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Abstract

Private Information Retrieval (PIR) addresses the cryp-
tographic problem of hiding sensitive database queries
form database operators. In practice, PIR schemes suffer
from either high computational costs or from restrictive
requirements difficult to justify in practical settings. In
this work, we introduce Assisted Private Information Re-
trieval (APIR), a new PIR problem for keyword-value
databases which generalizes and relaxes the database
consistency assumption in multi-server PIR. Leverag-
ing the decentralized nature of Domain Name Service
(DNS), APIR is able to address a privacy issue inherent
to encrypted DNS proposals such as DNS-over-HTTPS
(DoH) by preventing DNS operators from collecting sen-
sitive data. We propose a construction of Synchronized
APIR, an efficient hybrid APIR scheme between black-
box single-server PIR and non-black-box multi-server
PIR. We apply Synchronized APIR to a proof-of-concept
protocol for private DNS query, and demonstrate that
APIR is able to outperform the baseline single-server PIR
protocol after the initial one-time cost.

1 Introduction

One often overlooked privacy aspect of information access
over a network is the monitoring of information queries by
database-operating servers. To illuminate this concern,
let us consider a scenario: a user wishes to download a
sensitive file from a website, but the act of access to that
particular file is incriminating. At this point, the user
has a few options. She can use an encrypted channel like
TLS to prevent eavesdropping, but this does not prevent
the leakage of the query to the web server; or she can
use anonymizing technology like VPN or Tor to hide her
identity, but this does not prevent the web server from
being notified and collecting statistics about file access.

A case in point is the Domain Name System (DNS).
DNS privacy and security are the core argument for en-
crypted DNS such as DNS-over-HTTPS (DoH) and DNS-
over-TLS (DoT). However, the present encrypted DNS

proposals do not necessarily increase consumers’ privacy.
The most notable privacy risk is increased data concen-
tration at DNS operators. Given the exploitation of users’
data by data collectors and online services in the recent
years, it is not far-fetched to claim that concentration of
data is a privacy violation.

The family of cryptographic protocols that proposes to
address this issue is private information retrieval (PIR).
The core privacy definition of PIR requires that any two
different PIR queries appear indistinguishable from the
point of view of the attacker, thus preventing database
operators from collecting sensitive information about the
queries. There have been many proposed PIR schemes
in recent years, yet they all suffer from similar practi-
cal issues. The PIR schemes that require one server to
operate, or single-server PIR, are applicable to practical
scenarios; yet, they often rely on additively homomor-
phic encryption schemes which are computational expen-
sive and incur high communication costs in practice. The
PIR schemes that require multiple servers to operate, or
multi-server PIR, are orders of magnitude cheaper than
single-server PIR to deploy, yet they have conflicting re-
quirements that 1) all the servers hold some form of the
identical copy of the database, and 2) some servers do not
collude. In practice, it is difficult to imagine a scenario in
which both requirements would hold simultaneously. In
the DNS application for instance, it can be argued that
DNS servers administered by independent organizations
are unlikely to collude. However, to require that they hold
identical copies cache tables and zone files seem impossi-
ble. Further, it makes the application less useful e.g. it
does not allow the same domain to point to different local
IP addresses, as in the case of scalable cloud services.

1.1 Our contributions

In this work, we introduce assisted private information re-
trieval (APIR). APIR generalizes multi-server PIR in the
following ways, while still maintaining the non-collusion
assumption:

1. The databases are keyword-value maps instead of in-
dexed vectors.
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2. Client can query the main server with assistance
from assisting servers without requiring the assisting
servers to hold and identical copy of the database.

We present Synchronized APIR, an APIR scheme
which allows the client to synchronize the “view” of the
databases across the servers prior to making queries. Syn-
chronized APIR is a hybrid protocol between a black-
box single-server PIR scheme and a non-black-box multi-
server PIR scheme similar to CGKS [7]. The hybridiza-
tion takes advantage of the cheaper multi-server PIR
scheme to “assist” in lowering the costs of the single-
server PIR scheme between the client and main server; the
level of assistance is determined by the amount of overlap
between main server’s and assisting servers’ databases.
Because Synchronized APIR makes use of a black-box
single-server scheme, improvements in single-server PIR
in the future will also lead to improvements in Synchro-
nized APIR. We provide a formal analysis and an imple-
mentation of Synchronized APIR in Rust using SealPIR
[4] as the underlying single-server scheme.

We apply Synchronized APIR to demonstrate a proof-
of-concept private DNS query application, specifically
to query nameserver (NS) records, among DNS cache
servers. Then, we evaluate the application with simu-
lated datasets based on realistic assumptions about DNS
queries and cache behavior.

The results show that despite the higher initial one-
time cost, private DNS query via Synchronized APIR
is able to outperform SealPIR, the baseline single-server
PIR, either in communication cost by a factor of 5 or
in computational cost by a factor of 8, given the most
optimal popularity distribution of DNS queries.

2 Related Works

Our work is partly inspired by Fanti et al. [9], who pro-
pose an information-theoretic multi-server PIR scheme
over unsynchronized databases. In this setting, the PIR
servers hold different copies of the same indexed database
with some database values missing. The scheme proceeds
by first allowing the client to synchronize the database
“view” to identity the missing values. Then, the client
makes a query in a way that avoids the missing val-
ues, while also hide which values are missing from the
servers. This setting is applicable to peer-to-peer (P2P)
file-sharing, where P2P users share and download parts
of the same file or database in small, indexed fragments.

We view Fanti et al.’s scheme as a solution to a sub-
set of the APIR problem with two additional limitations:
1) the database is strictly indexed, and 2) the client is
not allowed to query any values with missingness. (In-
deed, Synchronized APIR also directly solves this prob-
lem.) However, we remark that the second limitation

may be counter-productive to privacy in practice. Sen-
sitive data is often the rarer one and the one that goes
missing; this introduces a contradiction to Fanti et al.’s
scheme where the more sensitive the data is, the more
likely it is unavailable. Clients therefore must resort to
a less privacy-preserving service to be able to access the
data. APIR insists that all database values are retriev-
able for this reason, and Synchronized APIR solves this
problem by making a separate single-server PIR query to
the values with missingness.

3 Preliminaries

3.1 Single-Server PIR

Single-server PIR, or sPIR for short, is a PIR protocol
that requires only one database-operating server to inter-
act with the client to query information. sPIR is asso-
ciated with computational PIR (CPIR) because of the
computational assumptions usually required to instan-
tiate this scheme. One example of an sPIR scheme is
the trivial PIR, where the client downloads the entire
database from the server and picks out the value she
wants to query locally. This technically satisfies the pri-
vacy requirements of PIR because the server is unable to
learn which value the client wishes to query. However,
this results in a high communication, which is prohibitive
in practice. Therefore, any non-trivial PIR schemes must
aim to satisfy the privacy requirements as well as keep
the communication cost lower than the trivial PIR.

We formally define sPIR below in Definition 3.1. A
typical flow of an sPIR protocol proceeds as follows. 1)
The client generates the public-secret key pair with SGen
and gives the public key to the server. 2) Once the client
has decided to query the i-th item in the database, an
sPIR query is generated with SQuery using i. The query
is sent to the server. 3) The server generates a reply
from the query and database using SReply. The reply
is returned to the client. 4) The client decodes the reply
with the secret key using SDecode to obtain the answer.

Definition 3.1 (sPIR Scheme). Given a Server oper-
ating an indexed database V = (v0, . . . , vm−1 ) for all
i ∈ {0, . . . ,m− 1}. An sPIR scheme is a tuple ΠsPIR =
(SGen,SQuery,SReply,SDecode) defined by

� SGen(1λ) → (spk, ssk) where λ is the security pa-
rameter, spk the public key, and ssk the secret key.

� SQuery(spk, i,m)→ sq generates query sq from in-
dex i ∈ {0, . . . ,m− 1} targeting item vi.

� SReply(spk, V, sq)→ sr generates reply sr for query
sq from database V .
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� SDecode(ssk, sr) → sa decodes reply sr for answer
sa.

The formal definition of sPIR correctness is provided
in Definition A.1. Intuitively, an sPIR scheme is correct
if the answer is the same as the target value in the query.

The formal definition of sPIR privacy is provided in
Definition A.2. Intuitively, an sPIR scheme is privacy-
preserving if the adversary is unable to distinguish be-
tween a query encoding index i and a query encoding
index j, even if the adversary can choose i and j and has
oracle access to SQuery.

Indeed, there are many existing schemes in literature
that can satisfy these definitions of sPIR, notably be-
cause an additively homomorphic encryption scheme im-
plies an sPIR scheme [14]. An additively homomorphic
encryption scheme can be used as a building block as
follows: 1) For a given index i, the query is encoded
as the i-th standard basis vector ei; 2) the client en-
crypts ei component-wise using the homomorphic encryp-
tion scheme; 3) the server homomorphically evaluates the
inner product, treating the database values as scalar con-
stants so that the result is a linear combination; 4) the
client decrypts the result. Note that this is merely a
simplified construction. There have have multiple tech-
niques introduced to lower computational and communi-
cation cost in practice, including recursive PIR [3], which
treats the database as two-dimentional and accesses it by
row and column index; and ciphertext packing [4], which
packs multiple query indices into a single ciphertext.

Although this instantiation of sPIR seems simple
enough, in practice the computational cost can be too
high—sometimes to the point where it can be faster for
the client to download the entire database [13]. In recent
years, the development has been moving toward lattice-
based cryptography [2,4,11], whose efficiency has enabled
the PIR schemes to become more practical.

In this work, we use SealPIR [4], one of the state-of-the-
art sPIR schemes, as a building block for our scheme. In
addition to the relatively low computational cost utilizing
the aforementioned techniques, SealPIR offers a signifi-
cant advantage over its predecessors via its query com-
pression technique, which cuts down the size of a query
by a large factor.

3.2 Multi-Server PIR

Multi-server PIR, or mPIR for short, is a PIR scheme
that requires multiple database-operating servers to in-
teract with the client to query information. mPIR is a
broader category of information-theoretic PIR (IT-PIR)
in literature, in that all IT-PIR schemes are multi-server,
but some mPIR schemes can be a hybrid between IT-PIR
and CPIR. Existing mPIR schemes rely on the follow-
ing two assumptions: 1) databases must be consistent,

meaning that each server holds the same “ground-truth”
copy of the database which may be preprocessed for the
scheme; and 2) no more than a given number of servers
can collude, meaning that they cannot share the client’s
private information other than what is instructed. One of
the well-known mPIR schemes is the CGKS scheme [7].
Below, we provide a 3-server example of CGKS, although
CGKS can naturally extended to an unbounded number
of servers.

Suppose there are three database-operating servers,
S1, S2, S3, each holding a consistent database V =
(a, b, c, d, f) ∈ GF(2)`·5; and suppose the client C wishes
to retrieve the item at index 2 i.e. c, then she must gen-
erate 3 queries, one for each server, following the steps
below.

1. Sample q1 ∈ GF(2)5 and q2 ∈ GF(2)5 uniformly at
random. Assume from now on that q1 = (0, 0, 1, 1, 0)
and q2 = (0, 1, 0, 0, 0).

2. Compute q3 ← q1 ⊕ q2 Therefore q3 = (0, 1, 1, 1, 0).

3. Encode index 2 as e3 = (0, 0, 1, 0, 0) (or index i as
ei+1 in general).

4. XOR q3 with e3 = (0, 0, 1, 0, 0), namely q3 ← q3⊕e3.
Therefore q3 = (0, 1, 0, 1, 0).

Next, C sends each query qi to server Si, who then
generates a reply ri by computing a dot product ri ←
qi · V . As a result, we have r1 = c ⊕ d, r2 = b, and
r3 = b⊕d. Si returns reply ri to C. Finally, C decodes the
replies to obtain the answer by computing r1⊕r2⊕r3 = c.

The CGKS scheme generalizes to any number of servers
with databases of any size. However, it is worth remark-
ing that CGKS scheme as stated above is only non-trivial
(i.e. communication cost lower than downloading the en-
tire database) if the database is not exponentially lop-
sided (i.e., if the length of each record is super-logarithmic
in the number of records). Otherwise, the query size is
asymptotically equivalent to database size.

Correctness and privacy is defined in the same man-
ner as sPIR. The privacy definition includes the notion
of collusion threshold in addition: that a group of t or
fewer colluding servers cannot distinguish between two
queries. This property is called t-collusion resistance.
CGKS scheme is (n − 1)-collusion-resistant where n is
the number of servers. This is because any n− 1 queries
are statistically indistinguishable for a uniformly random
string of the same length.

In our construction that follows, we will use as a build-
ing block a variation of CGKS that does not require con-
sistent databases and uses a PRG to generate queries in
order to reduce the communication cost.
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4 Assisted PIR

The goal of this section is to provide a generic definition
of Assisted PIR (APIR) including that of privacy, correct-
ness, and communication efficiency. We will show how to
construct our APIR scheme called “Synchronized APIR”
in the upcoming section.

APIR comprises three groups of participating parties
with distinct roles:

Notations

� C, client

� S0, main server

� S1 − Sn, n assisting servers

C wishes to retrieve the value associated with key
k∗ from keyword-value database DB0, operated by S0,
with assistance from S1, . . . ,Sn who independently oper-
ate keyword-value databases DB1, . . . ,DBn, respectively.
DB1, . . . ,DBn do not need to be the exact duplicates of
DB0, although they may have some common keyword-
value pairs. Note that this is in contrast to sPIR and
mPIR in Section 3 where databases are assumed to be
index-based and consistent. APIR is formally defined be-
low.

Notations

� ID := {0, . . . , n}, the set of server ID’s

� AID := {1, . . . , n}, the set of assisting server ID’s

� (ai )I := (ai1 , . . . , ain ) ; ij ∈ I, a sequence ordered
by the index set I. We sometimes use (ai )i∈I in-
stead for clarity.

� Keys(DB) the set of all keywords in database DB.

Definition 4.1 (APIR Scheme). Given a set of n + 1
database-operating servers and define ID := {0, . . . , n}
the set of server ID’s. An APIR scheme is a tuple
ΠAPIR = (ServGen,CliGen,Query,Reply,Decode)
defined by

� ServGen(id,DBid) → parid, where id ∈ ID and parid
is the database parameter for DBid.

� CliGen
(
1λ, t,(parid )ID

)
→ (pk, sk), where λ is the

security parameter, t the collusion threshold where
1 ≤ t ≤ n, pk is the public key, and sk the secret key.

� Query (pk, sk, k) → (qid )ID generates query qid for
Server id from query keyword k ∈ Keys(DB0) target-
ing database value DB0[k].

� Reply(id, pk,DBid, qid) → rid generates reply rid for
query qid from database DBid, where id ∈ ID.

� Decode(sk,(rid )ID) → a decodes replies (rid )ID for
answer a.

The flow of the scheme is similar to what we have previ-
ously seen in sPIR and mPIR in Section 3: 1) The servers
generate database parameters using ServGen and send
them to client. 2) Client generates a public-secret key
pair from the database and security parameters using
CliGen. 3) Client chooses a query keyword and gen-
erates queries using Query; each server gets their own
query. 4) The servers responds to the query with their
own database using Reply. And finally, 5) the client ag-
gregates all the replies and decodes to obtain the answer
with Decode using the secret key.

The correctness of APIR is defined according to what is
contained in DB0. If the client query with keyword k, then
DB0[k] is defined to be the correct answer even though
there may be other DBid such that DBid[k] 6= DB0[k];
formally

Definition 4.2 (APIR Correctness). Following Defini-
tion 4.1, scheme ΠAPIR is APIR-correct for any set ID,
databases DBid for all id ∈ ID, and k ∈ Keys(DB0) if

� ∀id ∈ ID : parid ← ServGen(id,DBid)

� (pk, sk)← CliGen (λ, t,(parid )ID)

� (qid )ID ← Query (pk, sk, k)

� ∀id ∈ ID : rid ← Reply(id, pk,DBid, qid)

� a← Decode(sk,(rid )ID)

then a = DB0[k].

The privacy definition of APIR is similar to that of
mPIR in that we want to capture both the indistinguish-
ablity of queries when collusion does not exceed a certain
threshold. Intuitively, an APIR scheme is privacy pre-
serving if the attacker, who compromises a set of servers,
cannot distinguish between two queries generated from
query keywords k0, k1 of the attacker’s own choice. More-
over, we want to capture a real-world scenario in which
the client is not informed of which servers are compro-
mised, or if they are compromised at all (and thus the
role of the oracle O in the definition below to relay the
compromised queries to the attacker without the client’s
knowledge). We formally define this using a game-based
definition below.

Definition 4.3 ((λ, t)-APIR Privacy). Define a APIR
privacy experiment PrivAA,ΠAPIR,t(1

λ) for an APIR scheme
ΠAPIR according to Definition 4.1 and adversary A below.

1. A chooses well-formed database parameters (parid )ID
and outputs (parid )ID. A chooses a collusion set C ⊂
ID such that |C| ≤ t and sends C to the oracle O.
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2. The parameters are generated by (pk, sk) ←
CliGen (λ, t,(parid )ID) and pk is given to A.

3. A is given oracle access to Query in the follow-
ing way: A chooses and outputs k ∈ K(par0) where
K(par0) is the query keyword space determined by a
well-formed par0. Queries are generated by (qid )ID ←
Query (pk, sk, k) and (qid )ID is given to O. O gives
(qid )C to A.

4. A chooses k∗0 , k
∗
1 ∈ K(par0), and outputs

(k∗0 , k
∗
1). A uniformly random bit is sampled

b←$ {0, 1}. Queries are generated by (q∗id )ID ←
Query (pk, sk, k∗b ) and (q∗id )ID is given to O. O gives
(q∗id )C to A.

5. A is given more oracle access to Query.

6. A outputs b∗ ∈ {0, 1}. The output of the experiment
is defined to be 1 if b∗ = b and 0 otherwise.

ΠAPIR is (λ, t)-APIR privacy-preserving for all PPT ad-
versary A if there exists a negligible function negl such
that

Pr
[
PrivAA,ΠAPIR,t(1

λ) = 1
]
≤ 1

2
+ negl(λ)

5 Our Scheme: Synchronized
APIR

In this section, we present our construction of APIR
called Synchronized APIR. Synchronized APIR allows the
client to synchronize the global “view” of the databases
before querying for data, resulting in a high one-time com-
munication cost to initialize the scheme but low amor-
tized computational and communication cost to query.
Further, Synchronized APIR makes use of a black-box
sPIR scheme described in Section 3.1 in a hybrid PIR,
meaning that any improvements to sPIR schemes result
in improvements to Synchronized APIR. For the rest of
this section, we will introduce the concept of Synchro-
nized APIR in Section 5.1, then follow up with the full
description in Section 5.2. Finally, we describe how we
implement Synchronized APIR in Section 5.3.

5.1 Concept

Let us consider an example of keyword-value databases
in Figure 1 step 1O, and suppose that each database is
independently operated by a PIR server in a network.
A client with a given query keyword k wishes to retrieve
the value stored in database DB0 associated with keyword
k, while hiding k from a malicious party controlling the
servers. How could this be achieved? In the traditional
mPIR setting, databases are required to be consistent for

correctness. However, because this is not the case in Fig-
ure 1 step 1O, mPIR is not clearly achievable. Instead,
the client must resort to the costly sPIR on DB0 and dis-
regard DB1,DB2 and DB3.

To circumvent this issue, Synchronized APIR makes
use of some of the keyword-value pairs in DB1,DB2,DB3

that are consistent with DB0 to “assist” in reducing the
cost of sPIR on DB0 via a hybrid PIR. To demonstrate
this concept, we will walk through the example in Figure
1 below.

Step 1O: For the purpose of this demonstration, we as-
sume that the client can fully observe DB0, . . . ,DB3 (how
exactly this is done will be explained in the upcoming sec-
tion). The client first notices that there are keyword-value
pairs in DB1,DB2,DB3 inconsistent with DB0, indicated
in light grey. The client prefers the “correct” versions of
the keyword-value pairs according to DB0, so the incon-
sistent pairs in DB1,DB2,DB3 are disregarded.

Step 2O: To lower the cost of Synchronized APIR, the
participating parties want to apply traditional mPIR to
“assist” wherever possible. This requires that the client
first determines how many servers can collude without
leaking k, i.e. the t collusion threshold similarly to the
one in CGKS in Section 3.2. Let suppose that the client
decides that t = 2. Recall from Section 3.2 that a given
threshold t requires at least t + 1 duplicates of the same
database values across the databases; so the client must
identify the keyword-value pairs with at least 3 duplicates
to pass the threshold requirement.

(a, 100), (b, 200), (c, 300), and (d, 400) have at
least 3 duplicates ((a, 100) has 4, so the one in DB3 is
redundant and disregarded). Neither of (e, 500), (f,
600), or (g, 700) meets the requirement, so they are
disregarded. The pairs that do not pass the threshold are
indicated in dark grey.

Step 3O: The client splits the pairs that pass the
threshold from those that do not. This reveals, on the
top rows in the green box, the pairs which can be re-
trieved with mPIR, and, on the remaining bottom rows
in the purple box, the pairs which can only be retrieved
with sPIR.

Step 4O: The client and servers engage in a hybrid
PIR protocol. The client makes separate PIR queries for
mPIR and sPIR from key k. All the servers process the
mPIR queries, while only the server operating DB0 pro-
cesses the sPIR query.

There are some important details we have omitted here
for conceptual simplicity. In the following section, we will
expand on the concept of Synchronized APIR to answer
these questions:

� How can the client “synchronize” the databases ac-
cording to step 1O - 3O without needing to download
them in full, and at a low communication cost?
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set
t = 2 split
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with DB0
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Figure 1: Concept of Synchronized APIR. A conceptual demonstration of how Synchronized APIR is able to perform
hybrid PIR on inconsistent databases when the collusion threshold is t = 2.

� How can the client construct a coherent mPIR
query in Synchronized APIR when the databases are
keyword-value and the mPIR duplicates are scat-
tered across multiple databases?

� How can the communication cost of query and reply
be optimized?

5.2 Protocol Description

In order to query keyword k, Client C works with main
server S0 and assisting servers S1, . . . ,Sn through three
phases, as illustrated in Figure 2: Synchronization, Setup,
and Query. Synchronization and Setup must be com-
pleted once at the start, while a new Query session can
be repeated for every new query keyword C wishes to
query.

In the following sections, we will describe step 1O - 9O
of Synchronized APIR as shown in Figure 2 in details.

5.2.1 Synchronization Phase

During Synchronization phase, C obtains catalogs from
all servers, and then informs them of the synchronized
mPIR keywords that pass the threshold. The goal of this
phase is to allow C to map out all the keyword-value pairs
across the databases without having to download them all
in full. We refer to step 1O - 3O in Figure 2 and 1O - 2O in
3 as a demonstration to describe Synchronization phase
below.

Notations

� Map(·), a keyword-value map : suppose that M =
Map(S), then (k, v) ∈ S iff M [k] = v.

� φ, an empty set

Input
. DBid from Sid,∀id ∈ ID

. t from C
Output
. Catid,Mid to Sid,∀id ∈ ID

. Cat0,
(
Cat′id

)
AID

,(Mid )ID , S to C

Synchronization Protocol

1O C obtains the full catalog Cat0 from S0 and catalog
intersections Cat′1, . . . ,Cat

′
n from S1, . . . ,Sn by fol-

lowing the steps below:

A. For each id ∈ ID, Sid generates catalog

Catid ← Map {(k, h) | (k, v) ∈ DBid, h = H(v)}

where H(·) is a universal hash function with short
hash values, chosen at random by C from the uni-
versal family. (A shorter hash length will reduce
the communication cost but increases the proba-
bility of collision.) This results in the catalogs that
are smaller than the databases in size but capable
of representing the uniqueness of database values.
In Figure 3, we choose H(v) = v/10 to demon-
strate the point that an appropriate hash func-
tion should be able to produce short unique hash
values. In general when the patterns of database
values are not predetermined, universal hash func-
tions should be applied to reduce hash collisions.

B. C downloads Cat0 from S0. For each id ∈
AID, C engages in catalog intersection protocol
CatIntersection with Sid, where C obtains cat-
alog intersections Cat′id = Catid ∩ Cat0 at the end.
The goal of CatIntersection is to transmit cat-
alog intersections at a cost lower than sending full
catalogs. CatIntersection is described in Sec-
tion 5.2.5. Figure 3 demonstrates how keyword-
value pairs inconsistent with DB0 in DB1, . . . ,DBn
and with Cat0 in Cat1, . . . ,Catn are eliminated via
catalog intersection. With the full catalog and cat-
alog intersections, C now has complete information
of the keyword-value pairs consistent with DB0.

2O C tags the catalogs to categorize keyword-value pairs
for either mPIR or sPIR:

((Mid )ID , S )← Tag
(
Cat0,

(
Cat′id

)
AID

, t
)

where t is the collusion threshold i.e. the number of
colluding servers up to which C can tolerate without
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Synchronization Phase Setup Phase Query Phase

C

begin
session 1

mrnmr1

...
DB1 DBn

S1 Sn...

...

mq0,sq
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S0
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k a

8 6 

7 9 

Reply

C

sns1 ...

4

S0

...
DB0 DB1 DBn

S1 Sn...

spk

MToken
5 

C C

CatIntersect KeySynchronize

Cat0 Cat1 Catn

Cat'1

M0 M1 Mn

S0

...
DB0 DB1 DBn

...

S1 Sn S0

...
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Figure 2: Overview of Synchronized APIR. Synchronized APIR comprises three distinct phases between client C, main
server S0, and assisting Servers S1 − Sn: Synchronization, Setup, and Query. Synchronization and Setup are completed once
at the start, while a new Query session can be repeated with every new query keyword k.

leaking query keywords; Mid is the mPIR keyword
set i.e. set of keywords determined to be queried via
mPIR from Sid; S is the sPIR keyword set i.e. set
of keywords determined to be queried via sPIR from
S0. Tag is detailed in Algorithm 1 below. In Fig-
ure 3, C has decided that t = 2, so the pairs that
pass the threshold for mPIR must have t + 1 = 3
duplicates: 1 duplicate in Cat0 and 2 duplicates in
Cat′1,Cat

′
2,Cat

′
3. (a, 10), (b, 20), (c, 30), and

(d, 40) all pass the threshold ((a, 10) in Cat′3 is
redundant and disregarded). Neither of (e, 50),
(f, 60), or (g, 70) pass the threshold, so C disre-
gards them. This results in M0, . . . ,M4 for the set
of keywords that pass the threshold for mPIR, and
the rest in S for sPIR.

Algorithm 1 Catalog Tagging. In line 5 - 8, if there are
at least t duplicates of a given keyword, then t of them are
tagged for mPIR and stored in Mid (t + 1 in total, including
those in M0). In line 10, the rest of the keywords are tagged
for sPIR. In line 6, Ck can be chosen at random or with a
specific optimization strategy.

1: procedure Tag(Cat0,
(
Cat′id

)
AID

, t)
2: ∀id ∈ ID : Mid ← φ
3: for k ∈ Keys (Cat0) do
4: G←

{
id ∈ AID | k ∈ Keys

(
Cat′id)

)}
5: if |G| ≥ t then
6: choose Ck ⊆ G such that |Ck| = t
7: ∀id ∈ Ck ∪{0} : Mid ←Mid ∪{k}
8: end if
9: end for

10: S ← Keys (Cat0) \M0

11: return ((Mid )ID , S)
12: end procedure

3O For each id ∈ ID, C and Sid engage in protocol
KeySynchronize, where Sid obtains Mid at the
end. The goal of KeySynchronize is to trans-
mit Mid at a cost lower than sending them in full.
KeySynchronize is described in Section 5.2.6.

5.2.2 Setup Phase

Let l = poly(λ) denote the total number of queries that
C will be making during Query phase (l is not necessarily
predetermined at this point). We call each query during
Query phase a Query session, each denoted with session
ID sid ∈ {1, . . . l}.

Notations

� sid ∈ {1 . . . l}, session ID. Starting at sid = 1, sid
increases by 1 for each new iteration of Query. Let
l denote the number of sessions and [l] := {1 . . . l}
the set of all session ID’s.

� index(a,A) := |{b ∈ A | b < a}|, index of a in set
A.

During Setup, C sends each of S1, . . . ,Sn a random
PRG seed which will be used to generate random mPIR
queries for all Query sessions sid ∈ [l]. We follow step 4O
and 5O in Figure 2 and 5O in 4 to describe Setup phase
below.
Input

. |Mid| from Sid,∀id ∈ AID

. l,(Mid )AID from C
Output

. spk to S0

.
(
mqsidid

)
sid∈[l]

to Sid,∀id ∈ AID
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Figure 3: Synchronization. An example of databases in a Synchronized APIR setting with 3 assisting servers that undergo
Synchronization phase.

. spk, ssk,
(
toksid

)
[l]

to C

Setup Protocol

4O C generates an sPIR key pair (spk, ssk) ← SGen(λ)
and sends spk to main server S0.

For each assisting servers id ∈ AID, C samples a PRG
seed sid ∈ {0, 1}λ uniformly at random and sends sid
to Sid. C and each Sid define(

mqsidid
)
sid∈[l]

:= PRG(sid, l · |Mid|)

where l · |Mid| is the total length of the output string
and

∣∣mqsidid
∣∣ = |Mid|.

Note that in practice when the PRG is implemented
with a stream cipher, l does not need to be predeter-
mined and each mqsidid can be generated on-the-fly.

5O C defines query tokens

toksid := MToken
(
(Mid )ID ,

(
mqsidid

)
AID

)
for all sid ∈ [l]. MToken is defined in Algorithm
2 below. Intuitively, a token is an XOR of the ran-
dom queries mqsidid for all id ∈ AID when the bits
are aligned to the ordering of the corresponding key-
words in M0. This is visually demonstrated in Figure
4 step 5O.

Likewise as in the previous step, each toksid can be
generated on-the-fly.

Algorithm 2 mPIR Token Generation.

1: procedure MToken((Mid )ID ,(mqid )AID)

2: tok←{0}|M0|

3: for k ∈M0 do
4: Ck ←{id ∈ AID : k ∈Mid}
5: ∀id ∈ Ck ∪{0} : iid ← index(k,Mid)
6: tok[i0]←

⊕
id∈C mqid[iid]

7: end for
8: return tok
9: end procedure

5.2.3 Special Case: mPIR-Only Query Phase

Before proceeding to describing the full protocol of Query
phase, it would be instructive to walk through the special
case in which all keyword-value pairs can be retrieved
with mPIR i.e. S = φ in Algorithm 1. The goal is to
show how all the mPIR components fit together during
Query phase to provide correct answers, without having
to deal with the complexity of the hybrid PIR. We shall
follow the steps in Figure 4 for this walk-through.

Suppose that at this point in time C and S0, . . . ,Sn
have already completed Synchronization in Section 5.2.1
and Setup in Section 5.2.2. We will now pick up step 6O
and 7O*- 9O* (* to denote the steps for this special case)
in Figure 4 from here.
Input

. DBid,Mid from Sid,∀id ∈ ID

. mqsidid from Sid,∀id ∈ AID
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Figure 4: mPIR-Only Query Phase Workflow. Workflow of mPIR components in during Query phase to demonstrate
how mPIR keyword-value pairs can be queried with the client’s query keyword.

. M0, tok
sid, ksid from C

Output

. asid to C

mPIR-Only Query Protocol for Session sid

6O For each assisting servers id ∈ AID:

A. Sid generates a reply from the query

mrsidid ←MReply
(
Mid,DBid,mqsidid

)
and sends mrsidid to C. MReply is described in Al-
gorithm 3 below. Figure 4 step 6O demonstrates
the mPIR reply generation process: the values of
DBid are filtered withMid by key; and the dot prod-
uct in GF(2) between the filtered values and ran-
dom query bits produces the reply. This process
is identical for S2 and S3.

Algorithm 3 mPIR Reply Generation. The dot product
in line 3 is defined in GF(2).

1: procedure MReply(Mid,DBid,mqid)
2: V ← (DBid[k])k∈Mid

3: mrid ← mqid · V
4: return mrid
5: end procedure

Note that this step can be completed offline as it does
not require a query keyword ksid by C. This means

that during online time (that is, step 7O* onwards),
C only needs to interact with S0, which significantly
reduces the latency.

7O* Once C has decided on a mPIR query keyword ksid ∈
M0 to query, she generates a mPIR query for S0

mqsid0 ←MQuery
(
M0, tok

sid, ksid
)

where MQuery is described in Algorithm 4 below.
Intuitively, as visually demonstrated in Figure 4,
MQuery flips one bit of the token toksid at the index
position of ksid in M0 to produce the query mqsid0 .

Finally, C sends mqsid0 to S0 to query.

Algorithm 4 mPIR Query Generation.

1: procedure MQuery(M0, tok, k)
2: mq0 ← tok
3: if k ∈M0 then
4: i← index(k,M0)
5: mq0[i]← mq0[i]⊕ 1
6: end if
7: return mq0

8: end procedure

8O* Upon receiving mqsid0 , S0 processes the query in the
same way queries are processed in step 6O, except
that here mqsid0 is given by C,

mrsid0 ←MReply
(
mqsid0 ,M0,DB0

)
9



S0 returns mrsid0 to C.

9O* Now that C has received all mrsid0 , . . . ,mrsidn , she can
decode them for the answer by a simple XOR

asid ←
⊕
id∈ID

mrsidid

where asid = DB[ksid] as a result.

To see why it is the case that asid = DB[ksid], recall
from step 5O and 7O* in Figure 4. If we “peel off”
mqsid1 , . . . ,mqsidn from mqsid0 via XOR, the result is exactly
the encoding of ksid by design. Because all keyword-value
pairs of DB1, . . . ,DBn are consistent with that of DB0, in
step 9O* all other non-target values are peeled off except
for the target value.

The privacy of the ksid is intact if no more than t Servers
collude. This is because up to t Servers can observe up to
t of mqsidid ’s which are pseudorandom as intended by the
collusion threshold during Tag.

5.2.4 Query Phase

In this section, we will expand on the special case in the
last section to describe the full Query phase when S 6= φ
in Algorithm 1. This enables the client to retrieve any
values in DB0 without leaking to the servers whether the
query keyword is in sPIR or mPIR. Below, we follow Fig-
ure 5 to describe step 6O - 9O. We refer to step 6O, 7O*
- 9O* from Section 5.2.3.
Input

. DB0,M0, spk from S0

. DBid,Mid,mqsidid from Sid,∀id ∈ AID

. M0, S, spk, ssk, tok
sid, ksid from C

Output

. asid to C

Query Protocol for Session sid

6O This is the same as step 6O in Section 5.2.3.

7O C decides on a query keyword ksid ∈ M0 ∪ S and
generates a hybrid-PIR query for S0(

mqsid0 , sqsid
)
← Query

(
M0, S, spk, tok

sid, ksid
)

where sqsid is the sPIR query and mqsid0 mPIR query.
Query is described in Algorithm 5 below. C sends
(mqsid0 , sqsid) to S0.

The hybridization of the mPIR-sPIR query is visu-
ally demonstrated in Figure 5. First, step 7O* is
followed to generate mqsid0 . (Note that if ksid 6∈ M0,
then mqsid0 is a “blank” token as per Algorithm 4.)

Next, if ksid ∈ S, then ksid is encoded by its index
position in S as an input to SQuery; otherwise if
ksid ∈ M0, then it is encoded as the last index po-
sition as an input to SQuery. In this example, be-
cause ksid = c ∈ M0, it is encoded as 3, the 0-based
index of the last position.

Notations

� ⊥, an empty string/value

Algorithm 5 Query Generation.

1: procedure Query(M0, S, spk, tok, k)
2: mq0 ←MQuery (M0, tok, k)
3: sq←⊥
4: if S 6= φ then
5: if k ∈ S then
6: i← index(k, S)
7: sq← SQuery(spk, i, |S|+ 1)
8: else
9: sq← SQuery(spk, |S| , |S|+ 1)

10: end if
11: end if
12: return (mq0, sq)
13: end procedure

8O S0 receives the query (mqsid0 , sqsid) from C and gener-
ates the reply

rsid ← Reply(M0,DB0,mqsid0 , sqsid)

where rsid is the resulting hybrid PIR reply. Reply
is described in Algorithm 6 below. S0 returns rsid to
C.

Algorithm 6 Reply Generation.

1: procedure Reply(M0,DB0,mq0, sq)
2: mr0 ←MReply(M0,DB0,mq0)
3: S ← Keys (DB0) \M0

4: r ←⊥
5: if S 6= φ then
6: V ← (DB0[k])k∈S
7: r ← SReply(spk, V ‖mr0, sq)
8: else
9: r ← mr0

10: end if
11: return r
12: end procedure

Figure 5 demonstrates the hybridized reply gener-
ation process. First, the mPIR reply is generated
according to step 8O*, resulting in mrsid0 . (Note that

10
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if mqsid0 is not a blank query, then mrsid0 is a genuine
mPIR reply; otherwise, it is a random value. This
fact, however, is unknown to S0.) Next, the values
of DB0 is filtered with S by key, resulting in V . mrsid0

is appended to V as the last item, i.e. V ‖mrsid0 . The
sPIR query sqsid and V ‖mrsid0 are input to the sPIR
reply generation algorithm SReply to produce a re-
ply.

At this point, it becomes clear why the sPIR query
sq is generated the way it is as described in step 7O.
When ksid ∈ S, sqsid is generated to target values in
V , ignoring mrsid0 which is the last item. However,
when k ∈ M0, sqsid is generated to target the last
value, which is where mrsid0 is located. The resulting
reply rsid therefore encodes either a targeted value in
V when ksid ∈ S or mrsid0 when ksid ∈M0.

9O C receives the reply rsid from S0 and decodes it using
the same query keyword ksid from step 7O to obtain
the answer

asid ← Decode
(
S, ssk, ksid,

(
mrsidid

)
id∈AID , r

sid
)

Decode is described in Algorithm 7 below.

Figure 5 demonstrates how all the replies from
S0, . . . ,S3 come together for C to decode the answer.

Algorithm 7 Decoding.

1: procedure Decode(S, ssk, k,
(
mrsidid

)
id∈AID , r)

2: if k ∈ S then
3: a← SDecode(ssk, r)
4: else
5: if S 6= φ then
6: mr0 ← SDecode(ssk, r)
7: else
8: mr0 ← r
9: end if

10: a←
⊕

id∈ID mrid
11: end if
12: return a
13: end procedure

First, the reply rsid from S0 is decoded using secret
key ssk in the sPIR decoding algorithm SDecode.
If ksid ∈ S, then C already has the final answer; oth-
erwise, C obtains mrsid0 and follows step 9O*. Here, C
XOR all mrsid0 , . . . ,mrsid3 to obtain the answer.

For privacy, it is important that regardless of whether
ksid ∈ S, mrsid1 , . . . ,mrsidn must be downloaded by C
from S1, . . . ,Sn, respectively. If this step is skipped,
then S1, . . . ,Sn can infer that ksid ∈ S.

11



5.2.5 Catalog Intersection

Catalog Intersection protocol is a part of Synchronization
phase to reduce the communication cost of transferring
catalog intersections. The idea is as follows: given that
C has already obtained Cat0, then Cat′id = Catid ∩ Cat0
can be compressed with a hash function (we call these
hashes digests) for transporting. We describe Catalog
Intersection protocol below.

Input

. Catid from Sid,∀id ∈ AID

. Cat0 from C

Output

.
(
Cat′id

)
AID

,(Digid )AID to C

Catalog Intersection Protocol

1O For each id ∈ AID, Sid generates digests from Catid

Digid ←{G((k, h)) | (k, h) ∈ Catid}

where G(·) is a universal hash function with short
hash values, chosen at random from the universal
family by C. (A shorter hash length will reduce the
communication cost but increase the probability of
collision.) A digest is therefore a hashed representa-
tion of a keyword-hash pair in the catalogs.

Sid sends the digest set Digid to C.

2O C downloads all the digest sets (Digid )AID from
S1, . . . ,Sn. For each id ∈ AID, C remaps digest sets
into catalog intersections as follows:

Cat′id ← Map{(k, h) ∈ Cat0 | G((k, h)) ∈ Digid}

5.2.6 Keyword Synchronization

Keyword Synchronization protocol is a part of Synchro-
nization phase to reduce the communication cost of trans-
ferring mPIR keyword sets Mid from C to Sid. The idea is
to map each keyword in Mid to its corresponding index in
Digid for transport, which can then be remapped to Mid

on the server side. We describe Keyword Synchronization
protocol below.

Input

. Digid,Catid from Sid,∀id ∈ ID

. (Mid )ID ,(Digid )ID from C

Output

. Mid to Sid,∀id ∈ ID

Keyword Synchronization Protocol

1O For all id ∈ ID, C converts Mid to the set of indices
corresponding to the ordering of Keys(Cat0) for main
server and of Digid for assisting servers:

I0 ← KeyToIndex0 (M0,Cat0)

∀id ∈ AID : Iid ← KeyToIndexid (Mid,Digid,Catid)

KeyToIndex is described in Algorithm 8 below. C
then sends Iid to Sid. Iid is a small, indexed repre-
sentation of Mid which can be transported at a low
communication cost.

Algorithm 8 Key-to-Index Mapping

1: procedure KeyToIndex0(M0,Cat0)
2: I0 ←{i | k ∈M0, i = index(k,Keys(Cat0))}
3: return I0
4: end procedure
5: procedure KeyToIndexid(Mid,Digid,Catid)
6: D ←{G((k, h)) | k ∈Mid, h = Catid[k]}
7: Iid ←{i | d ∈ D, i = index(d,Digid)}
8: return Iid
9: end procedure

2O For each id ∈ ID, Sid receives Iid and remaps it back
to Mid

M0 ← IndexToKey0 (I0,Cat0)

∀id ∈ AID : Mid ← IndexToKeyid (Iid,Digid,Catid)

IndexToKey is described in Algorithm 9 below.

Algorithm 9 Index-to-Key Mapping

1: procedure IndexToKey0(I0,Cat0)
2: K ← Keys(Cat0)
3: M0 ←{k ∈ K | i ∈ I0, index(k,K) = i}
4: return M0

5: end procedure
6: procedure IndexToKeyid(Iid,Digid,Catid)
7: D ←{d ∈ Digid | i ∈ Iid, index(d,Digid) = i}
8: Mid ←{k | (k, h) ∈ Catid,G((k, h)) ∈ D}
9: return Mid

10: end procedure

5.2.7 Catalog Intersection and Keyword Syn-
chronization in Relation to Set Reconcil-
iation

Set reconciliation is an active research area to find the
symmetric difference between two sets from two remote
parties over a network at a low communication cost. No-
tably, Eppstein et al. [8] propose a practical scheme whose
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communication cost is asymptotically linear in the size of
the symmetric difference. One therefore could wonder if
these schemes would apply to our Catalog Intersection
and Keyword Synchronization problem. This is because
Catalog Intersection and Keyword Synchronization are
essentially about finding remote set intersections, which
is implied by set symmetric differences. We argue that
our solution as presented above solve this problem more
efficiently by killing two birds with one stone: instead
of apply two separate instances of set reconciliation to
Catalog Intersection and Keyword Synchronization (and
therefore paying the cost twice), we use the ordering in-
formation provided by digest sets Digid to reduce keyword
sets Mid to sets of indices, and therefore reduce the up-
load cost by the client (which is especially important in
an asymmetric network connection). It is not clear how
this cost-saving technique can be applied to existing set
reconciliation schemes in literature.

5.2.8 Keyword Compression

When query keywords are long, this can result a high
communication cost during Synchronization phase since
all keywords in catalogs must be transported to the client.
For this reason, we aim to reduce this cost by representing
each query keyword k by its hash H̃(k), where H̃(·) is a
universal hash function with short hash values, chosen
from the universal family by the client. When querying
keyword k, the client computes the hash and uses it as a
keyword to query instead.

Despite the cost reduction, this can introduce a new
problem when the keyword space is large, which can either
lead to long hash values or high collision (i.e. high false-
positive) rate. Our suggested workaround for this prob-
lem is the keep to hash values short (and therefore high
collusion rate) but let the servers modify the databases
by prepending the keyword to the value so that a false
positive can be detected at the end. That is,

D̃Bid := Map {(k, ṽ) | (k, v) ∈ DBid, ṽ := k‖v}

When the client receives the answer ṽ at the end, she
can check whether the obtained keyword from the answer
is the same as the query keyword. This, indeed, comes at
the cost of the servers processing extra loads and longer
database values.

5.3 Implementation

Synchronized APIR is implemented in Rust, where
keyword compression in Section 5.2.8 is implemented
by default. The universal hash functions H,G, and
H̃ are instantiated with Google’s CityHash (https://
github.com/google/cityhash), each seeded with a ran-
dom number by the client. The variable-length PRG

is instantiated with the stream cipher ChaCha12 [5],
which provides 256-bit security. sPIR is instantiated
with SealPIR using SEAL v3.2.0 (https://github.com/
ndokmai/sealpir-rust). We modify the SealPIR li-
brary to permit extra operations as required by Synchro-
nized APIR. By default, this version of the library sets
the degree of ciphertext polynomial to 2,048, and the size
of the coefficients to 54 bits, which provides 128-bit se-
curity [6]. sPIR instantiation with OnionPIR [11] will be
provided in future work.

The open-source implementation of Synchronized
APIR is available at https://github.com/ndokmai/

assisted-pir.

6 Analysis

In this section, we provide theorems and proof sketches for
Synchronized APIR correctness and privacy. In addition,
we provide an analysis for a loose upper bound for the
probability of failure of Synchronized APIR in the event
that there are hash collisions. We defer full proofs and
an analysis with a tighter bound to future work.

6.1 Correctness

We will prove the correctness of Synchronized APIR by
first assuming that the universal hash functions in the
scheme provide no hash collisions. Then, we provide an
analysis for the probability of no hash collisions, which
implies an upper bound for the probability of failure of
Synchronized APIR.

Theorem 1 (Synchronized APIR Correctness). Suppose
an sPIR-correct scheme ΠsPIR and that the universal hash
functions H,G, and H̃ provide no collisions. Following
Definition 4.2, the Synchronized APIR scheme ΠSynAPIR

is correct for any server set ID = {0, . . . , n} and AID =
{1, . . . , n}, collusion threshold 1 ≤ t ≤ n, databases DBid

for all id ∈ ID, l Query sessions, and ksid ∈ Keys(DB0) for
all sid ∈ [l]. That is, if

� Synchronization Protocol takes inputs (DBid )ID , t
and outputs (Catid )ID ,

(
Cat′id

)
AID

,(Mid )ID , S

� Setup Protocol takes inputs l,(Mid )AID and outputs

spk, ssk,
(
mqsidid

)
sid∈[l],id∈AID ,

(
toksid

)
[l]

� For all sid ∈ [l], Query Pro-
tocol for session sid takes inputs
(DBid )ID ,(Mid )ID , S,

(
mqsidid

)
id∈AID , spk, ssk, tok

sid, ksid

and outputs asid

then for all sid ∈ [l],DB0[ksid] = asid.

Proof sketch. First, by assuming that the universal hash
functions provide no collusions, we can claim that
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� H̃(k) perfectly represents keyword k, so k can be ef-
ficiently replaced with H̃(k).

� H(v) perfectly represents value v, so catalog Catid
perfectly represents database DBid. Therefore tag-
ging the catalogs is the same as tagging the databases
themselves.

� G((k, h)) perfectly represents (k, h), so Catalog Inter-
section Protocol and Keyword Synchronization Pro-
tocol are trivially correct.

Next, we consider the properties of the tags (Mid)ID, S.
By construction of Tag (Algorithm 1), for each keyword
k ∈ Keys(DB0),

1. either k ∈M0 or k ∈ S but not both

2. if k ∈ M0 and k ∈ Mid for any id ∈ AID, then
DB0[k] = DBid[k]

3.
⋃
k∈M0

⋃
id∈Ck

{(id, k)} =
⋃

id∈AID
⋃
k∈Mid

{(id, k)}

Property 3. is a consequence of the fact that by
construction, Mid = {k ∈M0 | id ∈ Ck } and Ck =
{id ∈ AID | k ∈Mid}.

If ksid ∈ S, then by construction of Query (Algorithm
5), sqsid targets item index(ksid, S) in the filtered database
(DB0[k])k∈S in Reply (Algorithm 6), which is exactly

DB0[ksid]. By sPIR correctness of ΠsPIR, we conclude that
asid = DB0[ksid].

If ksid ∈ M0, we consider how the mPIR token toksid

and queries mqsidid are generated. Consider each bit of

toksid by construction in MToken (Algorithm 2): there
exists k ∈M0 such that

toksid[index(k,M0)] =
⊕
id∈Ck

mqsidid [index(k,Mid)]

where Ck is a set of id’s such that DB0[k] = DBid[k] by
property 2. stated above. This implies

toksid[index(k,M0)] · DB0[k]

=
⊕
id∈Ck

mqsidid [index(k,Mid)] · DB0[k]

=
⊕
id∈Ck

mqsidid [index(k,Mid)] · DBid[k]

And therefore, by the equation above and property 3.,

toksid·(DB0[k])k∈M0

=
⊕
k∈M0

toksid[index(k,M0)] · DB0[k]

=
⊕
k∈M0

⊕
id∈Ck

mqsidid [index(k,Mid)] · DBid[k]

=
⊕

id∈AID

⊕
k∈Mid

mqsidid [index(k,Mid)] · DBid[k]

=
⊕

id∈AID

mqsidid · (DBid[k])k∈Mid

Next, because

mqsid0 [index(ksid,M0)] = toksid[index(ksid,M0)]⊕ 1

by construction of MQuery (Algorithm 4), we have⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

=
⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

= toksid · (DB0[k])k∈M0
⊕ (1 · DB0[ksid])⊕

id∈AID

mqsidid · (DBid[k])k∈Mid

= DB0[ksid]

Thus proven the correctness of mPIR-Only Query Proto-
col.

To show that the general case in Query Protocol is
correct, we observe that when ksid ∈ M0, sqsid tar-
gets targets item |S| by construction of Query (Algo-
rithm 5). That is, sqsid targets targets mrsid0 by con-
struction of Reply (Algorithm 6). By sPIR correctness
of ΠsPIR, we conclude that in Decode (Algorithm 7),
SDecode(ssk, rsid) = mrsid0 . And finally,

asid =
⊕
id∈ID

mrsidid

=
⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

= DB0[ksid]

by correctness of mPIR-Only Query Protocol.

Next, we analyze the probability that there is no hash
collision when the universal hash functions are used in
the context of Synchronized APIR.

Theorem 2 (Synchronized APIR Hash Non-collision).
Let H,G, H̃ be random universal hash functions from uni-
versal families whose hash values are of lengh lH, lG, lH̃,
repectively. For any ID = {0, . . . , n} and databases
DBid, id ∈ ID, let U :=

⋃
id∈ID DBid. We define the fol-

lowing non-collision events:
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� E1(U) := ∀k, k′ ∈ Keys(U) : k 6= k′ =⇒ H̃(k) 6=
H̃(k′)

� E2(U) := ∀v, v′ ∈ Values(U) : v 6= v′ =⇒ H(v) 6=
H(v′)

� E3(U) := ∀(k, v), (k′, v′) ∈ U : G((H̃(k),H(v))) 6=
G((H̃(k′),H(v′))) =⇒ (H̃(k),H(v)) 6= (H̃(k′),H(v′))

Let p(m, d) := e−
m(m−1)

2d , then

Pr[E1(U), E2(U), E3(U)]

≈ p(|U | , 2lG) · p(|Keys(U)| , 2lH̃) · p(|Values(U)| , 2lH)

Proof Sketch. First we consider E1(U) and E2(U), which
describe the “birthday” problem where no two individuals
share the same birthday. For E1(U) the number of birth-
days is 2lH̃ and the number of individuals is |Keys(U)|;
likewise for E2(U), the number of birthdays is 2lH and the
number of individuals is |Values(U)|. By [12], we have

Pr[E1(U)] ≈ p(|Keys(U)| , 2lH̃)

Pr[E2(U)] ≈ p(|Values(U)| , 2lH)

Given that E1(U) and E2(U) occur, E3(U) also de-
scribes the same birthday problem with 2lG birthdays and
|U | individuals. Therefore,

Pr[E3(U) | E1(U), E2(U)] ≈ p(|U | , 2lG)

Finally, since E1(U) and E2(U) are independent events,
we have

Pr[E1(U), E2(U), E3(U)]

= Pr[E3(U) | E1(U), E2(U)] Pr[E1(U), E2(U)]

= Pr[E3(U) | E1(U), E2(U)] Pr[E1(U)] Pr[E2(U)]

≈ p(|U | , 2lG) · p(|Keys(U)| , 2lH̃) · p(|Values(U)| , 2lH)

What does Theorem 2 imply for Theorem 1? By defi-
nition, we know that if events E1(U), E2(U), E3(U) take
place, then Theorem 1 is true with probability 1. That
is,

Pr[ΠSynAPIR is correct | E1(U), E2(U), E3(U)] = 1

So,

Pr[ΠSynAPIR is correct]

≥ Pr[ΠSynAPIR is correct | E1(U), E2(U), E3(U)]

· Pr[E1(U), E2(U), E3(U)]

= Pr[E1(U), E2(U), E3(U)]

And therefore

Pr[ΠSynAPIR is incorrect] ≤ 1− Pr[E1(U), E2(U), E3(U)]

We note that the probability of incorrectness is not per
query but per query keyword; that is, the same keyword
either succeeds or fails every time from hash collusions.
This implies that the amount of failure does not scale with
query traffic loads but with the total number of query
keywords made.

The upper bound here can be improved because
E1(U), E2(U), E3(U) are not necessary conditions for the
correctness of Synchronized APIR, because there are cer-
tain hash collisions that simply do not affect the correct-
ness of the scheme. For example, in the catalogs, it is
not an issue if v 6= v′ but H(v) = H(v′) as long as pairs
(k,H(v)) and (k′,H(v′)) are in the catalogs and k 6= k′.
In future work, we will provide an analysis with a tighter
bound taking into account all of these nuances.

6.2 Privacy

To prove the privacy of Synchronized APIR, we first pro-
vide the privacy definition of Synchronized APIR which
directly corresponds to the privacy definition of APIR in
Definition 4.3. Then, we show that mPIR queries are in
fact pseudorandom given the variable-length PRG, even
if some of the PRG seeds are predetermined. Leveraging
this fact and the privacy of sPIR scheme, we show that
Synchronized APIR is privacy-preserving.

First, let us provide the privacy definition of Synchro-
nized APIR below. Intuitively, Synchronized APIR is
privacy-preserving if the attacker is unable to distinguish
between queries generated by keyword k0 and k1 during
one session, even if the attacker has oracle access to all
other query sessions and is provided with some of the
PRG seeds used to generate the mPIR queries.

Definition 6.1 ((λ, t)-Synchronized APIR Privacy). Fol-
lowing Definition 4.3, we define the privacy experiment
PrivAA,ΠSynAPIR,t(1

λ) for the Synchronized APIR scheme
given a λ-sPIR privacy-preserving scheme ΠsPIR by Defi-
nition A.2 and variable-length PRG PRG(s, `)→ r below.

1. A chooses the number of Query sessions l = poly(λ),
well-formed catalog Cat0 and digests (Digid )AID, and
outputs (l,Cat0,(Digid )AID). A chooses a collusion
set C ⊂ ID such that |C| ≤ t and sends C to the
oracle O.

2. The following steps are followed to generate public
and secret parameters:

(a) Synchronization: Step 2O of Catalog Inter-
section Protocol in Section 5.2.5 is followed with
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inputs Cat0, (Digid )AID to produce
(
Cat′id

)
AID

.
Catalogs are tagged by

((Mid )ID , S )← Tag(Cat0,
(
Cat′id

)
AID

, t)

as per step 2O of Synchronization Protocol in
Section 5.2.1.

(b) Setup: Setup Protocol in Section 5.2.2 is
followed with inputs (Mid )ID and l and out-

puts

(
spk, ssk,

(
toksid

)
[l]

)
(the mq output is ig-

nored). The PRG seeds (sid )AID generated dur-
ing this step is also saved.

(spk,(Mid )ID , S ) is given to A as public parameters.

3. Initialize session ID sid = 1. A is given oracle access
to Query in the following way:

(a) At sid = 1, (sid )AID is given to O, and O gives
(sid )C\{0} to A (recall that sid is a PRG seed).

(b) A chooses and outputs ksid ∈ Keys(Cat0).

(c) A query is generated by(
mqsid0 , sqsid

)
← Query

(
M0, S, spk, tok

sid, ksid
)

following step 7O of Query Protocol in Section
5.2.4.

(
mqsid0 , sqsid

)
is given to O .

(d) If 0 ∈ C, O gives
(
mqsid0 , sqsid

)
to A; otherwise,

O gives an empty value ⊥ to A.

(e) sid← sid + 1

4. During some session sid = sid∗ ≤ l,

(a) A chooses ksid
∗

0 , ksid
∗

1 ∈ Keys(Cat0) and outputs(
ksid

∗

0 , ksid
∗

1

)
.

(b) A uniformly random bit is sampled b←$ {0, 1}.
(c) A query is generated(

mqsid
∗

0,b , sq
sid∗

b

)
← Query

(
M0, S, spk, tok

sid∗ , ksid
∗

b

)
and

(
mqsid

∗

0,b , sq
sid∗

b

)
is given to O.

(d) If 0 ∈ C, O gives
(
mqsid

∗

0 , sqsid
∗ )

to A; other-
wise, O gives an empty value ⊥ to A.

(e) sid← sid∗ + 1

5. A is given more oracle access to Query until sid = l.

6. A outputs b∗ ∈ {0, 1}. The output of the experiment
is defined to be 1 if b∗ = b and 0 otherwise.

ΠSynAPIR is (λ, t)-APIR privacy-preserving for all PPT
adversary A if there exists a negligible function negl such
that

Pr
[
PrivAA,ΠSynAPIR,t(1

λ) = 1
]
≤ 1

2
+ negl(λ)

To show that Synchronized APIR satisfies this defini-
tion, we first prove that mPIR queries are pseudoran-
dom, even if some of the PRG seeds are predetermined.
(The predetermined seeds are indicated by set A below.)
mPIR query pseudorandomness implies that two queries,
generated with different keywords, are computationally
indistinguishable from one another.

Theorem 3 (mPIR Query Pseudorandomness). Suppose
a variable-length PRG PRG(s, `) → r where |s| = λ
and |r| = ` = poly(λ). For any ID := {0, . . . , n},
AID := {1, . . . , n}, 1 ≤ t ≤ n, well-formed catalog Cat0
and catalog intersections Cat′id, id ∈ AID, l Query sessions,
sid ∈ [l], ksid ∈ Keys(Cat0), A ⊂ AID such that |A| < t,

and (sid )A ∈ {0, 1}
λ·|A|

; define

� ∀id ∈ AID \A : sid ←$ {0, 1}
λ

� ((Mid )AID , S) = Tag(Cat0,
(
Cat′id

)
id
∈ AID)

� ∀id ∈ AID :
(
mqsidid

)
sid∈[l]

= PRG(sid, l · |Mid|)

� ∀sid ∈ [l] : toksid = MToken
(
(Mid )ID ,

(
mqsidid

)
AID

)
� ∀sid ∈ [l] : mqsid0 = MQuery

(
M0, tok

sid, ksid
)

� aux =
(
(Mid )ID , A,(sid )A ,

(
ksid
)

[l]

)
Then for all PPT distinguisher D, there exists a negli-

gible function negl such that∣∣∣Pr [D(r, aux) = 1]− Pr
[
D
((
mqsid0

)
[l]
, aux

)
= 1
]∣∣∣

≤ negl(λ)

where r ←$ {0, 1}
l·|M0| is sampled uniformly at random.

Proof sketch. We will use a hybrid argument to prove the
theorem as follows.

Part 1: For any B ⊂ AID such that A ⊆ B and |B| =
t−1, we will slightly modify the definition of mqsidid above

called m̃qsidid where if id ∈ AID \ B, then for all sid ∈
[l], m̃qsidid ←$ {0, 1}

|Mid| is sampled uniformly at random;
everything else remains unchanged i.e. ∀id ∈ B, ∀sid ∈
[l] : m̃qsidid = mqsidid . This results in the new m̃qsid0 , sid ∈ [l].

We claim that these two ensambles are perfectly indis-
tinguishable

〈r, aux〉
p
≡ 〈(m̃qsid0 )[l], aux〉
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by observing the construction of mqsid0 . Let

˜tok
sid

= MToken

(
(Mid )ID ,

(
m̃qsidid

)
id∈AID

)

and consider each bit of ˜tok
sid

: for each k ∈M0,

˜tok
sid

[index(k,M0)] =
⊕
id∈Ck

m̃qsidid [index(k,Mid)]

=
⊕

id∈Ck\B

m̃qsidid [index(k,Mid)]

⊕
⊕

id∈Ck∩B

m̃qsidid [index(k,Mid)]

Since |Ck| = t by construction and |B| = t− 1, we know
that Ck\B is not empty. Because for all id ∈ Ck\B, m̃qsidid
is uniformly random by definition, we conclude that⊕

id∈Ck\B m̃qsidid [index(k,Mid)] is unformly random, and so

is ˜tok
sid

[index(k,M0)] and ˜tok
sid

for all sid ∈ [l]. Thus by
construction of MQuery, m̃qsid0 is also uniformly random
for all sid ∈ [l]. This proves the prefect indistinguishabil-
ity.

Part 2: Given the variable-length PRG, we claim that
these two ensambles are computationally indistinguish-
able

〈(m̃qsid0 )[l], aux〉
c≡ 〈(mqsid0 )[l], aux〉

via a reduction proof.
Suppose there exists a PPT distinguisher D who can

distinguish between the two ensambles, we will construct
an adversary A using D as a subroutine to play the fol-
lowing game:

The challenger C is tasking A to distinguish between a
uniformly random string

r0 ←$ {0, 1}
∑

id∈AID\B l·|Mid|

where B is defined in Part 1, and a pseudorandom
string

r1 ← (PRG(sid, l · |Mid|))id∈AID\B

where each sid ←$ {0, 1}
λ

is sampled uniformly at ran-
dom. Upon given rb, b ∈ {0, 1}, A defines((

mqsid,∗id

)
sid∈[l]

)
id∈AID\B

:= rb

and mqsid,∗id := mqsidid for the rest of id ∈ B and sid ∈ [l].

Next, A constructs mqsid,∗0 out of mqsid,∗id , id ∈ AID i.e.

∀sid ∈ [l] : toksid,∗ = MToken
(
(Mid )ID ,

(
mqsid,∗id

)
AID

)

∀sid ∈ [l] : mqsid,∗0 = MQuery
(
M0, tok

sid,∗, ksid
)

and inputs ((mqsid,∗0 )[l], aux) to D. If D determines the
input is the first ensamble, then A outputs 0; otherwise
A outputs 1. By variable-length PRG assumption, we
conclude that the advantage of A of guessing the correct
string is negligible, and so the two ensambles are indis-
tinguishable.

Part 3: By “transitivity” of Part 1 and 2,

〈r, aux〉
p
≡ 〈(m̃qsid0 )[l], aux〉

c≡ 〈(mqsid0 )[l], aux〉

=⇒ 〈r, aux〉 c≡ 〈(mqsid0 )[l], aux〉

thus proven the theorem.

Now that we have proven that mPIR are pseudoran-
dom given the variable-length PRG, we will use a hybrid
argument to show that the hybridization between mPIR
and sPIR (given that the sPIR scheme is privacy- preserv-
ing) in Synchronized APIR results in a privacy-preserving
scheme, even of some of the PRG seeds are leaked to the
attacker.

Theorem 4 (Synchronized APIR Privacy). Suppose
ΠsPIR is λ-sPIR privacy-preserving according to Defini-
tion A.2 and PRG(s, l) → r is a variable-length PRG,
then Synchronized APIR scheme ΠSynAPIR is (λ, t)-APIR
privacy-preserving according to Definition 6.1.

Proof sketch. We first observe that if 0 6∈ C in
PrivAA,ΠSynAPIR,t i.e. main server S0 is not compromised,
then A does not obtain any information related to b,
which implies no advantage in guessing b∗; the scheme
is therefore trivially privacy-preserving. For the rest of
this proof, we hence only focus on the scenario in which
A has chosen 0 ∈ C .

We want to show that the view of A in PrivAA,ΠSynAPIR,t

is computationally indistinguishable between when b = 0
and b = 1. Formally, define the view of A in the experi-
ment as

outviewA := 〈
(
ksid
)
sid 6=sid∗

,
(
ksid

∗

0 , ksid
∗

1

)
, auxout〉

for the outputs of A, where

auxout := (l,Cat0,(Digid )AID , C)

and

inviewA(b) :=

〈(sid )C\{0} ,
(
mqsid0 , sqsid

)
sid6=sid∗

,
(
mqsid

∗

0,b , sq
sid∗

b

)
, auxin〉

for the inputs of A, where

auxin := (spk,(Mid )ID , S)
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and finally

viewA(b) := 〈outviewA, inviewA(b)〉

We want to show that

viewA(0)
c≡ viewA(1)

with respect to the security parameter λ through the fol-
lows steps:

1. Similarly to inviewA(b), we define

ĩnviewA(b) :=

〈(sid )C\{0} ,
(
mqsid0 , sqsid

)
sid6=sid∗

,
(
mqsid

∗

0,b , s̃q
)
, auxin〉

where s̃q← SQuery(spk, 0), and

ṽiewA(b) := 〈outviewA, ĩnviewA(b)〉

By λ-sPIR privacy assumption, we claim that

viewA(0)
c≡ ṽiewA(0)

2. By Theorem 3, we claim that

ṽiewA(0)
c≡ ṽiewA(1)

because mPIR queries are pseudorandom.

3. Similarly to step 1, by λ-sPIR privacy assumption
we claim that

ṽiewA(1)
c≡ viewA(1)

4. By “transitivity”, we claim that

viewA(0)
c≡ ṽiewA(0)

c≡ ṽiewA(1)
c≡ viewA(1)

Thus proven the theorem.

7 Private DNS Query

In this section, we showcase the application of Synchro-
nized APIR to achieve private DNS query for NS (Name
Server) records in DNS cache servers. Indeed, the ap-
plicability of Synchronized APIR is not limited to NS
records, but NS records make a great example because
they are relatively stable with the time-to-live (TTL) of
2 days based on the ICANN’s .com zone file, which we
will discuss next.

We assume a hypothetical setting in which there are
multiple DNS cache servers who keep separate tables for

different top-level domains (TLD) and types of records.
Each server gathers the query statistics per each domain
from non-private DNS traffic in the past 24 hours, and
updates the cache table with the records of most queried
domains. The server then builds a Synchronized APIR
database out of this cache table. The cache table is
assumed to be much smaller than the total number of
records for efficiency.

The Synchronized APIR client chooses a group of Syn-
chronized APIR servers: one as the main server and the
rest as assisting servers. The parties then participate in
the Synchronized APIR scheme.

For the application demonstrated here, the client must
informs the servers she wishes to query the .com NS ta-
ble. In the table, each domain is assumed to link to the
collection of all the associated NS records. This implies
that in a successful PIR query, the client will receive all
the NS records for the queried domain, and decides which
one to use.

7.1 NS Record Dataset

We analyze the .com Generic Top Level Domain (gTLD)
zone file provided by ICANN available per request on
https://czds.icann.org, accessed on June 16, 2022, to
gather statistics about NS records. The data analysis is
for the purpose of simulating cache tables for the PIR
servers, which will be described in the next section. The
.com zone file includes all record types, but we filter it
for NS records only. Each NS record contains 1) domain
name, 2) time-to-live (TTL), 3) class, 4) type, 5) resource
record length, and 6) NS domain name. Each domain
name may be linked to multiple NS records, and each
record are of variable length, depending on how long the
NS domain name is. We summarize the statistics in Table
1.

In this table, we draw particular attention to “max.
|records| per domain”. “|records| per domain” here means
that if a domain name is linked to record 1, record 2, . . . ,
record n, then |records| per domain for this domain is
|record 1| + |record 2|+, . . . ,+ |record n|. “max.” indi-
cates the maximum of this value across all the domains
in the zone file, which is 759 bytes. This implies that the
Synchronized APIR database values need to be at least
759 bytes in length to be able to hold all the NS records
linked to each domain name for all the domain names. We
thus parameterize the database values to be 1,024 bytes
in length as a conservative measure.

7.2 Data Simulation Method

Although we have access to NS records in the previous
section, what remains unknown is how independent DNS
cache servers would behave in the real world. Specifically,
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Statistics Values

#records 382M
#domains 159M

avg. #records per domain 2.4
avg. |domain name| 17.7 bytes

avg. |records| per domain 73.1 bytes
max. |records| per domain 759 bytes

TTL 2 days

Table 1: Statistics for NS records in ICANN’s .com
gTLD Zone File (M=106). “#records” indicates the num-
ber of records. “#domains” indicates the number of domains.
“|records| per domain” specifies total the size in bytes of all
records linked each domain, where each NS record is encoded
as TTL|CLASS|TYPE|LEN|NSDOMAIN. The TTL’s are of
the same value of 172800 across all the records

we need to know what NS records each server is holding in
the cache table at a given time to be able to use this table
as a database in Synchronized APIR. To simulate the
servers’ cache tables for this purpose, we therefore need
to make assumptions about 1) the statistical distribution
of domain name popularity, and 2) the frequency of DNS
queries over a period of time.

For 1), we assume that the popularity of domain name
in DNS queries follows a Zipfian distribution [10,15], with
the total number of ranks being the total number of do-
main names with NS records (159 million domains ac-
cording to Table 1).

For 2), we assume that a cache server collects DNS
query statistics from the normal (i.e. non-private) DNS
service over a period of time; after which, the server
updates the cache table with the most queried domain
names during the period. To assume the number of
queries (which follow a Zipfian distribution) over a pe-
riod of time, we consider two scales of DNS operation:
local and regional. The scale of operation implies the
scale of traffic loads. In our setting, local means a US
city, whereas regional means the entire US.

To get a sense of what the scales look like in
the real world, we obtain DNS query statistics from
ICANN Managed Root Server (IMRS) accessible on
stats.dns.icann.org on June 18, 2022 to obtain the av-
erage queries-per-second (QPS) statistics for NS queries
in a 24-hour window. For the local scale, we obtain the
QPS within the city of Chicago; for the regional setting,
we obtain the QPS within the entire US. The average
QPS in a 24-hour window for the local setting is 256.3,
which accumulates to 22 million queries in the 24-hour
cycle. The average QPS in a 24-hour window for the re-
gional setting is 7032.3, which accumulates to 608 million
queries in the 24-hour cycle.

We follow these assumptions and parameters to simu-

late 3 cache servers for Synchronized APIR for local and
regional experiment: 1 main and 2 assisting servers with
collusion threshold of t = 2. The cache table size, or
|DB|, for the local experiment is 213 ∼ 8 thousand do-
mains, and for the regional experiment 216 ∼ 66 thou-
sand domains. We base the cache table sizes roughly on
Cisco’s Caching DNS Capacity and Performance Guide-
lines [1]. To simulate a cache table, we sample domain
name ranks from a Zipfian distribution as many times as
the number of queries in 24 hours for each server, where
the most |DB| popular ranks are kept in the cache table.
The actual keywords and values in the cache tables are
randomly generated; this does not affect the performance
of the scheme since the scheme is agnostic of the actual
content of database keywords and values.

Zipfian parameters. The next question is what appro-
priate popularity index s of the Zipfian distribution to use
in the simulation. Wang [15] and Jung et al. [10] found
the popularity index to be 0.98 and 0.91, respectively, in a
local DNS setting at the time of the studies. We surmise
that the distribution of domain name popularity is always
sensitive to time and geography, and therefore there is no
single distribution that is universally true and accurate.

Instead, what we aim to demonstrate in our experi-
ments is Synchronized APIR in the most optimal condi-
tions. Since Synchronized APIR’s most expensive com-
putational and communication cost corresponds to the
number of sPIR items i.e. |S|, we want to find a Zipfian
popularity index s that minimizes |S| to demonstrate the
most optimal conditions for both the local and regional
setting.

To achieve this, we simulate the cache tables for 3 Syn-
chronized APIR servers at varying s and cache sizes for
the local and regional setting (212, 213, 214 domains for
local, and 215, 216, 217 domains for regional). The results
are shown in Figure 6. Here, the optimality is represented
by the percentage of sPIR items in the main cache table,
i.e. |S| / |DB0| × 100%. The results indices that s = 1.0
is an optimal parameter. (Coincidentally, this is close
to the 0.98 and 0.91 in Wang and Jung et al.’s study,
respectively.) We therefore choose s = 1.0 to evaluate
Synchronized APIR in the next section.

7.3 Evaluation Settings

We summarize the parameters used to evaluate Synchro-
nized APIR in Table 2 and 3.

To evaluate the scheme, we use the implementation
specified in Section 5.3. The computing environment
is a desktop computer with an Intel i9-10900 CPU and
64 GB of RAM running Ubuntu 20.04. The client and
servers are simulated locally in the same computing en-
vironment, where each party occupies one CPU core; the
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Figure 6: The effect of Zipfian distribution on the per-
centage of sPIR items in simulated databases for 3
Synchronized APIR servers at collusion threshold t =
2. #q denotes the total number of simulated queries. s = 1.0
is chosen as an optimal parameter.

remote communication is via TCP loopback connections.
We measure the performance in terms of communica-

tion and computational cost for a single PIR query. The
communication cost is measured separately in the amount
of data uploaded and downloaded by the client in bytes.
The computational cost is measured in the amount of
CPU time spent by each party in milli-seconds.

Synchronized APIR is evaluated in two experiments:
regional and local. In each experiment, a comparison is
made between 3 schemes:

1. Baseline SealPIR with query dimensionality d = 2
i.e. recursive PIR

2. Synchronized APIR with d = 1 SealPIR

3. Synchronized APIR with d = 2 SealPIR

The Baseline d = 1 SealPIR scheme is omitted because
it repeatedly crashed during the regional experiment in
our trial runs regardless of parameters. We suspect this is
due to a limitation in the SealPIR library, which is unable
to handle databases larger than a certain size for d = 1.

In Baseline SealPIR experiment, the keyword compres-
sion technique is applied to the list of domain names in the
cache table; the compressed (i.e. hashed) keywords are
sent to the client as the catalog, which allows the client to
translate keywords to index positions in the database. In
Synchronized APIR, the keyword compression technique
is applied per description in Section 5.2.8.

SealPIR is configured by default to provide 128-bit se-
curity (see Section 5.3). The log of plaintext modulus is

Parameters Values

#servers 3
collusion threshold t 2

Zipfian s 1.0
|value| 1,024 bytes

security parameter 128

SealPIR Parameters Values

log(plaintext modulus), d = 1 14
log(plaintext modulus), d = 2 16

Table 2: Shared parameters between local and regional
experiments. “#servers” indicates the number of servers.
|value| indicates the length of each value. d is the query di-
mensionality of SealPIR.

Parameters Local Regional

#sampling queries 22M 608M
|DB| 213 ∼ 8K 216 ∼ 66K

|hash|(bits) 43 54

Statistics

% of sPIR 7.3 3.9
Pr[failure] / 1.3× 10−5 / 1.2× 10−5

Table 3: Specific parameters and statistics for local
and regional experiments. “#sampling queries” indicates
the number of queries to simulate the cache tables. “|DB|”
indicates the number of domain names in each cache table.
“% of sPIR” indicates the percentage of sPIR items in the
main cache table (DB0). “|hash|” indicates the hash length
in bits. “Pr[failure]” indicates the probability of failure of
Synchronized APIR according to Theorem 2.

determines the noise budget in the underlying SEAL fully
homomorphic encryption scheme (higher means more
noise budget and higher communication cost); this is ad-
justed by trial and error to ensure the experiments do not
fail from the noise after multiple runs.

The sPIR percentage statistics is calculated from the
simulated databases. The probability of failure i.e. the
probability that there is a hash collusion as per Theo-
rem 2 is calculated from the hash length and simulated
databases.

7.4 Results

The results for the communication costs of the experi-
ments are shown in Table 4 and computational costs in
Table 5. We shall refer to the Baseline d = 2 SealPIR
scheme as the baseline for comparison.

According to Table 4, the client using Synchronized
APIR transmits 4.6x the amount of data that of the base-
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Phases
SealPIR,
d = 2

Sync-APIR,
d = 1

Sync-APIR,
d = 2

S0 S0 S1 + S2 S0 S1 + S2

Local

Synchronization
Download 44K 95K 89K 95K 89K

Setup
Upload (spk) 3.5M 3.5M - 3.5M -

Upload (others) - 769 19K 769 19K

Query (per session)
Upload 64K 34K - 65K -

Download 257K 32K 2K 257K 2K

Regional

Synchronization
Download 352K 799K 704K 799K 704K

Setup
Upload (spk) 3.5M 3.5M - 3.5M -

Upload (others) - 3.1K 154K 3.1K 154K

Query (per session)
Upload 64K 40K - 72K -

Download 257K 32K 2K 257K 2K

Table 4: Client’s communication costs for one query in local and regional PIR experiment (in bytes, K=210,
M=220). “S1 + S2” indicates the client’s upload/download costs to/from Server 1 and 2, combined. The upload costs during
Setup are listed separately between the cost of SEAL public key and other public parameters.

line in the local experiment and 4.7x in the regional ex-
periment during Synchronization and Setup. The calcula-
tion does not include the cost of uploading the long-term
SEAL public key, which can be mitigated through public-
key infrastructure. During the Query phase of d = 1 and
d = 2 Synchronized APIR, the client transmits ∼0.2x and
∼1.0x the amount of data per query that of the baseline,
respectively, in both the local and regional experiment.
We note that the client’s upload costs during Query ap-
pear irregular with respect to the number of sPIR items
due to SealPIR’s query compression technique, which is
able to pack many query bits in one large ciphertext; this
results in big gaps in query size between small and large
number of sPIR query bits.

Where Synchronized APIR clearly outperforms the
baseline is in computational cost. According to Table 5,
the computational costs of the assisting servers (S1 and
S2) are near negligible across the experiments. The com-
putational costs during Synchronization and Setup are
slightly cheaper for the main server (S0) in Synchronized
APIR than in the baseline, and slightly more expensive
the client in Synchronized APIR than in the baseline.
However, the more interesting part is the recurring costs

of the main server during Query. Here, the computational
cost of the main server in d = 1 and d = 2 Synchronized
APIR are 78% and 12% that of the baseline, respectively.

We summarize our results below.

1. Baseline d = 2 SealPIR offers low one-time commu-
nication cost but high recurring costs.

2. d = 1 Synchronized APIR offers 4.6x-4.7x one-time
communication cost and ∼0.2x recurring communi-
cation cost that of the baseline for the client, and
78% recurring computational cost that of the base-
line for the main server.

3. d = 2 Synchronized APIR offers 4.6x-4.7x one-time
communication cost and ∼1.0x recurring communi-
cation cost that of the baseline, and 12% recurring
computational cost that of the baseline for the main
server.

7.5 Discussion

It is clear that Synchronized APIR provides significant
advantage over SealPIR in a long run after the one-time
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Phases
SealPIR,
d = 2

Sync-APIR,
d = 1

Sync-APIR,
d = 2

C S0 C S0 S1 or S2 C S0 S1 or S2

Local

Synchronization < 1 2 20 3 3 20 3 3

Setup 107 150 98 89 1 93 86 1

Query (per session) 8 90 1 76 < 1 8 23 < 1

Regional

Synchronization 7 31 184 35 42 184 35 42

Setup 106 653 221 127 16 214 119 16

Query (per session) 8 414 9 323 4 16 48 4

Table 5: Computational costs for one query in local and regional PIR experiment (in milli-seconds). “S1 or S2”
indicates the computational cost on S1 or S2 since they cost the same CPU time.

cost, but what does this means in terms of practical-
ity? For a single non-private NS query to a DNS server,
the communication cost would be less than 1 KB, and
the computational cost negligible, allowing the operation
to scale with minimal computational resources. In com-
parison, Synchronized APIR would be multiple orders of
magnitude more expensive. This is not to mention the
speficity of the DNS protocol and complexity of the cur-
rent DNS infrastructure which would require significant
adjustment for Synchronized APIR to fit in.

When putting the scheme in context as such, we reckon
it would be more sensible to offer private DNS via Syn-
chronized APIR as an optional, special service one needs
to opt in to access (especially because our current con-
ception requires the cache servers to collect cache statis-
tics from non-private DNS service). The computational
and communication costs of Synchronized APIR are not
necessarily prohibitive because 1) the non-sensitive parts
of Synchronization and Setup can be outsourced to a
third party and shared across multiple clients, allowing
the operation to scale, and 2) the recurring cost of a
query is only as expensive as the best sPIR scheme avail-
able. OnionPIR [11], for example, can reduce the recur-
ring download cost for the client by 25x in comparison
to SealPIR at the same computational cost, although a
downside is the recurring upload cost may double with a
small database.

8 Conclusion

In this work, we introduce assisted PIR, a generalization
to multi-server PIR that allows for database inconsisten-
cies. We present the construction of Synchronized APIR,

a hybrid APIR protocol between a black-box single-server
PIR scheme and a multi-server PIR scheme which takes
advantage of the overlap between inconsistent databases
to reduce the costs. A formal analysis of Synchronized
APIR is also provided.

We apply Synchronized APIR to demonstrate a proof-
of-concept private DNS query application, specifically to
query NS records, among DNS cache servers. Then, we
evaluate the application with simulated datasets based
on realistic assumptions about DNS queries and cache
behavior.

The results show that despite the higher initial one-
time cost, private DNS query via Synchronized APIR is
able to outperform the baseline single-server PIR either in
communication cost or in computational cost. Although
the costs are high in comparison to non-private DNS, Syn-
chronization APIR holds its potential in future develop-
ments of single-server PIR schemes from its black-box use
of single-server PIR.
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A Appendix

A.1 sPIR Correctness and Privacy Defi-
nition

Definition A.1 (sPIR Correctness). Following Defini-
tion 3.1, scheme ΠsPIR is correct for any database V =
(v0, . . . , vm−1 ) such that m ≥ 1 and i ∈ {0, . . . ,m− 1} if

� (spk, ssk)← SGen(1λ)

� sq← SQuery(spk, i,m)

� sr← SReply(spk, V, sq)

� sa← SDecode(ssk, sr)

then sa = vi.

Definition A.2 (λ-sPIR Privacy). Define an sPIR pri-
vacy experiment PrivSA,ΠsPIR(1λ) for sPIR scheme ΠsPIR

according to Definition 3.1 and adversary A below.

1. A chooses and outputs m.

2. The parameters are generated (spk, ssk) ←
SGen(1λ) and spk is given to A.

3. A is given oracle access to SQuery(spk, ·).

4. A chooses i∗0, i
∗
1 ∈ {0, . . . ,m− 1} and outputs

(i∗0, i
∗
1). A uniformly random bit is chosen

b←$ {0, 1}. A query sq∗ ← SQuery(spk, i∗b) is gen-
erated and sq∗ is given to A.
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5. A is given more oracle access to SQuery(spk, ·).

6. A outputs b∗ ∈ {0, 1}. The output of the experiment
is defined to be 1 if b∗ = b and 0 otherwise.

ΠsPIR is λ-sPIR privacy-preserving if for all PPT adver-
sary A, there exists a negligible function negl such that

Pr
[
PrivSA,ΠsPIR(1λ) = 1

]
≤ 1

2
+ negl(λ)
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