
Bicoptor: Two-round Secure Three-party Non-linear Computation without
Preprocessing for Privacy-preserving Machine Learning

Lijing Zhou†, Ziyu Wang†,Hongrui Cui‡, Qingrui Song†, Yu Yu‡

†Huawei Technology, Shanghai, China, {zhoulijing,wangziyu13,songqingrui1}@huawei.com,
‡Shanghai Jiao Tong University, Shanghai, China, {rickfreeman,yuyu}@cs.sjtu.edu.cn

Abstract—The overhead of non-linear functions dominates the
performance of the secure multiparty computation (MPC)
based privacy-preserving machine learning (PPML). This work
introduces a family of novel secure three-party computation
(3PC) protocols, Bicoptor, which improve the efficiency of
evaluating non-linear functions. The basis of Bicopter is a new
sign determination protocol, which relies on a clever use of the
truncation protocol proposed in SecureML (S&P 2017). Our
3PC sign determination protocol only requires two communi-
cation rounds, and does not involve any preprocessing. Such
sign determination protocol is well-suited for computing non-
linear functions in PPML, e.g. the activation function ReLU,
Maxpool, and their variants. We develop suitable protocols
for these non-linear functions, which form a family of GPU-
friendly protocols, Bicopter. All Bicoptor protocols only require
two communication rounds without preprocessing. We evaluate
Bicoptor under a 3-party LAN network over a public cloud,
and achieve 90,000 DReLU/ReLU or 3,200 Maxpool (find the
maximum value of nine inputs) operations per second. Under
the same settings and environment, our ReLU protocol has
a one or even two order(s) of magnitude improvement to
the state-of-the-art works, Edabits (CRYPTO 2020) or Falcon
(PETS 2021), respectively without batch processing.

1. Introduction

Secure multiparty computation (MPC) [1], [2], [3], [4],
[5] is a fundamental cryptographic primitive that allows
multiple parties to jointly evaluate any efficiently com-
putable functions while preserving the input secrecy. An area
that raises particular privacy concerns is machine learning
(ML) where the predictive model is typically acquired by
aggregating and analyzing sensitive data from numerous
institutions. Moreover, performing inference operations on
the model may also impose privacy concerns since mobile
or IoT devices typically outsource sensitive data to cloud
ML services.

Recently, MPC-based privacy-preserving machine learn-
ing (PPML), which strives to combine the utility of ML
and the privacy-preserving guarantee of MPC, has received
phenomenal attention from the research community. The key
issue with this approach is the performance, since MPC
would incur extra overhead on top of the considerably heavy
ML operations. Various works aim to improve the perfor-

mance of MPC PPML with different settings. Protocols such
as Delphi [6], GAZZLE [7], CryptFlow2 [8], ABY2.0 [9],
and Chameleon [10] lie in two parties realm. SecureNN [11],
Falcon [12], CryptGPU [13], ABY3 [14], ASTRA [15],
BLAZE [16], and CryptFlow [17] involve three parties.
Fantastic [18], SWIFT [19], FLASH [20], and Trident [21]
are executed among four parties.

Among published works, CryptGPU [13] represents
the state-of-the-art. We deploy the CryptGPU implemen-
tation [22] to run a sample PPML inference on both a
single machine and a 3-party LAN network environment.
The resulting runtimes are shown in Fig. 1. We notice that
under different network environments, the computation of
Rectified Linear Unit (ReLU) takes a large portion of the
overall runtime, ranging from around one-third (local) to
three-quarters (LAN). This would be exacerbated in com-
mercial deployment settings where WAN network offers an
even worse network environment.

The computation of non-linear functions (including
ReLU) in CryptGPU is realized by the ABY3-based pro-
tocol [14] which is heavy in terms of communication over-
head. In particular, the protocol for ReLU takes 3 + log2 `
communication rounds and 45` bits of bandwidth, for a
input x ∈ Zq and ` := log2 q. The ReLU function can be
decomposed to Derivative ReLU (DReLU), i.e. a compar-
ison between the input and zero (or determine the sign of
the input), and a multiplication. We focus on DReLU since
multiplication is a common task in MPC which already has
highly optimized solutions. Currently, MPC-based compar-
ison (CMP) protocols could be categorized into four types.
• A2B-CMP-B2A: First switch input sharing from arith-

metic form to binary form (A2B), then perform the
bit-wise comparison to obtain the binary shares of the
comparison result, and finally switch back to the arith-
metic form (B2A) [13], [14], [19]. Most notably, the
ReLU protocol in CryptGPU utilizes this comparison
method.

• GC-based-CMP: Directly apply the generic GC-based
comparison protocol [7], [9], [15], [21], [23], [24].

• Random-masking-CMP: Open the secret input
masked by a random r, i.e., e := x + r. Then
the comparison of x against any constant c can be
enabled by comparing r against e− c. The comparison
can be aided by additional auxiliary preprocessing
information generated alongside r [11], [12].

0 10 20 30

Mnist lenet 128 (83%)
Cifar10 alexnet 128 (50%)

Tiny alexnet 32 (33%)
Tiny alexnet 64 (29%)

Tiny vgg16 8 (32%)

(a) CryptGPU experiments in a single machine

ReLU latency (s) Other latency (s)

0 100 200 300 400

Mnist lenet 128 (88%)
Cifar10 alexnet 128 (87%)

Cifar10 vgg16 32 (81%)
Tiny alexnet 8 (78%)
Tiny vgg16 8 (84%)

Imagenet resnet50 1 (68%)
Imagenet resnet101 1 (68%)
Imagenet resnet152 1 (68%)

(b) CryptGPU experiments with three machines over LAN

ReLU latency (s) Other latency (s)

Figure 1: The CryptGPU experiments are named by the
dataset modelname batchsize, e.g., Tiny vgg16 8 corresponds to
the vgg16 model trained from the Tiny dataset, and the inference
runs with a batch size of 8. The percentage after the name reflect
the ratio of the ReLU latency to the total latency, e.g., ReLU spends
32% of latency among the Tiny vgg16 8 experiment in the local
environment.

• MSB-decomposition-CMP: Decompose the input
shares into the binary form and perform compari-
son [25].

Most of the works in the A2B-CMP-B2A, Random-
masking-CMP, and MSB-decomposition-CMP categories re-
quire O(log `) communication rounds (` is the bit length of
ring/field size). Despite that GC-based-CMP has a constant
number of communication rounds, its bandwidth cost is usu-
ally the highest. Intuitively, communication is the bottleneck
for all four comparison methods.

The performance of computing the Maxpool function is
another bottleneck in PPML. In machine learning, it is usu-
ally required to determine the maximum element in a 2×2 or
3×3 matrix. Maxpool function involves several comparisons
and dot products for element selections. Existing works in
the literature mostly fall into two categories.
• Repeated comparison: The greater of the first two

elements are compared with the third element and so
on [11], [12].

• Binary search: Perform comparison in a binary tree
manner, where the inputs are the leaf nodes and the
maximum is at the root [25].

Like ReLU, protocols for Maxpool usually require dozens of
communication rounds and Maxpool is another performance
bottleneck for PPML.

We propose a novel and more efficient sign determi-
nation protocol, which implies a comparison protocol, to
accelerate the overhead of non-linear functions like ReLU
and Maxpool, in order to further optimize the performance
of PPML. Our approach departs from existing methods, and
improves the communication overhead compared to previous
works.

Our high-level idea for the comparison protocol is as
follows. For an input x ∈ [0, 2`x)

⋃
(q− 2`x , q), we define a

variable ξ = ξ(x) := x if x ∈ [0, 2`x) or ξ = ξ(x) := q − x

if x ∈ (q − 2`x , q). ξ can be recognized as the “absolute
value” of x. We define the bit position of the most significant
non-zero bit of ξ as λ − 1. We further define λ as the
effective bit length of ξ. 1 The truncation protocol TRC(x, k)
represents truncating k-bits from x, which is originally
proposed SecureML [24]. Our idea is to study the outcome
of TRC(x, λ−1) or TRC(x, λ). If the outcome is 1 or q−1,
then the input is positive or negative, respectively. Unfortu-
nately, the truncation protocol proposed in SecureML [24]
may introduce a one-bit error, which poses a problem to our
protocol. By carefully analyzing the behavior of the errors,
we explicitly identify the conditions under which the errors
occur (Lemma 1 and 2), and prove the inevitable existence
of 1 or q − 1 even if errors occur.

Regarding the fact that the input value is unknown in an
MPC context, and hence the λ is unknown to all participants,
we rely on performing repeated times of probabilistic trun-
cations to compute the array {TRC(x, 1), · · · ,TRC(x, λ −
1),TRC(x, λ), · · · ,TRC(x, `x)}, where `x is the precision
of inputs. By using this method, we manage to construct a
two-round 3-party sign determination protocol with a better
performance without relying on preprocessing.

Based on the sign determination protocol, we further
develop suitable 3PC protocols without preprocessing for
common non-linear functions in PPML, e.g. ReLU, Max-
pool, and their variants. It is worth mentioning that, the
number of communication rounds of all our protocols is con-
stant, i.e., 2, whereas the Maxpool protocols in Falcon [12],
SecureNN [11], and CryptFlow [17] require 104, 72, and 72
communication rounds in a typical setting (n = 9, ` = 40)
respectively.

1.1. Related works

In MPC-based PPML, the overhead of evaluating the
non-linear functions, e.g., ReLU and Maxpool, dominates
the total overhead. Existing protocols, such as ABY3 [14],
Edabits [25], CryptGPU [13], Fantastic [18], SWIFT [19],
BLAZE [16], FLASH [20], Trident [21], mostly resort to
preprocessing to enhance the online performance. In partic-
ular, after running an input-independent preprocessing phase
which typically utilizes heavy cryptographic machinery, the
parties are able to accomplish the PPML task relatively
faster in the online phase once the inputs are ready. Notice
that the total overhead (preprocessing and online) remains
unchanged, i.e., with an improved performance for the
online phase, the overhead of the preprocessing phase is
usually heavy. For instance, Escudero et al. [25] propose
a comparison method where the online comparison perfor-
mance could be improved by preprocessed material called
“Edabits”. The generation of Edabits relies on homomorphic
encryption or oblivious transfer which incurs significant per-
formance overhead. Our work aims to optimize the overall
performance of different non-linear functions used in PPML.

As discussed above, the overhead of evaluating the
ReLU and Maxpool functions accounts for a large portion

1. For example, for ξ = x = 23 = 0b00010111, `x = 8, λ = 5, and
ξλ−1 = ξ4.

TABLE 1: The comparison between the communication overhead
of our ReLu/Maxpool protocol and that of other related works.
(ss/gc: secret sharing/garble circuit. Comm.: the dominant one-pass
communication cost is counted in bits. `: the bit length of Zq =
[0, q − 1] (` := log2 q), e.g., ` = 40. p: a prime field modulus,
e.g., p = 67, dlog2 pe = 7. `x: the precision of the input, e.g.,
`x = 16. κ: the computational security parameter, e.g., κ = 128.
s: the statistical security parameter, e.g., s = 40. n: the number of
inputs.)

ReLU

Protocol Prep. Round Comm.(bit)
ABY 2PC [23] Yes 5 (2κ+ 20)`

ABY2.0 2PC [9] Yes 4 (κ+ 3)`

EMP 2PC [26] No 2 18κ`− 6κ

CryptFlow2 2PC [8] Yes 4 + log ` 32(`+ 1) + 31`

Fantastic 3PC [18] Yes 3 + log ` 114`+ 6s+ 1

BLAZE ss 3PC [16] Yes 3 + log ` 16`

BLAZE gc 3PC [16] Yes 4 (κ+ 7)`

SWIFT 3PC [19] Yes 3 + log ` 16`

Falcon 3PC [12] Yes 5 + log ` 32`

ABY3 3PC [14] Yes 3 + log ` 45`

CryptFlow 3PC [17] No 10 (6 log p+ 19)`

SecureNN 3PC [11] No 10 (8 log p+ 24)`

CryptGPU 3PC [13] Yes 3 + log ` 45`

Edabits 3PC [25] Yes 5 + log ` 80`

Ours 3PC No 2 (`x + 2)`

Fantastic 4PC [18] No 1 + log ` 44`+ 1

SWIFT 4PC [19] Yes 1 + log ` 10`

FLASH 4PC [20] Yes 2 + log ` 28`

Trident 4PC [21] Yes 4 8`+ 4

Maxpool

Protocol Prep. Round Comm.(bit)
SWIFT 3PC [19] Yes logn(3 + log `) (n− 1) · 16`

Falcon 3PC [12] Yes (n−1)(7+log `) (n− 1) · 32`

CryptFlow 3PC [17] No 9(n− 1) (n− 1)(6 log p+ 19)`

SecureNN 3PC [11] No 10(n− 1) (n− 1)(8 log p+ 24)`

Ours 3PC No 2
n(n−1)

2
(`x + 2)`

SWIFT 4PC [19] Yes logn(1 + log `) (n− 1) · 16`

of the total overhead of an inference in PPML, and the
comparison operation is the core of ReLU and Maxpool.
We thus review different secure comparison methods. Let
the input x ∈ Zq where log2 q = `, the overheads of the
four mainstream comparison protocol types are as follows.
Note that “the comparison between two secrets”, “the sign
determination”, and “the comparison between a secret and
a constant” are equivalent in some way.
• A2B-CMP-B2A: ABY3 [14], SWIFT [19], and Crypt-

GPU [13] first transform the secret input from
arithmetic-form to Boolean form (A2B), then perform
the bit-wise comparison, followed by a reversed trans-
formation (B2A). This method usually takes O(log `)
rounds and communicates O(1) or O(`) bits in Zq.
For example, the ReLU protocol in SWIFT [19] takes
3 + log ` rounds and 10` bits,

• GC-based-CMP: GAZZLE [7], ASTRA [15],

ABY2.0 [9], ABY [23], SecureML [24], and
Trident [21] apply the classical generic Yao garble-
circuit (GC) method [1] to the secure comparison
problem. Despite its optimized round overhead,
the communication amount is usually significant.
For instance, the communication bandwidth using
EMP [26] is 18κ`− 6κ = 61, 440 bits under a typical
setting of κ = 128, ` = 40.

• Random-masking-CMP: In Falcon [12] and Se-
cureNN [11] the shares of an input x is masked by
a random r. The masked input e := x+r is then made
public, and the result of comparing r with q/2 − e
thus reflects the relation between x and q/2, which
implies the sign of x. The overhead of this method
is O(1) or O(log `) rounds and O(`) bits, e.g, Fal-
con [12]’s ReLU spends 5 + log ` rounds and 32` bits,
and SecureNN [11]’s ReLU requires 10 rounds and
8 log p + 24` bits, where p is a small field modulus
(e.g., p = 67).

• MSB-decomposition-CMP: In Edabits [25], the shares
of x, e.g., [x]0 and [x]1, is represented by [x]0 := [x]′′0 ·
d q2e+[x]′0 and [x]1 := [x]′′1 · d

q
2e+[x]′1. Then, checking

whether [x]′0 + [x]′1 ≥ d
q
2e and computing [x]′′0 ⊕ [x]′′1

offers the shares of two intermediate values [temp1]
and [temp2], respectively. The sign of x is obtained by
1− [temp1⊕ temp2]. The Edabits [25] communication
overheads are 5 + log ` rounds and 80` bits.

All protocols except the GC-based ones take more than
two rounds of communication. Nevertheless, the GC-based
method takes considerably more communication bandwidth
compared to the secret-sharing-based ones. Thus our work
enjoys a significant round complexity advantage compared
to prior works.

For the maxpool layer in PPML, we investigate the
performance of protocols for the functionality of finding the
maximum element.
• Repeated comparison: The maximum protocols in

CryptFlow [17], Falcon [12], and SecureNN [11] get
the output by sequentially comparing the output from
the previous comparison to the next input element.
Intuitively, the sequential operations take O(n) rounds.
In particular, Falcon [12]’s Maxpool requires (n− 1) ·
(7 + log `) rounds and (n− 1) · 32` bits.

• Binary search: SWIFT [19] follows this method, in
which the comparison is recursively applied to every
different pair of inputs, until the output is narrowed
down to the maximum. The protocol takes log n · (3 +
log `) rounds and (n− 1) · 16` bits.

Again, our Maxpool protocol outperforms other protocols
using these two methods in terms of round complexity.
We compare the number of communication rounds and the
cost of the dominant one-way bandwidth in our ReLU and
Maxpool protocols against those in the literature in Tab. 1.

1.2. Our contributions

We summarize the contributions of this work as follows.

• We define a variable ξ = ξ(x) := x if an input x ∈ [0, 2`x)
or ξ = ξ(x) := q − x if x ∈ (q − 2`x , q), and λ refers
to the effective bit length of ξ. We use TRC(x, λ− 1) or
TRC(x, λ) to represent truncating λ or λ− 1 bits from x.
We prove the inevitable existence of 1 or q− 1 for a pos-
itive or a negative input even if errors occur (Lemma 3).
We further show the maximum numbers of truncations
required to compute TRC(x, λ − 1) or TRC(x, λ) in
Lemma 4. Based on Lemma 3 and Lemma 4, we design
a novel two-round 3PC DReLU protocol without prepro-
cessing.

• After applying some optimization techniques, we further
extend the DReLU protocol to other non-linear functions
in PPML, including the Equality, ABS, ReLU, Dynamic
ReLU (Leaky ReLU, PReLU, RReLU), ReLU6, Piece-
wise Linear Unit (PLU), MAX, MIN, SORT, and median
(MED) functions. By carefully merging the multiplication
operation(s) into the DReLU operation, we manage to
achieve two rounds of communication for all the afore-
mentioned protocols. In comparison, the corresponding
ReLU or MAX protocols in prior works usually have
dozens of rounds.

• We implement all the protocols and evaluate the per-
formance in a LAN network, composed of three VMs
in the same cloud region. Our protocols could achieve
performing around 90,000 DReLU/ReLU or 3,200 Max-
pool (for nine inputs) operations per second with batch
processing. Under the same settings and environment 2,
our ReLU protocol has a one or two order(s) of magnitude
improvement than the state-of-the-art works Edabits [25]
and Falcon [12] without batch processing.

Most existing MPC protocols to evaluate non-linear func-
tions rely on sequentially dependent computation, e.g., A2B
switching or GC, and hence are not quite GPU-friendly. In
comparison, all of our Bicopter protocols (e.g., ReLU, CMP,
and Maxpool) are suitable for GPU implementation since
most of their computation steps are parallelizable.

For the rest of the paper, Sect. 2 introduces the nota-
tions, system settings, related backgrounds, and a key build-
ing block, i.e., the truncation protocol. Sect. 3 intuitively
presents the novel DReLU protocol. Sect. 4 extends DReLU
to other non-linear functions in PPML. Sect. 5 analyses the
concrete overhead of our protocols, and exhibits the perfor-
mance of our implementations compared with Edabits [25]
and Falcon [12]. Finally, Sect. 6 concludes this paper. In
Appendix, App. A introduces the fixed-point computation to
handle decimal arithmetic. App. B presents the non-linear
functions used in this paper. App. C presents the proofs of
all lemmas used in this paper. App. D proposes a concrete
example for our DReLU protocol.

2. Preliminary

In this section, we first introduce the system settings
in Sect. 2.1, including the topology, the security model,

2. We take the honest-majority and passive security settings and one
single threading in each VM machine. The ring size and the precision of
inputs are set to 64bits and 32bits, respectively.

TABLE 2: Notation table.

Notation Description
:= defined as
i, j, k indexes
x, y or {xi} a single input x or y, or an input array {xi}
ξ if an input x ∈ [0, 2`x) then ξ = ξ(x) := x;

if an input x ∈ (q − 2`x , q) then ξ = ξ(x) := q − x;
ξ can be recognized as the “absolute value” of x;
the binary form of ξ is {ξ`x−1, ξ`x−2, · · · , ξ1, ξ0}

q, Zq an integer ring Zq := [0, q − 1] with the modulus q
+,−, · addition, subtraction, and multiplication in Zq
`, `x ` := log2 q; `x is the precision of the input
λ ξλ−1 is the most significant non-zero bit of ξ;

λ is defined as the effective bit length of ξ
r, t a random mask, a random flipping bit
P0, P1, P2 three participants
[x], [x]0, [x]1 [x] := ([x]0, [x]1) is the two-party secret sharing of x
a, b, c, d, e a Beaver triple with c = ab, d = x− a, e = y − b
{ui}, {vi}, {wi} arrays used in the DReLU protocol
Π{·} a random shuffle acting on an array
~φ, ~ψ, ~θ vectors used in the MAX/MIN/SORT/MED protocols
M := {mi,j} mi,j denotes the (i, j)-th element in the matrix M
xi, θi xi or θi is the i-th item of {xi} or ~θ
[{xi}], [~θ] the shares of the array {xi} and the vector ~θ, resp.
α, β, γ constants

P2

P0 P1

Three participants seed02

seed12

seed01

seed12

seed01

seed02

Client

Secret sharing Reconstruction

Figure 2: System settings.

the definition of communication rounds, and the format of
numbers used in this system. In Sect. 2.2 we introduce
the background of secret sharing. In Sect. 2.3 we recall
the truncation protocol proposed in SecureML [24]. All
notations used in this paper are listed in Tab. 2.

2.1. System settings

A typical three-party computation (3PC) setting (Fig. 2)
is used in this paper, which is also commonly used in previ-
ous 3PC PPML works [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19]. The input(s) from a client is secretly shared
between the participants. Then, the participants securely
compute the corresponding shares of the result. Finally,
the client reconstructs the shares of the result to form the
output(s).
Security model. In our protocol, all three participants (P0,
P1, and P2) are honest-but-curious, i.e., semi-honest. We
take the honest majority setting. It is assumed that there

would be no collusion between any two of three participants.
Hence, the protocol guarantees none of the participants can
break the input, intermediate, or output secrecy alone.
The number of communication rounds. 3 In a 2PC or
MPC protocol, some communication passes can be executed
in parallel, and thus the round complexity of our protocol
refers to the number of unparallelizable rounds, following
the previous MPC-based PPML works [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].
Pre-shared seed. We assume that there are pre-shared pseu-
dorandom seeds among participants, i.e., P0 and P1, P0 and
P2, and P1 and P2, share the seeds seed01, seed02, and
seed12, respectively (as depicted in Fig. 2). Note that the
seeds should be kept secret from the other participant, e.g.,
P2 does not know the value of seed01.
Complement Expression. In a modern computer, a number
is expressed in the complement form. For a positive number,
the computer stores it in its original form; for a negative
number, the complement code is used for storage. In this
paper, we consider an integer ring Zq = [0, q− 1], in which
q is the modulus and the length of q is ` := log2 q. Unless
explicitly stated, all arithmetic operations in this paper are
assumed in Zq.

For a number x of length `x in this ring, i.e., x ∈
[0, 2`x)

⋃
(q − 2`x , q), it follows the constraint ` > `x.

Take q = 216, `x = 8 as an example. The positive integer
x = 0b10111011 is expressed as 0b0000000010111011.
The negation of x is expressed as q − x, which is
0b1111111101010101 in its binary form. For simplicity,
we use integers to illustrate our protocols. A fixed-point
computation method is introduced in App. A to handle
decimal arithmetic.
Non-linear Functions in PPML. A function satisfying
F (x) = α · x + β is called a linear function. Otherwise,
it is a non-linear function. Convolution is a typical example
of linear functions. The common non-linear function used in
machine learning is ReLU (Eq. 1), which could be derived
from DReLU (Eq. 2). The definitions for other non-linear
functions are presented in App. B.

ReLU(x) =

{
x, x ≥ 0

0, x < 0
= DReLU(x) · x (1)

DReLU(x) =

{
1, x ≥ 0

0, x < 0
(2)

2.2. Secret Sharing

This paper focuses on the additive secret sharing scheme
with an unbalanced setting. A plaintext message x is shared
between participants P0 and P1, which satisfies the relation
x := [x]0 +[x]1. An unbalancing model means that P2 does
not hold any share of the input. Moreover, the shares have
the linear homomorphic property, i.e., [x] + constant =

3. For a traditional two-party security protocol, a two-pass protocol is
named as an “one-round” protocol. We do not use this definition in this
paper.

[x+ constant], [x1] + [x2] = [x1 +x2] and constant · [x] =
[constant ·x]. 4 If x and constant are both binary numbers,
[x] ⊕ constant can be computed by [x] + constant − 2 ·
constant·[x]. Similarly, [x1]⊕[x2] = [x1]+[x2]−2·[x1 ·x2]
if both x1 and x2 are binary.

In order to perform multiplication among two shares,
i.e., [x · y], Beaver triples [4] (the shares of three correlated
secrets [a], [b], and [c]) are utilized to decrease the online
communication overhead. Participants first compute [d] :=
[x − a] and [e] := [y − b], then reconstruct d and e. Next,
the shares [xy] could be locally obtained by [x · y] = d · e+
d · [b] + e · [a] + [c]. 5

To further decrease the triple generation overhead, we
use a trick proposed in [10]. For more details, P0 and
P2 generate [a]0, [b]0, and [c]0 using seed02, while P1

and P2 generate [a]1 and [b]1 using seed12. Finally, P2

computes a qualified [c]1 = ([a]0 + [a]1) · ([b]0 + [b]1)− [c]0
and sends [c]1 to P1, which is the only communication
overhead during the triple generation. This generation could
be mirrored, in which P2 computes [c]0 and sends [c]0 to P0,
correspondingly. If more than one triple is used in a protocol,
the generation of half of the triples could be mirrored to
balance the communication.

The seeds are also utilized to simplify the share gener-
ations for some special values. For example, when there is
a need to have shares of constant among P0 and P1. P0

assigns a generated random ring element r from seed01 as
[constant]0, while P1 regards constant− r as [constant]1.
The zero-value and one-value secure shares would be uti-
lized in our protocols.

2.3. The Truncation Protocol with Errors

SecureML [24] proposes an MPC-based truncation pro-
tocol to keep the precision of a secretly shared fixed-point
number during the computations. In this non-interactive pro-
tocol, P0 and P1 (respectively holding the [x]0 and [x]1 of
a shared x) perform their own right shifting operation(s) on
their shares individually. The k-bit non-cyclic right shifting
is denoted by rShift(x, k), without padding zero in the left
hand. Specifically, P0 directly right shifts its share for k bits.
P1 takes the input negation and then does another negation
after k-bit shifting. Finally, P0 and P1 withhold the shares

[TRC(x, k)]0 :=rShift([x]0, k),

[TRC(x, k)]1 :=q − rShift(q − [x]1, k).

Due to the one-bit error, the k-bit truncation protocol
for x (denoted by TRC(x, k)) would lose one bit of ac-
curacy at the least significant bit. We define the output

4. For [x]+constant, only one participant is required to add the constant
to his secret share, e.g., [x]0 + constant, while the other participant does
nothing. Such notation is used to represent adding a constant number to a
secret share for the rest of the paper.

5. The equation lies in x·y = (x−a+a)·(y−b+b) = (d+a)(e+b) =
(de+ db+ ea+ ab) = (de+ db+ ea+ c).

of an exact truncation as that of k-bit right shifting, i.e.,
trc := rShift(x, k). Hence, it is possible that

[TRC(x, k)]0 + [TRC(x, k)]1

=TRC(x, k) ∈ {trc− 1, trc, trc + 1}.

For an `x-precision input x ∈ Zq and ` = log2 q, let
ξ = ξ(x) := x if x ∈ [0, 2`x) (a defined positive input and
a zero input) and ξ = ξ(x) := q − x if x ∈ (q − 2`x , q) (a
defined negative input). Hence, ξ keeps as defined positive.
Then, the truncation result with errors could be presented
by Lemma 1.
Lemma 1. In a ring Zq, let x ∈ [0, 2`x)

⋃
(q−2`x , q), where

` > `x + 1. Then we have the following results with
probability 1− 2`x+1−`:
• If x ∈ [0, 2`x), then TRC(x, k) = rShift(ξ, k) + bit,

where bit = 0 or 1.
• If x ∈ (q−2`x , q), then TRC(x, k) = q− rShift(ξ, k)−

bit, where bit = 0 or 1.

Lemma 1 proves the corresponding statement proposed
in [24, Sect. 4.1] with a more precise characterization of
the ±1 error. We show the possible truncation error is +1
or −1 for a positive or a negative input respectively, while
[24, Theorem 1] simply states the existence of potential
±1 error. Moreover, Lemma 2 presents a special case of
Lemma 1, i.e., when errors do occur. As we will show
later, our sign determination protocol benefits from a better
understanding of how and when the ±1 error occurs. The
proofs of Lemma 1 and Lemma 2 are presented in App. C.

3. Two-round DReLU Protocol without Pre-
processing

In this section, we present the basis of Bicopter, the sign
determination (DReLU) protocol. We first describe how do
we determine the sign of an input by using repeated trun-
cations in Sect. 3.1. In Sect. 3.2, we utilize the result array
from repeated truncations to form a “strawman” protocol
which computes the DReLU function, but suffers from a few
privacy issues. Finally, in Sect. 3.3 we show that the privacy
issues can be solved by adding additional improvements on
top of the strawman protocol, which leads to the complete
DReLU protocol.

3.1. The necessity of repeated truncations

Recall that our aim is to determine the output of
TRC(x, λ − 1) or TRC(x, λ), where λ is the effective bit-
length of ξ. Lemma 3 proves that if TRC(x, λ − 1) or
TRC(x, λ) is 1, the input is positive; if it is q− 1, the input
is negative. However, as mentioned before, λ is unknown
to all participants in an MPC context. To address this prob-
lem, we can simply perform `x times of probabilistic trun-
cations and output an array {TRC(x, 1), · · · ,TRC(x, λ −
1),TRC(x, λ), · · · ,TRC(x, `x)}. Lemma 4 states that the
result of TRC(x, λ − 1) and TRC(x, λ) is included in this

TABLE 3: An example of truncations without errors.

x = 0b00010110 x = q − 0b00010110

Opt. Value Value
TRC(x,1) 0b00001011 q − 0b00001011

TRC(x,2) 0b00000101 q − 0b00000101

TRC(x,3) 0b00000010 q − 0b00000010

TRC(x,4) 0b00000001 q− 0b00000001

TRC(x,5) 0b00000000 0b00000000

TRC(x,6) 0b00000000 0b00000000

TRC(x,7) 0b00000000 0b00000000

TRC(x,8) 0b00000000 0b00000000

TABLE 4: An example of truncations with errors.

x = 0b00010110 x = q − 0b00010110

Opt. Value Err. Value Err.
TRC(x,1) 0b00001011 0 q − 0b00001011 0

TRC(x,2) 0b00000110 +1 q − 0b00000110 −1

TRC(x,3) 0b00000010 0 q − 0b00000010 0

TRC(x,4) 0b00000001 0 q−0b00000001 0

TRC(x,5) 0b00000001 +1 q−0b00000001 −1

TRC(x,6) 0b00000001 +1 q−0b00000001 −1

TRC(x,7) 0b00000000 0 0b00000000 0

TRC(x,8) 0b00000000 0 0b00000000 0

array. In other words, by checking the existence of 1 or q−1
in this array, we can determine the sign of the input.

Lemma 5 and Lemma 6 prove that the behavior of the
tail elements in the array follows a specific pattern. Based
on Lemma 1-6, we formally introduce Theorem 1.
Theorem 1. For an `x-bits input x ∈ Zq, let ξ = ξ(x) := x if

x ∈ (0, 2`x), and let ξ = ξ(x) := q−x if x ∈ (q−2`x , q),
in which ` := log2 q. The binary form ξ is defined as
{ξ`x−1, ξ`x−2, · · · , ξ1, ξ0}, in which ξi denotes the i-th
bit and ξ :=

∑`x−1
i=0 ξi ·2i. λ is the effective bit length of

ξ, i.e., ξλ−1 = 1 and λ+1 < `. Set ξ := ξ′′·2k+ξ′, where
ξ′′ ∈ [0, 2`x−k) and ξ′ ∈ [0, 2k), so that rShift(ξ, k) =
ξ′′. Then, for any value ˆ̀≥ λ, we have the following
results with probability 1− 2λ+1−`:
• For x = ξ, there exists positive numbers λ′ and λ′′

(λ′ ≤ λ′′ ≤ `x) satisfying TRC(ξ, j) = 1 for λ′ ≤ j ≤
λ′′, and TRC(ξ, j) = 0 for j > λ′′.

• For x = q− ξ, there exists positive numbers λ′ and λ′′
(λ′ ≤ λ′′ ≤ `x) satisfying TRC(q − ξ, j) = q − 1 for
λ′ ≤ j ≤ λ′′, and TRC(q − ξ, j) = 0 for j > λ′′.

An example of the outcome array with `x times of exact
truncations (without errors) for both a positive and a negative
input is shown in Tab. 3. Tab. 4 shows an example of the
outcome array with `x times of probabilistic truncations
(with errors). Due to the limited space, we postpone the
formal proof to App. C.

3.2. Strawman DReLU protocol

After outputting an array {TRC(x, 1), · · · ,TRC(x, `x)},
we are now ready to produce the “strawman” protocol that

TABLE 5: Subtracting one from each element in the truncation
result array (with errors).

x = 0b00010110 x = q − 0b00010110

Opt. Value Err. Value Err.
TRC(x, 1)− 1 0b00001010 0 q − 0b00001010 0

TRC(x, 2)− 1 0b00000101 +1 q − 0b00000101 −1

TRC(x, 3)− 1 0b00000001 0 q − 0b00000001 0

TRC(x, 4)− 1 0b00000000 0 q − 0b00000010 0

TRC(x, 5)− 1 0b00000000 +1 q − 0b00000010 −1

TRC(x, 6)− 1 0b00000000 +1 q − 0b00000010 −1

TRC(x, 7)− 1 q − 0b00000001 0 q − 0b00000001 0

TRC(x, 8)− 1 q − 0b00000001 0 q − 0b00000001 0

Algorithm 1 Strawman DReLU protocol.
Input: the shares of x
Output: the shares of DReLU(x)

// P0 and P1 initialization.
1: P0 and P1 generate `x numbers of non-zero random

ring elements {r1, · · · , r`x} from seed01.
2: P0 and P1 set [ui] := [TRC(x, i)]−1 and [vi] := ri ·[ui],

for ∀i ∈ [1, `x].
3: P0 and P1 set [{wi}] := [Π{vi}], using the shuffle-seed

generated from seed01.
4: P0 and P1 send the shares [{wi}] to P2.

// P2 processes.
5: P2 reconstructs {wi}, and sets DReLu(x) = 1 if there

exists zero(s) in the array; otherwise DReLu(x) = 0.
6: P2 shares DReLu(x) to P0 and P1.

computes the DReLU function. According to the secrecy
requirement in our system, P2 should not learn anything
about the input x. Hence, P0 and P1 should mask and shuffle
the shares of this array before revealing to P2. The masking
process could be achieved by multiplying each element in
this array by a non-zero random ring element. The random
ring elements and the shuffle-seed could be generated from
a shared seed between P0 and P1, i.e., seed01.

We immediately notice that, we are not able to determine
the target element after multiplying 1 or q − 1 by a non-
zero random ring element. To address this issue, we can
either add one to or subtract one from each element in
this array according to the needs. For simplicity, we use
{ui} to represent the new array (Tab. 5). By doing this,
checking the existence of 1 or q− 1 in the original array is
transferred into checking that of 0 in {ui}, which would not
be affected by the masking process. Now, P2 can reconstruct
the shares from P0, P1 and output the result of the DReLU
function according to the existence of 0. We present the
strawman DReLU protocol in Alg. 1 and Fig. 3a. However,
the strawman protocol still suffers from a few privacy issues.
• Despite multiplicative masking and shuffling, P2 still

learns the sign of the DReLU result which is not allowed
according to our security definition.

• Due to the one-bit error, there might be continuous zeros
in the array {ui} (Tab. 5), which leaks information about

the range of x.
• We omit the corner case in the strawman DReLU protocol.

In particular, the protocol in Alg. 1 does not work when
x = 0 or x = 1.

In the next subsection, we show how to solve these problems
using common techniques in secure multiparty computation.

3.3. The DReLU procotol

In this subsection, we improve the strawman protocol to
form the complete DReLU protocol.
Masking the DReLU output with random input nega-
tion. We can prevent P2 from learning the actual sign of
x := (−1)

t ·x by flipping a coin t using the shared seed01

between P0 and P1. After P2 responds DReLU(x)′, P0

and P1 negate DReLU(x)′ according to t. This negation
DReLU(x) = t ⊕ DReLU(x)′ = t + DReLU(x)′ − 2t ·
DReLU(x)′ is a linear operation since P0 and P1 knows
t. Since P2 does not know about seed01, DReLU(x) is
completely masked by t.
Dealing with continuous zeros using summation. To avoid
the possible continuous zeros in the output array leaking
information about the range of the input x, P0 and P1

could instead send the summation of subarrays, i.e., let
ui := TRC([x], i) and vi := (

∑`x
k=i uk)− 1, for i ∈ [1, `x].

By doing this, the continuous 1-values in {ui} would result
in a single 0 in {vi} for a positive input. Tab. 6 depicts an
example.
Handling the input of one. Notice that if the input value
is 1, then truncating it even by one position would result in
zero instead of the 1 or q−1 that we desire. Thus we append
[x] itself to the beginning of the output array {ui}. This step
is applied after the previous random negation operation.
Handling the input of zero. The DReLU function is defined
to output 1 at the input point of 0, i.e., DReLU(0) := 1. To
accomplish this goal, we append an additional item to the
truncation result array, denoted as u∗. In particular, we set
u∗ := (−1)

t and v∗ := u∗+ coeff · u0− 1 where u0 should
be (−1)tx (after the random negation). coeff is a positive
constant. We want v∗ to satisfy the following constraint

if and only if x = 0, t = 0, then v∗ = 0.

This additional element v∗ assures the correct output of
DReLU when x = 0, regarding the flipping coin t, mean-
while, it does not affect the correctness of DReLU other
inputs.

We select the value of coeff as 3 and briefly discuss the
reason to do so. Apparently when x = 0 the coeff term does
not contribute to v∗ and thus we only need to concentrate on
the x 6= 0 case, which should satisfy (−1)t(1 + coeff ·x) 6=
−1 (mod q). An intuitive way could be used to find the
minimum coeff value, if the input x ranges (0, 2`x)

⋃
(q −

2`x , q). When coeff = 1 or 2, x = q−2 or x = q−1 breaks
the aforementioned constraint, respectively. When coeff =
3, suppose the condition does not hold, which implies coeff ·
x = 0 or −2 (mod q). Since we have `x ≤ ` = log2 q, it

P2P0 P1

Round I [{wi}]0 [{wi}]1

P0 and P1 do the following:
1) [ui] := [TRC(x, i)]− 1 2) [vi] := ri · [ui]
3) send [{wi}] := [Π{vi}] to P2

P2P0 P1

Round II [DReLU(x)]0 [DReLU(x)]1

P2 shares DReLU(x).

P2P0 P1

Round I [{wi}]0 [{wi}]1

P0 and P1 do the following: 1) [x] := (−1)t · [x],
2) [u∗] := [(−1)t], [u0] := [x], [ui] := [TRC(x, i)], 3) [v∗] := [u∗] + 3[u0]− 1,

[vi] := (
∑`x
k=i[uk])− 1, ∀i ∈ [0, `x] 4) send [{wi}] := [Π{ri · vi}] to P2.

P2P0 P1

Round II [DReLU(x)′]0 [DReLU(x)′]1

P2 shares DReLU(x)′. P0 and P1 output the shares of DReLU(x) = DReLU(x)′ ⊕ t.

(a) Strawman-DReLU (b) DReLU

Figure 3: Strawman-DReLU and DReLU protocol overview.

TABLE 6: Summing-then-subtracting-one on the truncation results
to avoid the leakage of the input range, with one-bit errors.

x = 0b00010110 x = q − 0b00010110

Opt. Value Value∑8
k=1 TRC(x, k)− 1 0b00010101 q − 0b00010111∑8
k=2 TRC(x, k)− 1 0b00001010 q − 0b00001100∑8
k=3 TRC(x, k)− 1 0b00000100 q − 0b00000110∑8
k=4 TRC(x, k)− 1 0b00000010 q − 0b00000100∑8
k=5 TRC(x, k)− 1 0b00000001 q − 0b00000011∑8
k=6 TRC(x, k)− 1 0b00000000 q − 0b00000010∑8
k=7 TRC(x, k)− 1 q − 0b00000001 q − 0b00000001∑8
k=8 TRC(x, k)− 1 q − 0b00000001 q − 0b00000001

holds that coeff · x < q if x > 0 and coeff · x > −q if
x < 0. Therefore the constraint that coeff ·x 6= 0 and 6= −2
is satisfied.

Finally, these improvements are combined with our
complete DReLU protocol (Alg. 2 and Fig. 3b). P0 and
P1 first generate a random bit t from seed01, set negate
the input accordingly, i.e., x := (−1)t · x. They also
set u∗ and u0 to deal with the special input zero and
one. Then they execute a repeated times of probabilistic
truncations on the input to get an array {ui}, in which
ui := TRC(x, i),∀i ∈ [1, `x]. Next, u∗ is set to v∗+3v0−1,
and vi = (

∑`x
k=i vk)− 1,∀i ∈ [0, `x]. Recall the summation

would eliminate the possible continuous zeros that leak input
information. P0 and P1 finally mask and shuffle the output
array using seed01, i.e., {wi} := Π{ri · ui}. After P2

reconstructs {wi} and sets DReLU(x)′ according to whether
{wi} contains zero, P2 shares the output to P1 and P0 who
subsequently removes the random negation to get shares of
DReLU(x). We demonstrate the processing of a positive
input example in Fig. 7 in App. D.

4. Protocols for Other Non-linear Functions

In this section, we describe how the DReLU protocol
could be extended to securely compute various non-linear
functions including the Equality, ABS, ReLU, Dynamic
ReLU (Leaky ReLU, PReLU, RReLU), ReLU6, Piecewise
Linear Unit (PLU), MAX, MIN, SORT, and median (MED)

Algorithm 2 DReLU protocol.
Input: the shares of x
Output: the shares of DReLU(x)

// P0 and P1 initialization.
1: P0 and P1 generate `x+2 numbers of non-zero random

ring elements {r∗, r0, r1, · · · , r`x} from seed01.
2: P0 and P1 set [x] := (−1)t · [x].
3: P0 and P1 set [u∗] := [(−1)t], [u0] := [x], and [ui] :=

[TRC(x, i)], ∀i ∈ [1, `x].
4: P0 and P1 set [v∗] := [u∗] + 3 · [u0] − 1, and [vi] :=

(
∑`x

k=i[uk])− 1,∀i ∈ [0, `x].
5: P0 and P1 set [{wi}] := [Π{ri · ui}], using the shuffle-

seed generated from seed01.
6: P0 and P1 send the shares [{wi}] to P2.

// P2 processes.
7: P2 reconstructs {wi} and sets DReLu(x)′ = 1 if there

exists zero(s) in {wi}; otherwise DReLu(x)′ = 0.
8: P2 shares DReLu(x)′ to P0 and P1.
9: P0 and P1 output the shares of t⊕ DReLu(x)′.

functions. The definition of these functions is presented in
App. B.

4.1. DReLU Variants

The protocols for the functions BitExt(x), MSB(x) and
CMP(x, y) could be derived from the DReLU function
(recall that we assume the inputs are encoded in the com-
plementary form as in Sect. 2). We mainly introduce how
to construct the Equality function in Alg. 3, which invokes
the DReLU protocol (Alg. 2) twice. For inputs x and y, we
have

Equality(x, y) = 1− DReLU(x− y)⊕ DReLU(y − x)

=1− (DReLU(x− y)′ ⊕ t0)⊕ (DReLU(y − x)′ ⊕ t1)

=1− DReLU′′ ⊕ t′,

in which t0 and t1 are the random flipping bits in the
two invocations, respectively. Specifically, after P0 and P1

invoke DReLU(x−y) and DReLU(y−x), the response from
P2 can be computed by an XOR operation, i.e., the shares
of DReLU′′ := DReLU(x− y)′ ⊕DReLU(y − x)′. Finally,

Algorithm 3 Equality protocol.
Input: the shares of x and y
Output: the shares of Equality(x, y)

1: P0 and P1 set [x−y] = [x]−[y] and [y−x] = [y]−[x] as
the input shares of the first and second DReLU instance,
using the random bits t0 and t1, respectively.

2: P2 obtains DReLU(x − y)′ and DReLU(y − x)′ from
the two instances, sets DReLU′′ := DReLU(x − y)′ ⊕
DReLU(y − x)′, and shares DReLU′′ to P0 and P1.

3: P0 and P1 set t′ := t0 ⊕ t1, and output the shares of
1− t′ ⊕ DReLU′′.

Algorithm 4 ReLU protocol.
Input: the shares of x
Output: the shares of ReLU(x)

1: P0 and P2 generate [a]0, [b]0, [c]0 from seed02. P1 and
P2 generate [a]1, [b]1 from seed12

2: P0 and P1 input [x] to DReLU.
3: P0 sends [e]0 := [x]0− [a]0 to P1, and P1 sends [e]1 :=

[x]1 − [a]1 to P0.
4: P2 obtains DReLU(x)′ from DReLU, computes

[c]1 := ([a]0 + [a]1) · ([b]0 + [b]1)− [c]0, and
d := DReLU(x)′ − ([b]0 + [b]1);
and sends d to P0, d and [c]1 to P1.

5: P0 and P1 set e = [e]0 + [e]1, and computes the shares
of the output, i.e., [ReLU(x)] := (1−2t) · (d ·e+d[a]+
e[b] + [c]) + t · [x].

P0 and P1 also XOR the two random bits, i.e., t′ := t0⊕ t1,
then obtain the shares of the Equality function output.

4.2. ReLU

As mentioned in Sect. 2.1, the ReLU function could
be decomposed into DReLU multiplied by the input value.
Trivially, P0 and P1 could utilize the Beaver triple to
perform this multiplication on shared values, as shown in
Fig. 4a. Nevertheless, when the triple is generated by P2,
the communication for DReLU and triple generation could
be integrated to further reduce the round number from three
to two, as shown in Fig. 4b. In particular, notice that after
completing the DReLU protocol, P2 holds DReLU(x)′, and

DRelu(x) = t⊕DRelu(x)′ = t+DRelu(x)′−2·t·DRelu(x)′.

Moreover since ReLU(x) = x · DReLU(x), we have

[ReLU(x)] = (1− 2t) · [DRelu(x)′ · x] + t · [x]

=(1− 2t) · (d · e+ d[a] + e[b] + [c]) + t · [x].

The share multiplication is transformed from [DRelu(x) ·x]
to [DRelu(x)′ · x], which is the key to the communication
optimization. It is worth noticing that d := DRelu(x)′ −
b does not break the secrecy of DRelu(x)′, since none of
P0 and P1 knows the integrate b value. In this way, we
manage to decrease the communication rounds required for
the protocol down to two. This process is shown in Alg. 4

4.3. ABS, Dynamic ReLU, MAX2, MIN2, and Fun-
nel ReLU

Building on the ReLU protocol, the protocols for the
ABS (Eq. 4), Dynamic Relu (Eq. 5), MAX2 (Eq. 10),
MIN2 (Eq. 11), and Funnel ReLU (Eq. 12) functions could
be constructed as follows.

ABS. Since ABS(x) = (2 · DReLU(x)− 1) · x,

[ABS(x)] = [(2 · DReLU(x)− 1) · x]

=[(2 · (DReLU(x)′ ⊕ t)− 1) · x]

=[(2 · (DReLU(x)′ + t− 2 · DReLU(x)′ · t)− 1) · x]

=(2− 4t) · [DReLU(x)′ · x] + (2t− 1) · [x].

Hence, P0 and P1 would computes

(2− 4t) · (de+ d[a] + e[b] + c) + (2t− 1) · [x]

in the step 5 of Alg. 4 for the ABS function.

Dynamic ReLU. Similarly, P0 and P1 would computes

(1− 2t) · (α1 − α0) · (de+ d[a] + e[b] + c)

+((α1 − α0)t+ α0) · [x]

in the step 5 of Alg. 4 for the Dynamic ReLU function.

MAX2 and MIN2. Moreover, for the MAX2(x, y)
and MIN2(x, y) functions, P0 and P1 would reconstruct
e := a− (x− y) in the step 3, then compute

(1− 2t) · (de+ d[a] + e[b] + c) + t · [x− y] + [y],

or [x]− (1− 2t) · (de+ d[a] + e[b] + c)− t · [x− y]

in the step 5 of Alg. 4, respectively.

Funnel ReLU. For the Funnel ReLU function, the
reconstructed e should be a− (x−T(x)) in the step 3, and
the computation in the step 5 of Alg. 4 is

(1− 2t) · (de+ d[a] + e[b] + c) + t · [x− T(x)] + [T(x)].

Since we only modify the message contents used in the two-
round ReLU protocol in Alg. 4, all the protocols described
here keep the round complexity of two.

4.4. Piecewise Linear Unit (PLU)

The ReLU and other variant functions we considered
above could be viewed as piecewise functions with two
segments, which involve one DReLU. More generally, the
number of DReLU invocations is equal to the number of
segments in a piecewise function minus one. Moreover, for
m + 2 segments in a PLU function (Eq. 8), there would
be m + 1 interval points (i.e., γj ,∀j ∈ [0,m]) and m + 2
linear function coefficients (i.e., αj , βj ,∀j ∈ [0,m + 1]),
there would be m + 1 DReLU invocations and m + 2
multiplications.

P2P0 P1

Round I [{wi}]0 [{wi}]1

P0 and P1 request DReLU.

P2P0 P1

Round II [DReLU(x)′]0 [DReLU(x)′]1

P2 shares DReLU(x)′.
P0 and P1 construct [DReLU(x)].

P2

P0 P1

Round III

[c]1

[d]0

[d]1

P2 sends [c]1; P0 and P1 exchange
[d], then construct [ReLu(x)].

[a]0
[b]0
[c]0

[a]1
[b]1

[a]0, [a]1
[b]0, [b]1
[c]0

P2

P0 P1

Round I [{wi}]0 [{wi}]1

[d]0

[d]1P0 and P1 request DReLU and exchange [d].

P2P0 P1

Round II [DReLU(x)′]0 [DReLU(x)′]1 , [c]1

P2 shares DReLU(x)′, and sends [c]1 to P1.
P0 and P1 construct [ReLu(x)].

(a) Strawman-ReLU (b) ReLU

Figure 4: Strawman-ReLU and ReLU protocol overview.

For the j-th segment, the corresponding monomial is

(DReLU(x− γj−1)⊕ DReLU(x− γj)) · (αj · x+ βj)

=(tj−1 ⊕ DReLU(x− γj−1)′ ⊕ tj ⊕ DReLU(x− γj)′)
· (αj · x+ βj)

=(t′j−1,j ⊕ DReLU′′j−1,j) · (αj · x+ βj)

=αj · (1− 2t′j−1,j) · DReLU′′j−1,j · x+ αj · t′j−1,j · x
+ βj · (1− 2t′j−1,j) · DReLU′′j−1,j + βj · t′j−1,j ,

where P0 and P1 computes t′j−1,j := tj−1 ⊕ tj and P2

computes DReLU′′j−1,j := DReLU(x−γj−1)′⊕DReLU(x−
γj)
′. The two special end-point segments (the m-th and 0-th

ones) are as follows.

(DReLU(x− γm)⊕ 0) · (αm+1 · x+ βm+1)

=DReLU(x− γm) · (αm+1 · x+ βm+1)

=(tm ⊕ DReLU(x− γm)′) · (αm+1 · x+ βm+1)

=αm+1 · (1− 2tm) · DReLU(x− γm)′ · x+

+ βm+1 · (1− 2tm) · DReLU(x− γm)′+

+ αm+1 · tm · x+ βm+1 · tm,
and

(1⊕ DReLU(x− γ0)) · (α0 · x+ β0)

=(1⊕ t0 ⊕ DReLU(x− γ0)′) · (α0 · x+ β0)

=α0 · (2t0 − 1) · DReLU(x− γ0)′ · x+ α0 · (1− t0) · x
+ β0 · (2t0 − 1) · DReLU(x− γ0)′ + β0 · (1− t0).

The shares of the triples ([aj], [bj], [cj],∀j ∈ [0,m +
1]) are used to compute the shares [DReLu(x − γ0)′ · x],
[DReLU′′j−1,j · x] (∀j ∈ [1,m]), and [DReLu(x− γm)′ · x].
In total, there would be m + 2 numbers of triples being
consumed. Note that the multiplicand x is the same in these
m + 2 numbers of multiplications (if all αj are not zero),
we would use the same a value in these triples, leading to
the same e := x − a value. Alg. 5 describes the protocol
in detail. For simplicity, we consider a non-mirror case in
Alg. 5. As we discussed in Sect. 2.2, dm+2

2 e triples could
be generated regularly (i.e., P2 sends [c]1 to P1) while the
generation of the remained bm+2

2 c triples could be mirrored
(i.e., P2 sends [c]0 to P0). We achieve this balancing in our
implementation.

ReLU6 is a special case for PLU, in which m = 1, α0 =
β0 = β1 = α2 = γ0 = 0, α1 = 1, β2 = γ2 = 6.

Algorithm 5 PLU protocol.
Input: the shares of x
Output: the shares of PLU(x)

1: P0 and P1 generate the shares of m + 2 numbers of
triples from seed02 and seed12, respectively, where
all a values are identical. Skip the j-th triple if αj =
0,∀j ∈ [0,m+ 1].

2: P0 sends [e]0 := [x]0− [a]0 to P1, and P1 sends [e]1 :=
[x]1 − [a]1 to P0.

3: P0 and P1 input [x − γj] to the j-th DReLU instance,
∀j ∈ [0,m].

4: P2 obtains DReLU(x − γj)
′ from the j-th DReLU

instance, and computes DReLU′′j−1,j := DReLU(x −
γj−1)′ ⊕ DReLU(x− γj)′, ∀j ∈ [0,m].

5: P2 sets d0 := DReLU(x − γ0)′ − b0, dj :=
DReLU′′j−1,j − bj (∀j ∈ [1,m]), dm+1 := DReLU(x−
γm)′ − bm+1.

6: P2 sends dj to P0 and dj , [cj]1 to P1, ∀j ∈ [0,m+ 1].
7: P0 and P1 set t′j−1,j := tj−1 ⊕ tj , ∀j ∈ [1,m], and

output the shares

=αm+1 · (1− 2tm)

· ·(dm+1e+ dm+1[b] + e[am+1] + [cm+1])

+ βm+1 · (1− 2tm) · DReLU(x− γm)′

+ αm+1 · tm · x+ βm+1 · tm
+...

+αj · (1− 2t′j−1,j) · (dje+ dj [b] + e[aj] + [cj])

+ βj · (1− 2t′j−1,j) · DReLU′′j−1,j
+ αj · t′j−1,j · x+ βj · t′j−1,j

+...

+α0 · (2t0 − 1) · (d0e+ d0[b] + e[a0] + [c0])

+ β0 · (2t0 − 1) · DReLU(x− γ0)′

+ α0 · (1− t0) · x+ β0 · (1− t0),

4.5. MAX

In this section, we first introduce the unblind version
of the CMP protocol, in which P2 learns the exact relation
between the inputs. We denote the unblind CMP protocol
as uCMP(x, y) := uDReLU(x − y), which simply omits

Input: 12, 46, 31, 27

P2P0, P1 (global view)

P0 and P1 set the shares
∑3

0[ψi ⊕ θi] = [46]

~ψ

ψ0=12

ψ1=46

ψ2=31

ψ3=27

~φ

φ0=31
φ1=27
φ2=46
φ3=12

φ0

φ1

φ2

φ3

φ0 φ1

uCMP(ψ0,ψ1)
φ2

uCMP(ψ0,ψ2)
φ3

uCMP(ψ0,ψ3)
uCMP(ψ1,ψ2) uCMP(ψ1,ψ3)

uCMP(ψ2,ψ3)

φ0

φ1

φ2

φ3

φ0 φ1 φ2 φ3

1 0 1
0 1
i? 1

Π(~ψ) uCMP

{uCMPi,j}

[~θ]

∀i < i? , uCMPi,i? is 0/NULL.
∀j > i? , uCMPi?,j is 1/NULL.
i? = 2, ~θ = {0, 0, 1, 0}

Figure 5: MAX example.

Algorithm 6 MAX protocol.

Input: the shares of ~ψ = (ψ1, · · · , ψn)
Output: the shares of MAX(~ψ)

1: P0 and P1 shuffle the input array ~ψ using the same
shuffle-seed generated from seed01 and get ~φ, then
compare each pair of elements in ~φ using uCMP, with-
out duplication.

2: P0, P2 and P1, P2 generate the shares of n triples from
seed02 and seed12, respectively.

3: P0 sends [ei]0 := [φi]0 − [ai]0 to P1, and P1 sends
[ei]1 := [φi]1 − [ai]1 to P0, ∀i ∈ [1, n].

4: P0 and P1 send the requests of uCMP(φi, φj) (∀i, j ∈
[1, n] and i 6= j) to P2.

5: P2 determines the target indexes i? satisfying ∀i <
i?, uCMP(φi, φi∗) is 0 or NULL, and ∀j > i?,
uCMP(φi∗ , φj) is 1 or NULL.

6: P2 constructs a weight-one vector ~θ, in which θi? = 1
and θi = 0,∀i 6= i?, i ∈ [1, n].

7: P2 sets di := θi − bi, and sends di to P0, di and [ci]1
to P1, ∀i ∈ [1, n].

8: P0 and P1 set ei := [ei]0 + [ei]1, ∀i ∈ [1, n], and
compute the shares [MAX(~ψ)] =

∑n
i=1[φi · θi] =∑n

i=1(di · ei + di[ai] + ei[bi] + [ci])

the step 2 and 9 of Alg. 2, i.e., without randomly negating
the input and output, while keeping the remaining steps
identical.

Based on the uCMP protocol, we can let P2 com-
pare a list of randomly shuffled inputs which leads to
the functionality of determining the maximum element. In
particular, P0 and P1 first randomly shuffle the n-length
(n > 2) input vector ~ψ to get ~φ using seed01. Then, P0

and P1 compare each pair of items in ~φ by invoking the
uCMP protocol for n·(n−1)

2 times. These invocations form
an upper triangular matrix as illustrated in Fig. 5. After
computing the output of the comparison matrix {uCMPi,j},
P2 looks for index i∗ such that ∀i < i?, uCMPi,i∗ = 0
or NULL and ∀j > i?, uCMPi∗,j = 1 or NULL. P2 then
constructs a result weight-one indicator vector ~θ such that
θi? = 1, and θi = 0,∀i 6= i?, i ∈ [1, n]. Then, P2 sends
the shares of ~θ to P0 and P1. P0 and P1 finally output

the shares of the maximum element, i.e., the shares of
MAX(~ψ) :=

∑n
i=1 φi · θi. Notice that the round-collapsing

optimization of ReLU could also be applied in this case. We
present the details of the algorithm in Alg. 6.

4.6. MIN, SORT, and MED Protocols

Building on the MAX protocol, we could design proto-
cols for the minimum, sorting, and median functionalities.
The MIN protocol is similar to the MAX protocol where we
only need to change P2’s determination strategy (step 5 of
Alg. 6). To determine the minimum element, P2 looks for
the index i? subject to ∀i < i?, uCMPi,i? = 1 and ∀j > i?,
uCMPi?,j = 0.

For the (descending) SORT protocol, P2 should con-
tinuously look for the maximum element in the matrix.
After determining the maximum element (corresponding the
indexes i?), P2 removes the i?-th row and the i?-th column
from the matrix. Then, it repeats the above process until the
matrix is empty. Fig. 6 illustrates this process (the row and
column to be removed are marked in red).

1 0 1
0 1

1

1 1
1

1

Figure 6: P2 repeatedly looks for the index of the maximum value
and removes the corresponding row and column in the descending
order SORT protocol.

After repeating n − 1 times of the above process, P2

could construct a permutation matrix M , in which mi,j = 1
if ψi is the j-th maximum value and mi,j = 0 otherwise.
Finally, P0 and P1 multiply M by ~φ in the secret sharing
form to acquire the shared sorted arrays.

Since the MAX protocol involves multiplications of the
i-th row of the matrix and ~φ for ∀i ∈ [1, n], we only need
n numbers of triples b to mask ~φ. Also notice that we can
apply the balancing technique proposed in Sect. 2 to reduce
the amount of one-way communication.

Similarly, in the ascending order SORT protocol, P2 con-
tinuously searches for the minimum element. Note that, P2

could simultaneously search for the maximum and minimum
element in both the descending and ascending order SORT
protocols, then eliminate two rows and two columns at the
same time, which accelerates the sorting algorithm.

For the MED protocol, we could let P2 repeat the step 5
in Alg. 6 for dn2 e times. Then, P2 constructs the indicator
vector to reflect the index corresponding to the median
element. The remaining steps of MED are the same as those
of the MAX protocol.

5. Evaluation and Experiments

We first evaluate the communication overhead of our
proposed protocols in Sect. 5.1, and then run experiments to
show the practical performance of our protocols in Sect. 5.2.

5.1. Evaluation

We calculate the theoretical communication overhead in
Tab. 7 to have a better view of how the communication
overhead dominates the performance of an MPC protocol.
Comm01, Comm02, and Comm12 denote the uni-direction
communication overhead between P0 and P1, P0 and P2,
and P0 and P1, respectively, while Comm10, Comm20, and
Comm21 correspond to the reverse directions. Commtotal

donates the total communication overhead for each protocol.
If more than one triple is used in a protocol, we consider
a setting in which P2 distributes around half of [c]’s to P0,
while delivering the other half to P1. Among our protocols,
Comm02 or Comm12 has the greatest communication over-
head comparing with other one-way communication pass,
i.e., Comm10, Comm01, etc. Hence, for fairness we use
Comm02 to compare with that of other related protocols
in Tab. 1.

5.2. Experiments

The experiments of our protocols are run under a LAN
setting, i.e., three cloud virtual machines (VM) in the
same region. Each VM has 8 CPUs with 2.2GHz (Intel(R)
Xeon(R) Gold 6161) and 8GiB memory. The PING latency
between each two VMs is around 250µs to 500µs, where one
PING package is 64Bytes. The bandwidth 6 between each
participant ranges from 1250MBytes/s to 1780MBytes/s. We
select q = 240 and `x = 16 for all experiments.

Tab. 8 exhibits the latency, the amortized latency, and the
throughput rate of each protocol, with or without batch pro-
cessing. The latency is calculated by endTime−startTime,
where startTime is when P0 or P1 receives the input
share(s) from a client and endTime is when P0 or P1

sends the output share(s) to a client. All these functions
(in the unbatched mode) could be computed in several
hundred microseconds, which demonstrates our fast per-
formance. Moreover, we launch different sizes of batches
(100, 1,000, 5,000, 10,000, and 20,000) to pursue a better
throughput rate. We also calculate the amortized latency

6. The bandwidth is measured by netperf.

(in microseconds) and the throughput rate (operations per
second) with batch processing. Apparently, increasing the
batch size optimizes the throughput rate. We achieve around
90,000 throughput rate for the DReLU/ReLU protocol and
the amortized latency of each DReLU/ReLU instance is only
around 11µs.

Note that the Maxpool is another non-linear function
used in machine learning. For a 256×256 pixel-picture (a
matrix), with the stride is set to two, would invoke MAX9
for around 16,384 times. Hence, we take the 20,000 batch
size to reflect this practical use case, in which the amortized
latency and throughput rate are 316µs and 3,169 operations
per second, respectively.

We also run the Edabits [25] and Falcon [12] experi-
ments in the same environment. To make a fair comparison,
we select the honest-majority and passive-secure settings
in Edabits and Falcon, and run the implementations in the
single-thread mode. Note that the precision length `x should
be at most `2 , where ` := log2 q. Otherwise, a multiplication
would lead to an overflow for decimal arithmetic. Hence,
we compare our ReLU protocol with Edabits [25] and
Falcon [12] under the settings of ` = 64 and `x = 32 bits
in Tab. 9. Without batch processing, the throughput rate of
Bicopter ReLU achieves 2,759 ops/s, having a one or two
order(s) of magnitude improvement compared with the 66
ops/s or 9 ops/s for ReLU in Edabits or Falcon, respectively.

It is worth noticing that the source code of Falcon [27]
does not contain the preprocessing, but the protocol itself
does contain preprocessing. Therefore, we count the total
overhead of both preprocessing and online for Edabits, but
the online overhead only for Falcon in Tab. 9. Moreover,
we recognize that Edabits and Falcon would perform better
with a larger batch size due to their well-optimized imple-
mentations.

6. Conclusion and Future Works

We propose Bicoptor, which includes several two-round
three-party computation protocols without preprocessing for
PPML. We innovate a novel sign determination protocol,
which relies on a clever use of the truncation protocol.
Bicoptor supports the DReLU, Equality, ABS, ReLU, Dy-
namic ReLU (Leaky ReLU, PReLU, RReLU), ReLU6,
Piecewise Linear Unit (PLU), MAX, MIN, SORT, and
median (MED) functions. The experiments exhibit our fast
performance, which has a one or two orders of magnitude
improvement to ReLU in the state-of-the-art works, i.e.,
Edabits or Falcon, respectively. We are still working on
optimizing the implementation of our protocols and trying
to integrate Bicoptor into an end-to-end PPML application.

Acknowledgment

We would like to thank Zhongkai Li, Wenyuan Tian,
Xianggui Wang, and Hao Guo for their great help and
support in the implementations of Bicopter.

TABLE 7: The communication overhead of our protocols. (DReLU includes DReLU/MSB/BitExt/CMP. ReLU includes
ReLU/ABS/Dynamic ReLU/MAX2/MIN2/Funnel ReLU. `: the bit length of an integer ring Zq = [0, q − 1] (` := log2 q). `x: the
precision of the input. m + 2 piecewise for PLU. n inputs for MAX/MIN/SORT/MED. Prep.: preprocessing. Rnd.: round. Commij :
the communication overhead from pi to pj , counting in bit. Commtotal: the total communication overhead among the three participants.
Comm02 or Comm12 consumes the largest amount of communication in our protocols, which is the dominant one-way communication.)

Protocol Prep. Rnd. Comm01 Comm02 Comm12 Comm10 Comm20 Comm21 Commtotal

DReLU No 2 N.A. (`x + 2)` (`x + 2)` N.A. ` ` (2`x + 4)`

ReLU No 2 ` (`x + 2)` (`x + 2)` ` ` 2` (2`x + 9)`

PLU No 2 ` (m+1)(`x+2)` (m+1)(`x+2)` ` d 5m+10
2
e` b 5m+10

2
c` ((2m+ 1)`x + 9m+ 16)`

RELU6 No 2 ` 2(`x + 2)` 2(`x + 2)` ` d 15
2
e` b 15

2
c` (4`x + 21)`

MAX/MIN No 2 n`
n(n−1)

2
(`x+2)`

n(n−1)
2

(`x+2)` n` d 3n
2
e` b 3n

2
c` ((2 + `x)n2 + (3− `x)n)`

SORT No 2 n`
n(n−1)

2
(`x+2)`

n(n−1)
2

(`x+2)` n` d 3n
2

2
e` b 3n

2

2
c` ((5 + `x)n2 − `xn)`

MED No 2 n`
n(n−1)

2
(`x+2)`

n(n−1)
2

(`x+2)` n` d 3n
2
e` b 3n

2
c` ((2 + `x)n2 + (3− `x)n)`

TABLE 8: The performance of our protocols. (Amt.: amortized. Thru.: throughput rate. q = 240, `x = 16.)

Protocol
Batch Size

1 100 1,000 5,000 10,000 20,000

DReLU
latency(µs) 307 1534 11919 58478 115392 225743
Amt. latency(µs) 307 15.34 11.92 11.70 11.54 11.29
Thru.(ops/s) 3261 65177 83899 85502 86661 88596

Equality
latency(µs) 327 2641 22141 105298 211479 396369
Amt. latency(µs) 327 26.41 22.14 21.06 21.15 19.82
Thru.(ops/s) 3058 37871 45164 47484 47286 50458

ReLU
latency(µs) 321 1526 11710 56100 108116 215122
Amt. latency(µs) 321 15.26 11.71 11.22 10.81 10.76
Thru.(ops/s) 3115 65550 85397 89127 92493 92971

ReLU6
latency(µs) 354 3793 33547 160253 313615 612030
Amt. latency(µs) 354 186.78 96.89 47.39 46.27 15.31
Thru.(ops/s) 2823 5354 10321 21102 21614 65322

MAX4
latency(µs) 387 6974 64290 301658 591872 1150774
Amt. latency(µs) 387 69.74 64.29 60.33 59.19 57.54
Thru.(ops/s) 2583 14340 15555 16575 16896 17380

MAX9
latency(µs) 720 33771 323523 1590045 3187988 6311239
Amt. latency(µs) 720 337.71 323.52 318.01 318.80 315.56
Thru.(ops/s) 1389 2961 3091 3145 3137 3169

SORT4
latency(µs) 419 9334 88634 415351 805343 1647596
Amt. latency(µs) 419 93.34 88.63 83.07 80.53 82.38
Thru.(ops/s) 2387 10714 11282 12038 12417 12139

MED4
latency(µs) 389 7295 63660 300226 586719 1149263
Amt. latency(µs) 389 72.95 63.66 60.05 58.67 57.46
Thru.(ops/s) 2574 13708 15708 16654 17044 17402

TABLE 9: ReLU experiment comparison. (Lat.: latency. Thru.: throughput rate.)

Protocol Prep. Rnd. Commtotal(bit) Lat.(µs) Thru.(ops/s)
Bicopter ReLU ` = 40bits `x = 16bits No 2 1640 321 3115
Bicopter ReLU ` = 64bits `x = 32bits No 2 5696 363 2759
Edabits [25] ReLU ` = 40bits Yes 63 22152 11036 91
Edabits [25] ReLU ` = 64bits Yes 87 34320 15162 66
Falcon [12] ReLU ` = 32bits Yes 10 1752 101814 10
Falcon [12] ReLU ` = 64bits Yes 11 3480 117381 9

References
[1] A. C. Yao, “Protocols for secure computations (extended abstract),”

in FOCS 1982, pp. 160–164.

[2] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
in STOC 1987, 1987, pp. 218–229.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness the-
orems for non-cryptographic fault-tolerant distributed computation
(extended abstract),” in STOC 1988, pp. 1–10.

[4] D. Beaver, “Efficient multiparty protocols using circuit randomiza-
tion,” in CRYPTO 1991, pp. 420–432.

[5] D. Chaum, C. Crépeau, and I. Damgård, “Multiparty unconditionally
secure protocols (extended abstract),” in STOC 1988, pp. 11–19.

[6] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in
USENIX Security 2018, pp. 1651–1669.

[7] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security 2020, pp. 2505–2522.

[8] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “Cryptflow2: Practical 2-party secure inference,” in
CCS 2020. ACM, pp. 325–342.

[9] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Im-
proved Mixed-Protocol secure Two-Party computation,” in USENIX
Security 21, pp. 2165–2182.

[10] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” in AsiaCCS 2018, pp.
707–721.

[11] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” Proc. Priv. Enhancing
Technol., vol. 2019, no. 3, pp. 26–49, 2019.

[12] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” Proc. Priv. Enhancing Technol., vol. 2021,
no. 1, pp. 188–208, 2021.

[13] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-
preserving machine learning on the GPU,” in S&P 2021, pp. 1021–
1038.

[14] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in CCS 2018, pp. 35–52.

[15] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA: high
throughput 3pc over rings with application to secure prediction,” in
CCS Workshop 2019, pp. 81–92.

[16] A. Patra and A. Suresh, “BLAZE: blazing fast privacy-preserving
machine learning,” in NDSS 2020.

[17] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in S&P 2020,
pp. 336–353.

[18] A. P. K. Dalskov, D. Escudero, and M. Keller, “Fantastic four: Honest-
majority four-party secure computation with malicious security,” in
USENIX Security 2021, pp. 2183–2200.

[19] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: super-fast
and robust privacy-preserving machine learning,” in USENIX 2021,
pp. 2651–2668.

[20] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH: fast
and robust framework for privacy-preserving machine learning,” Proc.
Priv. Enhancing Technol., vol. 2020, no. 2, pp. 459–480, 2020.

[21] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4pc
framework for privacy preserving machine learning,” in NDSS 2020.

[22] “Cryptgpu source code,” Github, 2021, https://github.com/
jeffreysijuntan/CryptGPU.

[23] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework
for efficient mixed-protocol secure two-party computation,” in NDSS
2015.

[24] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in S&P 2017, pp. 19–38.

TABLE 10: An example of the fixed-point computation for a
decimal multiplication (q = 240, `x = 16).

Decimal Binary
α=10.82421875 00000000 00000000 00000000 00001010 11010011
β=6.2265625 00000000 00000000 00000000 00000110 00111010
γ=−6.2265625 11111111 11111111 11111111 11111011 11000110
TRC(α · β,8)

00000000 00000000 00000000 01000011 01100101
=67.39453125
TRC(α · γ,8)

11111111 11111111 11111111 11101110 00100010
=−67.39453125

[25] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Im-
proved primitives for mpc over mixed arithmetic-binary circuits,” in
CRYPTO 2020, pp. 823–852.

[26] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient Mul-
tiParty computation toolkit,” https://github.com/emp-toolkit, 2016.

[27] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal,
and T. Rabin, “FALCON source code,” https://github.com/snwagh/
falcon-public, 2021.

Appendix A.
Decimal Arithmetic with Fixed-point Compu-
tation

In a practical PPML application, the inputs and coef-
ficients could be decimal numbers. To express a decimal
number, we consider a typical case in which the bit length
of an integer is the same as that of the fractional part, i.e., the
last `x

2 bits are used to represent the fractional part. Hence,
x :=

∑`x−1
i=0 xi · 2i−

`x
2 where xi is the i-th bit of x. This

expression works for both positive and negative decimal
numbers. After a multiplication, a truncation is required to
recover the original precision. Tab. 10 shows an example.

Appendix B.
Non-linear Function Definition in PPML

Bit-wise univariate function. From DReLU, the bit extrac-
tion (BitExt) and the most significant bit (MSB) functions
are obtained as Eq. 3.

BitExt(x) = MSB(x) =

{
0, x ≥ 0

1, x < 0

=1− DReLU(x)

(3)

Univariate function with two segments. Other functions
could also be derived from DReLU, such as ABS (Eq. 4),
ReLU (Eq. 1), and Dynamic ReLU (Eq. 5). 7

ABS(x) =

{
x, x ≥ 0

− x, x < 0

=DReLU(x) · x+ (DReLU(x)− 1) · x
=(2 · DReLU(x)− 1) · x

(4)

7. Leaky ReLU, PReLU, and RReLU are the special cases of Dynamic
ReLU. For Leaky ReLU, α0 = 0.001, α1 = 1. For PReLU, α0 is a pre-
trained constant and α1 = 1. For RReLU, α0 is a random constant and
α1 = 1.

https://github.com/jeffreysijuntan/CryptGPU
https://github.com/jeffreysijuntan/CryptGPU
https://github.com/emp-toolkit
https://github.com/snwagh/falcon-public
https://github.com/snwagh/falcon-public

Dynamic ReLU(x) =

{
α1 · x x ≥ 0

α0 · x x < 0

(α0, α1 are two constants.)
=α1 · DReLU(x) · x+ α0 · (1− DReLU(x)) · x
=(α0 + (α1 − α0) · DReLU(x)) · x

(5)

Comparison function. From DReLU, we can also formu-
late the comparison function(CMP) and the Equality func-
tion (Eq. 7).

CMP(x0, x1) =

{
1 x0 ≥ x1
0 x0 < x1

= DReLU(x0 − x1) (6)

Equality(x0, x1) =

{
1 x0 = x1

0 x0 6= x1

=1− CMP(x0, x1)⊕ CMP(x1, x0)

=1− DReLU(x0 − x1)⊕ DReLU(x1 − x0)

(7)

The piecewise linear unit (PLU, Eq. 8) function has more
than two input intervals, utilizing the CMP function.

PLU(x) =

αm+1 · x+ βm+1, γm <= x

αm · x+ βm, γm−1 <= x < γm

...

αj · x+ βj , γj−1 <= x < γj

...

α1 · x+ β1, γ0 <= x < γ1

α0 · x+ β0, x < γ0

(m+ 2 piecewise. αj and βj (∀j ∈ [0,m+ 1]),

and γj (∀j ∈ [0,m]) are constants.)
=(CMP(x, γm)⊕ 0) · (αm+1 · x+ βm+1) + ...

+ (CMP(x, γj−1)⊕ CMP(x, γj)) · (αj · x+ βj)

+ ...+ (1⊕ CMP(x, γ0)) · (α0 · x+ β0)

=(DReLu(x− γm)⊕ 0) · (αm+1 · x+ βm+1) + ...

+ (DReLu(x− γj−1)⊕ DReLu(x− γj)) · (αj · x+ βj)

+ ...+ (1⊕ DReLu(x− γ0)) · (α0 · x+ β0)

(8)

The ReLU6 (Eq. 9) function is a special case of PLU
with three input intervals, i.e., m = 1, α0 = β0 = β1 =
α2 = γ0 = 0, α1 = 1, β2 = γ2 = 6.

ReLU6(x) =

6 6 <= x

x 0 <= x < 6

0 x < 0

=(DReLu(x− 6)⊕ 0) · 6
+ (DReLu(x− 0)⊕ DReLu(x− 6)) · x
+ (1⊕ DReLu(x)) · 0

(9)

The CMP can also derive the maximum (MAX2, Eq. 10)
and minimum (MIN2, Eq. 11) functions for two inputs.

MAX2(x, y) =

{
x x ≥ y
y x < y

=CMP(x, y) · x+ (1− CMP(x, y)) · y
=DReLU(x− y) · x+ (1− DReLU(x− y)) · y
=DReLU(x− y) · (x− y) + y = ReLU(x− y) + y

(10)

MIN2(x, y) =

{
y x ≥ y
x x < y

=CMP(x, y) · y + (1− CMP(x, y)) · x
=x− ReLU(x− y)

(11)

Funnel ReLU (Eq. 12) is extended from MAX2.

Funnel ReLU(x) = MAX2(x,T(x))

(T(x)is a linear function.)
=ReLU(x− T(x)) + T(x)

(12)

When the number of inputs is more than two, we could
compute the MAX, MIN, sorting (SORT), and median
(MED) functions. The typical Maxpool function in machine
learning is to determine the maximum element from several
inputs, e.g., four or nine.

Appendix C.
Proofs

We prove Theorem 1 by the following lemmas. We first
prove Lemma 1 which is stated in [24, Sect. 4.1] but not
proved. Lemma 1 explains the one-bit error phenomenon,
where Lemma 2 presents a special case of Lemma 1, i.e.,
when errors do occur. Lemma 3 further proves the inevitable
existence 1 or q − 1, which implies Lemma 4. Lemma 4
exhibits the maximum truncation length required to output
1 or q − 1. Lemma 5 and Lemma 6 prove the pattern of
the tail elements in the truncation result array. Finally, the
proofs of these lemmas imply Theorem 1, i.e., the pattern
of the truncation result array.

In the following, we define ξ = ξ(x) := x if the input
x ∈ [0, 2`x) and ξ = ξ(x) := q − x if x ∈ (q − 2`x , q),
i.e., ξ stays in [0, 2`x). For an x in Zq = [0, q − 1], the
bit-length of q and x is ` and `x, respectively (` > `x). The
binary form of ξ is defined as {ξ`x−1, ξ`x−2, · · · , ξ1, ξ0}, in
which ξi denotes the i-th bit and ξ :=

∑`x−1
i=0 ξi ·2i. λ is the

effective bit length of ξ, i.e., ξλ−1 = 1 and λ+ 1 < `. The
shares of x are [x]0 and [x]1 for P0 and P1, respectively, in
which [x]0 = r, [x]1 = x− [x]0 and r is a random number
from Zq. Moreover, we define

[x]0
2k

:= rShift([x]0, k) = [TRC(x, k)]0,

q − [x]0
2k

:= rShift(q − [x]1, k),

[TRC(x, k)]1 = q − rShift(q − [x]1, k),

r :=r′′ · 2k + r′, r′′ ∈ [0, 2`−k), r′ ∈ [0, 2k),

ξ :=ξ′′ · 2k + ξ′, ξ′′ ∈ [0, 2`−k), ξ′ ∈ [0, 2k),

then ξ
2k

= ξ′′, for Lemma 1 and Lemma 2.

The proof of Lemma 1:
Proof: Case I: If x ∈ [0, 2`x), then ξ = x. Since

[x]0 = r, [x]1 = x−[x]0 and r ∈ Zq, the probability of r ≥ ξ
is q−ξ

q , which is larger than q−2`x
q = 1− 2`x

q > 1− 2`x

2`−1 =

1− 1

2`−`ξ−1 = 1−2`x+1−`. Hence, we will discuss this case
under the condition r ≥ ξ. Let ret := r−ξ = ret′′ ·2k+ret′,
where ret′′ ∈ [0, 2`−k) and ret′ ∈ [0, 2k). Then, ret

2k
= ret′′.

Moreover, r − ξ = r′′ · 2k + r′ − ξ′′ · 2k − ξ′ = r′′ · 2k −
ξ′′ · 2k + r′ − ξ′ = (r′′ − ξ′′) · 2k + (r′ − ξ′). Next, we will
prove that ret′′ = r′′ − ξ′′ − bit, where bit = 0 or 1.
• For r′ ≥ ξ′: Due to r′ ∈ [0, 2k) and ξ′ ∈ [0, 2k),
r′ − ξ′ ∈ [0, 2k). Since r ≥ ξ, r′′ ≥ ξ′′. Then, r − ξ =
r′′ · 2k − ξ′′ · 2k + r′ − ξ′ = (r′′ − ξ′′) · 2k + (r′ − ξ′)
satisfying r′′ − ξ′′ ∈ [0, 2`−k) and r′ − ξ′ ∈ [0, 2k).
Therefore, ret′′ = (r − ξ)/2k = r′′ − ξ′′.

• For r′ < ξ′: Due to r′ ∈ [0, 2k) and ξ′ ∈ [0, 2k),
2k + r′− ξ′ ∈ [0, 2k). Since r ≥ ξ, r′′ ≥ ξ′′+ 1. Then,
r− ξ = r′′ ·2k− ξ′′ ·2k + r′− ξ′ = (r′′− ξ′′−1) ·2k +
(2k + r′ − ξ′) satisfying r′′ − ξ′′ − 1 ∈ [0, 2`−k) and
2k + r′ − ξ′ ∈ [0, 2k). Therefore, ret′′ = (r − ξ)/2k =
r′′ − ξ′′ − 1.

Hence, r−ξ
2k

= ret′′ = r′′−ξ′′−bit, where bit = 0 or 1, with
a probability larger than 1−2`x+1−`. Since [TRC(x, k)]0 =
[x]0
2k

= r
2k

= r′′ and [TRC(x, k)]1 = q − q−[x]1
2k

= q −
r−ξ
2k

= q − (r′′ − ξ′′ − bit), TRC(x, k) = [TRC(x, k)]0 +
[TRC(x, k)]1 mod q = r′′ + q − (r′′ − ξ′′ − bit) mod q =
q+ ξ′′ + bit mod q = ξ′′ + bit mod q = ξ

2k
+ bit,bit = 0 or

1 with a probability larger than 1− 2`x+1−`.
Case II: If x ∈ (q − 2`x , q), then ξ = q − x. Since

[x]0 = r, [x]1 = x − [x]0 and r ∈ Zq, the probability of
ξ + r < q is q−ξ

q , which is larger than q−2`x
q = 1− 2`x

q >

1 − 2`x

2`−1 = 1 − 1

2`−`ξ−1 = 1 − 2`x+1−`. Hence, we will
discuss this case under ξ + r < q. Let ret := r + ξ =
ret′′ · 2k + ret′, where ret′′ ∈ [0, 2`−k) and ret′ ∈ [0, 2k).
Then, ret

2k
= ret′′. Moreover, r+ξ = r′′·2k+r′+ξ′′·2k+ξ′ =

r′′ · 2k + ξ′′ · 2k + r′+ ξ′ = (r′′+ ξ′′) · 2k + (r′+ ξ′). Next,
we will prove that ret′′ = r′′+ ξ′′+ bit, where bit = 0 or 1.
• For r′ + ξ′ < 2k: Since ξ + r < q, r + ξ = (r′′ +
ξ′′) · 2k + (r′ + ξ′), and r′ + ξ′ ∈ [0, 2k), we have
r′′ + ξ′′ ∈ [0, 2`−k). Then, r + ξ = r′′ · 2k + ξ′′ ·
2k + r′ + ξ′ = (r′′ + ξ′′) · 2k + (r′ + ξ′) satisfying
r′′ + ξ′′ ∈ [0, 2`−k) and r′ + ξ′ ∈ [0, 2k). Therefore,
ret′′ = (r + ξ)/2k = r′′ + ξ′′.

• For r′ + ξ′ ≥ 2k: Due to r′ ∈ [0, 2k) and ξ′ ∈ [0, 2k),
r′ + ξ′ − 2k ∈ [0, 2k). Since ξ + r < q and r + ξ =
(r′′ + ξ′′) · 2k + (r′ + ξ′) = (r′′ + ξ′′ + 1) · 2k +
(r′ + ξ′ − 2k), we have r′′ + ξ′′ + 1 ∈ [0, 2`−k). Then,
r + ξ = (r′′ + ξ′′ + 1) · 2k + (r′ + ξ′ − 2k) satisfying
r′′ + ξ′′ + 1 ∈ [0, 2`−k) and r′ + ξ′ − 2k ∈ [0, 2k).
Therefore, ret′′ = (r + ξ)/2k = r′′ + ξ′′ + 1.

Hence, r+ξ
2k

= ret′′ = r′′+ξ′′+bit, where bit = 0 or 1, with
a probability larger than 1−2`x+1−`. Since [TRC(x, k)]0 =
[x]0
2k

= r
2k

= r′′ and [TRC(x, k)]1 = q − q−[x]1
2k

= q −
q−(x−r)

2k
= q− q−(q−ξ−r)

2k
= q− ξ+r

2k
= q− (r′′− ξ′′− bit),

then TRC(x, k) = [TRC(x, k)]0 + [TRC(x, k)]1 mod q =
r′′ + q − (r′′ + ξ′′ + bit) mod q = q − ξ′′ − bit = q − ξ

2k
−

bit,bit = 0 or 1 with a probability larger than 1− 2`x+1−`.

Based on Lemma 1, Lemma 2 describes when the one-
bit error would exist.
Lemma 2. If ` := log2 q > `x+ 1, [x]0 = r, and [x]1 = x−

[x]0 mod q, the following results hold with a probability
of 1− 2`x+1−`:
• If x = ξ, then TRC(x, k) = ξ

2k
for r′ ≥ ξ′, and

TRC(x, k) = ξ
2k

+ 1 for r′ < ξ′.
• If x = q−ξ, then TRC(x, k) = q− ξ

2k
for r′+ξ′ < 2k,

and TRC(x, k) = q − ξ
2k
− 1 for r′ + ξ′ ≥ 2k.

Lemma 2 can be proved in the similar way as Lemma 1.
We define the following notations r′′λ, r

′
λ, r
′′
λ−1, r

′
λ−1,

ξ′′λ, ξ
′
λ, ξ
′′
λ−1, ξ

′
λ−1 for Lemma 3 and Lemma 4.

r :=r′′λ · 2λ + r′λ, r
′′
λ ∈ [0, 2`−λ), r′λ ∈ [0, 2λ),

r :=r′′λ−1 · 2λ−1 + r′λ−1, r
′′
λ−1 ∈ [0, 2l−λ+1),

r′ ∈ [0, 2λ−1),

ξ :=ξ′′λ · 2λ + ξ′λ, ξ
′′
λ ∈ [0, 2`−λ), ξ′λ ∈ [0, 2λ),

ξ :=ξ′′λ−1 · 2λ−1 + ξ′λ−1, ξ
′′
λ−1 ∈ [0, 2`−λ+1),

ξ′λ−1 ∈ [0, 2λ−1).

Lemma 3. Let λ be the effective bit length of ξ, i.e., ξλ−1 =
1. Let η be the λ-th significant bit of r, i.e., η := rλ−1.
If λ+1 < `, the following results hold with a probability
of 1− 2λ+1−`:
• If x = ξ, then TRC(x, λ− 1) = 1 or TRC(x, λ) = 1.
• If x = q−ξ, then TRC(x, λ−1) = q−1 or TRC(x, λ) =
q − 1.

Proof: Case I: For x = ξ, Lemma 1 implies that
TRC(ξ, λ− 1) = ξ

2λ−1 + bit = ξλ−1 + bit = 1 + bit, bit = 0
or 1 with a probability of 1 − 2λ+1−`. If bit = 0, then
TRC(ξ, λ − 1) = 1. If bit = 1, Lemma 2 implies r′λ−1 <
ξ′λ−1. Since ξλ−1 = 1, r′λ = η · 2λ−1 + r′λ−1 and ξ′λ =
ξλ−1 ·2λ−1+ξ′λ−1 = 2λ−1+ξ′λ−1. Then, r′λ < x′λ. Lemma 2
implies TRC(ξ, λ) = ξ

2λ
+ 1 = 0 + 1 = 1.

Case II: For x = q− ξ, Lemma 1 implies that TRC(q−
ξ, λ− 1) = q − ξ

2λ−1 − bit = q − ξλ−1 − bit = q − 1− bit,
bit = 0 or 1 with a probability of 1 − 2λ+1−`. If bit = 0,
TRC(q − ξ, λ − 1) = q − 1. If bit = 1, Lemma 2 implies
r′λ−1 + ξ′λ−1 ≥ 2λ−1. Therefore, r′λ = η · 2λ−1 + r′λ−1 and
ξ′λ = ξλ−1 · 2λ−1 + ξ′λ−1 = 2λ−1 + ξ′λ−1. Then, r′λ + ξ′λ =
r′λ−1 + ξ′λ−1 + 2λ−1 ≥ 2λ due to r′λ−1 + ξ′λ−1 ≥ 2λ−1.
Lemma 2 implies TRC(q−ξ, λ) = q− ξ

2λ
−1 = q−0−1 =

q − 1.
Lemma 4. If λ+1 < `, for any number ˆ̀≥ λ, the following

results hold with a probability of 1− 2λ+1−`:

Input: x = 0b0010110 = 22; the ring modulus q = 216 = 65, 536; random bit t = 1

P2P0, P1 (global view); set [x] := (−1)t · [x], i.e., x = q − 22 = 65, 514

P0 and P1 set the shares [t⊕ DReLu(x)′] = [1]

Opt. Value
u∗ := (−1)t 65,535
u0 := x 65,514
u1 := TRC(x, 1) 65,525
u2 := TRC(x, 2) 65,530
u3 := TRC(x, 3) 65,534
u4 := TRC(x, 4) 65,535
u5 := TRC(x, 5) 65,535
u6 := TRC(x, 6) 65,535
u7 := TRC(x, 7) 0
u8 := TRC(x, 8) 0

Opt. Value
v∗ := u∗ + 3 · u0 − 1 65,468
v0 := (

∑8
k=0 uk)− 1 65,491

v1 := (
∑8
k=1 uk)− 1 65,513

v2 := (
∑8
k=2 uk)− 1 65,524

v3 := (
∑8
k=3 uk)− 1 65,530

v4 := (
∑8
k=4 uk)− 1 65,532

v5 := (
∑8
k=5 uk)− 1 65,533

v6 := (
∑8
k=6 uk)− 1 65,534

v7 := (
∑8
k=7 uk)− 1 65,535

v8 := (
∑8
k=8 uk)− 1 65,535

Opt. Value
w∗ := Π{ri · ui}∗ 65, 535r7

w0 := Π{ri · ui}0 65, 534r6

w1 := Π{ri · ui}1 65, 491r0

w2 := Π{ri · ui}2 65, 513r1

w3 := Π{ri · ui}3 65, 535r8

w4 := Π{ri · ui}4 65, 533r5

w5 := Π{ri · ui}5 65, 468r∗
w6 := Π{ri · ui}6 65, 532r4

w7 := Π{ri · ui}7 65, 530r3

w8 := Π{ri · ui}8 65, 524r2

[Π{wk}]

[0]

There is

not a

0 value
in {wi}.

Figure 7: DReLU example for a positive input. (Opt.: operation, omitting the module operations. Val.: value.)

• There exists a number λ̂ ≤ ˆ̀, satisfying TRC(ξ, λ̂) = 1.
• There exists a number λ̂ ≤ ˆ̀, satisfying TRC(ξ, λ̂) =
q − 1.

Lemma 4 could be proved via the proof of Lemma 3.
Considering any number λ′ > `x, we extra define the

following notations r′′λ′ , r
′
λ′ , r

′′
λ′−1, r

′
λ′−1, ξ

′′
λ′ , ξ

′
λ′ , ξ

′′
λ′−1,

ξ′λ′−1 for Lemma 5 and Lemma 6.

r :=r′′λ′ · 2λ
′
+ r′λ′ , r

′′
λ′ ∈ [0, 2`−λ

′
), r′λ′ ∈ [0, 2λ

′
),

r :=r′′λ′−1 · 2λ
′−1 + r′λ′−1, r

′′
λ′−1 ∈ [0, 2l−λ

′+1),

r′ ∈ [0, 2λ
′−1),

ξ :=ξ′′λ′ · 2λ
′
+ ξ′λ′ , ξ

′′
λ′ ∈ [0, 2`−λ

′
), ξ′λ′ ∈ [0, 2λ

′
),

ξ :=ξ′′λ′−1 · 2λ
′−1 + ξ′λ′−1, ξ

′′
λ′−1 ∈ [0, 2`−λ

′+1),

ξ′λ′−1 ∈ [0, 2λ
′−1).

Lemma 5. If ` > λ + 1, for any number λ′ > `x, the
following results hold with a probability of 1− 2λ

′−`:
• If TRC(ξ, λ′ − 1) = 1, then TRC(ξ, λ′) = 1 or 0.
• If TRC(q−ξ, λ′−1) = q−1, then TRC(q−ξ, λ′) = q−1

or 0.

Proof: Case I: For TRC(ξ, λ′ − 1) = 1, we have
TRC(ξ, λ′ − 1) = ξ

2λ′−1 + bitλ′−1 according to Lemma 2,
in which bitλ′−1 = 1 or 0, with a probability of 1− 2λ

′−`.
TRC(ξ, λ′ − 1) = 1 implies two sub-cases.
• For ξ

2λ′−1 = 1 and bitλ′−1 = 0, ξ

2λ′
= 0. Since ξ

2λ′−1 =

1, we have TRC(ξ, λ′) = ξ

2λ′
+ bitλ′ = bitλ′ , where

bitλ′ = 0 or 1. Hence, TRC(ξ, λ′) = 0 or 1.
• For ξ

2λ′−1 = 0 and bitλ′−1 = 1, ξ

2λ′
= 0. Since ξ

2λ′−1 =

0, we have TRC(ξ, λ′) = ξ

2λ′
+ bitλ′ = bitλ′ , where

bitλ′ = 0 or 1. Hence, TRC(ξ, λ′) = 0 or 1.
Case II: For TRC(q − ξ, λ′ − 1) = q − 1, we have

TRC(q−ξ, λ′−1) = q− ξ

2λ′−1−bitλ′−1, with a probability of
1−2λ

′−`, according to Lemma 2. TRC(q−ξ, λ′−1) = q−1
implies two sub-cases, i.e., ξ

2λ′−1 = 1 and bitλ′−1 = 0, and

ξ

2λ′−1 = 0 and bitλ′−1 = 1. Similar to the proof of the two
sub-cases of Case I, these two sub-cases both satisfy that
TRC(q − ξ, λ′) = q − 1 or 0.
Lemma 6. If ` > λ + 1, for any number λ′ > `x,

TRC(x, λ′) = 0 if TRC(x, λ′−1) = 0, with a probability
of 1− 2λ

′−`.

Proof: Case I: For x = ξ, TRC(x, λ′ − 1) =
ξ

2λ′−1 + bitλ′−1 according to Lemma 2, in which bitλ′−1
= 0 or 1, with a probability of 1 − 2λ

′−`. Under this
condition, since TRC(x, λ′ − 1) = 0, we have ξ

2λ′−1 = 0
and bitλ′−1 = 0. Also, Lemma 2 implies λ ≤ λ′ − 1 and
r′λ′−1 ≥ ξ′λ′−1. Hence, r′λ′ = rλ′−1 · 2λ

′−1 + r′λ′−1 and
ξ′λ′ = ξλ′−1 · 2λ

′−1 + ξ′λ′−1 = ξλ′−1, where rλ′−1 and
ξλ′−1 are (λ′−1)-th bits of r and ξ respectively. Therefore,
r′λ′ ≥ ξ′λ′ . Then, TRC(ξ, λ′) = ξ

2λ′
+ bitλ′ = 0, where

ξ

2λ′
= 0 and bitλ′ = 0, due to Lemma 2.
Case II: For x = q − ξ, TRC(x, λ′ − 1) = q − ξ

2λ′−1 −
bitλ′−1 according to Lemma 2, in which bitλ′−1 = 0 or 1,
with a probability of 1− 2λ

′−`. Under this condition, since
TRC(x, λ′ − 1) = 0, we have ξ

2λ′−1 = 0 and bitλ′−1 = 0.
Also, Lemma 2 implies λ ≤ λ′ − 1 and r′λ′−1 + ξ′λ′−1 <

2λ
′−1. Hence, r′λ′ = rλ′−1 ·2λ

′−1 + r′λ′−1 and ξ′λ′ = ξλ′−1 ·
2λ
′−1 +ξ′λ′−1 = ξ′λ′−1, where rλ′−1 and ξλ′−1 are (λ′−1)-

th bits of r and ξ respectively. Therefore, r′λ′ + ξ′λ′ < 2λ
′
.

Then, TRC(x, λ′) = TRC(q − ξ, λ′) = q − ξ

2λ′
− bitλ′ = 0,

where ξ

2λ′
= 0 and bitλ′ = 0, due to Lemma 2.

Finally, all the proofs of Lemma 1, Lemma 2, Lemma 3,
Lemma 4, Lemma 5, and Lemma 6 imply Theorem 1.

Appendix D.
DReLU Example

Fig. 7 shows a DReLU example for a positive input
x = 0b00010110 = 22. In this case, we set the ring
Zq = [0, 65535], q = 65536, ` = 16. If P0 and P1 generate a
random bit t = 1, they would reverse the sum of their input

shares. Then, u∗ would be q − 1 = 65535, u0 = q − x =
65, 514. After the repeated times of probabilistic truncation,
the {ui} array is obtained. The errors occur at TRC(x, 2),
TRC(x, 5), and TRC(x, 6). In order to prevent the repeating
(q−1)’s in {ui} leaking information about the input’s range,
P0 and P1 compute the summation of the subarrays of
{ui} (excluding v∗) and then subtracting one from each
summation. Next, P0 and P1 apply random maskings and a
random shuffle using seed01, leading to the shares of {wi}.
After reconstructing {wi}, if P2 finds out there is no 0’s in
the array, then the blinded input is negative, and P2 sends
the shares of DReLu(x)′ := 0 to P0 and P1. Finally, P0

and P1 execute an XOR operation to obtain the shares of
the output DReLu(x) := DReLu(x)′ ⊕ t = 0⊕ 1 = 1.

	Introduction
	Related works
	Our contributions

	Preliminary
	System settings
	Secret Sharing
	The Truncation Protocol with Errors

	Two-round DReLU Protocol without Preprocessing
	The necessity of repeated truncations
	Strawman DReLU protocol
	The DReLU procotol

	Protocols for Other Non-linear Functions
	DReLU Variants
	ReLU
	ABS, Dynamic ReLU, MAX2, MIN2, and Funnel ReLU
	Piecewise Linear Unit (PLU)
	MAX
	MIN, SORT, and MED Protocols

	Evaluation and Experiments
	Evaluation
	Experiments

	Conclusion and Future Works
	References
	Appendix A: Decimal Arithmetic with Fixed-point Computation
	Appendix B: Non-linear Function Definition in PPML
	Appendix C: Proofs
	Appendix D: DReLU Example

