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KaLi: A Crystal for Post-Quantum Security
Aikata Aikata, Ahmet Can Mert, Malik Imran, Samuel Pagliarini, Sujoy Sinha Roy

Abstract—Quantum computers pose a threat to the security of
communications over the internet. This imminent risk has led to
the standardization of cryptographic schemes for protection in
a post-quantum scenario. We present a design methodology for
future implementations of such algorithms. This is manifested
using the NIST selected digital signature scheme CRYSTALS-
Dilithium and key encapsulation scheme CRYSTALS-Kyber.
A unified architecture, KaLi, is proposed that can perform
key generation, encapsulation, decapsulation, signature gener-
ation, and signature verification for all the security levels of
CRYSTALS-Dilithium, and CRYSTALS-Kyber. A unified yet
flexible polynomial arithmetic unit is designed that can processes
Kyber operations twice as fast as Dilithium operations. Efficient
memory management is proposed to achieve optimal latency.
KaLi is explicitly tailored for ASIC platforms using mul-

tiple clock domains. On ASIC 28nm/65nm technology, it oc-
cupies 0.263/1.107 mm2 and achieves a clock frequency of
2GHz/560MHz for the fast clock used for memory unit. On Xilinx
Zynq Ultrascale+ZCU102 FPGA, the proposed architecture uses
23,277 LUTs, 9,758 DFFs, 4 DSPs, and 24 BRAMs, and achieves
a 270 MHz clock frequency. KaLi performs better than the
standalone implementations of either of the two schemes. This
is the first work that provides a unified design in hardware for
both schemes.

Index Terms—CRYSTALS-Dilithium, CRYSTALS-Kyber,
Cryptoprocessor, NIST PQC Standardized

I. INTRODUCTION

Communication over the internet forms the backbone of
the digitalized world. Every communication packet passes
through various insecure channels and untrusted servers before
reaching the destination. Data and communication leaks in
the past led to the development of public key cryptographic
(PKC) schemes to ensure end-to-end security and privacy of
communication. These schemes use the hard problems of the
discrete logarithm, integer factorization, etc. In 1994, Peter
Shor proposed that an algorithm that can help a powerful
quantum computer solve them in polynomial (realistic) time,
thus breaking the classical PKC schemes. Since then, the past
eighteen years have witnessed a giant leap in the develop-
ment of quantum computers. In 2019, Google claimed quan-
tum supremacy by developing a 53-qubit quantum computer
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Sycamore [1]. Sycamore could solve a task in 200 seconds
which would take a classical computer 10,000 years. Various
labs across the world have developed even stronger quantum
computers. This raises the existential question of whether our
communication packets containing emails, passwords, etc., are
already insecure. The answer to this is - yes. Even though
quantum computers built until now are not strong enough to
break classical public key cryptography, emails and passwords
sent now can be stored and decrypted later.

This inevitable breach of security paved way for the
development of post-quantum secure PKC schemes based
on the hard problems that are safely sustained in a post-
quantum scenario. Many standardizations were launched to
select the best PKC candidates for digital signature and key-
encapsulation algorithms. Key encapsulation schemes allow
the communicating parties to agree on the same key securely,
which can then be used for symmetric key-based encryption-
decryption of messages. Thus, ensuring the security and
privacy of the communications. A digital signature scheme
allows the receiver to verify the authenticity of the messages.
Both these schemes will replace the classical PKC schemes in
various applications, like the TLS networking protocol.

These standardizations have now concluded, and the in-
dustry is now starting to gear up towards implementing the
standardized candidates. After finalizing the implementations,
a transition phase will start for all the devices to switch from
classical to post-quantum secure PKC schemes. This transition
will not only take years but also lead to a large amount of
wastage in terms of chips and hardware resources which are
now obsolete. However, now that we know that change is
inevitable, and what we believe to be secure now might again
be broken in the next 10-20 years, there is an urgent need for
a design methodology for future implementations to prevent
loss of time and hardware resources.

This work proposes a design methodology that covers
three vital aspects for the future implementations of the PKC
algorithms. The first is the need to make a unified design. A
majority of PKC applications require both digital signature and
key encapsulation schemes. Therefore, the design decisions
should be adapted to help unify the two algorithms for saving
area via resource sharing. Secondly, the design must be com-
pact. The new PKC schemes require much larger memory and
logical units to store and process the keys. If we do not attempt
to make these designs compact, a lot of resource constrained
CPUs that were designed for classical PKC schemes will be
rendered inoperable. The final aspect is agility/flexibility. The
architecture design should consider the ever-evolving nature of
these algorithms. It will not only help prevent the huge wastage
of hardware resources, but also enable a smooth transition.

To exhibit the applicative advantages of this design
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methodology, we take the recent NIST finalized lattice-
based digital signature scheme CRYSTALS-Dilithium and
key-encapsulation scheme CRYSTALS-Kyber. We unify the
extensive building blocks of these schemes and call the resul-
tant architecture of the two CRYSTALS schemes as KaLi. The
design choices for KaLi favor reducing area over improving
performance. As a step toward agility, KaLi is modeled as an
instruction-set cryptoprocessor. From here on, we will refer to
CRYSTALS-Dilithium as Dilithium, and CRYSTALS-Kyber
as Kyber.

Prior works in literature propose the hardware implemen-
tation of PKC schemes. Most of them focus on standalone
efficient implementations [2]–[15]. The real-life applications
would require both the types of schemes. Therefore, these
works fail to provide complete area and timing results for the
implementations that make the communication post-quantum
secure. The authors in [16], [17] present hardware/software
(HW/SW) co-designs for Dilithium and Kyber. Since they
keep some part of the design in software, it is not sufficient to
provide a good estimate for hardware-only architectures. There
is a need for a unified implementation of these two types of
schemes completely in hardware to get better performance. We
show how KaLi follows the proposed design methodology
and performs better than the state of the art.

Our contributions can be summarized as follow:
1) Polynomial multiplication is the most computation-

intensive operation in the Dilithium signature scheme
and Kyber encapsulation scheme. We propose a compact
polynomial multiplier architecture that works optimally
for the two cryptographic algorithms. Dilithium has
a 23-bit prime modulus, whereas Kyber has a 12-bit
prime modulus. A unified polynomial arithmetic unit is
designed for both, Dilithium and Kyber, to save time
and area. This unit has a 24-bit datapath. The core oper-
ations: addition, subtraction, multiplication, and modular
reduction, are made flexible to either process two sets of
12-bit Kyber coefficients or one set of 23-bit Dilithium
coefficients. This, in combination with an efficient mem-
ory management, enables performing arithmetic opera-
tions for Kyber twice as fast as Dilithium.

2) We customized the Keccak-based SHA-SHAKE and
pseudo-random number generation unit to make an
efficient sampling unit for both Dilithium and Kyber.
The samplers for the two schemes are unified and added
into the Keccak block to prevent redundant write and
read of pseudo-random numbers during sampling. The
remaining primitive building blocks of Dilithium and
Kyber are designed discretely while ensuring low area
consumption, simplicity and flexibility. The proposed
arithmetic units altogether form the unified cryptopro-
cessor KaLi. It can perform key generation, encapsula-
tion, decapsulation, signature generation, and signature
verification operations for all security levels of Dilithium
and Kyber. This is the first work that implements a
unified cryptoprocessor for Kyber and Dilithium solely
in hardware.

3) We propose an instruction set architecture for flexibility.
The instructions are divided into two sets, and KaLi can

run instructions from these two sets in parallel, thus
improving the latency of the design, while keeping its
area consumption low. This leads to a 35% reduction in
run-time.

4) KaLi is engineered separately for the ASIC platform to
reduce area overhead. It uses two clock domains, where
the memory unit works at a higher clock frequency
than the logic unit. This allowed us to use single port
memory instead of dual port memory used in FPGA
implementation, thus reducing the area consumption.

The paper is organized as follows. Section II provides
a high-level overview of Dilithium and Kyber. The major
contributions of the paper are described in Section III. It
includes the design methodology for implementing the PQC
schemes and implementation details. In Section IV, we give
the results and compare them with the existing works in
literature. Section V concludes our paper.

II. PRELIMINARIES

Kyber and Dilithium are part of the Cryptographic Suite for
Algebraic Lattices (CRYSTALS), which are recently selected
for standardization by the American National Institute of
Standards and Technology (NIST). Kyber’s security relies on
the hardness of solving learning-with-errors in module lattices
(MLWE), while Dilithium’s security is based on MLWE and
Shortest Integer Solution (SIS) problems. The polynomials and
algebraic operations are assumed to be over the polynomial
ring Rq = Zq[x]/x

n + 1. For Dilithium n = 256 and
q = 8380417 = 223 − 213 + 1, and for Kyber n = 256 and
q = 3329 = (212− 3 · 28+1). Next, we give a brief overview
of these schemes and their building blocks.

A. Dilithium

This digital signature scheme has three main algorithms: key
generation, signature generation, and signature verification.
The sender generates a public and secret key using the key
generation algorithm. Then he uses his private key to sign
a message using the signature generation algorithm. The
receiver can verify the signature using the sender’s public key
and signature verification algorithm. The signature generation
algorithm continues to generate a signature until a valid
signature is generated. For a signature to be valid, a set of
constraints have to be satisfied to ensure that the signature does
not bear any similarity with the message. Readers may refer
to [18] for the original specification of Dilithium. Dilithium
has three variants for NIST security levels 2, 3, and 5.

Several building blocks used by these algorithms are ex-
plained below.
• Polynomial generation: SHAKE-128 is used to generate

the polynomials of the public matrix AAA ∈ Rk×ℓ
q by

expanding the seed ρ ∈ {0, 1}256 along with 16-bit
nonce values. The secret polynomial vectors sss1 and sss2
∈ Sℓ

η × Sk
η are generated using SHAKE-256. For each

polynomial, the seed ς and a 16-bit nonce are fed to
SHAKE-256 and passed through rejection sampling in
the range {−η, η}. The two types of generations are
named as ExpandA() and ExpandS(). Another function
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ExpandMask(), is used to generate a polynomial vector
in the range [0, 2γ1−1]. For this too, the SHAKE output
is processed using a rejection sampler. SampleInBall()
is used during signature generation and verification, to
generate a polynomial with only τ coefficients set to +1
or −1 and the remaining coefficients as 0.

• Polynomial Arithmetic: Polynomial multiplications are
performed using the Number Theoretic Transform (NTT)
method. The addition and subtraction operations are
coefficient-wise linear operations.

• Hash functions: SHAKE-256 is used to make a collision
resistant hash function- CRH().

• Power2Round : The function, Power2Roundq(), takes
an element r = r1 · 2d + r0 and returns r0 and r1, where
r0 = r mod ±2d and r1 = (r − r0)/2

d.
• Decompose and other related functions: Let α be a

divisor of q − 1. The function Decomposeq() is defined
in the same way as Power2Round() with α replacing
2d. The HighBitsq()/LoweBitsq() return r1/r0 from the
output of Decomposeq(). MakeHint uses HighBitsq() to
produce a hint hhh. UseHint uses the hint hhh produced by
MakeHintq() to recover the high-bits.

B. Kyber

Kyber is an IND-CCA2-secure key encapsulation scheme. It
has three principal algorithms: key generation, encapsulation,
and decapsulation. The receiver generates a public and secret
key using the key generation algorithm and broadcasts the
public key. When the sender wishes the send a message, he/she
can encapsulate it using the receiver’s public key through the
encapsulation algorithm. The receiver can then decapsulate it
using her/his secret key through the decapsulation scheme.
Three variants of Kyber, Kyber-512, Kyber-768, and Kyber-
1024 are provided for NIST Security levels 1, 3, and 5,
respectively. The variants differ in module dimensions and
coefficient distributions. Readers may refer to [19] for the
detailed specifications of Kyber.

Kyber has the following main internal routines:
• Pseudorandom functions: Kyber uses PRF (SHAKE-

256) and XOF (SHAKE-128) to generate the pseudo-
random numbers for polynomial coefficients.

• Hash functions: Kyber provides functions H and G for
SHA3-256 and SHA3-512, respectively, for hashing.

• Key-derivation function (KDF): It is instantiated using
SHAKE-256 in Kyber.

• Polynomial Arithmetic: Kyber uses a new method NTT-
based polynomial multiplication unit. Polynomial addi-
tion and subtractions are also supported.

• Samplers: Uniform sampling (Parse) is used to generate
the public polynomials, and Binomial sampling (CBD) is
used to generate secret and error polynomials.

• Encode/Decode: These modules are used to serial-
ize/deserialize the polynomials to/from byte arrays.

• Compress/Decompress: They are used to reduce the
size of ciphertext by discarding low-order bits. They are
defined on an element x ∈ Zq as ⌈(2d/q) · x⌋ (mod 2d)
and ⌈(q/2d) · x⌋ respectively, where d < ⌈log2(q)⌉. The

value x′ such that x′ = Decompress(Compress(a, d), d)
is an element close to x.

C. NTT-based Polynomial Multiplication

Polynomial multiplication of (n − 1)-degree polynomials
has been the focus of works for PQC implementations. Most
implementations use the traditional NTT-based multiplication
technique, while others show how methods like schoolbook
O(n2), Karatsuba O(n1.59), etc., can be used. NTT-based
multiplication has a time complexity of O(n(log n)). The
designers of Dilithium and Kyber select polynomials in Ring
Rq = Zq[x]/x

n + 1, where modulus q is an NTT-friendly
prime. Thus, making it easier to use the fast NTT-based
multiplication method.

Forward NTT transform converts an (n − 1)-degree poly-
nomial (coefficient representation) to n 0-degree polynomials
(value representation). Then two polynomials in their value-
representation form (NTT-domain) can be multiplied pointwise
to get the multiplied values in NTT-domain. Now, if we need
to get the polynomial in coefficient representation again, a
backward NTT transform (INTT) is used. The conversion to-
and-from NTT domain has a time-complexity of O(n(log n)).
Pointwise multiplication has a time-complexity of O(n). Thus,
a total time complexity of O(n(log n)). Various algorithms
exist in the literature to facilitate these transforms. The most
used ones are the Cooley-Tukey (Alg. 1) transform for NTT
and Gentleman-Sande for INTT. For more information on
NTT/INTT, refer to [20].

Next, we discuss the major optimizations made to realize
the design methodology in the context of Dilithium and Kyber.

Algorithm 1 The Cooley-Tukey NTT Algorithm [21]
In: An n-element vector x = [x0, · · · , xn−1] where xi ∈ [0, q − 1]
In: n (power of 2), modulus q (q ≡ 1 (mod 2n))
In: g (precomputed table of 2n-th roots of unity, bit-reversed order)

Out: x← NTT (x)
1: t← n/2; m← 1
2: while (m < n) do
3: k ← 0
4: for (i← 0; i < m; i← i + 1) do
5: S ← g[m + i]
6: for (j ← k; j < k + 1; j ← j + 1) do
7: U ← x[j] ▷ Butterfly starts
8: V ← x[j + t] · S (mod q)
9: x[j]← U + V (mod q)

10: x[j + t]← U − V (mod q) ▷ Butterfly ends
11: end for
12: k ← k + 2t
13: end for
14: t← t/2; m← 2m
15: end while
16: return x

III. PROPOSED UNIFIED HARDWARE ARCHITECTURE

The first and foremost goal is to unify the digital signature
scheme and the key-encapsulation scheme. While doing this, it
is important to ensure that the design is compact and flexible.
Unification has a very straightforward three-step approach.
First, we must identify the most area and time consuming
building blocks, the Giants. This is because unifying the low
area and time consuming building blocks (the Dwarves) will
not reduce the area consumption significantly, and instead
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Fig. 1. High level architecture of KaLi

limit the flexibility of the design. The next step is to find the
algorithmic synergies between the Giants of the two schemes.
The final step is to discern if some of the Dwarves which are
dependent on the Giants can be unified with Giants to reduce
both area and time consumption.

A high-level view of the proposed architecture KaLi
is given in Fig. 1. The Keccak-based SHA-SHAKE unit
and polynomial arithmetic unit are the two Giants in both
the schemes. The remaining building blocks are deemed as
Dwarves since they comprise only 20% of the total area
consumption. Unifying the Keccak-based SHA-SHAKE unit
is relatively easy since we can use a common Keccak core for
both schemes. Therefore in this section, we will discuss how
we efficiently unified the polynomial arithmetic unit. We will
also discuss how we efficiently manage the memory for the
two schemes. Another facet of the work, the optimization for
ASIC platforms, is also presented. We utilize multiple clock
domains and boosted memory bandwidth budget on ASIC
platforms to reduces the area consumption.

A. The colossal Giant: Polynomial Arithmetic Unit

The Polynomial Arithmetic Unit performs polynomial ad-
dition, subtraction, and multiplication. Polynomial addition
and subtraction are simple coefficient-wise operations, hence
cheap. Polynomial multiplication is rather complex, and it
is what makes the polynomial arithmetic unit a Giant. Both
schemes perform this using NTT, as discussed in Section II-C.
Although the two schemes use NTT-based polynomial multi-
plication units, there are many differences between the two
schemes that make their NTT units quite distinct.

1) A clash of the Giants: The differences between the
presumed similar NTTs

The first distinction between the NTTs used by two schemes
lies in the algorithm itself. The NTT-based polynomial multi-
plication method used in Dilithium requires the existence of
2n-th root of unity that mandates q ≡ 1 (mod 2n). Accord-
ingly, Dilithium uses a complete-NTT. After a complete-NTT
transform of an n-degree polynomial, we get n polynomials of
degree 0. In [22], Lyubashevsky et al. propose a new method
for NTT-based polynomial multiplication that requires only
q ≡ 1 (mod n), without pre-processing and post-processing
operations. This technique is adopted by Kyber, and their 12-
bit prime modulus does not have a 2n-th root of unity. There-

Algorithm 2 Integer Multiplication Algorithm
In: a, b ∈ Z8380417 or

a[23 : 12], b[23 : 12], a[11 : 0], b[11 : 0] ∈ Z3329

In: sel ∈ {0, 1} (0 for Dilithium and 1 for Kyber)
Out: d = a · b or d = {a[23 : 12] · b[23 : 12], a[11 : 0] · b[11 : 0]}

1: d0 = (sel) ? b[23 : 12] : b
2: m0 = d0 · a[23 : 12]
3: m1 = (sel) ? (m0 ≪ 24) : (m0 ≪ 12)
4: d1 = (sel) ? b[11 : 0] : b
5: d = d1 · a[11 : 0] +m1
6: return d

fore, Kyber has to use an incomplete-NTT. An incomplete-
NTT gives us n/2 polynomials of degree 1. These polynomials
cannot be multiplied coefficient-wise.

For the incomplete-INTT, multiplication operation of two
degree-1 polynomials is performed in the ring Zq[x]/(x

2−ωi)
where ω is the n-th root of unity and i depends on the index of
coefficients. For the details readers may follow original Kyber
specifications [19] or related prior works in the literature [23].
Along with this, they also have a difference in datapath design.
Dilithium has a 23-bit prime modulus (223 − 213 + 1), while
Kyber has a 12-bit prime modulus. Therefore, while Kyber
requires 12-bit adder/subtracter/multiplier units, Dilithium re-
quires them in 23-bits. Designing a datapath for one of them
and using it for the other one would lead to over-or-under
saturation.

Next, we will discuss in detail how we achieved a unified
polynomial multiplication unit with full utilization. The unit of
interest here is the butterfly unit (BFU). Each BFU performs
dyadic addition, subtraction, and multiplication, on the two
input coefficients. The results are reduced by mod q. This is
shown by steps 7-10 in Algo. 1. Since modulus multiplication
is the most expensive operation, we will discuss how we unify
this unit. Then, we will discuss how with a few more changes,
the entire BFU can be consolidated.

2) Flexible fusion of Modular Multiplier Unit
As discussed above, if we naively use the 23-bit Dilithium

polynomial multiplier unit for Kyber, then it will always be
undersaturated as half of it will be unused. Instead, if we aim
to use a 12-bit Kyber unit for Dilithium it will require extra
control logic but also slow down Dilithium’s NTT. Therefore,
we need to find a solution using a 23-bit Dilithium unit that
does not lead to undersaturation. The modular multiplier unit
has two parts: (i) integer multiplier and (ii) modular reduction
unit. We propose an algorithm (Alg. 2) to make the integer
multiplication unit designed for Dilithium flexible for Kyber.
It performs two 12-bit×12-bit integer multiplications. The
result is added for Dilithium and concatenated for Kyber. This
algorithm gives us one multiplied coefficient in the case of
Dilithium and two multiplied coefficients in the case of Kyber.

The modular multiplier unit, designed to support mod-
ular multiplication using both the primes, uses two DSP
units of Xilinx FPGAs. The hardware architecture of the re-
configurable integer multiplier is shown in Fig. 2. The datapath
depends on the scheme type and is heavily pipelined. We used
internal registers of DSP units to synchronize two DSP unit
outputs and achieve a high clock frequency. Now we need to
design a modular reduction unit accordingly.
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Fig. 2. Flexible yet compact integer multiplier. The red lines show control
signals and black lines show data movement.

3) Versatile Modular Reduction Unit
The naive solution is to design separate modular reduction

units for the two primes. It would require one modular
reduction unit for Dilithium prime and two reduction units
for Kyber prime, which will result in extra hardware costs.
To avoid this, we propose a unified modular reduction unit.
Both Dilithium (223 − 213 +1) and Kyber (212 − 29 − 28 +1)
primes have pseudo-Mersenne structure. For Dilithium prime,
we followed the method described in [24] which uses 223 ≡
213 − 1 equation recursively. Using this equation we can
reduce a 46-bit integer d (mod 223 − 213 + 1) to the integer
213d[45 : 24] + d[22 : 0] − d[45 : 23] which consists of addi-
tion/subtraction of 36-bit and 23-bit partial results. If we apply
this operation recursively until the result contains only 23-bit
or lower partial results, then this will unit only require adders
and subtractors. For Kyber prime, we followed the add-shift-
based method proposed in [23] which generates partial results
using equations 212 ≡ 29 + 28 − 1 and 211 ≡ −210 − 28 − 1
recursively.

Summing all partial results using carry propagate adders
(CPAs) will result in either very long carry chain or multiple
pipeline stages. In order to avoid long carry chain and pipeline
delay, we used carry save adders (CSAs) along with CPA. The
proposed unified modular reduction unit is shown in Fig. 3.
Since both the methods first generate partial results, then
use CSAs for summing them, we used multiplexers to select
proper partial results based on the prime used and perform
addition using the CSA tree along with CPA. In Fig. 3, we
also show the partial result generation for the Dilithium and
Kyber primes. The boxes with ’D’ and ’K’ letters (in Fig. 3)
represent the partial result generation circuits for Dilithium and
Kyber primes, respectively. First we generate the initial partial
results using the equations 223 ≡ 213 − 1, 212 ≡ 29 + 28 − 1
and 211 ≡ −210 − 28 − 1 iteratively. Then, the subtraction
operations are converted into the additions by taking the 2’s
complements of negative partial results. Then, the bits of
the generated partial results are moved up to reduce adder
depth before being sent to the CSAs. In Fig. 3, each number
inside a box represents a bit index of the input integer (0
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Fig. 4. Compact butterfly unit (BFU) with flexibility for both Dilithium and
Kyber. The red and blue lines show control signals and black lines show data
movement.

to 45 for Dilithium and 0 to 22 for Kyber). The white and
brown(terracotta) boxes represent the normal and negated bits.
Blue circles represent constant 1s which are generated during
the 2’s complement operation.

After the final addition, we also perform a final correction
which brings the resulting integer from the range (−q, 3q)
to the range [0, q). The proposed modular reduction unit
can either perform one reduction for Dilithium prime or
two reductions for Kyber prime. The latency of the modular
reduction unit is two cycles and it is fully pipelined.

4) Coalesced datapath for the Butterfly Unit
Now that we have unified the modular multiplication unit,

we propose a unified BFU (Fig. 4). It can perform one butterfly
operation for Dilithium and two butterfly operations for Kyber
using the same datapath. All the arithmetic units are made re-
configurable to work for both schemes. New Re-configurable
adder and subtractor units are shown in Fig. 5. The idea is
to divide each 24-bit adder/subtractor into two small 12-bit
parts and select proper input signals based on the scheme.
The complete unified butterfly unit, designed using the re-
configurable arithmetic units, is shown in Fig. 4.

The schoolbook multiplication for Kyber requires five multi-
plication operations for multiplying two 1-degree polynomials.
We have two flexible butterfly units which act as four butterfly
units for Kyber. This only allows four multiplications. One
way to perform these five multiplications is to add another
DSP multiplier just for the extra multiplication. This unit will
not be useful for any other operation. To avoid this extra
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Fig. 5. Unified adder and subtractor for the butterfly unit. The red lines show
control signals and black lines show data movement.
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Fig. 6. Butterfly feedback unit for Kyber’s NTT-domain polynomial multi-
plication.

multiplier, we condense five multiplications into four using
Karatsuba-like reduction. Then we use these four independent
butterfly units as a set of two. The output of the first set is the
input for the second set. Thus, working in a feedback manner
as shown in Fig. 6. The inputs and outputs for the BFUs
are highlighted in blue. The control flow here is separated
from the Dilithium polynomial multiplication control flow, for
simplicity. The entire flow is pipelined to achieve a high clock
frequency.

The coefficient consumption during NTT/INTT is shown in
Fig. 7. Owing to the flexible datapath and efficient memory
arrangement(discussed in the next subsection), the Kyber NTT
coefficients can be consumed faster. This enables full utiliza-
tion of the datapth. The complete polynomial arithmetic unit
consumes 3,487 LUT, 1,918 FF, and 1 BRAM. This BRAM
is used to store the powers of roots-of-unity (twiddle factors)
required during NTT/INTT operation.

In the next section, we will discuss the efficient memory
arrangement designed to optimally feed the polynomial arith-
metic unit.

B. Memory Arrangement

The polynomial arithmetic unit is designed to consume
the Kyber coefficients twice as fast as Dilithium coefficients.
It requires that the memory unit feeds it at the same rate,
otherwise, making these unifications will not help improve the
performance. Dilithium coefficients are 23-bit, and we have

designed the NTT/INTT unit using two butterfly cores. Each
of the cores requires exclusive access to read/write port of a
memory. Therefore, we split the memory into two blocks, each
storing two Dilithium coefficients per address. For Kyber, each
memory block stores four 12-bit Kyber coefficients. Fig. 8
shows the storage of Kyber polynomials in one 64-bit word
of memory. One Dilithium polynomial coefficient will occupy
two of these coefficients, thus requiring twice the amount of
storage. It also ensures that the two required coefficients during
NTT/INTT are always stored across different BRAMs. Fig. 8
shows an example of the coefficients storage during Kyber’s
incomplete-NTT iterations for a 15-degree polynomial.

Next, we will discuss how we used multiple clock domains
to reduce the area consumption in ASIC platforms.

C. Multi-clock domains: Customization for ASIC platforms

The memory organization discussed above has two sets of
BRAMs to feed the two BUF. These BRAMs are used by all
the remaining building blocks as well. It is generated using
dual-port BRAMs in FPGA. In ASIC, dual-port BRAMs con-
sume more area than single-port BRAMs. Therefore, to reduce
the area consumption, we decide to replace dual-port RAMs
with single port RAMs, which work at a clock frequency twice
as fast as the rest of the design. Using two different sources
for the two clocks leads to an asynchronous setting. This
creates meta-stability problems due to clock-domain crossing.
To avoid these problems we decided to keep the clocking
synchronous and generate the slow clock(clock logic) using
the fast clock(clock mem).

Fig. 9 gives the description of the handshake between
memory and logic. A wrapper is provided to process the
simultaneous reads and writes to the memories. The read
operation is given preference over the write operation to ensure
data is valid when the building blocks fetch it and avoid any
issues due to clock glitches. The read latency is three clock
cycles, and all the building blocks are tailored accordingly.
This design helps reduce the area for ASIC designs and
gives. Note that a similar change will not change FPGA area
consumption and instead face timing problems running the
memory at a high clock frequency. Therefore, this adaptation
specifically targets ASIC platforms.

Until now we discussed the major contributions of the work.
Next we will briefly discuss how we efficiently implement
the remaining building block. We will start with the rejection
samplers used in both the schemes. These are the Giant
dependent Dwarves which might help reduce the area and
time consumption without compromising the flexibility of the
design.

D. The Giant and the Dwarves: Keccak based SHA-SHAKE
unit and the rejection samplers

Dilithium requires SHAKE-128 and SHAKE-256 for
pseudo-random number generation and hashing. Kyber re-
quires SHA3-256 and SHA3-512 for hashing and SHAKE-
128 and SHAKE-256 for KDF and pseudo-random number
generation. These different Keccak-based functions are imple-
mented as modes of the same Keccak output. Therefore, we
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Fig. 7. Timeline showing the unified butterfly unit processing Dilithium and Kyber coefficients.
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Fig. 8. Storage of coefficients during Kyber’s NTT for 16-coefficient
polynomial

Fig. 9. The data read-and-write handshake between memory and logic unit

can use the same Keccak instance for all these modes. Both the
schemes employ different sampling for the generation of secret
and error polynomials. While some of these fully consume the
Keccak output, the remaining have to keep track of the leftover
bits.

We combine the rejection sampler with the Keccak unit

using a book-keeping approach similar to [24]. It improves
the performance of the sampling operation, as we do not need
to store and then read the Keccak output in between. The base
implementation of Keccak follows a high-speed and parallel
directive. The control and data path are modified to work
for rejection samplers as it depends on coefficients passing
the rejection constraints. The complete Keccak unit consumes
12,326 Look Up Tables (LUT) and 3,560 Flip-Flops(FF).

We have unified all the Giants, so now we will discuss the
optimized implementation techniques for the Dwarves.

E. Optimizations for the Dwarves
Making a design compact while keeping it agile increases

the life and usability of KaLi on the FPGA and ASIC
platforms. However, this comes with a series of challenges.
We must ensure that for keeping the design agile/flexible, we
do not pay a huge price in terms of area. Similarly, while
making the design compact, the performance should not get
worse. We now discuss how to make certain building blocks
of the two schemes compact, while maintaining the flexibility.

1) Compress/Decompress Unit
The decompress unit performs division by power-of-two and

rounding operation which is trivial to implement in hardware.
On the other hand, the compress operation requires division
by q and rounding. Some works in the literature use Barrett
reduction and division algorithms to perform compress opera-
tion. We decide to use sufficient precision and convert division
by q operation into multiplication and shift operations. The
proposed multiplication-based compress algorithm is shown
in Algorithm 3. The input is the Kyber coefficient x and the
type of compression required d. The compressed coefficient y
is returned as the output.
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Algorithm 3 The Proposed Compression Algorithm
In: x ∈ Z3329, d ∈ {1, 4, 5, 10, 11}
Out: y = ⌈(2d/q) · x⌋
1: switch d do
2: case 1: t = (10079 · x); y = (t ≫ 24) + (t[23] ≫ 23)

3: case 4: t = (315 · x); y = (t ≫ 16) + (t[15] ≫ 15)

4: case 5: t = (630 · x); y = (t ≫ 16) + (t[15] ≫ 15)

5: case 10: t = (5160669 · x); y = (t ≫ 24) + (t[23] ≫ 23)

6: case 11: t = (10321339 · x); y = (t ≫ 24) + (t[23] ≫ 23)

7: end switch
8: return y (mod 2d)

Fig. 10. Architecture of the Compress/Decompress unit. The red lines show
control signals and black lines show data movement.

Since the multiplications are by constant values, we imple-
ment these operations using add and shift technique utilizing
the LUTs. Fig. 10 shows the hardware architecture of this
multiplication unit, used for retrieving the t values in Alg. 3.
This is unified and works for both compress and decompress
operations. The control flow is dependent on the type of
compression or decompression required.

2) Encode/Decode Unit
Encode and decode units perform coefficient-to-byte and

byte-to-coefficient conversions, for all security levels of the
Kyber scheme. We used a similar idea as proposed in [25]
which uses a 32-bit interface. Our architecture uses 64-bit
interface and thus the proposed encode unit uses 104-bit
buffer. It can encode 1-bit, 4-bit, 5-bit, 10-bit and 11-bit long
coefficients. The decode unit can decode 64-bit inputs into
1-bit, 4-bit, 5-bit, 10-bit and 11-bit long coefficients using a
72-bit buffer.

3) Pack/Unpack unit
Similar to Kyber, Dilithium requires coefficient-to-byte and

byte-to-coefficient conversions for various coefficient sizes.
Pack and unpack units perform these conversions for all
security levels of Dilithium for coefficient sizes 3, 4, 6, 10, 13,
18 and 20 bits. We again followed the idea proposed in [25]
for the pack and unpack units.

The remaining building blocks of both schemes are different
and unifying them would not save any area, but instead
complicate the control logic and reduce the flexibility of
the design. These building blocks do not require any DSP
units and comprise simple bit-wise packing, unpacking, or
addition/subtraction operations. Their implementation is done

with sufficient pipeline stages to avoid any timing violation.
They occupy only 18% of the total area consumed by the
crypto processor.

F. Instruction set cryptoprocessor

We made the building blocks compact while ensuring flexi-
bility, but this is insufficient. What happens if, in two years, the
Keccak pseudo-random number generation and hashing unit is
obsolete? Do we then need to redesign the entire cryptoproces-
sor? To counter this and increase the agility/flexibility of the
architecture, we design this as an instruction set architecture
(ISA). It allows the users to send instructions for operations
they need.

With this flexibility comes the hardware-software communi-
cation cost. If the user has to send every instruction one by one
to execute, then this communication time would take a toll on
the total run-time. It also requires constant user interaction.
To avoid this, we design a program controller with a small
memory for storing instructions. The user just needs to send all
the data and instructions in the beginning, and then hand over
the control to the program controller. The program controller
then ensures that all the instructions get executed correctly and
returns a done signal in the end. This comprises 14% of the
area consumption.

G. Running the Giants and the Dwarves in parallel

Our goal was to make the unified design compact and agile.
However, does this mean we have to pay an equal price
in terms of performance? To some extent, this is correct.
However, we should continue to ponder on some methods
that could boost the performance without increasing the area
consumption. One such way is to run the Giant instructions
in parallel to each other or to multiple Dwarf instructions, as
shown in [24]. We make sure that two Giants, the Keccak unit
and the polynomial arithmetic unit, can always run in parallel
to cancel each other’s run-time. It leads to a reduction of 35%
in the total run-time. Following the design methodology, we
design the unified cryptoprocessor- KaLi as shown in Fig. 1.

With this, we conclude the design methodology and imple-
mentation section and move towards the results and compar-
isons section.

IV. RESULTS

In this section, we present the performance and area results
of KaLi. The proposed architecture is described in Verilog,
and it is synthesized and implemented for Zynq Ultrascale+
ZCU102 with an performance-optimized implementation strat-
egy using Vivado 2019.1 tool. The proposed architecture
achieves 270 MHz clock frequency on FPGA. The proposed
architecture is also implemented with 65nm and 28nm ASIC
technologies using Cadence Genus tool. On 65nm/28nm ASIC
technology, it achieves 280 MHz/1 GHz for the slow clock
(for logic units), and 560 MHz/2 GHz for the fast clock (for
memory units).
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TABLE I
PERFORMANCE RESULTS FOR DILITHIUM AND KYBER-KEM IN FPGA

Operation
Dilithium-2 Dilithium-3 Dilithium-5
Kyber-512 Kyber-768 Kyber-1024

Cycle µs Cycle µs Cycle µs
Dil.Gen 14,594 54.05 23,619 87.48 39,737 147.17
Dil.Signpre 7,883 29.2 9,640 35.7 12,943 46.27
Dil.Sign 21,812 80.79 36,643 135.72 53,965 199.87
Dil.Signpost 1,967 7.23 2,463 9.12 3,271 12.12
Dil.Verify 15,423 57.12 26,124 96.76 46,671 172.86
Kyb.Keygen 3,395 12.6 6,291 23.2 9,089 33.7
Kyb.Encaps 4,956 18.4 7,862 29.11 11,351 42.04
Kyb.Decaps 6,807 25.21 11,291 41.82 13,905 51.5

TABLE II
AREA OF KALI ON THE ZYNQ ULTRASCALE+ ZCU102 FPGA PLATFORM.

ALL SECURITY LEVELS OF DILITHIUM AND KYBER ARE SUPPORTED.
Unit LUTs DFFs DSPs BRAMs
ComputeCore 21,228 9,273 4 21

D
ili

th
iu

m
(D

)

⌊Decompose 474 338 0 0
⌊Power2Round 55 84 0 0
⌊MakeHint 61 124 0 0
⌊UseHint 565 433 0 0
⌊Encode H 202 233 0 0
⌊Pack 582 181 0 0
⌊Unpack 315 182 0 0
⌊SampleInBall 505 285 0 0
⌊Refresh 8 7 0 0
⌊Verify equality 13 76 0 0

K
yb

er
(K

)

⌊Encode 517 190 0 0
⌊Decode 237 180 0 0
⌊Compress/Decompress 272 376 0 0
⌊Verify 102 216 0 0
⌊CMOV 20 120 0 0
⌊COPY 15 120 0 0

D
+K

⌊Memory 268 12 0 20
⌊Keccak 12,306 3,467 0 0
⌊Multiplier 3,487 1,918 4 1
ProgramController 2,136 296 0 3
Total 23,347 9,798 4 24

A. Performance and Area Results

Table I presents the cycle count and latency (in µs) for the
operations of Dilithium (key generation, signature generation,
and signature verification) and Kyber (key generation, encap-
sulation, and decapsulation). With 270 MHz clock frequency
in the FPGA, the CCA-secure key generation, encapsulation
and decapsulation operations for Kyber-768 takes 23.2, 29.11
and 41.82 µs, respectively. For the best-case scenario where a
valid signature is generated after the first loop iteration [24],
the key generation, signature generation and signature verifi-
cation operations for Dilithium-3 take 87.48, 179.91 and 96.76
µs, respectively. The ASIC implementation with 65nm/28nm
technology (with 560 MHz/2 GHz clock frequency for the
memory unit) can perform the operations for Kyber-768 and
Dilithium-3 in 22.07/6.18, 27.59/7.73, and 39.62/11.09 µs, and
82.87/23.2, 171.03/47.89, and 91.66/25.67 µs, respectively.

In the Table II, we present the detailed utilization of each
building blocks in KaLi for UltraScale+ ZCU102 platform.
The proposed cryptoprocessor uses only 23,347 LUTs (8.4%),
10,121 DFFs (1.7%), 4 DSPs (0.1%) and 24 BRAMs (2.6%).
On ASIC, KaLi consumes 1.107 mm2 (769.04 KGE) in
65nm technology, and 0.263 mm2 (747.81 KGE) in 28nm
technology. Next, we compare these results with the existing
works in literature.

B. Comparison with unified designs in literature

In [16], the authors present a unified HW/SW co-design for
Dilithium and Kyber. They implement Kyber in hardware (they
also provide results for Kyber with HW/SW co-design) while
keeping some part of Dilithium in software. Their NTT unit
occupies 25,674 LUTs, 3,137 DFFs, 64 DSPs, and 6 BRAMs
on a Xilinx Artix-7 FPGA. The NTT unit alone occupies
more LUT and DSP units than our entire design. On ASIC, it
occupies 697 KGE on 28nm technology [16]. Our complete
unified design occupies 747.8 KGE on 28nm technology.
Their implementation show better performance for Kyber as
they implement all building blocks of the Kyber in hardware
and use 32 butterfly units for NTT. Thus, their NTT unit is
8× faster and consumes more area. However, for Dilithium,
the dominant scheme, KaLi shows much better results. For
Dilithium-3, the key generation, signature generation, and
verification have a latency of 126.7, 415.9, and 204.3 µs
on 28nm technology. KaLi gives 2× better performance on
65nm, an older technology.

To the best of our knowledge, no work exists in the literature
that unifies Dilithium and Kyber solely in hardware. Therefore,
next we compare our work with standalone implementations
of Dilithium or Kyber in hardware.

C. Comparison with Dilithium-only designs in literature

Comparison with FPGA-based implementations: Table III
gives the comparison of implementation results for Dilihtium-
3 on FPGA platforms. Zhou et al. [3] present a HW/SW co-
design in which they only implement the polynomial arith-
metic unit in hardware. Thus, they consume less area but
report an inferior performance. Ricci et al. [4] provide separate
designs for each of the Dilithium operations. These designs in
total occupy 9× more area compared to our design and still
perform as good as our design for signature verification. For
a signature generation, their implementation shows only 3×
improvement. Thus, our design gives a much better area-time
product.

The authors in [5], [6], [26] present Dilithium implementa-
tions which consume much more area compared to our design
and still report a much lower clock frequency. Thus, lowering
the performance of their designs. In [24], the authors present
a unified cryptoprocessor for Dilithium and Saber. Their area
is almost comparable, considering the difference between the
two schemes, Kyber and Saber. We achieve a much higher
clock frequency and report 1.4× better performance.
Comparison with ASIC-based implementations: Table IV
gives the comparison of implementation results for Dilihtium-
3 on ASIC platforms. Banerjee et al. [17] present ASIC results
for HW/SW co-design of Dilithium with Round 2 parameters.
KaLi outperforms them significantly in terms of performance.
Our hardware only design gives 45× better performance at
the cost of only 7.5× more area. KaLi consumes almost the
same area as reported in [16] but gives a 10× and 2.8× better
performance with 28nm and 65nm technology, respectively.
[24] reports a higher number of logic gates than our design.

Thus, our FPGA and ASIC models are the most compact
compared to all the existing Dilithium implementations.
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TABLE III
COMPARISON TABLE FOR DILITHIUM-3 FPGA IMPLEMENTATIONS

Ref. Plat. Performance Freq. Resources (LUT/
(in µs) (MHz) FF/DSP/BRAM)

[3]† Zynq -/8.8K/9.9K 100 2.6K/-/-/-
[4]a

US+
51.9/-/- 350 54.1K/25.2K/182/15

[4]b,d -/63.1/- 333 68.4K/86.2K/965/145
[4]c -/-/95.1 158 61.7K/34.9K/316/18
[5]d Ar.-7 229/0.3K/0.2K 145 30.9K/11.3K/45/21[5]e 229/0.85K/0.2K
[26]d Ar.-7 60/0.12K/63.8 96.9 30K/10.34K/10/11[26]e 60/0.46K/63.8
[6]d US+ 32/63/39 145 55.9K/28.4K/16/29[6]e 32/193/39
[24]d,f US+ 114.7/237/127.6 200 18.5K/9.3K/4/24
KaLid,f US+ 82.8/171.3/96.7 270 23K/9K/4/24
a: Implements K. Gen. b: Implements Sign. Gen. c: Implements Verify.
d: Reports best-case scenario. e: Reports average-case scenario.
f : Supports multiple schemes. †: HW/SW co-design.

TABLE IV
COMPARISON TABLE FOR DILITHIUM-3 ASIC IMPLEMENTATIONS

Ref. Tech. Perf.∗ Freq. Logic Gates SRAM
(nm) (in µs) (MHz) (KGE) (KB)

[17]† 40 18,266 72 106 40.25
[16]†a 28 747 540 697 24.75
[24]a,b 65 182.3 400 854 34.82
KaLia,b 65 262.69 280&560 769 34.82
KaLia,b 28 73.55 1000&2000 747 34.82
∗:Performance is measured as total time for signature generation and
verification (key generation can be done offline). †: HW/SW co-design.
a:Supports multiple schemes. b: Reports best-case scenario.

D. Comparison with Kyber-only designs in literature

Comparison with FPGA-based implementations: Table V
gives the comparison of implementation results for Kyber-
1024 on FPGA platform. Banerjee et al. [17] present an
HW/SW co-design for Kyber. KaLi surpasses their perfor-
mance results on both the platforms, at the cost of some area.
Observe that KaLi gives better results compared to software
only [15] as well as HW/SW co-designs [12], [14], [17] .
Amongst all the hardware-only designs [7]–[11] for Kyber
we report the highest clock frequency. Note that the area
of our design is determined by Dilithium and not by Kyber.
Therefore, even though the results show that we consume a
very high area, we only consume the bare minimum and give
almost the best performance results on the FPGA platform.
Comparison with ASIC-based implementations: Table VI
gives the comparison of implementation results for Kyber-
1024 on ASIC platform. On ASIC platform, KaLi consumes
the same area as reported in [16] but gives a 2.3/8.1× better
performance under 65nm/28nm technology. In fact, we surpass
all existing designs [11]–[13], [17] in terms of performance.
However, compared to some of the designs, we use more area,
and for this, we must remind again that Kyber is the recessive
scheme among the two, and therefore this area is higher when
compared to Kyber-only implementations.

In the section, we established that our unified cryptopro-
cessor KaLi transcends all the state-of-the-art works that
exist in literature. Thus, showing that the proposed design
methodology yields better results. In the next section, we
will discuss the high-level advantages of following the design
methodology and conclude the paper.

TABLE V
COMPARISON TABLE FOR KYBER-1024 FPGA IMPLEMENTATIONS

Ref. Platform Performance∗ Freq. Resources (LUT/
(in µs) (MHz) FF/DSP/BRAM)

[15]‡ Cortex-M4 33,850 100 -/-/-/-
[17]† Artix-7 18,560 25 15K/3K/11/14
[12]† Zynq - - 24K/11K/21/32
[14]† Artix-7 85,559 59 2K/2K/5/34
[7] Virtex-7 1,260 192 133K/-/548/202
[8] Artix-7 154 161 7K/5K/2/3
[9] Artix-7 63 210 12K/12K/8/15
[10] Artix-7 56 185 13K/12K/16/16
[11] Artix-7 286 112 16K/6K/12/17
[11] Virtex-7 205 156 16K/6K/12/17
KaLia US+ 93 270 23K/9K/4/24
∗:Performance is measured as total time for encapsulation and decap-
sulation (key generation can be done offline).
a:Supports multiple schemes. †: HW/SW co-design. ‡: SW design.

TABLE VI
COMPARISON TABLE FOR KYBER-1024 ASIC IMPLEMENTATIONS

Ref. Tech. Perf.∗ Freq. Logic Gates SRAM
(nm) (in µs) (MHz) (KGE) (KB)

[17]† 40 6,444 72 106 40.25
[12]† 65 18,444 45 170 465
[13]† 28 727 300 979 12
[11] 65 160 200 104 190
[16]†,a 28 206 540 697 24.75
[16]a 28 22/17.7b 540 623 36.75
KaLia 65 90.2 280&560 769 34.82
KaLia 28 25.26 1000&2000 747 34.82
∗:Performance is measured as total time for encapsulation and decap-
sulation (key generation can be done offline). †: HW/SW co-design.
a:Supports multiple schemes. b:Depending on the type of scheduling.

V. DISCUSSION AND CONCLUSION

The post-quantum key encapsulation and digital signature
schemes are required for secure communication. A unified
architecture for these two types of schemes will help make
the design compact. This architecture should also be agile for
future transitions. In this paper, we present a design method-
ology for the implementation of one such unified architecture.
To this end, we designed and implemented the first unified
architecture KaLi that can perform all the operations for all
the security levels of Dilithium and Kyber.

To give a good comparison, KaLi is realized on both FPGA
and ASIC platforms. Special optimizations are done to make
the design compact for ASIC platforms using multiple clock
domains. KaLi outperforms all the existing implementations
and is a strong step towards compact and agile designs.
The proposed design methodology can be easily customized
depending on the constraints and requirements.
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