
however they leak significantly more than schemes built on SSE.
Leakage abuse attacks. Common types of SSE scheme leakage
are access pattern (the adversary can identify the encrypted records
in each response), volume pattern (the adversary can observe the
number of encrypted records in each response), and search pattern
(the adversary can determine if two issued queries are equal. Data-
base reconstruction attacks have been presented against schemes
supporting 1D range queries. The first such attack by Kellaris et
al. [38] was followed by more efficient attacks for one-dimensional
range queries using access (e.g. [27, 41, 44, 48]) and volume pattern
(e.g. [26, 29, 42]). Two attack works on generic two-dimensional
(2D) or two-attribute database reconstruction have also been pre-
sented [19, 47] using access and search pattern leakage.

1.2 Contributions

New challenges arise in higher dimensions due to increased struc-
tural complexity and addressing them requires fundamentally new
techniques, including formalizing the leakage and developing data
structures that can efficiently support range queries in the en-
crypted setting. One such problem we address is extending the
standard quadtree to a novel tree data structure with a provable
reduction in the number of false positives.

We introduce a general framework for building private range
search schemes by adapting a broad class of geometric search data
structures (e.g. range trees and quadtrees) to operate on encrypted
data. Our schemes reduce a range query to a set of queries on an

Table 1: Comparison of selected non-interactive range search

schemes from [14] and [18] with our schemes (bold). We assume that

all schemes are instantiated using an EMM or SSE scheme that hides

access pattern and leaks search and volume pattern. We show the

asymptotic complexity of the schemes. Notation: range size 𝑅, result

size 𝑟 , database size 𝑛, domain size𝑚, number of dimensions (query

attributes) 𝑑 . We evaluate the security of the schemes based on to-

ken co-occurrences (reduce security) and false positives (increase

security). Notation for token co-occurrences: high; moderate;

none. Note that the query size for Quad-BRC is worst-case.

Scheme Complexity Security
Query
Size

Resp.
Size Storage Dim. Token

Co-occur.
False
pos.

Range tree [18] log𝑅 𝑟 𝑚 + 𝑛 log𝑚 1 -

Quadratic [14] 1 𝑟 𝑚 + 𝑛2 1 -
Constant [14] log𝑅 𝑟 𝑚 + 𝑛 1 -
Log-URC [14] log𝑅 𝑟 𝑚 + 𝑛 log𝑚 1 -
Log-BRC [14] log𝑅 𝑟 𝑚 + 𝑛 log𝑚 1 -
Log-SRC [14] 1 𝑟 + 𝑅 𝑚 + 𝑛 log𝑚 1 ✓

Quadratic 1 𝑟 𝑚 + 𝑛2 𝒅 -
Linear 𝑅 𝑟 𝑚 + 𝑛 𝒅 -

Range-URC log𝑑 𝑅 𝑟 𝑚 + 𝑛 log𝑑𝑚 𝒅 -
Range-BRC log𝑑 𝑅 𝑟 𝑚 + 𝑛 log𝑑𝑚 𝒅 -
Quad-BRC 𝑚

𝑑−1
𝑑 𝑟 𝑚 + 𝑛 log𝑚 𝒅 -

Range-SRC 1 𝑟 + 𝑅 𝑚 + 𝑛 log𝑑𝑚 𝒅 ✓

Quad-SRC 1 𝑟 + 𝑅2 𝑚 + 𝑛 log𝑚 𝒅 ✓

underlying encrypted multimap. We provide a generic security
proof for any scheme derived from our framework (Section 3).

We then present six concrete range search schemes that fit within
our framework and support queries on an arbitrary number of di-
mensions (attributes). The schemes offer a sliding scale of efficiency
security tradeoffs to suit the needs of the application (Table 1 and
Section 4). One scheme reduces range queries to point queries.
Three schemes are based on the range tree and build upon the 1D
schemes by Demertzis et al. [14, 15] and by Faber et al. [18]. One is
based based on the 2D quadtree [21], another fundamental spatial
search data structure. The last scheme is a novel data structure
that is also based on the quadtree, with modifications designed to
reduce the number of search tokens needed at query time.

Our schemes employ range covering methods that reduce the
given range query to a set of precomputed queries whose answers
are stored in the multimap, extending to arbitrary dimensions the
1D single range cover (SRC), best range cover (BRC), and uniform
range cover (URC) [40] methods presented in [14, 15].

We identify a form of leakage that we call structure pattern, i.e.,
the pattern of co-occurrence of subqueries. Structure pattern leak-
age is inherent in schemes derived from standard multidimensional
search data structures (e.g., the 1D logarithmic scheme in [14],
which is derived from the range tree). We evaluate our schemes
with a theoretical complexity analysis, prototype implementation,
and experimental evaluation on real-world datasets (Section 6).

We summarize our contributions as follows:
2
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• We are the first to build a formal general framework for building
SSE schemes that support range search on multiple attributes.

• We build a number of schemes that fit our framework, are based
on data-independent data structures, and offer different trade-
offs between bandwidth, storage and security. Our schemes are
highly parallelizable and efficient in practice.

• We formally define the leakage of any scheme that fits our frame-
work and analyze the relative security of our schemes with ex-
amples of what information an adversary can recover given
scheme-specific leakage.

• We re-examine the relative security of the basic and uniform
range covers, in the context of token co-occurrence.

• We support our results with a prototype implementation, and
experimental evaluation on real-world databases.
Table 1 compares our concrete schemes for multi-attribute range

queries on an encrypted database with selected prior work.

2 PRELIMINARIES

Given integers 𝑎, 𝑏 with 𝑎 ≤ 𝑏, let [𝑎] = {1, 2, . . . , 𝑎} and let
[𝑎, 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏}. Let 𝑚1, . . . ,𝑚𝑑 be positive integers and
𝑑 ≥ 2. A 𝑑-attribute database, or a 𝑑-dimensional database,
𝐷 is an injective mapping from a domain D = [𝑚1] × · · · × [𝑚𝑑 ]
to a set of records of 𝑂 (1) size. We denote the set of records with
domain value 𝑥 = (𝑥1, . . . , 𝑥𝑑 ) ∈ D as 𝐷 [𝑥]. A 𝑑-dimensional
range query is a hyper-rectangle [𝑎1, 𝑏1] × · · · × [𝑎𝑑 , 𝑏𝑑 ] where
[𝑎𝑖 , 𝑏𝑖 ] ⊆ [1,𝑚𝑖 ] denotes the range in the 𝑖-th dimension.
PRFs. A pseudorandom function (PRF) family is a polynomial-
time computable algorithm 𝐹 that takes a key 𝐾 ∈ {0, 1}𝜆 and
an input 𝑥 ∈ {0, 1}∗ and returns 𝑦 ∈ {0, 1}𝑘 for some integer 𝑘 .
A PRF should be indistinguishable from random functions to any
polynomial-time adversary with all but negligible probability.

2.1 Classic Range-Supporting Data Structures

In this work, we use and build upon two classic range-supporting
data structures: the range tree and the quad tree.
Range Tree [3] A range tree 𝐺𝑅𝑇 on a 𝑑-dimensional domain is a
recursively defined tree. Start with a binary search tree on [𝑚1].
Each node 𝑣 in this tree is associated with a binary tree on [𝑚2].
More generally, there is an edge from each vertex of the binary trees
on [𝑚𝑖 ] to the root of a binary tree on [𝑚𝑖+1]. A dyadic range is
an interval with a power-of-two length ℓ = 2𝑘 and its start index is
1 mod ℓ . A binary search tree on [𝑚] can thus be viewed as a tree
whose nodes are each associated with a dyadic range in [𝑚]. The
source 𝑠 of 𝐺𝑅𝑇 is such that 𝑠 .𝑟𝑎𝑛𝑔𝑒 = D. For a node 𝑣 of a binary
tree on [𝑚𝑖 ], let 𝑣 .𝑑𝑦𝑎𝑑𝑖𝑐 denote the dyadic range in [𝑚𝑖 ] that 𝑣
is associated with. Let 𝑤.𝑟𝑎𝑛𝑔𝑒 = 𝑤1 × · · · ×𝑤𝑑 be the canonical
range of the root𝑤 of 𝑣 ’s binary subtree on [𝑚𝑖 ]. We have

𝑣 .𝑟𝑎𝑛𝑔𝑒 = 𝑤1 × ... ×𝑤𝑖−1 × 𝑣 .𝑑𝑦𝑎𝑑𝑖𝑐 × [𝑚𝑖+1] × ... × [𝑚𝑑 ] (1)

See Figure 2 for an example of 2D range tree.
RegionQuad Tree [21] The quadtree recursively subdivides the
domain into 2𝑑 quadrants or orthants. Unlike the range tree, each
node of the quadtree has four children, each corresponding to one
of the four quadrants covering the node’s range. See Figure 3 for
an example of a 2D quadtree.

2.2 EMM Definition and Security Model

EMM scheme syntax. Our range search schemes on encrypted data
are built using an encrypted multimap (EMM) scheme in a generic
manner. A multimap is a map that takes labels from a label space
L to sets of values from a value space V i.e. MM : L ↦→ 2V ∪ {⊥}
where ⊥ indicates an uninitialized value. Given a multimap MM,
we denote the set of values associated to label ℓ asMM[ℓ].

Definition 1 ([11]). An encrypted multimap scheme (EMM)
is a tuple of algorithms Σ = (Setup,Query, Eval,Result), where
• Σ.Setup: (probabilistic) takes a security parameter and a multimap,

and returns a secret key and an encrypted multimap.
• Σ.Query: takes a key and label, and returns a search token.
• Σ.Eval: takes an encrypted multimap and a search token, and

returns a ciphertext.
• Σ.Result: takes a key and a ciphertext, and returns a set of values.

Our label space L is the set of possible ranges over the desired
domain, and the value space V is the set of possible record values,
i.e. {0, 1}∗. We use the terms SSE and EMM interchangeably.
EMMsecuritymodel. The security of EMMs is traditionally proven
using the real-ideal paradigm [11]. The definition of adaptive secu-
rity for an EMM scheme Σ is parameterized by a leakage function
LΣ = (LΣ

S ,L
Σ
Q ) which describes the exact information that a pas-

sive adversary may learn about the underlying database. In particu-
lar, LΣ

S captures the leakage at setup and LΣ
Q captures the leakage

when a sequence of queries is issued. Using this security framework,
we refer to an adaptively (LΣ

S ,L
Σ
Q )-secure EMM scheme. The goal

is to prove that the EMM scheme is indistinguishable from an ideal
setting in which an algorithm simulates the response of the setup
and query algorithms using only the leakage. Adaptive security of
an EMM scheme is formally defined below.

Definition 2. Let Σ = (Setup,Query, Eval,Result) be an EMM
scheme and let LΣ = (LΣ

S ,L
Σ
Q ) be a tuple of stateful algorithms. For

distinct algorithms A, S, and C we describe two experiments below.
RealΣA (1

𝜆)
(1) The adversary A selects a multimap MM and gives it to the

challenger C.
(2) The challenger C runs the setup algorithm with 1𝜆 andMM as

input, (𝐾, EMM) ← Σ.Setup(MM). The challenger C sends the
encrypted multimap EMM to the adversary A.

(3) A adaptively chooses labels ℓ1, . . . , ℓpoly(𝜆) ; for each label ℓ𝑖 the
adversary sees the token 𝑡𝑖 ← Σ.Query(𝐾, ℓ𝑖 ).

(4) A eventually outputs a bit 𝑏 ∈ {0, 1}.
IdealΣA,S (1

𝜆)
(1) The adversary A selects a multimap MM and sends MM to

challenger C; C sends LΣ
S (MM) to the simulator S.

(2) The simulator S generates an encrypted multimap EMM and
gives it to the adversary A.

(3) A adaptively chooses labels ℓ1, . . . , ℓpoly(𝜆) ; for each label ℓ𝑖 , C
gives LΣ

Q (MM, ℓ𝑖 ) to S, and S outputs a token 𝑡𝑖 to A.
(4) A eventually outputs a bit 𝑏 ∈ {0, 1}.

Scheme Σ is adaptively LΣ-secure if for all polynomial-time
adversaries A, there exists a poly-time simulator S such that:

| Pr[RealΣA (1
𝜆) = 1] − Pr[IdealΣA,S (1

𝜆) = 1] | ≤ negl(𝜆) .
3
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Formalizing leakage EMMs are parameterized by different leak-
age functions, which output information about the underlying data
structure and its contents. Below, we define two common leakage
functions of EMM schemes relevant to this work. Let MM be a
multimap with label space L and volume space V.
• The search pattern reveals when two queries are equal. It takes

as input a multimap MM and a label ℓ ∈ L, and outputs an ID.
Without loss of generality we assume a 1-to-1 correspondence
between range queries and identifiers: SP(MM, ℓ) ↦→ 𝑖 ∈ [|L|] .

• The volume pattern of a label ℓ reveals the number of records
inMM[ℓ]: Vol(MM, ℓ) = |MM[ℓ] |.
In this paper we assume that the underlying EMM scheme is

response-hiding. Attacks on multi-dimensional range queries have
leveraged access and search pattern [19, 47], and we thus chose an
underlying EMM scheme that does not leak access pattern.

2.3 REMM Definition and Security Model

Definition 3. A range encrypted multimap scheme is a tu-
ple of four algorithms REMM = (Setup,Query, Eval,Result). The
syntax of the algorithms is defined as those in Definition 1 with the
following two changes:

• REMM.Setup takes as input a security parameter 1𝜆 and a multi-
attribute database 𝐷 and outputs a key 𝐾 and an encrypted data-
base EMM.

• REMM.Query takes as a input a key 𝐾 and a range query 𝑞 on
the domain of 𝐷 and outputs a token 𝑡 .

In order to support range queries, we take the label space of the
underlying multimap to be the set of all possible range queries and
the value space to be the set of all possible records.

For correctness we require that for all 𝑑-dimensional databases
𝐷 with domain D, all 𝑑-dimensional range queries 𝑞 over D, and
all security parameters 1𝜆 , we have {𝐷 [𝑥] : 𝑥 ∈ 𝑞} ⊆ 𝑉 , where
(𝐾, EMM) ← REMM.Setup(1𝜆, 𝐷), 𝑡 ← REMM.Query(𝐾,𝑞),𝐶 ←
REMM.Eval(EMM, 𝑡), and 𝑉 ← REMM.Eval(𝐾,𝐶).
REMM security model. We extend the security model in [14] to
encrypted multidimensional range schemes with games RealREMM

A
and IdealREMM

A,S . They are identical to the game in Definition 2 ex-
cept that in step (1) the adversary selects a multi-attribute database
𝐷 on domain D, in step (2) the adversary selects a polynomial
number of range queries on the domain D, and Σ is replaced by an
encrypted multi-dimensional range scheme REMM. The adaptive
security of REMM schemes is defined analogously to Definition 2.

3 GENERIC FRAMEWORK

We now present a framework for building range encrypted mul-
timap schemes from data structures for multidimensional range
search based on a search DAG. This framework generalizes many
1D range schemes and captures commonly used data-structures for
range search such as range-trees, kd-trees, and quad-trees. These
schemes provide a variety of trade-offs with respect to query size,
response size, storage, and security. We introduce the family of
range-supporting data structures and explain how to build an en-
crypted index from a data structure in this family. This framework
allows us to characterize entire classes of schemes. Furthermore,

we are able prove the properties of DAGs and range covers that are
necessary to guarantee e.g. that the response has no false positives.

Definition 4. A range-supporting data structure for a data-
base 𝐷 with domain D is a pair (𝐺, RC), where:

(i) 𝐺 is a connected directed acyclic graph (DAG).
(ii) Each vertex 𝑣 of𝐺 corresponds to a range on domain D, which

we denote as 𝑣 .𝑟𝑎𝑛𝑔𝑒 and refer to as a canonical range.
(iii) 𝐺 has a single source vertex 𝑠 whose range is the entire domain,

i.e., 𝑠 .𝑟𝑎𝑛𝑔𝑒 = D. For each non-sink (non-leaf) vertex 𝑣 of 𝐺 ,
we have 𝑣 .𝑟𝑎𝑛𝑔𝑒 =

⋃
(𝑣,𝑤) ∈𝐺 𝑤.𝑟𝑎𝑛𝑔𝑒 .

(iv) RC, called range covering algorithm, is a polynomial-time
algorithm that takes as input DAG 𝐺 and a range query 𝑞 on
domain D, and returns a subset𝑊 of vertices of 𝐺 , called a
cover of range 𝑞, such that the union of the canonical ranges
of𝑊 includes range 𝑞, i.e., 𝑞 ⊆ ⋃

𝑤∈𝑊 𝑤.𝑟𝑎𝑛𝑔𝑒 .

A range-supporting data structure can be used to perform range
queries by precomputing and storing the responses to all the canon-
ical ranges of the scheme. To perform a range query 𝑞, we use
the range covering function to find a cover𝑊 of 𝑞, retrieve the
responses to the canonical queries for the nodes of𝑊 , and return
their union as the response to 𝑞.

The response to a range query 𝑞 may have false positives, i.e.,
points of the database outside of range 𝑞, which will have to be
filtered out to obtain the exact response. To avoid false positives,
we use a data structure where the cover𝑊 returned by the range
covering function is such that the union of the canonical ranges of
𝑊 is equal to range 𝑞, i.e., 𝑞 =

⋃
𝑣∈𝑊 𝑣 .𝑟𝑎𝑛𝑔𝑒 .

The classic 1D range tree with the basic range cover (Algorithm 1)
is an example of a range-supporting data structure without false
positives. The theorem below gives a necessary condition for a
range-supporting data structure to be without false positives.

Theorem 1. Let (𝐺, RC) be a range-supporting data structure for
a domain D such that the answer to any range query has no false
positives. Then, for every domain point 𝑥 ∈ D, there is a node 𝑣 of 𝐺
with canonical range 𝑣 .𝑟𝑎𝑛𝑔𝑒 = 𝑥 .

Note that, for any DAG, there is a trivial range cover that returns
the source node of the DAG for every query, i.e., the trivial cover
consisting of the entire domain. In general, this algorithmwill cause
false positives. To avoid false positives one needs to use a cover
with multiple nodes. When the DAG is a tree, 𝑇 , whose leaves are
associated with the domain points (Theorem 1) and for each internal
node 𝑣 , the canonical ranges of the children of 𝑣 are a partition
of 𝑣 .𝑟𝑎𝑛𝑔𝑒 , Algorithm 1, the best range cover (BRC), produces a
cover of the query range with the minimum number of nodes. See
Figure 2 for an example.

Theorem 2. Let (𝑇, BRC) be a range-supporting data structure
whose DAG is a tree 𝑇 such that

(1) the canonical range of the leaves (sinks) of𝑇 are in 1-1 correspon-
dence with the domain points 𝑥 ∈ D;

(2) for each internal node 𝑣 of𝑇 , the canonical ranges of the children
of 𝑣 are a non-trivial partition of the canonical range of 𝑣 , i.e.,
𝑣 .𝑟𝑎𝑛𝑔𝑒 =

⋃
(𝑣,𝑤) ∈𝑇 𝑤.𝑟𝑎𝑛𝑔𝑒 and

⋂
(𝑣,𝑤) ∈𝑇 𝑤.𝑟𝑎𝑛𝑔𝑒 = ∅.

Then for any range query 𝑞, the cover returned by BRC has no false
positives and is unique and minimal (i.e. smallest number of nodes).

4



Range Search over Encrypted Multi-Attribute Data

Algorithm 1: BRC(𝑇, 𝑞, 𝑣)
1: // Invoked with BRC(𝑇,𝑞, 𝑠) , where 𝑠 is the root (source) of𝑇
2: Label 𝑣 as explored
3: 𝑊 ← ∅
4: if 𝑣.𝑟𝑎𝑛𝑔𝑒 ⊆ 𝑞 then

5: 𝑊 ← {𝑣 }
6: else
7: if 𝑣.𝑟𝑎𝑛𝑔𝑒 ∩ 𝑞 ≠ ∅ then
8: for (𝑣, 𝑤) ∈ 𝑇 and 𝑤 is not labeled as explored do

9: 𝑊 ←𝑊 ∪ BRC(𝑇,𝑞, 𝑤)
10: return 𝑊

Algorithm 2: SRC(𝐺,𝑞, 𝑣)
1: // Invoked with SRC(𝐺,𝑞, 𝑠) , where 𝑠 is the source of𝐺
2: Label 𝑣 as explored
3: 𝑐𝑎𝑛𝑑 ← null
4: if 𝑞 ⊆ 𝑣.𝑟𝑎𝑛𝑔𝑒 then
5: 𝑐𝑎𝑛𝑑 ← 𝑣

6: for (𝑣, 𝑤) ∈ 𝐺 and 𝑤 is not labeled as explored do

7: {𝑡 } ← SRC(𝐺,𝑞, 𝑤)
8: if |𝑡 .𝑟𝑎𝑛𝑔𝑒 | < |𝑐𝑎𝑛𝑑.𝑟𝑎𝑛𝑔𝑒 | then
9: 𝑐𝑎𝑛𝑑 ← 𝑡

10: return {𝑐𝑎𝑛𝑑 }

Corollary 1. Let (𝑇, BRC) be a range-supporting data structure
whose DAG is a tree 𝑇 such that only (2) holds. For any range query
𝑞 that is the union of canonical ranges of leaves, the cover returned
by BRC has no false positives and is the unique minimal cover.

Observe that for queries of the same size, BRC can produce covers
of different sizes (see Figure 2). Cover size may reveal some infor-
mation about the location of the queried range. Kiayias et al. [40]
introduce the notion of a uniform range cover (URC) to resolve
this problem by making the size of the tokenset depend only on
the size of the range, and not on its location in the domain. Let URC
denote the uniform range cover algorithm for 1D ranges from [40].
It takes as input a 1D range tree 𝐺𝑅𝑇 , a range query 𝑞, and the
source node of 𝑠 , and returns the uniform range cover of 𝑞 in 𝐺𝑅𝑇 .
One way to compute URC on 𝑞 is to compute the best range cover
of 𝑞 and then decompose the cover’s nodes into their children until
the desired number of nodes is reached.

When false positives are acceptable in the query answer, it may
be desirable to have a cover consisting of a single node, which is
accomplished by Algorithm 2, called single range cover (SRC).

Theorem 3. Let (𝐺, SRC) be a range-supporting data structure.
For any range query 𝑞, the cover 𝑣 returned by SRC minimizes the
number of domain points of the cover outside of 𝑞, i.e. the number of
potential false positives.

The theorem can be proven by showing that at the end of every
iteration, 𝑐𝑎𝑛𝑑 (Algorithm 2) is a cover of 𝑞 that minimizes the
number of false positives. The proof can be found in the full version.

Since many different domain-dependent data structures can be
encoded as a DAG with the properties of Definition 4, we develop
a generic scheme that supports range queries given any range-
supporting data structure and which makes black box use of an

GenericRS(1𝜆, 𝐷,D, Σ, (𝐺, RC))

Setup(1𝜆, 𝐷) :
1 : Initialize empty multimapMM.
2 : for node 𝑤 ∈ 𝐺 do
3 : MM[𝑤.𝑟𝑎𝑛𝑔𝑒 ] ← {𝐷 [𝑥 ] : 𝑥 ∈ 𝑤.𝑟𝑎𝑛𝑔𝑒 }
4 : (𝐾, EMM) ← Σ.Setup(1𝜆,MM) ; return (𝐾, EMM)
Query(𝐾,𝑞) :
5 : 𝑊 ← ∅; t← ∅
6 : 𝑊 ← RC(𝐺,𝑞)
7 : for 𝑤 ∈𝑊 do t← t ∪ Σ.Query(𝐾, 𝑤.𝑟𝑎𝑛𝑔𝑒)
8 : permute and return t
Eval(t, EMM) :
9 : c← ∅; for 𝑡 ∈ t do c← c ∪ Σ.Eval(𝑡, EMM)

10 : return c
Result(𝐾, c) :
11 : v← ∅; for 𝑐 ∈ c do v← v ∪ Σ.Result(𝐾,𝑐)
12 : return v

Figure 1: Algorithmof the generic range encryptedmultimap scheme

(Definition 3) for a database 𝐷 with domain D built from an en-

crypted multimap scheme Σ (Definition 1) and a range-supporting

data structure (𝐺, RC) (Definition 4).

SSE scheme. We give implementation details of the SSE scheme in
Section 3.3 and describe our generic scheme below.

Given a range-supporting data structure (𝐺, RC) for a database
𝐷 over domain D, a range encrypted multimap scheme can be
derived as follows. The client initializes a multimap MM and for
every node 𝑣 of 𝐺 sets MM[𝑣 .𝑟𝑎𝑛𝑔𝑒] ← {𝐷 [𝑥] : 𝑥 ∈ 𝑣 .𝑟𝑎𝑛𝑔𝑒}.
The resulting multimap is encrypted using the underlying EMM
and outsourced to the server. To perform a range query 𝑞, the
client computes RC(𝐺,𝑞, 𝑠) to obtain a cover 𝑊 of 𝑞. Using the
underlying EMM scheme, the client computes search token 𝑡𝑤 for
the canonical range𝑤.𝑟𝑎𝑛𝑔𝑒 of each node𝑤 ∈𝑊 . This set of tokens
t is permuted to remove any ordering information stemming from
the range covering algorithm. The set t is then sent to the server,
who then retrieves the corresponding encrypted sets of records (i.e.,
the encrypted responses for the canonical ranges) and returns them
to the client.Generic range encrypted multimap scheme scheme
GenericRS(1𝜆, 𝐷,D, Σ, (𝐺, RC)) is formally described in Figure 1.

3.1 Security

Our generic range encrypted multimap scheme built from a range-
supporting data structure leaks the size of the domain and the total
size of the entries stored in the EMM. For each query, it leaks the
tokenset and the sizes of the partial responses of each token. Thus,
this scheme gives rise to an additional leakage resulting from the
chosen DAG and range covering scheme. As one of the contribu-
tions of this work, we extend the notion of “partitioning” of IDs
from Demertzis et al. [14], which refers specifically to the 1D range
tree scheme with an underlying EMM scheme that leaks search
and access pattern, and introduce structure pattern leakage, a
general and broadly applicable characterization of leakage from
queries in arbitrary dimensions on a scheme instantiated with any
range-supporting data structure (𝐺, RC) and any EMM scheme.
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Definition 5. Let (𝐺, RC) be a range-supporting data structure
for a 𝑑-dimensional database 𝐷 with domain D, let MM be the mul-
timap resulting fromGenericRS, and let Σ be the encrypted multimap
scheme. Let 𝑠 be the source node of 𝐺 . The structure pattern of a
range query 𝑞 is

Str(𝐷,𝑞) ↦→ (LΣ
Q (MM, 𝑣 .𝑟𝑎𝑛𝑔𝑒))𝑣∈RC(𝐺,𝑞) .

The leakage of GenericRS is formally characterized in the fol-
lowing theorem.

Theorem 4. Given an adaptively secure EMM scheme Σ that
leaks search pattern and volume pattern, and a range-supporting
data structure (𝐺, RC) for a database 𝐷 with domainD of size𝑚, the
generic range encrypted multimap scheme GenericRS built from Σ
and (𝐺, RC) is adaptively (LS,LQ )-secure, where:

LS (𝐷,D) = LΣ
S (MM)

LQ (𝐷,𝑞 (1) , . . . , 𝑞 (𝑡 ) ) = (Str(𝐷,𝑞 (𝑖) ))𝑖∈[𝑡 ] .

We prove this theorem using a standard hybrid argument. The
goal is to find a sequence of games that starts in the real world and
ends in the ideal world; there must be a polynomial number of such
games in the sequence and they must all be indistinguishable from
each other with all but negligible probability.

Proof. We construct a stateful simulatorS for Setup andQuery.

EMM← S.SimSetup(1𝜆,LΣ
S (MM))

(1) Invoke the simulator of the underlying EMMscheme onLΣ
S (MM)

to initialize an encrypted multimap EMM.
(2) Return EMM.

Resp← S.SimQuery(1𝜆, (Str(𝐷𝑐𝑞 (𝑖) ))𝑖∈[𝑡 ] )
(1) Initialize an empty set Resp.
(2) For each LΣ

Q (MM, 𝑣 .𝑟𝑎𝑛𝑔𝑒) such that 𝑣 ∈ RC(𝐺, 𝑠, 𝑞 (𝑡 ) ):
(a) Simulator S uses the RC algorithm and invokes the simu-

lator of the EMM scheme Σ on LΣ
Q (MM, 𝑣 .𝑟𝑎𝑛𝑔𝑒), obtains

the response for 𝑣 .𝑟𝑎𝑛𝑔𝑒 and adds it to Resp.
Note that the simulator uses RC and 𝐺 to correctly simulate the
structure pattern.

It remains to show that for all probabilistic poly-time adversaries
A, the probability | Pr[RealGenericRSA = 1] −Pr[IdealGenericRSA,S = 1] |
is negligibly small. We define the following two games and conclude
with a hybrid argument.

Hyb0: This is identical to RealGenericRSA .
Hyb1: This is identical to Hyb0, except that instead of invoking

Σ.Setup and Σ.Query we invoke the simulator of the un-
derlying EMM scheme.

| Pr[Hyb0] − Pr[Hyb1] | is negligibly small, otherwise the se-
curity of the underlying EMM scheme would be broken with non-
negligible probability. Since the distribution of Hyb1 is identical
to IdealGenericRSA this concludes our proof. □

Note that the leakage of the generic scheme is heavily dependent
on the DAG and range covering algorithm used.

3.2 Choosing the Data Structure

One important choice we made is using data-independent data
structures. This stands in contrast to the long line of work that
has developed more efficient data structures for plaintext databases,
such as R-trees (e.g. [1, 2, 30, 37, 56]) and learned indexes (e.g. [43, 46,
55]). That said, the leakage profile of the generic scheme (GenericRS)
is highly dependent on the underlying DAG and range covering
algorithm. Using data-dependent data structures would inherently
leak more information. For example, consider a 1D database 𝐷 that
can be more efficiently encrypted using a range-supporting data
structure whose DAG is an unbalanced binary tree that decom-
poses each canonical range [𝑖, 𝑗] into subranges [𝑖, ( 𝑗 − 𝑖 + 1)/2]
and [( 𝑗 − 𝑖 + 1)/2 + 1, 𝑗]. If the adversary were able to infer the
tree structure, then it would additionally learn something about the
data distribution of the underlying records. Many private 1D range
schemes opt for balanced range trees for this reason [14, 15, 18].
We leave open the question of reconciling the development of data-
dependent data structures and leakage minimization.

3.3 Implementing an EMM

We instantiate our schemes with an EMM scheme. In our imple-
mentation, we use Π𝑏𝑎𝑠 from [9]. To query a label with Π𝑏𝑎𝑠 , the
client computes two per-label keys 𝐾1∥𝐾2 which are sent to the
server as the search token. For each 𝑖 ∈ [𝑛] in increasing order,
the server computes the PRF value 𝐹 (𝐾1, 𝑖) and uses it to retrieve
the corresponding encrypted value. The server then uses 𝐹 (𝐾2, 𝑖)
to decrypt the value which it then returns to the client. It incre-
ments 𝑖 and repeats the look up until ⊥ is returned. We can turn
this scheme intro a response-hiding one with the following, simple
modification: we instead use a separate key to encrypt the values.
This key is kept private and the values are decrypted client-side.

Now, we can use the specific range-supporting data structure to
create a plaintext multimap, which maps each canonical range to
the records inside that range. This plaintext multimap is encrypted
using an EMM scheme. Whenever the client issues a query, they
use an appropriate range covering algorithm to determine which
plaintext canonical ranges they need to query. Then, they can use
the EMM scheme to compute search tokens and decrypt the result.

4 SCHEMES

We now give concrete examples of schemes that fit the general
framework; these schemes include generalizations of schemes that
were presented by Demertzis et al. [14, 15] and Faber et al. [18]. We
present six schemes for range search on encrypted databases. All
the schemes are instances of range encrypted multimap schemes
based on range-supporting data structures presented in Section 3.
The schemes support multidimensional range searches on an arbi-
trary fixed number of dimensions (attributes), 𝑑 . The first scheme
we present is the linear scheme, which provides optimal server
storage at the expense of client bandwidth. In order to reduce the
required bandwidth, we turn to classic data structures for geometric
searching, specifically the range tree and the quadtree. Both data
structures are an improvement upon the linear scheme’s bandwidth,
and offer trade-offs for bandwidth and storage. In order to query our
data structures, we have developed the following multi-dimensional
range covering techniques, extending 1D covers in novel ways: (i)
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Best Range Cover (BRC), which optimizes both required query band-
width and false positives; (ii) Uniform Range Cover (URC), which
in the 1D case, Demertzis et al. [14, 15] suggest is safer than BRC
at a small bandwidth expense; and (iii) Single Range Cover (SRC),
which is the most secure. Finally, we develop variations of our data
structures to minimize the false positive rate when a SRC is used.

For completeness, we also include the multi-dimensional qua-
dratic scheme in Table 1. This scheme comprises of a DAG whose
nodes are in 1-1 correspondence with the set of all possible range
queries, together with either BRC or SRC. While this scheme offers
the best possible security, it also requires quadratic storage and
hence we omit it from our formal analysis.

Following the notation used throughout the paper, we denote
the database with 𝐷 and the domain with D. We denote their sizes
as 𝑛 = |𝐷 | and𝑚 = |D|. The number of domain points in a query
range is referred to as range size and denoted with 𝑅. The number
database of records within a query range is referred to as result
size and denoted with 𝑟 . In our schemes, a query is issued by the
client to the server as a tokenset. We refer to the number of search
tokens in the tokenset as the query size. A response is returned by
the server to the client as a collection of encrypted sets of records
(one set per search token), whose total number of records is referred
to as response size. Note that the response size is equal to the result
size plus the number of false positives returned.
4.1 Linear Scheme

We first present a simple scheme, called linear scheme, that
offers the smallest storage at the expense of the least security.

The linear scheme indexes each record by its domain value. In-
tuitively, every time the client wishes to query a range 𝑟 , they send
a search token for every domain point of 𝑟 to the server. The linear
scheme’s DAG, 𝐺𝐿 , is a star comprising a source 𝑠 connected to𝑚
sinks.We have that 𝑠 .𝑟𝑎𝑛𝑔𝑒 = D and each sink 𝑣 is associated with a
distinct domain point 𝑥 ∈ D such that 𝑣 .𝑟𝑎𝑛𝑔𝑒 = 𝑥 . For this scheme,
the generic BRC algorithm takes 𝑂 (𝑚) time. To increase efficiency,
we use the linear range covering algorithm (LRC), where in a pre-
processing step, the sinks of𝐺𝐿 are stored in a 𝑑-dimensional array,
𝑉 [D], indexed by its domain point. We summarize the scheme and
its complexity with the following theorem.

Theorem 5. Let𝐺𝐿 be the star DAG for a database𝐷 of size𝑛 on a
𝑑-dimensional domainD of size𝑚, and let LRC be the linear covering
algorithm defined above. Then (𝐺𝐿, LRC) is a range-supporting data
structure (Definition 4) and the range encrypted multimap scheme
derived from it (Definition 5) uses space𝑂 (𝑛 +𝑚). Also, a query with
range size 𝑅 and result size 𝑟 has query size 𝑅 and response size 𝑟 .

Proof. It is straightforward to verify properties (𝑖) to (𝑖𝑣). It
remains to show that algorithm LRC runs in polynomial-time when
invoked on the source of 𝐺𝐿 . LRC is implemented such that the
sinks of 𝐺𝐿 are stored in an array, 𝑉 [D], indexed by domain point.
Let 𝑞 be any range query on the domain. Initializing an empty set
𝑊 can be done in constant time. Looping through 𝑥 ∈ 𝑞 and adding
𝑉 [𝑥] to𝑊 takes time 𝑂 (𝑅), where 𝑅 is the size of the range 𝑞.

The linear scheme generates a multimap with𝑚 labels, one for
each sink in 𝐺𝐿 . Each record is stored once with its corresponding
point value. The index has size 𝑛+𝑚. When the client issues a range
query of size 𝑅, the client computes 𝑅 search tokens and sends them
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Figure 2: Example of a range tree for a database over a [4] × [4]
domain. The binary tree over the first dimension is shownwith black

thick lines and the binary trees over the second dimension are shown

with gray thin lines. Using BRC𝑅𝑇 , query range 𝑞′ = [2, 4] × [2, 3]
(in blue) corresponds to cover {𝑣1, 𝑣2, 𝑤1, 𝑤2 } and query range 𝑞′′ =
[3, 4] × [2, 3] (in red) corresponds to cover {𝑤0, 𝑤2 }. The queries have
the same size, but correspond to best range covers of different sizes.

to the server. Each search corresponds to the domain points of the
query and thus the response has size 𝑂 (𝑟 ). □

The proofs for the analogous theorems of the other schemes use
similar techniques and we thus defer their proofs to the full version.

4.2 Range-BRC and Range-URC Schemes

In an effort to decrease the bandwidth of the linear scheme, we
present the Range-BRC and Range-URC schemes based on the
range tree [3].

The multi-dimensional range tree for 𝑑 > 1 does not satisfy
the properties of the tree in Theorem 2. The multi-dimensional
range tree can be viewed as being composed of subtrees that sub-
divide the domain along different dimensions; these subtrees do
satisfy the properties of Theorem 2. For example, note that the
three children of the root in Figure 2 correspond to the ranges
{𝑎𝑏𝑐𝑑𝑒 𝑓 𝑔ℎ}, {𝑖 𝑗𝑘𝑙𝑚𝑛𝑜𝑝}, {𝑎𝑏𝑐𝑑𝑒 𝑓 𝑔ℎ𝑖 𝑗𝑘𝑙𝑚𝑛𝑜𝑝} and thus do not cor-
respond to a partition of the root’s canonical range. However, the
children outlined in bold correspond to the ranges {𝑎𝑏𝑐𝑑𝑒 𝑓 𝑔ℎ} and
{𝑖 𝑗𝑘𝑙𝑚𝑛𝑜𝑝}, and belong to the same subtree (which divides the
domain along the first dimension). Hence they form a partition of
the root’s canonical range.

We thus design a best range cover for multi-dimensional range
trees, Algorithm 3 (BRC𝑅𝑇 ), that calls BRC as a subroutine on these
subtrees. In particular, as we traverse the subtrees starting from
the root, we compute BRC of the range along the corresponding
dimension; this cover corresponds to a collection of subtrees rooted
at each vertex in the cover. We then recurse and apply BRC to each of
these subtrees, until we reach the final set of subtrees that partition
the range along the 𝑛-th dimension. For example, in Figure 2, we
have query 𝑞′′ = [3, 4] × [2, 3]. First, we find the best range cover
in the bold tree, which corresponds to the range along the first
dimension [3,4], which is node {𝑖 𝑗𝑘𝑙𝑚𝑛𝑜𝑝}. Then, we find the best
range cover in the subtree branching off of {𝑖 𝑗𝑘𝑙𝑚𝑛𝑜𝑝}, which
corresponds to the range along the second dimension [2,4], which
is nodes𝑤0 and𝑤2.

Theorem 6. Let 𝐺𝑅𝑇 be a multi-dimensional range tree. For any
range query 𝑞, the cover returned by BRC𝑅𝑇 has no false positives and
is the unique minimal cover.
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Algorithm 3: BRC𝑅𝑇 URC𝑅𝑇 (𝑇, 𝑞, 𝑣)
1: // Invoked with input (𝑇,𝑞, 𝑠) , where 𝑠 is the source of𝑇
2: 𝑊 ← {𝑣 }
3: 𝑞1 × · · · × 𝑞𝑑 ← 𝑞

4: for 𝑖 ∈ [𝑑 ] do
5: 𝑊 ′ ← ∅
6: for 𝑤 ∈𝑊 do

7: 𝑤1 × · · · × 𝑤𝑑 ← 𝑤.𝑟𝑎𝑛𝑔𝑒

8: 𝑞 ← 𝑤1 × · · · × 𝑤𝑖−1 × 𝑞𝑖 × [𝑚𝑖+1 ] × · · · × [𝑚𝑑 ]
9: Let𝑇 ⊆ 𝑇 be the subtree on [𝑚𝑖 ] rooted at 𝑤.
10: 𝑊 ′ ←𝑊 ′ ∪ BRC(𝑇,𝑞, 𝑤) 𝑊 ′ ←𝑊 ′ ∪ URC(𝑇,𝑞, 𝑤)
11: 𝑊 ←𝑊 ′

12: return 𝑊
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Figure 3: A quadtree for a database on domain [1, 4] × [1, 4]. With

BRC, query range 𝑞 = [2, 4] × [1, 2] (in red) corresponds to the cover

{𝑣1, 𝑣2, 𝑤0 }.
We can prove the statement inductively by showing that at the

end of the 𝑖-th iteration, we have the best range cover of the first 𝑖
dimensions of the queried range. The proof follows from standard
methods in geometric search and can be found in the full version.

We extend the 1D URC algorithm to higher dimensions. Our
uniform range cover algorithm for multi-dimensional range trees,
denoted URC𝑅𝑇 , is identical to BRC𝑅𝑇 except that on line 10, it calls
URC as a subroutine instead of BRC (See Algorithm 3 for psuedocode).

Theorem 7. Let𝐺𝑅𝑇 be a range tree on [𝑚1]×· · ·× [𝑚𝑑 ] and 𝜎 be
any permutation on [𝑑]. If 𝑞 is a range query of size 𝑅 = 𝑅1× · · ·×𝑅𝑑
and 𝑞′ is a range query of size 𝑅 = 𝑅𝜎 (1) × · · · × 𝑅𝜎 (𝑑) , then their
respective URC𝑅𝑇 covers𝑊 and𝑊 ′ are such that |𝑊 | = |𝑊 ′ |.

We recall that, given a 1D range tree 𝐺𝑅𝑇 on domain [𝑚], and
range queries 𝑞 and 𝑞′ of the same size, then URC returns covers of
the same size for 𝑞 and 𝑞′ [40]. We prove Theorem 7 by extending
the 1D version to arbitrary dimensions. The proof can be found in
the full version. We now state and prove a theorem summarizing
the complexity of the range tree scheme.

Theorem 8. Let 𝐺𝑅𝑇 be the range tree for a database 𝐷 of size 𝑛
on a 𝑑-dimensional domain D of size𝑚, and let BRC𝑅𝑇 and URC𝑅𝑇
be the range covering algorithms defined in Section 4.2. We have that
(𝐺𝑅𝑇 , BRC𝑅𝑇 ) and (𝐺𝑅𝑇 , URC𝑅𝑇 ) are range-supporting data struc-
tures (Definition 4) and the range encrypted multimap schemes de-
rived from them (Definition 5) use space 𝑂 (𝑛 +𝑚 log𝑑𝑚). Also, a
query with range size 𝑅 and result size 𝑟 has query size 𝑂 (log𝑑 𝑅)
and response size 𝑟 .

4.3 Quad-BRC Scheme

Webase ourQuad-BRC scheme on the region quadtree. The client
computes a region quadtree 𝐺𝑄𝑇 = (𝑉 , 𝐸) on domain D. 𝐺𝑄𝑇 is a
2𝑑 -ary tree with one source vertex 𝑠 ∈ 𝑉 such that 𝑠 .𝑟𝑎𝑛𝑔𝑒 = D.

Each node 𝑣 ∈ 𝑉 is associated with a 𝑑-dimensional hypercube
𝑤.𝑟𝑎𝑛𝑔𝑒 and the canonical range of each child of 𝑣 corresponds
to one of 2𝑑 equal-sized partitions of 𝑣 .𝑟𝑎𝑛𝑔𝑒 . 𝐺𝑄𝑇 will have 𝑚
leaves, which are in 1-1 correspondence with the domain values
(see Figure 3).

To carry out a range query 𝑞 on the database the client computes
the best range cover BRC(𝐺𝑄𝑇 , 𝑞, 𝑠). We now state and prove a
theorem summarizing the complexity of the quadtree scheme.

Theorem 9. Let𝐺𝑄𝑇 be the quadtree built over 𝑑-dimensional do-
mainD of size𝑚 and let BRC be the range covering algorithm defined
in Algorithm 1. We have that (𝐺𝑄𝑇 , BRC) is a range-supporting data
structure (Definition 4). Also, to store a database of size 𝑛 on domain
D, the range encrypted multimap scheme built from (𝐺𝑄𝑇 , BRC) ac-
cording to Theorem 4 uses space𝑂 (𝑚 + 𝑛 log𝑚) and has query token
size𝑚

𝑑−1
𝑑 and ciphertext response size 𝑟 , where 𝑟 is the size of the

plaintext query response.

4.4 Range-SRC Scheme

One downside of the previous schemes is that the client must often
generate multiple search tokens. To overcome this, we consider
single range covers that cover the range with only one node at the
expense of false positives. Naively covering the range can result
in a worst case false positive of 𝑂 (𝑚) in both the range tree and
quadtree constructions. Demertzis et al. propose injecting a small
number of additional nodes into the range tree to create a tree-like
DAG (TDAG) which reduces the false positive rate to 𝑂 (𝑅).

To build a TDAG in one dimension, build a range tree over the
domain [𝑚] and inject one extra node between every two nodes at
every level of the tree. Then add edges from this node to the two
nodes below it in the next level and add an edge from the node
directly above in the previous level. Given a TDAG over domain
[𝑚] and a range query 𝑞 ⊆ [𝑚] of size 𝑅, there is a set of nodes
that cover 𝑞 whose canonical ranges sum to size 𝑂 (𝑅) [14].

We can extend this to multiple dimensions in the following
manner. Let D = [𝑚1] × · · · × [𝑚𝑑 ] be the domain. Build a range
tree over D, then for each subtree on [𝑚𝑖 ] for 𝑖 ∈ [𝑑], inject the
nodes as described before (See Figure 4a). To issue a range query,
the client uses Algorithm 2 (SRC).

Corollary 2. Given 𝑑 TDAGs constructed over the domain D =

[𝑚1] × · · · × [𝑚𝑑 ] and any range query 𝑞 ⊆ D of size 𝑅, there is a set
of nodes that cover 𝑞 and whose canonical ranges sum to size 𝑂 (𝑅).

A TDAG is only a constant factor larger than the original range
trees and hence the storage requires𝑂 (𝑚+𝑛 log𝑑𝑚) space. To query
this scheme, the client generates a single search token, yielding a
query complexity of 1. By Corollary 2, the total number of false
positives for any given query is𝑂 (𝑅) where𝑅 is the size of the query
issued. We state and prove the following theorem summarizing the
complexity of the Range-SRC scheme.

Theorem 10. Let 𝐺𝑅𝑆 be the TDAG built over 𝑑-dimensional do-
main D of size𝑚 and let SRC be the single range covering algorithm
defined in Algorithm 2.We have that (𝐺𝑅𝑆 , SRC) is a range-supporting
data structure (Definition 4). Also, to store a database of size 𝑛 on do-
mainD, the range encrypted multimap scheme built from (𝐺𝑅𝑆 , SRC)
according to Theorem 4 uses space 𝑂 (𝑚 + 𝑛 log𝑑𝑚) and has query
token size 1 and ciphertext response size 𝑟 + 𝑅, where 𝑟 is the size of
the plaintext query response and 𝑅 is the size of the queried range.

8



Range Search over Encrypted Multi-Attribute Data

4.5 Quad-SRC Scheme

We present the Quad-SRC scheme, which is derived from the
quadtree, supports single range covers at the expense of𝑂 (𝑅𝑑 ) false
positives, and also extends the one-dimensional TDAG scheme [14]
to higher dimensions. The response size overhead is an inherent
limitation of schemes that index the domain using only hypercubes.

Given a multi-dimensional database 𝐷 with domain D we build
the data structure the bottom up, starting with 𝑚 leaves corre-
sponding to points of domain D. At level 𝑗 we add nodes for all
hypercubes of size 2𝑛−𝑗 tiling the domain, as well as each of these
hypercubes shifted by 2𝑛−𝑗−1 along each dimension. For each node
at level 𝑗 , we add directed edges to all nodes in level 𝑗 − 1 which
it covers. We recursively build the structure until we reach the
(source) root node that corresponds to the entire domain. Each
node 𝑣 in this DAG is associated with a 𝑑-dimensional hypercube.
To execute a range query, the client computes its SRC cover.

The Quad-SRC scheme is illustrated in Figure 4b. Belowwe prove
that the false positive rate is 𝑂 (𝑅𝑑 ) and the QDAG size is 𝑂 (𝑚).

Lemma 1. Given QDAG 𝐺𝑄𝑆 = (𝑉 , 𝐸) over domain D = [𝑚1] ×
· · ·× [𝑚𝑑 ] and any range 𝑞 inD of size 𝑅 = 𝑅1×· · ·×𝑅𝑑 , there exists
a vertex 𝑣 ∈ 𝑉 such that 𝑞 ⊆ 𝑣 .𝑟𝑎𝑛𝑔𝑒 and 𝑣 .𝑟𝑎𝑛𝑔𝑒 has size 𝑂 (𝑅𝑑 ).

Proof. Recall that the number of nodes in a quadtree scheme is
𝑂 (𝑚). In the quadtree, at the 𝑗-th level, each of the 𝑑 dimensions is
partitioned into 2𝑛−𝑗 axis-aligned segments. Thus, at the 𝑗-th level,
we have partitioned the domain into 2(𝑛−𝑗)𝑑 hypercubes.

In the QDAG, we shift each hypercube by the legnth of half
of the edge of the hypercube along each dimension. Thus at the
𝑗-th level of the QDAG we have at most 2𝑑2(𝑛−𝑗)𝑑 = 𝑂 (2(𝑛−𝑗)𝑑 )
hypercubes. Each hypercube corresponds to a node in the QDAG,
so size of the QDAG is upper bounded by a constant factor of 2𝑑
times the size of the region quadtree. □

Lemma 2. Let 𝐷 be a database with 𝑛 records and a domain D of
size𝑚. Then the size of the QDAG on D is 𝑂 (𝑚).

Proof. Let 𝑞 be any range query of size 𝑅. We will show that
this range can be covered by a vertex 𝑣 ∈ 𝑉 such that 𝑣 .𝑟𝑎𝑛𝑔𝑒 has
size 𝑂 (𝑅𝑑 ). First note, there exists some minimal integer 𝑗 such
that for all 𝑖 , 𝑅𝑖 ≤ 2𝑗 ≤ 2𝑅𝑖 .

Case 1: range query 𝑞 is covered by a vertex 𝑣 ∈ 𝑉 such that
𝑣 .𝑟𝑎𝑛𝑔𝑒 has size 2𝑗𝑑 . Thus, 𝑞 is covered by a range of size 𝑂 (𝑅𝑑 ).

Case 2: range query 𝑞 is not covered by a vertex 𝑣 ∈ 𝑉 such
that 𝑣 .𝑟𝑎𝑛𝑔𝑒 has size 2𝑗𝑑 . Along each dimension, the range 𝑞 must
intersect with at most 2 distinct ranges 𝑣 .𝑟𝑎𝑛𝑔𝑒, 𝑣 ′.𝑟𝑎𝑛𝑔𝑒 each of
size 2𝑗𝑑 where 𝑣, 𝑣 ′ ∈ 𝑉 . Since ranges of the same size are shifted
by lengths of 2𝑗−1 there must exist a hypercube inD with edges of
length 2𝑗 + 2𝑗−1 that completely contains 𝑞. Note this hypercube
does not correspond to a vertex of 𝐺𝑄𝑆 .

Let 𝑞′ = [𝑎1, 𝑏1] × · · · × [𝑎𝑑 , 𝑏𝑑 ] define this hypercube. Consider
an edge [𝑎𝑖 , 𝑏𝑖 ] of this hypercube. For each 𝑖 ∈ [𝑑] there is a set of
vertices 𝑉𝑖 ⊂ 𝑉 such that for all 𝑣 ∈ 𝑉𝑖 , 𝑣 .𝑟𝑎𝑛𝑔𝑒 is of size 2( 𝑗+1)𝑑
and it covers [𝑎𝑖 , 𝑏𝑖 ]. In the 𝑖-th dimension 𝑣 .𝑟𝑎𝑛𝑔𝑒 must either start
at 𝑎𝑖 or at 𝑎𝑖 − 2𝑗 . Since the hypercubes of size 2( 𝑗+1)𝑑 are tiling
the entire domain with shifts of 2𝑗 along each dimension we can
thus find a vertex 𝑣∗ ∈ 𝑇 that contains 𝑞′ and thus also contains 𝑞.
The range 𝑣∗ .𝑟𝑎𝑛𝑔𝑒 has size 2( 𝑗+1)𝑑 = 𝑂 (2𝑗𝑑 ) = 𝑂 (𝑅𝑑 ). □

We now state and prove a theorem summarizing the complexity
of the Quad-SRC scheme. The proof is similar to that of Theorem 10
and has thus been omitted.

Theorem 11. Let 𝐺𝑄𝑆 be the QDAG for a database 𝐷 of size 𝑛
on a 𝑑-dimensional domain D of size𝑚, and let SRC be the linear
covering algorithm defined in Algorithm 2. We have that (𝐺𝑄𝑆 , SRC)
is a range-supporting data structure (Definition 4) and the range
encrypted multimap scheme derived from it (Definition 5) uses space
𝑂 (𝑚 + 𝑛 log𝑚). Also, a query with range size 𝑅 and result size 𝑟 has
query size 1 and response size 𝑂 (𝑟 + 𝑅2).

5 PERFORMANCE AND SECURITY

5.1 Performance

Parallelization. Our schemes are highly parallelizable both at
setup and at query time. Recall, that our framework decomposes the
domain into subranges and then constructs a mapping from each
subrange to its corresponding records. This map can be encrypted
using an EMM scheme that supports parallel setup by partition-
ing the label-value pairs and encrypting each batch on a different
core. Search can also be parallelized in two distinct ways. Given
a collection of search tokens, we can process the search for each
token using a different core. Furthermore, since each search token
may correspond to multiple records, the search for each individ-
ual search token can also be parallelized, e.g. by selecting an SSE
scheme that supports concurrent access requests [9, 35].
Complexity. Table 1 compares the schemes in this section. The
Range-SRC and Quad-SRC schemes have optimal query size but
allow false positives. The other schemes avoid false positives but
incur query size overhead. Notably, all the schemes have the same
asymptotic storage and search time as their corresponding non-
encrypted data structures. To achieve efficient client query time, the
range cover algorithm builds the tokenset without instantiating the
scheme’s DAG, which is implicitly defined by the parameters of the
domain. Thus, we can assign IDs to the nodes of the DAG so that the
ID of each node in the cover is computed in𝑂 (1) amortized time and
space. Hence, the query time and space at the client is proportional
to the query size (to generate the tokenset) plus the response size
(to decrypt the received response). The query execution time at the
server is also proportional to the query size plus the response size,
since accessing the partial response associated with a token takes
𝑂 (1) expected time with an efficient multimap implementation. The
client space is𝑂 (1), plus𝑂 (log𝑑𝑚) temporary space for the Range-
BRC/URC schemes and 𝑂 (𝑚

𝑑−1
𝑑 ) temporary space for the Quad-BRC

scheme when a query is issued, and temporary space proportional
to the response size when the response is received.
Extensions. Our work specifically addresses range queries, which
can be viewed as conjunctions of predicates, each associated with
a 1D range query. However, our techniques support a broader class
of queries involving a combination of conjunctions, disjunctions,
and negations of 1D queries over different subsets of attributes. For
example, the client can represent the disjunction of two 1D range
queries (or the negation of a 2D range query) as the disjunction of
four 2D range queries, which can be executed by taking the union
of the responses to four 2D range queries. The client can use our
query algorithm to find the search tokens for such queries.
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(a) Illustration of a 2D TDAG. (b) Illustration of a 2D QDAG

Figure 4: Examples of (a) a TDAG and (b) a QDAG for a [4] × [4] database. The inserted nodes are dark gray and the inserted edges are black.

Using a classic result from Boolean algebra, an arbitrary query
on a 𝑑-dimensional domain involving conjunctions, disjunctions,
and negations of 1D ranges can be reduced to disjunctive normal
form and performed by taking the union of the responses to a
collection range queries on 𝑑 attributes, each computed with our
methods. This collection can be identified by the client without
accessing the server. An interesting line of future work is to find
an optimal query collection that minimizes the overall number
of search tokens, a problem related to spatial query optimization
(see, e.g., [32]). Prior work has explored SSE schemes with support
for Boolean queries [10, 52]. Building such an index over each
dimension to support Boolean queries over multi-attributes would
result in a different leakage profile compared to that of our approach.

5.2 Security

The following theorem summarizes the leakage of our schemes.

Theorem 12. Let Σ be an EMM scheme that leaks search and
volume pattern. The range encrypted multimap schemes linear, Range-
BRC/URC, Quad-BRC, Range-SRC, and Quad-SRC instantiated with Σ
leak each the search, volume and structure pattern.

We now discuss the relative security of our schemes. We specifi-
cally focus on the co-occurrence of search tokens of each scheme,
since co-occurrence stemming from access pattern has been lever-
aged in prior attacks [19, 47]. In Table 1, we depict the number
of token co-occurrences associated with our schemes and those
of prior work. In this section, we assume that all schemes are in-
stantiated using an EMM scheme that hides access pattern and
leaks search pattern and volume pattern. We consider a passive
persistent adversary, e.g. an eavesdropper that has compromised
the communication channel. Below, we extend previous approaches
from attacks in 1D and 2D that leverage co-occurrences from the re-
sponses; these insights inform the security ranking of our schemes
Linear Scheme. When a client issues a query of size 𝑅, the ad-
versary observes 𝑅 distinct search tokens; each associated with
a domain point of the queried range. The structure pattern leaks
the exact size of each queried range and the number of matching
records. In contrast, given a scheme that leaks only access pattern,
the adversary would be able to infer the number of records match-
ing the query, but not the size of the query. Over multiple queries,
the access pattern leaks the co-occurrence of encrypted records that
match each query. The structure pattern also leaks co-occurrence
information, as over multiple query response pairs, the same search

token for a specific domain value can be observed. The search to-
kens in this scheme are 1-1 with the domain points. Suppose we
have a 2D database; If we see a response 𝑟 corresponding to four
search tokens, then the queried range must be of size 4. Moreover,
𝑟 can either correspond to a range of size 2× 2, 4× 1, or 1× 4. If two
ranges of size 4 have three overlapping search tokens, then both
ranges must be of dimension 4 × 1 (or 1 × 4), because a 2 × 2 range
cannot intersect any size 4 range in 3 domain points.
Range-BRC/URC Scheme. Each time the client makes a query of size
𝑅, the adversary observes𝑂 (log𝑑 𝑅) distinct search tokens, each to-
ken corresponding to a canonical range. The relationship between
these tokens is determined by the range covering technique used.
For any given range query, URC requires at least as many search
tokens as BRC. For example, a range of size 2 × 1 under URC always
results in two search tokens. Under BRC, the range may result in
either one or two search tokens. This choice reveals some infor-
mation about the location of the range. Specifically, if only one
search token is issued, the requested range must be a canonical
range. Furthermore, canonical ranges corresponding to domain
points in the inner part of the domain correspond to more queries
than canonical ranges at the perimeter of the domain. A similar
observation was leveraged in the attack of [19]. We conjecture that
similar techniques may be applied to URC/BRC schemes.
Quad-BRC Scheme. The quadtree has fewer nodes than the range
tree and uses less storage. A larger number of search tokens is
required for each range, leaking slightly more co-occurrence infor-
mation. However, the leakage is similar and thus we consider the
Quad-BRC of similar security as the Range-BRC/URC scheme.
SRC Schemes. In the Range/Quad-SRC schemes, only a single search
token is sent to the server at query time. Thus they do not leak the
co-occurrence of search tokens. These two schemes also allow for
false positives, which make reconstruction more difficult. In fact,
false positives have been introduced as a mitigation technique (e.g.
[25, 49]). Note that each canonical range corresponds to a certain
number of possible queries. Thus, a persistent adversary could
observe a number of search tokens and exploit the frequency with
which a token is observed along with knowledge of the underlying
DAG structure and then try to guess the token’s corresponding
node. Nevertheless, we support the claim by Demertzis et al. [14]
that SRC schemes are the most schemes.
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Figure 5: (Left) The number of false positive domain points returned
with each query for Range-SRC ( ) and Quad-SRC ( ), averaged

over all ranges of a given size. For both schemes, the false positive

rate drops off steeply for queries larger than 30% of the domain.

(Right) The percent of false positive records returned for Quad-SRC
given the Spitz ( ) and Cali ( ) datasets. Since Cali is sparser

than Spitz, we observe that queries toCali return fewer false positives

as a percentage of the total number of records.
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Figure 6: We compare the construction time of the Gowalla dataset

with 1 million records and 224 domain points, given a different num-

ber of dimensions with the Linear ( ), Quad-BRC ( ), Quad-SRC
( ), Range-BRC/URC ( ), and Range-SRC ( ) schemes.

Leakage Abuse Attacks. We believe that it is possible to achieve
(possibly partial) database reconstruction under the 𝑙𝑖𝑛𝑒𝑎𝑟 scheme
after observing a small number of queries, since the queries leak
local information. For the tree-based BRC/URC schemes, we believe
that a reconstruction attack would need more queries in order
to infer the tree structure, since the leakage is less local. Finally
for the SRC schemes, we believe that an attack would require a
significantly larger amount of queries observed accompanied by
auxiliary information. This is due to the fact that SRC does not leak
co-occurrences. It would be interesting to characterize the set of
databases that produce equivalent leakage and develop attacks to
better understand structure pattern.

6 EXPERIMENTS

In this section, we experimentally evaluate the performance of
our Linear, Range-BRC/URC, Quad-BRC, Range-SRC, and Quad-SRC
schemes using the following real-world datasets:

Gowalla [12]: A 4D dataset consisting of 6,442,892 latitude-
longitude points of check-ins from users of the Gowalla social
networking website between 2009 and 2010, a dataset used in the
experiments by Demertzis et al. [14].We further replicate Demertzis
et al.’s Gowalla experiments by randomly partitioning the dataset
into 10 sets, each consisting of 500,000 records. We then measured
the indexing time and cost of our schemes by increasing the size of
the domain by a new set of 500,000 tuples.

Spitz [60]: A 2D dataset of 28,837 latitude-longitude points of
phone location data of politician Malte Spitz from Aug 2009 to Feb
2010 and previously used in prior attack work [19, 41, 47].

NH [61]: A 3D dataset comprised of 4096 elevation points on
domain [26] × [26] × [26] sampled from the United States Geolog-
ical Survey’s Elevation Data from the White Mountains of New
Hampshire. We change the domain size by keeping exactly one
aggregated elevation value per latitude and longitude value. Cali
[45]: A 2D dataset of 21,047 latitude-longitude points of road net-
work intersections in California, a dataset used in a 2D attack [47].
Implementation Details. We implemented our schemes in Python
3.9.2. We ran all of our experiments on a compute cluster. For
simplicity, we used the same compute node for the client and the
server so our results do not include any latency that would be
incurred due to network transmission.

For cryptographic primitives, we used version 3.4.7 of the Python
cryptography library [54]. To match the evaluation of Demertzis
et al. [14], we use SHA-512 for PRFs and AES-CBC (with 128-bit
block size) for encryption. We advise practitioners to follow the
latest NIST standards when choosing which algorithms to use for
PRFs and encryption. For our underlying EMM scheme, we used
our own implementation of the Πbas construction [9].
Results. For the two-dimensional datasets, we used the latitude
and longitude as query attributes and 16-byte random strings as
records. For our scheme experiments, we normalized the domain
of Cali and Spitz to [210] × [210] and the domain of Gowalla to
[216] × [216] to have the same number of domain points as in the
32-bit domain used by Demertzis et al. [14].

In Figure 5, we depict our results of the false positives of the
Range-SRC and Quad-SRC schemes. We report both the percent of
false positive domain values and the false positive records returned.
Our experiments show that queries on sparse datasets generally
return fewer false positive records.

Figure 6 shows the construction times for each scheme from one
to four dimensions. The Linear scheme remains constant since the
number of nodes across the varying dimensions remains the same.
In contrast, the number of (auxiliary) canonical ranges for the SRC
schemes increase as the dimension increases (in addition to the
number of encryptions), and we thus see longer constructions times.
For BRC/URC, since the domain size is fixed, the trees become more
shallowwith increasing dimension;We conjecture that construction
time decreases since less time is needed to traverse the trees.

Table 2 shows the performance of our schemes. The first row
gives the storage size (space), which grows with the number of
database records and domain size consistently with the asymptotic
space complexities of the schemes, with differences due to con-
stant factors. The second row gives the construction time, which
also grows with the number of database records and domain size
consistently with our theoretical complexity analysis, with the ex-
ception of NH dataset, where large constant factors in the Quad-SRC
scheme appear to dominate the logarithmic factors of the range-
based schemes for the given domain sizes. As expected, the Linear
scheme has the best storage size and construction time, however,
its query complexity can be prohibitive. Schemes based on the
quadtree have better storage size and construction time (except for
the NH dataset) than the schemes based on the range tree.

The last row of Table 2 presents the query time, which depends
on the size of range covers and the number of records that are
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Table 2: Table of figures: Linear ( ), Quad-BRC ( ), Quad-SRC ( ), Range-BRC/URC ( ), and Range-SRC ( ) schemes. For the Index

Size and Construction time, we fix the domain size of the Gowalla dataset to [216 ] × [216 ] and vary the number of records, for the Spitz dataset

we fix the number of records (28,837) and vary the domain size, for the NH dataset the number of records scales with the domain size (𝑛 =𝑚2/3
).

For the Query Time, we fix domain sizes [216 ] × [216 ] for Gowalla with 1 million records, [210 ] × [210 ] for Spitz with 28,837 records, and

[26 ] × [26 ] × [26 ] for NH with ≈ 4000 records. (The Linear scheme is not included in the query benchmarks due to its prohibitive complexity.)

returned. The reported query time is the sum of the time to ex-
ecute methods Query, Eval, and Result (Figure 1) averaged over
500 queries of similar size sampled uniformly at random. In the
Gowalla dataset, which has 1 million records, method Result (i.e.,
decrypting the records) dominates the query time. The SRC schemes
return false positives, and thus have a higher query time than the
BRC/URC ones. Also, the Quad-SRC scheme returns more false pos-
itives than the Range-SRC (Figure 5), and thus takes the longest
time. The Spitz and NH datasets have way fewer records. Hence,
methodQuery (determining the range cover) dominates the query
time. Here, the SRC schemes require the least amount of query time
as their range covers have size 1 and the number of false positive
records is never more than four times the response size (Figure 5).
Also, Quad-BRC has larger range covers than Range-BRC/URC (Ta-
ble 1), thus Query takes longer to compute them. Note that also
for query times, the reported experimental results are consistent
with the asymptotic complexity. In particular, the difference in the
relative performance of the SRC-based schemes vs. the range-based
schemes in the Gowalla dataset and the Spitz and NH datasets is
explained by the above detailed analysis.

Range-tree-based schemes exhibit better query complexitywhereas
quadtree-based schemes exhibit smaller storage size and construc-
tion times. Generally, schemes with more canonical ranges have

longer build times. For example, Range-BRC/URC have more nodes
than Quad-SRC, and consequently larger storage size.

7 CONCLUSION

We introduce a framework for designing schemes that support
range queries over encrypted data in multiple dimensions. In par-
ticular, we describe how to turn a broad class of DAG-based spatial
range search data structures into parallelizable encrypted databases
that support range queries. We demonstrate the effectiveness of
this framework by developing six schemes that offer trade-offs for
space-complexity, query bandwidth, response size, and leakage to
suit the needs of a wide variety of applications.

Several aspects of our work are novel extensions of the 1D
schemes in prior work: We introduce a new scheme based on the
quadtree – which previously had no analogue in 1D. We introduce
a new data structure called the QDAG that helps to reduce the
bandwidth of the Quad-BRC scheme to 𝑂 (1) while maintaining the
same storage complexity. We adapt URC and BRC to work on the
multi-level structure of the multi-dimensional range tree, while
preserving their properties in 1D. The strength of our schemes lies
in the fact that they are rooted in classic data structures which are
efficient, flexible, and easy to implement.
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