
I Know What Your Layers Did: Layer-wise
Explainability of Deep Learning Side-channel

Analysis
Guilherme Perin1, Lichao Wu2 and Stjepan Picek1

1 Radboud University, The Netherlands
2 Delft University of Technology, The Netherlands

Abstract. Masked cryptographic implementations can be vulnerable to higher-order
attacks. For instance, deep neural networks have proven effective for second-order
profiling side-channel attacks even in a black-box setting (no prior knowledge of
masks and implementation details). While such attacks have been successful, no
explanations were provided for understanding why a variety of deep neural networks
can (or cannot) learn high-order leakages and what the limitations are. In other
words, we lack the explainability of how neural network layers combine (or not)
unknown and random secret shares, which is a necessary step to defeat, e.g., Boolean
masking countermeasures.
In this paper, we use information-theoretic metrics to explain the internal activities
of deep neural network layers. We propose a novel methodology for the explainability
of deep learning-based profiling side-channel analysis to understand the processing
of secret masks. Inspired by the Information Bottleneck theory, our explainability
methodology uses perceived information to explain and detect the different phenomena
that occur in deep neural networks, such as fitting, compression, and generalization.
We provide experimental results on masked AES datasets showing where, what,
and why deep neural networks learn relevant features from input trace sets while
compressing irrelevant ones, including noise. This paper opens new perspectives for
the understanding of the role of different neural network layers in profiling side-channel
attacks.
Keywords: Side-channel Analysis · Deep learning · Countermeasures · Explain-
ability · Mutual Information · Information Bottleneck Theory

1 Introduction
Side-channel attacks (SCA) represent powerful non-invasive attacks that exploit unin-
tentional leakages of confidential information from electronic devices [MOP06]. During
cryptographic executions, the devices leak information through different side channels, such
as power consumption [KJJ99], electromagnetic emission [QS01], or execution time [Koc96].
Depending on the application, attacks revealing secret information can lead to serious
consequences for the security industry [RLMI21]. Thus, chip manufacturers are interested
in assessing the vulnerabilities of their designs before putting them on the market or
into a certification process. To address this goal, security evaluators deploy different
side-channel attacks that can be categorized as profiling (e.g., Template Attacks [CRR03])
and non-profiling attacks (e.g., Simple Power Analysis [Koc96] and Differential Power
Analysis [KJJ99]).

Deep learning (DL-SCA) has drawn significant interest from researchers in the SCA
domain [PPM+21]. Powerful attacks against protected cryptographic implementations have

2 Explainable DL-SCA

been demonstrated [MPP16, CDP17, KPH+19], especially against datasets containing first-
order (Boolean) masked AES software or hardware [WHJ+21] implementations. Moreover,
the SCA community constantly manages to improve the performance of deep learning. For
example, the first publication using the ASCAD dataset with the fixed key required around
400 traces to break the target [BPS+20]. Today, we can break the same dataset with
a single attack trace [PWP21]. Unfortunately, despite all of the advances in enhancing
the attack efficiently, we still lack the knowledge in understanding why neural networks
break a target.1 Although past research put effort into the understanding of deep learning
models [MDP20, HGG19, WWJ+21], there is still an evident lack of knowledge about, for
instance, how deep neural networks learn to defeat masking countermeasures. We refer
interested readers to several recognized challenges in deep learning-based SCA, especially the
one connected to the explainability of the masking countermeasure processing [PPM+21].

We argue that the ability to explain why a machine learning model behaves a certain
way is (at least) as important as improving the attack performance. With a deeper
understanding of the neural network, an evaluator can: 1) mount more powerful attacks, 2)
improve the security of devices, and 3) ultimately offer devices that are resilient against the
strongest attacks. To conclude, we require Explainable Deep Learning-based Side-Channel
Analysis: ExDL-SCA. ExDL-SCA has two main goals: 1) explain where the leakage
comes from and 2) explain how a profiling model defeats different countermeasures. To
reach those goals, we propose the following questions to be answered with ExDL-SCA:

1. Where. By answering this question, we can explain the contribution of different
layers in a neural network.

2. What. By answering this question, we can explain what a neural network does to
break the target, i.e., how it defeats noise and countermeasures.

3. Why. By answering this question, we can explain why a neural network behaves in
a certain way, e.g., breaking a target or failing to do so.

This paper proposes an explainability methodology that infers how much information
the black-box model learns from secret masks. Secret masks are not supplied during the
training of a black-box profiling model and are only considered for explainability. For
that, we consider information-theoretic methods. The starting point of our explainability
methodology is Information Bottleneck Theory (IB) [TPB00, ST17], which has sparked
a lot of interest from deep learning community as a potential theoretical framework to
explain how deep neural networks achieve enormous success in many different applications.
In essence, IB theory suggests that deep neural network training undergoes two different
phases: fitting and compression. The fitting phase is supposedly fast and is characterized
by hidden layers trying to maximize information about X while compression is slower, and
it is responsible for the generalization ability of the model. According to [ST17], during
the fitting phase, the model already shows generalization, which is enhanced during the
compression phase. When and how these phases happen in a specific model depends on the
model architecture, hyperparameters, and the dataset’s characteristics. The compression
phase is particularly important, as in this phase, the network starts to compress noise and
other irrelevant features while it preserves only relevant features from input training data X .
For that, the IB theory requires the computation of mutual information between (usually)
high dimensional input data X (such as side-channel measurements) and (potentially)
high dimensional intermediate network representations T (the output of a hidden layer),
i.e., I(X , T). However, as we will explain in this paper, computing I(X , T) is particularly
hard for discrete and high dimensional representations [GP20, SBD+18], which limits
the estimation of the compression phase during training. As a solution, we adapt the
IB framework to Perceived Information [BHM+19] metric, which allows us to precisely

1Deep neural networks usually have complex architectures that are difficult to interpret and explain.
By interpretable machine learning, we consider designing machine learning models that are inherently
interpretable or answering the question of how the model work [MV20]. By explainability (explainable AI
- XAI), we consider how to provide post hoc explanations of the black-box models.

Guilherme Perin, Lichao Wu and Stjepan Picek 3

explain fitting, compression, and generalization phases in different hidden layers. Thus, we
verify, during training, where, what, and why every neural network layer actually learns
from high-order leakages. Thus, our explainability methodology allows security evaluators
to verify, with more specific information from hidden layers, what a profiling model learns
(or not) from the implemented countermeasures. Our main contributions are:

1. We discuss explainability in the context of DL-SCA and recognize the three questions
that need to be answered for explainable DL-SCA.

2. We define a new methodology to infer the information learned by hidden neural
network layers during profiling. The procedure we follow is based on an autoencoder
idea, where we extract an encoded version of the input datasets (profiling and attack
sets) from each hidden layer. Then, a simple multilayer perceptron classifier (which
is not the same one used for profiling) is trained with the encoded profiling set. Next,
we predict the encoded attack set on this simple classifier and compute the perceived
information to quantify how much information a hidden layer has about a specific
feature, like a secret share in a Boolean masking scheme. This process is repeated
for all hidden layers. Our explainability methodology is depicted in Figure 5. Our
method allows an evaluator to measure how the input information leakage is learned
and conveyed layer by layer in a deep neural network. Furthermore, our method can
show in what layer the information bottleneck is inherently implemented in order
to compress irrelevant input information (such as noise) and to preserve relevant
leakages to break masking countermeasures.

3. We provide experimental results on publicly available datasets and different neural
network architectures. All our results indicate that the information bottleneck theory
is a valid method to explain the different phases of deep neural network training.
Then, we apply our explainability methodology to a combination of masking and
desynchronization countermeasures, showing our approach to work even if different
countermeasures are used.

4. Finally, we propose a number of use cases where our explainability approach can be
used to improve the performance of deep learning in SCA.

This paper is organized as follows. We start by providing background information in
Section 2 while related works are discussed in Section 3. Section 4 introduces our novel
explainability methodology, and Section 5 discusses the compression in deep networks with
practical examples on different datasets. Experimental results with different protected AES
datasets and neural network architectures are provided in Section 6. Our explainability
methodology opens a new perspective to understanding the role of different hidden deep
neural network layers. Thus, we also provide a list of possible use cases for our proposed
approach in Section 7. Finally, conclusions and future work directions are provided in
Section 8.

2 Background

2.1 Notations and Terminology
We refer to X as a set of side-channel measurements and xi is the i-th observation of X . Xp

is a set of profiling side-channel measurements and Xa is the attack set with lengths np and
na, respectively. Each side-channel measurement xi represents the side-channel leakages of
a cryptographic operation having input data di and encryption key ki.2 We refer to Y as
the set of hypothetical leakage values (or labels) for X where yi = f(di, ki) is one element
of Y, and f denotes a leakage selection function (i.e., f can be represented by an S-box

2Instead of the encryption function and plaintext, it is also possible to consider decryption function
and ciphertext, but for simplicity, we consider encryption only.

4 Explainable DL-SCA

Figure 1: Neural network (CNN) intermediate representations.

operation in the first encryption AES round). In the case of masking countermeasures, mr

refers to (r)-th secret share byte while Ym(r) refers to the set of mask shares in a dataset.
With respect to information-theoretic notions, we refer to p(xi) as the probability of

observing xi and p(yi|xi) as the probability of observing yi given xi. H(X) is the entropy
of X while H(Y|X) gives the conditional entropy of Y given X . The mutual information
between X and Y is given by I(X ;Y).

For neural network representations, we refer to T as an encoding providing an inter-
mediate representation of X in a neural network (e.g., T could represent the feature map
output of a convolution layer or the activations output of a fully-connected layer) and ti

is an observation of T . The term L refers to the number of hidden layers (excluding the
output layer from the counting). The index of a hidden layer is given by l. The term X l

indicates the predicted output of a hidden layer l when the input data to the network is X .
Finally, Ŷ is the output prediction from a neural network. Figure 1 provides an example
of a convolutional neural network with representations.

In this paper, the term sample refers to a point of interest xi[j] in a side-channel
measurement xi. The term feature refers to the meaning of some information contained in
X . For example, when X represents the set of side-channel measurements from the AES
encryption process, the leakage of an intermediate byte in each measurement xi, which is
given by a label set Y, is a feature of X .

We also define specific notations for neural networks. Convolutional neural networks
have layer-wise structure according to the Eq. (1), where C(fi, ks, st) denotes a convolution
layer with fi filters, kernel size ks, and stride st, A is activation layer (which can be
RE in case of relu, SE in case of selu, or simply E in case of elu), BN is a batch
normalization layer, AP (ps, st) is an average pooling layer with pooling size ps and stride
st, FC(ne) is a fully-connected layer with ne neurons and S(c) is a Softmax layer with c
output neurons. The superscripts nc and nfc indicate the number of convolution blocks
and fully-connected layers, respectively.

X → [C(fi, ks, st)→ A→ BN → AP (ps, st)]nc → [FC(ne)→ A]nfc → S(c)→ Ŷ.
(1)

Similarly, a multilayer perceptron (MLP) is defined according to the following layer-wise
notation:

X → [FC(ne)→ A]nfc → S(c)→ Ŷ. (2)

2.2 Deep Learning-based Profiling SCA against Masked Implementa-
tions

In classification applications, a neural network model represents a function that maps input
data X into a finite number of output class probabilities Ŷ . The mapping is performed by
a learned function f(X , θ) −→ Ŷ , where θ is a set of parameters learned during the training

Guilherme Perin, Lichao Wu and Stjepan Picek 5

phase by minimizing a loss function.3 The learned mapping between input side-channel
traces X and outputs probabilities Ŷ depends on the estimated number of classes presented
in X . This number of classes, |Y|, is derived from a leakage function that indicates the
hypothetical leakage value in a side-channel measurement.

To protect against side-channel attacks, masking is implemented to break the statistical
dependence between side-channel measurements (e.g., power consumption) and hypothetical
leakage values. For an m-order masking scheme, an intermediate byte b in a cryptographic
algorithm is protected as follows:

bm = b � m1 � m2 · · · � mm, (3)

where � can indicate a Boolean [CJRR99], arithmetic [GPQ11], multiplicative [GPQ11],
or affine [FMPR10] operation.

The leakage function g(·) = L defined for a second-order profiling SCA is supposed to
learn how to combine two unknown variables m1 and m2 according to:

L = g(m1, m2) = m1 � m2, (4)

where g is a function mathematically combining two variables through operation �. In
our analysis, m1 will always be given by an 8-bit mask share randomly generated for each
encryption execution while m2 will be given by an 8-bit masked S-box output of the first
AES encryption round, i.e., m2 = S-box(di ⊕ ki)⊕ m1. For instance, the leakage function
for a second-order attack on a masked AES implementation is defined as:

L = g(m1, S-box(di ⊕ ki)⊕ m1) = m1 ⊕ S-box(di ⊕ ki)⊕ m1 = S-box(di ⊕ ki), (5)

where � = ⊕. A side-channel measurement xi containing second-order leakages must embed
leakage of information from the treatment of masked S-box output (S-box(di ⊕ ki)⊕ m1)
and, at least, the loading of mask share m1 from memory. We can finally assume that to
implement second-order profiling, a neural network must learn the following mapping:

f(X ,L, θ) = f(X , g(S-box(di ⊕ ki)⊕ m1, m1), θ)→ Ŷ. (6)

This means that a neural network can learn a mapping from side-channel traces X to
output class probabilities Ŷ that represents (ideally) the xor between two random 8-bit
variables S-box(di ⊕ ki) ⊕ m1 and m1. In essence, the leakage function represented by
learned parameters θ defines how continuous variables or input features (X) (i.e., raw
or pre-processed trace samples) are converted into hypothetical discrete leakage values
g(X) L−→ Ŷ, where Ŷ can also be seen as the set of predicted labels. As a consequence, a
neural network that can learn second-order leakages defines a mapping with an intermediate
function that can be given by one or more hidden layers, which learn how to implement
g(S-box(di ⊕ ki)⊕ m1, m1).

The trained neural network, therefore, implements the following path:

X → T1 → · · · → TL
Softmax−−−−−−→ Ŷ ≡ X → g(S-box(di ⊕ ki)⊕ m1, m1) Softmax−−−−−−→ Ŷ. (7)

From Eq. (7), we can immediately verify that:

T1 → · · · → TL ≡ g(m1, m2). (8)

A loss function assesses the overall variation between expected (ground truth) hypothetical
leakages (or labels) Y and predicted hypothetical leakages Ŷ. Common hypothetical
leakage models for side-channel analysis include Identity, Hamming weight, Hamming

3In this paper, we always consider categorical cross-entropy as the loss function. We emphasize that
categorical cross-entropy is commonly used in deep learning-based SCA.

6 Explainable DL-SCA

distance, or simply bit-level models (e.g., the least or most significant bits). Besides
the predefined number of classes for classification, the trained neural network has no
other information on converting input features into labels. Therefore, training a model
inherently assumes that the network will automatically learn the leakage model properties
by implementing the mapping from Eq. (6).

Following the same principle, for a third-order neural network-based profiling SCA
against a second-order masking scheme, the leakage function that the trained model is
expected to learn is given by:

L = g(m1, m2, m3) = m1 � m2 � m3 = (S-box(di⊕ ki) � m1 � m2) � m1 � m2 = S-box(di⊕ ki). (9)

In this paper, we provide empirical experiments to analyze the performance of deep
neural networks against a first-order Boolean masking scheme and leave the analysis of
high-order masking, including other masking schemes, for future work. Nevertheless, the
explainability methodology proposed in Section 2.4 applies to different masking schemes.

2.3 Information-theoretic Concepts
Different metrics are used to compare different profiling models. Guessing entropy [Mas94]
and success rate [SMY09] became mainstream approaches to estimate the performance
of a model in recovering the secret with a certain number of measurements. In a deep
learning context, alternative metrics and frameworks can provide more insights into attack
performance. In this section, we review the two main information-theoretic approaches that
are used in this paper. The first, Perceived Information [BHM+19], was already proven to be
an optimization goal in deep learning-based profiling attacks [MDP20], in which maximizing
this metric is the same as minimizing the cross-entropy loss function. The second approach
is Information Bottleneck Theory (IB) [TPB00], which provides a framework to quantify
the information present in internal deep neural network representations T .

2.3.1 Perceived Information

In [BHM+19], the authors discussed Perceived Information (PI) as the information metric
to measure the attack complexity. PI measures how much information a model can obtain
from the test side-channel measurements and indicates the complexity of an attack in
terms of the number of measurements to recover the secret. The PI calculation is provided
as:

P̂ I(X ,Y) = H(Y) +
|Y|∑
j=1

p(y = j) 1
ny=j

ny=j∑
i=1

log2 p̂(y = j|xy=j
i), (10)

where H(Y) is the entropy of Y, p̂(y = j|xy=j
i) is the probability of a model to predict a

trace xy=j
i labeled as y = j and ny=j is the number of attack traces labeled as y = j for

key candidate k.
As our analysis follows a known-key setting, the correct key from the attack set is

always known, and PI values are always computed for the correct key candidate k∗. The
PI calculation allows the evaluator to estimate the minimum number of required attack
traces N̂SR,P I to recover the key:

N̂SR,P I ≥
c(SR)

P̂ I(X ,Y)
, (11)

where c(SR) is a small constant related to the expected success rate SR ∈ [0, 1]. For
instance, when targeting intermediate variables processed by a n bit devices, c(SR) is
given by [dCGRP19]:

c(SR) = n− (1− SR). log2(2n − 1) + SR log2(SR) + (1− SR) log2(1− SR). (12)

Guilherme Perin, Lichao Wu and Stjepan Picek 7

2.3.2 Information Bottleneck Theory

The proposed explainability methodology in Section 2.4 is based on the Information
Bottleneck [TPB00] theory. This theory suggests that learning from input X is a task-
specific process undergoing (as much as possible) compression of X into an intermediate
representation (or encoding) T that keeps relevant information to generalize to Y . In other
words, the representation T acts like a bottleneck that “squeezes” the relevant information
that X contains about Y, hence the name “information bottleneck”. This relation is also
represented by the following Lagrange multiplier, also known as the information bottleneck
cost function:

LIB = I(X ;T)− βI(T ;Y), (13)

where β ≥ 0 is the Lagrangian multiplier attached to the constrained relevant information.
β controls the trade-off between compression and preserving information about X . When
LIB is considered as the loss function (which is not the case in our analyses), the goal is to
minimize LIB for a correctly selected β. Here, the main goal is to learn an encoding T that
is maximally expressive about Y while being maximally compressive about X . Intuitively,
the term in I(T ;Y) suggests that T should be as predictive as possible about Y and, for
that, the I(X ;T) suggests that T should “forget” information about X .

In [TPB00], the authors suggested that objective LIB forces T to act like a minimal
sufficient statistic of X for predicting Y. This way, IB defines the curve indicating
the maximum mutual information I(T ;Y) that can be achieved for minimum mutual
information I(X ;T). This theory defines an upper bound for the maximum information
that can be transferred to Y given a compressed representation of X , which is T . Figure 2
illustrates the information bottleneck principle when the target Y is represented by one
feature (Figure 2a) or two features (Figure 2b). Note that the input data X contains
information about the feature(s) representing Y and also noise and irrelevant features.
This input data is encoded, with loss of information, into a representation T containing
information about the feature but can ideally discard noise. Therefore, T becomes the
bottleneck.

From the IB theory [ST17], the authors proposed to visualize the deep learning
optimization through an information plane that illustrates the course of learning with
fitting, compression, and generalization phases. The fitting phase is the first phase that
happens in training, which is characterized by the fast increase of I(X ;T) and I(T ;Y),
while the second phase, compression, is responsible for enhancing model generalization and
provides a reduction of I(X ;T) and a slow increase of I(T ;Y), in case the model shows no
overfitting. When overfitting happens, I(T ;Y) should decrease while I(X ;T) may show
no compression.

For deep learning-based SCA against masked implementations, we are interested in
explaining how neural network hidden layers fit the secret shares, compress them into
minimum sufficient statistics, and generalize to Y during training. For that, we will
first adapt the IB principle to the perceived information, which is a side-channel metric
capable of estimating attack complexity. As will be described in Section 4, the adaption to
perceived information comes as a solution to the difficulty of computing mutual information
I(X ;T) when X and T are high dimensional data. As we show in experimental results, the
resulting IB-inspired explainability methodology can inform about different phenomena
that occur in different hidden layers.

2.4 Interpretability and Explainability in Profiling SCA
The more complex the learning algorithm, it is potentially less interpretable and explainable.
Recent publications in the deep learning-based profiling SCA domain have dominantly
focused on finding efficient deep neural network architectures for a wide range of scenarios,
see, e.g., [ZBHV19, RWPP21, WPP20]. However, the lack of understanding on how a deep

8 Explainable DL-SCA

(a) One feature. (b) Two features.

Figure 2: Information bottleneck principle representation (illustration based on [Gut22].)
As an analogy to SCA, the one-feature case is the process implemented when side-channel
measurements X contain first-order leakages. The two-features case illustrates the case
when X contains second-order leakages from features Ym1 and Ym2, which represent two
secret shares.

learning model reaches a certain (lack of) generalization capacity makes those approaches
less transferable to different attack settings. Indeed, an explainable deep learning model
helps to conclude two main aspects of a security evaluation: (1) the security assurance of
the target and (2) how assertive is the implemented profiling model. We list the following
mechanisms for interpretability and explainability in profiling SCA:

Input gradients analysis [MDP19] This method implements the so-called sensitivity
analysis of loss function concerning input features or side-channel samples:

Ig[j] = ∂F (θ)
∂xi

[j], (14)

where j denotes the index of the j-th feature or sample in a i-th side-channel measurement
xi.

Layer-wise Relevance Propagation [HGG19] This method provides a way to assign a
relevance magnitude to each neuron in a layer. The process starts from the last hidden
layer and is computed layer-wise backward until the input layer is achieved. Like input
gradient analysis, this technique indicates the most relevant points of interest for specific
deep neural network decisions.

Ablation/“Surgery” technique [WWJ+21] The main purpose of this approach is to
understand the role of each neural network element (e.g., hidden layers or neurons and
filter in more detailed analyses) concerning the bypassing of hiding countermeasures such
as trace desynchronization and noise. By removing (i.e., ablating) elements of the network,
it is possible to compare the profiling model performance before and after the presence of
this element and the countermeasure. If the neural network works worse after removing a
certain element, this indicates that the element has an important role in treating these
hiding countermeasures. The study of ablation techniques requires the possibility of
enabling and disabling hiding countermeasures. Hiding countermeasures can be simulated
after side-channel acquisition. However, the same process is not possible with masking

Guilherme Perin, Lichao Wu and Stjepan Picek 9

countermeasures, as one cannot simulate their absence after acquisition for the same
processed intermediate variable.

2.5 Datasets
For our experimental results, we select, among several publicly available datasets, two
masked AES datasets. We decided to consider the trace sets from the ASCAD and DPAv4
databases, whose keys in profiling and attack phases are different, and mask shares are also
provided in the metadata. Additionally, we simulate the effect of a hiding countermeasure
(desynchronization) on those datasets.

In security evaluations, different adversary assumptions are made, which result in
different threat models. When we assume that an adversary has access to source code
and/or internal target randomness (e.g., masks), the attacked samples usually correspond
to the highest signal-to-noise ratio (SNR) peaks of leakages or to a trimmed interval where
the main leakage is located. On the other hand, when assumptions about the strengths of
an adversary are relaxed, the attacked interval is wider and includes a large number of
samples that represent noise to the profiling model. In our case, for the evaluated AES
datasets, we select attacking intervals where the main leakage for one target key byte is
located but also includes leakages from other key bytes, as detailed below.

ASCADr This dataset contains 300 000 traces collected from a software implementation of
AES 128,4 where the first 200 000 measurements have random keys and are considered for
profiling while 100 000 measurements contain a fixed key and, from this second set, we
consider 5 000 for the attack phase. Each measurement contains 250 000 samples. This
dataset was collected from an AES128 implementation featuring a first-order Boolean
masking countermeasure. In previous works, a trimmed version of this dataset containing
measurements with 1 400 samples is commonly adopted, which contains second-order
leakages related to the third key byte only. For our experiments, we start from raw
measurements containing 250 000 samples and select the interval from sample 70 000 until
sample 90 000. Then, we apply a window resampling with a resampling window of 20
samples and a step of 10 samples, resulting in traces with 2 000 samples. These trimmed
and resampled measurements contain second-order leakages related to the third key byte
in the first encryption round but also include leakages from other key bytes.

DPAv4.2 The DPAv4.2 dataset contains side-channel measurements obtained from a
masked AES 128 software implementation.5 The countermeasure is based on RSM
(Rotation S-box Masking). The original DPAv4.2 contains 80 000 traces subdivided into
16 groups of 5 000 traces. Each group is defined with a separate and fixed key. Each
measurement has 1 704 046 samples. In this work, we conduct our analyses on an interval
resulting from the concatenation of two intervals from the original dataset. The main
idea is to combine two trace intervals containing second-order leakages from several key
bytes, including the attacked one. The second-order leakages include masked S-box output
bytes and the corresponding masks. The first interval ranges from sample 265 000 until
sample 280 000, while the second interval starts at sample 305 000 and finishes at sample
315 000. Thus, concatenating these two intervals results in measurements with 25 000
samples. We apply a resampling process with a resampling window of 10 and step of 5 to
the concatenated intervals, resulting in 5 000 samples per measurement.

For both datasets, we consider the Identity leakage model for an output byte from the
first AES encryption round, i.e., S-box(di ⊕ ki).

4https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
5http://www.dpacontest.org/v4/42_doc.php

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
http://www.dpacontest.org/v4/42_doc.php

10 Explainable DL-SCA

3 Related Works
Explainable AI (XAI) and explainable machine learning XML) are very active research
domains, see, e.g., [BH21, GSC+19, BP21, LPK20, PDN22, Hol18]. Still, despite all the
developments and various techniques proposed over the years, there is still no widely
accepted approach that allows interpretability for diverse machine learning tasks. Inter-
pretability and explainability in deep learning profiling SCA have received little attention
in recent years. A larger focus has been put on neural network optimization to solve the
difficult task of hyperparameter tuning. Still, the efforts to build various methodologies
could be considered interpretability research since the authors (tried to) provide guidelines
to build good neural networks, which intuitively means they could interpret what models
do [ZBHV19, WAGP20].

In the SCA context, IB theory was indirectly considered in [CLM20] where the au-
thors implemented leakage assessment with MINE (mutual information neural estima-
tion) [BBR+18], a technique adapted from the IB principle. Moreover, in [PBP21], the
authors implemented an early stopping mechanism for a deep learning-based profiling
attack by maximizing I(T ;Y) for the output layer. In this case, the authors ignored
I(X ;T) and I(T ;Y) for hidden layers and only focused on the output layer.

The more “direct” attempts at interpretability and explainability can be divided into
approaches that concentrate on the input layer and the approaches that concentrate on the
inner (hidden) layers. The techniques that concentrate on the input layer try to recognize
the most important features (or, what is the influence of each feature on the performance
of a neural network). Visualization techniques were the first attempt to explain what
side-channel trace features have more impact on neural network decisions. Masure et
al. [MDP19] provided visualization results through input gradient from the input network
layer, and the authors verified that neural networks automatically detect the time location
of secret shares even in the presence of desynchronization countermeasures. In [HGG19],
the authors compared different visualization techniques in profiling SCA and considered
them as side-channel attack distinguishers. However, such approaches cannot inform about
internal representations from hidden layers.

To interpret the behavior of hidden layers in profiling SCA, the authors of [vdVPB20]
considered Singular Vector Canonical Correlation Analysis (SVCCA) to explain what
neural network layers learn from different side-channel traces. Still, the authors only
managed to reach interpretability on a coarse level as even diverse datasets (side-channel
dataset and image dataset) had more similarity than two side-channel datasets. Wu et
al. [WWJ+21] proposed the adoption of ablation techniques to explain how different neural
network configurations perform in the presence of different hiding countermeasures. While
these results are very interesting, we note that they cannot explain the processing of masks,
and the approach is rather involved and gives results that are (potentially) difficult to
interpret.
Despite the progress obtained in the last few years, what happens in each hidden layer when
fitting higher-order leakages and how (if) the countermeasures are defeated are still open
questions.

4 Explainability Methodology for Profiling SCA
In this section, we describe the proposed explainability methodology. The process allows
us to understand (and explain) how secret mask shares are fit by hidden layers in a
deep neural network. The proposed solution works by adding extra calculations during
deep neural network training. The model is trained with profiling traces Xp labeled in a
black-box way with Yp. At the end of each training epoch, the model predicts profiling
and attack traces Xp and Xa, respectively. The output of each hidden layer l is saved as

Guilherme Perin, Lichao Wu and Stjepan Picek 11

encoded versions of profiling and attack sets, i.e., X l
p and X l

a, respectively. The shapes of
X l

p and X l
a depends on the output layer dimensions. Basically, X l

p and X l
a are activation

outputs from a hidden layer l (see Figure 3).
The proposed explainability methodology evaluates the amount of information that X l

p

and X l
a contain from secret shares labels Ym1 and Ym2. Thus, we first propose (Section 4.1)

an adaptation from mutual information to perceived information as a way to measure
the amount of information that an intermediate network representation (in case X l

p or
X l

a) contains about features (e.g., secret shares) embedded in input data. To simplify, we
elaborate our methodology based on a first-order Boolean masking scheme in which a
neural network needs to learn from two secret shares m1 and m2, represented by features or
label sets Ym1 and Ym2. However, this explainability methodology can infer the amount
of information from any type of feature, including first-order leakages from unprotected
devices.

4.1 Measuring Information Learned by Hidden Layers with Perceived
Information

We propose an alternative solution to measure the amount of information a hidden layer
learns from input data. More specifically, we are interested in a metric that indicates
the minimum amount of information we can get from secret share labels Ym1 and Ym2
(and, eventually, true labels Y) once we obtain intermediate network representations X l

p

or X l
a. Before developing our approach, we first explain why we cannot directly consider

the method proposed in [ST17] to compute mutual information I(X ;T) between input
training data X and an intermediate network representation T .

Directly applying MI estimation to compute I(X ;T) according to the original propo-
sition [ST17] requires to compute mutual information between two high dimensional
data X (side-channel traces) and T (layer representation of T). This way, an accu-
rate estimation of MI requires exponentially more data, especially for histogram-based
mutual estimation, as will be explained next. Since mutual information is symmetric,
H(X)−H(X|T) = H(T)−H(T |X), I(X ;T) can be computed according to:

I(X ;T) = H(T)−H(T |X) = H(T)−
np∑
i=1

p(xi)
np∑

j=1
p(tj |xi) log2 p(tj |xi). (15)

As discussed in [SBD+18], the histogram-based estimation of mutual information
requires a correct selection of the number of bins. When the number of bins is too large to
keep the precision of T , every input xi yields a different activation pattern tj in each hidden
layer. In other words, due to the high dimensionality of X and T , it is often impossible to
have two input traces xi that generate two identical intermediate network representations
ti. This will result in H(T |X) = 0 because the conditional probabilities p(tj |xi) become
1 for all xi and all tj and, consequently, I(X ;T) = H(T). This result would wrongly
indicate the compression of input X during training, as we would only be computing the
entropy of T . A possible solution to obtain H(T |X) > 0 is to select smaller number of
bins. Nevertheless, this would add too much noise to the mutual information calculation,
also leading to wrong estimations (e.g., see Appendix A in [PBP21]). Some works from
the deep learning community evaluated the difficulty of computing I(X ;T) as a way to
more correctly estimate the compression of X into T . In [SS17], the authors proposed
the deterministic information bottleneck as an alternative cost function for Eq. (13) by
replacing I(X ;T) with H(T). The authors of [AFDM17] proposed to use a variational
inference to construct a lower bound of Eq. (13). Note that these alternative solutions
potentially work as loss functions but not for our explainability goals, which require a
more precise estimation of compression to quantify how much information a hidden layer
contains about specific features.

12 Explainable DL-SCA

Therefore, a question remains: how to reliably measure the amount of input information
(i.e., leakages) compressed by hidden layers when X and T are high dimensional data?
To analyze deep neural network dynamics in profiling SCA, we look into alternative
representations of input information (other than X). When the dataset is protected
with a Boolean masking countermeasure, the calculation of I(X ;T) should also indicate
how much information an intermediate representation T still contains from the input
secret shares existing in input traces X after compressing noise. As we cannot provide
a correct estimation of mutual information I(X ;T) due to the reasons mentioned above,
we may simplify the calculation of I(X ;T) by estimating only the amount of information
that an intermediate representation T contains about a certain secret share, which is
given by a feature or label set Ym. Thus, we replace the whole input data X by Ym in
mutual information calculation between input data and intermediate representation. Note,
however, that the trained profiling model is never supplied with labels Ym during the
profiling or attack phases. In other words, profiling set Xp and attack set Xa are labeled
from a black-box leakage model where no masks are taken into account to define Y. The
secret share labels Ym (that can be a set of mask shares m or a set of masked S-box outputs
S-box(di ⊕ ki)⊕ m) are only considered for explainability purposes without affecting the
profiling phase.

The information that an intermediate representation T of a given hidden layer has
about secret shares Ym becomes:

I(T ;Ym) = H(Ym)−H(Ym|T), (16)

where T can still be seen as an encoded version of X as the model is trained with X . For
a profiling set Xp, the output of a hidden layer l provides an encoded version of Xp, which
is X l

p. This way, the original profiling (resp. attack) set, which has original dimension
np×J (resp. na×J) where J is the number of samples in xi, is converted into an encoded
profiling set X l

p (resp. X l
a) from layer l, with dimension np ×w (resp. na ×w), where w is

the number of units in the layer (for dense layers, w is given by the number of neurons
while in convolution or pooling layers w is given by the number of units in a feature map).
Figure 3 illustrates an example of the trace encoding process for a 3-layer MLP where all
hidden layers contain 200 neurons and, therefore, w = 200.

Let us assume that the intermediate representation T is now X l
p, and the amount of

information that we obtain about Ym when observing X l
p is given by:

I(X l
p;Ym) = H(Ym)−H(Ym|X l

p). (17)

The conditional entropy H(Ym|X l
p) is given by:

H(X l
p|Ym) =

|Ym|∑
j=1

p(ym = j)
np∑
i=1

p(xl
i|ym = j) log2 p(ym = j|xl

i), (18)

where xl
i is the i-th observation of X l

p and ym is one element of Ym.
In our method, we are interested in estimating the amount of information from

secret shares that can be extracted by each hidden layer. Thus, by taking the encoded
representations X l

p from all hidden layers, at the end of each training epoch with a deep
neural network model M , we train a separate classifier M l

s with X l
p. The classifier M l

s

can be any supervised classification method. In our case, we use a simple classifier that
has an input layer connected to a Softmax layer, and it is trained for ten epochs, which
was empirically verified to be sufficient to obtain satisfactory results. This process is
repeated three times, and each time X l

p is labeled differently. First and second, X l
p is

labeled with Ym1 and Ym2 (for the two secret shares in a first-order Boolean masking
scheme), respectively. Third, the encoded profiling set is labeled with black-box labels Y

Guilherme Perin, Lichao Wu and Stjepan Picek 13

Figure 3: Obtaining encoded profiling traces X l
p and attack traces X l

a from output layer
activations.

Figure 4: Training and predicting classifier M l
s after obtaining encoded representations

X l
p and X l

a from the first hidden layer.

as we also want to understand how much information a hidden layer contains about the
predictive labels. After training this simple MLP classifier M l

s with X l
p, we predict it with

encoded attack traces X l
a. As the process is repeated for the three different labels sets

Ym1, Ym2, and Y, the output from M l
s provides class conditional probabilities p(ym1|xl

i),
p(ym2|xl

i), and p(y|xl
i), respectively, and xl

i is now an observation of X l
a. Due to Softmax

layer in M l
s, the class conditional probabilities are normalized as

∑
ym1

p(ym1|xl
i) = 1,∑

ym2
p(ym2|xl

i) = 1, and
∑

y p(y|xl
i) = 1. Note that M l

s can also be a multi-label classifier,
which provides p(ym1|xl

i), p(ym2|xl
i), and p(y|xl

i) values with a single training of M l
s and

considerably speeds up the whole process. Figure 4 illustrates this process with an example
for a single hidden layer.

After obtaining the conditional class probabilities p(ym1|xl
i), p(ym2|xl

i), and p(y|xl
i) from

M l
s, perceived information becomes a convenient approach as it measures the amount of

information learned by a profiling model with respect to specific leakage model resulting in a
set of labels. The profiling model, in this case, is given by the conditional class probabilities
obtained from M l

s. First, we replace X l
p by attack (or test) encoded representations X l

a in

14 Explainable DL-SCA

Eq. (18):

H(X l
a|Ym1) =

|Ym1|∑
j=1

p(ym1 = j)
na∑
i=1

p(xl
i|ym1 = j) log2 p(ym1 = j|xl

i)

H(X l
a|Ym2) =

|Ym2|∑
j=1

p(ym2 = j)
na∑
i=1

p(xl
i|ym2 = j) log2 p(ym2 = j|xl

i)

H(X l
a|Ym) =

|Y|∑
j=1

p(y = j)
na∑
i=1

p(xl
i|y = j) log2 p(y = j|xl

i),

(19)

where ym1, ym2, and y are labels obtained from intermediate values processed in attack
traces Xa. Following the approach proposed in [BHM+19], we can replace the true
probability mass function (PMF), p(ym|xl

i), by p̂(ym|x
l,ym
i) and compute the perceived

information by sampling according to (see Eq. (11) from [BHM+19]):

P̂ I(X l
a|Ym1) = H(Ym1) +

|Ym1|∑
j=1

p(ym1 = j) 1
nym1=j

na∑
i=1

log2 p̂(ym1|x
l,ym1=j
i)

P̂ I(X l
a|Ym2) = H(Ym2) +

|Ym2|∑
j=1

p(ym2 = j) 1
nym2=j

na∑
i=1

log2 p̂(ym2|x
l,ym2=j
i)

P̂ I(X l
a|Y) = H(Y) +

|Y|∑
j=1

p(y = j) 1
ny=j

na∑
i=1

log2 p̂(y|xl,y=j
i),

(20)

where p̂(ym1|x
l,ym1
a) (resp. p̂(ym2|x

l,ym2
a) and p̂(y|xl,y

a)) gives the probability that an
encoded attack trace xl,ym1=j

i (resp. xl,ym2=j
i and xl,y=j

i) is labeled with class ym1 (resp.
ym2 and y) when it is actually labeled with this same class.6 The term nym1=j (resp.
nym2=j and ny=j) gives the number of attack traces that are labeled with class ym1 = j
(resp. ym2 = j and y = j).

The metrics from Eq. (20) will, in the end, become an indirect estimation of how
much information the encoded hidden layer representation X l

p (obtained by predicting the
neural network with profiling set Xp) contains from secret shares labels Ym1 and Ym2 when
attacking an implementation protected with a first-order masking scheme.

Obviously, the quantities P̂ I(X l
a|Ym1), P̂ I(X l

a|Ym2), and P̂ I(X l
a|Y) most precisely

indicate the quality of model M l
s. In our case, we consider an MLP with a single hidden

layer to implement M l
s. Nevertheless, the higher the quality of M l

s, the more precise the
estimation of perceived information quantities from Eq. (20).

4.2 The Explainability Methodology
After explaining how we estimate perceived information between labels (Ym1, Ym2, and
Y) and intermediate network representations X l

a from a hidden layer l, we can define the
complete structure of our explainability methodology. Figure 5 provides the four main
steps that form our methodology:

1. In Step 1 , we define a baseline neural network M to be trained for E epochs
with profiling traces Xp that are labeled as Y (without the knowledge of secret
mask shares). The results in Sections 5 and 6 are obtained from software AES128
implementations and, therefore, (black-box) labels Y are generated from S-box
output bytes in the first encryption round, i.e., S-box(di ⊕ ki).

6Here, we assume a known-key attack setting analysis. For an evaluator, the attack set is always the
validation set, and the corresponding validation key bytes are always known.

Guilherme Perin, Lichao Wu and Stjepan Picek 15

Figure 5: Methodology for mask share fitting explainability.

2. In Step 2 , we extract the intermediate representations from hidden layers. Thus,
at the end of training epoch e, the trained model M predicts both profiling (Xp) and
attack (Xa) sets. For each hidden layer l, we obtain output activations that are taken
as encoded versions of input profiling and attack sets, i.e., X l

p and X l
a, respectively.

3. In Step 3 , we take encoded profiling sets X l
p from all hidden layers l and build

a simple classifier, denoted as M l
s, which is trained with X l

p for ten epochs. This
classifier consists of an input connected to a Softmax classifier as illustrated in
Figure 4. We consider only ten epochs as it was empirically verified to be sufficient
to obtain satisfactory results. The training of the M l

s classifier is relatively fast.
There are no pre-processing steps such as dimensionality reduction, which could
be computation-intensive in the case a large output dimension from a hidden layer
produces a very large encoded set X l

p. Therefore, using machine learning algorithms
(e.g., Support Vector Machine or Decision Trees) or even Gaussian Template Attacks
to implement the M l

s classifier would require feature selection and/or dimensionality
reduction, which could render the process impractical due to significant overheads.
As such, M l

s classifier is trained three times, each time X l
p is labeled with a different

label set, i.e., Ym1, Ym2, or Y . As already mentioned in the previous section, instead
of training M l

s three times, one could simply implement a multi-label MLP classifier
to speed up the process.

4. Finally, in Step 4 , each classifier M l
s predicts encoded attack set X l

a, producing
output class probabilities Ŷ l

m1 = p(ym1|xl
i), Ŷ l

m2 = p(ym2|xl
i), and Ŷ l = p(y|xl

i).
These quantities are considered for a perceived information calculation in Eq. (20).

This way, we can estimate the amount of information that an encoded representationX l
p,

in a hidden layer l, can have about input information Ym1, Ym2, or Y for every training
epoch in a black-box model. Algorithm 1 provides the steps necessary to implement
our explainability methodology. The method LayerPredict(Lm,X) returns the output
activations from a layer Lm of index l when this layer predicts some input X .

16 Explainable DL-SCA

Algorithm 1 Steps for mask share fitting explainability.
1: procedure 2-Share Mask Explainability(model M , Softmax model Ms, number

of layers L in model M , number of epochs EM for model M , number of epochs ES for
model M l

s, profiling set Xp, attack set Xa, mask labels Ym1, mask labels Ym2, labels
Y)

2: for em = 1 to E do
3: Mem ← TrainOneEpoch(M , Xp) . Step 1 in Figure 5
4: for l = 1 to L do
5: LM ← GetLayer(Mem

, l) . Step 2 in Figure 5
6: X l

p ← LayerPredict(LM , Xp) . Step 2 in Figure 5
7: X l

a ← LayerPredict(LM , Xa) . Step 2 in Figure 5
8: M l

s ← Train(Ms, ES , X l
p, Ym1) . Step 3 in Figure 5

9: Ŷ l
m1 ← Predict(M l

s, X l
a) . Step 4 in Figure 5

10: Ŷ l
m2 ← Predict(M l

s, X l
a) . Step 4 in Figure 5

11: Ŷ l ← Predict(M l
s, X l

a) . Step 4 in Figure 5
12: P̂ I(X l

a; Ŷ l
m1) = PerceivedInformation(X l

a, Ŷ l
m1) . Step 4 in Figure 5

13: P̂ I(Xa; Ŷ l
m2) = PerceivedInformation(X l

a, Ŷ l
m2) . Step 4 in Figure 5

14: P̂ I(Xa; Ŷ l) = PerceivedInformation(X l
a, Ŷ l) . Step 4 in Figure 5

15: end for
16: end for
17: end procedure

4.3 On the Granularity of the Explainability Approach
One could ask why developing an explainability approach that works on the granularity
level of a layer. For instance, previous approaches allowed consideration even for specific
neurons (filters in a feature map). Our analysis showed that multiple neurons (filters in
a feature map) are responsible for the successful deep learning-based SCA. Thus, trying
to connect specific neurons (filters in a feature map) to the outcome of the analysis is
difficult due to the ability of neural networks to find (many) good functions representing
the leakage.
Contrary, looking at the level of multiple layers allows the analysis but does not provide
information on what happens in every layer, which is especially relevant if we consider
that state-of-the-art neural networks in SCA contain only a few layers [PWP21].

5 Compression in Deep Neural Networks
As explained in Section 2.3.2, the information bottleneck theory suggests that one of the
main aspects of learning is compression of X during training. The measure of compression
in deep neural networks is given by the reduction of mutual information I(X ;T) as the
training process evolves. At the beginning of training, I(X ;T) is maximal for a given
representation T (i.e., the output of a hidden layer), which has all possible information
about X . As soon as the model starts to learn, T becomes a bottleneck and starts to
lose information about X (ideally, noise) by preserving only the relevant features which
are necessary to predict Y. As detailed in the previous section, a precise measure of
compression by computing I(X ;T) is particularly hard due to the dimensionality of X
and T , especially for histogram-based mutual information approaches.

As we are interested in understanding the processing of secret shares by hidden layers
during training, instead of measuring the compression of the whole profiling set Xp by a
hidden layer, we measure the compression of specific information contained in Xp, which

Guilherme Perin, Lichao Wu and Stjepan Picek 17

are the features related to different intermediate values, including the secret shares Ym.
For that, we adopted perceived information which is a lower bound of mutual information.
The problem that arose is that we need to obtain the conditional probabilities p(ym|x)
from an intermediate network representation X l

p, which is the output of a layer l. As
specified in line 8 in Algorithm 1, obtaining p(ym|x) requires the training of a separate
M l

s classifier with X l
p and predicted with X l

a. Thus, the M l
s classifier can estimate the

amount of information that X l
p (an intermediate network representation) has about a

secret share Ym, which is a feature present in the profiling set Xp. Intuitively, one would
expect to maximize P̂ I(X l

a;Ym) for all secret shares in all the hidden layers when Ym

is a feature to be learned to predict Y. This would suggest that compression of I(X ;T)
is happening because a hidden layer is increasing the information about a secret share
Ym. This is more likely to happen when the intermediate representation X l

p compresses
noise or irrelevant features. Moreover, in our results, we will differentiate compression
from overfitting. Overfitting should be characterized by a decrease of P̂ I(X l

a;Ym) for
every feature Ym, including those representing the secret shares that have to be learned
to predict Y. Otherwise, when P̂ I(X l

a;Ym) decreases only for features Ym that are not
related to Y, we assume that compression is happening.

5.1 Compression of Irrelevant (Key Byte) Features in First-order Masked
Datasets

Next, we use our explainability methodology to show how deep neural network layers
compress the information about irrelevant features present in Xp during training while
preserving relevant ones. When targeting a single key byte in a first-order masked dataset,
relevant features become the two secret shares associated with the target key byte. In
contrast, irrelevant features are all the information corresponding to other key bytes
and noise components. We provide results for a noise-free simulated dataset, in which
all features are well defined so that every sample represents a feature and there are no
samples that would represent noise. Section 6 provides experiments on real side-channel
measurements from first-order Boolean masked AES implementations.

Our simulated traces contain leakages from S-box outputs in the first AES encryption
round. Each trace xi contains 32 samples, and each of these samples is generated according
to the following equations:

xi[2j] = S-box(dj ⊕ kj)⊕ mj

xi[2j + 1] = mj ,
(21)

where j ∈ [0, 15] denotes the j-th key byte index and mj is the mask share associated with
the j-th key byte. In this case, every trace sample represents a feature, which will be
denoted as Ym[j] and Ys[j] for the mask share mj and S-box(dj ⊕ kj)⊕ mj , respectively.

In the first experiment, we ran a random hyperparameter search (see Appendix A,
Table 2) with the simulated dataset and found the CNN with the following layer-wise
structure:

X → [C(fi, 10, 3)→ E → BN → AP (2, 2)]3 → [FC(100)→ E]1 → S(256)→ Ŷ,

where fi is the number of filters in each convolution layer, which is set to 16, 32, and 48.
Learning rate and batch size are arbitrarily set to 0.005 and 400, respectively. This CNN
is trained with Adam optimizer for 100 epochs. The three convolution layers are named
conv_1, conv_2, and conv_3 and the fully-connected layer is named fc_1. The simulated
profiling and attack traces Xp and Xa are labeled with leakages from the second key byte
j = 2, i.e., Y = S-box(d2 ⊕ k2)).

In Figure 6, we plot the P̂ I(X l
a;Ys[j]) and P̂ I(X l

a;Ym[j])) values obtained for all con-
volution (conv_1, conv_2, and conv_3) and fully-connected (fc_1) layers. The perceived

18 Explainable DL-SCA

(a) conv_1 (b) conv_2 (c) conv_3 (d) fc_1

Figure 6: The compression of irrelevant features with CNN. Red and green lines indicate
the perceived information from relevant features, which are the mask Ym[2] and the masked
S-Box output Ys[2] labels related to key byte 2. Irrelevant features associated with the
rest of the key bytes are illustrated as gray lines.

information values are computed with respect to all features Ym[j] and Ys[j] (for j ∈ [0, 15])
contained in simulated traces. Because the model is trained to predict Y = S-box(d2⊕k2)),
we expect that the network layers will fit the relevant features corresponding to key byte 2,
i.e., Ym[2] and Ys[2], and discard the rest of the existing and irrelevant features. When we
analyze Figure 6a, we can see that convolution layer conv_1 still contains information from
several irrelevant features from other key bytes (other than key byte 2). When we move
our analysis to the convolution layer conv_2 in Figure 6b, we recognize a bottleneck being
implemented by the CNN, in which irrelevant features start to be compressed in this layer.
In contrast, the relevant ones are kept with relatively more information. Then, when we
look at conv_3 in Figure 6c, we clearly see a bottleneck layer compressing most of irrelevant
features (although for some key bytes some of these features still show positive perceived
information) while trying to maximize the relevant ones (which are P̂ I(X l

a;Ys[2]) and
P̂ I(X l

a;Ym[2]))) to improve prediction of Y . Finally, in the fully-connected layer fc_1, the
network already has information from relevant features to provide a good generalization to
Y . Therefore, this is a clear example of an information bottleneck being implemented by a
deep neural network, and applying our explainability methodology allows us to explain
what happens in this model during training.

6 Experimental Results
In this section, we provide experimental results on a variety of CNN and MLP configurations
for ASCADr and DPAv4.2 datasets. For both datasets, we target trace intervals with second-
order leakages of multiple key bytes to measure the compression of irrelevant features
during training in different hidden layers.

6.1 Reading the Plots
Here, the main goal is to demonstrate how different hidden layers fit, compress, or generalize
with respect to different features. Plots provided in this section show the evolution of
perceived information (Eq. (20)) during training for different features given by specific label
sets. For both evaluated datasets (ASCADr and DPAv4.2), we deploy profiling and attack
phases over trace intervals that include leakages from different key bytes. For ASCADr, the
evaluated interval includes second-order leakages from key bytes 2, 4, 5, and 11, in which
the target is key byte 2. For DPAv4.2, the target interval includes second-order leakages
from key bytes 0, 4, 5, 9, and 12 and we target key byte 0. The main idea is to illustrate

Guilherme Perin, Lichao Wu and Stjepan Picek 19

the compression of irrelevant features by bottleneck layers. Thus, in all plots, we provide
perceived information results for masks shares (given by Ym[j] in the plot’s legend, where
j is the key byte index) and masked S-Box output byte (given by Ys[j] in plot’s legend)
for all these key bytes. The perceived information values for target key bytes (key byte 2
for ASCADr and key byte 0 for DPAv4.2) are shown with colored lines (red color for Ym[j]
and green color for Ys[j]) while for the rest of key bytes we show the results with gray
lines. The perceived information for the actual black-box attack labels Y is represented
by an orange line plot. Therefore, colored lines indicate relevant features while gray lines
indicate irrelevant features. Every subfigure shows results for a specific hidden layer.

6.2 ASCADr

6.2.1 Multilayer Perceptron

We select various MLP architectures that implement successful key recovery on ASCADr
from a random search (see Appendix 1 for details). We consider a profiling MLP model
to be successful when it reaches guessing entropy equal to 0 for the correct key k2 after
processing up to 5 000 attack traces. Our hyperparameter search process allows us to find
successful models with a different number of hidden layers. Nevertheless, by applying our
explainability methodology, we observe common behavior for these models regardless of
the number of hidden layers.

Figure 7 shows an example for a six-layer MLP with the following layer-wise structure:

X → [FC(100)→ E]6 → S(256)→ Ŷ. (22)

For this model, learning rate is set to 5e-4 and weights are initialized with random_uniform
method. The attacked interval includes the second-order leakages from four different key
bytes, including the target one. We immediately verify that the first hidden layer still con-
tains information from irrelevant features represented by key bytes different from the target
one. From the second layer, we see that the irrelevant information is highly compressed,
and the outer layer generalizes better to Y, as shown by the orange line representing
P̂ I(X l

a;Y). Another interesting fact from this specific model is that outer layers achieve
higher values of P̂ I(X l

a;Y) even before achieving higher values for P̂ I(X l
a;Ys[2]) and

P̂ I(X l
a;Ym[2]). This happens because previous layers already implemented unmasking

and transmitted this information to the next layer.
Answering the ExDL-SCA questions, we provide the following observations:
1. Where. Our empirical results indicate that compression of X mostly happens in

the first hidden layer in any MLP configuration. Generalization to Y is stronger
in hidden layers closer to the output layer, and this conclusion comes from higher
P̂ I(X l

a;Y) values obtained for the outer layer in comparison to hidden layers closer
to the input layer.

2. What. We verified that to generalize to Y, the first hidden layer compresses noise
and irrelevant features and transmits information from relevant secret shares to the
subsequent hidden layers. This also suggests that hidden layers perform unmasking
by combining the two secret shares.

3. Why. Our analyses indicate that MLP implements IB theory as the bottleneck is
usually implemented already by the first hidden layer. In essence, all intermediate
network representations follow the IB theory, but the bottleneck (compression of
irrelevant features) is usually more evident in the first layer.

6.2.2 Convolutional Neural Network

We again deployed a random search to select various CNN architectures that implement
successful key recovery on the ASCADr dataset. Details about our CNN random search

20 Explainable DL-SCA

(a) fc_1 (b) fc_1 (c) fc_1

(d) fc_1 (e) fc_1 (f) fc_1

Figure 7: Perceived information values from a six-layer MLP trained with the ASCADr
dataset.

process can be found in Appendix A (Table 2). The number of convolution layers in
the search space ranges from one to four, and CNN models may contain one or two
fully-connected layers.

Figure 8 shows the results obtained from a CNN with four convolution layers and two
fully-connected layers with the following structure:

X → [C(fi, 40, 15)→ SE → BN → AP (2, 2)]4 → [FC(20)→ SE]2 → S(256)→ Ŷ,
(23)

where fi is set to 12, 24, 36, and 48 for the four convolution layers. The learning rate
for this model is 1e-4 and trainable weights are initialized with glorot_normal method.
The first layer, conv_1, fits information from relevant and irrelevant features, as perceived
information values are positive. For this layer, after epoch 20, compression starts to happen
for all features. Layer conv_2 shows the fitting of input features, including irrelevant ones,
and layer conv_3 shows compression of irrelevant features while preserving and learning
relevant ones. Note how conv_3 already generalized to Y . The subsequent layers (conv_4,
fc_1, and fc_2) also show compression of irrelevant leakages from key bytes other than
the target one. Prediction to Y (given by positive values of P̂ I(X l

a;Y)), is already seen in
conv_4, and in fc_1 and fc_2 layers, this generalization to Y is even stronger. What we
see in this figure is a general behavior observed for various successful CNN models on the
ASCADr dataset.

By applying our explainability methodology to different CNN configurations, we answer
the following ExDL-SCA questions:

1. Where. By applying our explainability approach to different CNN architectures,

Guilherme Perin, Lichao Wu and Stjepan Picek 21

(a) conv_1 (b) conv_2 (c) conv_3

(d) conv_4 (e) fc_1 (f) fc_2

Figure 8: Perceived information values from CNN layers (27) trained with the ASCADr
dataset. Red and green lines represent the secret shares Ym = m2 (the mask) and
Ys = S-Box(d2 ⊕ k2) ⊕ m2 (the masked S-Box output byte), respectively. Orange line
represents the black-box labels Y = S-Box(d2 ⊕ k2).

we verify that the first convolution layer is usually unable to implement compression
of irrelevant features to keep the relevant ones (we observed that when the model
achieves good levels of generalization, the first convolution layer tends to compress
the input information, including the features related to the target key byte). The
second convolution layer usually implements fitting and compression phases, which is
characterized by the increase of perceived information values obtained from features
(i.e., secret shares) related to the target key byte. At the same time, there are reduced
perceived information values for features related to the remaining key bytes that the
model is not supposed to learn. When CNN has more than two convolution layers, the
other convolution layers implement the bottleneck more efficiently. Fully-connected
layers provide higher P̂ I(X l

a;Y), indicating generalization to Y.
2. What. The bottleneck is implemented, at least in the second hidden layer. From

this moment, the network starts to generate an intermediate representation that
mostly preserves the information from secret shares related to the target key byte.

3. Why. Fitting and compression happen in CNN models because this type of archi-
tecture also follows the IB principle. Hidden layers implement the bottleneck, which
provides conditions for the model to generalize as relevant features are fit by the
layers.

22 Explainable DL-SCA

6.2.3 Convolutional Neural Networks with Desynchronized Dataset

In this section, we evaluate CNNs with our explainability methodology when the model
is trained with a desynchronized ASCADr dataset. To produce misalignment, traces are
randomly shifted by up to 50 samples (see [WP20] for details on how to simulate the
resynchronization effect). To circumvent the desynchronization effect, the CNN is trained
with data augmentation that implements random shifts (again up to 50 samples). For
each epoch, we generate 200 000 augmented profiling traces. We apply our hyperparameter
search until we generate at least 100 successful CNN models able to reduce the guessing
entropy of the correct key to 0. In Figure 9, we provide an example result from a CNN
model with the following layer-wise structure:

X → [C(fi, 30, 15)→ E → BN → AP (2, 2)]3 → [FC(200)→ E]2 → S(256)→ Ŷ, (24)

where filters fi are set to 16, 32, and 48 for the three convolution layers. Learning rate is
set to 1e-4 and weights are initialized with random_uniform method.

In Figures 9a and 9b, we see how first two convolution layers conv_1 and conv_2
process relevant and irrelevant features. These layers mostly fit all features, without
compression. Layers conv_3, fc_1, and fc_2 start to implement the compression of
irrelevant features related to key bytes different from k2, more specifically after epoch
50. Looking at Figures 9c, 9d, and 9e, we conclude that these three layers implement
bottlenecks, but the perceived information values suggest that this model should be
trained for more epochs, as we see a growing trend for relevant features and generalization
(given by P̂ I(X l

a;Y)) while perceived information values related to irrelevant features are
continuously decreasing.

Addressing the ExDL-SCA questions:
1. where. Bottleneck layers are usually implemented by layers closer to the output

layer. When the CNN contains more than two convolution layers, we observed that
the bottleneck happens from the third convolution layer.

2. what. The bottleneck is implemented less efficiently when the network is trained on
a more noisy dataset. Irrelevant features (and probably other sources of noise) are
preserved until the last hidden layer with some level of compression. Relevant features,
which are necessary to defeat masking, are usually (but not always) preserved more
intensively, allowing the model to implement a second-order attack successfully.

3. why. Our results suggest that the first convolution layers work on bypassing
desynchronization effects, becoming less prone to separate relevant from irrelevant
features.

6.3 DPAv4.2

6.3.1 Multilayer Perceptron

We apply the same hyperparameter search process from Appendix A (Table 1) for the
DPAv4.2 dataset to find successful MLP models. Again, for these models, we observe
similar behavior when applying our explainability methodology. Figure 10 shows results
for the following layer-wise MLP structure:

X → [FC(20)→ E]3 → S(256)→ Ŷ. (25)

Here, the learning rate is set to 5e-4 and weights are initialized with glorot_normal
method. We apply l1 regularization to all hidden layers with a regularization value of
l1 = 1e-4. What this figure shows is a common trend observed from multiple successful
MLP models we found with our hyperparameter search process. The first two hidden
layers (when models contain more than two hidden layers, at least) show already the
capacity to differentiate between relevant and irrelevant features, with the compression of

Guilherme Perin, Lichao Wu and Stjepan Picek 23

(a) conv_1 (b) conv_1 (c) conv_1

(d) fc_1 (e) fc_2

Figure 9: Perceived information values from a CNN trained with the desynchronized
ASCADr dataset.

(a) fc_1 (b) fc_2 (c) fc_3

Figure 10: Perceived information values from a MLP trained with the DPAv4.2 dataset.

irrelevant ones. The perceived information values P̂ I(X l
a;Ym[0]) are significantly higher

than P̂ I(X l
a;Ys[0]) in all layers, which is a consequence of higher SNR values for the mask

inside the attacked interval. For the last hidden layer, fc_3, the values of P̂ I(X l
a;Ys[0])

become negative after epoch 40, which also reflects in the values of P̂ I(X l
a;Y) that indicate

prediction to Y and overfitting.
Addressing the ExDL-SCA questions, we conclude:

24 Explainable DL-SCA

1. Where. MLP models for DPAv4.2 implement the bottleneck already in the first
fully-connected layers. As also observed for ASCADr dataset, the first hidden layer
already implements generalization as soon as the compression phase happens.

2. What. The bottleneck, which is implemented already in the first hidden layers,
separates relevant from irrelevant features and also shows generalization ability.
Because DPAv4.2 is a smaller dataset in terms of profiling traces, overparameterized
MLP models tend to overfit the relevant features, resulting in a decrease of P̂ I(X l

a;Y)
values in outer layers.

3. Why. With MLPs, the first hidden layer is already able to implement the bottle-
neck and the generalization to Y, suggesting that a single hidden layer would be
enough to successfully implement the profiling model. Our experiments required the
usage of l1 or l2 regularization to find better performing models, indicating that
overparameterized MLPs are problematic for this dataset.

6.3.2 Convolutional Neural Network

We find successful CNN models for DPAv4.2 by applying the hyperparameter search process
from Appendix A (Table 2). We identified several successful CNN models that reduce
the guessing entropy of the target key byte to 0 with up to 5 000 attack traces. Figure 11
shows an example result for the CNN with the following structure:

X → [C(fi, 40, 10)→ E → BN → AP (2, 2)]4 → [FC(100)→ E]2 → S(256)→ Ŷ, (26)

where filters fi are set to 4, 8, 12, and 16 for the four convolution layers. For this model,
learning rate is set to 1e-3 and weights are initialized with random_uniform method.
Similar to what we observed for ASCADr CNN case, for DPAv4.2 the first convolution layers
fit relevant and irrelevant features without clear compression. From convolution layer
conv_3, we verify the occurrence of the bottleneck where relevant features are learned
while irrelevant ones are compressed, as showed in Figure 11c. The subsequent layers
conv_4, fc_1, and fc_2 show significant levels of generalization to Y, as we confirm by
observing higher values of P̂ I(X l

a;Y) (orange lines). This suggests that convolution layers
also implement classification, as this task is usually attributed to fully-connected layers in
the DL-SCA literature [CZLG21].

We answer the ExDL-SCA questions:
1. Where. We commonly observed that the first convolution layer shows the fitting

of input features while compression happens for relevant and irrelevant ones. The
bottleneck layer usually happens from the second or third convolution layer. Gen-
eralization to Y happens with more intensity in hidden layers closer to the output
layer.

2. What. Compression of irrelevant features by a bottleneck layer tends to happen as
soon as the first convolution layer starts to compress all features, including relevant
ones. Note that here we are estimating compression from the full feature map
obtained from each convolution layer. To verify if some of the features are not
compressed in the first layer, compression should be estimated per filter in a feature
map. In terms of generalization to Y , convolution layers closer to the fully-connected
layer show positive perceived information values for P̂ I(X l

a;Y) as they received
already relevant features from previous layers.

3. Why. As our selected CNN models can successfully implement second-order attacks,
we verify that hidden layers can automatically locate relevant features from side-
channel measurements by differentiating them from irrelevant ones and noise. This
suggests that the information bottleneck principle is happening in these models.

Guilherme Perin, Lichao Wu and Stjepan Picek 25

(a) conv_1 (b) conv_2 (c) conv_3

(d) conv_4 (e) fc_1 (f) fc_2

Figure 11: Perceived information values from a CNN trained with the DPAv4.2 dataset.

6.3.3 Convolutional Neural Networks with Desynchronized Dataset

We apply again the random hyperparameter search process from Table 2 to the desynchro-
nized DPAv4.2 dataset. We apply random shifts to measurements with up to 50 samples
and the resulting desynchronized dataset has a very low SNR. Training is performed
with data augmentation, in which we generate 70 000 augmented traces per epoch. Data
augmentation is based on random shifts for up to 50 samples.

Figure 12 shows explainability results obtained from a CNN with the following layer-
wise structure, which is selected among successful CNN models obtained with the random
search:

X → [C(fi, 20, 15)→ RE → BN → AP (2, 2)]2 → [FC(20)→ RE]1 → S(256)→ Ŷ.
(27)

Here, filters fi are set to 4 and 8 for the two convolution layers. Because the resulting
desynchronized dataset has very low SNR, compression and fitting phases are not clearly
highlighted in perceived information results. In fact, layer fc_1 seems to implement
the bottleneck as we can observe, from Figure 12c, that some of irrelevant features are
compressed while still not compressing all irrelevant ones. For several models, although
they result in successful key recovery with up to 5 000 attack traces, perceived information
values are negative, suggesting a sub-optimal profiling model [BDMS22].

Addressing the ExDL-SCA questions, we conclude the following:
1. Where. Compression usually happens in hidden layers closer to the output layer.
2. What. Due to desynchronization effects, the evaluated dataset results in very low

SNR. Therefore, we observed fewer bottleneck effects in hidden layers, as some

26 Explainable DL-SCA

(a) conv_1 (b) conv_2 (c) conv_3

Figure 12: Perceived information values from a CNN trained with the desynchronized
DPAv4.2 dataset.

irrelevant features are still preserved in hidden layers.
3. Why. Although the evaluated CNNs can successfully implement a key recovery

with less than 5 000 attack traces, noise levels are higher, making the bottleneck less
efficient.

7 Possible Use Cases
We suggest several possible use cases for our explainability methodology.

Confirm if a model learns first-order or high-order leakages Recently, the authors
of [EST+22] performed a more detailed analysis of the ASCAD databases and found
evidence that deep neural networks might learn first-order leakages for some of the target
key bytes. This would mean that, contrary to expectation, a deep learning model would
not be learning high-order leakages. By applying our explainability methodology, we can
quantify the amount of information that a hidden layer contains from secret shares and,
as a result, confirm if the model implements a second-order attack.

Evaluate the selected leakage model Some of the publicly available datasets largely
considered in previous works (e.g., ASCAD, AES_HD) contain the same key in both
profiling and attack sets. For some leakage models, such as S-box(di ⊕ ki), the resulting
side-channel metrics may indicate successful key recovery even when this is not the case.
This situation happens when the model adapts to the key that is set for both profiling
and attack sets and not to actual leakages. By applying our explainability approach, it is
possible to confirm if a network that generalizes to a fixed key scenario is actually learning
existing leakages or simply overfitting.

Tuning layer hyperparameters The perceived information metrics from Eq. (20) quantify
the amount of information learned or compressed from input features. In a hyperparameter
search, these metrics may help the evaluator to tune some of the hyperparameters to
maximize the perceived information. Additionally, with the explainability, it is possible to
identify layers with potentially too narrow bottlenecks, which would make the subsequent
layer not receive enough information about the leakages. Moreover, our method allows
identifying layers that overfit to noise, which degrades the overall performance of the
attack. Still, it is an open question whether a modification of one hyperparameter in a

Guilherme Perin, Lichao Wu and Stjepan Picek 27

single hidden layer affects the learning process of the rest of the network. Therefore, using
our methodology to fix a single layer still requires deeper investigation.

Reduce false positives in deep learning-based leakage assessment Moos et al. [MWM21]
proposed a deep learning-based leakage assessment (DL-LA) approach, in which a neural
network is trained to distinguish between two groups or distributions. DL-LA is also
efficient against masked implementations. Therefore, to avoid false positives, our proposed
methodology can explain if the network trained to implement leakage assessment is also
efficiently learning the secret shares or if the model is, for instance, subject to the class
imbalancedness problem or overfitting.

8 Conclusions and Future Works

Masking countermeasures are powerful protections against profiling SCA, especially when
higher levels of noise are present in side-channel measurements [BDMS22]. Recent research
papers have shown that deep learning techniques are effective in defeating masking and
hiding countermeasures (see Sections 1 and 3) and in reducing their protective effects in
side-channel traces [WP20]. Therefore, it is of great interest for security engineers and
evaluators to understand to what extent the implemented protections are sufficient against
different adversaries.

The proposed explainability methodology brings more clarity to the understanding
of the effect of masking countermeasures against different deep learning-based profiling
attacks. Inspired by the information bottleneck principle [TPB00], and through the lens
of perceived information [BHM+19], we provide a method to visualize what every hidden
network layer learns from high-order leakages and which one of them effectively performs
the unmasking operation when the high-order leakages are recombined. We applied our
methodology to real side-channel measurements and verified how hidden layers successfully
implement a bottleneck in order to fit relevant features associated with high-order leakages
from the target key byte while compressing irrelevant ones. Furthermore, we provided
answers to the main explainability questions in all experimental results scenarios.

Finally, we evaluated the mask share learnability of deep learning models when the
desynchronization countermeasures are implemented. The application of our explainability
methodology to CNNs trained with desynchronized datasets allows us to understand how
convolution layers deal with this type of hiding countermeasure. In particular, we verify
how compression in convolution layers plays an important role for the model to be able to
generalize and bypass the countermeasures.

This research opens several new research directions for deep learning-based SCA. In
future works, we will investigate and quantify compression and generalization phases
in profiling attacks. The main goal is to find the optimal trade-off between these two
phenomena in deep neural networks. Furthermore, we will investigate how to tune
specific neural network hyperparameters to achieve satisfactory compression of noise and
irrelevant features, leading to more efficient profiling attacks against more noisy datasets.
In particular, we will research a new way to create the best possible bottleneck that can
efficiently regularize the model and discard noise by keeping the information from relevant
features. Finally, we will consider the explainability methodology to differentiate between a
deep learning model that fails to learn existing leakages (which could transmit a false sense
of security) from a deep learning model considered for a successful security evaluation that
fails against a protected implementation (which result in a correct security estimation).

28 Explainable DL-SCA

References
[AFDM17] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy.

Deep variational information bottleneck. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[BBR+18] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair,
Yoshua Bengio, R. Devon Hjelm, and Aaron C. Courville. Mutual information
neural estimation. In Jennifer G. Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pages 530–539. PMLR, 2018.

[BDMS22] Olivier Bronchain, François Durvaux, Loïc Masure, and François-Xavier
Standaert. Efficient profiled side-channel analysis of masked implementations,
extended. IEEE Trans. Inf. Forensics Secur., 17:574–584, 2022.

[BH21] Nadia Burkart and Marco F. Huber. A survey on the explainability of
supervised machine learning. Journal of Artificial Intelligence Research,
70:245–317, January 2021.

[BHM+19] Olivier Bronchain, Julien M. Hendrickx, Clément Massart, Alex Olshevsky,
and François-Xavier Standaert. Leakage certification revisited: Bounding
model errors in side-channel security evaluations. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture Notes in
Computer Science, pages 713–737. Springer, 2019.

[BP21] Vaishak Belle and Ioannis Papantonis. Principles and practice of explainable
machine learning. Frontiers in Big Data, 4, July 2021.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptographic Engineering, 10(2):163–188, 2020.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures
- profiling attacks without pre-processing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 45–68.
Springer, 2017.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
398–412. Springer, 1999.

[CLM20] Valence Cristiani, Maxime Lecomte, and Philippe Maurine. Leakage as-
sessment through neural estimation of the mutual information. In Applied
Cryptography and Network Security Workshops - ACNS 2020 Satellite Work-
shops, AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA,

Guilherme Perin, Lichao Wu and Stjepan Picek 29

Rome, Italy, October 19-22, 2020, Proceedings, volume 12418 of Lecture Notes
in Computer Science, pages 144–162. Springer, 2020.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, pages 13–28, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg.

[CZLG21] Pei Cao, Chi Zhang, Xiangjun Lu, and Dawu Gu. Cross-device profiled side-
channel attack with unsupervised domain adaptation. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(4):27–56, 2021.

[dCGRP19] Eloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best
information is most successful mutual information and success rate in side-
channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):49–79,
2019.

[EST+22] Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert,
and Georg Sigl. A second look at the ASCAD databases. In Josep Balasch
and Colin O’Flynn, editors, Constructive Side-Channel Analysis and Secure
Design - 13th International Workshop, COSADE 2022, Leuven, Belgium,
April 11-12, 2022, Proceedings, volume 13211 of Lecture Notes in Computer
Science, pages 75–99. Springer, 2022.

[FMPR10] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
Affine masking against higher-order side channel analysis. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptogra-
phy - 17th International Workshop, SAC 2010, Waterloo, Ontario, Canada,
August 12-13, 2010, Revised Selected Papers, volume 6544 of Lecture Notes in
Computer Science, pages 262–280. Springer, 2010.

[GP20] Ziv Goldfeld and Yury Polyanskiy. The information bottleneck problem and
its applications in machine learning. CoRR, abs/2004.14941, 2020.

[GPQ11] Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Thwarting higher-
order side channel analysis with additive and multiplicative maskings. In Bart
Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September
28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer
Science, pages 240–255. Springer, 2011.

[GSC+19] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf,
and Guang-Zhong Yang. Xai—explainable artificial intelligence. Sci-
ence Robotics, 4(37):eaay7120, 2019.

[Gut22] Frederico Guth. The emergence of an information bottleneck theory of deep
learning. Universidade de Brasília (UnB), January 2022.

[HGG19] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural network
attribution methods for leakage analysis and symmetric key recovery. In
Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas in Cryptog-
raphy - SAC 2019 - 26th International Conference, Waterloo, ON, Canada,
August 12-16, 2019, Revised Selected Papers, volume 11959 of Lecture Notes
in Computer Science, pages 645–666. Springer, 2019.

30 Explainable DL-SCA

[Hol18] Andreas Holzinger. From machine learning to explainable ai. In 2018 World
Symposium on Digital Intelligence for Systems and Machines (DISA), pages
55–66, 2018.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Proceedings of CRYPTO’96, volume 1109 of
LNCS, pages 104–113. Springer-Verlag, 1996.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Han-
jalic. Make some noise. unleashing the power of convolutional neural networks
for profiled side-channel analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 148–179, 2019.

[LPK20] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Ex-
plainable AI: A review of machine learning interpretability methods. Entropy,
23(1):18, December 2020.

[Mas94] James L. Massey. Guessing and entropy. In In Proceedings of the 1994 IEEE
International Symposium on Information Theory, page 204, 1994.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization
for general characterization in profiling attacks. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April
3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer Science,
pages 145–167. Springer, 2019.

[MDP20] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study
of deep learning for side-channel analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(1):348–375, 2020.

[MOP06] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer, December 2006.
ISBN 0-387-30857-1, http://www.dpabook.org/.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Interna-
tional Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 3–26. Springer, 2016.

[MV20] Ricards Marcinkevics and Julia E. Vogt. Interpretability and explainability:
A machine learning zoo mini-tour. CoRR, abs/2012.01805, 2020.

[MWM21] Thorben Moos, Felix Wegener, and Amir Moradi. DL-LA: deep learning
leakage assessment A modern roadmap for SCA evaluations. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(3):552–598, 2021.

[PBP21] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning when to stop:
A mutual information approach to prevent overfitting in profiled side-channel
analysis. In Shivam Bhasin and Fabrizio De Santis, editors, Constructive Side-
Channel Analysis and Secure Design - 12th International Workshop, COSADE

http://www.dpabook.org/

Guilherme Perin, Lichao Wu and Stjepan Picek 31

2021, Lugano, Switzerland, October 25-27, 2021, Proceedings, volume 12910
of Lecture Notes in Computer Science, pages 53–81. Springer, 2021.

[PDN22] Jeremy Petch, Shuang Di, and Walter Nelson. Opening the black box: The
promise and limitations of explainable machine learning in cardiology. Cana-
dian Journal of Cardiology, 38(2):204–213, 2022.

[PPM+21] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. Cryptology ePrint
Archive, Paper 2021/1092, 2021. https://eprint.iacr.org/2021/1092.

[PWP21] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. IACR Cryptol. ePrint
Arch., page 1414, 2021.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema):
Measures and counter-measures for smart cards. In Isabelle Attali and Thomas
Jensen, editors, Smart Card Programming and Security, pages 200–210, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[RLMI21] Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent Imbert. A side
journey to titan. In 30th USENIX Security Symposium (USENIX Security
21), pages 231–248. USENIX Association, August 2021.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforce-
ment learning for hyperparameter tuning in deep learning-based side-channel
analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):677–707, 2021.

[SBD+18] Andrew M. Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy
Kolchinsky, Brendan D. Tracey, and David D. Cox. On the information
bottleneck theory of deep learning. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[SS17] DJ Strouse and David J. Schwab. The deterministic information bottleneck.
Neural Comput., 29(6):1611–1630, 2017.

[ST17] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural
networks via information. CoRR, abs/1703.00810, 2017.

[TPB00] Naftali Tishby, Fernando C. N. Pereira, and William Bialek. The information
bottleneck method. CoRR, physics/0004057, 2000.

[vdVPB20] Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy was here:
The first step towards explainability of neural networks in profiled side-
channel analysis. In Guido Marco Bertoni and Francesco Regazzoni, editors,
Constructive Side-Channel Analysis and Secure Design - 11th International
Workshop, COSADE 2020, Lugano, Switzerland, April 1-3, 2020, Revised
Selected Papers, volume 12244 of Lecture Notes in Computer Science, pages
175–199. Springer, 2020.

https://eprint.iacr.org/2021/1092

32 Explainable DL-SCA

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revis-
iting a methodology for efficient cnn architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):147–
168, Jun. 2020.

[WHJ+21] Yoo-Seung Won, Xiaolu Hou, Dirmanto Jap, Jakub Breier, and Shivam Bhasin.
Back to the basics: Seamless integration of side-channel pre-processing in
deep neural networks. IEEE Trans. Inf. Forensics Secur., 16:3215–3227, 2021.

[WP20] Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of
side-channel measurements with autoencoders. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(4):389–415, 2020.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. Cryp-
tology ePrint Archive, Report 2020/1293, 2020. https://eprint.iacr.org/
2020/1293.

[WWJ+21] Lichao Wu, Yoo-Seung Won, Dirmanto Jap, Guilherme Perin, Shivam Bhasin,
and Stjepan Picek. Explain some noise: Ablation analysis for deep learning-
based physical side-channel analysis. IACR Cryptol. ePrint Arch., page 717,
2021.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(1):1–36, Nov.
2019.

A Random Hyperparameter Search
Tables 1 and 2 provide the ranges for random search for MLP and CNN architectures,
respectively. For each scenario (dataset and architecture), we ran 1 000 hyperparameter
search attempts, which was enough to find at least fifty successful models.

Table 1: Hyperparameter search options and ranges for MLPs.

Hyperparameter Options
Optimizer Adam

Dense Layers 2, 3, 4, 5, 6
Neurons 20, 40, 50, 100, 150, 200, 300, 400

Activation Function elu, selu, relu

Learning Rate 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,
0.000025, 0.00001

Batch Size 400
Epochs 100

Weight Initialization random_uniform, glorot_uniform, he_uniform,
random_normal, glorot_normal, he_normal

Regularization None, l1 or l2

l1 or l2
0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,

0.000025, 0.00001
Total Search Space 174 960

https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1293

Guilherme Perin, Lichao Wu and Stjepan Picek 33

Table 2: Hyperparameter search options and ranges for CNNs.

Hyperparameter Options
Optimizer Adam

Dense Layers 1, 2
Convolution Layers 1, 2, 3, 4

Neurons 20, 50, 100, 200
Filters 4 , 8, 12, 16 (×) Conv. Layer Index)

Kernel Size 2, 4, 6, 8, 10, 20, 30, 40
Strides 2, 3, 4, 5, 10, 15, 20

Pooling Size 2
Pooling Stride 2

Activation Function elu, selu, relu

Learning Rate 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,
0.000025, 0.00001

Batch Size 400
Epochs 100

Weight Initialization random_uniform, glorot_uniform, he_uniform,
random_normal, glorot_normal, he_normal

Regularization None
Total Search Space 903 168

	Introduction
	Background
	Notations and Terminology
	Deep Learning-based Profiling SCA against Masked Implementations
	Information-theoretic Concepts
	Interpretability and Explainability in Profiling SCA
	Datasets

	Related Works
	Explainability Methodology for Profiling SCA
	Measuring Information Learned by Hidden Layers with Perceived Information
	The Explainability Methodology
	On the Granularity of the Explainability Approach

	Compression in Deep Neural Networks
	Compression of Irrelevant (Key Byte) Features in First-order Masked Datasets

	Experimental Results
	Reading the Plots
	ASCADr
	DPAv4.2

	Possible Use Cases
	Conclusions and Future Works
	Random Hyperparameter Search

