
I Know What Your Layers Did: Layer-wise
Explainability of Deep Learning Side-channel

Analysis

Guilherme Perin1, Lichao Wu2, and Stjepan Picek3

1 Leiden University, The Netherlands
2 Delft University of Technology, The Netherlands

3 Radboud University, The Netherlands

Abstract. Masked cryptographic implementations can be vulnerable to
higher-order attacks. For instance, deep neural networks have proven
effective for second-order profiling side-channel attacks even in a black-
box setting (no prior knowledge of masks and implementation details).
While such attacks have been successful, no explanations were provided
for understanding why a variety of deep neural networks can (or cannot)
learn high-order leakages and what the limitations are. In other words,
we lack the explainability on neural network layers combining (or not)
unknown and random secret shares, which is a necessary step to defeat,
e.g., Boolean masking countermeasures.
In this paper, we use information-theoretic metrics to explain the internal
activities of deep neural network layers. We propose a novel methodol-
ogy for the explainability of deep learning-based profiling side-channel
analysis (denoted ExDL-SCA) to understand the processing of secret
masks. Inspired by the Information Bottleneck theory, our explainabil-
ity methodology uses perceived information to explain and detect the
different phenomena that occur in deep neural networks, such as fit-
ting, compression, and generalization. We provide experimental results
on masked AES datasets showing where, what, and why deep neural
networks learn relevant features from input trace sets while compress-
ing irrelevant ones, including noise. This paper opens new perspectives
for understanding the role of different neural network layers in profiling
side-channel attacks.

Keywords: Side-channel Analysis, Deep learning, Countermeasures, Ex-
plainability, Perceived Information, Information Bottleneck Theory

1 Introduction

Side-channel attacks (SCA) represent powerful non-invasive attacks that exploit
unintentional leakages of confidential information from electronic devices [24].
During cryptographic executions, the devices leak information through different
side channels, such as power consumption [21], electromagnetic emission [32],
or execution time [20]. Depending on the application, attacks revealing secret

information can lead to serious consequences for the security industry [33]. Thus,
chip manufacturers are interested in assessing the vulnerabilities of their designs
before putting them on the market or into a certification process. To address
this goal, security evaluators deploy different side-channel attacks that can be
categorized as profiling (e.g., Template Attacks [10]) and non-profiling attacks
(e.g., Simple Power Analysis [20] and Differential Power Analysis [21]).

Deep learning (DL-SCA) has drawn significant interest from researchers in
the SCA domain [31]. Powerful attacks against protected cryptographic imple-
mentations have been demonstrated [23,7,19], especially against datasets con-
taining first-order (Boolean) masked AES software or hardware [39] implemen-
tations. Moreover, the SCA community constantly manages to improve the per-
formance of deep learning. For example, the first publication using the ASCAD
dataset with the fixed key required around 400 traces to break the target [3].
Today, we can break the same dataset with a single attack trace and simpler
neural network architecture [29]. Unfortunately, despite all of the advances in
enhancing the attack efficiency, we still lack the knowledge to understand why
neural networks break a target.4 Although past research put effort into the un-
derstanding of some aspects of deep learning models [27,17,42], there is still an
evident lack of knowledge about, for instance, deep neural networks learning to
defeat masking countermeasures. We refer interested readers to several recog-
nized challenges in deep learning-based SCA, especially the one connected to
the explainability of the masking countermeasure processing [31].

We argue that the ability to explain why a machine learning model behaves
in a certain way is (at least) as important as improving the attack performance.
With a deeper understanding of the neural network, an evaluator can: 1) mount
more powerful attacks, 2) improve the security of devices, and 3) ultimately offer
devices that are resilient against the strongest attacks. To conclude, we require
Explainable Deep Learning-based Side-Channel Analysis methodology: ExDL-
SCA. ExDL-SCA has two main goals: 1) explain where the leakage comes from
and 2) explain how a profiling model defeats different countermeasures. To reach
those goals, we propose the following questions to be answered with ExDL-SCA:

1. Where. By answering this question, we can explain the contribution of
different layers in a neural network.

2. What. By answering this question, we can explain what happens with rele-
vant or irrelevant features and if the information is processed (fitting, com-
pression) to the subsequent layers of a neural network.

3. Why. By answering this question, we can explain why a neural network
behaves in a certain way, e.g., breaking a target or failing to do so.

This paper proposes an explainability methodology that infers how much in-
formation the black-box model learns from secret masks. Secret masks are not

4 Deep neural networks usually have complex architectures that are difficult to inter-
pret and explain. By interpretable machine learning, we consider designing machine
learning models that are inherently interpretable or answering the question of how
the model works [25]. By explainability (explainable AI - XAI), we consider how to
provide post hoc explanations of the black-box models.

2

supplied during the training of a black-box profiling model and are only con-
sidered for explainability. For that, we consider information-theoretic methods.
The starting point of our explainability methodology is Information Bottleneck
Theory (IB) [37,35], which has sparked a lot of interest from deep learning com-
munity as a potential theoretical framework to explain how deep neural networks
achieve enormous success in many different applications. In essence, IB theory
suggests that deep neural network training undergoes two different phases: fit-
ting and compression. The fitting phase is supposedly fast and is characterized
by hidden layers trying to maximize information about X while compression is
slower, and it is responsible for the generalization ability of the model. According
to [35], during the fitting phase, the model already shows generalization, which
is enhanced during the compression phase. When and how these phases happen
in a specific model depends on the model architecture, hyperparameters, and
the dataset’s characteristics. The compression phase is particularly important,
as in this phase, the network starts to compress noise and other irrelevant fea-
tures while preserving only relevant features from input training data X . For
that, the IB theory requires the computation of mutual information between
(usually) high dimensional input data X (such as side-channel measurements)
and (potentially) high dimensional intermediate network representations T (the
output of a hidden layer), i.e., I(X , T). However, as we will explain in this paper,
computing I(X , T) is particularly hard for discrete and high dimensional repre-
sentations [14,34], which limits the estimation of the compression phase during
training. As a solution, we adapt the IB framework to the Perceived Informa-
tion [5] metric, which allows us to precisely explain fitting, compression, and
generalization phases in different hidden layers. Thus, we verify, during training,
where, what, and why every neural network layer learns from high-order leak-
ages. Thus, our explainability methodology allows security evaluators to verify,
with more specific information from hidden layers, what a profiling model learns
(or not) from the implemented countermeasures. Our main contributions are:

1. We discuss explainability in the context of DL-SCA and recognize the three
questions that need to be answered to provide (the core of) explainable DL-
SCA.

2. We define a new methodology to quantify the information learned by hidden
neural network layers during profiling. Our method allows an evaluator to
measure how the input information leakage is learned and conveyed layer
by layer in a deep neural network. Furthermore, our method can show in
what layer the information bottleneck is inherently implemented to compress
irrelevant input information (such as noise) and preserve relevant leakages
to break masking countermeasures.

3. We provide experimental results on publicly available datasets and different
neural network architectures. All our results indicate that the information
bottleneck theory is a valid method to explain the different phases of deep
neural network training. Then, we apply our explainability methodology to
a combination of masking and desynchronization countermeasures, showing
our approach to work even if different (multiple) countermeasures are used.

3

This paper is organized as follows. We start by providing background infor-
mation in Section 2 while related works are discussed in Section 3. Section 4
introduces our novel explainability methodology, and Section 5 discusses the
compression in deep networks with practical examples on different datasets. Ex-
perimental results with different protected AES datasets and neural network
architectures are provided in Section 6. Finally, conclusions and future work
directions are provided in Section 7.

2 Background

2.1 Notations and Terminology

We refer to X as a set of side-channel measurements, with xi being the i-th
observation of X . Xp is a set of profiling side-channel measurements and Xa is the
attack set with lengths np and na, respectively. Each side-channel measurement
xi represents the side-channel leakages of a cryptographic operation having input
data di and encryption key ki.

5 We refer to Y as the set of hypothetical leakage
values (or labels) for X where yi = f(di, ki) is one element of Y, and s(.) denotes
a leakage selection function (i.e., s(.) can be represented by an S-box operation
in the first encryption AES round). In the case of masking countermeasures, mr
refers to (r)-th secret share. Alternatively, the term Yf refers to the set of labels
representing a feature in side-channel measurements (e.g., a secret share related
to key byte index j).

With respect to information-theoretic notions, we refer to p(xi) as the prob-
ability of observing xi and p(yi|xi) as the probability of observing yi given xi.
H(X) is the entropy of X while H(Y|X) gives the conditional entropy of Y given
X . The mutual information between X and Y is given by I(X ;Y).

For neural network representations, we refer to T as an encoding providing
an intermediate representation of X in a neural network (e.g., T could represent
the feature map output of a convolution layer or the activations output of a
fully-connected layer) and ti is an observation of T . The term L refers to the
number of hidden layers (excluding the output layer from the counting). The
index of a hidden layer is given by l. The term X l indicates the predicted output
of a hidden layer l when the input data to the network is X . Finally, Ŷ is the
output prediction from a neural network. Figure 1 provides an example of a
convolutional neural network with representations.

In this paper, the term sample refers to the point of interest xi[j] in a side-
channel measurement xi. The term feature refers to the meaning of some infor-
mation contained in X . For example, when X represents the set of side-channel
measurements from the AES encryption process, the leakage of an intermediate
byte in each measurement xi, given by a label set Y, is a feature of X .

We also define specific notations for neural networks. Convolutional neural
networks (CNNs) have a layer-wise structure according to the Eq. (1), where

5 Instead of the encryption function and plaintext, it is also possible to consider de-
cryption function and ciphertext, but for simplicity, we consider encryption only.

4

Fig. 1: Convolutional neural network intermediate representation.

C(fi, ks, st) denote a convolution layer with fi filters, kernel size ks, and stride
st, A is the activation layer (which can be RE in case of relu, SE in case of
selu, or E in case of elu), BN is a batch normalization layer, AP (ps, st) is
an average pooling layer with pooling size ps and stride st, FC(ne) is a fully-
connected layer with ne neurons and S(c) is a Softmax layer with c output
neurons. The superscripts nc and nfc indicate the number of convolution blocks
and fully-connected layers, respectively.

X → [C(fi, ks, st)→ A→ BN → AP (ps, st)]nc → [FC(ne)→ A]nfc → S(c)→ Ŷ.
(1)

Similarly, a multilayer perceptron (MLP) is defined according to the following
layer-wise notation:

X → [FC(ne)→ A]nfc → S(c)→ Ŷ. (2)

2.2 Deep Learning-based Profiling SCA Against Masked
Implementations

In classification applications, a neural network model represents a function that
maps input data X into a finite number of output class probabilities Ŷ. The
mapping is performed by a function f(X , θ) −→ Ŷ, where θ is a set of parameters
learned during the training phase by minimizing a loss function.6 The learned
mapping between input side-channel traces X and outputs probabilities Ŷ de-
pends on the estimated number of classes presented in X . This number of classes,
|Y|, is derived from a leakage function that indicates the hypothetical leakage
value in a side-channel measurement.

To protect against side-channel attacks, masking is implemented to break
the statistical dependence between side-channel measurements (e.g., power con-
sumption) and hypothetical leakage values. For an m-order masking scheme, an
intermediate byte b in a cryptographic algorithm is protected as follows:

bm = b � m1 � m2 · · · � mm, (3)

6 In this paper, we always consider categorical cross-entropy as the loss function since
it is commonly used in deep learning-based SCA.

5

where � can indicate a Boolean [9], arithmetic [12], multiplicative [12], or affine [11]
operation.

The leakage function g(·) = L defined for a second-order profiling SCA is
supposed to learn how to combine two unknown variables m1 and m2 according
to:

L = g(m1, m2) = m1 � m2, (4)

where g is a function mathematically combining two variables through operation
�.

In our analysis, m1 will always be given by an 8-bit mask share randomly
generated for each encryption execution while m2 will be given by an 8-bit masked
S-box output of the first AES encryption round, i.e., m2 = S-box(di ⊕ ki)⊕ m1.
For instance, the leakage function for a second-order attack on a masked AES
implementation is defined as:

L = g(m1, S-box(di⊕ki)⊕m1) = m1⊕S-box(di⊕ki)⊕m1 = S-box(di⊕ki), (5)

where � = ⊕.
A side-channel measurement xi containing second-order leakages must embed

leakage of information from the treatment of masked S-box output (S-box(di⊕
ki)⊕m1) and, at least, the loading of mask share m1 from memory. We can finally
assume that to implement second-order profiling, a neural network must learn
the following mapping that also includes a leakage function L:

F (X ,L, θ) = F (X , g(S-box(di ⊕ ki)⊕ m1, m1), θ)→ Ŷ. (6)

This means that a neural network can learn a mapping from side-channel
traces X to output class probabilities Ŷ that represents (ideally) the xor between
two random 8-bit variables S-box(di ⊕ ki) ⊕ m1 and m1. In essence, the leakage
function represented by learned parameters θ defines how continuous variables
or input features (X) (i.e., raw or pre-processed trace samples) are converted

into hypothetical discrete leakage values g(X)
L−→ Ŷ, where Ŷ can also be seen

as the set of predicted labels. As a consequence, a neural network that can
learn second-order leakages defines a mapping with an intermediate function
that can be given by one or more hidden layers, which learns how to implement
g(S-box(di ⊕ ki)⊕ m1, m1).

The trained neural network, therefore, implements the following path:

X → T1 → · · · → TL
Softmax−−−−−−→ Ŷ ≡ X → g(S-box(di ⊕ ki)⊕ m1, m1)

Softmax−−−−−−→ Ŷ.
(7)

From Eq. (7), we can immediately verify that

T1 → · · · → TL ≡ g(m1, m2). (8)

A loss function assesses the overall variation between expected (ground truth)
labels Y and predicted labels Ŷ. Common hypothetical leakage models for side-
channel analysis include Identity, Hamming weight, Hamming distance, or simply

6

bit-level models (e.g., the least or most significant bits). Besides the predefined
number of classes for classification, the trained neural network has no other
information on converting input features into labels. Therefore, training a model
assumes that the network will automatically learn the leakage model properties
by implementing the mapping from Eq. (6).

Following the same principle, for a third-order neural network-based profil-
ing SCA against a second-order masking scheme, the leakage function that the
trained model is expected to learn is given by:

L = g(m1, m2, m3) = m1�m2�m3 = (S-box(di⊕ki)�m1�m2)�m1�m2 = S-box(di⊕ki).
(9)

In this paper, we provide empirical experiments to analyze the performance of
deep neural networks against a first-order Boolean masking scheme and leave
the analysis of high-order masking, including other masking schemes, for future
work. Nevertheless, the explainability methodology proposed in Section 4 applies
to different masking schemes.

3 Related Work

Explainable AI (XAI) and explainable machine learning (XML) are very active
research domains, see, e.g., [6,15,2,22,30,18]. Still, despite the developments and
techniques proposed over the years, no widely accepted approach allows explain-
ability for diverse machine learning tasks. Indeed, in 2015, DARPA formulated
an XAI program “with the goal to enable end users to better understand, trust,
and effectively manage artificially intelligent systems“. The program started in
2017 and ended in 2021. Among the results, it was concluded that “There cur-
rently is no universal solution to XAI.” and ”One of the challenges in developing
XAI is measuring the effectiveness of an explanation. DARPA’s XAI effort has
helped develop foundational technology in this area, but much more needs to be
done” [16].

Interpretability and explainability in deep learning profiling SCA have re-
ceived little attention. A larger focus has been put on neural network optimiza-
tion to solve the difficult task of hyperparameter tuning. Nevertheless, the efforts
to build various methodologies could be considered interpretability research since
the authors (tried to) provide guidelines to build good neural networks, which
intuitively means they could interpret what models do [45,40]. Moreover, Zaid
et al. used weight visualization and feature maps to understand what features
are more important [45].

In [28], the authors considered information bottleneck theory to derive an
early stopping mechanism for a deep learning-based profiling attack by maxi-
mizing mutual information I(T ;Y) for the output layer. In this case, the authors
ignored I(X ;T) and I(T ;Y) for hidden layers and only focused on the output
layer. Note that the approach that we propose in Section 4 is completely different
from this early stopping technique. Indeed, [28] only measures the information
in the softmax layer (i.e., predictions) while our technique measures information
in hidden layers.

7

The more “direct” attempts at interpretability and explainability can be
divided into approaches that concentrate on the input layer and approaches that
concentrate on the inner (hidden) layers. The techniques that concentrate on the
input layer try to recognize the most important features (or, what is the influence
of each feature on the performance of a neural network). Visualization techniques
were the first attempt to explain what side-channel trace features have more
impact on neural network decisions. Masure et al. provided visualization results
through input gradient from the input network layer. They verified that neural
networks automatically detect the time location of secret shares even in the
presence of desynchronization countermeasures [26]. The input gradients analysis
implements the so-called sensitivity analysis of loss function concerning input
features or side-channel samples [26]. In [17], the authors compared different
visualization techniques, e.g., Layer-wise Relevance Propagation and Occlusion,
in profiling SCA and considered them as side-channel attack distinguishers. More
recently, Golder et al. explored even more visualization techniques like Integrated
Gradient and SmoothGrad [13].

To explain the behavior of hidden layers in profiling SCA, the authors of [38]
considered Singular Vector Canonical Correlation Analysis (SVCCA) to explain
what neural network layers learn from different side-channel traces. Unfortu-
nately, the authors only managed to reach interpretability on a coarse level as
even diverse datasets (side-channel dataset and image dataset) had more similar-
ity than two side-channel datasets. Wu et al. proposed the adoption of ablation
techniques to explain how different neural network configurations perform in
the presence of diverse hiding countermeasures [42]. While these results are very
interesting, we note they cannot explain the processing of masks. Furthermore,
the approach is rather involved and gives results that are (potentially) diffi-
cult to interpret. Yap et al. used the Truth Table Deep Convolutional Neural
Network approach to obtain the rules and decisions that the neural networks
learned when retrieving the secret key from the cryptographic primitive [43].
With this approach, the authors located the points of interest responsible for
neural network learning. Still, the authors mentioned the approach being infe-
rior to the feature map of gradient visualization if the exact position of POI
is needed. Moreover, the approach does not work with desynchronization/jitter
countermeasure. Finally, Zaid et al. designed a novel machine learning generative
model called Conditional Variational AutoEncoder [44]. With this approach, the
authors showed the weights of the neural networks to provide an equation of the
traces corresponding to the leakage.

The related works concentrate either on inputs (features) not allowing to
explain the internal working of neural networks, or they are constrained con-
cerning computational complexity and/or type of countermeasures that can be
analyzed. Consequently, despite the progress obtained in the last few years, a
technique to quantify the occurrence and propagation of high-order leakages in
hidden layers and how (if) the masking countermeasures are defeated are still
open questions.

8

4 Explainability Methodology for Profiling SCA -
ExDL-SCA

In this section, we describe our novel explainability methodology. The process
allows us to quantify how much information each intermediate network repre-
sentation obtains about input features present in training measurements. As we
apply our explainability methodology to the AES masked implementation, fea-
tures in input measurements are given by different secret shares (i.e., mask and
masked S-Box output bytes).

The proposed solution works by adding extra calculations during the deep
neural network training. The model is trained with profiling traces Xp labeled
in a black-box way with Yp. At the end of each training epoch, we predict the
model with both profiling and attack traces Xp and Xa, respectively. By doing
so, the output of each hidden layer l, given by T , is saved as encoded versions
of profiling and attack sets, i.e., X l

p and X l
a, respectively. The shapes of X l

p and

X l
a depend on the output layer dimensions. X l

p and X l
a are activation outputs

from a hidden layer l when the model predicts with profiling and attack sets,
respectively.

4.1 Relevant and Irrelevant Features

Information bottleneck theory is implemented by deep neural networks as hidden
layer representations provide compressed information contained in input data.
Real-world data, such as side-channel measurements, contain information (i.e.,
features) that can be defined as relevant or irrelevant to the classification. If the
information bottleneck principle is aligned with the learned deep neural network
function F (X ,L, θ), there will be at least one hidden layer that can compress
irrelevant features while preserving (or learning) the relevant ones.

In our case, the profiling function F (X ,L, θ) learns from side-channel mea-
surements X that contain several features. When this function needs to learn
high-order leakages, the learned leakage function L needs to detect, learn, and
combine at least two features from X representing the two secret shares. Nor-
mally, the measured side-channel interval includes leakages representing the pro-
cessing of several intermediate data from a cryptographic algorithm plus noise.
This way, it is expected that an efficient model F (X ,L, θ) is the one that learns
or preserves as much information as possible about the two secret shares to be
combined while compresses as much as possible the rest of the information.

Here, input (relevant or irrelevant) features from X are defined by a set of
labels Yf that represents such features. To simplify, a input feature is always
represented by an intermediate byte being processed by the cryptographic algo-
rithm (e.g., a mask or a masked S-box output byte), which the leakages of this
intermediate byte are included in the attacked side-channel interval. Because we
only consider first-order masked AES implementation in our experiments, Yf
will always refer to three possible features: the secret j-th mask, mj , the j-th
masked S-box output byte, S-box(dj⊕kj)⊕mj , and the j-th S-box output byte
without masking, S-box(dj ⊕ kj).

9

Fig. 2: Quantifying feature information I in a hidden layer representation T with
a function q(.), where Yf is a label set representing an input feature.

4.2 Quantitative Measures of Side-channel Leakages in Hidden
Layer Representations

When training a deep neural network as a profiling model against masked im-
plementations, one expects a model that can automatically learn and combine
high-order leakages from input traces. If the attacked side-channel trace inter-
val includes the processing of several intermediate bytes from a cryptographic
implementation, including the masks, each of these bytes can be considered
as input features. An intermediate network representation that is given by the
output activations of a certain hidden layer should be able to compress irrele-
vant features while preserving information about relevant ones. The irrelevant
features are assumed to be noise by the neural network and, therefore, should
not be propagated to the next layers. The relevant features, in this case, would
be the intermediate bytes representing the masks and masked target operation
(e.g., masked S-box output byte in the first encryption round), which should be
combined by some intermediate network representation as well.

To understand where (e.g., in which layer) and when (e.g., in which training
epoch) the model implements feature compression and feature learning, we need
to define an information metric I. Such an information metric must be able to
efficiently quantify, through a function q(.), how much information a hidden layer
representation T has about a certain feature Yf , i.e., I(T,Yf). This process is
illustrated in Figure 2.

Following, we describe possible ways of quantifying information in a hidden
layer representation and discuss the main drawbacks and advantages of each
method.

Mutual Information (MI) Estimation The most obvious way to measure
how much information a hidden network layer compresses (and preserves) from
X would be to compute the mutual information between X and T , I(X ;T),
as proposed by [35]. The main problem is that directly applying MI estimation
to compute I(X ;T) requires computing mutual information between two high
dimensional data X (side-channel traces) and T (layer representation of T). This
way, an accurate estimation of MI requires exponentially more data, especially
for histogram-based mutual estimation, as will be explained next. Since mutual

10

information is symmetric, H(X)−H(X|T) = H(T)−H(T |X), I(X ;T) can be
computed according to:

I(X ;T) = H(T)−H(T |X) = H(T)−
np∑
i=1

p(xi)

np∑
j=1

p(tj |xi) log2 p(tj |xi). (10)

As discussed in [34], the histogram-based estimation of mutual information
requires a correct selection of the number of bins. When the number of bins is
too large to keep the precision of T , every input xi yields a different activation
pattern tj in each hidden layer. In other words, due to the high dimensionality
of X and T , it is often impossible to have two input traces xi that generate two
identical intermediate network representations ti. This will result in H(T |X) = 0
because the conditional probabilities p(tj |xi) become 1 for all xi and all tj
and, consequently, I(X ;T) = H(T). This result would wrongly indicate the
compression of input X during training, as we would only be computing the
entropy of T . A possible solution to obtain H(T |X) > 0 is to select a smaller
number of bins. Nevertheless, this would add too much noise to the mutual
information calculation, also leading to wrong estimations (e.g., see Appendix
A in [28]). Similarly, computing mutual information between a high-dimensional
T and an one-dimensional feature Yf , I(T ;Yf), could often result in I(T ;Yf) =
H(Yf), which is equivalent to obtaining the entropy of Yf . Therefore, measuring
mutual information I(a, b) when either a or b is high-dimensional data is ill-posed
when estimating the amount of information that T has about X or Yf .

Mutual Information Neural Estimation (MINE) In [1], the authors pro-
posed a neural estimation of mutual information that consists in a neural network
having two inputs and a single output neuron. The mutual information is com-
puted thanks to a loss function that provides a neural information value in the
output. Having a hidden layer representation of T , one could quantify the mutual
information between T and a secret share Yf , I(T,Yf) by implementing MINE.
The process sounds intuitive. However, it provides three main disadvantages for
our explainability solution: (1) using MINE to quantify I(T,Yf) implies find-
ing neural network hyperparameters for each different model to explain (MINE
neural network could also suffer from overfitting issues), (2) the convergence of
MINE could require an excessive number of training epochs that could render
our explainability process very time-consuming, and (3) the MINE structure is
designed to receive two inputs X and Y to estimate the mutual information be-
tween these two inputs only, which means that computing mutual information
between X and multiple input features in a single training is not possible, which
implies an even more complex analysis.

Moreover, we implemented experiments with MINE, and, in various cases,
we verified the exploding gradient problem often happens.7 This could be solved

7 When large error gradients accumulate and result in very large updates to neural
network model weights during training.

11

Fig. 3: Training and predicting classifier M l
s after obtaining encoded representa-

tions X l
p and X l

a from the first hidden layer.

with regularization, gradient clipping, or by carefully adjusting the MINE net-
work hyperparameters. The authors of [36] also observed these limitations and
proposed to add a clipping function to the MINE loss function estimator. Never-
theless, this solution adds new hyperparameters to be selected, which increases
the complexity of MINE as an estimator for information on hidden network
representations.

Perceived Information (PI) Estimation [5] We propose an alternative so-
lution to measure the amount of information a hidden layer learns from input
data. In our method, we are interested in estimating the amount of information
from secret shares that can be extracted by each hidden layer. Thus, by taking
the intermediate representations T = X l

p (obtained when predicting the network
with training data Xp) from all hidden layers, at the end of each training epoch,
we train a separate classifier q(.) with X l

p in each layer l to measure how much
information T has about an input feature Yf . The classifier q(.) can be any
supervised classification method. In our case, we use a shallow MLP classifier
with an output softmax layer. This shallow MLP classifier is also a multi-output
classifier, which allows us to estimate the information from several input features
in a hidden layer representation T with a single training of q(.). After training
this shallow MLP classifier with X l

p, we predict it with encoded attack traces

X l
a to obtain class probabilities associated with each selected input feature. Fig-

ure 3 illustrates this process. The shallow MLP classifier provided output class
probabilities p(yf |xli) for each input feature Yf .

After obtaining the conditional class probabilities p(yf |xli) from q(.), per-
ceived information becomes a convenient approach as it measures the amount
of information learned by a profiling model concerning specific leakage model
resulting in a set of labels Yf). Initially, we need to estimate the conditional

12

entropy H(Yf |X l
p), which is given by:

H(X l
p|Yf) =

|Yf |∑
z=1

p(yf = z)

np∑
i=1

p(xli|yf = z) log2 p(yf = z|xli), (11)

where xli is the i-th observation of X l
p and yf is one element of Yf . First, we

replace X l
p by attack (or test) encoded representations X l

a in Eq. (11):

H(X l
a|Yf) =

|Yf |∑
z=1

p(yf = z)

na∑
i=1

p(xli|yf = z) log2 p(yf = z|xli), (12)

where yf are labels obtained from intermediate values processed in attack traces
Xa. Following the approach proposed in [5], we can replace the true probabil-

ity mass function (PMF), p(yf |xli), by p̂(yf |x
l,yf
i) and compute the perceived

information by sampling according to (see Eq. (11) from [5]):

P̂ I(X l
a|Yf) = H(Yf) +

|Yf |∑
z=1

p(yf = z)
1

nyf=z

na∑
i=1

log2 p̂(yf |x
l,yf=z

i), (13)

where p̂(yf |x
l,yf
a)) gives the probability that an encoded attack trace x

l,yf=z

i is
labeled with class yf when it is labeled with this same class.8 The term nyf=z

gives the number of attack traces that are labeled with class yf = z.
The metric from Eq. (13) becomes an indirect estimation of how much infor-

mation the encoded hidden layer representation T = X l
p (obtained by predicting

the neural network with profiling set Xp) contains from a specific byte being
manipulated by a cryptographic algorithm, such as a secret share in masked im-
plementations.

Obviously, the quantity P̂ I(X l
a|Yf) depends on a properly built classifier q(.),

which leads to the more precise estimation of perceived information values from
Eq. (13). This is analyzed in Section 5.2.

The magnitude of input feature information (such as secret shares) is ex-
pected to be higher in the first hidden layers, where the relation PI(T l,Yf) ≥
PI(T l+1,Yf) for two subsequent layers l and l+ 1 is always preserved. However,
we experimentally verified that the relation PI(T l,Yf) ≥ PI(T l+1,Yf) does not
always hold unless the bottleneck layer is the first layer. The reasons for that
are intuitive: (1) in the hidden layers closer to input, the intermediate represen-
tation T is closer to input data, and, for this reason, it is expected to contain
more information about noise and irrelevant features. In a deeper layer, where a
bottleneck layer is possibly successfully implemented by the network, the inter-
mediate representation T compresses more aggressively irrelevant features while

8 Here, we assume a known-key attack setting analysis. For an evaluator, the attack set
is always the validation set, and the corresponding validation key bytes are always
known.

13

preserving the relevant ones. When the classifier q(.) measures the information
present in this bottleneck layer, it can quantify more precisely the information
about relevant features, possibly leading to higher perceived information quan-
tities in these layers concerning previous layers.

4.3 ExDL-SCA Steps

After explaining how we estimate perceived information between input features
represented by labels and intermediate network representations T from a hidden
layer l, we can define the complete structure of our explainability methodology.
Figure 4 provides the four steps that form our methodology:

1. In Step 1 , we define a baseline neural network F to be trained for E
epochs with profiling traces Xp that are labeled as Y (without the knowledge
of secret mask shares). Our experimental results in Sections 5 and 6 are
obtained from software AES 128 implementations and, therefore, (black-
box) labels Y are generated from S-box output bytes in the first encryption
round, i.e., S-box(dj ⊕ kj).

2. In Step 2 , we extract the intermediate representations T from hidden lay-
ers. Thus, at the end of training epoch e, the trained model F predicts both
profiling (Xp) and attack (Xa) sets. For each hidden layer l, we obtain output
activations that are taken as encoded versions of input profiling and attack
sets, i.e., X l

p and X l
a, respectively.

3. In Step 3 , we take encoded profiling sets X l
p from all hidden layers l and

build a shallow MLP classifier, denoted as q(.), which is trained with X l
p for

Eq epochs. There are no pre-processing steps such as dimensionality reduc-
tion, which could be computationally intensive in the case a large output
dimension from a hidden layer produces a very large encoded set X l

p. There-
fore, using machine learning algorithms (e.g., Support Vector Machine or
Decision Trees) or even Gaussian Template Attacks to implement the q(.)
classifier would require feature selection and/or dimensionality reduction,
which could render the process impractical due to significant overheads. In-
stead of training q(.) multiple times (one time for each different input feature
Yf), one could implement a multi-label classifier to speed up the process.

4. Finally, in Step 4 , the shallow MLP classifier q(.) predicts encoded attack

set X l
a, producing output class probabilities Ŷ l

f = p(yf |xli) for each differ-
ent input feature Yf (see Figure 3). These quantities are considered for a
perceived information calculation in Eq. (13).
This way, we can estimate the amount of information that an encoded repre-

sentation X l
p, in a hidden layer l, can have about input information Yf for every

training epoch in a black-box model. Note that Yf can also be the true labels
Y, which allows us also to measure the moment when the network F combines
two secret shares and becomes capable of implementing a second-order attack.
Algorithm 1 (Appendix A) provides the steps necessary to implement our ex-
plainability methodology. The method LayerPredict(LF ,X) returns the output
activations from a layer of index l when this layer predicts some input X .

14

Fig. 4: Methodology for mask share fitting explainability. Here, q represents a
shallow MLP with multi-label classification.

4.4 On the Granularity of the Explainability Approach

One could ask why developing an explainability approach that considers the
granularity level of a neural network layer. For instance, previous approaches
even considered specific neurons (filters in a feature map). Our analysis showed
that multiple neurons (filters in a feature map) are responsible for the successful
deep learning-based SCA. Thus, connecting specific neurons (filters in a feature
map) to the outcome of the analysis is difficult due to the ability of neural
networks to find (many) good functions representing the leakage.
Looking at the level of multiple layers would allow the analysis. Still, it would
not provide information about what happens in every layer, which is especially
relevant if we consider that state-of-the-art neural networks in SCA contain only
a few layers [29].

5 Compression in Deep Neural Networks

The information bottleneck theory suggests that one of the main aspects of learn-
ing from noisy datasets is the compression of X to an intermediate representation
during training to eliminate the noise and preserve relevant information about
Y. For the reasons explained in Section 4.2, measuring the level of compression
with mutual information I(X ;T) is difficult and, therefore, the solution adopted
in our work relies on quantifying perceived information of specific input features
in hidden layer representations.

15

5.1 Compression of Irrelevant (Key Byte) Features in First-order
Masked Datasets

We use our explainability methodology to show how deep neural network lay-
ers compress the information about irrelevant features present in training set
Xp while preserving relevant features. When targeting a single key byte in a
first-order masked AES dataset, relevant features become the two secret shares
associated with the target key byte. In contrast, irrelevant features are all the
information corresponding to other key bytes and noise components. We provide
results for a noise-free simulated dataset, in which all features are well defined so
that every sample represents a feature (with zero noise) and there are no samples
that would represent noise. Section 6 provides experiments on real side-channel
measurements from the first-order Boolean masked AES implementations.

Our simulated traces contain leakages from S-box outputs in the first AES
encryption round. Each trace xi contains 32 samples, and each of these samples
is generated according to the following equations:

xi[2j] = S-box(dj ⊕ kj)⊕ mj

xi[2j + 1] = mj ,
(14)

where j ∈ [0, 15] denotes the j-th key byte index and mj is the mask share
associated with the j-th key byte.

In the first experiment, we define a 4-layer MLP with the following layer-
wise structure (values were randomly chosen, as basically any hyperparameters
combination provided optimal results, which does not justify implementing a
tuning process):

X → [FC(50)→ E]4 → S(256)→ Ŷ.

The learning rate and batch size are set to 0.001 and 400, respectively. This
MLP is trained with the Adam optimizer for 100 epochs. The simulated profiling
and attack traces Xp and Xa are labeled with leakages from the second key byte
j = 2, i.e., Y = S-box(d2 ⊕ k2).

In Figure 5, we plot the perceived information values obtained for all hidden
layers. The perceived information values are computed concerning all 32 input
features (16 masks plus 16 masked S-box output bytes) contained in simulated
traces. With respect to the shallow MLP classifier q to compute perceived infor-
mation from hidden layers, we always consider a 1-layer MLP with 50 neurons,
where the activation function is elu, the learning rate is 0.001, the batch size is
200, and the optimizer is Adam. This classifier q is always trained for 10 epochs.

Because Xp is labeled with Y = S-box(d2 ⊕ k2), we expect that the network
layers will fit the relevant features corresponding to key byte 2, i.e., m2 and
S-box(d2 ⊕ k2) ⊕ m2, and compress the rest of the features. In Figure 5, we see
that the first layer still contains information from several irrelevant features from
other key bytes (other than key byte 2) in the first training epochs. When we
move our analysis to the second layer, we recognize a bottleneck implemented
by the MLP, in which irrelevant features start to be aggressively compressed. In
contrast, the relevant ones are kept with relatively more information (i.e., higher

16

Fig. 5: The compression of irrelevant features with a 4-layer MLP. Blue and
orange lines indicate the perceived information from relevant features, which are
the mask m2 and the masked S-Box output S-box(k2 ⊕ p2) ⊕ m2, related to the
key byte 2. Irrelevant features associated with the rest of the key bytes are given
as gray lines.

perceived information magnitude). Then, when we look at the third layer, we see
a bottleneck layer compressing all irrelevant features (all of them show negative
perceived information) while trying to maximize the relevant ones to improve the
prediction of Y. Indeed, in the third layer, the perceived information for input
features m2 and S-box(d2⊕k2)⊕m2 results in the higher values when we compare
with the perceived information values obtained for these same input features in
previous and subsequent layers. Finally, in the fourth layer, the network already
has enough information from relevant features to provide a good generalization
to Y, which means that the focus of this layer is not maximizing second-order
leakages, but actually optimizing the recombination of high-order leakages into
Y. As a result, the third layer is the one containing more information about input
relevant features while the fourth layer is the one containing more information
about target output labels. This is a clear example of an information bottleneck
being implemented by a deep neural network, and applying our explainability
methodology allows us to explain what happens in this model during training.

5.2 Defining and Training the Classifier q

In the previous section, we described the main reasons to use perceived in-
formation as the metric to quantify information from an input feature Yf in
an intermediate network representation T . This requires the definition and the
training of a classifier q to obtain class probabilities necessary to compute per-
ceived information in Eq. (13). Next, we provide performance analysis on q.

In this work, the classifier q is implemented with a shallow MLP network. The
output layer is given by a softmax layer as we want to obtain class probabilities
for perceived information calculation. This classifier requires the definition of
several additional hyperparameters to ensure we obtain a consistent perceived
information estimation. Although it is common knowledge that hyperparameter
tuning is usually a difficult problem in profiled SCA, here, we demonstrate that

17

Fig. 6: Variation of measured perceived information for different hyperparameter
combinations for classifier q(T,Yf).

designing this shallow MLP classifier for perceived information estimation is not
difficult, as performing hyperparameter tuning does not provide a wide variety of
results. Figure 6 shows an example when we compute perceived information with
32 different hyperparameter tuning combinations. We applied this analysis to the
4-layer MLP considered in the previous section with a simulated AES dataset.
This grid search takes the following hyperparameter values and generates all
possible combinations:

– Layers: [1, 2]
– Neurons: [50, 100]
– Batch size: [200, 400]
– Epochs: [10, 20]
– Activation Function: [elu, selu]

The learning rate is set to 0.001, and the optimizer is always Adam. In this
case, we only compute perceived information for the two relevant input features
m2 (blue line) and S-box(d2⊕k2)⊕m2 (orange line) plus the perceived information
of the target label Y = S-box(d2 ⊕ k2) (green line). The main line indicates
the average perceived information for 32 hyperparameter combinations, and the
shadow interval indicates the variation we obtain with these same combinations.
Note how the variation, although more significant in the first layer, is much
less significant in the last layers, which means that varying the hyperparameters
for the shallow MLP implementing q does not provide a significant impact on
results.

6 Experimental Results

In this section, we provide experimental results on various CNN and MLP con-
figurations. For the shallow MLP classifier q, we always consider a 1-layer MLP
with 100 neurons, where the activation function is elu, the learning rate is 0.001,
the batch size is 400, and the optimizer is Adam. This classifier q is always trained
for 20 epochs. Note that in this paper, we consider the Identity leakage model
only.

18

6.1 Datasets

For our experimental results, we select, among several publicly available datasets,
two masked AES datasets. We decided to consider the trace sets from the AS-
CAD and DPAv4 databases, whose keys in profiling and attack phases are differ-
ent, and mask shares are also provided in the metadata. Additionally, we simulate
the effect of a hiding countermeasure (desynchronization) on those datasets. For
both considered datasets, we target trace intervals with second-order leakages of
multiple key bytes to make sure that we also include several other intermediate
bytes representing irrelevant features during training in different hidden layers.

ASCADr This dataset contains 300 000 traces collected from a software implemen-
tation of AES 128,9 where the first 200 000 measurements have random keys and
are considered for profiling while 100 000 measurements contain a fixed key and,
from this second set, we consider 5 000 for the attack phase. Each measurement
contains 250 000 samples. This dataset was collected from an AES 128 imple-
mentation featuring a first-order Boolean masking countermeasure. In previous
works, a trimmed version of this dataset containing measurements with 1 400
samples is commonly adopted, which contains second-order leakages related to
the third key byte only. For our experiments, we start from raw measurements
containing 250 000 samples and select the interval from sample 70 000 until sam-
ple 90 000. Then, we apply a window resampling with a resampling window of 20
samples and a step of 10 samples, resulting in traces with 2 000 samples. These
trimmed and resampled measurements contain second-order leakages related to
the third key byte in the first encryption round but also include leakages from
other key bytes.

DPAv4.2 The DPAv4.2 dataset contains side-channel measurements obtained
from a masked AES 128 software implementation.10 The countermeasure is based
on RSM (Rotation S-box Masking). The original DPAv4.2 contains 80 000 traces
subdivided into 16 groups of 5 000 traces. Each group is defined with a separate
and fixed key. Each measurement has 1 704 046 samples. In this work, we conduct
our analyses on an interval resulting from the concatenation of two intervals from
the original dataset. The main idea is to combine two trace intervals containing
second-order leakages from several key bytes, including the attacked one. The
second-order leakages include masked S-box output bytes and the corresponding
masks. The first interval ranges from sample 265 000 until sample 280 000, while
the second interval starts at sample 305 000 and finishes at sample 315 000. Thus,
concatenating these two intervals results in measurements with 25 000 samples.
We apply a resampling process with a resampling window of 10 and step of 5 to
the concatenated intervals, resulting in 5 000 samples per measurement.

9 https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_

variable_key
10 http://www.dpacontest.org/v4/42_doc.php

19

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
http://www.dpacontest.org/v4/42_doc.php

6.2 Reading the Plots

Here, the main goal is to demonstrate how different hidden layers fit, compress,
or generalize concerning different features. Plots provided in this section show
the evolution of perceived information (Eq. (13)) during training for different
features given by specific label sets. For both evaluated datasets (ASCADr and
DPAv4.2), we deploy profiling and attack phases over trace intervals that include
leakages from different key bytes. For ASCADr, the evaluated interval includes
second-order leakages from key bytes 2, 4, 5, and 11, in which the target is
key byte 2. For DPAv4.2, the target interval includes second-order leakages from
key bytes 0, 4, 5, 9, and 12, and we target key byte 0. The main idea is to
illustrate the compression of irrelevant features by bottleneck layers. Thus, in
all plots, we provide perceived information results for masks shares (given by mj
in the plot’s legend, where j is the key byte index) and masked S-Box output
byte (given by S-box(kj ⊕ dj)⊕ mj in plot’s legend) for all these key bytes. The
perceived information values for target key bytes (key byte 2 for ASCADr and
key byte 0 for DPAv4.2) are shown with colored lines (blue color for mj and
orange color for S-box(kj⊕dj)⊕mj) while for the rest of key bytes, we show the
results with gray lines. The perceived information for the actual black-box attack
labels Y = S-box(kj ⊕ dj) is represented by a green line plot. Therefore, blue
and orange lines indicate relevant features, while gray lines indicate irrelevant
features. Every subfigure shows results for a specific hidden layer, and the x-axis
indicates the training epochs of the main F model.

6.3 ASCADr

Multilayer Perceptron We select various MLP architectures that implement
successful key recovery on ASCADr from a random search (see Appendix 1 for
details). We consider a profiling MLP model successful when it reaches guessing
entropy equal to 0 for the correct key k2 after processing up to 5 000 attack traces.
Our hyperparameter search process allows us to find successful models with a
different number of hidden layers. Nevertheless, by applying our explainability
methodology, we observe common behavior for these models regardless of the
number of hidden layers.

Figure 7 shows an example of a six-layer MLP with the following layer-wise
structure:

X → [FC(100)→ E]6 → S(256)→ Ŷ. (15)

For this model, the learning rate is set to 5e-4 and weights are initialized
with random uniform method. The attacked interval includes the second-order
leakages from four different key bytes, including the target one. We immediately
verify that the first hidden layer still contains information from irrelevant fea-
tures represented by key bytes different from the target one. From the second
layer, we see that the irrelevant information is highly compressed, and the outer
layer generalizes better to Y, as shown by the green line representing perceived
information with respect to Y = S-box(kj ⊕ dj). Another interesting fact from

20

Fig. 7: Perceived information values from a six-layer MLP trained with the
ASCADr dataset. Blue and orange lines represent the secret shares Yf = m2
(the mask) and Yf = S-Box(d2 ⊕ k2) ⊕ m2 (the masked S-Box output byte),
respectively. Green line represents the black-box labels Y = S-Box(d2 ⊕ k2).

this specific model is that outer layers achieve higher perceived information val-
ues of P̂ I(X l

a;Y) during training even before achieving higher values of perceived
information with respect to secret shares. This happens because previous layers
already implemented unmasking and transmitted this information to the next
layer.

1. Where. Our empirical results indicate that compression of X mostly hap-
pens in the first hidden layer in any MLP configuration. Generalization to
Y is stronger in hidden layers closer to the output layer, and this conclu-
sion comes from higher P̂ I(X l

a;Y) values obtained for the outer layer in
comparison to hidden layers closer to the input layer.

2. What. We verified that to generalize to Y, the first hidden layer compresses
noise and irrelevant features and transmits information from relevant secret
shares to the subsequent hidden layers. This also suggests that hidden layers
perform unmasking by combining the two secret shares.

3. Why. Our analyses indicate that MLP follows IB theory as the bottleneck
is usually implemented already by the first hidden layer. In essence, all in-
termediate network representations follow the IB theory, but the bottleneck
(compression of irrelevant features) is usually more evident in the first layers.

21

Convolutional Neural Network We again deployed a random search to se-
lect various CNN architectures that implement successful key recovery on the
ASCADr dataset. Details about our CNN random search process can be found
in Appendix B (Table 2). The number of convolution layers in the search space
ranges from one to four, and CNN models may contain one or two fully-connected
layers.

Figure 8 shows the results obtained from a CNN with four convolution layers
and two fully-connected layers with the following structure:

X → [C(fi, 40, 15)→ SE → BN → AP (2, 2)]4 → [FC(20)→ SE]2 → S(256)→ Ŷ,
(16)

where fi is set to 12, 24, 36, and 48 for the four convolution layers. The
learning rate for this model is 1e-4, and trainable weights are initialized with
glorot normal method. The first layer, conv 1, fits information from relevant
and irrelevant features, as perceived information values are positive. For this
layer, after epoch 20, compression starts to happen for all features. Layer conv 2

shows the fitting of input features, including irrelevant ones, and layer conv 3

shows compression of irrelevant features while preserving and learning relevant
ones. Note how conv 3 already generalized to Y . The subsequent layers (conv 4,
fc 1, and fc 2) also show compression of irrelevant leakages from key bytes other

than the target one. Prediction to Y (given by positive values of P̂ I(X l
a;Y)),

is already seen in conv 4, and in fc 1 and fc 2 layers, this generalization to Y
is even stronger. What we see in this figure is a general behavior observed for
various successful CNN models on the ASCADr dataset.

1. Where. We verify that the first convolution layer is usually unable to im-
plement compression of irrelevant features to keep the relevant ones (we ob-
served that when the model achieves good levels of generalization, the first
convolution layer tends to compress the input information, including the fea-
tures related to the target key byte). The second convolution layer usually
implements fitting and compression phases, which is characterized by the
increase of perceived information values obtained from features (i.e., secret
shares) related to the target key byte. At the same time, there are reduced
perceived information values for features related to the remaining key bytes
that the model is not supposed to learn. When CNN has more than two
convolution layers, the other convolution layers implement the bottleneck
more efficiently. Fully-connected layers provide higher P̂ I(X l

a;Y), indicating
generalization to Y.

2. What. The bottleneck is implemented at least in the second hidden layer.
From this moment, the network starts to generate an intermediate represen-
tation that mostly preserves the information from secret shares related to
the target key byte.

3. Why. Fitting and compression happen in CNN models because this type
of architecture also follows the IB principle. Hidden layers implement the
bottleneck, which provides conditions for the model to generalize as relevant
features are fit by the layers.

22

Fig. 8: Perceived information values from CNN layers (Eq. (16)) trained with
the ASCADr dataset. Blue and orange lines represent the secret shares Yf = m2
(the mask) and Yf = S-Box(d2 ⊕ k2) ⊕ m2 (the masked S-Box output byte),
respectively. Green line represents the black-box labels Y = S-Box(d2 ⊕ k2).

Convolutional Neural Networks with Desynchronized Dataset In this
section, we evaluate CNNs with our explainability methodology when the model
is trained with a desynchronized ASCADr dataset. To produce misalignment,
traces are randomly shifted by up to 50 samples (see [41] for details on how
to simulate the desynchronization effect). To circumvent the desynchronization
effect [7], the CNN is trained with data augmentation that implements random
shifts (again up to 50 samples). For each epoch, we generate 200 000 augmented
profiling traces (double the number of the profiling traces). We apply our hyper-
parameter search until we generate at least 100 successful CNN models able to
reduce the guessing entropy of the correct key to 0. In Figure 9, we provide an
example result from a CNN model with the following layer-wise structure:

X → [C(fi, 30, 15)→ E → BN → AP (2, 2)]3 → [FC(200)→ E]2 → S(256)→ Ŷ,
(17)

where filters fi are set to 16, 32, and 48 for the three convolution layers. The
learning rate is set to 1e-4, and weights are initialized with random uniform

method.

In Figure 9, we see how the first two convolution layers conv 1 and conv 2

process relevant and irrelevant features. These layers mostly fit all features, with-

23

Fig. 9: Perceived information values from a CNN trained with the desynchronized
ASCADr dataset.

out compression. Layers conv 3, fc 1, and fc 2 start to implement the compres-
sion of irrelevant features related to key bytes different from k2, more specifically
after epoch 50. Looking at layers conv 3, fc 1, and fc 2, we conclude that these
three layers implement bottlenecks, but the perceived information values suggest
that this model should be trained for more epochs, as we see a growing trend
for relevant features and generalization (given by P̂ I(X l

a;Y)) while perceived
information values related to irrelevant features are continuously decreasing.

1. Where. Bottleneck layers are usually implemented by layers closer to the
output layer. When the CNN contains more than two convolution layers, we
observed that the bottleneck happens from the third convolution layer.

2. What. The bottleneck is implemented less efficiently when the network is
trained on a more noisy dataset. Irrelevant features (and probably other
sources of noise) are preserved until the last hidden layer with some level of
compression. Relevant features, which are necessary to defeat masking, are
usually (but not always) preserved more intensively, allowing the model to
implement a second-order attack successfully.

24

Fig. 10: Perceived information values from a MLP trained with the DPAv4.2

dataset.

3. Why. Our results suggest that the first convolution layers work on bypass-
ing desynchronization effects, becoming less able to separate relevant from
irrelevant features.

6.4 DPAv4.2

Multilayer Perceptron We apply the same hyperparameter search process
from Appendix B (Table 1) for the DPAv4.2 dataset to find successful MLP
models. Again, for these successful models, we observe a similar trend when ap-
plying our explainability methodology. Figure 10 shows results for the following
layer-wise MLP structure:

X → [FC(20)→ E]3 → S(256)→ Ŷ. (18)

Here, the learning rate is set to 5e-4, and weights are initialized with glorot normal

method. We apply l1 regularization to all hidden layers with a regularization
value of l1 = 1e-4. This figure shows a common trend observed from multi-
ple successful MLP models we found with our hyperparameter search process.
The first two hidden layers (when models contain more than two hidden lay-
ers, at least) already show the capacity to differentiate between relevant and
irrelevant features, with the compression of irrelevant ones. The perceived infor-
mation values with respect to m0 are significantly higher than those with respect
to S-box(k0⊕d0)⊕m0 in all hidden layers, which is a consequence of higher SNR
values for the mask inside the attacked interval. For the last hidden layer, fc 3,
perceived information values with respect to m0 become negative after epoch 40,
which is also reflected in the values of P̂ I(X l

a;Y) that indicate prediction to Y
and overfitting.
1. Where. MLP models for DPAv4.2 implement the bottleneck already in the

first fully-connected layers. As also observed for ASCADr dataset, the first
hidden layer already implements generalization as soon as the compression
phase happens.

25

2. What. The bottleneck, implemented already in the first hidden layers, sep-
arates relevant from irrelevant features and shows generalization ability. Be-
cause DPAv4.2 is a smaller dataset in terms of profiling traces, overparam-
eterized MLP models tend to overfit the relevant features, resulting in a
decrease of P̂ I(X l

a;Y) values in outer layers.
3. Why. With MLPs, the first hidden layer is already able to implement the

bottleneck and the generalization to Y, suggesting that a single hidden layer
would be enough to implement the profiling model successfully. Our experi-
ments required the usage of l1 or l2 regularization to find better-performing
models, indicating that overparameterized MLPs are problematic for this
dataset.

Convolutional Neural Network We find successful CNN models for DPAv4.2
by applying the hyperparameter search process from Appendix B (Table 2). We
identified several successful CNN models that reduce the guessing entropy of the
target key byte to 0 with up to 5 000 attack traces. Figure 11 shows an example
result for the CNN with the following structure:

X → [C(fi, 40, 10)→ E → BN → AP (2, 2)]4 → [FC(100)→ E]2 → S(256)→ Ŷ,
(19)

where filters fi are set to 4, 8, 12, and 16 for the four convolution layers. For
this model, the learning rate is set to 1e-3, and weights are initialized with
random uniform method. Similar to what we observed for ASCADr CNN case, for
DPAv4.2, the first convolution layers fit relevant and irrelevant features without
clear compression. From the convolution layer conv 3, we verify the occurrence
of the bottleneck where relevant features are learned while irrelevant ones are
compressed, as shown in Figure 11. The subsequent layers conv 4, fc 1, and
fc 2 show significant levels of generalization to Y, as we confirm by observing
higher values of P̂ I(X l

a;Y) (green lines). This suggests that convolution layers
also implement classification, as this task is usually attributed to fully-connected
layers in the DL-SCA literature [8].

1. Where. We commonly observed that the first convolution layer shows the
fitting of input features while compression happens for relevant and irrele-
vant ones. The bottleneck layer usually happens from the second or third
convolution layer. Generalization to Y happens with more intensity in hidden
layers closer to the output layer.

2. What. Compression of irrelevant features by a bottleneck layer tends to
happen as soon as the first convolution layer starts to compress all features,
including relevant ones. Note that here, we are estimating compression from
the full feature map obtained from each convolution layer. To verify if some
of the features are not compressed in the first layer, compression should
be estimated per filter in a feature map. In terms of generalization to Y,
convolution layers closer to the fully-connected layer show positive perceived
information values for P̂ I(X l

a;Y) as they received already relevant features
from the previous layers.

26

Fig. 11: Perceived information values from a CNN trained with the DPAv4.2

dataset.

3. Why. As our selected CNN models can successfully implement second-order
attacks, we verify that hidden layers can automatically locate relevant fea-
tures from side-channel measurements by differentiating them from irrele-
vant ones and noise. This suggests that the information bottleneck principle
is happening in these models.

Convolutional Neural Networks with Desynchronized Dataset We ap-
ply again the random hyperparameter search process from Table 2 to the desyn-
chronized DPAv4.2 dataset. We apply random shifts to measurements with up
to 50 samples and the resulting desynchronized dataset has a very low SNR.
Training is performed with data augmentation, in which we generate 70 000
augmented traces per epoch. Again, we use double the number of the profiling
traces in data augmentation. Data augmentation is based on random shifts for
up to 50 samples.

Figure 12 shows explainability results obtained from a CNN with the fol-
lowing layer-wise structure, which is selected among successful CNN models
obtained with the random search:

X → [C(fi, 20, 15)→ RE → BN → AP (2, 2)]2 → [FC(20)→ RE]1 → S(256)→ Ŷ.
(20)

27

Fig. 12: Perceived information values from a CNN trained with the desynchro-
nized DPAv4.2 dataset.

Here, filters fi are set to 4 and 8 for the two convolution layers. Because the
resulting desynchronized dataset has very low SNR, compression and fitting
phases are not clearly highlighted in perceived information results. In fact, layer
fc 1 seems to implement the bottleneck as we can observe, from Figure 12, that
some irrelevant features are compressed while still not compressing all irrelevant
ones. For several models, although they result in successful key recovery with
up to 5 000 attack traces, perceived information values are negative, suggesting
a sub-optimal profiling model [4].

1. Where. Compression usually happens in hidden layers closer to the output
layer. This conclusion aligns well with the observations from [42], as there,
the authors mentioned that desynchronization makes the deeper layers more
involved in processing.

2. What. Due to desynchronization effects, the evaluated dataset results in
very low SNR. Therefore, we observed fewer bottleneck effects in hidden
layers, as some irrelevant features are still preserved in hidden layers.

3. Why. Although the evaluated CNNs can successfully implement a key re-
covery with less than 5 000 attack traces, noise levels are higher, making the
bottleneck less efficient.

7 Conclusions and Future Works

Masking countermeasures are powerful protections against profiling SCA, espe-
cially when higher levels of noise are present in side-channel measurements [4].
Recent research works have shown that deep learning techniques are effective
in defeating masking and hiding countermeasures (see Sections 1 and 3) and
in reducing their protective effects in side-channel traces [41]. Therefore, it is of
great interest for security engineers and evaluators to understand to what extent
the implemented protections are sufficient against different adversaries.

28

The proposed explainability methodology (ExDL-SCA) brings more clarity
to understanding the effect of masking countermeasures against different deep
learning-based profiling attacks. Inspired by the information bottleneck princi-
ple [37], and through the lens of perceived information [5], we provide a method
to visualize what every hidden network layer learns from high-order leakages
and which one of them effectively performs the unmasking operation when the
high-order leakages are recombined. We applied our methodology to real side-
channel measurements and verified how hidden layers successfully implement a
bottleneck to fit relevant features associated with high-order leakages from the
target key byte while compressing irrelevant ones. Furthermore, we answered the
main explainability questions in all experimental results scenarios.

We evaluated the mask share learnability of deep learning models when the
desynchronization countermeasures are implemented. Applying our explainabil-
ity methodology to CNNs trained with desynchronized datasets allows us to un-
derstand how convolution layers deal with this type of hiding countermeasure. In
particular, we verify how compression in convolution layers plays an important
role for the model to be able to generalize and bypass the countermeasures.

This research opens several new research directions for deep learning-based
SCA. In future works, we will investigate and quantify compression and general-
ization phases in profiling attacks. The main goal is to find the optimal trade-off
between these two phenomena in deep neural networks. Furthermore, we will
investigate how to tune specific neural network hyperparameters to achieve sat-
isfactory compression of noise and irrelevant features, leading to more efficient
profiling attacks against more noisy datasets. In particular, we will research a
new way to create the best possible bottleneck that can efficiently regularize
the model and discard noise by keeping the information from relevant features.
Finally, we will consider the explainability methodology to differentiate between
a deep learning model that fails to learn existing leakages (which could transmit
a false sense of security) from a deep learning model considered for a successful
security evaluation that fails against a protected implementation (which results
in a correct security estimation).

A Algorithm for the Mask Shares Explainability

Algorithm 1 provides the required steps to implement the explainability method-
ology presented in Section 4 when the masking scheme contains two secret shares.

B Random Hyperparameter Search

Tables 1 and 2 provide the ranges for random search for MLP and CNN ar-
chitectures, respectively. For each scenario (dataset and architecture), we ran
1 000 hyperparameter search attempts, which was enough to find at least fifty
successful models.

29

Algorithm 1 Steps for mask share fitting explainability.

1: procedure 2-Share Mask Explainability(model F , shallow MLP model q,
number of layers L in model F , number of epochs EF for model F , number of
epochs Eq for model q, profiling set Xp, attack set Xa, label set representing an
input feature {).

2: for e = 1 to Ef do
3: Fe ← TrainOneEpoch(F , Xp) . Step 1 in Figure 4
4: for l = 1 to L do
5: LF ← GetLayer(Fe, l) . Step 2 in Figure 4
6: Xl

p ← LayerPredict(LF , Xp) . Step 2 in Figure 4
7: Xl

a ← LayerPredict(LF , Xa) . Step 2 in Figure 4
8: ql ← Train(q, Eq, Xl

p, Yf) . Step 3 in Figure 4

9: Ŷ l
f ← Predict(ql, Xl

a) . Step 4 in Figure 4

10: P̂ I(Xl
a; Ŷ l

f) = PerceivedInformation(Xl
a, Ŷ l

f) . Step 4 in Figure 4
11: end for
12: end for
13: end procedure

Hyperparameter Options

Optimizer Adam

Dense Layers 2, 3, 4, 5, 6

Neurons 20, 40, 50, 100, 150, 200, 300, 400

Activation Function elu, selu, relu

Learning Rate
0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,

0.000025, 0.00001

Batch Size 400

Epochs 100

Weight Initialization
random uniform, glorot uniform, he uniform,
random normal, glorot normal, he normal

Regularization None, l1 or l2

l1 or l2
0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,

0.000025, 0.00001

Total Search Space 174 960

Table 1: Hyperparameter search options and ranges for MLPs.

References

1. Belghazi, M.I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Hjelm, R.D.,
Courville, A.C.: Mutual information neural estimation. In: Dy, J.G., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Pro-
ceedings of Machine Learning Research, vol. 80, pp. 530–539. PMLR (2018),
http://proceedings.mlr.press/v80/belghazi18a.html

2. Belle, V., Papantonis, I.: Principles and practice of explainable machine learning.
Frontiers in Big Data 4 (Jul 2021). https://doi.org/10.3389/fdata.2021.688969,
https://doi.org/10.3389/fdata.2021.688969

30

http://proceedings.mlr.press/v80/belghazi18a.html
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969

Hyperparameter Options

Optimizer Adam

Dense Layers 1, 2

Convolution Layers 1, 2, 3, 4

Neurons 20, 50, 100, 200

Filters 4, 8, 12, 16 (×) Conv. Layer Index

Kernel Size 2, 4, 6, 8, 10, 20, 30, 40

Strides 2, 3, 4, 5, 10, 15, 20

Pooling Size 2

Pooling Stride 2

Activation Function elu, selu, relu

Learning Rate
0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,

0.000025, 0.00001

Batch Size 400

Epochs 100

Weight Initialization
random uniform, glorot uniform, he uniform,
random normal, glorot normal, he normal

Regularization None

Total Search Space 903 168

Table 2: Hyperparameter search options and ranges for CNNs.

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptographic
Engineering 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

4. Bronchain, O., Durvaux, F., Masure, L., Standaert, F.: Efficient profiled side-
channel analysis of masked implementations, extended. IEEE Trans. Inf. Forensics
Secur. 17, 574–584 (2022). https://doi.org/10.1109/TIFS.2022.3144871, https:

//doi.org/10.1109/TIFS.2022.3144871

5. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.: Leakage
certification revisited: Bounding model errors in side-channel security evaluations.
In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 11692, pp. 713–737. Springer (2019). https://doi.org/10.1007/978-3-030-26948-
7 25, https://doi.org/10.1007/978-3-030-26948-7_25

6. Burkart, N., Huber, M.F.: A survey on the explainability of supervised ma-
chine learning. Journal of Artificial Intelligence Research 70, 245–317 (Jan
2021). https://doi.org/10.1613/jair.1.12228, https://doi.org/10.1613%2Fjair.

1.12228

7. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures - profiling attacks without pre-
processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10529, pp. 45–68. Springer (2017). https://doi.org/10.1007/978-3-319-66787-4 3,
https://doi.org/10.1007/978-3-319-66787-4_3

31

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1109/TIFS.2022.3144871
https://doi.org/10.1109/TIFS.2022.3144871
https://doi.org/10.1109/TIFS.2022.3144871
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1007/978-3-030-26948-7_25
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613%2Fjair.1.12228
https://doi.org/10.1613%2Fjair.1.12228
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3

8. Cao, P., Zhang, C., Lu, X., Gu, D.: Cross-device profiled side-channel attack with
unsupervised domain adaptation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021(4), 27–56 (2021). https://doi.org/10.46586/tches.v2021.i4.27-56, https://

doi.org/10.46586/tches.v2021.i4.27-56

9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M.J. (ed.) Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings. Lecture Notes in Computer
Science, vol. 1666, pp. 398–412. Springer (1999). https://doi.org/10.1007/3-540-
48405-1 26, https://doi.org/10.1007/3-540-48405-1_26

10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002.
pp. 13–28. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

11. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against
higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) Selected Areas in Cryptography - 17th International Work-
shop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 6544, pp. 262–
280. Springer (2010). https://doi.org/10.1007/978-3-642-19574-7 18, https://

doi.org/10.1007/978-3-642-19574-7_18

12. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side chan-
nel analysis with additive and multiplicative maskings. In: Preneel, B., Tak-
agi, T. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings. Lecture Notes in Computer Science, vol. 6917, pp. 240–
255. Springer (2011). https://doi.org/10.1007/978-3-642-23951-9 16, https://

doi.org/10.1007/978-3-642-23951-9_16

13. Golder, A., Bhat, A., Raychowdhury, A.: Exploration into the explainabil-
ity of neural network models for power side-channel analysis. In: Proceed-
ings of the Great Lakes Symposium on VLSI 2022. p. 59–64. GLSVLSI
’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3526241.3530346, https://doi.org/10.1145/3526241.

3530346

14. Goldfeld, Z., Polyanskiy, Y.: The information bottleneck problem and its applica-
tions in machine learning. CoRR abs/2004.14941 (2020), https://arxiv.org/
abs/2004.14941

15. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: Xai-
explainable artificial intelligence. Science Robotics 4(37), eaay7120 (2019).
https://doi.org/10.1126/scirobotics.aay7120, https://www.science.org/doi/

abs/10.1126/scirobotics.aay7120

16. Gunning, D., Vorm, E., Wang, J.Y., Turek, M.: Darpa’s explainable ai
(xai) program: A retrospective. Applied AI Letters 2(4) (Dec 2021).
https://doi.org/10.1002/ail2.61, https://doi.org/10.1002/ail2.61

17. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution meth-
ods for leakage analysis and symmetric key recovery. In: Paterson, K.G.,
Stebila, D. (eds.) Selected Areas in Cryptography - SAC 2019 - 26th In-
ternational Conference, Waterloo, ON, Canada, August 12-16, 2019, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 11959, pp. 645–
666. Springer (2019). https://doi.org/10.1007/978-3-030-38471-5 26, https://

doi.org/10.1007/978-3-030-38471-5_26

32

https://doi.org/10.46586/tches.v2021.i4.27-56
https://doi.org/10.46586/tches.v2021.i4.27-56
https://doi.org/10.46586/tches.v2021.i4.27-56
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1145/3526241.3530346
https://doi.org/10.1145/3526241.3530346
https://doi.org/10.1145/3526241.3530346
https://arxiv.org/abs/2004.14941
https://arxiv.org/abs/2004.14941
https://doi.org/10.1126/scirobotics.aay7120
https://www.science.org/doi/abs/10.1126/scirobotics.aay7120
https://www.science.org/doi/abs/10.1126/scirobotics.aay7120
https://doi.org/10.1002/ail2.61
https://doi.org/10.1002/ail2.61
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-3-030-38471-5_26

18. Holzinger, A.: From machine learning to explainable ai. In: 2018 World Sympo-
sium on Digital Intelligence for Systems and Machines (DISA). pp. 55–66 (2018).
https://doi.org/10.1109/DISA.2018.8490530

19. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 148–179
(2019)

20. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Proceedings of CRYPTO’96. LNCS, vol. 1109, pp. 104–113.
Springer-Verlag (1996)

21. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener,
M.J. (ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397.
Springer (1999). https://doi.org/10.1007/3-540-48405-1 25, https://doi.org/10.
1007/3-540-48405-1_25

22. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: A review
of machine learning interpretability methods. Entropy 23(1), 18 (Dec 2020).
https://doi.org/10.3390/e23010018, https://doi.org/10.3390/e23010018

23. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3–26. Springer (2016)

24. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Se-
crets of Smart Cards. Springer (December 2006), ISBN 0-387-30857-1, http:

//www.dpabook.org/
25. Marcinkevics, R., Vogt, J.E.: Interpretability and explainability: A machine learn-

ing zoo mini-tour. CoRR abs/2012.01805 (2020), https://arxiv.org/abs/

2012.01805
26. Masure, L., Dumas, C., Prouff, E.: Gradient visualization for general char-

acterization in profiling attacks. In: Polian, I., Stöttinger, M. (eds.) Con-
structive Side-Channel Analysis and Secure Design - 10th International
Workshop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11421, pp. 145–167. Springer
(2019). https://doi.org/10.1007/978-3-030-16350-1 9, https://doi.org/10.1007/
978-3-030-16350-1_9

27. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for
side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 348–
375 (2020). https://doi.org/10.13154/tches.v2020.i1.348-375, https://doi.org/

10.13154/tches.v2020.i1.348-375
28. Perin, G., Buhan, I., Picek, S.: Learning when to stop: A mutual information ap-

proach to prevent overfitting in profiled side-channel analysis. In: Bhasin, S., Santis,
F.D. (eds.) Constructive Side-Channel Analysis and Secure Design - 12th Inter-
national Workshop, COSADE 2021, Lugano, Switzerland, October 25-27, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12910, pp. 53–81. Springer
(2021). https://doi.org/10.1007/978-3-030-89915-8 3, https://doi.org/10.1007/
978-3-030-89915-8_3

29. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for
deep learning-based side-channel analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2022(4), 828–861 (Aug 2022).
https://doi.org/10.46586/tches.v2022.i4.828-861, https://tches.iacr.org/

index.php/TCHES/article/view/9842

33

https://doi.org/10.1109/DISA.2018.8490530
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
http://www.dpabook.org/
http://www.dpabook.org/
https://arxiv.org/abs/2012.01805
https://arxiv.org/abs/2012.01805
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.1007/978-3-030-89915-8_3
https://doi.org/10.1007/978-3-030-89915-8_3
https://doi.org/10.1007/978-3-030-89915-8_3
https://doi.org/10.46586/tches.v2022.i4.828-861
https://tches.iacr.org/index.php/TCHES/article/view/9842
https://tches.iacr.org/index.php/TCHES/article/view/9842

30. Petch, J., Di, S., Nelson, W.: Opening the black box: The promise and limitations
of explainable machine learning in cardiology. Canadian Journal of Cardiology
38(2), 204–213 (2022). https://doi.org/https://doi.org/10.1016/j.cjca.2021.09.004,
https://www.sciencedirect.com/science/article/pii/S0828282X21007030

31. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: Deep learning-
based physical side-channel analysis. ACM Comput. Surv. 55(11) (feb 2023).
https://doi.org/10.1145/3569577, https://doi.org/10.1145/3569577

32. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) Smart Card
Programming and Security. pp. 200–210. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2001)

33. Roche, T., Lomné, V., Mutschler, C., Imbert, L.: A side journey to titan. In: 30th
USENIX Security Symposium (USENIX Security 21). pp. 231–248. USENIX As-
sociation (Aug 2021), https://www.usenix.org/conference/usenixsecurity21/
presentation/roche

34. Saxe, A.M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky, A., Tracey, B.D., Cox,
D.D.: On the information bottleneck theory of deep learning. In: 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018),
https://openreview.net/forum?id=ry_WPG-A-

35. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via
information. CoRR abs/1703.00810 (2017), http://arxiv.org/abs/1703.00810

36. Song, J., Ermon, S.: Understanding the limitations of variational mutual infor-
mation estimators. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020),
https://openreview.net/forum?id=B1x62TNtDS

37. Tishby, N., Pereira, F.C.N., Bialek, W.: The information bottleneck method. CoRR
physics/0004057 (2000), http://arxiv.org/abs/physics/0004057

38. van der Valk, D., Picek, S., Bhasin, S.: Kilroy was here: The first step towards
explainability of neural networks in profiled side-channel analysis. In: Bertoni,
G.M., Regazzoni, F. (eds.) Constructive Side-Channel Analysis and Secure De-
sign - 11th International Workshop, COSADE 2020, Lugano, Switzerland, April
1-3, 2020, Revised Selected Papers. Lecture Notes in Computer Science, vol.
12244, pp. 175–199. Springer (2020). https://doi.org/10.1007/978-3-030-68773-1 9,
https://doi.org/10.1007/978-3-030-68773-1_9

39. Won, Y., Hou, X., Jap, D., Breier, J., Bhasin, S.: Back to the ba-
sics: Seamless integration of side-channel pre-processing in deep neu-
ral networks. IEEE Trans. Inf. Forensics Secur. 16, 3215–3227 (2021).
https://doi.org/10.1109/TIFS.2021.3076928, https://doi.org/10.1109/TIFS.

2021.3076928

40. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a method-
ology for efficient cnn architectures in profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020(3), 147–
168 (Jun 2020). https://doi.org/10.13154/tches.v2020.i3.147-168, https://tches.
iacr.org/index.php/TCHES/article/view/8586

41. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel measure-
ments with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4),
389–415 (2020). https://doi.org/10.13154/tches.v2020.i4.389-415, https://doi.

org/10.13154/tches.v2020.i4.389-415

34

https://doi.org/https://doi.org/10.1016/j.cjca.2021.09.004
https://www.sciencedirect.com/science/article/pii/S0828282X21007030
https://doi.org/10.1145/3569577
https://doi.org/10.1145/3569577
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://openreview.net/forum?id=ry_WPG-A-
http://arxiv.org/abs/1703.00810
https://openreview.net/forum?id=B1x62TNtDS
http://arxiv.org/abs/physics/0004057
https://doi.org/10.1007/978-3-030-68773-1_9
https://doi.org/10.1007/978-3-030-68773-1_9
https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.1109/TIFS.2021.3076928
https://doi.org/10.13154/tches.v2020.i3.147-168
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.13154/tches.v2020.i4.389-415
https://doi.org/10.13154/tches.v2020.i4.389-415
https://doi.org/10.13154/tches.v2020.i4.389-415

42. Wu, L., Won, Y., Jap, D., Perin, G., Bhasin, S., Picek, S.: Explain some noise:
Ablation analysis for deep learning-based physical side-channel analysis. IACR
Cryptol. ePrint Arch. p. 717 (2021), https://eprint.iacr.org/2021/717

43. Yap, T., Benamira, A., Bhasin, S., Peyrin, T.: Peek into the black-box: Inter-
pretable neural network using sat equations in side-channel analysis. Cryptology
ePrint Archive, Paper 2022/1247 (2022), https://eprint.iacr.org/2022/1247,
https://eprint.iacr.org/2022/1247

44. Zaid, G., Bossuet, L., Carbone, M., Habrard, A., Venelli, A.: Conditional varia-
tional autoencoder based on stochastic attack. Cryptology ePrint Archive, Paper
2022/232 (2022), https://eprint.iacr.org/2022/232, https://eprint.iacr.

org/2022/232

45. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.

php/TCHES/article/view/8391

35

https://eprint.iacr.org/2021/717
https://eprint.iacr.org/2022/1247
https://eprint.iacr.org/2022/1247
https://eprint.iacr.org/2022/232
https://eprint.iacr.org/2022/232
https://eprint.iacr.org/2022/232
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

	I Know What Your Layers Did: Layer-wise Explainability of Deep Learning Side-channel Analysis
	Introduction
	Background
	Notations and Terminology
	Deep Learning-based Profiling SCA Against Masked Implementations

	Related Work
	Explainability Methodology for Profiling SCA - ExDL-SCA
	Relevant and Irrelevant Features
	Quantitative Measures of Side-channel Leakages in Hidden Layer Representations
	ExDL-SCA Steps
	On the Granularity of the Explainability Approach

	Compression in Deep Neural Networks
	Compression of Irrelevant (Key Byte) Features in First-order Masked Datasets
	Defining and Training the Classifier q

	Experimental Results
	Datasets
	Reading the Plots
	ASCADr
	DPAv4.2

	Conclusions and Future Works
	Algorithm for the Mask Shares Explainability
	Random Hyperparameter Search

