
Assisted Private Information Retrieval

Natnatee Dokmai1, L. Jean Camp1, and Ryan Henry2

1Indiana University, Bloomington
2Universiy of Calgary

Abstract

Private Information Retrieval (PIR) addresses the cryp-
tographic problem of hiding sensitive database queries
from database operators. In practice, PIR schemes suf-
fer from either high computational costs or restrictive
requirements that are difficult to apply in practical set-
tings. In this work, we introduce Assisted Private In-
formation Retrieval (APIR), a new PIR framework for
keyword-value databases which generalizes multi-server
PIR and relaxes its database consistency assumption.
Leveraging the decentralized nature of Domain Name
Service (DNS), APIR addresses a privacy issue inher-
ent to recent encrypted DNS proposals such as DNS-
over-HTTPS (DoH) by preventing DNS operators from
collecting queried domain name data. We propose a
construction of Synchronized APIR, an efficient APIR
scheme as a hybrid between black-box single-server PIR
and non-black-box multi-server PIR. We apply Synchro-
nized APIR to a proof-of-concept protocol for private
DNS query and demonstrate that APIR can outperform
the baseline single-server PIR protocol after the initial
one-time cost.

1 Introduction

One often overlooked privacy aspect of information ac-
cess over a network is the surveillance of users’ queries by
database-operating servers. To illuminate this concern,
let us consider the following scenario: a user wishes to
download a sensitive file from a website, but accessing
that particular file is incriminating. To get around this
problem, the user has a few options. She can use an en-
crypted channel like TLS to prevent eavesdropping, but
this does not prevent the leakage of the query to the web
server; or she can use anonymizing technology like VPN
or Tor to hide her identity, but this does not prevent the
web server from being notified and collecting statistics
about file access patterns.

A case in point is the Domain Name System (DNS).
DNS privacy and security are the core argument for en-

crypted DNS such as DNS-over-HTTPS (DoH) and DNS-
over-TLS (DoT). However, the encrypted DNS proposals
do not necessarily increase users’ privacy. The most sig-
nificant privacy risk is increased data concentration at
DNS operators. Given the exploitation of users’ data by
data collectors and online services in recent years, it is
not far-fetched to claim that the concentration of data is
a privacy violation.

The family of cryptographic protocols that proposes
to address this threat model is Private Information Re-
trieval (PIR). A core privacy definition of PIR requires
that any two PIR queries appear indistinguishable from
the attacker’s point of view, thus preventing database op-
erators from collecting sensitive information about the
queries. Many PIR schemes have been proposed recently,
yet they all suffer from similar practical issues. The fam-
ily of PIR schemes that requires one server to operate,
or single-server PIR, makes minimal assumptions about
data management. Yet, they often rely on additively
homomorphic encryption schemes, which are computa-
tionally expensive and incur high communication costs in
practice. The family of PIR schemes that requires mul-
tiple servers to operate, or multi-server PIR, are orders
of magnitude more efficient than single-server PIR to de-
ploy. Yet, they have conflicting requirements that 1) all
the servers hold an identical copy of the database in some
form, and 2) some sets of servers do not collude by shar-
ing user queries. In practice, it is difficult to imagine a
scenario in which both requirements hold simultaneously.
For instance, in the DNS application, it can be argued
that DNS servers administered by independent organi-
zations are unlikely to collude. However, requiring that
they hold the same cache tables and zone files would be
a significant overhaul to the DNS infrastructure, making
it less scalable. Further, the decentralization of DNS is
what makes it useful for localization and load-balancing
to begin with.

1.1 Our contributions

In this work, we introduce a new PIR framework, Assisted
Private Information Retrieval (APIR). APIR generalizes

1

Assisted Private Information Retrieval

multi-server PIR in the following ways while still main-
taining the non-collusion assumption:

1. The databases are keyword-value maps instead of in-
dexed vectors.

2. The servers can operate their copies of the databases
that are different from one another, but correctness
is defined by the copy operated by the server chosen
to be the main server.

We present Synchronized APIR, an APIR scheme
that allows the client to synchronize the “view” of the
databases across the servers before making queries. Syn-
chronized APIR is a hybrid protocol between a black-
box single-server PIR scheme and a non-black-box multi-
server PIR scheme similar to CGKS protocol [7]. The
hybridization takes advantage of the more efficient multi-
server PIR scheme to “assist” in lowering the costs of
single-server PIR; the level of assistance is determined
by the overlap between the main server’s database and
the rest of the servers’ databases. Because Synchronized
APIR uses a black-box single-server scheme, improve-
ments in single-server PIR in the future will also lead
to improvements in Synchronized APIR. We provide a
formal analysis and an implementation of Synchronized
APIR in Rust using SealPIR [4] as the underlying single-
server scheme.

We apply Synchronized APIR to demonstrate a proof-
of-concept private DNS query application, specifically
to query nameserver (NS) records, among DNS cache
servers. Then, we evaluate the application with simu-
lated datasets based on realistic assumptions about DNS
queries and cache behavior.

The results show that despite the initial one-time cost,
private DNS query via Synchronized APIR outperforms
SealPIR, the baseline single-server PIR, either in com-
munication cost by a factor of 5 or in computational cost
by a factor of 8, assuming the most optimal popularity
distribution of DNS queries.

2 Related Works

Our work is partly inspired by Fanti et al. [9], who pro-
pose an information-theoretic multi-server PIR scheme
over unsynchronized databases. In this setting, the PIR
servers operate identical indexed databases, but some
database values can go missing in some copies. The
scheme first allows the client to synchronize the database
“view” to identify the missing values. Then, the client
makes a query for an index whose value is not missing in
any of the databases while hiding which values are miss-
ing from the servers. This setting applies to peer-to-peer
(P2P) file-sharing, where P2P users share and download

parts of the same file or database in small, indexed frag-
ments.

Fanti et al.’s scheme can be viewed as a solution to a
subset of APIR with two additional limitations: 1) the
databases are strictly indexed, and 2) the client is not
allowed to query any values that are missing in at least
one of the databases. It is worth remarking that the sec-
ond limitation may introduce a privacy risk in practice.
Because sensitive data is often more challenging to access
and is the first to go missing, this presents a dilemma to
Fanti et al.’s scheme, where the more sensitive the data
is, the more likely it is inaccessible in the scheme. This
results in the clients being turned toward a less privacy-
preserving service to be able to access the data. APIR
insists that all database values must be retrievable for
this reason, and Synchronized APIR solves this problem
by making a separate single-server PIR query to the val-
ues with missingness.

3 Preliminaries

3.1 Single-Server PIR

Single-server PIR (sPIR) is the family of PIR schemes
that requires the client to interact with only one database-
operating server to query information. sPIR is closely
related to computational PIR (CPIR) due to the com-
putational assumptions usually required to instantiate it,
although not all sPIR schemes are CPIR. One example
of such an sPIR scheme is the trivial PIR, where the
client downloads the entire database from the server and
queries from her local copy. This technically satisfies the
privacy requirements of PIR because the server cannot
learn the client’s query. However, this results in a pro-
hibitively high communication cost in practice. There-
fore, non-trivial PIR schemes must aim to satisfy the pri-
vacy requirements, keeping the communication cost lower
than the trivial PIR.

We formally define sPIR in Definition 3.1 below. A
typical flow of an sPIR protocol proceeds as follows. 1)
The client generates the public-secret key pair with SGen
and gives the public key to the server. 2) Once the client
has decided to query the i-th item in the database, an
sPIR query is generated with SQuery using i. The query
is sent to the server. 3) The server generates a reply
from the query and database using SReply. The reply
is returned to the client. 4) The client decodes the reply
with the secret key using SDecode to obtain the answer.

Definition 3.1 (sPIR Scheme). Given a server oper-
ating an indexed database V = (v0, . . . , vm−1) for all
i ∈ {0, . . . ,m− 1}. An sPIR scheme is a tuple ΠsPIR =
(SGen,SQuery,SReply,SDecode) defined by

2

Assisted Private Information Retrieval

• SGen(1λ) → (spk, ssk) where λ is the security pa-
rameter, spk the public key, and ssk the secret key.

• SQuery(spk, i,m)→ sq generates query sq from in-
dex i ∈ {0, . . . ,m− 1} targeting item vi.

• SReply(spk, V, sq)→ sr generates reply sr for query
sq from database V .

• SDecode(ssk, sr) → sa decodes reply sr for answer
sa.

The formal definition of sPIR correctness is provided
in Definition A.1. Intuitively, an sPIR scheme is correct
if the answer is the same as the target value in the query.

The formal definition of sPIR privacy is provided in
Definition A.2. Intuitively, an sPIR scheme is privacy-
preserving if the adversary cannot distinguish between a
query encoding index i and a query encoding index j,
even if the adversary can choose i and j and has oracle
access to SQuery.

Indeed, many existing schemes in PIR literature satisfy
these definitions of sPIR, notably because an additively
homomorphic encryption scheme implies an sPIR scheme
[14]. An additively homomorphic encryption scheme can
be used as a building block in a simplified sPIR construc-
tion as follows. 1) For a given 0-based index i, the query
is encoded as the (i+1)-th standard basis vector ei+1. 2)
The client encrypts ei+1 component-wise using the homo-
morphic encryption scheme. 3) The server homomorphi-
cally evaluates the inner product, treating the database
values as scalar constants so that the result is a linear
combination. 4) The client decrypts the result to obtain
the answer.

Although this instantiation of sPIR seems simple
enough, in practice the computational cost can be too
high—sometimes to the point where it can be faster for
the client to download the entire database [13]. To reduce
the computational and communication cost in practice,
many techniques have been introduced, including recur-
sive PIR [3], which treats the database as two-dimensional
and accesses it by row and column index, and ciphertext
packing [4], which packs multiple query indices into a sin-
gle ciphertext. In recent years, the development has been
moving toward lattice-based cryptography [2,4,11], whose
efficiency has enabled the PIR schemes to become more
practical.

In this work, we use SealPIR [4], one of the state-of-
the-art sPIR schemes, as a building block for our scheme.
In addition to the relatively low computational cost due
to the techniques mentioned above, SealPIR offers a sig-
nificant advantage over its predecessors via its query com-
pression technique, which cuts down the size of a query
by a large factor.

3.2 Multi-Server PIR

Multi-server PIR (mPIR) is the family of PIR schemes
that requires the client to interact with multiple database-
operating servers to query information. mPIR is a
broader category for information-theoretic PIR (IT-PIR)
in literature, in that all IT-PIR schemes (except for the
trivial PIR) are multi-server, but some mPIR schemes
are a hybrid between IT-PIR and CPIR. Existing mPIR
schemes rely on the following two assumptions: 1)
databases must be consistent, meaning that each server
holds the same “ground-truth” copy of the database,
which may be preprocessed for the scheme; and 2) no
more than a given number of servers can collude, mean-
ing that they cannot share the client’s private information
other than what is instructed.

We omit the technical abstractions for mPIR here since
we intend to use mPIR in a non-block-box manner in our
construction. Instead, for instructional purposes, we pro-
vide an example of one of the most well-known mPIR
schemes, CGKS [7], on which our non-black-box construc-
tion is based. Below is a 3-server example of CGKS.

Suppose there are three database-operating servers,
S1, S2, S3, each holding an identical, consistent indexed
database V = (a, b, c, d, f) ∈ GF(2)ℓ·5, where each of the
5 database values is of length ℓ. Suppose client C wishes
to retrieve the item at 0-based index 2, i.e. c, then she
must generate three queries, one for each server, following
the steps below.

1. Sample q1←$GF(2)5 and q2←$GF(2)5 uniformly at
random. Suppose this results in q1 = (0, 0, 1, 1, 0)
and q2 = (0, 1, 0, 0, 0).

2. Compute q′3 ← q1 ⊕ q2 to obtain q′3 = (0, 1, 1, 1, 0).

3. For target index i, encode it as the standard-basis
vector ei+1. Here, index 2 is encoded as e3 =
(0, 0, 1, 0, 0)

4. Compute q3 ← q′3 ⊕ e3. This results in q3 =
(0, 1, 0, 1, 0).

Next, C sends each query qj to server Sj , who then
generates reply rj by computing a dot product rj ← qj ·V
in GF(2)ℓ. As a result, we have r1 = c ⊕ d, r2 = b, and
r3 = b⊕d. Sj returns reply rj to C. Finally, C decodes the
replies to obtain the answer by computing r1⊕r2⊕r3 = c.

The CGKS scheme generalizes to any number of servers
with databases of any size. However, it is worth remark-
ing that the CGKS scheme as stated above is only non-
trivial (i.e., communication cost lower than download-
ing the entire database) if the database is not exponen-
tially lop-sided (i.e., if the length of each record is super-
logarithmic in the number of records). Otherwise, the

3

Assisted Private Information Retrieval

query size is asymptotically equivalent to the database
size.

Correctness and privacy are defined similarly to sPIR.
For correctness, the answer received by the client must
match the one she queried. For privacy, the definition
includes the notion of t-collusion threshold in addition: a
group of t or fewer colluding servers cannot distinguish
between two queries. This property is called t-collusion
resistance. CGKS scheme is (n − 1)-collusion-resistant
where n is the number of servers. This is because any
n − 1 queries are statistically indistinguishable from a
uniformly random string of the same length.

In our following construction, we modify CGKS so that
1) the servers do not require consistent databases, and 2)
the participating parties use a PRG with pre-determined
seeds to generate all but one query to reduce the commu-
nication cost.

4 Assisted PIR

This section aims to provide an abstraction for As-
sisted PIR (APIR), a new framework for PIR generalizing
mPIR, including the definition of privacy and correctness.
In the upcoming section, we will show how to construct
our APIR scheme called Synchronized APIR.
APIR comprises three groups of participating parties

with distinct roles, client C, main server S0, and as-
sisting servers S1 − Sn. Client C wishes to retrieve
the value associated with keyword k∗ from keyword-
value database DB0, i.e. DB0[k

∗], operated by main
server S0. This process is assisted by n assisting
servers S1, . . . ,Sn who independently operate keyword-
value databases DB1, . . . ,DBn, respectively. The purpose
of assistance includes but is not limited to reducing oper-
ational costs. DB1, . . . ,DBn do not need to be the exact
duplicates of DB0, although they may have some com-
mon keyword-value pairs. For example, it is possible that
keyword-value pair (k, v) ∈ DB0 but (k, v) /∈ DB1, or
(k, v) ∈ DB1 and (k, v′) ∈ DB2 but v ̸= v′. Note that
this database definition is in contrast to that of sPIR and
mPIR in Section 3 where databases are assumed to be
indexed and consistent. APIR is formally defined below.

Notations

• C, client
• S0, main server, operating database DB0

• S1, . . . ,Sn, n assisting servers, operating database
DB1, . . . ,DBn, respectively

• DB, a keyword-value database. Let k be a keyword
and v a value, then (k, v) ∈ DB iff DB[k] = v

• Keys(DB), the set of all keywords in database DB

Notations

• ID := {0, . . . , n}, the set of n+ 1 server ID’s

• AID := {1, . . . , n}, the set of n assisting server ID’s

• (ai)I := (ai1 , . . . , ain) where ij ∈ I, a sequence
ordered by the index set I. We sometimes use
(ai)i∈I instead for clarity

Definition 4.1 (APIR Scheme). Given a set of n + 1
database-operating servers and define ID := {0, . . . , n} to
be the set of server ID’s. An APIR scheme is a tuple
ΠAPIR = (ServGen,CliGen,Query,Reply,Decode)
defined by

• ServGen(id,DBid) → parid, where id ∈ ID and parid
is the database parameter for DBid.

• CliGen
(
1λ, t, (parid)ID

)
→ (pk, sk), where λ is the

security parameter, t the collusion threshold where
1 ≤ t ≤ n, pk is the public key, and sk the secret key.

• Query (pk, sk, k) → (qid)ID generates query qid for
server id from query keyword k ∈ Keys(DB0) target-
ing database value DB0[k].

• Reply(id, pk,DBid, qid) → rid generates reply rid for
query qid from database DBid.

• Decode(sk, (rid)ID) → a decodes replies (rid)ID for
answer a.

The flow of the scheme is similar to that of sPIR and
mPIR described in Section 3: 1) The servers generate
database parameters using ServGen and send them to
the client. 2) The client generates a public-secret key
pair from the database and security parameters using
CliGen. 3) The client chooses a query keyword from
DB0 and generates queries using Query; each server gets
their own query. 4) The servers respond to the query with
their database and public key using Reply. And finally,
5) the client aggregates all the replies and decodes them
using the secret key with Decode to obtain the answer.

The correctness of APIR is defined according to the
content of DB0. If the client queries with keyword k,
then DB0[k] is defined to be the correct answer (even if
there may be other DBid such that DBid[k] ̸= DB0[k]);
formally, correctness is defined below.

Definition 4.2 (APIR Correctness). Following Defi-
nition 4.1, scheme ΠAPIR is APIR-correct for any set
ID, databases DBid for all id ∈ ID, and keyword k ∈
Keys(DB0) if

• ∀id ∈ ID : parid ← ServGen(id,DBid)

• (pk, sk)← CliGen
(
1λ, t, (parid)ID

)
4

Assisted Private Information Retrieval

• (qid)ID ← Query (pk, sk, k)

• ∀id ∈ ID : rid ← Reply(id, pk,DBid, qid)

• a← Decode(sk, (rid)ID)

then a = DB0[k].

The privacy definition of APIR is similar to that of
mPIR in that we want to capture the indistinguishabil-
ity notion of queries when server collusion does not ex-
ceed threshold t. Intuitively, an APIR scheme is privacy-
preserving if an adversary, who compromises a set of at
most t servers, cannot distinguish between two queries
generated from any query keywords k0 and k1 of the
adversary’s own choice. Moreover, we want to model a
real-world scenario in which the client is not informed of
which servers are compromised or whether they are com-
promised at all. Since the notion of servers is not a part
of the privacy definition, we assume the hypothetical or-
acle, O, who works to relay the compromised queries to
the adversary without the client’s knowledge. We for-
mally define this using a game-based definition below.

Definition 4.3 ((λ, t)-APIR Privacy). Given security
parameter λ, collusion threshold t, and adversary A, de-
fine an APIR privacy experiment PrivAA,ΠAPIR,t(1

λ) for an
APIR scheme ΠAPIR according to Definition 4.1 below.

1. A chooses correctly formatted database parameters
(parid)ID and outputs (parid)ID. A chooses a collusion
set C ⊂ ID such that |C| ≤ t and sends C to oracle
O.

2. The public-secret key pair is generated by (pk, sk)←
CliGen

(
1λ, t, (parid)ID

)
and pk is given to A.

3. A is given oracle access to Query in the following
way: A chooses and outputs k ∈ K(par0) where
K(par0) is the query keyword space determined by
a correctly formatted par0. Queries are generated by
(qid)ID ← Query (pk, sk, k) and (qid)ID is given to O.
O gives (qid)C to A.

4. A chooses k∗0 , k
∗
1 ∈ K(par0), and outputs (k∗0 , k

∗
1). A

uniformly random bit is sampled b←$ {0, 1}. Queries
are generated by (q∗id)ID ← Query (pk, sk, k∗b) and
(q∗id)ID is given to O. O gives (q∗id)C to A.

5. A is given more oracle access to Query according to
step 3.

6. A outputs b∗ ∈ {0, 1}. The experiment’s output is 1
if b∗ = b and 0 otherwise.

ΠAPIR is (λ, t)-APIR private for all PPT adversary A if
there exists a negligible function negl such that

Pr
[
PrivAA,ΠAPIR,t(1

λ) = 1
]
≤ 1

2
+ negl(λ)

5 Our Scheme: Synchronized
APIR

This section presents our construction of APIR called
Synchronized APIR. Synchronized APIR allows the client
to synchronize the global “view” of the databases before
making queries. This results in a one-time communica-
tion cost to initialize the scheme and low recurring com-
putational and communication costs to query. Synchro-
nized APIR uses a black-box sPIR scheme described in
Section 3.1 in its hybrid PIR construction, meaning that
improvements to sPIR schemes can result in improve-
ments to Synchronized APIR.

For the rest of this section, we introduce a high-level
concept of Synchronized APIR in Section 5.1, followed by
the complete description in Section 5.2. Finally, we de-
scribe the implementation of Synchronized APIR in Sec-
tion 5.3.

5.1 Concept

Let us consider an example of keyword-value databases
in Figure 1 step 1○, and suppose that a PIR server inde-
pendently operates each database. A client with a given
query keyword k wishes to retrieve the value stored in
database DB0 associated with keyword k, while hiding k
from an adversary controlling some of the servers. How
could this be achieved? In the traditional mPIR setting,
databases are required to be consistent for correctness.
However, because this is not the case in Figure 1 step 1○,
mPIR is not immediately achievable. Instead, the client
must resort to the costly sPIR on DB0 and completely
disregard DB1,DB2, and DB3.

To circumvent this issue, Synchronized APIR uses some
of the keyword-value pairs in DB1,DB2,DB3 that are con-
sistent with DB0 to “assist” in reducing the cost of sPIR
on DB0 via a hybrid PIR. We will walk through the ex-
ample in Figure 1 below to demonstrate this concept.

Step 1○: For this demonstration, we assume that the
client can fully observe DB0, . . . ,DB3 (how exactly this
is done will be explained in the upcoming section). The
client first notices that there are keyword-value pairs in
DB1,DB2,DB3 inconsistent with DB0, indicated in light
grey. The client prefers the “correct” versions of the
keyword-value pairs according to DB0, so the inconsis-
tent pairs in DB1,DB2,DB3 are disregarded.

Step 2○: To lower the cost, the participating parties
want to apply traditional mPIR to “assist” wherever pos-
sible. This requires that the client first determines how
many servers can collude without leaking k, i.e. the t col-
lusion threshold similar to the one in CGKS in Section
3.2. Let us suppose that the client decides that t = 2;
that is, no more than two servers can collude. Recall
from Section 3.2 that a given threshold t requires at least

5

Assisted Private Information Retrieval

set
t = 2 split

DB0
a
b
c
d

e
f
g

100
200
300
400

500
600
700

DB1
a
b

d

100
200

400

a

c

100

300

DB2

b
c
d

200
300
400

DB3

multi-server PIR
single-server PIR

DB0 DB1 DB2
a
b
c
d
e
f
g

100
200
300
400
500
600
700

a
b
d
e
f
h

100
200
400
510
600
800 700g

a
c
d
e
f

h

100
300
410
520
610

800
800h

a
b
c
d
e

100
200
300
400
500

DB3

800

DB0
a
b
c
d
e
f
g

100
200
300
400
500
600
700

DB1
a
b
d
e
f
h

100
200
400

600
700g

a
c
d
e
f

h

100
300

DB2

h

a
b
c
d
e

100
200
300
400
500

DB3

410
520
610

510

800 800

1

2 3

not consistent
with DB0

not passing
t = 2

4

Figure 1: Concept of Synchronized APIR. A conceptual demonstration of how Synchronized APIR performs hybrid PIR
on inconsistent databases when the collusion threshold is t = 2.

t + 1 duplicates of the same database values across the
databases, so the client must identify the keyword-value
pairs with at least 3 duplicates to pass the threshold re-
quirement.
(a, 100), (b, 200), (c, 300), and (d, 400) have at

least 3 duplicates ((a, 100) has 4, so the one in DB3 is
redundant and disregarded). Neither of (e, 500), (f,
600), or (g, 700) meets the requirement, so they are
disregarded. The pairs that do not pass the threshold are
indicated in dark grey.

Step 3○: The client splits the pairs that pass the
threshold from those that do not. This reveals, on the
top rows in the green box, the pairs which can be re-
trieved with mPIR, and, on the remaining bottom rows
in the purple box, the pairs which can only be retrieved
with sPIR.

Step 4○: The client and servers engage in a hybrid
PIR protocol. The client makes separate PIR queries for
mPIR and sPIR from key k. All the servers process the
mPIR queries, while only the server operating DB0 pro-
cesses the sPIR query.

There are some important details we have omitted here
for conceptual simplicity. In the following section, we will
expand on the concept of Synchronized APIR to answer
these questions:

• How can the client “synchronize” the databases ac-
cording to step 1○ - 3○ without needing to download
them in full and at a low communication cost?

• How can the client construct a coherent mPIR
query in Synchronized APIR when the databases are
keyword-value and the mPIR duplicates are scat-
tered across multiple databases?

• How can the communication cost of query and reply
be optimized?

5.2 Protocol Description

In order to query keyword k, client C works with main
server S0 and assisting servers S1, . . . ,Sn through three
phases, as illustrated in Figure 2: Synchronization, Setup,

and Query. Synchronization and Setup must be com-
pleted once at the start, while a new Query session can
be repeated for every new query keyword C wishes to
query.

In the following sections, we will describe step 1○ - 9○
of Synchronized APIR as shown in Figure 2 in detail.

5.2.1 Synchronization Phase

During the Synchronization phase, C synchronizes the
global view of the databases to pick out the consistent
keyword-value pairs to be retrieved via mPIR and the rest
via sPIR. This is done through catalogs which C down-
loads from all the servers. A catalog is a map from key-
words to hashes of values in a database. The purpose of a
catalog is to uniquely represent a database while keeping
the communication cost low.

We refer to step 1○ - 3○ in Figure 2 and 1○ - 2○ in 3
as a demonstration as we describe Synchronization phase
below.

Notations

• Map{(k, v) ∈ K × V | Φ(k, v)}, a keyword-value
map builder notation where K is the key domain,
V value domain, and Φ a predicate.

• ϕ, an empty set

Input

▷ DBid from Sid,∀id ∈ ID

▷ t from C
Output

▷ Catid,Mid to Sid,∀id ∈ ID

▷ Cat0,
(
Cat′id

)
AID

, (Mid)ID, S to C

Synchronization Protocol

1○ C obtains the full catalog Cat0 from S0 and catalog
intersections Cat′1, . . . ,Cat

′
n from S1, . . . ,Sn by fol-

lowing the steps below:

6

Assisted Private Information Retrieval

Synchronization Phase Setup Phase Query Phase

C

begin
session 1

mrnmr1

...
DB1 DBn

S1 Sn...

...

mq0,sq

r

S0
DB0

k a

8 6

7 9

Reply

C

sns1 ...

4

S0

...
DB0 DB1 DBn

S1 Sn...

spk

MToken
5

C C

CatIntersect KeySynchronize

Cat0 Cat1 Catn

Cat'1

M0 M1 Mn

S0

...
DB0 DB1 DBn

...

S1 Sn S0

...
DB0 DB1 DBn

S1 Sn

...

... ...

Cat'n... M0 M1 ...Mn

1

Tag
2

3 next session
repeat
6 9 -

Figure 2: Overview of Synchronized APIR. Synchronized APIR comprises three distinct phases between client C, main
server S0, and assisting Servers S1 − Sn: Synchronization, Setup, and Query. Synchronization and Setup are completed once
at the start, while a new Query session can be repeated with every new query keyword k.

A. For each id ∈ ID, Sid generates catalog

Catid ← Map {(k, h) | (k, v) ∈ DBid, h = H(v)}

where H(·) is a universal hash function with short
hash values, chosen randomly by C from the uni-
versal family. (A shorter hash length will re-
duce the communication cost but increase the col-
lision probability.) This results in catalogs that
are smaller than the databases in size but capa-
ble of representing the uniqueness of database val-
ues. In Figure 3, we choose a toy hash function
H(v) = v/10 to demonstrate the point that an ap-
propriate hash function should be able to produce
short unique hash values. In general, when the dis-
tribution of database values is unknown, universal
hash functions should be applied to reduce hash
collisions.

B. C downloads Cat0 from S0. For each id ∈ AID,
C engages in the Catalog Intersection protocol
CatIntersection with Sid, where C obtains cat-
alog intersections Cat′id = Catid ∩ Cat0 at the end.
The goal of CatIntersection is to transmit cat-
alog intersections at a cost lower than sending full
catalogs. CatIntersection is described in Sec-
tion 5.2.5. Figure 3 demonstrates how keyword-
value pairs inconsistent with DB0 in DB1, . . . ,DBn

and with Cat0 in Cat1, . . . ,Catn are eliminated via
catalog intersection. With the full catalog and cat-
alog intersections, C now has complete information
of the keyword-value pairs consistent with DB0.

2○ C tags the catalogs to categorize keyword-value pairs
for either mPIR or sPIR:

((Mid)ID, S)← Tag
(
Cat0,

(
Cat′id

)
AID

, t
)

where t is the collusion threshold, i.e., the highest
number of colluding servers C can tolerate without
leaking query keywords; Mid is the mPIR keyword
set, i.e., the set of keywords determined to be queried
via mPIR from Sid; S is the sPIR keyword set, i.e.,
the set of keywords determined to be queried via
sPIR from S0. Tag is detailed in Algorithm 1 be-
low. In Figure 3, C has decided that t = 2, so the
pairs that pass the threshold for mPIR must have
t + 1 = 3 duplicates: 1 duplicate in Cat0 and 2 du-
plicates in Cat′1,Cat

′
2,Cat

′
3. (a, 10), (b, 20), (c,

30), and (d, 40) all pass the threshold ((a, 10) in
Cat′3 is redundant and disregarded). Neither of (e,
50), (f, 60), or (g, 70) pass the threshold, so C
disregards them. This results in M0, . . . ,M4 for the
set of keywords that pass the threshold for mPIR,
and the rest in S for sPIR.

7

Assisted Private Information Retrieval

Server 0 - 3

Client

Cat'id := Catid ∩ Cat0

CatIntersect

1B

Cat0 Cat'1 Cat'2
a
b
c
d
e
f
g

10
20
30
40
50
60
70

a
b

10
20

d 40

h 80

e
f

51
60

g 70

a 10

c
d
e
f

30
41
52
61

h 80

a
b
c
d
e

10
20
30
40
50

h 80

Cat'3
a
b
c
d

M0 M1
a
b

d

M3

b
c
d

a

c

M2

a
b
c
d
e
f
g

10
20
30
40
50
60
70

Cat0

g 70

a 10

c 30

Cat'2
a
b
c
d
e

10
20
30
40
50

Cat'3
a
b

10
20

d 40

f 60

Cat'1

Tag (t = 2)

2

not passing
t = 2

not consistent
with DB0/Cat0

a
b
c
d
e
f
g

10
20
30
40
50
60
70

Cat0 Cat1
a
b
d
e
f
h

10
20
40
51
60
80 70g

a
c
d
e
f

h

10
30
41
52
61

80

Cat2

10
20
30
40
50

a
b
c
d
e
h 80

Cat3DB0 DB1 DB2
a
b
c
d
e
f
g

100
200
300
400
500
600
700

a
b
d
e
f
h

100
200
400
510
600
800 700g

a
c
d
e
f

h

100
300
410
520
610

800
800h

a
b
c
d
e

100
200
300
400
500

DB3

1A

Catid[k] ← H(DBid[k])
H(v) = v/10

e
f
g

S

Figure 3: Synchronization. An example of databases in a Synchronized APIR setting with three assisting servers that
undergo the Synchronization phase.

Algorithm 1 Catalog Tagging. In line 5 - 8, if there are
at least t duplicates of a given keyword, then t of them are
tagged for mPIR and stored in Mid (t + 1 in total, including
those in M0). In line 10, the rest of the keywords are tagged
for sPIR. In line 6, Ck can be chosen randomly or with a
specific optimization strategy.

1: procedure Tag(Cat0,
(
Cat′id

)
AID

, t)
2: ∀id ∈ ID : Mid ← ϕ
3: for k ∈ Keys (Cat0) do
4: G←

{
id ∈ AID | k ∈ Keys

(
Cat′id)

)}
5: if |G| ≥ t then
6: choose Ck ⊆ G such that |Ck| = t
7: ∀id ∈ Ck ∪ {0} : Mid ←Mid ∪ {k}
8: end if
9: end for

10: S ← Keys (Cat0) \M0

11: return ((Mid)ID, S)
12: end procedure

3○ For each id ∈ ID, C and Sid engage in the Key-
word Synchronization protocol KeySynchronize,
where Sid obtains Mid at the end. The goal of
KeySynchronize is to transmit Mid at a cost lower
than sending them in full. KeySynchronize is de-
scribed in Section 5.2.6.

5.2.2 Setup Phase

Let l = poly(λ) denote the total number of queries that
C will be making during the Query phase (l is not neces-

sarily predetermined at this point). We call each query
during the Query phase a Query session, each denoted
with session ID sid ∈ {1, . . . l}.

Notations

• sid ∈ {1 . . . l}, session ID. Starting at sid = 1, sid
increases by 1 for each new iteration of the Query
phase. Let l denote the number of sessions and
[l] := {1 . . . l} the set of all session ID’s.

• index(a,A) := |{b ∈ A | b < a}|, index of a in set
A.

During Setup, C sends each of S1, . . . ,Sn a random
PRG seed which will be used to generate random mPIR
queries for all Query sessions sid ∈ [l]. We follow step
4○ and 5○ in Figure 2 and 5○ in 4 to describe the Setup
phase below.
Input

▷ |Mid| from Sid,∀id ∈ AID

▷ l, (Mid)AID from C
Output

▷ spk to S0
▷

(
mqsidid

)
sid∈[l]

to Sid,∀id ∈ AID

▷ spk, ssk,
(
toksid

)
[l]

to C

Setup Protocol

8

Assisted Private Information Retrieval

4○ C generates an sPIR key pair (spk, ssk) ← SGen(λ)
and sends spk to main server S0.
For each assisting servers id ∈ AID, C samples a PRG
seed sid ∈ {0, 1}λ uniformly at random and sends sid
to Sid. C and each Sid define(

mqsidid
)
sid∈[l]

:= PRG(sid, l · |Mid|)

where l · |Mid| is the total length of the output string
and

∣∣mqsidid
∣∣ = |Mid|.

In practice, when the PRG is implemented with a
stream cipher, l does not need to be predetermined,
and each mqsidid can be generated on the fly.

5○ C defines query tokens

toksid := MToken
(
(Mid)ID,

(
mqsidid

)
AID

)
for all sid ∈ [l]. MToken is defined in Algorithm
2 below. Intuitively, a token is an XOR of the ran-
dom queries mqsidid for all id ∈ AID when the bits
are aligned to the ordering of the corresponding key-
words inM0. This is visually demonstrated in Figure
4 step 5○.

Like in the previous step, each toksid can be generated
on the fly.

Algorithm 2 mPIR Token Generation.

1: procedure MToken((Mid)ID, (mqid)AID)

2: tok← {0}|M0|

3: for k ∈M0 do
4: Ck ← {id ∈ AID : k ∈Mid}
5: ∀id ∈ Ck ∪ {0} : iid ← index(k,Mid)
6: tok[i0]←

⊕
id∈C mqid[iid]

7: end for
8: return tok
9: end procedure

5.2.3 Special Case: mPIR-Only Query Phase

Before describing the full protocol of the Query phase,
it would be instructive to walk through the special case
in which all keyword-value pairs can be retrieved with
mPIR, i.e., S = ϕ in Algorithm 1. The goal is to show how
all the mPIR components fit together during the Query
phase to provide correct answers without dealing with
the hybrid PIR’s complexity. We shall follow the steps in
Figure 4 for this walk-through.

Suppose that at this point C and S0, . . . ,Sn have al-
ready completed Synchronization in Section 5.2.1 and
Setup in Section 5.2.2. We will now pick up step 6○ and
7○*- 9○* (* to denote the steps for this special case) in
Figure 4 from here.
Input

▷ DBid,Mid from Sid,∀id ∈ ID

▷ mqsidid from Sid,∀id ∈ AID

▷ M0, tok
sid, ksid from C

Output

▷ asid to C

mPIR-Only Query Protocol for Session sid

6○ For each assisting servers id ∈ AID:

A. Sid generates a reply from the query

mrsidid ←MReply
(
Mid,DBid,mqsidid

)
and sends mrsidid to C. MReply is described in Al-
gorithm 3 below. Figure 4 step 6○ demonstrates
the mPIR reply generation process: the values of
DBid are filtered withMid by key, and the dot prod-
uct in GF(2) between the filtered values and ran-
dom query bits produces the reply. This process
is identical for S2 and S3.

Algorithm 3 mPIR Reply Generation. The dot product
in line 3 is defined in GF(2).

1: procedure MReply(Mid,DBid,mqid)
2: V ← (DBid[k])k∈Mid

3: mrid ← mqid · V
4: return mrid
5: end procedure

Note that this step can be completed offline as it
does not require a query keyword ksid by C. This
means that during the online time (that is, step 7○*
onwards), C only needs to interact with S0, signifi-
cantly reducing the latency.

7○* Once C has decided on a mPIR query keyword ksid ∈
M0 to query, she generates a mPIR query for S0

mqsid0 ←MQuery
(
M0, tok

sid, ksid
)

where MQuery is described in Algorithm 4 below.
Intuitively, as visually demonstrated in Figure 4,
MQuery flips one bit of the token toksid at the index
position of ksid in M0 to produce the query mqsid0 .

Finally, C sends mqsid0 to S0 to query.

9

Assisted Private Information Retrieval

Client

Client

Server 1-3

Server 0

mq0

⊕

1
0
1
1

token
1
0
0
1

target
k = c

encode

0
0
1
0

a
b
c
d

M0
al

ig
n

⊕ ⊕

mq1 mq3
0
1

1

M1
a
b

d

al
ig

n

mq2
1

0

a

c

M2

al
ig

n

1
0
0

M3

b
c
d

al
ig

n
$

PRG1
$

PRG3
$

PRG2

Query7* Main Reply8*

answer 300

⊕
200
400

⊕100

⊕200

mr0
100
300
400

⊕

mr1
mr2
mr3 ⊕

Decoding9*

a
b
d
e
f
h

100
200
400
510
600
800

DB1
a
b
d

100
200
400

⊕
200
400

mr1M1
0
1
1

mq1

$

filter

PRG1

Assisting Reply (S1)6

V

100
200
300
400

a
b
c
d
e
f
g

100
200
300
400
500
600
700

1
0
1
1

a
b
c
d

100
300
400

⊕

DB0 mr0mq0M0

filter

V

Token Generation5

Figure 4: mPIR-Only Query Phase Workflow. The workflow of mPIR components during the Query phase to demon-
strate how mPIR keyword-value pairs can be queried with the client’s query keyword.

Algorithm 4 mPIR Query Generation.

1: procedure MQuery(M0, tok, k)
2: mq0 ← tok
3: if k ∈M0 then
4: i← index(k,M0)
5: mq0[i]← mq0[i]⊕ 1
6: end if
7: return mq0
8: end procedure

8○* Upon receiving mqsid0 , S0 processes the query in the
same way queries are processed in step 6○, except
that here mqsid0 is given by C,

mrsid0 ←MReply
(
mqsid0 ,M0,DB0

)
S0 returns mrsid0 to C.

9○* Now that C has received all mrsid0 , . . . ,mrsidn , she can
decode them for the answer by a simple XOR

asid ←
⊕
id∈ID

mrsidid

where asid = DB[ksid] as a result.

To see why it is the case that asid = DB[ksid], recall
from step 5○ and 7○* in Figure 4. If we “peel off”
mqsid1 , . . . ,mqsidn from mqsid0 via XOR, the result is exactly
the encoding of ksid by design. Because all keyword-value
pairs of DB1, . . . ,DBn are consistent with that of DB0, in

step 9○* all other non-target values are peeled off except
for the target value.

The privacy of the ksid is intact if no more than t Servers
collude. This is because up to t Servers can observe up to
t of mqsidid ’s which are pseudorandom as intended by the
collusion threshold during Tag.

5.2.4 Query Phase

In this section, we will expand on the special case in the
last section to describe the full Query phase when S ̸= ϕ
in Algorithm 1. This enables the client to retrieve any
values in DB0 without leaking to the servers whether the
query keyword is in sPIR or mPIR. Below, we follow Fig-
ure 5 to describe step 6○ - 9○. We refer to step 6○, 7○*
- 9○* from Section 5.2.3.
Input

▷ DB0,M0, spk from S0
▷ DBid,Mid,mqsidid from Sid,∀id ∈ AID

▷ M0, S, spk, ssk, tok
sid, ksid from C

Output

▷ asid to C

Query Protocol for Session sid

6○ This is the same as step 6○ in Section 5.2.3.

7○ C decides on a query keyword ksid ∈ M0 ∪ S and
generates a hybrid-PIR query for S0(

mqsid0 , sqsid
)
← Query

(
M0, S, spk, tok

sid, ksid
)

10

Assisted Private Information Retrieval

mq0 mPIR
main
reply

SReply(spk, sq , V || mr0)

a
b
c
d
e
f
g

100
200
300
400
500
600
700

500
600
700

mr0

V

DB0
DB0,M0

mr0

e
f
g

S
filter

Server 0Client

sq

0
0
0
1

SQuery(spk, 3 , 4)

mPIR
query

0-based index = 3

target
k = c

encode

a
b
c
d

M0

al
ig

n

e
f
g

S align

k
7* 8*

Query7 Main Reply8 Decoding9

Client

S1
reply6 S2

reply
S3

reply

r

SDecode(ssk, r)

mr0

answer
300mPIR

decoding

9*

k ∈ S ?

mr3
mr2
mr1

no

yes answer
...

mr1 mr2 mr3

Server 1-3

Figure 5: Query Phase Workflow. The workflow of hybrid components during the Query phase to demonstrate how
keyword-value pairs in DB0 can be queried with the client’s query key.

where sqsid is the sPIR query and mqsid0 mPIR query.
Query is described in Algorithm 5 below. C sends
(mqsid0 , sqsid) to S0.

The hybridization of the mPIR-sPIR query is visu-
ally demonstrated in Figure 5. First, step 7○* is
followed to generate mqsid0 . (Note that if ksid ̸∈ M0,
then mqsid0 is a “blank” token as per Algorithm 4.)
Next, if ksid ∈ S, then ksid is encoded by its index
position in S as an input to SQuery; otherwise if
ksid ∈ M0, then it is encoded as the last index po-
sition as an input to SQuery. In this example, be-
cause ksid = c ∈ M0, it is encoded as 3, the 0-based
index of the last position.

Notations

• ⊥, an empty string/value

Algorithm 5 Query Generation.

1: procedure Query(M0, S, spk, tok, k)
2: mq0 ←MQuery (M0, tok, k)
3: sq←⊥
4: if S ̸= ϕ then
5: if k ∈ S then
6: i← index(k, S)
7: sq← SQuery(spk, i, |S|+ 1)
8: else
9: sq← SQuery(spk, |S|, |S|+ 1)

10: end if
11: end if
12: return (mq0, sq)
13: end procedure

8○ S0 receives the query (mqsid0 , sqsid) from C and gener-
ates the reply

rsid ← Reply(M0,DB0,mqsid0 , sqsid)

where rsid is the resulting hybrid PIR reply. Reply
is described in Algorithm 6 below. S0 returns rsid to
C.

11

Assisted Private Information Retrieval

Algorithm 6 Reply Generation.

1: procedure Reply(M0,DB0,mq0, sq)
2: mr0 ←MReply(M0,DB0,mq0)
3: S ← Keys (DB0) \M0

4: r ←⊥
5: if S ̸= ϕ then
6: V ← (DB0[k])k∈S

7: r ← SReply(spk, V ∥mr0, sq)
8: else
9: r ← mr0

10: end if
11: return r
12: end procedure

Figure 5 demonstrates the hybridized reply gener-
ation process. First, the mPIR reply is generated
according to step 8○*, resulting in mrsid0 . (Note that
if mqsid0 is not a blank query, then mrsid0 is a genuine
mPIR reply; otherwise, it is a random value. This
fact, however, is unknown to S0.) Next, the values
of DB0 are filtered with S by key, resulting in V .
mrsid0 is appended to V as the last item, i.e. V ∥mrsid0 .
The sPIR query sqsid and V ∥mrsid0 are input to the
sPIR reply generation algorithm SReply to produce
a reply.

At this point, it becomes clear why the sPIR query
sq is generated the way it is as described in step 7○.
When ksid ∈ S, sqsid is generated to target values in
V , ignoring mrsid0 which is the last item. However,
when k ∈ M0, sqsid is generated to target the last
value, which is where mrsid0 is located. The resulting
reply rsid therefore encodes either a targeted value in
V when ksid ∈ S or mrsid0 when ksid ∈M0.

9○ C receives the reply rsid from S0 and decodes it using
the same query keyword ksid from step 7○ to obtain
the answer

asid ← Decode
(
S, ssk, ksid,

(
mrsidid

)
id∈AID

, rsid
)

Decode is described in Algorithm 7 below.

Figure 5 demonstrates how all the replies from
S0, . . . ,S3 come together for C to decode the answer.
First, the reply rsid from S0 is decoded using secret
key ssk in the sPIR decoding algorithm SDecode.
If ksid ∈ S, then C already has the final answer; oth-
erwise, C obtains mrsid0 and follows step 9○*. Here, C
XOR all mrsid0 , . . . ,mrsid3 to obtain the answer.

For privacy, it is important that regardless of whether
ksid ∈ S, mrsid1 , . . . ,mrsidn must be downloaded by C
from S1, . . . ,Sn, respectively. If this step is skipped,
then S1, . . . ,Sn can infer that ksid ∈ S.

Algorithm 7 Decoding.

1: procedure Decode(S, ssk, k,
(
mrsidid

)
id∈AID

, r)
2: if k ∈ S then
3: a← SDecode(ssk, r)
4: else
5: if S ̸= ϕ then
6: mr0 ← SDecode(ssk, r)
7: else
8: mr0 ← r
9: end if

10: a←
⊕

id∈ID mrid
11: end if
12: return a
13: end procedure

5.2.5 Catalog Intersection

Catalog Intersection protocol is a part of the Synchroniza-
tion phase to reduce the communication cost of transfer-
ring catalog intersections. The idea is as follows: given
that C has already obtained Cat0, then Cat′id = Catid∩Cat0
can be compressed with a hash function (we call these
hashes digests) for transporting. We describe the Cata-
log Intersection protocol below.

Input

▷ Catid from Sid,∀id ∈ AID

▷ Cat0 from C

Output

▷
(
Cat′id

)
AID

, (Digid)AID to C

Catalog Intersection Protocol

1○ For each id ∈ AID, Sid generates digests from Catid

Digid ← {G((k, h)) | (k, h) ∈ Catid}

where G(·) is a universal hash function with short
hash values, chosen randomly from the universal
family by C. (A shorter hash length will reduce the
communication cost but increase the collision prob-
ability.) A digest is a hashed representation of a
keyword-hash pair in the catalogs.

Sid sends the digest set Digid to C.

2○ C downloads all the digest sets (Digid)AID from
S1, . . . ,Sn. For each id ∈ AID, C remaps digest sets
into catalog intersections as follows:

Cat′id ← Map{(k, h) ∈ Cat0 | G((k, h)) ∈ Digid}

12

Assisted Private Information Retrieval

5.2.6 Keyword Synchronization

Keyword Synchronization protocol is a part of the Syn-
chronization phase to reduce the communication cost of
transferring mPIR keyword sets Mid from C to Sid. The
idea is to map each keyword in Mid to its corresponding
index in Digid for transport, which can then be remapped
to Mid on the server side. We describe the Keyword Syn-
chronization protocol below.

Input

▷ Digid,Catid from Sid,∀id ∈ ID

▷ (Mid)ID, (Digid)ID from C

Output

▷ Mid to Sid,∀id ∈ ID

Keyword Synchronization Protocol

1○ For all id ∈ ID, C converts Mid to the set of indices
corresponding to the ordering of Keys(Cat0) for main
server and of Digid for assisting servers:

I0 ← KeyToIndex0 (M0,Cat0)

∀id ∈ AID : Iid ← KeyToIndexid (Mid,Digid,Catid)

KeyToIndex is described in Algorithm 8 below. C
then sends Iid to Sid. Iid is a small, indexed repre-
sentation of Mid which can be transported at a low
communication cost.

Algorithm 8 Key-to-Index Mapping

1: procedure KeyToIndex0(M0,Cat0)
2: I0 ← {i | k ∈M0, i = index(k,Keys(Cat0))}
3: return I0
4: end procedure
5: procedure KeyToIndexid(Mid,Digid,Catid)
6: D ← {G((k, h)) | k ∈Mid, h = Catid[k]}
7: Iid ← {i | d ∈ D, i = index(d,Digid)}
8: return Iid
9: end procedure

2○ For each id ∈ ID, Sid receives Iid and remaps it back
to Mid

M0 ← IndexToKey0 (I0,Cat0)

∀id ∈ AID : Mid ← IndexToKeyid (Iid,Digid,Catid)

IndexToKey is described in Algorithm 9 below.

Algorithm 9 Index-to-Key Mapping

1: procedure IndexToKey0(I0,Cat0)
2: K ← Keys(Cat0)
3: M0 ← {k ∈ K | i ∈ I0, index(k,K) = i}
4: return M0

5: end procedure
6: procedure IndexToKeyid(Iid,Digid,Catid)
7: D ← {d ∈ Digid | i ∈ Iid, index(d,Digid) = i}
8: Mid ← {k | (k, h) ∈ Catid,G((k, h)) ∈ D}
9: return Mid

10: end procedure

5.2.7 Catalog Intersection and Keyword Syn-
chronization in Relation to Set Reconcil-
iation

Set reconciliation is an active research area to find the
symmetric difference between two sets from two remote
parties over a network at a low communication cost.
Notably, Eppstein et al. [8] propose a practical scheme
whose communication cost is asymptotically linear in the
size of the symmetric difference. One could wonder if
these schemes would apply to our Catalog Intersection
and Keyword Synchronization problem. This is because
Catalog Intersection and Keyword Synchronization are
essentially about finding remote set intersections, which
is implied by set symmetric differences. We argue that
our solution as presented above solves this problem more
efficiently by killing two birds with one stone: instead of
applying two separate instances of set reconciliation to
Catalog Intersection and Keyword Synchronization (and
therefore paying the cost twice), we use the ordering in-
formation provided by digest sets Digid to reduce keyword
sets Mid to sets of indices, and therefore reduce the up-
load cost by the client (which is especially important in
an asymmetric network connection). It is unclear how
this cost-saving technique can be applied to existing set
reconciliation schemes in the literature.

5.2.8 Keyword Compression

When query keywords in the databases are long, they can
result in a high communication cost during the Synchro-
nization phase since all the keywords in the catalogs must
be sent to the client. For this reason, we aim to reduce
this cost by representing each query keyword k by its hash
H̃(k), where H̃(·) is a universal hash function with short
hash values, chosen randomly from the universal family
by the client. When querying keyword k, the client com-
putes the hash and uses it as a keyword to query instead.

Despite the cost reduction, this can introduce a new
problem when the keyword space is large, which can ei-
ther lead to long hash values or a high collision rate (i.e.,
a high false-positive rate). Our suggested workaround for

13

Assisted Private Information Retrieval

this problem is to keep the hash values short (and there-
fore a high collision rate) but let the servers modify the
databases by prepending the keyword to the value so that
a false positive can be detected at the end. That is,

D̃Bid := Map {(k, ṽ) | (k, v) ∈ DBid, ṽ := k∥v}

When the client receives the answer ṽ at the end, she
can check whether the obtained keyword from the answer
is the same as the query keyword. Indeed, this comes at
the cost of the servers processing extra loads and longer
database values.

5.3 Implementation

Synchronized APIR is implemented in Rust, where
keyword compression in Section 5.2.8 is implemented
by default. The universal hash functions H,G, and
H̃ are instantiated with Google’s CityHash (https://
github.com/google/cityhash), each seeded with a ran-
dom number by the client. The variable-length PRG
is instantiated with the stream cipher ChaCha12 [5],
which provides 256-bit security. sPIR is instantiated
with SealPIR using SEAL v3.2.0 (https://github.com/
ndokmai/sealpir-rust). We modify the SealPIR li-
brary to permit extra operations as required by Synchro-
nized APIR. By default, this library version sets the de-
gree of ciphertext polynomial to 2,048 and the size of the
coefficients to 54 bits, which provides 128-bit security [6].
sPIR instantiation with OnionPIR [11] will be provided
in future work.

The open-source implementation of Synchronized
APIR is available at https://github.com/ndokmai/

assisted-pir.

6 Analysis

This section provides theorems and proof sketches for
Synchronized APIR correctness and privacy. In addition,
we provide an analysis for a loose upper bound for the
probability of failure of Synchronized APIR in the event
that there are hash collisions. We defer complete proofs
and analysis with a tighter bound to future work.

6.1 Correctness

We will prove the correctness of Synchronized APIR by
first assuming that the universal hash functions in the
scheme produce no hash collisions. Then, we provide an
analysis for the probability of no hash collisions, which
implies an upper bound for the probability of failure of
Synchronized APIR.

Theorem 1 (Synchronized APIR Correctness). Suppose
an sPIR-correct scheme ΠsPIR and that the universal hash

functions H,G, and H̃ produce no collisions. Following
Definition 4.2, the Synchronized APIR scheme ΠSynAPIR

is correct for any server set ID = {0, . . . , n} and AID =
{1, . . . , n}, collusion threshold 1 ≤ t ≤ n, databases DBid

for all id ∈ ID, l Query sessions, and ksid ∈ Keys(DB0) for
all sid ∈ [l]. That is, if

• Synchronization protocol takes inputs (DBid)ID, t and
outputs (Catid)ID,

(
Cat′id

)
AID

, (Mid)ID, S

• Setup protocol takes inputs l, (Mid)AID and outputs

spk, ssk,
(
mqsidid

)
sid∈[l],id∈AID

,
(
toksid

)
[l]

• For all sid ∈ [l], Query proto-
col for session sid takes inputs
(DBid)ID, (Mid)ID, S,

(
mqsidid

)
id∈AID

, spk, ssk, toksid, ksid

and outputs asid

then for all sid ∈ [l],DB0[k
sid] = asid.

Proof sketch. First, by assuming that the universal hash
functions produce no collusions, we can claim that

• H̃(k) perfectly represents keyword k, so k can be ef-
ficiently replaced with H̃(k).

• H(v) perfectly represents value v, so catalog Catid
perfectly represents database DBid. Therefore tag-
ging the catalogs has the same effect of tagging the
databases directly.

• G((k, h)) perfectly represents (k, h), so the Catalog
Intersection protocol and the Keyword Synchroniza-
tion protocol are trivially correct.

Next, we consider the properties of the tags (Mid)ID, S.
By construction of Tag (Algorithm 1), for each keyword
k ∈ Keys(DB0),

1. either k ∈M0 or k ∈ S but not both

2. if k ∈ M0 and k ∈ Mid for any id ∈ AID, then
DB0[k] = DBid[k]

3.
⋃

k∈M0

⋃
id∈Ck

{(id, k)} =
⋃

id∈AID

⋃
k∈Mid

{(id, k)}

Property 3. is a consequence of the fact that by
construction, Mid = {k ∈M0 | id ∈ Ck} and Ck =
{id ∈ AID | k ∈Mid}.
If ksid ∈ S, then by construction of Query (Algorithm

5), sqsid targets item index(ksid, S) in the filtered database
(DB0[k])k∈S in Reply (Algorithm 6), which is exactly

DB0[k
sid]. By sPIR correctness of ΠsPIR, we conclude that

asid = DB0[k
sid].

If ksid ∈ M0, we consider how the mPIR token toksid

and queries mqsidid are generated. Consider each bit of

14

https://github.com/google/cityhash
https://github.com/google/cityhash
https://github.com/ndokmai/sealpir-rust
https://github.com/ndokmai/sealpir-rust
https://github.com/ndokmai/assisted-pir
https://github.com/ndokmai/assisted-pir

Assisted Private Information Retrieval

toksid by construction in MToken (Algorithm 2): there
exists k ∈M0 such that

toksid[index(k,M0)] =
⊕
id∈Ck

mqsidid [index(k,Mid)]

where Ck is a set of id’s such that DB0[k] = DBid[k] by
property 2. stated above. This implies

toksid[index(k,M0)] · DB0[k]

=
⊕
id∈Ck

mqsidid [index(k,Mid)] · DB0[k]

=
⊕
id∈Ck

mqsidid [index(k,Mid)] · DBid[k]

And therefore, by the equation above and property 3.,

toksid·(DB0[k])k∈M0

=
⊕
k∈M0

toksid[index(k,M0)] · DB0[k]

=
⊕
k∈M0

⊕
id∈Ck

mqsidid [index(k,Mid)] · DBid[k]

=
⊕

id∈AID

⊕
k∈Mid

mqsidid [index(k,Mid)] · DBid[k]

=
⊕

id∈AID

mqsidid · (DBid[k])k∈Mid

Next, because

mqsid0 [index(ksid,M0)] = toksid[index(ksid,M0)]⊕ 1

by construction of MQuery (Algorithm 4), we have⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

=
⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

= toksid · (DB0[k])k∈M0
⊕ (1 · DB0[k

sid])⊕
id∈AID

mqsidid · (DBid[k])k∈Mid

= DB0[k
sid]

Thus proving the correctness of the mPIR-only Query
protocol.

To show that the general case in the Query protocol is
correct, we observe that when ksid ∈M0, sq

sid targets item
|S| by the construction of Query (Algorithm 5). That is,
sqsid targets targets mrsid0 by construction of Reply (Algo-
rithm 6). By sPIR correctness of ΠsPIR, we conclude that
in Decode (Algorithm 7), SDecode(ssk, rsid) = mrsid0 .

And finally,

asid =
⊕
id∈ID

mrsidid

=
⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

= DB0[k
sid]

by the correctness of the mPIR-only Query protocol.

Next, we analyze the probability of no hash collision
when the universal hash functions are used in Synchro-
nized APIR.

Theorem 2 (Synchronized APIR Hash Non-collision).
Let H,G, H̃ be random universal hash functions from uni-
versal families whose hash values are of length lH, lG, lH̃,
respectively. For any ID = {0, . . . , n} and databases
DBid, id ∈ ID, let U :=

⋃
id∈ID DBid. We define the fol-

lowing non-collision events:

• E1(U) :=

∀k, k′ ∈ Keys(U) : k ̸= k′ =⇒ H̃(k) ̸= H̃(k′)

• E2(U) :=

∀v, v′ ∈ Values(U) : v ̸= v′ =⇒ H(v) ̸= H(v′)

• E3(U) :=

∀(k, v), (k′, v′) ∈ U :

G((H̃(k),H(v))) ̸= G((H̃(k′),H(v′))) =⇒
(H̃(k),H(v)) ̸= (H̃(k′),H(v′))

Define p(m, d) := e−
m(m−1)

2d , then

Pr[E1(U), E2(U), E3(U)]

≈ p(|U |, 2lG) · p(|Keys(U)|, 2lH̃) · p(|Values(U)|, 2lH)

Proof Sketch. First, we consider E1(U) and E2(U), which
describe the “birthday” problem where no two individuals
share the same birthday. For E1(U) the number of birth-
days is 2lH̃ and the number of individuals is |Keys(U)|;
likewise for E2(U), the number of birthdays is 2lH and the
number of individuals is |Values(U)|. By [12], we have

Pr[E1(U)] ≈ p(|Keys(U)|, 2lH̃)

Pr[E2(U)] ≈ p(|Values(U)|, 2lH)

Given that E1(U) and E2(U) have occurred, E3(U) also
describes the same birthday problem with 2lG birthdays
and |U | individuals. Therefore,

Pr[E3(U) | E1(U), E2(U)] ≈ p(|U |, 2lG)

15

Assisted Private Information Retrieval

Finally, since E1(U) and E2(U) are independent events,
we have

Pr[E1(U), E2(U), E3(U)]

= Pr[E3(U) | E1(U), E2(U)] · Pr[E1(U), E2(U)]

= Pr[E3(U) | E1(U), E2(U)] · Pr[E1(U)] Pr[E2(U)]

≈ p(|U |, 2lG) · p(|Keys(U)|, 2lH̃) · p(|Values(U)|, 2lH)

What does Theorem 2 imply for Theorem 1? By defi-
nition, we know that if events E1(U), E2(U), E3(U) take
place, then Theorem 1 is true with probability 1. That
is,

Pr[ΠSynAPIR is correct | E1(U), E2(U), E3(U)] = 1

So,

Pr[ΠSynAPIR is correct]

≥ Pr[ΠSynAPIR is correct | E1(U), E2(U), E3(U)]

· Pr[E1(U), E2(U), E3(U)]

= Pr[E1(U), E2(U), E3(U)]

And therefore

Pr[ΠSynAPIR is incorrect] ≤ 1− Pr[E1(U), E2(U), E3(U)]

We remark that the probability of incorrectness is not
per query but per query keyword; that is, the same key-
word either succeeds or fails every time from hash colli-
sions. This implies that the amount of failure does not
scale with query traffic loads but with the total number
of query keywords made.

The upper bound here can be improved because
E1(U), E2(U), E3(U) are not necessary conditions for the
correctness of Synchronized APIR. After all, certain hash
collisions do not affect the correctness of the scheme. For
example, in the catalogs, it is not an issue if v ̸= v′ but
H(v) = H(v′) as long as pairs (k,H(v)) and (k′,H(v′)) are
in the catalogs and k ̸= k′. In future work, we will pro-
vide analysis with a tighter bound considering all these
nuances.

6.2 Privacy

To prove the privacy of Synchronized APIR, we first pro-
vide the privacy definition of Synchronized APIR, which
directly corresponds to the privacy definition of APIR
in Definition 4.3. Then, we show that mPIR queries
are pseudorandom given the variable-length PRG, even
if some PRG seeds are predetermined. Leveraging this
fact and the privacy of sPIR scheme, we show that Syn-
chronized APIR is privacy-preserving.

First, let us provide the privacy definition of Synchro-
nized APIR below. Intuitively, Synchronized APIR is
privacy-preserving if the attacker cannot distinguish be-
tween queries generated by keyword k0 and k1 during one
session, even if the attacker has oracle access to all other
query sessions and is provided with some of the PRG
seeds used to generate the mPIR queries.

Definition 6.1 ((λ, t)-Synchronized APIR Privacy). Fol-
lowing Definition 4.3, we define the privacy experiment
PrivAA,ΠSynAPIR,t(1

λ) for the Synchronized APIR scheme
given a λ-sPIR privacy-preserving scheme ΠsPIR by Defi-
nition A.2 and variable-length PRG PRG(s, ℓ)→ r below.

1. A chooses the number of Query sessions l = poly(λ),
well-formed catalog Cat0 and digests (Digid)AID, and
outputs (l,Cat0, (Digid)AID). A chooses a collusion
set C ⊂ ID such that |C| ≤ t and sends C to the
oracle O.

2. The following steps are followed to generate public
and secret parameters:

(a) Synchronization: Step 2○ of Catalog Inter-
section Protocol in Section 5.2.5 is followed with
inputs Cat0, (Digid)AID to produce

(
Cat′id

)
AID

.
Catalogs are tagged by

((Mid)ID, S)← Tag(Cat0,
(
Cat′id

)
AID

, t)

as per step 2○ of Synchronization Protocol in
Section 5.2.1.

(b) Setup: Setup Protocol in Section 5.2.2 is
followed with inputs (Mid)ID and l and out-

puts

(
spk, ssk,

(
toksid

)
[l]

)
(the mq output is ig-

nored). The PRG seeds (sid)AID generated dur-
ing this step is also saved.

(spk, (Mid)ID, S) is given to A as public parameters.

3. Initialize session ID sid = 1. A is given oracle access
to Query in the following way:

(a) At sid = 1, (sid)AID is given to O, and O gives
(sid)C\{0} to A (recall that sid is a PRG seed).

(b) A chooses and outputs ksid ∈ Keys(Cat0).

(c) A query is generated by(
mqsid0 , sqsid

)
← Query

(
M0, S, spk, tok

sid, ksid
)

following step 7○ of Query Protocol in Section
5.2.4.

(
mqsid0 , sqsid

)
is given to O .

(d) If 0 ∈ C, O gives
(
mqsid0 , sqsid

)
to A; otherwise,

O gives an empty value ⊥ to A.

16

Assisted Private Information Retrieval

(e) sid← sid+ 1

4. During some session sid = sid∗ ≤ l,

(a) A chooses ksid
∗

0 , ksid
∗

1 ∈ Keys(Cat0) and outputs(
ksid

∗

0 , ksid
∗

1

)
.

(b) A uniformly random bit is sampled b←$ {0, 1}.
(c) A query is generated(

mqsid
∗

0,b , sq
sid∗

b

)
← Query

(
M0, S, spk, tok

sid∗ , ksid
∗

b

)
and

(
mqsid

∗

0,b , sq
sid∗

b

)
is given to O.

(d) If 0 ∈ C, O gives
(
mqsid

∗

0 , sqsid
∗)

toA; otherwise,
O gives an empty value ⊥ to A.

(e) sid← sid∗ + 1

5. A is given more oracle access to Query until sid = l.

6. A outputs b∗ ∈ {0, 1}. The experiment’s output is 1
if b∗ = b and 0 otherwise.

ΠSynAPIR is (λ, t)-APIR privacy-preserving for all PPT
adversary A if there exists a negligible function negl such
that

Pr
[
PrivAA,ΠSynAPIR,t(1

λ) = 1
]
≤ 1

2
+ negl(λ)

To show that Synchronized APIR satisfies this defini-
tion, we first prove that mPIR queries are pseudorandom,
even if some of the PRG seeds are predetermined. (The
predetermined seeds are indicated by set A below.) mPIR
query pseudorandomness implies that two queries gener-
ated with different keywords are computationally indis-
tinguishable from one another.

Theorem 3 (mPIR Query Pseudorandomness). Suppose
a variable-length PRG PRG(s, ℓ) → r where |s| = λ
and |r| = ℓ = poly(λ). For any ID := {0, . . . , n},
AID := {1, . . . , n}, 1 ≤ t ≤ n, well-formed catalog Cat0
and catalog intersections Cat′id, id ∈ AID, l Query sessions,
sid ∈ [l], ksid ∈ Keys(Cat0), A ⊂ AID such that |A| < t,

and (sid)A ∈ {0, 1}
λ·|A|

; define

• ∀id ∈ AID \A : sid ←$ {0, 1}
λ

• ((Mid)AID, S) = Tag(Cat0,
(
Cat′id

)
id
∈ AID)

• ∀id ∈ AID :
(
mqsidid

)
sid∈[l]

= PRG(sid, l · |Mid|)

• ∀sid ∈ [l] : toksid = MToken
(
(Mid)ID,

(
mqsidid

)
AID

)
• ∀sid ∈ [l] : mqsid0 = MQuery

(
M0, tok

sid, ksid
)

• aux =
(
(Mid)ID, A, (sid)A,

(
ksid

)
[l]

)
Then for all PPT distinguisher D, there exists a negli-

gible function negl such that∣∣∣Pr [D(r, aux) = 1]− Pr
[
D
((

mqsid0
)
[l]
, aux

)
= 1

]∣∣∣
≤ negl(λ)

where r ←$ {0, 1}
l·|M0| is sampled uniformly at random.

Proof sketch. We will use a hybrid argument to prove the
theorem as follows.

Part 1: For any B ⊂ AID such that A ⊆ B and |B| =
t−1, we will slightly modify the definition of mqsidid above

called m̃qsidid where if id ∈ AID \ B, then for all sid ∈
[l], m̃qsidid ←$ {0, 1}

|Mid| is sampled uniformly at random;
everything else remains unchanged i.e. ∀id ∈ B, ∀sid ∈
[l] : m̃qsidid = mqsidid . This results in the new m̃qsid0 , sid ∈ [l].
We claim that these two ensembles are perfectly indis-

tinguishable

⟨r, aux⟩
p
≡ ⟨(m̃qsid0)[l], aux⟩

by observing the construction of mqsid0 . Let

˜tok
sid

= MToken

(
(Mid)ID,

(
m̃qsidid

)
id∈AID

)

and consider each bit of ˜tok
sid
: for each k ∈M0,

˜tok
sid
[index(k,M0)] =

⊕
id∈Ck

m̃qsidid [index(k,Mid)]

=
⊕

id∈Ck\B

m̃qsidid [index(k,Mid)]

⊕
⊕

id∈Ck∩B

m̃qsidid [index(k,Mid)]

Since |Ck| = t by construction and |B| = t− 1, we know
that Ck\B is not empty. Because for all id ∈ Ck\B, m̃qsidid
is uniformly random by definition, we conclude that⊕

id∈Ck\B m̃qsidid [index(k,Mid)] is unformly random, and so

is ˜tok
sid
[index(k,M0)] and ˜tok

sid
for all sid ∈ [l]. Thus by

construction of MQuery, m̃qsid0 is also uniformly random
for all sid ∈ [l]. This proves the perfect indistinguishabil-
ity.

Part 2: Given the variable-length PRG, we claim that
these two ensembles are computationally indistinguish-
able

⟨(m̃qsid0)[l], aux⟩
c≡ ⟨(mqsid0)[l], aux⟩

via a reduction proof.

17

Assisted Private Information Retrieval

Suppose there exists a PPT distinguisher D who can
distinguish between the two ensembles; we will construct
an adversary A using D as a subroutine to play the fol-
lowing game:

The challenger C is tasking A to distinguish between a
uniformly random string

r0 ←$ {0, 1}
∑

id∈AID\B l·|Mid|

where B is defined in Part 1, and a pseudorandom
string

r1 ← (PRG(sid, l · |Mid|))id∈AID\B

where each sid ←$ {0, 1}
λ
is sampled uniformly at ran-

dom. Upon given rb, b ∈ {0, 1}, A defines((
mqsid,∗id

)
sid∈[l]

)
id∈AID\B

:= rb

and mqsid,∗id := mqsidid for the rest of id ∈ B and sid ∈ [l].

Next, A constructs mqsid,∗0 out of mqsid,∗id , id ∈ AID i.e.

∀sid ∈ [l] : toksid,∗ = MToken
(
(Mid)ID,

(
mqsid,∗id

)
AID

)
∀sid ∈ [l] : mqsid,∗0 = MQuery

(
M0, tok

sid,∗, ksid
)

and inputs ((mqsid,∗0)[l], aux) to D. If D determines the
input is the first ensemble, then A outputs 0; otherwise,
A outputs 1. By variable-length PRG assumption, we
conclude that the advantage of A of guessing the correct
string is negligible, so the two ensembles are indistinguish-
able.

Part 3: By “transitivity” of Part 1 and 2,

⟨r, aux⟩
p
≡ ⟨(m̃qsid0)[l], aux⟩

c≡ ⟨(mqsid0)[l], aux⟩

=⇒ ⟨r, aux⟩ c≡ ⟨(mqsid0)[l], aux⟩

thus proving the theorem.

Now that we have proven that mPIR are pseudoran-
dom given the variable-length PRG, we will use a hy-
brid argument to show that the hybridization between
mPIR and sPIR (given that the sPIR scheme is privacy-
preserving) in Synchronized APIR results in a privacy-
preserving scheme, even if some PRG seeds are leaked to
the attacker.

Theorem 4 (Synchronized APIR Privacy). Suppose
ΠsPIR is λ-sPIR privacy-preserving according to Defini-
tion A.2 and PRG(s, l) → r is a variable-length PRG,
then Synchronized APIR scheme ΠSynAPIR is (λ, t)-APIR
privacy-preserving according to Definition 6.1.

Proof sketch. We first observe that if 0 ̸∈ C in
PrivAA,ΠSynAPIR,t i.e. main server S0 is not compromised,
then A does not obtain any information related to b,
which implies no advantage in guessing b∗; the scheme
is therefore trivially privacy-preserving. For the rest of
this proof, we therefore only focus on the scenario where
A has chosen 0 ∈ C .
We want to show that the view of A in PrivAA,ΠSynAPIR,t

is computationally indistinguishable between when b = 0
and b = 1. Formally, define the view of A in the experi-
ment as

outviewA := ⟨
(
ksid

)
sid̸=sid∗

,
(
ksid

∗

0 , ksid
∗

1

)
, auxout⟩

for the outputs of A, where

auxout := (l,Cat0, (Digid)AID, C)

and

inviewA(b) :=

⟨(sid)C\{0},
(
mqsid0 , sqsid

)
sid̸=sid∗

,
(
mqsid

∗

0,b , sq
sid∗

b

)
, auxin⟩

for the inputs of A, where

auxin := (spk, (Mid)ID, S)

and finally

viewA(b) := ⟨outviewA, inviewA(b)⟩

We want to show that

viewA(0)
c≡ viewA(1)

with respect to the security parameter λ through the fol-
lows steps:

1. Similarly to inviewA(b), we define

ĩnviewA(b) :=

⟨(sid)C\{0},
(
mqsid0 , sqsid

)
sid̸=sid∗

,
(
mqsid

∗

0,b , s̃q
)
, auxin⟩

where s̃q← SQuery(spk, 0), and

ṽiewA(b) := ⟨outviewA, ĩnviewA(b)⟩

By λ-sPIR privacy assumption, we claim that

viewA(0)
c≡ ṽiewA(0)

2. By Theorem 3, we claim that

ṽiewA(0)
c≡ ṽiewA(1)

because mPIR queries are pseudorandom.

18

Assisted Private Information Retrieval

3. Similarly to step 1, by λ-sPIR privacy assumption
we claim that

ṽiewA(1)
c≡ viewA(1)

4. By “transitivity”, we claim that

viewA(0)
c≡ ṽiewA(0)

c≡ ṽiewA(1)
c≡ viewA(1)

Thus proven the theorem.

7 Private DNS Query

In this section, we showcase the application of Synchro-
nized APIR to achieve private DNS query for NS (Name
Server) records in DNS cache servers. Indeed, the ap-
plicability of Synchronized APIR is not limited to NS
records, but NS records provide a good example because
they are relatively stable with the time-to-live (TTL) of
2 days based on the ICANN’s .com zone file, which we
will discuss next.

We assume a hypothetical setting in which multiple
DNS cache servers keep separate tables for different top-
level domains (TLD) and types of records. Each server
gathers the query statistics per domain from non-private
DNS traffic in the past 24 hours and updates the cache
table with the records of the most queried domains. The
server then builds a Synchronized APIR database out of
this cache table. The cache table is assumed to be much
smaller than the total number of records for efficiency.

The Synchronized APIR client chooses a group of Syn-
chronized APIR servers: one as the main server and the
rest as assisting servers. The parties then participate in
the Synchronized APIR scheme.

For the application demonstrated here, the client must
inform the servers she wishes to query the .com NS ta-
ble. In the table, each domain is assumed to link to the
collection of all the associated NS records. This implies
that in a successful PIR query, the client will receive all
the NS records for the queried domain and decides which
one to use.

7.1 NS Record Dataset

We analyze the .com Generic Top Level Domain (gTLD)
zone file provided by ICANN available per request on
https://czds.icann.org, accessed on June 16, 2022, to
gather statistics about NS records. The data analysis
is to simulate cache tables for the PIR servers, which
will be described in the next section. The .com zone
file includes all record types, but we filter it for only NS
records. Each NS record contains 1) domain name, 2)
time-to-live (TTL), 3) class, 4) type, 5) resource record

length, and 6) NS domain name. Each domain name
may be linked to multiple NS records, and each record is
of variable length, depending on how long the NS domain
name is. We summarize the statistics in Table 1.

In this table, we draw particular attention to “max.
|records| per domain”. “|records| per domain” here means
that if a domain name is linked to record 1, record 2, . . . ,
record n, then |records| per domain for this domain is
|record 1| + |record 2|+, . . . ,+|record n|. “max.” indi-
cates the maximum of this value across all the domains
in the zone file, which is 759 bytes. This implies that the
Synchronized APIR database values need to be at least
759 bytes in length to hold all the NS records linked to
each domain name for all the domain names. We thus pa-
rameterize the database values to be 1,024 bytes in length
as a conservative measure.

Statistics Values

#records 382M
#domains 159M

avg. #records per domain 2.4
avg. |domain name| 17.7 bytes

avg. |records| per domain 73.1 bytes
max. |records| per domain 759 bytes

TTL 2 days

Table 1: Statistics for NS records in ICANN’s .com
gTLD Zone File (M=106). “#records” indicates the num-
ber of records. “#domains” indicates the number of domains.
“|records| per domain” specifies the total size in bytes of all
records linked to each domain, where each NS record is en-
coded as TTL|CLASS|TYPE|LEN|NSDOMAIN. The TTLs
are of the same value of 172800 across all the records

7.2 Data Simulation Method

Although we have access to NS records in the previous
section, what remains unknown is how independent DNS
cache servers would behave in the real world. Specifically,
we need to know what NS records each server is holding in
the cache table at a given time to be able to use this table
as a database in Synchronized APIR. To simulate the
servers’ cache tables for this purpose, we therefore need
to make assumptions about 1) the statistical distribution
of domain name popularity and 2) the frequency of DNS
queries over a period of time.

For 1), we assume that the popularity of domain names
in DNS queries follows a Zipfian distribution [10,15], with
the total number of ranks being the total number of do-
main names with NS records (159 million domains ac-
cording to Table 1).

For 2), we assume that a cache server collects DNS
query statistics from the normal (i.e., non-private) DNS

19

https://czds.icann.org

Assisted Private Information Retrieval

service over a period of time, after which the server
updates the cache table with the most queried domain
names during the period. To assume the number of
queries (which follow a Zipfian distribution) over a pe-
riod of time, we consider two scales of DNS operation:
local and regional. The scale of operation implies the
scale of traffic loads. In our setting, local means a US
city, whereas regional means the entire US.

To get a sense of what the scales look like in
the real world, we obtain DNS query statistics from
ICANN Managed Root Server (IMRS) accessible on
stats.dns.icann.org on June 18, 2022, to compute the av-
erage queries-per-second (QPS) statistics for NS queries
in a 24-hour window. For the local scale, we obtain the
QPS within the city of Chicago; for the regional setting,
we obtain the QPS within the entire US. The average
QPS in a 24-hour window for the local setting is 256.3,
accumulating to 22 million queries in the 24-hour cycle.
The average QPS in a 24-hour window for the regional
setting is 7032.3, accumulating to 608 million queries in
the 24-hour cycle.

We follow these assumptions and parameters to sim-
ulate three cache servers for Synchronized APIR for the
local and regional experiment: 1 main and two assist-
ing servers with the collusion threshold of t = 2. The
cache table size, or |DB|, for the local experiment is
213 ∼ 8 thousand domains, and for the regional exper-
iment 216 ∼ 66 thousand domains. We base the cache
table sizes roughly on Cisco’s Caching DNS Capacity and
Performance Guidelines [1]. To simulate a cache table,
we sample domain name ranks from a Zipfian distribution
as many times as the number of queries in 24 hours for
each server, where the most |DB| popular ranks are kept
in the cache table. The exact keywords and values in the
cache tables are randomly generated; this does not affect
the scheme’s performance since the scheme is agnostic of
the actual content of database keywords and values.

Zipfian parameters. The next question is what ap-
propriate popularity index s of the Zipfian distribution
to use in the simulation. Wang [15] and Jung et al. [10]
found the popularity index to be 0.98 and 0.91, respec-
tively, in a local DNS setting at the time of the studies.
We surmise that the distribution of domain name popu-
larity is always sensitive to time and geography, and there
is no universally true and accurate distribution.

Instead, in our experiments, we aim to demonstrate
Synchronized APIR in the most optimal conditions. Since
Synchronized APIR’s most expensive computational and
communication cost corresponds to the number of sPIR
items, i.e., |S|, we want to find a Zipfian popularity index
s that minimizes |S| to demonstrate the most optimal
conditions for both the local and regional setting.

To achieve this, we simulate the cache tables for three

Synchronized APIR servers at varying s and cache sizes
for the local and regional setting (212, 213, 214 domains for
local, and 215, 216, 217 domains for regional). The results
are shown in Figure 6. Here, the optimality is repre-
sented by the percentage of sPIR items in the main cache
table, i.e., |S|/|DB0| × 100%. The results indices that
s = 1.0 is an optimal parameter. (Coincidentally, this is
close to 0.98 and 0.91 in Wang and Jung et al.’s study,
respectively.) We, therefore, choose s = 1.0 to evaluate
Synchronized APIR in the next section.

0.6 0.8 1.0 1.2 1.4 1.6
Zipfian popularity index, s

0

10

20

30

40

50

60

%
 o

f s
PI

R
 it

em
s

in
 m

ai
n

D
B

Percentage of sPIR Items in Simulated Databases
chosen s
|DB|=2^12 / #q=22M
|DB|=2^13 / #q=22M
|DB|=2^14 / #q=22M
|DB|=2^15 / #q=607M
|DB|=2^16 / #q=607M
|DB|=2^17 / #q=607M

Figure 6: The effect of Zipfian distribution on the per-
centage of sPIR items in simulated databases for 3
Synchronized APIR servers at collusion threshold t =
2. #q denotes the total number of simulated queries. s = 1.0
is chosen as an optimal parameter.

7.3 Evaluation Settings

We summarize the parameters used to evaluate Synchro-
nized APIR in Table 2 and 3.

To evaluate the scheme, we use the implementation
specified in Section 5.3. The computing environment
is a desktop computer with an Intel i9-10900 CPU and
64 GB of RAM running Ubuntu 20.04. The client and
servers are simulated locally in the same computing en-
vironment, where each party occupies one CPU core; the
remote communication is via TCP loopback connections.

We measure the performance in terms of communica-
tion and computational cost for a single PIR query. The
communication cost is measured separately in the amount
of data uploaded and downloaded by the client in bytes.
The computational cost is measured in the amount of
CPU time each party spends in milli-seconds.

Synchronized APIR is evaluated in two experiments:
regional and local. In each experiment, a comparison is
made between 3 schemes:

20

https://stats.dns.icann.org

Assisted Private Information Retrieval

Parameters Values

#servers 3
collusion threshold t 2

Zipfian s 1.0
|value| 1,024 bytes

security parameter 128

SealPIR Parameters Values

log(plaintext modulus), d = 1 14
log(plaintext modulus), d = 2 16

Table 2: Shared parameters between local and regional
experiments. “#servers” indicates the number of servers.
|value| indicates the length of each value. d is the query di-
mensionality of SealPIR.

Parameters Local Regional

#sampling queries 22M 608M
|DB| 213 ∼ 8K 216 ∼ 66K

|hash|(bits) 43 54

Statistics

% of sPIR 7.3 3.9
Pr[failure] ⪅ 1.3× 10−5 ⪅ 1.2× 10−5

Table 3: Specific parameters and statistics for local
and regional experiments. “#sampling queries” indicates
the number of queries to simulate the cache tables. “|DB|”
indicates the number of domain names in each cache table.
“% of sPIR” indicates the percentage of sPIR items in the
main cache table (DB0). “|hash|” indicates the hash length
in bits. “Pr[failure]” indicates the probability of failure of
Synchronized APIR according to Theorem 2.

1. Baseline SealPIR with query dimensionality d = 2,
i.e., recursive PIR

2. Synchronized APIR with d = 1 SealPIR

3. Synchronized APIR with d = 2 SealPIR

The Baseline d = 1 SealPIR scheme is omitted because
it repeatedly crashed during the regional experiment in
our trial runs regardless of parameters. We suspect this is
due to a limitation in the SealPIR library, which cannot
handle databases larger than a certain size for d = 1.

In the Baseline SealPIR experiment, the keyword com-
pression technique is applied to the list of domain names
in the cache table; the compressed (i.e., hashed) keywords
are sent to the client as the catalog, which allows the client
to translate keywords to index positions in the database.
In Synchronized APIR, the keyword compression tech-
nique is applied per the description in Section 5.2.8.

SealPIR is configured by default to provide 128-bit se-
curity (see Section 5.3). The log of plaintext modulus de-
termines the noise budget in the underlying SEAL fully
homomorphic encryption scheme (where higher means
more noise budget and higher communication cost); this
is adjusted by trial and error to ensure the experiments
do not fail from the noise after multiple runs.

The sPIR percentage statistics are calculated from the
simulated databases. The probability of failure, i.e., the
probability of at least one hash collision as per Theo-
rem 2 is calculated from the hash length and simulated
databases.

7.4 Results

The results for the communication costs of the experi-
ments are shown in Table 4 and computational costs in
Table 5. We shall refer to the Baseline d = 2 SealPIR
scheme as the baseline for comparison.

According to Table 4, the client using Synchronized
APIR transmits 4.6x the amount of data that of the base-
line in the local experiment and 4.7x in the regional ex-
periment during Synchronization and Setup. The calcula-
tion does not include the cost of uploading the long-term
SEAL public key, which can be mitigated through public-
key infrastructure. During the Query phase of d = 1 and
d = 2 Synchronized APIR, the client transmits ∼0.2x and
∼1.0x the amount of data per query that of the baseline,
respectively, in both the local and regional experiment.
We note that the client’s upload costs during Query ap-
pear irregular with respect to the number of sPIR items
due to SealPIR’s query compression technique, which is
able to pack many query bits in one large ciphertext; this
results in significant gaps in query size between the small
and large number of sPIR query bits.

Where Synchronized APIR outperforms the baseline is
in computational cost. According to Table 5, the com-
putational costs of the assisting servers (S1 and S2) are
nearly negligible across the experiments. The computa-
tional costs during Synchronization and Setup are slightly
cheaper for the main server (S0) in Synchronized APIR
than in the baseline and somewhat more expensive for the
client in Synchronized APIR than in the baseline. How-
ever, the more significant part is the recurring costs of
the main server during Query. Here, in the local setting,
the computational cost of the main server in d = 1 and
d = 2 Synchronized APIR are 84% and 25% that of the
baseline, respectively. In the regional setting, the com-
putational cost of the main server in d = 1 and d = 2
Synchronized APIR are 78% and 12% that of the base-
line, respectively.

We summarize our results below.

1. Baseline d = 2 SealPIR offers a low one-time com-
munication cost but high recurring costs.

21

Assisted Private Information Retrieval

Phases
SealPIR,
d = 2

Sync-APIR,
d = 1

Sync-APIR,
d = 2

S0 S0 S1 + S2 S0 S1 + S2
Local

Synchronization
Download 44K 95K 89K 95K 89K

Setup
Upload (spk) 3.5M 3.5M - 3.5M -

Upload (others) - 769 19K 769 19K

Query (per session)
Upload 64K 34K - 65K -

Download 257K 32K 2K 257K 2K

Regional

Synchronization
Download 352K 799K 704K 799K 704K

Setup
Upload (spk) 3.5M 3.5M - 3.5M -

Upload (others) - 3.1K 154K 3.1K 154K

Query (per session)
Upload 64K 40K - 72K -

Download 257K 32K 2K 257K 2K

Table 4: Client’s communication costs for one query in local and regional PIR experiment (in bytes, K=210,
M=220). “S1 + S2” indicates the client’s combined upload/download costs to/from Server 1 and 2. The upload costs during
Setup are listed separately between the SEAL public key and other public parameters.

2. d = 1 Synchronized APIR offers 4.6x-4.7x one-time
communication cost and ∼0.2x recurring communi-
cation cost that of the baseline for the client, and
78% recurring computational cost that of the base-
line for the main server.

3. d = 2 Synchronized APIR offers 4.6x-4.7x one-time
communication cost and ∼1.0x recurring communi-
cation cost that of the baseline, and 12% recurring
computational cost that of the baseline for the main
server.

7.5 Discussion

It is clear that Synchronized APIR provides a significant
advantage over SealPIR in the long run after the one-
time cost, but what does this mean in terms of practical-
ity? For a single non-private NS query to a DNS server,
the communication cost would be less than 1 KB, and
the computational cost negligible, allowing the operation
to scale with minimal computational resources. In com-
parison, Synchronized APIR would be multiple orders of
magnitude more expensive. This is not to mention the

specificity of the DNS protocol and complexity of the cur-
rent DNS infrastructure, which would require significant
adjustment for Synchronized APIR to fit in.

When putting the scheme in context, we reckon it
would be more sensible to offer private DNS via Synchro-
nized APIR as an optional, special service one needs to
opt-in to access (especially because our current concep-
tion requires the cache servers to collect cache statistics
from non-private DNS service). The computational and
communication costs of Synchronized APIR are not nec-
essarily prohibitive because 1) the non-sensitive parts of
Synchronization and Setup can be outsourced to a third
party and shared across multiple clients, allowing the op-
eration to scale, and 2) the recurring cost of a query
is only as expensive as the best sPIR scheme available.
OnionPIR [11], for example, can reduce the recurring
download cost for the client by 25x compared to SealPIR
at the same computational cost. However, a downside
is the recurring upload cost may double with a small
database.

22

Assisted Private Information Retrieval

Phases
SealPIR,
d = 2

Sync-APIR,
d = 1

Sync-APIR,
d = 2

C S0 C S0 S1 or S2 C S0 S1 or S2
Local

Synchronization < 1 2 20 3 3 20 3 3

Setup 107 150 98 89 1 93 86 1

Query (per session) 8 90 1 76 < 1 8 23 < 1

Regional

Synchronization 7 31 184 35 42 184 35 42

Setup 106 653 221 127 16 214 119 16

Query (per session) 8 414 9 323 4 16 48 4

Table 5: Computational costs for one query in the local and regional PIR experiment (in milliseconds).
“S1 or S2” indicates the computational cost on S1 or S2 since they cost the same CPU time.

8 Conclusion

In this work, we introduce assisted PIR, a generalization
to multi-server PIR that allows for database inconsisten-
cies. We present the construction of Synchronized APIR,
a hybrid APIR protocol between a black-box single-server
PIR scheme and a multi-server PIR scheme which takes
advantage of the overlap between inconsistent databases
to reduce costs. A formal analysis of Synchronized APIR
is also provided.

We apply Synchronized APIR to demonstrate a proof-
of-concept private DNS query application, specifically to
query NS records among DNS cache servers. Then, we
evaluate the application with simulated datasets based
on realistic assumptions about DNS queries and cache
behavior.

The results show that despite the higher initial one-
time cost, private DNS query via Synchronized APIR out-
performs the baseline single-server PIR in communication
or computational costs. Although the costs are high com-
pared to non-private DNS, Synchronization APIR holds
its potential in future developments of single-server PIR
schemes from its black-box use of single-server PIR.

Acknowledgements

We thank Dr. Syed Mahbub Hafiz at the University
of California, Davis, for his comments and contributions
during the development of this work.

This research was supported in part by the National
Science Foundation awards CNS 156537 and the Comcast
Innovation Fund.

Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors

and do not necessarily reflect the views of the US Govern-
ment, the National Science Foundation, Comcast, Indiana
University, nor University of Calgary.

References

[1] Caching DNS capacity and performance guidelines,
Nov 2021. Available at https://www.cisco.

com/c/en/us/td/docs/net_mgmt/prime/network_

registrar/10-1/install/guide/Install_Guide/

Install_Guide_appendix_010001.html.

[2] Carlos Aguilar-Melchor, Joris Barrier, Laurent
Fousse, and Marc-Olivier Killijian. XPIR: Private
information retrieval for everyone. Proceedings on
Privacy Enhancing Technologies, 2(2016):155–174,
2016.

[3] Andris Ambainis. Upper bound on the com-
munication complexity of private information re-
trieval. In Pierpaolo Degano, Roberto Gorrieri, and
Alberto Marchetti-Spaccamela, editors, Automata,
Languages and Programming, pages 401–407, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg.

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. PIR with compressed queries and amortized
query processing. In 2018 IEEE symposium on secu-
rity and privacy (SP), pages 962–979. IEEE, 2018.

[5] Daniel J Bernstein et al. ChaCha, a variant of
Salsa20. In Workshop record of SASC, volume 8,
pages 3–5. Lausanne, Switzerland, 2008.

23

https://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/network_registrar/10-1/install/guide/Install_Guide/Install_Guide_appendix_010001.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/network_registrar/10-1/install/guide/Install_Guide/Install_Guide_appendix_010001.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/network_registrar/10-1/install/guide/Install_Guide/Install_Guide_appendix_010001.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/network_registrar/10-1/install/guide/Install_Guide/Install_Guide_appendix_010001.html

Assisted Private Information Retrieval

[6] Hao Chen, Kyoohyung Han, Zhicong Huang, Amir
Jalali, and Kim Laine. Simple encrypted arithmetic
library v2.3.0. 2017.

[7] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In Pro-
ceedings of IEEE 36th Annual Foundations of Com-
puter Science, pages 41–50. IEEE, 1995.

[8] David Eppstein, Michael T. Goodrich, Frank Uyeda,
and George Varghese. What’s the difference? ef-
ficient set reconciliation without prior context. In
Proceedings of the ACM SIGCOMM 2011 Confer-
ence, SIGCOMM ’11, page 218–229, New York, NY,
USA, 2011. Association for Computing Machinery.

[9] Giulia Fanti and Kannan Ramchandran. Efficient
private information retrieval over unsynchronized
databases. IEEE Journal of Selected Topics in Signal
Processing, 9(7):1229–1239, 2015.

[10] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and
Robert Morris. DNS performance and the effective-
ness of caching. IEEE/ACM Transactions on net-
working, 10(5):589–603, 2002.

[11] Muhammad Haris Mughees, Hao Chen, and Ling
Ren. OnionPIR: Response efficient single-server pir.
In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’21, page 2292–2306, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[12] M. Sayrafiezadeh. The birthday problem revisited.
Mathematics Magazine, 67(3):220–223, 1994.

[13] Radu Sion and Bogdan Carbunar. On the compu-
tational practicality of private information retrieval.
In Proceedings of the Network and Distributed Sys-
tems Security Symposium, pages 2006–06. Internet
Society Geneva, Switzerland, 2007.

[14] Julien P. Stern. A new and efficient all-or-nothing
disclosure of secrets protocol. In Kazuo Ohta and
Dingyi Pei, editors, Advances in Cryptology — ASI-
ACRYPT’98, pages 357–371, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[15] Zheng Wang. Analysis of DNS cache effects on query
distribution. The Scientific World Journal, 2013,
2013.

A Appendix

A.1 sPIR Correctness and Privacy Defi-
nition

Definition A.1 (sPIR Correctness). Following Defini-
tion 3.1, scheme ΠsPIR is correct for any database V =
(v0, . . . , vm−1) such that m ≥ 1 and i ∈ {0, . . . ,m− 1} if

• (spk, ssk)← SGen(1λ)

• sq← SQuery(spk, i,m)

• sr← SReply(spk, V, sq)

• sa← SDecode(ssk, sr)

then sa = vi.

Definition A.2 (λ-sPIR Privacy). Define an sPIR pri-
vacy experiment PrivSA,ΠsPIR(1λ) for sPIR scheme ΠsPIR

according to Definition 3.1 and adversary A below.

1. A chooses and outputs m.

2. The parameters are generated (spk, ssk) ←
SGen(1λ) and spk is given to A.

3. A is given oracle access to SQuery(spk, ·).

4. A chooses i∗0, i
∗
1 ∈ {0, . . . ,m− 1} and outputs

(i∗0, i
∗
1). A uniformly random bit is chosen

b←$ {0, 1}. A query sq∗ ← SQuery(spk, i∗b) is gen-
erated and sq∗ is given to A.

5. A is given more oracle access to SQuery(spk, ·).

6. A outputs b∗ ∈ {0, 1}. The experiment’s output is 1
if b∗ = b and 0 otherwise.

ΠsPIR is λ-sPIR privacy-preserving if for all PPT adver-
sary A, there exists a negligible function negl such that

Pr
[
PrivSA,ΠsPIR(1λ) = 1

]
≤ 1

2
+ negl(λ)

24

	Introduction
	Our contributions

	Related Works
	Preliminaries
	Single-Server PIR
	Multi-Server PIR

	Assisted PIR
	Our Scheme: Synchronized APIR
	Concept
	Protocol Description
	Synchronization Phase
	Setup Phase
	Special Case: mPIR-Only Query Phase
	Query Phase
	Catalog Intersection
	Keyword Synchronization
	Catalog Intersection and Keyword Synchronization in Relation to Set Reconciliation
	Keyword Compression

	Implementation

	Analysis
	Correctness
	Privacy

	Private DNS Query
	NS Record Dataset
	Data Simulation Method
	Evaluation Settings
	Results
	Discussion

	Conclusion
	Appendix
	sPIR Correctness and Privacy Definition

