
1

KaLi: A Crystal for Post-Quantum Security using
Kyber and Dilithium

Aikata Aikata, Ahmet Can Mert, Malik Imran, Samuel Pagliarini, Sujoy Sinha Roy

Abstract—Quantum computers pose a threat to the security of
communications over the internet. This imminent risk has led to
the standardization of cryptographic schemes for protection in
a post-quantum scenario. We present a design methodology for
future implementations of such algorithms. This is manifested
using the NIST selected digital signature scheme CRYSTALS-
Dilithium and key encapsulation scheme CRYSTALS-Kyber.
A unified architecture, KaLi, is proposed that can perform
key generation, encapsulation, decapsulation, signature gener-
ation, and signature verification for all the security levels of
CRYSTALS-Dilithium, and CRYSTALS-Kyber. A unified yet
flexible polynomial arithmetic unit is designed that can processes
Kyber operations twice as fast as Dilithium operations. Efficient
memory management is proposed to achieve optimal latency.
KaLi is explicitly tailored for ASIC platforms using mul-

tiple clock domains. On ASIC 28nm/65nm technology, it oc-
cupies 0.263/1.107 mm2 and achieves a clock frequency of
2GHz/560MHz for the fast clock used for memory unit. On Xilinx
Zynq Ultrascale+ZCU102 FPGA, the proposed architecture uses
23,277 LUTs, 9,758 DFFs, 4 DSPs, and 24 BRAMs, at 270
MHz clock frequency. KaLi performs better than the standalone
implementations of either of the two schemes. This is the first
work to provide a unified design in hardware for both schemes.

Index Terms—CRYSTALS-Dilithium, CRYSTALS-Kyber,
Cryptoprocessor, NIST PQC Standardized

I. INTRODUCTION

COMMUNICATION over the internet forms the backbone
of the digitalized world. Every communication packet

passes through various insecure channels and untrusted servers
before reaching the destination. Data and communication leaks
in the past led to the development of public key cryptographic
(PKC) schemes to ensure end-to-end security and privacy of
communication. These schemes use the hard problems of the
discrete logarithm, integer factorization, etc. In 1994, Peter
Shor [1] proposed an algorithm that can help a powerful
quantum computer solve them in polynomial (realistic) time,
thus breaking the classical PKC schemes. Since then, the past

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.

Aikata Aikata, Ahmet Can Mert, and Sujoy Sinha Roy are affiliated
to Institute of Applied Information Processing and Communications, Graz
University of Technology, Graz, Austria. Their work was supported in part
by Semiconductor Research Corporation (SRC) and the State Government of
Styria, Austria – Department Zukunftsfonds Steiermark.{aikata, ahmet.mert,
sujoy.sinharoy}@iaik.tugraz.at
Malik Imran and Samuel Pagliarini are with the Centre for Hardware Security,
Tallinn University of Technology, Tallinn, Estonia Their work has been
partially conducted in the project “ICT programme” which was supported
by the European Union through the European Social Fund. It was also
partially supported by European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 952252 (SAFEST). {malik.imran,
samuel.pagliarini}@taltech.ee

eighteen years have witnessed a giant leap in the develop-
ment of quantum computers. In 2019, Google claimed quan-
tum supremacy by developing a 53-qubit quantum computer
Sycamore [2]. Sycamore could solve a task in 200 seconds
which would take a classical computer 10,000 years. Various
labs across the world have developed even stronger quantum
computers [3]. This raises the existential question of whether
our communication packets containing emails, passwords, etc.,
are already insecure. The answer to this is - yes. Even though
quantum computers built until now are not strong enough to
break classical public key cryptography, emails and passwords
sent now can be stored and decrypted later.

This inevitable breach of security paved way for the devel-
opment of post-quantum secure PKC schemes based on the
hard problems that are safely sustained in a post-quantum sce-
nario. Many standardizations were launched to select the best
PKC candidates for digital signature and key-encapsulation
algorithms [4]. Key encapsulation schemes allow the commu-
nicating parties to agree on the same key securely, which can
then be used for symmetric key-based encryption-decryption
of messages. Thus, ensuring the security and privacy of
the communications. A digital signature scheme allows the
receiver to verify the authenticity of the messages. Both these
schemes will replace the classical PKC schemes in various
applications, like the TLS networking protocol.

These standardizations have now concluded, and the in-
dustry is now starting to gear up toward implementing stan-
dardized candidates. After finalizing the implementations, a
transition phase will start for all the devices to switch from
classical to post-quantum secure PKC schemes [5]. This tran-
sition will not only take years but also lead to a large amount
of wastage in terms of chips and hardware resources which
are now obsolete. However, now that we know that change is
inevitable, and what we believe to be secure now might again
be broken in the next 10-20 years, there is an urgent need for
a design methodology for future implementations to prevent
loss of time and hardware resources.

This work proposes a design methodology that covers
three vital aspects for the future implementations of the PKC
algorithms. The first is the need to make a unified design. A
majority of PKC applications require both digital signature and
key encapsulation schemes. Therefore, the design decisions
should be adapted to help unify the two algorithms for saving
area via resource sharing. Secondly, the design must be com-
pact. The new PKC schemes require much larger memory and
logical units to store and process the keys. If we do not attempt
to make these designs compact, a lot of resource-constrained
CPUs that were designed for classical PKC schemes will be



2

rendered inoperable. The final aspect is agility/flexibility. The
architecture design should consider the ever-evolving nature of
these algorithms. It will not only help prevent the huge wastage
of hardware resources but also enable a smooth transition.

To exhibit the applicative advantages of this design method-
ology, we take the NIST finalized lattice-based digital signa-
ture scheme CRYSTALS-Dilithium [6] and key-encapsulation
scheme CRYSTALS-Kyber [7]. We unify the extensive build-
ing blocks of these schemes and call the resultant architecture
of the two CRYSTALS schemes as KaLi. The design choices
for KaLi favor reducing area over improving performance. As
a step toward agility, KaLi is modeled as an instruction-set
cryptoprocessor. From here on, we will refer to CRYSTALS-
Dilithium as Dilithium, and CRYSTALS-Kyber as Kyber.

Prior works in literature propose the hardware implemen-
tation of PKC schemes. Most of them focus on standalone
efficient implementations [8]–[23]. The real-life applications
would require both the types of schemes. Therefore, these
works fail to provide complete area and timing results for the
implementations that make the communication post-quantum
secure. The authors in [24], [25] present hardware/software
(HW/SW) co-designs for Dilithium and Kyber. Since they
keep some part of the design in software, it is not sufficient to
provide a good estimate for hardware-only architectures. There
is a need for a unified implementation of these two types of
schemes completely in hardware to get better performance. We
show how KaLi follows the proposed design methodology
and performs better than the state-of-the-art.

Our contributions can be summarized as follow:

1) Polynomial multiplication is the most computation-
intensive operation in the Dilithium signature scheme
and Kyber encapsulation scheme. We propose a compact
polynomial multiplier architecture that works optimally
for the two cryptographic algorithms. Dilithium has
a 23-bit prime modulus, whereas Kyber has a 12-bit
prime modulus. A unified polynomial arithmetic unit is
designed for both, Dilithium and Kyber, to save time
and area. This unit has a 24-bit datapath. The core oper-
ations: addition, subtraction, multiplication, and modular
reduction, are made flexible to either process two sets of
12-bit Kyber coefficients or one set of 23-bit Dilithium
coefficients. This, in combination with efficient memory
management, enables performing arithmetic operations
for Kyber twice as fast as Dilithium.

2) We customized the Keccak-based SHA-SHAKE and
pseudo-random number generation unit to make an ef-
ficient sampling unit for both Dilithium and Kyber. The
samplers for both schemes are unified and added into the
Keccak block to prevent redundant writing and reading
of pseudo-random numbers. The remaining primitive
building blocks of Dilithium and Kyber are designed dis-
cretely while ensuring low area consumption, simplicity
and flexibility. The proposed arithmetic units altogether
form the unified cryptoprocessor KaLi. It can perform
key generation, encapsulation, decapsulation, signature
generation, and signature verification operations for all
security levels of Dilithium and Kyber. This is the

first work that implements a unified cryptoprocessor for
Kyber and Dilithium solely in hardware.

3) We propose an instruction set architecture for flexibility.
The instructions are divided into two sets, and KaLi
can run instructions from these two sets in parallel,
thus improving the latency, while keeping the area
consumption low. This leads to a 35% reduction in run-
time.

4) KaLi is engineered separately for the ASIC platform to
reduce area overhead. It uses two clock domains, where
the memory unit works at a higher clock frequency
than the logic unit. This allowed us to use single port
memory instead of dual port memory used in FPGA
implementation, thus reducing the area consumption.

The paper is organized as follows. Section II provides
a high-level overview of Dilithium and Kyber. The major
contributions of the paper are described in Section III. It
includes the design methodology for implementing the PQC
schemes and implementation details. In Section IV, we give
the results and compare them with the existing works in
the literature, and add benchmarking estimates. Section V
concludes our paper.

II. PRELIMINARIES

Kyber and Dilithium are part of the Cryptographic Suite for
Algebraic Lattices (CRYSTALS), which are recently selected
for standardization by the American National Institute of
Standards and Technology (NIST). Kyber’s security relies on
the hardness of solving learning-with-errors in module lattices
(MLWE), while Dilithium’s security is based on MLWE and
Shortest Integer Solution (SIS) problems. The polynomials and
algebraic operations are assumed to be over the polynomial
ring Rq = Zq[x]/x

n + 1. For Dilithium n = 256 and
q = 8380417 = 223 − 213 + 1, and for Kyber n = 256 and
q = 3329 = (212− 3 · 28+1). Next, we give a brief overview
of these schemes and their building blocks.

A. Dilithium

This digital signature scheme has three main algorithms: key
generation, signature generation, and signature verification.
The sender generates a public and secret key using the key
generation algorithm. Then he uses his private key to sign
a message using the signature generation algorithm. The
receiver can verify the signature using the sender’s public key
and signature verification algorithm. The signature generation
algorithm continues to generate a signature until a valid
signature is generated. For a signature to be valid, a set of
constraints have to be satisfied to ensure that the signature does
not bear any similarity with the message. Readers may refer
to [26] for the original specification of Dilithium. Dilithium
has three variants for NIST security levels 2, 3, and 5. Several
building blocks used by these algorithms are explained below.
• Polynomial generation: SHAKE-128 is used to generate

the polynomials of the public matrix AAA ∈ Rk×ℓ
q by

expanding the seed ρ ∈ {0, 1}256 along with 16-bit
nonce values. The secret polynomial vectors sss1 and sss2
∈ Sℓ

η × Sk
η are generated using SHAKE-256. For each



3

polynomial, the seed ς and a 16-bit nonce are fed to
SHAKE-256 and passed through rejection sampling in
the range {−η, η}. The two types of generations are
named as ExpandA() and ExpandS(). ExpandMask(),
is used to generate a polynomial vector in the range
[0, 2γ1 − 1] using a rejection sampler. SampleInBall()
is used during signature generation and verification, to
generate a polynomial with only τ coefficients set to +1
or −1 and the remaining coefficients as 0.

• Polynomial Arithmetic: Polynomial multiplications are
performed using the Number Theoretic Transform (NTT)
method. The addition and subtraction operations are
coefficient-wise linear operations.

• Hash functions: SHAKE-256 is used to make a collision
resistant hash function- CRH().

• Power2Round : The function, Power2Roundq(), takes
an element r = r1 · 2d + r0 and returns r0 and r1, where
r0 = r mod ±2d and r1 = (r − r0)/2

d.
• Decompose and other related functions: Let α be a

divisor of q − 1. The function Decomposeq() is defined
in the same way as Power2Round() with α replacing
2d. The HighBitsq()/LoweBitsq() return r1/r0 from the
output of Decomposeq(). MakeHint uses HighBitsq() to
produce a hint hhh. UseHint uses the hint hhh produced by
MakeHintq() to recover the high-bits.

B. Kyber
Kyber is an IND-CCA2-secure key encapsulation scheme. It

has three principal algorithms: key generation, encapsulation,
and decapsulation. The receiver generates a public and secret
key using the key generation algorithm and broadcasts the
public key. When the sender wishes the send a message, he/she
can encapsulate it using the receiver’s public key through the
encapsulation algorithm. The receiver can then decapsulate it
using her/his secret key through the decapsulation scheme.
Three variants of Kyber, Kyber-512, Kyber-768, and Kyber-
1024 are provided for NIST Security levels 1, 3, and 5,
respectively. The variants differ in module dimensions and
coefficient distributions. Readers may refer to [7] for the
detailed specifications of Kyber. Kyber has the following
internal routines:
• Pseudorandom functions: Kyber uses PRF (SHAKE-

256) and XOF (SHAKE-128) to generate the pseudo-
random numbers for polynomial coefficients.

• Hash functions: Kyber provides functions H and G for
SHA3-256 and SHA3-512, respectively, for hashing.

• Key-derivation function (KDF): It is instantiated using
SHAKE-256 in Kyber.

• Polynomial Arithmetic: Kyber uses a new method NTT-
based polynomial multiplication unit. Polynomial addi-
tion and subtractions are also supported.

• Samplers: Uniform sampling (Parse) is used to generate
the public polynomials, and Binomial sampling (CBD) is
used to generate secret and error polynomials.

• Encode/Decode: These modules are used to serial-
ize/deserialize the polynomials to/from byte arrays.

• Compress/Decompress: They are used to reduce the
size of ciphertext by discarding low-order bits. They are

defined on an element x ∈ Zq as ⌈(2d/q) · x⌋ (mod 2d)
and ⌈(q/2d) · x⌋ respectively, where d < ⌈log2(q)⌉. The
value x′ such that x′ = Decompress(Compress(a, d), d)
is an element close to x.

C. NTT-based Polynomial Multiplication

Polynomial multiplication of (n − 1)-degree polynomials
has been the focus of works for PQC implementations. Most
implementations use the traditional NTT-based multiplication
technique, while others show how methods like schoolbook
O(n2), Karatsuba O(n1.59), etc., can be used. NTT-based
multiplication has a time complexity of O(n(log n)). The
designers of Dilithium and Kyber select polynomials in Ring
Rq = Zq[x]/x

n + 1, where modulus q is an NTT-friendly
prime. Thus, making it easier to use the fast NTT-based
multiplication method.

Forward NTT transform converts an (n − 1)-degree poly-
nomial (coefficient representation) to n 0-degree polynomi-
als (value representation). Then two polynomials in their
value-representation form (NTT domain) can be multiplied
coefficient-wise to get the multiplied values in the NTT
domain. Now, if we need to get the polynomial in coefficient
representation again, a backward NTT transform (INTT) is
used. The conversion to-and-from NTT domain has a time-
complexity of O(n(log n)). Coefficient-wise multiplication
has a time-complexity of O(n). Thus, a total time com-
plexity of O(n(log n)). Various algorithms exist in the
literature to facilitate these transformations. The most used
ones are the Cooley-Tukey (Algorithm 1) transform for NTT
and Gentleman-Sande for INTT. For more information on
NTT/INTT, refer to [27].

Next, we discuss the major optimizations made to realize
the design methodology in the context of Dilithium and Kyber.

III. PROPOSED UNIFIED HARDWARE ARCHITECTURE

The first and foremost goal is to unify the digital signature
scheme and the key-encapsulation scheme. While doing this, it
is important to ensure that the design is compact and flexible.
Unification has a very straightforward three-step approach.
First, we must identify the most area and time-consuming

Algorithm 1 The Cooley-Tukey NTT Algorithm [28]
In: An n-element vector x = [x0, · · · , xn−1] where xi ∈ [0, q − 1]
In: n (power of 2), modulus q (q ≡ 1 (mod 2n))
In: g (precomputed table of 2n-th roots of unity, bit-reversed order)

Out: x← NTT (x)
1: t← n/2; m← 1
2: while (m < n) do
3: k ← 0
4: for (i← 0; i < m; i← i + 1) do
5: S ← g[m + i]
6: for (j ← k; j < k + 1; j ← j + 1) do
7: U ← x[j] ▷ Butterfly starts
8: V ← x[j + t] · S (mod q)
9: x[j]← U + V (mod q)

10: x[j + t]← U − V (mod q) ▷ Butterfly ends
11: end for
12: k ← k + 2t
13: end for
14: t← t/2; m← 2m
15: end while
16: return x



4

Fig. 1. High-level architecture of KaLi

building blocks, the Giants. This is because unifying the low
area and time-consuming building blocks (the Dwarves) will
not reduce the area consumption significantly, and instead
limit the flexibility of the design. The next step is to find the
algorithmic synergies between the Giants of the two schemes.
The final step is to discern if some of the Dwarves which are
dependent on the Giants can be unified with Giants to reduce
both area and time consumption.

A high-level view of the proposed architecture KaLi
is given in Fig. 1. The Keccak-based SHA-SHAKE unit
and polynomial arithmetic unit are the two Giants in both
schemes. The remaining building blocks are deemed as
Dwarves since they comprise only 20% of the total area
consumption. Unifying the Keccak-based SHA-SHAKE unit
is relatively easy since we can use a common Keccak core for
both schemes. Therefore in this section, we will discuss how
we efficiently unified the polynomial arithmetic unit. We will
also discuss how we efficiently manage the memory for the
two schemes. Another facet of the work, the optimization for
ASIC platforms, is also presented. We utilized multiple clock
domains and boosted the memory bandwidth budget on ASIC
platforms to reduce area consumption.

A. The colossal Giant: Polynomial Arithmetic Unit

The Polynomial Arithmetic Unit performs polynomial ad-
dition, subtraction, and multiplication. Polynomial addition
and subtraction are simple coefficient-wise operations, hence
cheap. Polynomial multiplication is rather complex, and it
is what makes the polynomial arithmetic unit a Giant. Both
schemes perform this using NTT, as discussed in Section II-C.
Although the two schemes use NTT-based polynomial multi-
plication units, there are many differences between the two
schemes that make their NTT units quite distinct.

1) A clash of the Giants: The differences between the
presumed similar NTTs

The first distinction between the NTTs used by the two
schemes lies in the algorithm itself. The NTT-based poly-
nomial multiplication method used in Dilithium requires the
existence of 2n-th root of unity that mandates q ≡ 1
(mod 2n). Accordingly, Dilithium uses a complete-NTT. After
a complete-NTT transform of an n-degree polynomial, we get
n polynomials of degree 0. In [29], Lyubashevsky et al. pro-
pose a new method for NTT-based polynomial multiplication

that requires only q ≡ 1 (mod n), without pre-processing
and post-processing operations. This technique is adopted by
Kyber, and their 12-bit prime modulus does not have a 2n-th
root of unity. Therefore, Kyber has to use an incomplete-NTT.
An incomplete-NTT gives us n/2 polynomials of degree 1.
These polynomials cannot be multiplied coefficient-wise.

For the incomplete-INTT, multiplication operation of two
degree-1 polynomials is performed in the ring Zq[x]/(x

2−ωi)
where ω is the n-th root of unity and i depends on the index of
coefficients. For the details, readers may follow original Kyber
specifications [7] or related prior works in the literature [30].
Along with this, they also have a difference in datapath design.
Dilithium has a 23-bit prime modulus, while Kyber has a
12-bit prime modulus. Therefore, while Kyber requires 12-
bit adder/subtracter/multiplier units, Dilithium requires them
in 23-bits. Designing a datapath for one of them and using it
for the other one would lead to over-or-under saturation.

Next, we will discuss in detail how we achieved a unified
polynomial multiplication unit with full utilization. The unit of
interest here is the butterfly unit (BFU). Each BFU performs
dyadic addition, subtraction, and multiplication, on the two
input coefficients. The results are reduced by modulo q.
This is shown by steps 7-10 in Algorithm 1. Since modulus
multiplication is the most expensive operation, we will discuss
how we unify this unit. Then, we will discuss how with a few
more changes, the entire BFU can be consolidated.

2) Flexible fusion of Modular Multiplier Unit
As discussed above, if we naively use the 23-bit Dilithium

polynomial multiplier unit for Kyber, then it will always be
undersaturated as half of it will be unused. Instead, if we aim
to use a 12-bit Kyber unit for Dilithium, it will require extra
control logic but also slow down Dilithium’s NTT. Therefore,
we need to find a solution using a 23-bit Dilithium unit that
does not lead to undersaturation. The modular multiplier unit
has two parts: (i) integer multiplier and (ii) modular reduction
unit. We propose an algorithm (Algorithm 2) to make the
integer multiplication unit designed for Dilithium flexible for
Kyber. It performs two 23-bit×12-bit integer multiplications.
The result is added for Dilithium and concatenated for Kyber.
This algorithm gives us one multiplied coefficient in the case
of Dilithium and two multiplied coefficients in the case of
Kyber.

The modular multiplier unit, designed to support modular
multiplication using both primes, uses two DSP units of Xil-
inx FPGAs. The hardware architecture of the re-configurable
integer multiplier is shown in Fig. 2. The datapath depends
on the scheme type and is heavily pipelined. We used internal
registers of DSP units to synchronize two DSP unit outputs
and achieve a high clock frequency. Now we need to design
a modular reduction unit accordingly.

3) Versatile Modular Reduction Unit
The naive solution is to design separate modular reduction

units for the two primes. It would require one modular
reduction unit for the Dilithium prime and two reduction
units for the Kyber prime, which will result in extra hard-
ware costs. To avoid this, we propose a unified modular
reduction unit. Both Dilithium (223 − 213 + 1) and Kyber
(212−29−28+1) primes have pseudo-Mersenne structure. For



5

Fig. 2. Flexible yet compact integer multiplier. The red lines show control
signals, and the black lines show data movement. The two DSP units used
are highlighted in purple.

Algorithm 2 Integer Multiplication Algorithm
In: a, b ∈ Z8380417 or a[23 : 12], b[23 : 12], a[11 : 0], b[11 : 0] ∈ Z3329

In: sel ∈ {0, 1} (0 for Dilithium and 1 for Kyber)
Out: d = a · b or d = {a[23 : 12] · b[23 : 12], a[11 : 0] · b[11 : 0]}

1: d0 = (sel) ? b[23 : 12] : b
2: m0 = d0 · a[23 : 12]
3: m1 = (sel) ? (m0 ≪ 24) : (m0 ≪ 12)
4: d1 = (sel) ? b[11 : 0] : b
5: d = d1 · a[11 : 0] + m1
6: return d

Dilithium prime, we followed the method described in [31]
which uses 223 ≡ 213 − 1 equation recursively. Using this
equation, we can reduce a 46-bit integer d (mod 223−213+1)
to the integer 213d[45 : 24] + d[22 : 0] − d[45 : 23] which
consists of addition/subtraction of 36-bit and 23-bit partial
results. If we apply this operation recursively, we will obtain
d (= d[22 : 0] + (d[32 : 23] + d[42 : 33] + d[45 : 43])213 −
d[45 : 23] − d[45 : 33] − d[45 : 43]). Similarly, for Kyber,
we followed add-shift-based method proposed in [30] which
generates partial results using equations 212 ≡ 29+28−1 and
211 ≡ −210 − 28 − 1 recursively.

Summing all partial results using carry propagate adders
(CPAs) will result in either a very long carry chain or multiple
pipeline stages. In order to avoid long carry chain and pipeline
delays, we used carry-save adders (CSAs) along with CPA.
The proposed unified modular reduction unit is shown in
Fig. 3, where the boxes ’D’ and ’K’ represent the partial
result generation circuits for Dilithium and Kyber primes,
respectively. All the subtraction operations are converted into
additions by taking the 2’s complements of partial results. In
Fig. 3, each number inside a box represents a bit index of the
input integer (0 to 45 for Dilithium and 0 to 22 for Kyber). The
white and brown (terracotta) boxes represent the normal and
negated bits. When 2’s complements operation is applied to
the partial results, extra plus ones, along with sign extensions,
come into the picture. These are represented with blue circles.

After adding all of these partial results, we also perform a fi-
nal correction which brings the resulting integer from the range
(−q, 3q) to the range [0, q). The proposed modular reduction
unit can either perform one reduction for the Dilithium prime
or two reductions for the Kyber prime. The latency of the

22
45
32

4542
45

11 10
13

1
24
34
44

0
23
33
43

24
34
44

23
33
43

45 44

21
44
31
41

12 12 19 18
17 13 17 22 21
19 15 19 23 22 21 20 19 17

20 19 18 16

1
13

0
12

15 14
17 17

23 22 21 20 18 18 1818 19 23
23 22 19 20 1916 18 18
23 21 21 2015 14
22

0

1

Fig. 3. Unified modular reduction unit for Dilithium and Kyber primes.

A
dd

er
A

dd
er

S
ub

tra
ct

or
D

/K

M
ul

tip
lie

r D
/K

M
od

. R
ed

uc
tio

n D
/K

S
ub

tra
ct

or
D

/K
A

dd
er

D
/K

1/2D/K

1/2D/K

Fig. 4. Compact butterfly unit (BFU) with flexibility for both Dilithium and
Kyber. The red and blue lines show control signals, and the black lines show
data movement.

modular reduction unit is two cycles and it is fully pipelined.
4) Coalesced datapath for the Butterfly Unit
Now that we have unified the modular multiplication unit,

we propose a unified BFU (Fig. 4). It can perform one butterfly
operation for Dilithium and two butterfly operations for Kyber
using the same datapath. All the arithmetic units are made re-
configurable to work for both schemes. New re-configurable
adder and subtractor units are shown in Fig. 5. The idea is
to divide each 24-bit adder/subtractor into two small 12-bit
parts and select proper input signals based on the scheme.
The complete unified butterfly unit, designed using the re-
configurable arithmetic units, is shown in Fig. 4.



6

0

carry 0

carry

Fig. 5. Unified adder and subtractor for the butterfly unit. The red lines show
control signals, and the black lines show data movement.

 

3 2 1 0 3 2 1 0

ab

0

 

+ ++

Fig. 6. Butterfly feedback unit for Kyber’s NTT-domain polynomial multi-
plication.

The schoolbook multiplication for Kyber requires five mul-
tiplications for multiplying two linear (i.e., degree one) poly-
nomials. We have two flexible butterfly units that act as four
butterfly units for Kyber and allow four multiplications only.
One way to perform these five multiplications is to add another
DSP multiplier just for the extra multiplication. This unit will
not be useful for any other operation. To avoid this extra
multiplier, we condense five multiplications into four using
Karatsuba-like reduction. Then we use these four independent
butterfly units as a set of two. The output of the first set is
the input to the second set as shown in Fig. 6. The inputs and
outputs for the BFUs are highlighted in blue. The control flow
here is separated from the Dilithium polynomial multiplication
control flow, for simplicity. The entire flow is pipelined to
achieve a high clock frequency.

The coefficient consumption during NTT/INTT is shown in
Fig. 7. Owing to the flexible datapath and efficient memory
arrangement (discussed in the next subsection), the Kyber
NTT coefficients can be consumed faster. This enables full
utilization of the datapath. The complete polynomial arithmetic
unit consumes 3,487 LUTs, 1,918 FFs, 4 DSPs, and 1 BRAM.
The BRAM is used to store the powers of roots-of-unity
(twiddle factors) required during NTT/INTT operation. In the
next section, we will discuss the efficient memory arrangement
designed to optimally feed the polynomial arithmetic unit.

B. Memory Arrangement
The polynomial arithmetic unit is designed to consume the

Kyber coefficients twice as fast as the Dilithium coefficients.
It requires that the memory unit feeds it at the same rate,
otherwise, making these unifications will not help improve the
performance. Dilithium coefficients are 23-bit, and we have
designed the NTT/INTT unit using two butterfly cores. Each
of the cores requires exclusive access to the read/write port of a
memory. Therefore, we split the memory into two blocks, each
storing two Dilithium coefficients per address. For Kyber, each
memory block stores four 12-bit Kyber coefficients. Fig. 8
shows the storage of Kyber polynomials in one 64-bit word
of memory. One Dilithium polynomial coefficient will occupy
two of these coefficients, thus requiring twice the amount of
storage. It also ensures that the two required coefficients during
NTT/INTT are always stored across different BRAMs. Fig. 8
shows an example of the coefficients storage during Kyber’s
incomplete-NTT iterations for a 16-coefficient polynomial.

Next, we will discuss how we used multiple clock domains
to reduce area consumption in ASIC platforms.

C. Multi-clock domains: Customization for ASIC platforms
The memory organization discussed above has two sets

of BRAMs to feed the two BUF. These BRAMs are used
by all the remaining building blocks as well. It is generated
using dual-port BRAMs in FPGA. In ASIC, dual-port RAMs
consume more area than single-port RAMs. Therefore, to
reduce the area consumption, we decide to replace dual-
port RAMs with single-port RAMs, which work at a clock
frequency twice as fast as the rest of the design. Using two
different sources for the two clocks leads to an asynchronous
setting. This creates meta-stability problems due to clock-
domain crossing. To avoid these problems, we decided to
keep the clocking synchronous and generate the slow clock
(clock logic) using the fast clock (clock mem).

Fig. 9 describes the handshake between memory and logic.
A wrapper is provided to process the simultaneous reads
and writes to the memories. The read operation is given
preference over the write operation to ensure data is valid
when the building blocks fetch it and avoid any issues due
to clock glitches. The read latency is three clock cycles, and
all the building blocks are tailored accordingly. This design
helps reduce the area for ASIC designs. Note that a similar
modification will not change the FPGA area consumption and
instead cause timing problems running the memory at a high
clock frequency. Therefore, this adaptation specifically targets
ASIC platforms.

Until now we discussed the major contributions of the work.
Next, we will briefly discuss how we efficiently implement
the remaining building block. We will start with the rejection
samplers used in both schemes. These are the Giant dependent
Dwarves that might help reduce the area and time consump-
tion without compromising the flexibility of the design.

D. The Giant and the Dwarves: Keccak-based SHA-SHAKE
unit and the rejection samplers

Dilithium requires SHAKE-128 and SHAKE-256 for
pseudo-random number generation and hashing. Kyber re-



7

Fig. 7. Timeline showing the unified butterfly unit processing Dilithium and Kyber coefficients.

7 6 5 4

3 2 1 0

15 14 13 12

11 10 9 8

BRAM0 BRAM1

23 22 21 20

19 18 17 16

31 30 29 28

27 26 25 24

7 6 5 4

3 2 1 0

15 14 13 12

11 10 9 8

BRAM0 BRAM1

23 22 21 20

19 18 17 16

31 30 29 28

27 26 25 24

7 6 5 43 2 1 0

15 14 13 1211 10 9 8

BRAM0 BRAM1

23 22 21 2019 18 17 16

31 30 29 2827 26 25 24

L=16 L=8

L=4

7 6 5 43 2 1 0

15 14 13 1211 10 9 8

BRAM0 BRAM1

23 22 21 2019 18 17 16

31 30 29 2827 26 25 24

L=2

Fig. 8. Storage of coefficients during Kyber’s NTT for 16-coefficient
polynomial

Fig. 9. The data read-and-write handshake between memory and logic unit

quires SHA3-256 and SHA3-512 for hashing and SHAKE-
128 and SHAKE-256 for KDF and pseudo-random number
generation. These different Keccak-based functions are imple-
mented as modes of the same Keccak output. Therefore, we
can use the same Keccak instance for all these modes. Both
schemes employ different sampling for the generation of secret

and error polynomials. While some of these fully consume the
Keccak output, the remaining have to keep track of the leftover
bits.

We combine the rejection sampler with the Keccak unit
using a book-keeping approach similar to [31]. It improves
the performance of the sampling operation, as we do not need
to store and then read the Keccak output in between. The base
implementation of Keccak follows a high-speed and parallel
directive. The control and datapath are modified to work for
rejection samplers as it depends on coefficients passing the
rejection constraints. The complete Keccak unit consumes
12,326 LUTs and 3,560 FFs.

We have unified all the Giants, so now we will discuss the
optimized implementation techniques for the Dwarves.

E. Optimizations for the Dwarves

Making a design compact while keeping it agile increases
the life and usability of KaLi on the FPGA and ASIC
platforms. However, this comes with a series of challenges.
We must ensure that for keeping the design agile/flexible, we
do not pay a huge price in terms of area. Similarly, while
making the design compact, the performance should not get
worse. We now discuss how to make certain building blocks
of the two schemes compact, while maintaining flexibility.

1) Compress/Decompress Unit
The decompress unit performs division by power-of-two and

rounding operation which is trivial to implement in hardware.
On the other hand, the compress operation requires division
by q and rounding. Some works in the literature use Barrett
reduction and division algorithms to perform the compress
operation. We decide to use sufficient precision and convert



8

Algorithm 3 The Proposed Compression Algorithm
In: x ∈ Z3329, d ∈ {1, 4, 5, 10, 11}
Out: y = ⌈(2d/q) · x⌋
1: switch d do
2: case 1: t = (10079 · x); y = (t≫ 24) + (t[23]≫ 23)

3: case 4: t = (315 · x); y = (t≫ 16) + (t[15]≫ 15)

4: case 5: t = (630 · x); y = (t≫ 16) + (t[15]≫ 15)

5: case 10: t = (5160669 · x); y = (t≫ 24) + (t[23]≫ 23)

6: case 11: t = (10321339 · x); y = (t≫ 24) + (t[23]≫ 23)

7: end switch
8: return y (mod 2d)

Fig. 10. Architecture of the Compress/Decompress unit. The red lines show
control signals, and the black lines show data movement.

division by q operation into multiplication and shift opera-
tions. The proposed multiplication-based compress algorithm
is shown in Algorithm 3. The input is the Kyber coefficient
x and the type of compression required d. The compressed
coefficient y is returned as the output.

Since the multiplications are by constant values, we imple-
ment these operations using add and shift technique utilizing
the LUTs. Fig. 10 shows the hardware architecture of this
multiplication unit, used for retrieving the t values in Algo-
rithm 3. This is unified and works for both compress and
decompress operations. The control flow is dependent on the
type of compression or decompression required.

2) Encode/Decode Unit
Encode and decode units perform coefficient-to-byte and

byte-to-coefficient conversions, for all security levels of the
Kyber scheme. We used a similar idea as proposed in [32]
which uses a 32-bit interface. Our architecture uses a 64-bit
interface and thus the proposed encode unit uses a 104-bit
buffer. It can encode 1-bit, 4-bit, 5-bit, 10-bit, and 11-bit long
coefficients. The decode unit can decode 64-bit inputs into
1-bit, 4-bit, 5-bit, 10-bit, and 11-bit long coefficients using a
72-bit buffer.

3) Pack/Unpack unit
Similar to Kyber, Dilithium requires coefficient-to-byte and

byte-to-coefficient conversions for various coefficient sizes.
Pack and unpack units perform these conversions for all
security levels of Dilithium for coefficient sizes 3, 4, 6, 10, 13,
18, and 20 bits. We again followed the idea proposed in [32]
for the pack and unpack units.

The remaining blocks of both schemes are different and
unifying them would not save any area and instead complicate

the control logic and reduce the flexibility of the design. These
building blocks do not require any DSP units and comprise
simple bit-wise packing, unpacking, or addition/subtraction
operations. They are implemented as individual blocks and
they occupy only 18% of the cryptoprocessor’s area.

F. Instruction set cryptoprocessor

We made the building blocks compact while ensuring flex-
ibility, but this is insufficient. What happens if, in two years,
the Keccak pseudo-random number generation and hashing
unit are obsolete? Do we then need to redesign the entire
cryptoprocessor? To counter this and increase agility as well
as flexibility, we design an instruction set architecture (ISA),
where each instruction is a building block required by the
cryptographic schemes. A simple program controller runs the
cryptographic protocols by executing the necessary instruc-
tions, manages the synchronization of parallel instructions, and
avoids back-and-forth CPU-Cryptoprocessor communication.
Note that the program controller is not a ‘control processor’,
and it does not contain arithmetic circuits to process operand
data. It simply decodes an instruction and then activates the
corresponding module inside the cryptoprocessor. It consumes
only 8% of the cryptoprocessor’s area. The instructions and
the corresponding hardware modules are listed in Table I.

G. Running the Giants and the Dwarves in parallel

Our goal was to make the unified design compact and agile.
However, does this mean we have to pay an equal price
in terms of performance? To some extent, this is correct.
However, we should continue to ponder on some methods
that could boost the performance without increasing the area
consumption. One such way is to run the Giant instructions
in parallel to each other or to multiple Dwarf instructions, as
shown in [31]. We make sure that two Giants, the Keccak
unit and the polynomial arithmetic unit, can always run in
parallel to cancel each other’s run-time. It leads to a reduction
of 35% in the total run-time. Similar to [31], we define two
instruction sets (S-1 and S-2), as shown in Table I. Every
instruction belonging to the first set can be run in parallel with
any instruction that belongs to the second set. The instruction
opcodes for each instruction are shown in the INS column
of Table I. Following the design methodology, we design the
unified cryptoprocessor- KaLi as shown in Fig. 1.

IV. RESULTS

In this section, we present the performance and area results
of KaLi. The proposed architecture is described in Verilog. It
is synthesized and implemented for Zynq Ultrascale+ ZCU102
with a performance-optimized strategy using Vivado 2019.1
tool and achieves 270 MHz clock frequency on FPGA. The
proposed architecture is also implemented with 65nm and
28nm ASIC technologies using the Cadence Genus tool. On
65nm/28nm ASIC technology, it achieves 280 MHz/1 GHz for
the slow clock (in logic units), and 560 MHz/2 GHz for the
fast clock (in memory units).



9

TABLE I
AREA OF KALI ON THE ZYNQ ULTRASCALE+ ZCU102 FPGA PLATFORM.

ALL SECURITY LEVELS OF DILITHIUM AND KYBER ARE SUPPORTED.
Unit S-1 S-2 INS LUT DFF DSP BRAM
Comp.Core 21K 9.2K 4 21

D
ili

th
iu

m
(D

)

⌊Decompose ✓ - 1 474 338 0 0
⌊Pow2Round - ✓ 1 55 84 0 0
⌊MakeHint - ✓ 2 61 124 0 0
⌊UseHint - ✓ 3 565 433 0 0
⌊Encode H - ✓ 4 202 233 0 0
⌊Pack ✓ - 2 582 181 0 0
⌊Unpack ✓ - 3 315 182 0 0
⌊SampleInBall - ✓ 5 505 285 0 0
⌊Refresh ✓ - 4 8 7 0 0
⌊VerifyEq. - ✓ 6 13 76 0 0

K
yb

er
(K

)

⌊Encode - ✓ 7 517 190 0 0
⌊Decode ✓ - 5 237 180 0 0
⌊Com./Decom. ✓ - 6/7 272 376 0 0
⌊Verify - ✓ 8 102 216 0 0
⌊CMOV - ✓ 9 20 120 0 0
⌊COPY - ✓ 10 15 120 0 0

D
+K

⌊Memory - ✓ 11 268 12 0 20
⌊Keccak ✓ - 8-18 12K 3.5K 0 0
⌊Multiplier - ✓ 12-16 3.5K 2K 4 1
Prog.Contr. 2K 296 0 3
Total 23K 9.7K 4 24

TABLE II
PERFORMANCE RESULTS FOR DILITHIUM AND KYBER-KEM IN FPGA

Operation
Dilithium-2 Dilithium-3 Dilithium-5
Kyber-512 Kyber-768 Kyber-1024

Cycle µs Cycle µs Cycle µs
Dil.Gen 14,594 54.05 23,619 87.48 39,737 147.17
Dil.Signpre 7,883 29.2 9,640 35.7 12,943 46.27
Dil.Sign 21,812 80.79 36,643 135.72 53,965 199.87
Dil.Signpost 1,967 7.23 2,463 9.12 3,271 12.12
Dil.Verify 15,423 57.12 26,124 96.76 46,671 172.86
Kyb.Keygen 3,395 12.6 6,291 23.2 9,089 33.7
Kyb.Encaps 4,956 18.4 7,862 29.11 11,351 42.04
Kyb.Decaps 6,807 25.21 11,291 41.82 13,905 51.5

A. Area and Performance Results

Table I presents the detailed utilization of each building
blocks in KaLi for UltraScale+ ZCU102 platform. The pro-
posed cryptoprocessor uses 23,347 LUTs (8.4%), 9,798 DFFs
(1.7%), 4 DSPs (0.1%), and 24 BRAMs (2.6%). On ASIC,
KaLi consumes 1.107 mm2 (769.04 KGE) in 65nm technol-
ogy, and 0.263 mm2 (747.81 KGE) in 28nm technology.

Table II presents the cycle count and latency (in µs) for
the operations of Dilithium and Kyber. With 270 MHz clock
frequency in the FPGA, the CCA-secure key generation,
encapsulation and decapsulation operations for Kyber-768 take
23.2, 29.11, and 41.82 µs, respectively. For the best-case sce-
nario, where a valid signature is generated after the first loop
iteration [31], the key generation, signature generation, and
signature verification operations for Dilithium-3 take 87.48,
179.91, and 96.76 µs, respectively. The ASIC implementation
with 65nm/28nm technology (with 560 MHz/2 GHz clock
frequency for the memory unit) can perform the operations
for Kyber-768 and Dilithium-3 in 22.07/6.18, 27.59/7.73, and
39.62/11.09 µs, and 82.87/23.2, 171.03/47.89, and 91.66/25.67
µs, respectively. Next, we compare these results with the
existing works in the literature.

B. Comparison with unified designs in literature

In [24], the authors design a unified architecture for
Dilithium and Kyber. They present both HW/SW co-design

TABLE III
COMPARISON TABLE FOR DILITHIUM-3 FPGA IMPLEMENTATIONS

Ref. Plat. Performance Freq. Resources (LUT/
(in µs) (MHz) FF/DSP/BRAM)

[9]† Zynq -/8.8K/9.9K 100 2.6K/-/-/-
[10]a

US+V
51.9/-/- 350 54.1K/25.2K/182/15

[10]b,d -/63.1/- 333 68.4K/86.2K/965/145
[10]c -/-/95.1 158 61.7K/34.9K/316/18
[11]d Ar.-7 229/0.3K/0.2K 145 30.9K/11.3K/45/21[11]e 229/0.85K/0.2K
[6]d Ar.-7 60/0.12K/63.8 96.9 30K/10.34K/10/11[6]e 60/0.46K/63.8
[12]d US+V 32/63/39 145 55.9K/28.4K/16/29[12]e 32/193/39
[31]d,f US+Z 114.7/237/127.6 200 18.5K/9.3K/4/24
KaLid,f US+Z 82.8/171.3/96.7 270 23K/9.7K/4/24
a: Implements K. Gen. b: Implements Sign. c: Implements Verify. d: Reports
best-case scenario. e: Reports average-case scenario. f : Supports multiple
schemes. †: HW/SW co-design. US+V/Z refers to Virtex/Zynq US+ platforms.

TABLE IV
COMPARISON TABLE FOR DILITHIUM-3 ASIC IMPLEMENTATIONS

Ref. Tech. Perf.∗ Freq. Area SRAM Energy∗
(nm) (µs) (MHz) (KGE) (KB) (µJ)

[25]† 40 18,266 72 106 40.25 88.89
[24]†a 28 747 540 697 24.75 62.39
[31]a,b 65 182.3 400 854 34.82 -
KaLia,b 65 262.7 280/560 769 34.82 117.9
KaLia,b 28 73.55 1K/2K 747 34.82 27
∗:Performance/Energy is measured as total time/energy for signature generation
and verification (key generation can be done offline). †: HW/SW co-design.
a:Supports multiple schemes. b: Reports best-case scenario.

as well as HW results for Kyber while keeping some parts
of Dilithium in the software. Their NTT unit occupies 25,674
LUTs, 3,137 DFFs, 64 DSPs, and 6 BRAMs on a Xilinx Artix-
7 FPGA. The NTT unit alone occupies more LUT and DSP
units than our entire design. On ASIC, it occupies 697 KGE
on 28nm technology [24] which is very close to our unified
cryptoprocessor’s 747 KGE area consumption. Their imple-
mentation shows similar performance for Kyber even though
they target a high-speed design of Kyber in hardware and use
32 butterfly units for NTT, making their NTT unit 8× faster
than KaLi. For Dilithium, KaLi shows 10× better results.
The energy consumption of KaLi is also approximately half
of their design for both Kyber and Dilithium.

To the best of our knowledge, no work exists in the literature
that unifies Dilithium and Kyber solely in hardware. Therefore,
next, we compare our work with standalone implementations
of Dilithium or Kyber in hardware.

C. Comparison with Dilithium-only designs in literature

Comparison with FPGA-based implementations:
Different works in the literature use different FPGA plat-

forms. Hence, drawing a one-to-one comparison between
works is not always feasible. When we started the hardware
implementation of the proposed architecture, we chose Ultra-
scale+ as the platform and thereafter pipelined the building
blocks for achieving around 300 MHz frequency on this plat-
form. Several works in the literature optimized their designs
for Artix-7 or other FPGAs. While optimizing the critical
paths of architecture for meeting the desired clock frequency is
heavily dependent on the technology of the platform, area re-
quirements (LUT/DSP/FF/BRAM) do not change significantly



10

TABLE V
COMPARISON TABLE FOR KYBER-1024 FPGA IMPLEMENTATIONS

Ref. Platform Performance∗ Freq. Resources (LUT/
(in µs) (MHz) FF/DSP/BRAM)

[21]‡ Cortex-M4 33,850 100 -/-/-/-
[25]† Artix-7 18,560 25 15K/3K/11/14
[18]† Zynq - - 24K/11K/21/32
[20]† Artix-7 85,559 59 2K/2K/5/34
[13] Virtex-7 1,260 192 133K/-/548/202
[14] Artix-7 154 161 7K/5K/2/3
[15] Artix-7 63 210 12K/12K/8/15
[16] Artix-7 56 185 13K/12K/16/16
[17] Artix-7 286 112 16K/6K/12/17
[17] Virtex-7 205 156 16K/6K/12/17
[22] US+Z 23.5 450 11.6K/12K/8/8.5
[23] US+Z 3.4 (Encap) 450 18.4K/13.7K/2/0
[23] US+Z 4.1 (Decap) 450 15.9K/12.9K/2/0
KaLia US+Z 93 270 23K/9.7K/4/24
∗:Performance is measured as the total time for encapsulation and decapsulation
(key generation can be done offline). a:Supports multiple schemes. †: HW/SW
co-design. ‡: SW design. US+Z refers to Zynq Ultrascale+ platforms.

across FPGA technologies. In Table III, we present the FPGA
implementation results of Dilithium-3 from the literature.

Zhou et al. [9] present an HW/SW co-design and they only
implement the polynomial arithmetic unit in hardware. Thus,
they consume less area but report an inferior performance.
Ricci et al. [10] provide separate designs for each of the
Dilithium variants. These designs in total occupy 9× more
area compared to our design and still perform as good as our
design for signature verification. For a signature generation,
their implementation shows only 3× improvement. Thus, our
design gives a much better area-time trade-off result.

The authors in [6], [11], [12] present Dilithium implementa-
tions, which consume much more area compared to our design.
Note that across technologies, the area consumption does not
change notably. A lower frequency in [6], [11] can be justified
by the use of Artix-7 FPGA, which is technologically inferior
to our Ultrascale+ platform. A limitation of [6] is that it uses
a segmented pipeline and hence, an inflexible data path for
Dilithium. The implementation in [12] uses a better platform
than ours, consumes 3× more area (LUT+FF), and achieves
a speed-up of only 2.5× (Sign+Verify). In [31], the authors
present a unified cryptoprocessor for Dilithium and Saber [33].
Their area is almost comparable to ours, considering the
difference between Kyber and Saber. We achieve a higher
clock frequency and report 1.4× better performance.

Comparison with ASIC-based implementations: Table IV
gives the comparison of implementation results for Dilihtium-
3 on ASIC platforms. Banerjee et al. [25] present ASIC results
for HW/SW co-design of Dilithium with Round 2 parameters.
KaLi outperforms them significantly in terms of performance.
Our hardware only design gives 45× better performance at
the cost of only 7.5× more area. KaLi consumes almost the
same area as reported in [24] but gives a 10× and 2.8× better
performance with 28nm and 65nm technology, respectively.
[31] reports a higher number of logic gates than our design.
KaLi sets new records for energy consumption, in both 28nm
and 65nm technologies.

Thus, our FPGA and ASIC models are the most compact
compared to all the existing Dilithium implementations.

TABLE VI
COMPARISON TABLE FOR KYBER-1024 ASIC IMPLEMENTATIONS

Ref. Tech. Perf.∗ Freq. Area SRAM Energy∗
(nm) (µs) (MHz) (KGE) (KB) (µJ)

[25]† 40 6,444 72 106 40.25 36.06
[18]† 65 18,444 45 170 465 307.68
[19]† 28 727 300 979 12 19.57
[17] 65 160 200 104 190 -
[24]†,a 28 206 540 697 24.75 16.24
[24]a 28 22/17.7b 540 623 36.75 -
KaLia 65 90.2 280/560 769 34.82 40.48
KaLia 28 25.26 1K/2K 747 34.82 9.27
∗:Performance/Energy is measured as the total time/energy for encapsulation
and decapsulation (key generation can be done offline). †: HW/SW co-design.
a:Supports multiple schemes. b:Depending on the type of schedule.

D. Comparison with Kyber-only designs in literature

Comparison with FPGA-based implementations: Table V
gives the comparison of implementation results for Kyber-
1024 on FPGA platform. Banerjee et al. [25] present an
HW/SW co-design for Kyber. KaLi surpasses their perfor-
mance results on both platforms, at the cost of some area.
Observe that KaLi gives better results compared to software
only [21] as well as HW/SW co-designs [18], [20], [25]. The
hardware-only designs [13]–[17] target Artix-7 or Virtex-7
FPGAs. Our KaLi consumes significantly smaller area than
[13]. Authors in [15]–[17], [22] target a high-speed Kyber
implementation and therefore achieve better performance and
frequency. In [23], the authors present separate results for
all the Kyber variants, and present individual encapsulation
and decapsulation architectures (unlike KaLi combines all
operations in a single architecture). Their design goal is also
high-speed, and their standalone implementation of Kyber-
1024 encapsulation consumes more area than KaLi. Note that
the area of our design is determined by Dilithium and not
by Kyber. Therefore, even though the results show that we
consume a very high area, we only consume the bare minimum
and give almost the best performance results on the FPGA
platform.
Comparison with ASIC-based implementations: Table VI
gives the comparison of implementation results for Kyber-
1024 on ASIC platform. On ASIC platform, KaLi consumes
the same area as reported in [24] but gives a 2.3/8.1× better
performance under 65nm/28nm technology. In fact, we surpass
all existing designs [17]–[19], [25] in terms of performance.
However, compared to some of the designs, we use more area,
and for this, we must remind again that Kyber is the recessive
scheme among the two, and therefore this area is higher when
compared to Kyber-only implementations. KaLi consumes the
least energy of all for respective technologies.

We have now established that KaLi transcends all the state-
of-the-art works that exist in literature. Thus, showing that the
proposed design methodology yields better results. Next, we
discuss the aspect of application benchmarking.

E. Application-Benchmarking and Impact

Several works, for example, [34], [35], present application
benchmarking using the existing libraries. The authors in
[34] provide results for TLS protocol using the mbed TLS
library and use Kyber for KEM and SPHINCS+ for digital



11

signature. Runtimes are reported for Raspberry Pi 3 Model B+,
ESP32-PICO-KIT V4, Fieldbus Option Card, and LPC11U68
LPCXpresso. Compared to these works, KaLi’s FPGA imple-
mentation shows 85×, 1349×, 6190×, and 23809× speedups,
respectively, noting that the ASIC models of KaLi will further
improve the timings.

In [35], the authors evaluate PQ TLS 1.3, which is a
post-quantum variant of TLS version 1.3. It supports Round
3 parameters for both Kyber and Dilithium, along with
other schemes. They use ARM Cortex-M4 embedded plat-
form NUCLEO-F439ZI, with and without hardware accel-
eration. These boards can reach a maximum frequency of
180MHz. Compared to their results for Kyber’s decapsulation,
we achieve a speedup of 131× if we run our design at
180MHz. The authors report that replacing RSA+ECDHE with
Dilithium3+Kyber5 in TLS handshake increased the runtime
by 64%. KaLi can help bridge this gap. Thus, replacing these
devices with KaLi would give significant speedup. KaLi only
occupies 8% of the available resources on the Zynq US+
FPGA board, implying the ability to run twelve such unified
cores in parallel, further improving the speedup.

There are several data center and network security appli-
ances where high-performance SIMD processors (e.g., In-
tel/AMD with AVX) are too expensive to deploy or extremely
constrained (or passively powered) devices are too slow to
use. There are commercial cryptoprocessors that target such
applications. For example, NXP’s C29x family of crypto
coprocessors [36] (which are battery-powered) use dedicated
hardware acceleration for speeding up the RSA and elliptic
curve-based public-key cryptographic computations. It com-
putes up to 32K RSA2048 public-key operations per second.
More constrained platform OPTIGA™ TPM SLB 9672 from
Infenion [37] has hardware acceleration for RSA-4096. They
use the same RSA engine for both public-key signature and
key agreement.

Our unified Kyber+Dilithium coprocessor performs faster
than the public-key engines of [36] and [37] and, at the same
time, requires only 0.263 mm2 area in a 28nm node. When a
smaller area is required by an application, some of the design
parameters (e.g, number of NTT cores, Keccak’s data-width,
etc.) can be tuned accordingly to meet the area budget at the
cost of speed. The proposed design techniques and architecture
will be useful to replace the classical public-key cryptography
used in conventional cryptoprocessors with post-quantum key
agreement and signature.

V. CONCLUSIONS AND FUTURE WORK

Post-quantum key encapsulation and digital signature algo-
rithms are required for securing communication. In this paper,
we presented a design methodology for efficient and compact
hardware implementation of both post-quantum key encapsu-
lation and digital signature algorithms in a unified cryptopro-
cessor architecture. Following the proposed methodology, we
designed and implemented the first unified cryptoprocessor
architecture KaLi that can perform all the cryptographic
protocol operations of the Dilithium signature and Kyber key
encapsulation algorithms for all the security levels. Architec-
tural optimizations in the data path of the cryptoprocessor

were performed to reduce the cycle count and improve the
clock frequency. Experimental evaluation of KaLi on FPGA
and ASIC platforms showed that KaLi outperforms all the
existing implementations. Therefore, the design of KaLi is a
significant step towards making post-quantum cryptography
compact and agile on hardware platforms. The proposed
design methodology can be customized to meet different
application-specific constraints and requirements.

The hardware implementation presented in this paper is
resistant to timing attacks but does not incorporate any
countermeasure, for example, masking against more powerful
side-channel attacks. Side-channel protection of the unified
cryptoprocessor architecture will require significant research
and is considered future work. There are several works in the
literature on masking Kyber [38], [39]. However, at the time
of writing this paper, the authors are not aware of any reported
masked implementation of the NIST standardized version
of Dilithium. How to design an ‘optimal and unified’ side-
channel protection mechanism for a unified hardware imple-
mentation of Kyber and Dilithium is an interesting topic that
needs to be researched. Furthermore, researching protection
techniques against fault injection-based attacks will be very
important due to the vast deployment of these cryptographic
schemes in various embedded devices.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, p. 1484–1509, oct 1997.

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, and many more, “Quantum supremacy using a
programmable superconducting processor,” Nature, 2019, https://doi.org/
10.1038/s41586-019-1666-5.

[3] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu, Q. Zhu,
Y. Zhao, S. Li, S. Guo, and e. a. Haoran Qian, “Quantum walks on
a programmable two-dimensional 62-qubit superconducting processor,”
Science, vol. 372, no. 6545, pp. 948–952, 2021.

[4] “Post-quantum cryptography- call for proposals,” 2017. [Online].
Available: https://csrc.nist.gov/projects/post-quantum-cryptography

[5] D. Joseph, R. Misoczki, M. Manzano, J. Tricot, F. D. Pinuaga,
O. Lacombe, S. Leichenauer, J. Hidary, P. Venables, and R. Hansen,
“Transitioning organizations to post-quantum cryptography.” Nature,
605(7909), 237–243., 2022.

[6] C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin,
S. Wei, and L. Liu, “A compact and high-performance hardware archi-
tecture for crystals-dilithium,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2022, no. 1, pp. 270–295, 2022.

[7] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint,
V. Lyubashevsky, J. M. Schanck, G. Seiler, and D. Stehle, “CRYSTALS-
KYBER,” Proposal to NIST PQC Standardization, 2021, https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-3-submissions.

[8] S. S. Roy and A. Basso, “High-speed instruction-set coprocessor for
lattice-based key encapsulation mechanism: Saber in hardware,” IACR
Trans. Crypt. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 443–466, 2020.

[9] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R. Choo, “A soft-
ware/hardware co-design of crystals-dilithium signature scheme,” ACM
Trans. Reconfigurable Technol. Syst., vol. 14, no. 2, Jun. 2021.

[10] S. Ricci, L. Malina, P. Jedlicka, D. Smékal, J. Hajny, P. Cibik,
P. Dzurenda, and P. Dobias, “Implementing crystals-dilithium signature
scheme on fpgas,” in The 16th International Conference on Availability,
Reliability and Security, ser. ARES 2021. New York, NY, USA:
Association for Computing Machinery, 2021.

[11] G. Land, P. Sasdrich, and T. Güneysu, “A hard crystal - implementing
dilithium on reconfigurable hardware,” IACR Cryptol. ePrint Arch., vol.
2021, p. 355, 2021.

[12] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance hardware
implementation of crystals-dilithium,” Crypto. ePrint Arch., Report
2021/1451, 2021.



12

[13] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implemen-
tation of CRYSTALS-KYBER PQC algorithm through resource reuse,”
IEICE Electron. Express, vol. 17, no. 17, p. 20200234, 2020.

[14] Y. Xing and S. Li, “A compact hardware implementation of cca-secure
key exchange mechanism CRYSTALS-KYBER on FPGA,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 2, pp. 328–356, 2021.

[15] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T.
Nguyen, and K. Gaj, “Implementation and benchmarking of round
2 candidates in the NIST post-quantum cryptography standardization
process using hardware and software/hardware co-design approaches,”
IACR Cryptol. ePrint Arch., p. 795, 2020.

[16] M. Bisheh-Niasar, R. Azarderakhsh, and M. M. Kermani, “High-speed
ntt-based polynomial multiplication accelerator for crystals-kyber post-
quantum cryptography,” IACR Cryptol. ePrint Arch., p. 563, 2021.

[17] M. Bisheh-Niasar, R. Azarderakhsh, and M. M. Kermani, “Instruction-
set accelerated implementation of crystals-kyber,” IEEE Trans. Circuits
Syst. I Regul. Pap., vol. 68, no. 11, pp. 4648–4659, 2021.

[18] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: tightly coupled RISC-
V accelerators for post-quantum cryptography,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2020, no. 4, pp. 239–280, 2020.

[19] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng,
“VPQC: A domain-specific vector processor for post-quantum cryptog-
raphy based on RISC-V architecture,” IEEE Trans. Circuits Syst. I Regul.
Pap., vol. 67-I, no. 8, pp. 2672–2684, 2020.

[20] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA
extensions for finite field arithmetic accelerating kyber and newhope
on RISC-V,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020,
no. 3, pp. 219–242, 2020.

[21] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-
speed implementation of kyber on cortex-m4,” in Progress in Cryptology
- AFRICACRYPT 2019, vol. 11627. Springer, 2019, pp. 209–228.

[22] V. B. Dang, K. Mohajerani, and K. Gaj, “High-speed hardware architec-
tures and FPGA benchmarking of crystals-kyber, ntru, and saber,” IACR
Cryptol. ePrint Arch., p. 1508, 2021.

[23] Z. Ni, A. Khalid, D. Kundi, M. O’Neill, and W. Liu, “Efficient pipelining
exploration for A high-performance crystals-kyber accelerator,” IACR
Cryptol. ePrint Arch., p. 1093, 2022.

[24] Y. Zhao, R. Xie, G. Xin, and J. Han, “A high-performance domain-
specific processor with matrix extension of RISC-V for module-lwe
applications,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 69, no. 7,
pp. 2871–2884, 2022.

[25] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols
(extended version),” IACR Cryptol. ePrint Arch., p. 1140, 2019.

[26] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS-Dilithium,” Proposal to
NIST PQC Standardization, Round3, 2021, https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-3-submissions.

[27] D. Sprenkels, “The Kyber/Dilithium NTT,”
https://dsprenkels.com/ntt.html.

[28] M. Scott, “A note on the implementation of the number theoretic
transform,” in Cryptography and Coding - 16th IMA International
Conference, IMACC 2017. Springer, 2017.

[29] V. Lyubashevsky and G. Seiler, “NTTRU: Truly Fast NTRU Using
NTT,” IACR Trans. on CHES, vol. 2019, no. 3, pp. 180–201, May 2019.

[30] F. Yaman, A. C. Mert, E. Öztürk, and E. Savaş, “A hardware accelerator
for polynomial multiplication operation of crystals-kyber pqc scheme,”
in 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2021, pp. 1020–1025.

[31] Aikata, A. C. Mert, D. Jacquemin, A. Das, D. Matthews, S. Ghosh, and
S. S. Roy, “A unified cryptoprocessor for lattice-based signature and
key-exchange,” Cryptology ePrint Archive, Report 2021/1461, 2021.

[32] Y. Xing and S. Li, “A compact hardware implementation of cca-secure
key exchange mechanism crystals-kyber on fpga,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 328–356, 2021.

[33] J.-P. D’Anvers, A. Karmakar, S. S. Roy, F. Vercauteren, J. M. B.
Mera, M. V. Beirendonck, and A. Basso, “SABER,” Proposal to
NIST PQC Standardization, Round3, 2021, https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-3-submissions.

[34] K. Bürstinghaus-Steinbach, C. Krauß, R. Niederhagen, and M. Schnei-
der, “Post-quantum TLS on embedded systems: Integrating and evalu-
ating kyber and SPHINCS+ with mbed TLS,” in ASIA CCS ’20: The
15th ACM Asia Conference on Computer and Communications Security,
2020. ACM, 2020, pp. 841–852.

[35] T. George, J. Li, A. P. Fournaris, R. K. Zhao, A. Sakzad, and R. Ste-
infeld, “Performance evaluation of post-quantum TLS 1.3 on embedded
systems,” IACR Cryptol. ePrint Arch., p. 1553, 2021.

[36] “Nxp’s c29x family of crypto coprocessors.” [Online]. Available:
https://www.nxp.com/docs/en/fact-sheet/C29XFAMFS.pdf

[37] “Optiga™ tpm slb 9672 from infenion.” [On-
line]. Available: https://www.infineon.com/cms/en/about-infineon/press/
market-news/2022/INFCSS202202-051.html

[38] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vredendaal,
“Masking kyber: First- and higher-order implementations,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2021, pp. 173–214, 2021.

[39] T. Fritzmann, M. Van Beirendonck, D. Basu Roy, P. Karl, T. Scham-
berger, I. Verbauwhede, and G. Sigl, “Masked accelerators and instruc-
tion set extensions for post-quantum cryptography,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2022, no. 1,
p. 414–460, Nov. 2021.

Aikata obtained her Bachelors in Technology degree from
IIT Bhilai, India, in 2020 and Masters degree from Graz
University of Technology, Austria, in 2022. She is currently
a PhD student at Institute of Applied Information Processing
and Communications, Graz University of Technology. Her
research interests include lattice-based cryptography and
hardware design.

Ahmet Can Mert received his PhD degree in electron-
ics engineering from Sabanci University, Turkey in 2021.
Currently, he is working as a postdoctoral researcher at
the Institute of Applied Information Processing and Com-
munications, Graz University of Technology, Austria. His
research interest include homomorphic encryption, lattice-
based cryptography and hardware design.

Malik Imran received his bachelor’s and master’s degrees
from Pakistan in 2011 and 2015, respectively. Now, he is in
with the Center for Hardware Security, Tallinn University
of Technology (TalTech), Tallinn, Estonia, as a doctoral stu-
dent. Before joining TalTech, Malik contributed to different
research labs for efficient hardware accelerators for intrusion
detection systems and asymmetric cryptography.

Samuel Pagliarini (M’14) received the PhD degree from
Telecom ParisTech, Paris, France, in 2013. He has held
research positions with the University of Bristol, Bristol,
UK, and with Carnegie Mellon University, Pittsburgh, PA,
USA. He is currently a Professor with Tallinn University
of Technology (TalTech) in Tallinn, Estonia where he leads
the Centre for Hardware Security.

Sujoy Sinha Roy is an Assistant Professor of cryptographic
engineering at IAIK, Graz University of Technology. He is
a Co-Designer of “Saber,” which is a finalist key encapsula-
tion mechanism (KEM) candidate in NIST’s Post-Quantum
Cryptography Standardization Project. He is interested in
the implementation aspects of cryptography.


