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Abstract

Proving discrete log equality for groups of the same order is addressed by Chaum and
Pedersen’s seminal work [CP92]. However, there has not been a lot of work in proving
discrete log equality for groups of different orders.

This paper presents an efficient solution, which leverages a technique we call delegated
Schnorr. The discovery of this technique is guided by a design methodology that we
call the inspection model, and we find it useful for protocol designs.

We show two applications of this technique on the Findora blockchain:

• Maxwell-Zerocash switching: There are two privacy-preserving transfer protocols
on the Findora blockchain, one follows the Maxwell construction and uses Pedersen
commitments over Ristretto, one follows the Zerocash construction and uses Rescue
over BLS12-381. We present an efficient protocol to convert assets between these
two constructions while preserving privacy.

• Zerocash with secp256k1 keys: Bitcoin, Ethereum, and many other chains do signa-
tures on secp256k1. There is a strong need for ZK applications to not depend on
special curves like Jubjub, but be compatible with secp256k1. Due to FFT unfriend-
liness of secp256k1, many proof systems (e.g., Groth16, Plonk, FRI) are infeasible.
We present a solution using Bulletproofs over curve secq256k1 (“q”) and delegated
Schnorr which connects Bulletproofs to TurboPlonk over BLS12-381.

We conclude the paper with (im)possibility results about Zerocash with only access to a
deterministic ECDSA signing oracle, which is the case when working with MetaMask.
This result shows the limitations of the techniques in this paper.

This paper is under a bug bounty program by a grant from the Findora Foundation.
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1 Introduction
We start by formalizing the problem of proving discrete log equity for groups of different orders.
Consider two prime-order cyclic groups G1 and G2 where DLOG is hard, as follows.
• G1 has prime order p, with two generators G1 and H1 sampled from G1

• G2 has prime order q, with two generators G2 and H2 sampled from G2

where no polynomial-size adversary can compute logG1
H1 or logG2

H2. This is achieved by using
a hash function modeled as a random oracle.

Problem. Consider two group elements P and Q. Prover P knows x1, x2, r1, r2 such that:

P = x1G1 + r1H1 ∈ G1 where x1, r1 ∈ {0, 1, ..., p− 1}
Q = x2G2 + r2H2 ∈ G2 where x2, r2 ∈ {0, 1, ..., q − 1}

Prover P wants to show to verifier V that it knows x1, r1, x2, r2 and that x1 = x2, without revealing
x1, x2, r1, r2. This is a zero-knowledge proof of knowledge with the following instance x and
witness w.
• Instance x: the group elements P , Q
• Witness w: the scalars x1, r1, x2, r2

Challenge of using general-purpose zk-SNARK. We can solve this problem using zk-SNARK,
such as Groth16 [Gro16], Bulletproofs [BBBPWM18], Stark [BSBHR18], and Plonk [GWC19].
However, it is not easy to find an efficient implementation, for the following reasons:
• Interoperability with the rest of the system: Picking a curve for G1 or G2 may affect how the

zk-SNARK integrates with the rest of the system. Consider a system that implements Zerocash
using TurboPlonk over BLS12-381. This is a standard choice because TurboPlonk has a short
proof, and the universal setup parameters for BLS12-381 already exist. However, BLS12-381
likely does not favor either of these two groups. Using another curve is challenging, as another
setup ceremony may be needed. More generally speaking, there are situations where the overall
system cannot afford to cater for a subprotocol’s preference of the curve.

• Embedding curves are large: Pairing-based zk-SNARKs cover almost all schemes with a proof
of size less than ≈ 50 kilobytes except Bulletproofs [BBBPWM18]. Assume that G1 is a group
of points on an elliptic curve. If we do not know a priori another curve that embeds this curve, we
need to find such a curve, often by using the Cocks-Pinch algorithm [FST10]. However, curves
found in this way are inefficient due to a large ρ-value.

• Restrictions over FFT-unfriendly fields: Many zk-SNARK schemes require the field to be
FFT-friendly: Groth16 [Gro16], Plonk [GWC19], Stark [BSBHR18], and the like. For a field
that is not FFT-friendly, our remaining options include inner-product arguments (Bulletproofs
[BBBPWM18] and Spartan [Set20]), linear codes (Brakedown [GLSTW21] and Orion [XZS22]),
tensor-product arguments (Gemini [BCHO22]), layered circuits [GKR08; CMT12] (Libra [XZ-
ZPS19]), and the like. These schemes are not without disadvantages, but in this case we have to
use one of them.
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• Overhead of nonnative group: Consider the case where G1 and G2 are both elliptic curves.
Unless G1 and G2 have the same coordinate field and the zk-SNARK is working on this field,
it is unavoidable to simulate nonnative group operations in zk-SNARK. We did an experiment
on the arkworks-rs library [ark] simulating MNT4’s scalar field over BLS12-381’s scalar field.
The results indicate a slowdown of 1000× due to being nonnative.

Since general-purpose proof systems seem to be infeasible, we may turn to zero-knowledge proto-
cols tailored for this problem. The most natural solution is to adapt the Chaum-Pedersen protocol,
which can prove discrete log equality of groups of the same order.

Challenge of adapting the Chaum-Pedersen protocol. The Chaum-Pedersen protocol [CP92]
is an interactive protocol to the problem above when p = q. It consists of three messages.
• P samples a, b, c ∈ Z+

p , computes C1 := aG1 + bH1, C2 := aG2 + cH2, and sends C1, C2 to V.
• V samples challenge β ∈ Z+

p and sends β to P.
• P computes s1 := βx1 + a, s2 := βr1 + b, s3 := βr2 + c and sends s1, s2, s3 to V.
In the decision round, V accepts the proof when:

s1G1 + s2H1 = βP + C1, s1G2 + s3H2 = βQ+ C2

This protocol is public-coin and can be made non-interactive through Fiat-Shamir transform [FS86].
However, the protocol does not work when p ̸= q. Assume that we keep V’s computation above
unmodified with the only change that p ̸= q. A malicious prover P̃ can convince V that x1 = x2

even though x1 ̸= x2 because P̃ only needs to find s1 that satisfies the following conditions,
through the Chinese Remainder Theorem (CRT).

s1 ≡ βx1 + a (mod p) s1 ≡ βx2 + a (mod q)

The solution s1 must not be too large (it has an explicit upper bound (β + 1) · min(p, q) and a
lower bound max(p, q), following a certain distribution). P̃ in the non-interactive setting can try
different a, b, c until such an appropriate s1 is found.
Another problem is that we did not check x1, x2 ∈ {0, 1, ...,min(p, q) − 1}. This missing check
can lead to security issues. For example, assume q > p, the prover can easily prove the equality
for x1 = x2 = p+ 1 though x1 is out of range.
We could, however, have P prove the knowledge of x1, r1 and x2, r2 through two separate in-
vocations of the Schnorr protocol, but this is not meaningful. Doing so only proves that P has
the knowledge, but it does not mean that in this “knowledge” x1 = x2 holds. This leads to an
interesting question that inspires the solution presented in this paper:

Can we, in a proof of knowledge protocol, inspect what the knowledge is?

We show that this is possible, and indeed, the idea of “inspection” may help us design protocols.
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1.1 Imagining an inspector between prover and verifier
A standard zero-knowledge proof system has two entities: a prover P and a verifier V. We add a
third entity:1 an inspector i, which stands between the prover and the verifier, as shown in Figure 1.

𝐏 𝐕𝐢

Figure 1: The inspection model: a prover P, an inspector i, and a verifier V.

Informally, the inspector i does three things:
• read public messages between P and V

• read private messages sent by P, which P does not want to share with V

• in the decision phase, send a signal VETO to V if i wants to veto this proof, or ⊥ otherwise
In this model, both P and V trust the inspector i. Prover P is willing to share to i information that
P will not share with V. Verifier V trusts the veto signal from i: it will reject the proof if i vetoes.
Note that if i does not veto, V does not necessarily accept the proof—V may accept or reject.
Below we compare the inspection model with the standard interactive zero-knowledge proof set-
ting. Message passing in each round is more complicated. However, the definitions of complete-
ness, soundness, zero-knowledge, and knowledge soundness all remain unchanged.

Differences in a round. Originally, in each round, P sends a message to V, and V then sends a
message back to P. That is, in the i-th round,
• P sends a message msgiP→V to V

• V sends a message msgiV→P to P

In the inspection model, the inspector i will be inspecting the transcript, and in addition, P shares
additional information with i. That is, in the i-th round,
• P sends a message msgiP→i to i

• P sends a message msgi
P→ i, V

to i and V

• V sends a message msgi
V→P ,i

to P and i

In addition, in the decision round, i may send the VETO signal to V.
• i sends the VETO signal or ⊥ to V

1We use lowercase \mathbf{i} for the inspector i to avoid confusion with the indexer in preprocessing SNARKs,
which is often represented in the literature as uppercase \mathbf{I}, that is, I.
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The definitions of transcript are also more tricky now. To be compatible with existing terminology,
we say that the transcript includes all the messages between P and V, and an extended transcript
includes messages between P, i, and V. As a result, an extended version of Fiat-Shamir transform
[FS86] will be needed, which is a compiler that makes the protocol non-interactive.

Properties remain unchanged. We reiterate the definitions of properties of an interactive zero-
knowledge proof system to show that they are unchanged. We do not specify if a property must be
perfect or computational or the complexity of an algorithm, as this may vary between protocols,
and is independent of the inspection model here.
• Completeness: For an instance-witness pair in the relation, P can convince V to accept the

proof with some probability.2

• Soundness: For an instance-witness pair not in the relation, a malicious prover P̃ can convince
V to accept the proof except with some probability.

• Zero-knowledge: For an instance-witness pair in the relation, the view of a malicious verifier
Ṽ can be simulated by a simulator with some access to Ṽ except with some probability.

• Knowledge soundness: An extractor with some sort of access to the malicious prover P̃ can
find a witness in the relation with a probability higher than the probability that P̃ convinces V.
This implies soundness.

Compiler to NIZK. We will present a modified version of the Fiat-Shamir transform that can
convert an interactive proof in the inspection model that is (1) public-coin, (2) perfect complete,
(3) computational knowledge sound, and (4) computational honest-verifier zero-knowledge to an
NIZK, through a black-box use of an NIZK scheme.
This means that although in the real world it is unlikely to find an inspector i, the inspection
model is still useful for writing and designing an interactive proof protocol that will later be trans-
formed into an NIZK. This is in essence similar to the common approach to building zk-SNARK
from interactive oracle proof (IOP) and polynomial commitments (PC), where the polynomials are
modeled as oracles, which do not exist in the real world, and are later instantiated with PC.

Application: inspecting the knowledge in the proof of knowledge in the Schnorr protocol.
We present an example to show the usefulness of the inspection model in describing the problem.
The Schnorr protocol for a Pedersen commitment P = xG + rH produces a proof of knowledge,
stating that P knows x and r, but we cannot easily place additional constraints over x, for example,
0 ≤ x < 264, although it feels like just “a small addition” to the problem, it seems difficult to do it
with the Schnorr protocol.
Let us now revisit the Schnorr protocol for proof of knowledge of x and r here, as Figure 2 shows.
Then, we will discuss an extended version of the protocol, in the inspection model, where the
knowledge is being inspected by i.
1. P samples a, b←$F, computes C := aG+ bH , and sends it to V

2. V, which is an honest verifier, samples β←$F and sends β to P

3. P computes s1 := βx+ a and s2 := βr + b and sends s1 and s2 to V

2This implies that in such a situation, the inspector i will send ⊥ to V in the decision round, rather than vetoing.
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𝐏 𝐕
𝐶 = 𝑎𝐺 + 𝑏𝐻

𝛽
𝑠! = 𝛽𝑥 + 𝑎
𝑠" = 𝛽𝑟 + 𝑏

Figure 2: The Schnorr protocol for proof of knowledge.

𝐏 𝐕𝐢𝑥	
𝑎

𝐶 = 𝑎𝐺 + 𝑏𝐻
𝛽

𝑠! = 𝛽𝑥 + 𝑎
𝑠" = 𝛽𝑟 + 𝑏

VETO	or ⊥

Figure 3: A modified version of the Schnorr protocol in the inspection model.

4. V decides by checking if s1G+ s2H
?
= βP + C

Now we discuss how an inspector i can help enforce 0 ≤ x < 264 for the “knowledge” x, which is
also equipped with only “a small addition”, as shown in Figure 3.
1. P samples a, b←$F, computes C := aG+ bH , sends x and a to i, and sends C to i and V

2. V samples β←$F and sends β to P and i

3. P computes s1 := βx+ a and s2 := βr + b and sends s1 and s2 to i and V

4. i decides whether or not to vote by checking if 0 ≤ x < 264 and s1
?
= βx+ a

5. V decides by checking if i did not veto and checking if s1G+ s2H
?
= βP + C

We now explain the high-level idea of the security proof. Assume that P sends x′ and a′ in the first
message. Here, x′ does not necessarily match the value x committed in the Pedersen commitment
P , and a′ does not necessarily match the value a committed in the Pedersen commitment C in P’s
next message. If V accepts the proof, then it means that s1 = βx + a, and the inspector i did not
veto, which implies the following equation:

βx+ a = βx′ + a′

If x = x′, then a = a′. Otherwise, P needs to choose a′ in the following way:

a′ = β(x− x′) + a
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But β is sampled later by V, and therefore the probability that P can provide such an a′ is negligible
for sufficiently large F. In conclusion, we have x′ = x, and in addition, 0 ≤ x < 264.
The remaining question is how to instantiate the inspector i in the real world. The high-level idea
is to run the inspector i in NIZK and use a simulatable commitment scheme with extractability.

Application: discrete log equality for groups of different orders. Note that the protocol above
immediately implies a solution to the problem at the beginning: one can run the protocol above
twice, one for the element of each group, and ask inspector i to check the discrete log equality.
In the rest of the paper, we focus on the modified version of the Schnorr protocol, which is more
general when integrated with other protocols and is sufficient for our two applications.

Sketch of the compiler. We provide the necessary background about the compiler, which per-
forms a modified Fiat-Shamir transform and works as follows. As we mentioned, it requires the
interactive proof to be public-coin, with perfect completeness, computational knowledge sound-
ness, and computational honest-verifier zero-knowledge. As follows and in the rest of the paper,
we use FG to describe the scalar field of G and FN to describe the field where the NIZK is situated.
• Proof generation:
1. Instantiate a transcript T for the Fiat-Shamir transform
2. Put the transcript header and the instance x into the transcript
3. Process each round while running the prover P. For the i-th round,

• “P sends a message msgiP→i to i” will be processed as follows:
(a) Sample a random blinding factor ri ∈ FN

(b) Compute a commitment ci := H(msgiP→i; ri)

(c) Output ci as part of the proof
(d) Put ci into the transcript

• “P sends a message msgiP→i,V to i and V” will be processed as follows:
(a) Output msgiP→i,V as part of the proof
(b) Put msgiP→i,V into the transcript

• “V sends a message msgiV→P,i to P and i” will be processed as follows:
(a) Do nothing, since V is public-coin, msgiV→P,i can be computed from the transcript,

through the Fiat-Shamir transform
4. For the decision round:

• Generate an NIZK π with the following instance x, witness w, and statement Π:
– Instance x: all the msgiP→i,V, all the msgiV→P,i, and all the ci

– Witness w: all the msgiP→i, and all the ri

– Statement Π:

* Check for all i: ci
?
= H(msgiP→i; ri)

* Check that i([msgiP→i,msgiP→i,V,msgiV→P,i]i)
?
=⊥

• Output π as part of the proof
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• Proof verification:
1. Instantiate a transcript T for the Fiat-Shamir transform
2. Put the transcript header and the instance x into the transcript
3. Process each round while running the prover V. For the i-th round,

• “P sends a message msgiP→i to i” will be processed as follows:
– Put ci into the transcript

• “P sends a message msgiP→i,V to i and V” will be processed as follows:
– Put msgiP→i,V into the transcript

• “V sends a message msgiV→P,i to P and i” will be processed as follows:
– Do nothing, since V is public-coin, msgiV→P,i can be computed from the transcript, through

the Fiat-Shamir transform
4. For the decision round:

• Verify the NIZK π using the instance—all the msgiP→i,V, all the msgiV→P,i, and all the ci—
which come from the proof or from the transcript via Fiat-Shamir transform

• Check that V([msgiP→i,V,msgiV→P,i]i)
?
= ACCEPT

We will discuss the design rationale, optimization, and security in Section 3. Now we focus on
one application—reading the message in a Pedersen commitment—where the group that Pedersen
commitment is defined over may not be “native” to the NIZK and requires field simulation, such
as a zk-SNARK defined over BLS12-381’s scalar field that wishes to read a Pedersen commitment
on curve25519 or secq256k1.

1.2 Pushing nonnative group simulation outside NIZK
We will now describe the delegated Schnorr protocol, which enables an NIZK to read the message
in a Pedersen commitment, without performing nonnative group simulation inside the NIZK. We
first start with a strawman solution that does not use this protocol. As follows, we use groups on
elliptic curves as an example.

Strawman: doing nonnative scalar-point multiplication in NIZK. A straightforward solution
to show that P = xG + rH is to, given G,H, x, r, compute the scalar-point multiplication xG
and rH and then add these two points together inside NIZK. Such computation is not expensive
if the NIZK works well with the coordinate field of this curve. For example, for pairing-based
NIZK using BLS12-381, the Jubjub curve [Zcab] and the Bandersnatch curve [MSZ21] are two
such curves. However, what if this is not the case?

# Constraints # Nonzeros in R1CS matrices
(constraint-optimized) (weight-optimized)

BLS12-381 simulating
673 3541

secp256k1/curve25519

Table 1: Overhead of field simulation in the arkworks-rs library.
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If this NIZK over BLS12-381 needs to do scalar-point multiplication on a curve with a coordinate
field that is not supported natively, it is still possible but with a high cost. To simulate computation
over another field F′ ̸= F from a field F, the field element needs to be represented by a number
of “limbs”, which are field elements in F. When one wants to simulate the modular multiplication
of two elements F′ [KPS18; OWWB20], it becomes rather complicated. We show in Table 1 the
number of constraints (in a constraint-optimized construction) or the number of nonzeros in R1CS
matrices (in a weight-optimized construction) for BLS12-381 to simulate a 256-bit prime field
such as secp256k1 and curve25519. The overhead of many proof systems is closely related to
the number of nonzeros, and this means that field simulation incurs an overhead of about 1000×.

Delegation: pushing nonnative group simulation outside NIZK. As follows, we describe the
delegated Schnorr protocol, which we use to push the nonnative group simulation outside NIZK,
so inside there are only a few nonnative field simulation operations. We obtain this protocol by
running the compiler over the modified Schnorr protocol in the inspection model (in Figure 3),
but without the range check 0 ≤ 0 < 264. Although the compiler provides all messages to the
inspector i in the NIZK, inspector i may only use some of them. We use gray to indicate these
unused messages. These messages do not need to be provided to NIZK in production.

NIZK
𝑃	 = 	𝑥𝐺	 + 	𝑟𝐻	

NIZK

𝑃

𝑥 A

𝑃 B

Strawman Delegated

Figure 4: An illustration that NIZK delegates the scalar multiplication outside.

We now describe how prover P generates the overall proof, which consists of the NIZK with new
statements (block A) and the auxiliary proof information (block B), followed by how verifier V
verifies the overall proof.
• Proof generation:
1. Sample a, b←$FG, compute C := aG+ bH , sample r1←$FN , compute c1 := H(x, a; r1), and

put (c1, C) into the transcript
2. Compute the challenge β ∈ FG from the transcript through the Fiat-Shamir transform
3. Compute s1 := βx+ a and s2 := βr + b and put them into the transcript
4. Set block B to be (c1, C, s1, s2)

5. Append the following statement (block A) into NIZK:
• Additional instance x+: c1, C , β, s1, s2

• Additional witness w+: x, a, r1
• Additional statement Π+:
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– Check c1 = H(x, a; r1)

– Check s1 = βx+ a

6. Proceed with the rest of the protocol
• Proof verification:
1. Parse block B as (c1, C, s1, s2)
2. Compute the challenge β ∈ FG from the transcript through the Fiat-Shamir transform
3. Check that βP + C = s1G+ s2H

4. Check the NIZK proof with the additional instance x+ := (c1, β, s1)

Comparison. We now compare the number of operations done in the strawman solution and
the delegated solution. Let p be the order of the group G and let n be the number of bits in
p. We present the result in Table 2, focusing on the dominating cost. As one can see, in the
delegated solution, the NIZK only needs to perform one nonnative multiplication in F, while in the
strawman solution, the NIZK needs to compute xG and rH (each has 4(n − 1) nonnative muls)
and then compute xG + rH (it has 4 nonnative mul). In practice, for a secure elliptic curve, n
is at least around 256 bits, which means that the strawman needs to perform ≈ 2000 nonnative
muls. The delegated solution, however, comes with a small overhead, in that the three scalar-point
multiplication operations are done outside NIZK.

NIZK non-NIZK
Strawman 2 · 4(n− 1) + 4 nonnative muls —
Delegated 1 nonnative mul 3 scalar-point muls

Table 2: Comparison of the number of operations incurred by these two solutions.

We also compare the proof size in Table 3, but the result is not conclusive, as we do not know the
relationship between the size of the NIZK and the statement that it is proving.

Proof size
Strawman The size of the NIZK for the statement with P = xG+ rH

Delegated
The size of the NIZK for the statement in block A
+ 3 elements in F + 1 element in G

Table 3: Comparison of the proof size.

Finally, we want to provide an advance notice that Table 2 and Table 3 did not show the case when
more than one point is read. Indeed, if we read K points,
• The strawman solution performs K · (2 · 4(n − 1) + 4) nonnative muls in NIZK, and the proof

size is the size of the NIZK proof for such a statement.
• The delegated solution performs 1 nonnative mul in NIZK (regardless of K) and (2K+1) scalar-

point muls (at the cost of field operations for batching), and the proof size is the size of the NIZK
proof for such a statement, plus (2 +K) elements in F (with batching) and K elements in G
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We will discuss batching in Section 4. To conclude, if the size of NIZK in the strawman solution
grows slower than that in the delegated solution, then the delegated Schnorr protocol can be viewed
as that it trades off space for proof generation time.

1.3 Application: Maxwell-Zerocash switching
We consider two privacy-preserving transfer protocols, one follows the Maxwell construction, one
follows the Zerocash construction. These two constructions represent private assets in different
ways, and therefore, it is desired to be able to directly convert one to another, without revealing the
information inside.3 We first provide the necessary background of these two constructions.

Background: Maxwell construction. In 2015, a renowned blockchain developer Gregory Maxwell
presented a construction of confidential transactions (CT) [Ele; PBFMW18] for a UTXO chain.
An asset can be viewed as consisting of three parts of the information: the owner’s address, the
amount, and the asset type. The Maxwell construction hides the amount and the asset type, but it
does not hide the owner’s address. To do so, each asset is now represented by an address and two
Pedersen commitments, one for the amount, and one for the asset type, as shown in Table 4.

Asset attribute Representation
The owner’s address Same as in the transparent blockchain

Amount (denoted by x)
Pedersen commitment P = xG+ γ1H
(γ1 is a randomizer)

Asset type (denoted by y)
Pedersen commitment Q = yG+ γ2H
(γ2 is a randomizer)

Table 4: Representation of an asset in the Maxwell construction.

In the Maxwell construction, to prove that an asset transfer is valid, one needs to show that the
inputs and outputs of this asset transfer are equal for each of the asset types. This is done, in
the Findora blockchain, through the use of sigma proofs and/or Bulletproofs, defined over the
Ristretto group in curve25519. The choice of Ristretto is based on the fact that pairing is not
needed and that this curve is known to be performant. The concrete instantiation is described in
the Bulletproofs paper [BBBPWM18].

Background: Zerocash construction. Improved over a prior protocol Zerocoin [MGGR13], the
Zerocash construction [BS+14], firstly proposed by Ben-Sasson, Chiesa, Garman, Green, Miers,
Tromer, and Virza and improved subsequently through the efforts of the Zcash foundation [Zfn]
and Electric Coin Company (ECC) [Ecc], is another privacy-preserving transfer protocol over a
UTXO chain. The Zerocash construction offers stronger privacy guarantees, as it also hides the
owner’s address, which is the best we can achieve.

3Some readers may wonder why the Findora blockchain keeps and actively supports both the Maxwell construction
and the Zerocash construction, even though the Zerocash construction offers stronger privacy guarantees. This decision
is not just for backward compatibility—we see a lot of advantages of the Maxwell construction over the Zerocash
construction. For example, the Maxwell construction represents assets as Pedersen commitments, which are easy to
integrate with other systems through sigma protocols, and it takes much less on-chain resources.
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To do that, in the Zerocash construction, an asset is an (unspent) cryptographic commitment, which
commits the owner’s address, the amount, and the asset type, in a global Merkle tree. Now, to spend
an asset, the owner computes and publishes a nullifier that is unique for this commitment. This can
prevent the owner from spending the commitment again as the network can reject transactions with
duplicated nullifiers. We summarize the representation of an asset in the Zerocash construction,
the commitment and its nullifier, in Table 5.

Commitment Nullifier

Instantiation

A hash commitment of
• the owner’s address
• the amount
• the asset type
with randomizer r

A hash commitment of
• the owner’s address
• the amount
• the asset type
• the owner’s private key
with the same randomizer r

Table 5: Representation of an asset in the Zerocash construction.

This is done, in the Findora blockchain, through the use of a binary-testing-friendly variant of
TurboPlonk (described in Appendix A), over the BLS12-381 curve, where the hash commitment
is instantiated using the Rescue hash function [AABSDS20]. This choice is based on a number of
reasons. We choose pairing-friendly proof systems because we want short proofs and we cannot af-
ford Bulletproofs in this case due to its high proving and verifying costs for this kind of statement.
BLS12-381 is a pairing-friendly curve whose universal setup parameters exist (from Zcash’s Pow-
ers of Tau parameter generation [Par]) and whose Hamming weight of some pairing parameters is
low. TurboPlonk is a pairing-based zero-knowledge proof system that enables customized gates,
which, according to the sparsity theory, can trade off FFT for MSM and improve the performance
severalfold. Rescue is a SNARK-friendly hash function that can be efficiently implemented using
customized gates in TurboPlonk.

TurboPlonk

A1 A2B1B2

𝑃 𝑄

The Ristretto group
over curve25519

BLS12-381

Figure 5: Illustration of the Maxwell-to-Zerocash switching, in which an NIZK over BLS12-381
reads two Pedersen commitments on the Ristretto group.

Maxwell-to-Zerocash. We now briefly describe how we switch a Maxwell asset to a Zerocash
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asset, which is done through a delegated Schnorr proof working together with TurboPlonk over
BLS12-381. This is the case when the NIZK (here, TurboPlonk) needs to read two Pedersen
commitments on Ristretto. The protocol is illustrated in Figure 5.
We now describe the protocol for completeness.
• Proof generation:
1. Sample a, b, c, d←$FG, compute C1 := aG + bH and C2 := cG + dH , sample r1←$FN ,

compute c1 := H(x, a, y, c; r1), and put (c1, C1, C2) into the transcript
2. Compute the challenge β ∈ FG from the transcript through the Fiat-Shamir transform
3. Compute s1 := βx+ a, s3 := βy + c and put them into the transcript
4. Compute the challenge λ ∈ FG from the transcript through the Fiat-Shamir transform
5. Compute s24 := (βγ1 + b) + λ(βγ2 + d) and put it into the transcript
6. Set block B1B2 to be (c1, C1, C2, s1, s3, s24)

7. Append the following statement (block A1A2) into NIZK:
• Additional instance x+: c1, C1, C2 , β, λ, s1, s3, s24 , as well as instance for precomputation,
βλ and s1 + λs3, which are computed outside and provided as instance to NIZK

• Additional witness w+: x, a, y, c, r1
• Additional statement Π+:

– Check c1 = H(x, a, y, c; r1)

– Check (s1 + λs3) = βx+ a+ (βλ)y + λc

8. Sample r←$FN for the randomizer in the Rescue hash commitment
9. Compute the Rescue hash commitment that represents the Zerocash asset: h := H(PK, x, y; r)

where PK is the address of the owner of the new Zerocash asset
10. Proceed with the rest of the protocol
• Proof verification:
1. Parse block B as (c1, C1, C2, s1, s3, s24)

2. Compute the challenge β, λ ∈ FG from the transcript through the Fiat-Shamir transform
3. Check that βP + C1 + λ(βQ+ C2) = (s1 + λs3)G+ s24H

4. Check the NIZK proof with the additional instance x+ := (c1, β, λ, βλ, s1+λs3) where βλ and
s1 + λs3 are computed outside

Zerocash-to-Maxwell. The other direction of the protocol is straightforward. First, we spend the
Zerocash asset in the Zerocash construction, which outputs a nullifier of this Zerocash asset. Then,
instead of generating a new Zerocash asset, it reads the new Maxwell asset outside, through the
delegated Schnorr protocol, and checks that it has the same amount and asset type.

1.4 Application: Zerocash with secp256k1 keys
We now present an application of the delegated Schnorr protocol, which is used in Zerocash to
support signing via the secp256k1 keys. We concretely instantiate and implement this application
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with two building blocks: (1) Bulletproofs over secq256k1 (”q”), which can efficiently verify a
scalar multiplication relation of points in secp256k1 (”p”) and (2) delegated Schnorr protocol that
reads the input commitments of this Bulletproofs, in which the NIZK is the binary-testing-friendly
variant of TurboPlonk over BLS12-381 (see Appendix A), and the group to read is points over the
secq256k1 curve (”q”).4

TurboPlonk

A1 A2 A3

B1B2B3

𝑃 𝑄

secq256k1

BLS12-381

𝑅Bulletproofs

secp256k1
PK	 = sk ⋅ G

Figure 6: The instantiation of the Zerocash with secp256k1 keys.

Our design is illustrated in Figure 6. The entire proof is generated in the following manner:
1. Initialize a transcript T , which will be used for the Fiat-Shamir transform throughout the entire

proof generation
2. Put the hash h of the transaction body into the transcript T , in which the transaction body

includes the nullifiers of spent Zerocash assets, the commitments of new Zerocash assets, as
well as other information except for the proof above

3. Let PK = (x, y) be the public key and let sk be the corresponding secret key. Commit x, y, sk
using Pedersen commitments with randomizers γ1, γ2, γ3←$FB over secq256k1, where FB is
the coordinate field of secp256k1, which is the scalar field of secq256k1.
• P = x ·Gsecq + γ1 ·Hsecq

4Readers may wonder why secq256k1 rather than another curve is used in our implementation. In fact, we
previously found another curve using the complex multiplication method [Jan; BS07; SSKK01], named the Canaan
curve, which is y2 = x3 + ax+ b (mod q) of order r, where:
• a = 5535550953020464033774697179068783537293233400326936244723618588471535946749
• b = 36647759370566527599092766378540222398030651415577287046115147687263277949759
• r = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f

• q = 0x1000000000000000000000000000000011225471b50b8dc249e5ff726d4163f21

Nevertheless, we later found secq256k1 [Poe18], which is almost the same as secp256k1 except that the order r and
the modulus q are swapped. Our comparison shows that Canaan might only have an advantage in hashing-to-curve,
which is harder for secq256k1 given its j-invariant and the lack of a low-degree isogeny map to a curve with nonzero
j-invariant, which makes the Wahby-Boneh map [WB19] infeasible. However, we do not need hashing-to-curve for
now. We believe that we are not the first human being, also not the last, who attempted to sample their own curve that
embeds secp256k1 and later found out that many years ago people have found secq256k1.
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• Q = y ·Gsecq + γ2 ·Hsecq

• R = sk ·Gsecq + γ3 ·Hsecq

Note that we can put sk here as it is because the secp256k1’s scalar field modulus is smaller
than its coordinate field modulus.

4. Generate a Bulletproofs over input commitments P,Q,R using T as the transcript:
• Check a bit decomposition of sk, denoted by [bi]

n
1 ; note that here it does not need to be the

unique bit decomposition, i.e., the number represented by [bi]
n
1 can be larger than the modulus

of the secp256k1’s scalar field
• Check the computation that, on secp256k1, PK′ := sk ·Gsecp using bit decomposition [bi]

n
1

• Check that PK ?
= PK′

Note that the Bulletproofs, which continues working on transcript T , serves as a signature of the
body hash h; this is a non-black-box use of the non-malleability of Bulletproofs [GOPTT22].

5. Sample a, b, c, d, e, f←$FB, compute C1 := a ·Gsecq + b ·Hsecq, C2 := c ·Gsecq + d ·Hsecq,
and C3 := e · Gsecq + f ·Hsecq, sample r1←$FN where FN is the scalar field of BLS12-381,
compute c1 := H(x, a, y, c, sk, e; r1), and put (c1, C1, C2, C3) into the transcript

6. Compute the challenge β ∈ FB from the transcript through the Fiat-Shamir transform and
compute s1 := βx+ a, s3 := βy + c, and s5 := β · sk + e and put them into the transcript

7. Compute the challenge λ ∈ FB from the transcript through the Fiat-Shamir transform and
compute s246 := (βγ1 + b) + λ(βγ2 + d) + λ2(βγ3 + f) and put it into the transcript and set
block B1B2B3 to be (c1, C1, C2, C3, s1, s3, s5, s246)

8. Append the following statement (block A1A2A3) into NIZK:
• Additional instance x+: c1, C1, C2, C3 , β, λ, s1, s3, s5, s246 , and the instance for precom-

putation, βλ, λ2, βλ2, s1 + λs3 + λ2s5, which are computed outside as instance to NIZK
• Additional witness w+: x, a, y, c, sk, e, r1
• Additional statement Π+:

– Check c1 = H(x, a, y, c, sk, e; r1)
– Check (s1 + λs3 + λ2s5) = βx+ a+ (βλ)y + λc+ (βλ2)sk + (λ2)e

– Check 0 ≤ sk < |Gsecp|, where |Gsecp| is the order of the secp256k1 curve
– Check that PK := (x, y) is the public key indicated in the commitments of the Zerocash

assets to be spent
– Check that sk is the secret key used in the nullifiers of these Zerocash assets to be spent

9. Proceed with the rest of the protocol
We want to remind the readers that the checking of the equation (s1 + λs3 + λ2s5) = βx + a +
(βλ)y + λc + (βλ2)sk + (λ2)e is over the scalar field of secq256k1. This is the only part that
requires field simulation.

The Schnorr-style use of the transcript. Note that non-malleability is necessary here because,
otherwise, a malicious user can reuse the Bulletproofs already on chain and pretend to be another
user. That is, if without non-malleability guarantees, the protocol above is not checking if the
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adversary knows the secret key, it is checking if the adversary has a proof of the knowledge of the
secret key. What we do here is to push the hash of the transaction body h into the transcript and
then Bulletproofs, which is a public-coin protocol that goes through Fiat-Shamir transform, will
continue on this transcript. This is similar to the Schnorr signature [Sch89], which is the result of
applying the Fiat-Shamir transform to the Schnorr identification protocol. In our case, as a result
of such a “Schnorr-style” use of the transcript, now a Bulletproofs of knowledge of the secret key
only works for a specific transaction that the prover P acknowledges.

Importance of Zerocash with secp256k1 keys. We presented the construction first because
it flows naturally from previous discussions. Now, we come back and shed some light on the
motivation. Since the invention of zk-SNARK, performance has always been a concern. Therefore,
researchers and practitioners have been building SNARK-friendly cryptographic primitives, such
as the Bowe-Hopwood-Pedersen collision-resistant hash function [Pet18], Rescue [AABSDS20],
Poseidon [GKRRS21], Reinforced Concrete [GKLRSW21], and MiMC [AGRRT16; Alb+19].
There is also strong complexity-theoretic evidence that the need to specifically build cryptographic
primitives that are SNARK-friendly could be inherent [CL20].
As a result, many zero-knowledge proof systems for blockchain in production replace non-SNARK-
friendly primitives with these SNARK-friendly primitives—particularly, the signature scheme. As
a result, a lot of these systems have a different address format because the public key of their
signature schemes is defined over a curve different from secp256k1.
• ZkSync from the Matter Labs uses alternative Baby Jubjub [Zks], a twisted Edwards curve em-

bedded by BN254
• Loopring uses Baby Jubjub [Loo], another twisted Edwards curve embedded by BN254
• Polygon Hermez uses Baby Jubjub [Pol]
• Aztec uses Grumpkin [Azt], which is the curve obtained by swapping the base field and the

scalar field of BN254 (since BN254’s j-invariant is zero), and it forms a cycle, though not fully
pairing-friendly, with BN254

• Starkware uses the STARK curve [Sta], whose coordinate field is a STARK-friendly prime num-
ber that is used for the rest of the STARK protocol: p = 2251 + 17 · 2192 + 1

This, however, has caused a lot of user experience issues in production. Today, it is common for
a user to use the same public key and address across different EVM-compatible chains, many of
which are using the secp256k1 curve. This includes a lot of the most popular chains—Ethereum,
Binance, Avalanche, Polygon, Optimism, Arbitrum, Fantom, Celo, IoTeX, Harmony, and Evmos.
Especially, MetaMask currently only supports addresses over the secp256k1 curve.
Using the same address and public key across different chains has far-reaching benefits in terms of
user experience. For example, if user A wants to send tokens to user B, user A only needs to know
one address of user B, probably found through the Ethereum Name Service (ENS) [Ens], to be able
to send tokens through different chains, and user A is certain that user B can retrieve those tokens,
with a small network change on MetaMask, even if user B has never used that specific chain.
The lack of such compatibility is behind the challenges of the adoption of layer-2 zk-Rollup—users
of these systems do not have other users that they can send tokens to. It is a common situation that
a user of zk-Rollup is unable to find any of his/her friends who is using any zk-Rollup. This is best
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illustrated by user feedback in one zk-Rollup’s Discord server, saying that such a zk-Rollup that
can only do money transfer is “boring”.
An example of such “registration-free” compatibility is that anonymous users can send ETH from
Tornado Cash to notable individuals [Cryb; Coi] because all it needs is an EVM-compatible ad-
dress. If zk-Rollup, as well as other layer-1 ZK chains, chooses to have such compatibility, then a
user can eventually send tokens to someone who has not registered in that network. This can solve
a major, probably the most inherent, obstacle for the adoption of zk-Rollup, as the lack of such
compatibility has severe impacts on user experience, and is an unfortunate consequence of the use
of SNARK-friendly cryptographic primitives.
The industry is aware of this issue, and we now describe some efforts in this direction.

Related work: existing efforts for doing secp256k1 keys in ZK. The idea of finding a zero-
knowledge proof that can efficiently verify ECDSA signatures on secp256k1 has been there for
many years. Indeed, this is one of the main motivations of Bulletproofs [BBBPWM18], which
is actually benchmarked over the secp256k1 curve. To add more detail, one of the authors of
Bulletproofs, Andrew Poelstra, is the person who suggested secq256k1 (“q”) [Poe18] in 2018.
The use of the cycle of secp256k1 (“p”) and secq256k1 (“q”) in Zcash has been proposed [Zcaa],
however, it is not being considered due to the lack of 2-arity of secp256k1. Although 2-arity is
not strictly needed for inner-product arguments, the arithmetization of Halo2 will benefit a lot in
terms of performance if it can use Lagrange bases, according to the sparsity theory.
Starkware has been researching an extremely new mathematical tool, ECFFT, to bypass the limita-
tion that fast Reed–Solomon interactive oracle proofs of proximity (FRI) [BSCKL21; BSCKL22]
require FFT. The main motivation is to help the Cairo programming language [Cai] to avoid non-
native fields for verifying ECDSA signatures over secp256k1.
To sum up, the need to find SNARK that does well on secp256k1 is a question that the industry
has been aware of, but it is a difficult one. In fact, a related question, verifying ECDSA signatures
over ed25519 for zk-Bridge with Solana, is harder, and it is often regarded as the pearl of SNARK
today, as, even with hardware acceleration, there are very few algorithms that do well [BCHO22],

1.5 Rest of the paper
The rest of the paper is organized as follows:
• Section 2: preliminaries on the cryptographic building blocks
• Section 3: design rationale, optimization used in production, and an informal security proof for

the compiler from the inspection model to NIZK
• Section 4: batching and an informal security proof for delegated Schnorr
• Section 5: implementations and benchmarks
• Section 6: some open problems of interest
And in the appendix there are:
• Appendix A: indexer, prover, and verifier of a binary-testing-friendly variant of TurboPlonk used

in the implementation and benchmark, for completeness
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• Appendix B: (im)possibility results about Zerocash with only access to a deterministic ECDSA
signing oracle, which shows the limitations of the techniques presented in this paper

1.6 Bug bounty program
This paper and its implementation are covered by the $1M bug bounty program through a grant
from Findora Foundation. To report a bug, email Findora Cryptography Team crypto@findora.org.
The amount of the award will be determined by the Findora Foundation based on its severity. It
should generally fall in the range of $500 to $10,000. The bug bounty program is not restricted to
security bugs and covers suggestions for improvement as well.
In addition, readers who are interested in working on some research problems related to this paper
(see Section 6 for some examples) can consider applying for a Findora Foundation research grant.
To start a discussion, email Findora Cryptography Team crypto@findora.org.

2 Cryptographic building blocks
In this section we provide some background on the cryptographic tools that we use in this paper.

Fiat-Shamir transform. The Fiat-Shamir transform [FS86], also known as Fiat-Shamir heuristic,
provides a way to convert a public-coin interactive proof of knowledge with an honest verifier to
a non-interactive zero-knowledge proof of knowledge (NIZKoK). The high-level idea is to replace
the verifier’s challenges with the output from the random oracle over the ongoing transcript, and
we expect that such challenges are hard enough such that the prover does not have an advantage.
It is important to note that the Fiat-Shamir transform is a heuristic because there are counterex-
amples [GT03; Bit+13]. This is similar to the counterexamples for random oracles [CGH98;
BG81]. Despite these negative results, for most protocols used in practice, it is generally as-
sumed that we do not know of a concrete attack that leverages the Fiat-Shamir transform to break
the non-interactive protocol. Indeed, many cryptographic protocols used in production today rely
on the Fiat-Shamir transform, such as Chaum-Pedersen [CP92], Schnorr [Sch89], Bulletproofs
[BBBPWM18], and TurboPlonk [GWC19] that we will describe below.

Schnorr protocol. The Schnorr protocol [Sch89] is a classic example of the use of the Fiat-Shamir
transform, which transforms the Schnorr identification protocol to the Schnorr signature. Such a
signature, first of all, proves the knowledge of the corresponding secret key, and secondly, due to
the use of Fiat-Shamir transform, it is also tied to a specific message, which provides unforgeability
in the context of a digital signature scheme.

Chaum-Pedersen protocol. The seminal work by Chaum and Pedersen [CP92] presents a proto-
col that proves discrete log equality for two groups of the same order, which is a direct application
of the Fiat-Shamir transform and can be considered as an extension to the Schnorr protocol. The
motivation of this paper, as described in Section 1, is to generalize the Chaum-Pedersen protocol
to the setting where the two groups may have different orders.
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Bulletproofs. Bulletproofs [BBBPWM18] is a very special proof system with transparent setup.
Unlike many other zk-SNARKs with transparent setup, Bulletproofs has a small proof size like
its universal-setup peers. And, unlike many of its universal-setup peer, Bulletproofs does not
use pairing, but instead is based on inner-product arguments, which can work with non-pairing-
friendly curves such as curve25519 and secq256k1. The main limitation of Bulletproofs, also
the limitation of transparent-setup inner-product arguments, is that the proof generation time is
comparably higher, and the proof verification time goes linearly with the size of the statement
being proven. Nevertheless, Bulletproofs is particularly useful in proving small statements.

TurboPlonk. The state-of-the-art proof systems for many blockchain applications belong to the
Plonk family [GWC19], which include Plonk, TurboPlonk (which uses customized gates), and
UltraPlonk (which additionally uses lookup). Generally, people can use customized gates to in-
crease the sparsity of some polynomials involved in the computation, as well as reduce the length
of some dense polynomials involved in the computation, and therefore reduce the proving time by
having fewer multiscalar multiplication operations. This is sometimes referred to as “the sparsity
theory” of polynomial interactive oracle proof (PIOP). Different variants of Plonk often leverage
two or three of the common tools for PIOP: (1) sumcheck, (2) the shifting trick, and (3) universal
hashing, and can yield a better performance than many R1CS-based proof systems. TurboPlonk
has a universal setup, and its proof size is short so that it is suitable for blockchain applications.
Note that Plonk can also refer to its arithmetization. For example, Halo2 [Hal] uses Plonk-style
arithmetization, but its polynomial commitment scheme uses inner-product arguments, which is
closer to Bulletproofs.

Nonnative field. Many zero-knowledge proof systems are tailored to doing proofs over state-
ments described in a specific field. For example, pairing-based SNARKs often are defined over the
scalar field of that pairing-friendly curve. This becomes an issue when interoperability in different
fields is needed in the statement. For example, in the two applications described in Section 1,
the Zerocash construction is largely defined over the BLS12-381 curve due to various reasons de-
scribed before, but it needs to reason about other field elements over the scalar field of curve25519
and/or secq256k1. To handle this, the standard solution today is to use nonnative fields [KPS18;
OWWB20] to simulate the computation on a prime field over a different prime field. The high-
level idea is to split an element on one prime field into several limbs on another prime field and
perform addition and multiplication over such limbs while making sure that they do not overflow,
which is done by expensive simulation of modular reduction.

3 The inspection model for zero-knowledge proofs
In this section we present design rationale, optimization used in production, and an informal secu-
rity proof for this inspection model and its compiler. We also provide an alternative construction.

3.1 Design rationale
We now describe the design rationale behind the inspection model.

20



Inspector. The motivation of the inspection model comes from the saddening reality that the
Schnorr protocol, as a proof of knowledge is, however, just a proof of knowledge. Though it can
show that the prover knows the discrete log, the protocol itself does not prove anything else.
This challenge will be trivial, however, if we drop the zero-knowledge property, since the prover
can simply disclose the discrete log. This is also the case for many other protocols, and the battle
between (knowledge) soundness and zero-knowledge has always been here. It would be ideal,
when designing the protocol, that there is a “demilitarized zone” (DMZ) where such a battle does
not happen. This is where the “inspector” i shows up.

Defining the inspector. When defining the inspector i, we want to make the definitions as simple
and minimal as possible. That is, inspector i’s interactions with prover P and verifier V should be
sufficient for different kinds of inspection, nothing else. This minimalism principle is reflected in
our design in the following ways:
• Before the decision round, inspector i remains silent. Though it receives secret messages from

the prover P, inspector i does not need to respond to them.
• Before the decision round, inspector i hears additional information from prover P, but not from

verifier V. This restriction is added because we focus on protocols that can easily be made non-
interactive through Fiat-Shamir transform, which are public-coin, in which case all messages
from verifier V can be deduced from the transcript. There is no other information that verifier
V needs to share with inspector i.

• At the decision round, inspector i can only send out a veto signal VETO or ⊥, and if prover P is
honest, i for sure will not veto. We restrict the inspector’s message to verifier V this way for the
following reasons. Note that inspector i has to pass some information in the protocol to verifier
V, otherwise it has no effect on the outcome. However, this message may bring challenges to
the zero-knowledge property, as inspector i could leak information to verifier V about those
secret messages that prover P only shares with the inspector i. To solve this problem, the easiest
way is to restrict the information that inspector i can share with verifier V, for example, one
bit. Note that even one bit can be leaky, but in our definitions, when prover P is honest, this bit
will always be false (i.e., “⊥” in our case), and therefore can be easily simulated by a simulator,
which immediately preserves the zero-knowledge property.

To summarize, inspector i hears additional information from P but not V, and the only information
that i can say is one bit in the decision round to V, and this bit is trivial (“⊥”) for a valid proof.

Instantiating the inspector. It is not difficult to add a new entity to a cryptographic protocol, but
for it to be useful, it must be instantiated with concrete cryptographic primitives in the real world.
In particular, there is no inspector in the real world.
However, think about the inspector as a special case of an oracle in the interactive proof system.
It is not uncommon that we build an interactive proof protocol that uses some oracles, and replace
them during the Fiat-Shamir transform.
A concrete example is polynomial interactive oracle proofs (PIOPs) that are behind a number of
modern proof systems including Sonic [MBKM19], Marlin [CHMMVW20], Gemini [BCHO22],
and Plonk [GWC19]. In that framework, in the interactive protocol, the polynomials are treated as
oracles, and the verifier has holographic and virtual access to these oracles that are created by the
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prover, and the verifier can query the polynomial on some points. Such polynomial oracles clearly
do not exist in the real world, but they can be replaced, during the Fiat-Shamir transform, with a
concrete instantiation of a polynomial commitment scheme.
For the inspection model, we replace it with a protocol that is a combination of simulatable com-
mitments [MP03] and NIZK, described as follows.
First, we note that in the decision round, the inspector i can only send out one bit, and if the proof
is valid, this bit is trivial. This is in essence similar to NIZK verification, as verifier V outputs
b ∈ {0, 1}, and for a valid proof, the bit is always b = 1, which is trivial. Therefore, we can run
the inspector i’s decider in NIZK, which proves that the decision is to not veto.
Second, it is not enough for us to put the decider into NIZK, because we also need to force the
prover P to send the secret message for a specific round, for example, msgiP→i for the i-th message,
before it receives the message sent by verifier V, which, in the public-coin setting, is the challenge
as in msgiV→P,i. This requires some sort of simulatable commitment [MP03] with extractability,
and it can be done with hash commitment. Particularly, whenever it is the time for a prover P to
send msgiP→i to i, we replace it with a commitment ci (with randomizer ri) that will be sent to the
verifier V instead. This is in essence similar to the setting where the inspector i’s decider asks V
to receive those messages on its behalf and the prover P is “encrypting” those messages.
The commitment ci can be described as follows:

ci = H(msgiP→i; ri)

This commitment is later opened by the inspector i’s decider, given ri provided by prover P when
generating the NIZK. To sum up, by a commitment scheme we enforce the timing of those secret
messages, and by NIZK we can run a decider in zero knowledge.

3.2 Optimization used in production
We now present some optimization techniques that we use in our implementation.

SNARK-friendly simulatable commitment with extractability. In production, the NIZK can be
instantiated with zk-SNARK, and this kind of proof system often prefers doing computation over
a specific field F. Therefore, an optimization is to use a SNARK-friendly simulatable commitment
schemes that have extractability, such as Rescue [AABSDS20] over this specific field F. It is
important for us to emphasize the field because, for example, in our application on Zerocash with
secp256k1 keys, the field F that the hash function will be defined over is BLS12-381’s scalar
field, while the field elements that we commit are on the scalar field of secq256k1. Some sort of
adaptation is needed to reconcile such differences, such as storing the nonnative element as limbs,
but what is important here is to use Rescue for F in zk-SNARK.

Omitting unnecessary public messages. As our examples in Section 1 show, although the com-
piler provides all msgiP→i and msgiP→i,V as the instance to the NIZK that runs the inspector i’s
decider, some of the public messages, msgiP→i,V, or some parts of them, may not be of the de-
cider’s interest, and therefore such instances can be omitted from the NIZK proof generation and
verification.
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Preprocessing of the NIZK instance. For NIZK there can be computation over the public in-
stance x that should better be performed outside. In our examples in Section 1.4, instead of passing:

(c1, β, λ, s1, s3, s5)

The NIZK uses the following instance:(
c1, β, λ, βλ, λ

2, βλ2, s1 + λs3 + λ2s5
)

in which the instance includes (βλ, λ2, βλ2), which can actually be derived already from β and
λ, and it includes s1 + λs3 + λ2s5, which can be derived from λ, s1, s3, s5. The reason for such
preprocessing is that all these elements above are indeed over the scalar field of secq256k1 and
not over the scalar field of BLS12-381, so deriving these numbers through nonnative fields is
expensive. To reduce the overhead, some precomputation is pushed to the instance, and it expects
verifier V to do the precomputation. Note that the omission of unnecessary public messages, which
we describe above, is a special case of preprocessing. There is some overlapping.

3.3 Informal security proof
We now present an informal security proof, in which we strive to avoid the discussion about Fiat-
Shamir transform. Our proof strategy is to first show that the interactive protocol between P, i,V
is equivalent to another interactive protocol between P and V. Then, one can straightforwardly
apply the Fiat-Shamir transform. The final result of this Fiat-Shamir transform is the output of our
compiler for the original interactive protocol between P, i,V.
This informal proof will focus on zero-knowledge and knowledge soundness.

The inspector vanishes. We now process each round and gradually remove the inspector i from
the interactive protocol.
• Proof generation: For the i-th round:
1. “P sends a message msgiP→i to i” will be processed as follows:

(a) Sample a random blinding factor ri
(b) Compute a commitment ci := H(msgiP→i; ri)

(c) Send ci to verifier V
2. “P sends a message msgiP→i,V to i and V” will be processed as follows:

• Send msgiP→i,V to verifier V
3. “V sends a message msgiV→P,i to P and i” will be processed as follows:

• Send msgiV→P,i to prover P
Then, for the decision round, prover P directly generates an NIZK:
1. Generate an NIZK π with the following instance x, witness w, and statement Π

• Instance x: all the msgiP→i,V, all the msgiV→P,i, and all the ci

• Witness w: all the msgiP→i, and all the ri
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• Statement Π:
– Check for all i: ci

?
= H(msgiP→i; ri)

– Check that i([msgiP→i,msgiP→i,V,msgiV→P,i]i)
?
=⊥

2. Send π to verifier V
• Proof verification: For the i-th round,
1. “P sends a message msgiP→i to i” will be processed as follows:

• Put ci into the transcript
2. “P sends a message msgiP→i,V to i and V” will be processed as follows:

• Put msgiP→i,V into the transcript
3. “V sends a message msgiV→P,i to P and i” will be processed as follows:

• Do nothing, since V is public-coin, msgiV→P,i can be computed from the transcript, through
the Fiat-Shamir transform

Then, for the decision round, verifier V additionally checks the NIZK:
• Verify the NIZK π using the instance—all the msgiP→i,V, all the msgiV→P,i, and all the ci—which

come from the proof or from the transcript via Fiat-Shamir transform

• Check that V([msgiP→i,V,msgiV→P,i]i)
?
= ACCEPT

Honest-verifier zero-knowledge. Since the original protocol is honest-verifier zero-knowledge
(HVZK), there is a simulator S that can simulate the honest verifier’s view. We now show that we
can easily construct another simulator S′ for the new interactive protocol above.
First of all, since we use simulatable commitments [MP03], S′ can simulate all the commitments
ci that commit the secret messages to the inspector i.
Then, S′ invokes the simulator for the NIZK. Note that our NIZK might need to work with some
oracles, such as a random oracle, if the simulatable commitment uses it (as in the case of hash
commitment). We assume that despite such nuances, we are able to use this simulator.

Knowledge soundness. Recall that the compiler uses simulatable commitment with extractability,
which is, fortunately, not difficult to instantiate in the real world. The use of a simulatable commit-
ment scheme with extractability means that the extractor can still effectively extract msgiP→i even
if they are no longer being sent out, by using the extractor of this commitment scheme.
Note that we do not need NIZK to have extractability, since the witness that we plan to extract is
already in the commitments that we can extract.

3.4 Alternative construction
The construction we discuss in this paper uses a simulatable commitment with extractability and
an NIZK. As a byproduct of the knowledge soundness proof above, we note that one can also use a
simulatable commitment and an extractable NIZK, because msgiP→i can also be extracted through
the extractable NIZK.
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We favor a simulatable commitment with extractability because the hash commitment, in the ran-
dom oracle model, easily achieves the requirements, and can be instantiated quite efficiently in
practice using SNARK-friendly primitives.
This requirement, however, can be challenging for some NIZK constructions. For example, for
Marlin [CHMMVW20] to have extractability, one needs to either work with the algebraic group
model or assume the Knowledge of Exponent Assumption (KEA) and endure an overhead of 2×
for polynomial commitments.

4 Delegated Schnorr protocol
In this section we describe how to do batching in the delegated Schnorr protocol and provide an
informal security proof.

4.1 Batching
We now present a batched version of delegated Schnorr protocol with the following performance
numbers for doing a batch of K commitments:
• NIZK performs only one (instead of K) post-multiplication modular reduction in nonnative

fields, or informally, one nonnative mul. The amount of the computation in NIZK should grow
slowly with K, but its impact on proof size, proof generation time, and proof verification time
depends on the concrete proof system.

• Outside NIZK, there are (2 +K) (instead of 3K) elements in F and K elements in G. In terms
of computation, it performs (2K + 1) (instead of 3K) scalar-point muls.

Opportunities for batching. There are several opportunities for batching. We first discuss the
main one. Note that in NIZK, it is supposed to check the following equations, each of which takes
one post-multiplication modular reduction.

s1 = βx+ a

s3 = βy + c

s5 = βz + e

However, after verifier V receives s1, s3, s5 from prover P, it can check a random linear combi-
nation of equations above. In particular, verifier V can choose a random challenge λ←$F, and
check the following instead: s1

+λs3
+λ2s5

 = β

 x
+λy
+λ2z

+

 a
+λc
+λ2e


But, it does not seem that the amount of nonnative field operations goes down as multiplying by λ
itself incurs similar overhead. This is avoided through preprocessing. Note that the equation above
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can be rewritten as:  s1
+λs3
+λ2s5

 =

 βx
+βλy
+βλ2z

+

 a
+λc
+λ2e


and we now highlight all elements that can be computed during the preprocessing: s1

+λs3
+λ2s5

 =

 β x

+ βλ y

+ βλ2 z

+

 a

+ λ c

+ λ2 e


As one can see, all the secret values x, y, z, a, c, e will only be multiplied by one other value.
In addition, in nonnative fields, the intermediate representations of βx, βλy, βλ2z, λc, λ2e do not
need to each go through an individual post-multiplication modular reduction. In fact, the NIZK
can add these intermediate representations together and then perform one modular reduction. This
is why, regardless of K, the number of post-multiplication modular reductions is only one.
Now we turn our attention to the non-NIZK part.
There are still K elements in G, which are the blinding elements used in the Schnorr protocol.
What we can save is the number of elements in F, from 3K to 2 +K. To see why this is possible,
let us think about what the three field elements for each equation are:
• The hash commitment for a message to the inspector, e.g., c1 = H(x, a; r1)

• A response scalar s1
• Another response scalar s2
Our first observation is that one hash commitment is capable of committing all the messages from
each of the K equations. That is,

c1 = H(x, a, y, c, z, e; r1)

The second observation is that, for the response scalars at the even indices, such as s2, s4, s6, we
do not actually care, as we are not proving knowledge about the randomizers. Therefore, some
readers may already discover this from our two applications in Section 1, that our response scalars
in the interactive protocol are sent in two different rounds.
• In the second round, only response scalars at the odd indices, such as s1, s3, s5, are sent.
• After receiving a challenge λ from verifier V, the response scalars at the even indices will be

sent, but as a random linear combination:

s2 + λs4 + λ2s6

Therefore, we can indeed merge all the response scalars at the even indices together. This means
that in a batched protocol, the (2+K) field elements include one hash commitment, one combined
response scalar for those at the even indices, and K response scalars at the odd indices.
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Finally we want to show why the number of scalar-point multiplication operations outside NIZK
is (2K+1) instead of 3K. Note that previously, there are K equations to check, and each equation
requires three scalar-point multiplication operations, in total 3K.

s1G+ s2H = βP + C1

s3G+ s4H = βQ+ C2

s5G+ s6H = βR + C3

Note that this can be batched using a random linear combination of λ, and in fact this is mandatory
now because the proof only has s2 + λs4 + λ2s6. We now have the following equation to check: s1

+λs3
+λ2s5

G+

 s2
+λs4
+λ2s6

H =

 βP
+βλQ
+βλ2R

+

 C1

+λC2

+λ2C3


And we now highlight the scalars. s1

+λs3
+λ2s5

 G+

 s2
+λs4
+λ2s6

 H =

 β P

+ βλ Q

+ βλ2 R

+

 C1

+ λ C2

+ λ2 C3


The total number of scalar-point multiplication operations is therefore:

1 + 1 +K + (K − 1) = 2K + 1

Put it together. We now present the general algorithms to perform the delegated Schnorr protocols
over K Pedersen commitments. We consider each commitment Pi as follows:

Pi = xiG+ γiH

We now describe the batched protocol.
• Proof generation:
1. Sample ai, bi←$FG, compute Ci := aiG+biH for i ∈ {1, 2, ..., K}; sample r1←$FN , compute

c1 := H([(xi, ai)]
K
1 ; r1), and put (c1, [Ci]

K
1 ) into the transcript

2. Compute the challenge β ∈ FG from the transcript through the Fiat-Shamir transform
3. Compute s2i−1 := βxi + ai and put them into the transcript
4. Compute the challenge λ ∈ FG from the transcript through the Fiat-Shamir transform
5. Compute seven :=

∑K
i=1 λ

i−1(βγi + bi)

6. Set block B to be (c1, [Ci]
K
1 , [s2i−1]

K
1 , seven)

7. Append the following statement (block A) into NIZK:

• Additional instance x+: c1, [Ci]
K
1 , β, [s2i−1]

K
1 , seven , and the instance for precomputation,

[βλi−1]K1 , [λi−2]K2 , and
∑K

i=1 λ
i−1s2i−1
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• Additional witness w+: [xi]
K
1 , [ai]K1 , r1

• Additional statement Π+:
– Check c1 = H([(xi, ai)]

K
1 ; r1)

– Check (
∑K

i=1 λ
i−1s2i−1) =

∑K
i=1(βλ

i−1) · xi + a1 +
∑K

i=2(λ
i−2) · ai

8. Proceed with the rest of the protocol
• Proof verification:
1. Parse block B as (c1, [Ci]

K
1 , [s2i−1]

K
1 , seven)

2. Compute the challenge β, λ ∈ FG from the transcript through the Fiat-Shamir transform
3. Check that

∑K
i=1(βλ

i−1 · Pi + λi−1 · Ci) = (
∑

i=1 βλ
i−1s2i−1) ·G+ seven ·H

4. Check the NIZK proof with the additional instance:

x
+ := (c1, β, [βλ

i−1]K1 , [λ
i−2]K2 ,

∑K
i=1λ

i−1s2i−1)

4.2 Informal security proof
Though one can already prove the security of this protocol by applying the compiler, here we
provide a standalone informal security proof on the resultant protocol. For simplicity, we present
a proof in which the delegated Schnorr protocol only opens one group element.

Soundness. Assume that prover P has a strategy that can mislead verifier V to accept P = xG+
γH , but Π(x) = false. Given the soundness of NIZK and the binding property of commitment,
we can assume x′ ̸= x is the value committed in c1 and it holds that Π(x′) = true. We know that:

c1 = H(x′, a′; r1)

for some a′. Let us say that C1 = aG+ bH . The equation s1G+ s2H = βP + C1 implies that:

βx+ a = βx′ + a′

which implies that the malicious prover P̃ must set:

a′ = β(x− x′) + a

However, β is known only after a′ is committed. Except with negligible probability, the malicious
prover P̃ can only do so with x = x′, which is a contradiction. This result also makes it easy to
show knowledge soundness, as one can either extract from the simulatable commitment if it has
extractability, or from NIZK if it has extractability.

Zero-knowledge. For an honest prover who follows the protocol, invoking the simulator for
NIZK, the view of the verifier after seeing the proof is:

c1, C1, s1, s2

Note that the commitment has the hiding property. We can now focus on C1, s1, s2, and we want
to show that there is a simulator that can simulate such values that satisfy s1G+ s2H = βP + C1

28



with β depends on c1 and C1. This proof now requires a restricted programmable random oracle
to manipulate the Fiat-Shamir transform. The simulator samples β, s1, s2 and sets:

C̃1 := −βP + s1G+ s2H

and programs the random oracle to output β when c1 and C̃1 appear on the transcript.

5 Implementation and evaluation
In this section we elaborate on the implementation in Findora’s Zei library and present some bench-
mark results on the performance of the construction presented in this paper and the breakdown.

5.1 Implementation
We now describe our implementation of the two applications (Maxwell-Zerocash switching and
Zerocash with secp256k1 keys) layer-by-layer. Most code in this implementation comes from
either the existing Zei library [Zei] or third-party libraries such as Dalek’s bulletproofs [Dala],
x25519-dalek [Dalc], and curve25519-dalek [Dalb]. This allows us to base our implementation
on code that has been used for a while and has undergone either informal or formal auditing.

Cryptographic building blocks. The Zei library [Zei] uses the arkworks-rs library [ark] as the
backend since its code has been used by several ZK companies and is production-ready. One of
the main building blocks in our applications is Bulletproofs. For Maxwell-Zerocash switching, we
use Dalek’s bulletproofs off the shelf. For Zerocash with secp256k1 keys, we port Dalek’s
bulletproofs to use arkworks-rs as a backend, and then we fill in the field/curve parameters
for the secp256k1 and secq256k1 curves.5

Delegated Schnorr. Recall that the delegated Schnorr protocol consists of two parts: block A,
which is inside NIZK, and block B, which is outside. Our Rust implementation of this protocol
is in the Zei library. For block B, we implement it in a group-agnostic manner, which would
be useful for our two applications: Maxwell-Zerocash switching is over the Ristretto group over
curve25519, while Zerocash with secp256k1 keys is over secq256k1. To prove the statement in
block A efficiently, we use a binary-testing-friendly TurboPlonk described in Appendix A, which
helps reduce the overhead of nonnative fields. To do this, we use standard techniques in [KPS18]
and [OWWB20].

Application: Maxwell-Zerocash switching. We implement a protocol for Maxwell-to-Zerocash
switching and a protocol for Zerocash-to-Maxwell switching in the Zei library. Both are capable
of hiding the amount and the asset type, following the design presented in Section 1.3.

Application: Zerocash with secp256k1 keys. The Findora blockchain network has moved to use
secp256k1 in the smart contracts on EVM chain, the Maxwell transactions on the UTXO chain,

5As we mentioned previously in Section 1, we also implemented bulletproofs for another curve called Canaan
that also embeds secp256k1, which would be useful if hashing to curve is needed. Its implementation can be found
in https://github.com/FindoraNetwork/ark-bulletproofs-canaan.
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and the Zerocash transactions on the UTXO chain. For the Zerocash transactions, we focus on the
case in which all inputs belong to the same public key.6 Therefore, for each transaction, we only
need one Bulletproofs to prove a scalar multiplication. TurboPlonk reads the input commitments
of the Bulletproofs to obtain a public key and a secret key, with the assurance that Bulletproofs has
already proven the scalar multiplication relation, and uses these keys for the rest of the Zerocash
protocol, particularly for the computation of the nullifiers.

Source code. Readers can find the source code of the implementation in:

https://github.com/FindoraNetwork/zei

5.2 Evaluation setup
For the two applications, Maxwell-Zerocash switching and Zerocash with secp256k1 keys, users’
machines, instead of some servers, will be running the prover. This is due to the needs of privacy—
a user cannot easily delegate the proof generation to an untrusted third party. Therefore, we choose
to run the benchmark on the following two representative environments.
• m5.xlarge, Intel Xeon Platinum 8175M CPU at 2.50 GHz with 4 vCPU and with 16 GB memory
• mac2.metal, Apple’s M1 chip with 8 CPU cores with 3.2 GHz, with 16 GB memory

5.3 Evaluation on Maxwell-Zerocash switching
We benchmark Maxwell-Zerocash switching on these two setups. We focus on (1) the number of
gates in TurboPlonk, (2) proof generation time, (3) proof size, and (4) proof verification time.

Number of gates in TurboPlonk. We present a breakdown of the number of gates in TurboPlonk
proofs in Table 6 and Table 7. It is expected that the composition and the total will be very different
between Maxwell-to-Zerocash and Zerocash-to-Maxwell, for the following reasons:
• In Maxwell-to-Zerocash, the prover only needs to assemble a new commitment, while in Zerocash-

to-Maxwell, the prover needs to prove the existing commitment is in the global Merkle tree.
• In Maxwell-to-Zerocash, the prover does not need to prove the knowledge of the secret key

using the delegated Schnorr protocol, because in the Maxwell construction, the address as well
as the public key is public. However, in Zerocash-to-Maxwell, the public key of the Zerocash
transaction also needs to be hidden, and therefore the use of delegated Schnorr protocol over
secq256k1 is not avoidable.

Proof generation time. We measure the overall proof generation time and present a breakdown
that consists of the time to generate the TurboPlonk proof, or the time to generate each delegated
Schnorr proof. Below we show the single-thread and multithread performance.7

6This restriction can be lifted without a significant overhead for block A of the delegated Schnorr protocol using
batching. To do so, prover P does a Bulletproofs for each public key in the inputs, and the delegated Schnorr protocol
opens a linear combination of the input commitments of these Bulletproofs.

7The multithread performance may be improved in the future since, at this moment, only the multiscalar multipli-
cation (MSM) is made parallel.
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• For Maxwell-to-Zerocash:
– Proof generation in total takes 1.015 s on m5.xlarge and 0.638 s on mac2.metal, and in the

case of multithreading, 0.606 s on m5.xlarge and 0.285 s on mac2.metal

– The TurboPlonk proof takes 1.012 s on m5.xlarge and 0.635 s on mac2.metal, and in the case
of multithreading, 0.603 s on m5.xlarge and 0.283 s on mac2.metal

– The Ristretto delegated Schnorr proof takes. 0.003 s on m5.xlarge and 0.002 s on mac2.metal
• For Zerocash-to-Maxwell:

– Proof generation in total takes 5.53 s on m5.xlarge and 3.58 s on mac2.metal, and in the case
of multithreading, 3.78 s on m5.xlarge and 2.01 s on mac2.metal

– The TurboPlonk proof takes 3.08 s on m5.xlarge and 1.93 s on mac2.metal, and in the case
of multithreading, 1.95 s on m5.xlarge and 0.95 s on mac2.metal

– The delegated Schnorr proof over Ristretto takes 0.003 s on m5.xlarge and 0.002 s on mac2.metal
– The delegated Schnorr proof over secp256k1 takes 0.005 s on m5.xlarge and 0.003 s on
mac2.metal

– Bulletproofs over secq256k1 takes 2.31 s on m5.xlarge and 1.55 s on mac2.metal, and in
the case of multithreading, 1.69 s on m5.xlarge and 0.97 s on mac2.metal

We can see that the proof generation of TurboPlonk and Bulletproofs takes most of the time.

Proof size. We now present the proof sizes and their breakdown. For the Maxwell-to-Zerocash
switching, the proof has 1456 bytes (1.4 KB), which consists of:
• a delegated Schnorr proof over Ristretto of 296 bytes (20.3%)
• a TurboPlonk proof of 1160 bytes (79.7%)
For the Zerocash-to-Maxwell switching, the proof has 3279 bytes (3.2 KB), which consists of:
• a delegated Schnorr proof over Ristretto of 296 bytes (9.0%)
• a delegated Schnorr proof over secq256k1 of 419 bytes (12.8%)
• three Bulletproofs input commitments of 131 bytes (4.0%)
• a Bulletproofs over secq256k1 of 1273 bytes (38.8%)
• a TurboPlonk proof of 1160 bytes (35.4%)

Proof verification time. Similarly, we measure the proof verification time as well as the break-
down for each different type of proof. Here we only present single-thread numbers since the
verifier here is not made parallel.
• For Maxwell-to-Zerocash:

– Proof verification in total takes 0.013 s on m5.xlarge and 0.009 s on mac2.metal

– Verification of the TurboPlonk proof takes 0.013 s on m5.xlarge and 0.009 s on mac2.metal

– Verification of the delegated Schnorr proof over Ristretto takes 0.0004 s on m5.xlarge and
0.0004 s on mac2.metal

• For Zerocash-to-Maxwell:
– Proof verification in total takes 0.24 s on m5.xlarge and 0.16 s on mac2.metal
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# gates
Witness validity 322 (24.0%)
Commitment opening 306 (22.9%)
Ristretto delegated Schnorr 711 (53.1%)
Total 1339

Table 6: Maxwell to Zerocash.

# gates
Witness validity 3888 (48.8%)
Commitment opening 306 (3.8%)
Ristretto delegated Schnorr 711 (8.9%)
secq256k1 delegated Schnorr 3058 (38.4%)
Total 7963

Table 7: Zerocash to Maxwell.

– Verification of the TurboPlonk proof takes 0.013 s on m5.xlarge and 0.009 s on mac2.metal

– Verification of the delegated Schnorr proof over Ristretto takes 0.0004 s on m5.xlarge and
0.0003 s on mac2.metal

– Verification of the delegated Schnorr proof over secq256k1 takes 0.001 s on m5.xlarge and
0.001 s on mac2.metal

– Verification of the Bulletproofs over secq256k1 takes 0.224 s on m5.xlarge and 0.149 s on
mac2.metal

We note that the dominating cost is the verification of the Bulletproofs. This is not surprising, as
Bulletproofs has a linear verification time. However, this is not without solutions, as Bulletproofs
can be very efficiently batched together. Batching, however, needs to be done carefully. As if one
of the proofs is incorrect, we do not know which one is. However, with some care, we can still
leverage the batching. In a blockchain network where a group of validators decide how the ledger
progresses. One validator, as the proposer, needs to verify such proofs one by one, while the rest
of the validators, who vote, can simply check the proofs that the proposer approves in a batch.

5.4 Evaluation on Zerocash with secp256k1 keys
Similarly, we focus on (1) the number of gates in TurboPlonk, (2) proof generation time, (3) proof
size, and (4) proof verification time.

Number of gates in TurboPlonk. We present the number of gates in TurboPlonk and its break-
down in Table 8 and Table 9. Since we require all the inputs to come from the same address,
the amount of work in secq256k1 does not depend on the number of inputs or outputs. We can
also see that as the number of inputs and outputs increases, the overhead of witness validity and
asset equality increases. The witness validity, which includes the Merkle tree proof, is expected to
increase linearly, while the asset equality is expected to grow quadratically.

# gates
Witness validity 4204 (57.6%)
Delegated Schnorr 3059 (41.9%)
Asset equality 37 (0.5%)
Total 7300

Table 8: One-input-one-output.

# gates
Witness validity 8408 (72.6%)
Delegated Schnorr 3059 (26.4%)
Asset equality 122 (1.1%)
Total 11589

Table 9: Two-input-two-output.
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Proof generation time. We again measure the overall proof generation time and provide a similar
breakdown for one-input one-output and two-input two-output.
• For one-input one-output:

– Proof generation in total takes 5.49 s on m5.xlarge and 3.51 s on mac2.metal, and in the case
of multithreading, 3.73 s on m5.xlarge and 2.01 s on mac2.metal

– The TurboPlonk proof takes 3.05 s on m5.xlarge and 1.89 s on mac2.metal, and in the case
of multithreading, 1.91 s on m5.xlarge and 0.94 s on mac2.metal

– The delegated Schnorr proof over secp256k1 takes 0.005 s on m5.xlarge and 0.004 s on
mac2.metal

– Bulletproofs over secq256k1 takes 2.30 s on m5.xlarge and 1.54 s on mac2.metal, and in
the case of multithreading, 1.68 s on m5.xlarge and 0.97 s on mac2.metal

• For two-input two-output:
– Proof generation in total takes 8.08 s on m5.xlarge and 5.36 s on mac2.metal, and in the case

of multithreading, 5.50 s on m5.xlarge and 2.96 s on mac2.metal

– The TurboPlonk proof takes 5.66 s on m5.xlarge and 3.74 s on mac2.metal, and in the case
of multithreading, 3.68 s on m5.xlarge and 1.88 s on mac2.metal

– The delegated Schnorr proof over secq256k1 takes 0.005 s on m5.xlarge and 0.003 s on
mac2.metal

– Bulletproofs over secq256k1 takes 2.28 s on m5.xlarge and 1.53 s on mac2.metal, and in
the case of multithreading, 1.68 s on m5.xlarge and 0.99 s on mac2.metal

Similar to the result in Maxwell-Zerocash switching, the generation of TurboPlonk and Bullet-
proofs takes most of the time.

Proof size. The proof size is 2983 bytes (2.9 KB), which consists of:
• a delegated Schnorr proof over secq256k1 of 419 bytes (14.0%)
• three Bulletproofs input commitments of 131 bytes (4.4%)
• a Bulletproofs over secq256k1 of 1273 bytes (42.7%)
• a TurboPlonk proof of 1160 bytes (38.9%)
Note that the proof size for both cases is the same—because in our setup, the TurboPlonk proof
has a constant size, and both the delegated Schnorr proof and Bulletproofs over secq256k1 are
checking only one proof of knowledge of the secret key, which remains unchanged.

Proof verification time. Similarly, we measure the proof verification time as well as its break-
down in the single-thread setting. Our observation is similar to that in the Maxwell-Zerocash
switching.
• For one-input one-output:

– Proof verification in total takes 0.239 s on m5.xlarge and 0.159 s on mac2.metal

– Verification of the TurboPlonk proof takes 0.013 s on m5.xlarge and 0.009 s on mac2.metal

– Verification of the delegated Schnorr proof over secp256k1 takes 0.001 s on m5.xlarge and
0.001 s on mac2.metal
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– Verification of the Bulletproofs over secq256k1 takes 0.225 s on m5.xlarge and 0.149 s on
mac2.metal

• For two-input two-output:
– Proof verification in total takes 0.239 s on m5.xlarge and 0.159 s on mac2.metal

– Verification of the TurboPlonk proof takes 0.013 s on m5.xlarge and 0.009 s on mac2.metal

– Verification of the delegated Schnorr proof over secq256k1 takes 0.001 s on m5.xlarge and
0.001 s on mac2.metal

– Verification of the Bulletproofs over secq256k1 takes 0.225 s on m5.xlarge and 0.149 s on
mac2.metal

6 Open problems
We are very interested in learning more about this area. Below is a list of open problems that
we are interested in. Readers who would like to work on these problems can apply for a Findora
Foundation research grant, which should be able to cover some miscellaneous costs. To start a
discussion, email Findora Cryptography Team crypto@findora.org.
Discrete log equality:
1. In the Cryptography Stack Exchange, Geoffroy Couteau has noted that integer commitments

(e.g., from RSA [DF02]) and range proof (e.g., for non-negativity [Lip03]) may be able to solve
this problem, built over a construction by Yehuda Lindell in the same thread [Crya]. What does
a concrete construction look like? What is its performance given recent results?

2. Is there a different way to modify the Chaum-Pedersen protocol, ideally using simple tools and
without invoking general-purpose NIZK, that can achieve the same functionality (for discrete
log equality, only) and is concretely efficient?

3. Is there a way to prove the discrete log equality for groups with different orders, probably under
some constraints, without using any nonnative field techniques?

Inspection model:
1. Is there any existing work that actually has already covered an idea similar to inspection?
2. The inspection model in this paper is informal and imprecise. What would a formal treatment

look like? What would be a better name for it that can put it in context with prior work?
3. We only have the delegated Schnorr protocol as an example of the inspection model. Are there

more examples? Is the inspection model really useful for general protocol designs, or is it just
a coincidence and is being lucky with the Schnorr protocol?

4. What is the connection between the inspection model and the accumulator-based proof-carrying
data [BCMS20], which splits the verifier into an accumulation verifier and a decider? What is
the connection of the inspection model with private aggregation by Boneh, Drake, Fisch, and
Gabizon [BDFG21]?

Zerocash with secp256k1:
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1. What are some other efficient constructions? Note that Bulletproofs is not the only proof system
that is not subject to the needs of FFT space—we already list a few in Section 1. Note that we
do not need to have “the best construction”, as there is often a trade-off. For example, the use
of TurboPlonk requires users to download the SRS, which in production is tiresome.

2. Most existing syntaxes for zero-knowledge proofs do not capture the existence of a transcript
T , for example from another protocol. However, the transcript is heavily used in practice and
across several protocols. Therefore, such syntax may not capture the actual implementation.
What would the syntax look like for zero-knowledge proofs with explicit mutable access to a
transcript (i.e., &mut transcript)? This is the situation when we use the Merlin Rust library
[Mer] to manage the transcript.

Implementation:
• Note that we do not necessarily need to use secq256k1, and as we discuss in Section 1, there are

some limitations of secq256k1 though not relevant to our particular use case. Is there a better
curve? Is there a general way, or a list of criteria, in finding a “good” curve?
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A A binary-testing-friendly variant of TurboPlonk
We now describe the variant of TurboPlonk used in the Findora blockchain for the applications
in this paper. Our construction follows the standard recipe of customizing TurboPlonk, so we do
not claim any novelty. This variant has five wires, twelve selectors, high degrees, and additional
polynomial identity constraints. It includes customized gates for Rescue and boolean testing. The
following equation summarizes the structure.

q1(X) · w1(X) + q2(X) · w2(X) + q3(X) · w3(X) + q4(X) · w4(X) // linear combination
+ qm1(X) · w1(X) · w2(X) + qm2(X) · w3(X) · w4(X) // multiplication (somewhat)
+ qc(X) // constants
+ PI(X) // inputs
+ qhash1(X) · (w1(X))5 + qhash2(X) · (w2(X))5

+ qhash3(X) · (w3(X))5 + qhash4(X) · (w4(X))5 // Rescue non-linear steps
= qo(X) · wo(X) // output (1)

qb(X) · w2(X) · (w2(X)− 1) = 0 // boolean testing on the second wire (2)
qb(X) · w3(X) · (w3(X)− 1) = 0 // boolean testing on the third wire (3)
qb(X) · w4(X) · (w4(X)− 1) = 0 // boolean testing on the fourth wire (4)
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We call this variant binary-testing-friendly since, in addition to the arithmetic condition (see eq. (1)),
there are three boolean testing conditions (see eq. (2), eq. (3), and eq. (4)). In a non-binary-testing-
friendly construction, these additional constraints would have been instantiated with additional
gates, but one can apply them directly to an existing gate to restrict its 2nd, 3rd, and 4th input
wires. This effectively reduces the cost of bit decomposition, an operation that uses a lot of binary
testing, by 75%. Bit decomposition contributes to a lot of the cost in range checks, Merkle trees
via Pedersen commitments, field simulation, and emulation of binary circuits.

A.1 Indexer
The indexer in TurboPlonk computes the commitments and openings for indexing polynomials,
which consist of the following:
• The thirteen selector polynomials:

q1(X), q2(X), q3(X), q4(X), qo(X), qm1(X), qm2(X), qc(X),

qhash1(X), qhash2(X), qhash3(X), qhash4(X), qb(X)

• The five permutation polynomials:

Sσ1(X), Sσ2(X), Sσ3(X), Sσ4(X), Sσo(X)

First of all, let the number of gates be n, the constraint system should have indicated a permutation
σ : [5n]→ [5n], which fulfills the following requirements.
• Let w(X) be the concatenated witness polynomial of w1(X), w2(X), w3(X), w4(X), wo(X).

The concatenation is over the evaluation representation, not the coefficient representation.
• The evaluation of w(X) remains unchanged after applying σ as a permutation over the evaluation

of w(X) itself.
Now, given four independent quadratic non-residues (k1, k2, k3, k4) and a generator ω with order
n, we define a mapping as follows.

σ0 (i) =



ωi−1 i ∈ {1, 2, ..., n}
k1 · ωi−1−n i ∈ {n+ 1, n+ 2, ..., 2n}
k2 · ωi−1−2n i ∈ {2n+ 1, 2n+ 2, ..., 3n}
k3 · ωi−1−3n i ∈ {3n+ 1, 3n+ 2, ..., 4n}
k4 · ωi−1−4n i ∈ {4n+ 1, 4n+ 2, ..., 5n}

where i = 1, 2, ..., n. And we apply this mapping to each element in σ, obtaining a map σ∗(x) :
[5n]→ F. We split this map into five permutation polynomials, as follows.
• Sσ1(X)’s evaluation on 1, ω, ..., ωn−1 equals σ∗(x)’s evaluation on 1, 2, ..., n.
• Sσ2(X)’s evaluation on 1, ω, ..., ωn−1 equals σ∗(x)’s evaluation on n+ 1, n+ 2, ..., 2n.
• Sσ3(X)’s evaluation on 1, ω, ..., ωn−1 equals σ∗(x)’s evaluation on 2n+ 1, 2n+ 2, ..., 3n.
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• Sσ4(X)’s evaluation on 1, ω, ..., ωn−1 equals σ∗(x)’s evaluation on 3n+ 1, 3n+ 2, ..., 4n.
• Sσo(X)’s evaluation on 1, ω, ..., ωn−1 equals σ∗(x)’s evaluation on 4n+ 1, 4n+ 2, ..., 5n.
Step 1: commit all polynomials. We first commit all these indexing polynomials. The commit-
ments are included in the verifier parameters. We then perform some precomputation: we prepare
a representation of these polynomials that are easy to use later for proving, by doing a coset FFT
over them. The prepared polynomials are included in the prover parameters.
Step 2: precompute the two helper polynomials. Compute the following polynomial defined on
a domain H of size n:

L1(X) =
Xn − 1

X − 1

and store its coset FFT representation. This is done by first observing that L1(X) evaluates to n on
X = 1 and 0 otherwise in H . We can perform an inverse FFT to convert it back to the coefficient
representation (which indeed looks nontrivial). Then, we perform a coset FFT, which gives us the
prepared version of this polynomial.
Another polynomial we precompute is the vanishing polynomial of domain H of size n:

ZH(X) = Xn − 1

and we want to store its coset FFT representation. This is done by a coset FFT over the coefficient
representation above. The representations for the two helper polynomials are included in the prover
parameters.
Step 3: compute the Lagrange interpolation constants. Recall that the Lagrange interpolation
from (1, y0), (g, y1), ..., (g

n, yn) where g is the generator for a domain H , into to a polynomial
f(X) of degree n is as follows:

f(X) =
n∑

j=0

yj

 ∏
0≤m≤n
m ̸=j

X − ωm

ωj − ωm


We can rewrite it as follows.

f(X) =
n∑

j=0

yj

 ∏
0≤m≤n
m ̸=j

X − ωm

ωj − ωm



=

( ∏
0≤m≤n

(X − ωm)

)  n∑
j=0

yj
X − ωj

 ∏
0≤m≤n
m ̸=j

1

ωj − ωm




Now, precompute cj for every j ∈ {0, 1, ..., n}.

cj =
∏

0≤m≤n
m̸=j

1

ωj − ωm
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This allows us to simplify f(x) as follows.

f(X) =

( ∏
0≤m≤n

(X − ωm)

)
n∑

j=0

cj · yj
X − ωj

= (Xn − 1)
n∑

j=0

cj · yj
X − ωj

These constants cj (j ∈ {0, 1, ..., n}) are included in the verifier parameters. We conclude the
description of the indexer.

A.2 Prover
The prover in TurboPlonk uses the prover parameters from the indexer and a complete constraint
system with all the gate values and copy constraints ready. It follows the following steps.

Step 1: assemble public inputs. The prover parameters have indicated which witness value
indeed belongs to public inputs. The prover finds those witness values and stores them in a vector
of length nin, which is the number of field elements in public inputs. This is to enable us to
calculate the state of the verifier.

Step 2: instantiate the verifier. For the purpose of the Fiat-Shamir transform, we create a
cryptographic sponge, which will absorb the verifier’s state as well as the messages that the verifier
would receive from the prover in an interactive proof protocol.
After we create the sponge, we put the following two things into the sponge: (1) verifier parameters
and (2) public inputs.

Step 3: commit witness polynomials with hiding. Given the witness polynomials w1(X),
w2(X), w3(X), w4(X), wo(X), we add a degree-one random blinding polynomial over each of
them. The prover samples b1, b2, b3, ..., b10 ∈ F and computes blinded witness polynomials.

w̃1(X) = w1(X) + ZH(X) · (b1 ·X + b2)

w̃2(X) = w2(X) + ZH(X) · (b3 ·X + b4)

w̃3(X) = w3(X) + ZH(X) · (b5 ·X + b6)

w̃4(X) = w4(X) + ZH(X) · (b7 ·X + b8)

w̃o(X) = wo(X) + ZH(X) · (b9 ·X + b10)

We commit each of the polynomials above and put the polynomial commitments cmw1, cmw2,
cmw3, cmw4, cmwo ∈ G1 into the sponge.

Step 4: build the sigma polynomial, for wiring. The prover squeezes out two challenges β, γ ∈
F from the sponge. We now need to build the sigma polynomial. It helps for us to first compute:

Si :=

(wi + β · ωi−1 + γ) · (wn+i + β · k1 · ωi−1 + γ) · (w2n+i + β · k2 · ωi−1 + γ)
·(w3n+i + β · k3 · ωi−1 + γ) · (w4n+i + β · k4 · ωi−1 + γ)

(wi + σ∗(i) · β + γ) · (wn+i + σ∗(n+ i) · β + γ) · (w2n+i + σ∗(2n+ i) · β + γ)
·(w3n+i + σ∗(3n+ i) · β + γ) · (w4n+i + σ∗(4n+ i) · β + γ)
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We can then define the permutation polynomial z(X) with the following evaluations:

z(ωi−1) =

{
1 i = 1∏i−1

j=1 Si i = 2, 3, ..., n

Step 5: commit the sigma polynomial, with hiding. The prover first samples b11, b12, b13 ∈ F
and applies them as blinding factors to the polynomial z(X).

z̃(X) = z(X) + ZH(X) · (b11X2 + b12X + b13)

We commit this polynomial and put the polynomial commitment cmz ∈ G1 into the sponge.

Step 6: compute the quotient polynomial. The prover squeezes out a challenge α from the
sponge. This is used to construct the following polynomial.

t(X) = tsat(X) · 1

ZH(X)
+ tσ1(X) · α

ZH(X)
− tσ2(X) · α

ZH(X)
+ tσ3(X) · α2

ZH(X)

+ tb1(X) · α3

ZH(X)
+ tb2(X) · α4

ZH(X)
+ tb3(X) · α5

ZH(X)

where

tsat(X) = q1(X) · w̃1(X) + q2(X) · w̃2(X) + q3(X) · w̃3(X) + q4(X) · w̃4(X)

+ qm1(X) · w̃1(X) · w̃2(X) + qm2(X) · w̃3(X) · w̃4(X) + qc(X) + PI(X)

+ qhash1(X) · (w̃1(X))5 + qhash2(X) · (w̃2(X))5

+ qhash3(X) · (w̃3(X))5 + qhash4(X) · (w̃4(X))5

− qo(X) · w̃o(X)

and

tσ1(X) =(w̃1(X) + β ·X + γ) · (w̃2(X) + β · k1 ·X + γ) · (w̃3(X) + β · k2 ·X + γ)

· (w̃4(X) + β · k3 ·X + γ) · (w̃o(X) + β · k4 ·X + γ)

· z̃(X)

and

tσ2(X) =(w̃1(X) + β · Sσ1(X) + γ) · (w̃2(X) + β · Sσ2(X) + γ) · (w̃3(X) + β · Sσ3(X) + γ)

· (w̃4(X) + β · Sσ4(X) + γ) · (w̃o(X) + β · Sσo(X) + γ)

· z̃(Xω) // the shifting trick

and

tσ3(X) = (z̃(X)− 1) · L1(X)

39



and

tb1(X) = qb(X) · w̃2(X) · (1− w̃2(X))

tb2(X) = qb(X) · w̃3(X) · (1− w̃3(X))

tb3(X) = qb(X) · w̃4(X) · (1− w̃4(X))

Then, in the coefficient representations, we split the polynomial into five parts: t1(X), t2(X),
t3(X), t4(X), and t5(X), where the first four polynomials have degree n+ 2, and the last polyno-
mial has degree n− 1. This is because t(X) is expected to have degree 5 · (n+1)+ (n+2)−n =
5n+ 7, and 5n+ 7 = 4 · (n+ 2) + (n− 1).

Step 7: commit the split quotient polynomials, without hiding. We commit all these polyno-
mials and put the commitments cmt1, cmt2, cmt3, cmt4, and cmt5 into the sponge.

Step 8: open the polynomials at a random point. The prover squeezes a random challenge
ζ ∈ F and computes the following opening evaluations:

w̃1(ζ), w̃2(ζ), w̃3(ζ), w̃4(ζ), w̃o(ζ), Sσ1(ζ), Sσ2(ζ), Sσ3(ζ), Sσ4(ζ), z̃(ζω)

And we remind the readers that the last one is evaluated over ζω instead of ζ . This is common in
entry product arguments. The prover puts these, which are elements in F, into the sponge.

Step 9: compute the linearization polynomial. The linearization polynomial is, at a high level,
to replace w̃1(X), w̃2(X), w̃3(X), w̃4(X), w̃o(X), S̃σ1(X), S̃σ2(X), S̃σ3(X), S̃σ4(X), and z̃(Xω)
with the evaluations over that random point. More specifically, r(X) reads as follows. Note that
the locations of ZH(X) are different now. The constant terms of r(X) are removed here.

r(X) = rsat(X) + r1(X) · α− r2(X) · α + r3(X) · α2 + r4(X) · α3 + r5(X) · α4 + r6(X) · α5

− ZH(ζ)(t1(X) + ζn+2 · t2(X) + ζ2(n+2) · t3(X) + ζ3(n+2) · t4(X) + ζ4(n+2) · t5(X))

where

rsat(X) = w̃1(ζ) · q1(X) + w̃2(ζ) · q2(X) + w̃3(ζ) · q3(X) + w̃4(ζ) · q4(X)

+ w̃1(ζ) · w̃2(ζ) · qm1(X) + w̃3(ζ) · w̃4(ζ) · qm2(X) + qc(X)

+ (w̃1(ζ))
5 · qhash1(X) + (w̃2(ζ))

5 · qhash2(X)

+ (w̃3(ζ))
5 · qhash3(X) + (w̃4(ζ))

5 · qhash4(X)

− w̃o(ζ) · qo(X)

and

r1(X) =(w̃1(ζ) + β · ζ + γ) · (w̃2(ζ) + β · k1 · ζ + γ) · (w̃3(ζ) + β · k2 · ζ + γ)

· (w̃4(ζ) + β · k3 · ζ + γ) · (w̃o(ζ) + β · k4 · ζ + γ) · z̃(X)

and

r2(X) =(w̃1(ζ) + βSσ1(ζ) + γ) · (w̃2(ζ) + βSσ2(ζ) + γ) · (w̃3(ζ) + βSσ3(ζ) + γ)

· (w̃4(ζ) + βSσ4(ζ) + γ) · β · Sσo(X) · z̃(ζω)
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Note that Sσo(X) is not being replaced by its evaluation, and

r3(X) = z̃(X) · L1(ζ)

and

r4(X) = qb(X) · w̃2(ζ) · (w̃2(ζ)− 1)

r5(X) = qb(X) · w̃3(ζ) · (w̃3(ζ)− 1)

r6(X) = qb(X) · w̃4(ζ) · (w̃4(ζ)− 1)

Now we have the linearization polynomial. Although this polynomial is not linear, its degree is
down from ≈ 5n to ≈ n, and one can see that the polynomial collapses to a shorter one.
We note that the evaluation of r(X) at point ζ is as follows. The prover does not need to include
this number in the proof because it can be computed by the verifier.

r(ζ) = −PI(ζ) + α · (w̃1(ζ) + βSσ1(ζ) + γ) · (w̃2(ζ) + βSσ2(ζ) + γ) · (w̃3(ζ) + βSσ3(ζ) + γ)

· (w̃4(ζ) + βSσ4(ζ) + γ) · (w̃o(ζ) + γ) · z̃(ζω) + α2L1(ζ)

Step 10: compute the opening proof polynomials. Now we want to prove that the previous
openings are correct, as well as r(X) is actually vanishing in H . We first squeeze out a challenge
v ∈ F from the sponge. This is done by showing that one can find a polynomial Wζ(X) such that:

Wζ(X) =
1

X − ζ



w̃1(X)− w̃1(ζ)
+v(w̃2(X)− w̃2(ζ))
+v2(w̃3(X)− w̃3(ζ))
+v3(w̃4(X)− w̃4(ζ))
+v4(w̃o(X)− w̃o(ζ))
+v5(Sσ1(X)− Sσ1(ζ))
+v6(Sσ2(X)− Sσ2(ζ))
+v7(Sσ3(X)− Sσ3(ζ))
+v8(Sσ4(X)− Sσ4(ζ))
+v9(r(X)− r(ζ))


and similar another polynomial Wζω(X) as follows.

Wζω(X) =
z̃(X)− z̃(ζω)

X − ζω

We commit these two polynomials as cmζ and cmζω.

Step 11: output the full proof. After the Fiat-Shamir transform, the final proof reads as follows.

cmw1, cmw2, cmw3, cmw4, cmwo,
cmz,

cmt1, cmt2, cmt3, cmt4, cmt5,
w̃1(ζ), w̃2(ζ), w̃3(ζ), w̃4(ζ), w̃o(ζ),
Sσ1(ζ), Sσ2(ζ), Sσ3(ζ), Sσ4(ζ),

z̃(ζω),
cmζ , cmζω
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A.3 Verifier
The verifier reads the full proof above and proceeds as follows.

Step 1: compute all the challenges. For convenience, the verifier first computes all the random
challenges in this protocol execution: β, γ, α, ζ , v, and u.
• Initialize the same cryptographic sponge.
• Put cmw1, cmw2, cmw3, cmw4, cmwo into the sponge and squeeze out β, γ ∈ F from the sponge.
• Put cmz into the sponge and squeeze out α ∈ F from the sponge.
• Put cmt1, cmt2, cmt3, cmt4, cmt5 into the sponge and squeeze out ζ ∈ F from the sponge.
• Put w̃1(ζ), w̃2(ζ), w̃3(ζ), w̃4(ζ), w̃o(ζ), Sσ1(ζ), Sσ2(ζ), Sσ3(ζ), Sσ4(ζ), z̃(ζω) into the sponge and

squeeze out v ∈ F from the sponge.
• Put cmζ and cmζω into the sponge and squeeze out u ∈ F from the sponge.

Step 2: compute r(ζ). Recall from the Step 9 of the prover, r(ζ) can indeed be computed by the
verifier.

r(ζ) = −PI(ζ) + α · (w̃1(ζ) + βSσ1(ζ) + γ) · (w̃2(ζ) + βSσ2(ζ) + γ) · (w̃3(ζ) + βSσ3(ζ) + γ)

· (w̃4(ζ) + βSσ4(ζ) + γ) · (w̃o(ζ) + γ) · z̃(ζω) + α2L1(ζ)

Step 3: assemble cmr. The verifier can also assemble the commitment of r(X) from available
commitments, as follows.

cmr = cmsat + cmr1 · α− cmr2 · α + cmr3 · α2

− ZH(ζ) · (cmt1 + ζn+2 · cmt2 + ζ2(n+2) · cmt3 + ζ3(n+2) · cmt4 + ζ4(n+2) · cmt5)

+ cmb · (w̃2(ζ) · (w̃2(ζ)− 1) · α3 + w̃3(ζ) · (w̃3(ζ)− 1) · α4 + w̃4(ζ) · (w̃4(ζ)− 1) · α5)

where

cmsat = w̃1(ζ) · cmq1 + w̃2(ζ) · cmq2 + w̃3(ζ) · cmq3 + w̃4(ζ) · cmq4

+ w̃1(ζ) · w̃2(ζ) · cmm1 + w̃3(ζ) · w̃4(ζ) · cmm2 + cmqc

+ w̃1(ζ) · w̃2(ζ) · w̃3(ζ) · w̃4(ζ) · w̃o(ζ) · cmecc

+ (w̃1(ζ))
5 · cmhash1 + (w̃2(ζ))

5 · cmhash2

+ (w̃3(ζ))
5 · cmhash3 + (w̃4(ζ))

5 · cmhash4

− w̃o(ζ) · cmo

and

cmr1 =(w̃1(ζ) + β · ζ + γ) · (w̃2(ζ) + β · k1 · ζ + γ) · (w̃3(ζ) + β · k2 · ζ + γ)

· (w̃4(ζ) + β · k3 · ζ + γ) · (w̃o(ζ) + β · k4 · ζ + γ) · cmz

and

cmr2 =(w̃1(ζ) + βSσ1(ζ) + γ) · (w̃2(ζ) + βSσ2(ζ) + γ) · (w̃3(ζ) + βSσ3(ζ) + γ)

· (w̃4(ζ) + βSσ4(ζ) + γ) · β · z̃(ζω) · cmσo
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and

cmr3 = L1(ζ) · cmz

Step 4: compute linear combination of commitments. Let the cumulative commitment cm be
as follows. Note that the last one has a coefficient u.

cm = cmw1 + v · cmw2 + v2 · cmw3 + v3 · cmw4 + v4 · cmwo

+ v5 · cmσ1 + v6 · cmσ2 + v7 · cmσ3 + v8 · cmσ4 + v9 · cmr + u · cmz

Step 5: compute linear combination of evaluations. Let the cumulative evaluation s be as
follows. Also, note the last one.

s = w̃1(ζ) + v · w̃2(ζ) + v2 · w̃3(ζ) + v3 · w̃4(ζ) + v4 · w̃o(ζ)

+ v5 · Sσ1(ζ) + v6 · Sσ2(ζ) + v7 · Sσ3(ζ) + v8 · Sσ4(ζ) + v9 · r(ζ) + u · z̃(ζω)

Step 6: pairing. Compute L,R as follows.

L = e((cmζ + u · cmζω), x ·H)

where H is the generator of G2 in the SRS and x is the secret in the SRS. The element x ·H here
is part of the SRS.

R = e((ζ · cmζ + u · ζ · ω · cmζω + cm− s ·G), H)

where G is the generator of G1 in the SRS.

Step 7: decision. The verifier accepts the proof if L = R and rejects otherwise.

B (Im)possibility of fully MetaMask-compatible Zerocash
At the end of this paper we want to further the discussion of making the user experience of Zerocash
“close to” that of EVM chains such as Ethereum, BSC, and Polygon. The transition from special
curves like Jubjub or Grumpkin to secp256k1 for the public key is just the first step. This allows
the user to use the same key in different chains. Particularly, if you know another user’s address,
you can send tokens anonymously to this user on a different chain that supports the Zerocash
construction (very few), while the other user does not need to register on that chain.
However, this is still not the same experience. An important reason for many chains to be aligned
with Ethereum, for example using secp256k1 for signatures and 0x addresses, is that users can
use MetaMask (or other similar browser-extension wallets) to interact with the network, including
sending and receiving cryptoassets, invoking smart contracts, and swapping between cryptoassets.
The most important functionality of MetaMask is probably to enable interactions with third-party
dApps without giving away the user’s private key, without which it would be difficult to imagine
how a user can stake tokens or provide liquidity on the browser.
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Chains not MetaMask-compatible. Chains that are not MetaMask-compatible, often due to the
use of a different address system as in the case of Solana, would need to have their own browser
extensions. Solana, for example, has been maintaining a list of wallet projects that support Solana,
though they are clearly not as popular as MetaMask [Sol]. This gives rise to a lot of issues:
• Users who are already using MetaMask need to install yet another, less popular, wallet browser

extension. This kind of the app often competes with each other when a dApp makes a request
and can affect the user experience significantly.

• Users may simply decline to install another browser extension due to security concerns.
• The different address system may already prevent it from being compatible with the enormous

ecosystem of existing dApps that surround the EVM.
These issues also affect any Zerocash construction that uses special curves for signatures. In this
paper, we first avoid this problem by returning to secp256k1. However, it is still insufficient to
become MetaMask-compatible, as we now discuss.

Impossibility: a standard nullifier. We first discuss why a standard nullifier, which is required
for the Zerocash construction, is impossible. In the Zerocash construction, to send a Zerocash
asset, one needs to compute its nullifier, which requires something related to the sender’s secret
key. In MetaMask, a third-party dApp cannot obtain the secret key (this is by design), and the
closest we can get is MetaMask’s signing API, which is a deterministic ECDSA signing oracle,
following the deterministic ECDSA signature algorithm in RFC 6979 [Rfc].
The deterministic ECDSA signature gives us some hope—we can obtain the same signature for the
same message, and this deterministic signature could probably serve as the nullifier. The problem
is that MetaMask does not give us a proof that this signature follows exactly RFC 6979, and we
now want to explain why this rules out using the deterministic signature as the nullifier.
RFC 6979 computes the randomizer in ECDSA by hashing the message as well as the secret key.
To prove that a randomizer is generated in this way, we need to show that it is the result of such
hashing. However, in the random oracle model, the only way to do so is to know the preimage,
i.e., the message and the secret key, which is not the case here.
Unfortunately, the deterministic ECDSA signature gives us false hope—a standard nullifier as in
the Zerocash construction is impossible at this moment.

Possibility: a holed nullifier. Although a standard nullifier cannot be made, there can be some-
thing similar to a nullifier, but with some caveats. Recall that a standard nullifier needs a secret
key so that the previous sender (who creates the commitment and knows the public key) cannot
predict the nullifier. If we allow the previous sender to predict the nullifier, which would enable the
previous sender to “trace” the asset for one more step, then a nullifier that does not use a secret key
can also be made. Recall that a commitment in the Zerocash construction is a hash commitment
that can be represented as follows:

comm := H(owner-address ∥ amount ∥ asset-type ∥ randomizer)

We now consider another independently sampled hash function H ′ (which can be just H but with
a different domain separator) and define what we call “holed nullifier” as follows:

nullifier := H ′(owner-address ∥ amount ∥ asset-type ∥ randomizer)
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Note that although the previous sender can predict this nullifier, the previous sender cannot do
more than that. For example, the previous sender cannot spend this transaction on behalf of the
user because the Zerocash construction checks the knowledge of the secret key.
We call this “holed nullifier” because it is very close to being a nullifier, except with such a link-
ability. Readers may feel that this holed nullifier cannot be used in production, but this is not
actually the case—if the previous sender is the user himself/herself, then the hole is not an issue.
Later, we will further discuss this special case.

Impossibility: a standard owner’s memo. In the Zerocash construction, the sender will encrypt
the transaction information under the recipient’s key and, for data availability, leave this cipher-
text on chain, which we call the owner’s memo. The recipient can find this ciphertext from the
blockchain and obtain the transaction information through decryption. For example, generating ei-
ther the standard or the holed nullifier requires the knowledge of the randomizer, which is included
in the owner’s memo. There are two challenges.
The first challenge has less to do with MetaMask but more with the Ethereum-style ECDSA signa-
ture verification. Note that in Ethereum, addresses are different from public keys. Each address is
a hashed version of the public key. Ethereum can still do the ECDSA signature verification against
this address because it can perform the signature verification in the reverse direction, known as
recovering the public key from the signature (as in the precompiled contract “ecrecover”), and
one can check the signature by hashing this public key and comparing against the address.
Although this reverse direction trick works for signature verification, it does not work with public
key encryption. If a sender does not know the recipient’s public key (which is behind the address),
the sender cannot create this ciphertext. Generally, people can use tools to do a reverse lookup for
the corresponding public key on the blockchain, if the address has ever made transactions. This
does not work for completely new addresses.
There is no easy solution unless we assume that the reverse lookup always works. This is already
restricted. Another problem is that reverse lookup leaks the recipient’s address to the servers that
provide this lookup service. Although this seems to be a problem solvable with private information
retrieval (PIR), we do not have such an infrastructure yet, and we do not know if it is practical.
The second challenge is about how a recipient can decrypt the memo. MetaMask does not provide
an interface to use the exact ECDSA secret key for decryption. First, readers may have con-
cerns whether using the same key for signature and encryption is secure. This actually has been
proven in the generic group model (GGM) [DLPSS12], if the encryption follows ECIES (also
known as the hybrid encryption based on Diffie-Hellman key exchange). Nevertheless, Meta-
Mask does not provide such a decryption oracle. The closest we can find within MetaMask is
“eth getEncryptionPublicKey”, which is deprecated, that allows a user to have a separate pair
of encryption keys derived from the signing key, but the user needs to publish this encryption key,
which leads to additional overhead and privacy leakage.
In sum, it is unlikely that we can delegate the secret key of the Zerocash assets to MetaMask due
to the owner’s memo. We now describe a possible workaround.

Possibility: no owner’s memo. It is important to note that, if a transaction in the Zerocash con-
struction does not have the owner’s memo, the recipient may still be able to spend the transaction,

45



if the sender tells the recipient such transaction information that should have been included in the
owner’s memo. There are many out-of-band communication channels for the sender to do so, with
different security and privacy tradeoffs. Readers may feel that this is very restricted and cannot be
used in production because of its complexity. However, this is not always the case. Think about
the case if the sender and the recipient are indeed the same person, then there is no need to even
exchange the owner’s memo. We now discuss this idea further.

The road ahead: a Zerocash checking account. There appears to be a very narrow path toward
MetaMask-compatible Zerocash, which avoids the need for a standard nullifier and an owner’s
memo by having the sender and the recipient be the same person. We want to note that this is
indeed a very common setting, as we now discuss.
Assume that a user uses the Zerocash construction just for a secret checking account. When the
user obtains tokens from elsewhere, the user always converts them into the Zerocash construction
and puts them into this checking account. When the user wants to spend some tokens, the user gets
the tokens from the checking account. Here, there are only two kinds of the transfer that the user
needs to perform:
• Given the input of (1) the old checking account UTXO in the Zerocash construction and (2) a

new, transparent asset UTXO, assuming that both are of the same asset type, the user can create
a transaction that merges these two inputs together and produces an output, which is the new
checking account UTXO, also in the Zerocash construction.

• Given the input of the old checking account UTXO in the Zerocash construction, the user can
move some tokens out and let them become a new, transparent asset UTXO, while the rest of the
tokens stay in the checking account. The output consists of (1) a new, transparent asset UTXO
and (2) the new checking account UTXO in the Zerocash construction, which are of the same
asset type.

This setting is indeed common for a chain that bridges together an UTXO chain and an EVM chain,
where many transparent assets come from the EVM chain, probably from a cross-chain bridge, and
the UTXO chain becomes a ledger for such Zerocash checking accounts. We already see one or
two blockchain systems adopting this design.
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