
Pirmission: Single-server PIR with Access Control

Andrew Beams
University of Pennsylvania

Sebastian Angel
University of Pennsylvania and Microsoft Research

Abstract—Databases often require the flexibility to control
which entities can access specific database records. Such access
control is absent in works that provide private access to
databases, namely private information retrieval (PIR) systems.
In this paper, we show how to address this shortcoming by
introducing Pirmission, the first practical single-server PIR
system that allows the enforcement of access control policies.
Pirmission’s mechanism does not even reveal whether the
client passed or failed the access control check—instead the
client receives random data if they are not authorized to
access a database record. To demonstrate the usefulness and
practicality of Pirmission, we use it to build a private contact
discovery platform that allows users to only be discoverable
by their friends (who have permission). Compared to state-of-
the-art single-server PIR protocols that do not provide access
control, Pirmission increases the server’s response time by
around 2.8× (much less for databases with large records), and
requires only one additional ciphertext to be sent by the client.

1. Introduction

Databases are a fundamental component of software
systems. In many applications, one would like to hide the
users’ specific queries from the database server itself. For
example, users of a subscription service (e.g., news site)
might wish to keep their content consumption history hidden
from the provider. This is the purpose of private information
retrieval (PIR) [26]—a client can query for an element at
some index (or in some variants with a keyword [25]) with-
out the server being able to determine which element was
requested. Databases often also require some form of access
control. For example, a bank requires consent by a loan
applicant before accessing the applicant’s credit report from
a credit bureau database; social media services require per-
missions (e.g., established friendship, group membership)
before showing certain posts; subscription services require
memberships before accessing premium content. Variants of
these applications that wish to hide access patterns still need
to ensure that a client can only access the data for which
they have permission.

The problem and setting. Combining access control with
PIR is challenging because the interplay between the two
desired properties (control and privacy) is actually quite
subtle; straightforward solutions are either broken (often
in non-obvious ways) or too expensive to be useful in
practice. Consider the following strawman which explains

our setting and also highlights some of the issues: one or
more data producers encrypt records that they then upload
to a database maintained by an untrusted database operator
(e.g., a cloud provider). The data producers then give clients
the decryption key(s) to the records in the database that they
are allowed to access. A client then issues a standard PIR
query to the database and obtains an encrypted record, which
they can decrypt only if they have access.

At first glance this proposal appears reasonable, but it
has one of the following two issues.

Lack of forward secrecy. A client can issue a PIR query
for a record for which they do not have access at time t0.
Suppose a data producer then changes the content of the
record (e.g., declassifies a redacted version of a previously
classified file) at time t1, and then gives access to the
client at time t2. The client can then decrypt the previously
(unredacted) record (acquired at t0) even though it never had
access to it. One possible way to address this is by changing
the encryption key each time a record is updated. Besides
the obvious complexity of managing changing keys for each
update, this proposal leaks information, as follows.

Lack of access control. A client issues a PIR query for a
record for which they do not have access at time t0, and gets
back a ciphertext c encrypted under a key the client lacks.
Suppose a data producer updates the record at time t1 but
the client is not given access to this new record. The client
then issues a PIR query for the record again at time t2 and
gets the updated ciphertext c′. Even though the client had
no access to the record, they were able to observe that the
record has changed since the last time they queried it. This
leaks metadata about records, which existing access control
mechanisms on non-PIR databases would not leak.

An alternative that achieves access control and forward
secrecy is as follows. Data producers give to the database
operator one or more access tokens for each record. A client
issues a query by submitting a standard PIR query and a
zero-knowledge proof that it knows a valid access token
for the index being queried (without revealing the index). If
the proof is valid, the database operator processes the PIR
query; else, the database operator rejects the query. There
are many challenges in instantiating this high-level approach
such as making the proofs efficient, but a key one is that
the authorization check can leak information, as follows.

Lack of authorization privacy. The database operator
learns whether a client has permission to access a record
or not (even if it does not know which). This property is
crucial, as otherwise a database operator could, for example,
change the access tokens associated with a particular record

1

to some invalid value. If the client’s proof still passes, then
the operator learns that the client was not requesting that
particular record. Note that the client cannot tell whether
the database operator changed an access token or not, as
doing so would leak when a data producer changes an access
token—this violates access control, as described earlier.

Our solution. This paper introduces Pirmission, a PIR
system that extends existing efficient computational single-
server PIR schemes [4, 8, 9, 54, 55] to provide access
control, forward secrecy, and authorization privacy. In ad-
dition, Pirmission preserves PIR’s standard properties of
correctness (the protocol retrieves the record at the desired
position), query privacy (the database operator does not
learn anything about the queried index), and non-triviality
(the total communication costs are sublinear in the number
of records in the database). The key idea behind Pirmission
is to perform the access control and process the PIR query
simultaneously, in such a way that if a client has the right
to access a record at a given index it receives the record’s
contents, and otherwise it receives random data; the database
operator does not learn which of these two events took place.

In more detail, the database consists of a token table
and a data table. Data producers store access tokens (in
plaintext) in the token table, and clients can query the
database using PIR in addition to sending an encrypted
access token. If the provided encrypted token matches the
entry in the token table for the specific index (which Pir-
mission can check by reusing the PIR query on the token
table), Pirmission’s response (from the data table) is as
expected; otherwise the response is masked by a random
pad. Pirmission’s mechanisms are orthogonal to the nature
of the access tokens: they could be random strings, derived
from ABE credentials [11, 62], etc.

We implement Pirmission on top of SealPIR [9]. When
records are very small, Pirmission requires twice as much
server storage (for the token table), 2.8× longer for the
server to produce a response, and a small increase in query
size (one extra ciphertext). When records are large, Per-
mission’s overhead over the baseline is under 25%. Despite
these added costs, to our knowledge, Pirmission is the first
construction and implementation of a single-server PIR with
access control system (as we discuss in Section 2, there
are prior oblivious transfer protocols with notions of access
control but they have linear communication, lack forward
secrecy, and are not implemented).

Applications. Pirmission is useful for any situation where
one wants a database to preserve access control while still
keeping queries private. Further, Pirmission can be used
as a building block to support other useful applications.
As one example, we consider the case of private contact
discovery (PCD), whereby a user wants to figure out which
of their friends are part of of one or more services (e.g.,
social network, chat app, video game) without revealing to
the operator of these services their friends’ identities. PCD
designs [12, 32, 39, 41, 53] typically use phone numbers
as identifiers. A new user has a phone number for each
contact, and the application has a large database of the phone

numbers of its users. The client and the service interact to
discover which phone numbers they have in common.

An issue with existing PCD systems is that phone num-
bers are not private information. A malicious user could
discover if another person is using some service without
that person’s consent, simply by looking them up on that
service’s PCD. This could be problematic in settings such as
social networks for particular religious or ideological views,
sexual orientation, or demographics.

To address the above, we use Pirmission to build a
authenticated version of PCD that allows users to restrict
who can discover them in the different services. This system
can be used in combination with metadata-private mes-
saging [7, 10, 43, 46, 47, 66, 67] to further prevent the
services themselves from learning which users are friends
with each other while still providing messaging and voice
chat functionality.

In summary, this work’s contributions are:
• A model that combines private queries and access con-
trol in real settings (§3).
• Pirmission, which extends PIR with access control (§4).
• The design of a authenticated private contact discovery
scheme based on Pirmission (§5).
• The implementation of Pirmission and authenticated
PCD, and their experimental evaluation (§7–8).

2. Background and related work

Private information retrieval (PIR) [26] is a crypto-
graphic primitive in which a client makes a query to a
database server to obtain the object at a specific index
without the database learning the index queried and with
communication costs being sublinear in the number of el-
ements in the database. Single-server PIR [42] is a variant
of PIR in which the privacy guarantee is provided under
computational assumptions, and has the benefit of being
useful even when the database is operated by a single
entity. In recent years there has been a resurgence of single-
server PIR protocol that provide low communication and
computation costs in practice [4, 5, 8, 9, 54, 55]. This line
of work serves as the foundation of our proposal; we provide
the necessary details in later sections.

Another line of relevant work is that of (1-out-of-n)
oblivious transfer (OT) [61]. OT provides a similar pri-
vacy guarantee to PIR, but it does not require sublinear
communication and has the additional requirement that the
client can only fetch information about one element. In a
sense, this is a type of basic access control, though we
aim for more meaningful capabilities. A variant of both OT
and PIR is known as symmetric PIR [36]: it provides the
aforementioned access control property of OT, and the sub-
linear communication requirement of PIR. There are even
transformations that can convert a single-server PIR scheme
into a symmetric PIR (and therefore an OT) scheme [6, 56].

Most closely related to our work are OT schemes that
support more general access control policies [3, 17–19, 48,
68]. These proposals have two drawbacks when used in our

2

setting since they require sending an encrypted version of
the entire database to the client at the beginning. First, they
do not support removing or updating elements: if elements
change then either the client learns about which specific
element was updated (a leak in the database’s metadata), or
the protocol must be re-run from scratch (expensive and also
leaks metadata). Second, they incur communication that is
linear in the database size and hence not practical.

There are also symmetric PIR schemes with access con-
trol [44, 45] but they rely on a very specific symmetric PIR
protocol [49] that is not efficient in practice (we compare
with these works in Section 8). Further, the model used in
these schemes requires that a data producer give a client a
new token for each successive query. That is, if an element
changes frequently and a client wants to query it multiple
times, the data producer must provide a unique token each
time. In contrast, our work is compatible with state-of-the-
art efficient PIR schemes and requires the client to get new
tokens only when the data producer wants to change the
access policy (allow the client to access data it could not
access before or revoke the access from the client).

3. Setting and threat model

In this section we discuss the setting, properties, and
threat model for Pirmission. The goal is to design a scheme
that is practical, has access control capabilities, and supports
the requirements of real databases (e.g., supports updates
and deletions). For now we will assume that access tokens
are distributed to clients out of band. We discuss some
possibilities for token distribution in Section 6.

3.1. Setting

There are three types of parties: a database server, one
or more data producers, and one or more clients. The server
could be, for example, a cloud provider. Data producers are
parties who add, delete, and modify data in the database.
The server could be a data producer as well. Finally, clients
are users who access the database and fetch data from it. For
example, they might be users in a chat application or front-
end servers of some Web application (running in a different
administrative domain than the database).

A database consists of two tables: a data table, denoted
D, and a token table, denoted T . Each of these tables has n
elements. Data elements and tokens are both from the same
plaintext space M. We use [n] to denote the set {1, . . . , n},
and let the data element at index i ∈ [n] be Di, and its
associated token be Ti. We assume that the producer who
stores a data element at some index in the data table also
stores the associated token at the same index in the token
table. Producers may modify either table at any time.

A client can send a query to the database server at any
time, and will receive a response according to the properties
that we describe in the next section. The query process
involves four functions. Three of these functions are run
by the client and one is run by the server:

• KeyGen(1λ) → (pk, sk), a randomized algorithm exe-
cuted by the client that takes as input a security parameter
λ and generates an encryption and decryption key pair.
• Query(pk, i, t) → q, a randomized algorithm executed
by the client which takes an encryption key pk, an index
i, and a token t, and outputs a query q.
• Respond(D,T, q) → c, a randomized algorithm exe-
cuted by the server that takes the client’s query and the
data and token tables, and outputs encrypted response c.
• Extract(sk, c)→ x, a deterministic algorithm executed

by the client that takes the decryption key sk and uses it
to extract the data x from the server’s response c.

3.2. Properties

Correctness. A client who provides the correct token with
their query obtains the correct element. That is:

pk, sk ← KeyGen(1λ)

Extract(sk,Respond(D,T,Query(pk, i, Ti))) = Di

Query Privacy. The server is unable to distinguish a query
for index i from a query for index j. Formally, for any PPT
adversary A, security parameter λ, and any pair of indexes
i and j in [n]:

pk, sk ← KeyGen(1λ)

q0 ← Query(pk, i, Ti); q1 ← Query(pk, j, Tj)

|Pr[A(q0) = 1]− Pr[A(q1) = 1]| ≤ negl(λ)

Authorization Privacy. The server does not learn if a
client’s query succeeds or fails because of improper au-
thorization. That is, for any PPT adversary A, security
parameter λ, and any index i ∈ [n] and token t ∈M:

pk, sk ← KeyGen(1λ)

q0 ← Query(pk, i, Ti); q1 ← Query(pk, i, t)

|Pr[A(q0) = 1]− Pr[A(q1) = 1]| ≤ negl(λ)

Access Control. A client without the token for index i (i.e.,
Ti), cannot obtain any information about Di by querying the
database. We formalize this as follows. Let the following
probability distribution capture the view of the client when
querying a database with data table D, token table T , for
index i ∈ [n] with token t ∈M:

ViewD,T,i,t :=

 q, c, x :

pk, sk ← KeyGen(1λ)
q ← Query(pk, i, t)

c← Respond(D,T, q)
x← Extract(sk, r)

If t 6= Ti, then ViewD,T,i,t ≈ ViewD′,T,i,t, where D′ is

a uniformly random data table. That is, the view of the client
when interacting with the server without the right token is
statistically indistinguishable from a view when the client
interacts with a database of uniformly random entries.
Forward Secrecy. After a data producer modifies Di, a
client cannot obtain the old value of Di even if the client

3

acquires the associated token Ti. We formalize this as fol-
lows. Let Update(D, i, v) → U be a procedure called by
the server that updates the i-th entry in the data table with
a new value v. Let the following probability distribution
capture the view of the client during the following events:
(1) client issues a query to the database with data table D,
token table T , for index i with token t; (2) server updates
an entry in D; (3) client obtains a copy of the token Ti and
the updated object Ui.

ViewD,T,i,t :=

q, c, x, Ui, Ti :

pk, sk ← KeyGen(1λ)
q ← Query(pk, i, t)

c← Respond(D,T, q)
x← Extract(sk, r)

U ← Update(D, i, ·)

If t 6= Ti, then ViewD,T,i,t ≈ ViewD′,T,i,t, where

D′ is a uniformly random data table. This definition can
be trivially extended to model forward secrecy for T as
well (i.e., if a data producer changes Ti, a client without
knowledge of the old Ti does not learn that this change
took place).

Non-triviality. The total communication cost between the
client and the server must be smaller than the database.
Specifically, it must be sublinear in n (number of records).

3.3. Threat Model

Query privacy and authorization privacy are guarantees
given to the client against the database server. Access control
and forward secrecy are guarantees given to the server (or
data producers) against unauthorized clients. Consequently,
our threat model is as follows: we assume the database
server wants to violate query privacy and authorization
privacy and can act arbitrarily maliciously in order to do
so. Likewise, we assume that the client wants to violate
access control and forward secrecy and may act arbitrarily,
including issuing malformed queries.

Note that in PIR protocols, correctness and non-triviality
are properties of the protocol itself and hold only when all
parties behave honestly. The reason is simple: a malicious
server or client could easily send a lot of data (violating
non-triviality) or garbage (violating correctness).

The case where the data producer colludes with the
client is not interesting, as the data producer could simply
give the client the data or the token. The case where the
data producer colludes with the server means that the pair
becomes aware of which elements the client has access to; so
the protocol must simply ensure that the data producer and
the server cannot obtain more than this information when
they collude. This is equivalent to query privacy.

4. PIR with Access Control

In this section we give our construction of Pirmission.
We begin with some background on recent single-server PIR
schemes on which we build our work, and then introduce
our extensions. A key aspect of Pirmission is its simplicity.
Not only does this simplicity translate into lower concrete

1: function PIR-RESPOND(D,Q)
2: c← PCMULT(D1, Q1)
3: for j ∈ [2, . . . , n] do
4: c← HOMADD(e, PCMULT(Dj , Qj))

5: return c

Figure 1: Respond function in Stern’s PIR. D is the database
represented as a vector of plaintexts. Q is the client’s query
and consists of a vector of ciphertexts constructed according
to Section 4.1. HOMADD is homomorphic addition, and
PCMULT is plaintext-ciphertext multiplication.

costs, it also makes our approach easy to understand, prove,
and port to future protocols.

4.1. Single-server PIR

We summarize the idea behind the scheme introduced
by Stern [65] and used in recent works [5, 8, 9, 54, 55]. It
assumes an additively homomorphic encryption scheme.

Notation. We use lowercase letters (e.g., x) to denote sin-
gle elements (plaintext or ciphertext) and uppercase (e.g.,
Q) to denote vectors of elements. We index vectors with
subscripts (e.g., Qi). We denote the encryption of a plain-
text x with encryption key pk as Encpk(x). Likewise we
denote the decryption of a ciphertext y with decryption
key sk as Decsk(y). The cryptosystem is additively homo-
morphic if there exists an operation HOMADD such that
HOMADD(Encpk(x),Encpk(y)) = Encpk(x + y). Addi-
tively homomorphic cryptosystems also support plaintext-
ciphertext multiplication with some operation PCMULT,
such that PCMULT(x,Encpk(y)) = Encpk(xy).

Construction. Let D be an n-element database where each
element is in the plaintext space of the homomorphic cryp-
tosystem M (we discuss the specifics in Section 4.2).
• KeyGen(1λ): generate a pair of encryption and decryp-
tion keys, pk and sk, for the homomorphic cryptosystem
with security parameter λ.
• Query(pk, i): to query the element at position i, gen-
erate an encrypted query vector Q of length n with
Qi = Encpk(1) and for all j 6= i ∈ [n], Qj = Encpk(0).
Note that traditional PIR schemes lack access control, so
there is no token here.
• Respond(D,Q): compute the dot product of D and Q

and return the resulting ciphertext c to the client. Note
that this requires only plaintext-ciphertext multiplications
and ciphertext-ciphertext additions, as shown in Figure 1.
• Extract(sk, c): client can decrypt c with the cryptosys-
tem’s decryption key to obtain Di = Decsk(c).
A limitation of this construction is that communication

costs are linear in n since the query has n entries. This can
be addressed by representing the database D as a hypercube.
We discuss this in detail in Section 4.7.

There are many optimizations to further reduce costs.
For example, XPIR [4] shows that if the homomorphic cryp-
tosystem is based on Ring-LWE cryptosystems [13, 16, 33],

4

1: function PIRMISSION-RESPOND(D,T,Q,Encpk(t))
2: c← PIR-Respond(D,Q) // See Figure 1
3: t′ ← PIR-Respond(T,Q) // See Figure 1
4: // at this point c = Encpk(Di) and t′ = Encpk(Ti)
5: d← HOMSUB(t′,Encpk(t))
6: // d = Encpk(0) if and only if token is correct
7: r

R← M
8: c← HOMADD(c, PCMULT(r, d))
9: return c

Figure 2: Pseudocode for Pirmission’s Respond function.
D and T are the data and token table, respectively. Q is
the query vector for index i ∈ [n], and Encpk(t) is an
encryption of the token t ∈ M for the requested element.
M is the plaintext space of the homomorphic encryption
scheme. Pirmission uses BFV [13, 33], so M consists of
polynomials from a quotient ring with integer coefficients.

then one can preprocess the database using the number
theoretic transform so that computing PCMULT is much
more efficient. SealPIR [9] then shows how to compress
an entire query vector Q into a single ciphertext q, rather
than computing one ciphertext for each entry. Pirmission
uses the BFV cryptosystem, so we apply these and other
optimizations in our implementation.

4.2. Adding access control

Pirmission processes the PIR query and the access
control check simultaneously to achieve all of the desired
properties (§3.2). The KeyGen and Extract algorithms are
the same as in the previous section. Below are the new
algorithms for Query and Respond.
• Query(pk, i, t): in addition to the encrypted query vec-
tor (see Query in Section 4.1), the client generates ci-
phertext Encpk(t), which is an encryption of the token
t ∈ M associated with the element at position i. Query
outputs the tuple (Q,Encpk(t)).
• Respond(D,T,Q,Encpk(t)): the server computes two
dot products, one between the query vector Q and the
data table D and another between Q and the token table
T , resulting in Encpk(Di) and Encpk(Ti), respectively.
The server then chooses an element r uniformly at ran-
dom from the encryption scheme’s plaintext space M and
returns c = r · (Encpk(Ti) − Encpk(t)) + Encpk(Di),
where “·”, “−”, and “+” are PCMULT, HOMSUB, and
HOMADD respectively. If the token given by the client, t,
matches the one in the token table, c = Encpk(Di). Oth-
erwise, r ensures that c is an encryption of a uniformly
random plaintext. We give the pseudocode in Figure 2.
We can now reason about the properties outlined in

Section 3.2. Correctness follows immediately: if the client
supplies the right token and the server performs the protocol
as in Figure 2, there will be no mask and the client will
receive the right entry. Query privacy and authorization
privacy also hold. The client’s query consists of two parts:
(1) the standard PIR query vector Q; and (2) one encryption
of the token t, namely Encpk(t). Past work [4] proves

that the query vector for an element i is computationally
indistinguishable from a query vector for any other element.
This is not surprising since the query vector is just a
vector of ciphertexts, each of which is semantically secure.
Similarly, the encryption of the token is computationally
indistinguishable from the encryption of any other value.

Note that in PIR, clients can never provide feedback to
the server (i.e., tell the server whether their query failed for
any reason). If the client provides feedback the server could
substitute some of the entries in the database with garbage,
thereby causing the client to complain only when it fetches
one of those entries—this would leak which elements the
client was or was not trying to access. Given the absence of
feedback, the semantically secure ciphertexts are the only
input sent from the client to the server. Furthermore, the
server’s logic is the same regardless of whether a client’s
encrypted token is correct or not. As a result, the server
cannot distinguish a successful query from one with an
invalid token (otherwise one could use such a distinguisher
to violate the security of the underlying cryptosystem).

Below we prove that Pirmission also guarantees access
control and forward secrecy. We defer non-triviality to later,
after we explain how Pirmission makes communication costs
sublinear (based on prior work).

Lemma 1. For any data table D, token table T , each
consisting of n elements in M, for any index i, and for any
token t ∈M, if t 6= Ti then Pirmission’s respond procedure
in Figure 2 guarantees that ViewD,T,i,t ≈ ViewD′,T,i,t,
as defined in the access control definition of Section 3.2.
Here D′ is is a data table of n elements, each of which is
independently and uniformly sampled from M.

Lemma 2. For any data table D, token table T , each
consisting of n elements in M, for any index i, and for any
token t ∈M, if t 6= Ti then Pirmission’s respond procedure
in Figure 2 guarantees that ViewD,T,i,t ≈ ViewD′,T,i,t, as
defined in the forward secrecy definition of Section 3.2.
Here D′ is is a data table of n elements, each of which is
independently and uniformly sampled from M.

Proof. The proof for both Lemma 1 and 2 is the same. We
claim that if t 6= T , the server’s response depends only
on the public parameters, namely the plaintext space M.
Consider an alternate Respond protocol that returns c′ =
Encpk(r

′) where r′ is a random value uniformly sampled
from M. In Pirmission, when t 6= T , the distribution of c′
is statistically indistinguishable from the actual distribution
of c (the output of Respond in Figure 2).

Suppose we generate c′ as above. The server’s actual
response is computed as c = Encpk(r · (Ti − t) + Di).
Substituting c′ for c, we get:

Encpk(r
′) = Encpk(r · (Ti − t) +Di)

r′ −Di = r · (Ti − t)
r = (r′ −Di) · (Ti − t)−1

This is defined as long as Ti − t is invertible.

5

There are two things to note about this proof. First, it is
predicated on (Ti−t) always having a multiplicative inverse,
but this not the case in the cryptosystems used by state-of-
the-art PIR schemes where M is a ring. Second, the proof
shows that if the token is incorrect (i.e., t 6= Ti), then the
client learns nothing about Di from the response. However,
what if the client guesses Ti by chance? In this case, the
client learns Di because it can trivially confirm that it has
guessed the correct token. For example, the client can issue
multiple queries with the same (correct) token and the same
index; since the token is correct, there is no mask applied
to the response so the client obtains the same result each
time—confirming its guess. Hence, the lemmas are only
meaningful if the space from which tokens are sampled is
large enough to make brute force guessing intractable.

We address both of these concerns next.

4.3. Guaranteeing the correctness of the mask

Pirmission builds on SealPIR [9] which uses the
BFV [13, 33] cryptosystem (most recent PIR schemes use
BFV or a similar cryptosystem, and Pirmission’s key idea
applies to them as well). In BFV, plaintexts are polynomials
with integer coefficients from the ring Rp = Zp[x]/(xN+1),
where N is a power of 2 and p is the plaintext modulus that
specifies how much data can be stored in each coefficient
of the polynomial. Both N and p must be such that, along
with a careful selection of the ciphertext space, satisfy the
decisional Ring-LWE assumption [50]. Ciphertexts are also
polynomials of a different ring, but we will omit the details
since they are not relevant to our discussion.

Encoding data elements. While the plaintext space of
these cryptosystems is the polynomial ring Rp, objects in a
database are not elements of this ring. Instead, they are usu-
ally an HTML document, a PDF, or some arbitrary binary
blob. To use PIR systems based on BFV data producers
need to encode such data as one or more polynomials in
Rp. The standard approach is to split the database record
into small chunks, so that each chunk—when interpreted as
an integer—is smaller than p. In that way, one can simply
create a polynomial in Rp where each of its coefficients
corresponds to one of the chunks; one then adds this poly-
nomial to the PIR database. When a client fetches this
polynomial using PIR, it extracts each of the coefficients
from it and reconstructs the original object (e.g., HTML
document, binary blob).

Problem with tokens. Observe that for the masking oper-
ation to be well defined in Line 8 of Figure 2, the tokens
must be from the same plaintext space as the data in the PIR
database. That is, they must also be from Rp. The challenge
is that if Ti and t are both from Rp, then (Ti − t) does
not always have an inverse. This is problematic since then
we cannot use our proof of Lemmas 1 and 2 to argue that
Pirmission’s masking approach perfectly hides Di when the
token supplied by the client is incorrect.

To address this, Pirmission restricts p to be a prime
congruent to 1 (mod 2N) and uses Chinese Remainder

Theorem (CRT) batching [14, 64]. We defer the details of
CRT batching and its application to BFV to other docu-
mentation [22], but the following key property is useful
in understanding why it helps. With CRT batching, a BFV
plaintext polynomial actually encodes a 2-by-(N/2) matrix,
where each element is in Zp. All ciphertext operations
(HOMADD,HOMSUB,PCMULT) then act element-wise. For
example, if p = 17 and N = 8:

Encpk

([
0 2 6 12
3 13 8 5

])
=

PCMULT

([
1 2 3 4
5 6 7 8

]
,Encpk

([
0 1 2 3
4 5 6 7

]))
In a sense, with CRT batching we are morally transforming

the plaintext space from the ring Rp to a matrix of indepen-
dent elements, each in the finite field Zp.

CRT encoding, tokens, and masks. To encode the data,
the data producer will do the same thing as before: split
their database object into small chunks where each chunk
is smaller than the integer p, and store each chunk in one
of the entries in the matrix. The same idea for the tokens.
Therefore, a token will effectively be a matrix where each
of its entries will be sampled uniformly from Zp. As a
result, when we perform the masking procedure in Figure 2,
operations will act on each entry of the matrix as we
discussed earlier. And since each entry in Ti and t is defined
in the finite field Zp, every entry in Ti − t is guaranteed to
have an inverse unless Ti[x, y] = t[x, y], where x denotes the
row and y denotes the column of the matrix. In such case,
the client has provided the correct entry in the token matrix,
and Pirmission does not mask the corresponding chunk of
Di, namely Di[x, y]—as expected.

4.4. Preventing brute force guessing of tokens

We now return to the second concern raised at the end
of Section 4.2: if tokens are sampled from a small space, a
malicious client can just guess the token and then confirm
if their guess is correct. This confirmation can be done by
querying a few more times with the same index token and
token; if all responses are the same, then the client gains
confidence that its guess is correct (since it would give
evidence that there is no randomized mask applied). In our
case, each token is technically made up of N independent
sub-tokens, each of which is sampled from Zp. If we set p to
be large enough, say a 60-bit prime, then we are done: we
can guarantee that the client cannot guess and verify any
of the sub-tokens except with negligible probability. Note
that 60 bits is more than sufficient as a security parameter
because, unlike in other settings, the client must issue a
PIR query for each guess. With 60-bit tokens, the expected
number of PIR queries required to guess and verify a given
sub-token is over a quintillion. Not only is this more than
any client can issue, but also no server could ever process
that many PIR queries given PIR’s high computational costs.

Unfortunately, setting BFV’s plaintext modulus to a 60-
bit prime incurs high costs for the PIR part of the protocol
(Lines 2 and 3 in Figure 2): it requires ciphertexts to be

6

larger (be made up of many polynomials) to ensure that the
noise1 is low enough to allow for correct decryption after
homomorphic operations. Indeed, to remain competitive in
performance with state-of-the-art PIR systems we must use
values of p that are around 15 to 20 bits. This means that a
malicious client could determine each sub-token by making
214 queries in expectation, which makes the system insecure.

To address this, Pirmission ensures that multiple sub-
tokens contribute to the mask of each entry in Di, effectively
increasing the “logical” size of sub-tokens.

Naive solution. A simple way to achieve this is to have 4
token databases and to have the client submit 4 encrypted
tokens. Then, one can do PIR on each of the token databases,
perform the homomorphic subtraction, multiply by a random
plaintext, and then apply 4 independent masks to Di homo-
morphically (essentially Lines 3–8 in Figure 2 but with 4
different token databases). This works because for an entry
at a given row and column of Di, if any of the 4 sub-
tokens provided by the client for that row and column is
incorrect, then the entry is blinded by a uniformly random
mask. Hence, the only way to get any information about Di

is to supply the 4 correct 15-bit sub-tokens—which is akin
to guessing a single 60-bit sub-token.

Actual design. Instead of having 4 token databases and
asking the client to provide 4 encrypted tokens which signif-
icantly increases computation and communication costs, we
can achieve the same effect with just a single token database
and a single encrypted token by using an automorphism
supported by BFV and related cryptosystems called slot
rotations [35]. Here the notion of a “slot” refers to an entry
in the matrices produced by the CRT batch encoding.

Definition 1 (Rotation). Given a ciphertext c which encrypts
a plaintext x, and given an integer 0 < j < N/2 − 1, the
operation HOMROT(c, j) produces an encryption c′ of the
plaintext x′ which contains every entry in x but rotated j
positions to the right (rows rotate independently and entries
wrap around). For example, if N = 8 and j = 1, then:

x =

[
1 2 3 4
5 6 7 8

]
, x′ =

[
4 1 2 3
8 5 6 7

]
The key idea of using rotations is to observe that if a

client does not guess every sub-token correctly, then Ti − t
will contain non-zero entries. With rotations, the server can
ensure that these non-zero entries “cover more ground” and
help mask more than their respective entry of Di. Figure 3
gives the extended Pirmission Respond pseudocode which
applies s masks (when p is 15 bits, s = 4 is enough).

One technical detail worth mentioning is that rotations
require the client to supply a Galois key (also known as
a key switching matrix). The reason for this is that when
the server performs, for example, c′ ← HOMROT(c, 1), the
result c′ is technically an encryption of the rotated plaintext
but under a different secret key than c. So one cannot do

1. In LWE-based homomorphic cryptosystems, encryption adds noise to
the underlying plaintext. As operations are performed on ciphertexts (e.g.,
additions, multiplications), the noise grows. At some point, the noise is so
high that one cannot recover the correct result when decrypting.

1: function PIRMISSION-RESPOND2(D,T,Q,Encpk(t), s)
2: c← PIR-Respond(D,Q) // See Figure 1
3: t′ ← PIR-Respond(T,Q) // See Figure 1
4: d1 ← HOMSUB(t′,Encpk(t))

5: r1
R← M

6: c← HOMADD(c, PCMULT(r1, d1))
7: // Add s− 1 additional masks
8: for j = 2 to s do
9: dj ← HOMROT(dj−1, 1)

10: rj
R← M

11: c← HOMADD(c, PCMULT(rj , dj))

12: return c

Figure 3: Pseudocode for Pirmission’s Respond function
with additional masks. This is identical to Figure 2 except
for the for loop which depends on a new parameter s that
indicates how many masks to add to the response. HOMROT
is a homomorphic rotation, as defined in Section 4.4.

any homomorphic operations that use both c and c′ since
both ciphertexts are defined under different keys. Instead,
one uses the Galois key to “switch” the key of c′ back to
the original key under which c is encrypted. This operation
is known as key switching [15]. We abstract the rotation and
its corresponding key switch with our HOMROT operation.

The reason we discuss this low-level detail is that one
might wonder: do these Galois keys introduce additional
costs, and can a malicious client provide a bogus Galois key
that undermines the correctness of the rotation (e.g., causing
c′ to not rotate at all or to have some or all entries be 0),
thereby violating our goal of having each coefficient mask
multiple slots. The answer to both of these questions is no.
In terms of cost, the existing PIR schemes we consider [5,
8, 9, 55] all use rotations already and send to the server the
appropriate Galois keys—Pirmission imposes no additional
overhead. We discuss the issue of correctness in more detail
in Appendix A, but the key idea is that: (1) since the rotation
happens before the key switch the client cannot undo the
rotation by providing a bad key; (2) since the client does not
know the value of Ti − t (unless it knows Ti in which case
there is no need to perform this attack), it cannot produce a
Galois key that transforms those entries into a value chosen
by the client (e.g., 0).

4.5. Supporting small database records

If a database record is small, say a 280 byte message on
Twitter, then one still needs to use an entire BFV plaintext
to represent it. For N = 4096 and a 15-bit p, the 2-by-
N/2 matrix can store up to 5 KB of data. To make good
use of this space, a common approach in standard PIR
(without access control) is to pack k database records into
a single BFV plaintext. In this way, the database essentially
“shrinks” (in the number of entries) by a factor of k. To
do so, one can split the database record into chunks, where
each chunk is an integer smaller than p. Then store each of
these integers in a different entry of the matrix. If there is
space left, one can add another database record until all of

7

the entries of the matrix are filled or no more whole database
records fit in the remaining entries. This can also be done in
Pirmission, but there is the additional challenge of dealing
with the tokens of different elements.

To explain how Pirmission packs data and tokens, we use
an example. Let N = 16, p = 97, and s = 2 (so we want
to have 2 masks per entry). Suppose each record occupies 4
entries in a BFV plaintext. This means that we can pack up
to N/4 = 4 records per plaintext. Let the four records be
x1, x2, x3, x4. Define the j-th chunk of record xi as xi,j .
Likewise, we will have four tokens, one for each record: y1,
y2, y3, y4, and the j-th sub-token of yi is yi,j . Pirmission
constructs the packed plaintext for the data and token as:

Di =

[
x1,1 x2,1 x1,2 x2,2 x1,3 x2,3 x1,4 x2,4

x3,1 x4,1 x3,2 x4,2 x3,3 x4,3 x3,4 x4,4

]

Ti =

[
y1,1 y2,1 y1,2 y2,2 y1,3 y2,3 y1,4 y2,4
y3,1 y4,1 y3,2 y4,2 y3,3 y4,3 y3,4 y4,4

]
Suppose a client is interested in record x2. Then the

client will supply, in addition to the PIR query that selects
the appropriate packed plaintext from the database (i.e., that
selects Di), an encryption of the token t where:

t =

[
0 t1 0 t2 0 t3 0 t4
0 0 0 0 0 0 0 0

]
Observe Line 4 of Figure 3 when the server computes

d1 = Encpk(Ti−t), and suppose the client correctly guesses
t1 = y2,1, but its guess of t2, t3, and t4 is wrong. Then d1
will be an encryption of (the red entries are y2,j − tj):[
y1,1 0 y1,2 y′2,2 y1,3 y′2,3 y1,4 y′2,4
y3,1 y4,1 y3,2 y4,2 y3,3 y4,3 y3,4 y4,4

]
This leads to the masking operation in Line 6 not

correctly hiding the first chunk of the record, namely x2,1,
since the client correctly guessed its sub-token. However,
in Line 9, Pirmission rotates d1 by 2 positions to the right
(instead of 1, as in the non-packed algorithm). In this case,
d2 will encrypt:[
y1,4 y′2,4 y1,1 0 y1,2 y′2,2 y1,3 y′2,3
y3,4 y4,4 y3,1 y4,1 y3,2 y4,2 y3,3 y4,3

]
Hence, the operation in Line 11 will correctly apply a

uniformly random mask to the entry at position x2,1 and the
client will not be able to obtain its value. The same is true
for all other entries.

Note that if the client had provided the correct value for
all sub-tokens, then all the red entries would have been 0
as well, and the rotations would not have had any effect.

Summary. To pack many small records into a single BFV
plaintext, it suffices to split the records and spread the
chunks across the matrix. The spreading should be done in
such a way that one can pick an appropriate rotation value
that ensures that only tokens of the same record interact with
each other without affecting the tokens of other records.

4.6. Supporting large database records

In the case when database records are large, one could
select large security parameters to ensure the BFV plaintexts
can fit the large database records. However, this makes all
the homomorphic operations very expensive. A more practi-
cal approach is as follows. The server splits the large records
into k chunks, where each chunk fits within a single BFV
plaintext. Then, the server creates k data tables, D1, . . . , Dk,
and stores the j-th chunk of each record in data table Dj .

To query for the i-th database record, the client sub-
mits a single query vector Q and the encrypted token
Encpk(t) to the server. The server then computes the dot
product between Q and each of the k data tables (i.e.,
PIR-Respond in Figure 1 with Q and Dj for j ∈ [k])
to obtain k (unmasked) responses: c1, . . . , ck. The server
then computes the dot product between Q and the to-
ken table T to obtain Encpk(Ti). From this, the server
computes the difference between the stored and the pro-
vided token d = HOMSUB(Encpk(Ti),Encpk(t)). Finally,
the server samples k uniformly random BFV plaintexts,
r1, . . . , rk ∈ M and computes the k masked responses as:
cj = HOMADD(cj , PCMULT(rj , d)) for j ∈ [k]. The client
can recover Di by decrypting each of the k responses with
its decryption key sk, extracting the data from each BFV
plaintext polynomial, and concatenating the results. This
description is for s = 1, but it generalizes to multiple masks.

Note that Pirmission’s server processes the token table
once. As a result, Pirmission’s server processes k+1 tables,
whereas the baseline PIR scheme (with no access control)
processes k. Indeed, Pirmission’s relative overhead is high-
est when k = 1, and decreases as k increases.

4.7. Achieving sublinear communication

The PIR protocol described so far requires communica-
tion that is linear in the number of database records since the
query vector Q contains as many entries as there are entries
in the database. Pirmission adopts the following idea from
Stern [65] to make costs sublinear. Instead of representing
the data table D as a vector of n BFV plaintexts, Pirmission
represents D as a matrix with

√
n rows and

√
n columns.

Suppose the client is then interested in the plaintext at row
i and column j. The client sends 2 query vectors, Qrow and
Qcol, each of which contains

√
n entries. The vector Qrow

has the encryption of 1 at position i, while Qcol has the
encryption of 1 at position j. The server, upon receiving
Qrow and Qcol, computes the following matrix-vector prod-
uct: Ej = D ·Qcol, where each multiplication is between a
plaintext (elements in D) and ciphertexts (elements in Q),
and additions are over ciphertexts. Observe that Ej is a
vector of ciphertexts that contains the encryptions of the
entries in column j of D.

The server can then compute a dot product between Ej
and Qrow to obtain the result. There are two ways to do
this. The first is to notice that Ej contains ciphertexts and
Qrow also contains ciphertexts, so the multiplications and
additions both need to be over ciphertexts which requires

8

the underlying cryptosystem to be additively and multiplica-
tively homomorphic (this is the case in BFV). This is what
MulPIR [8] does, but the tradeoff is that security parameters
are larger and the PIR computation is more expensive.

The second option, adopted by several schemes [4, 9, 55]
and by Pirmission, is to think of each ciphertexts in Ej
not as a ciphertext per se but just as a binary blob of data
(essentially a random-looking database record). Then encode
each binary blob into a fresh BFV plaintext. The catch is
that ciphertexts are much larger than plaintexts (in BFV,
they are around 10 times larger) and hence we need to use
the technique in Section 4.6 to split the binary blob into k
chunks, encode each chunk into a BFV plaintext, and put
each BFV plaintext into a different data table E1

j , . . . , E
k
j .

Finally, one can just run the PIR-Respond procedure of
Figure 1 with each of these data tables and Qrow. This
results in k encrypted chunks: Encpk(c1), . . . ,Encpk(ck),
where Encpk(Di,j) = c1|| . . . ||ck. The client can recover
Di,j by decrypting each encrypted chunk, concatenating the
result to form a ciphertext, and then decrypt that ciphertext.
Pirmission then applies the optimization in SealPIR [10] to
compress Qrow and Qcol so that each of them is a single
ciphertext rather than a vector of ciphertexts.

In Appendix B we discuss how to add access control to
this new representation. This enables Pirmission to achieve
sublinear (and concretely low) communication and therefore
satisfy the non-triviality property (§3.2).

5. Authenticated PCD

We demonstrate the flexibility of Pirmission by design-
ing a authenticated variant of private contact discovery.

5.1. Private Contact Discovery (PCD)

When a user signs up for a service, the user and service
need to discover which of the user’s contacts are also on the
same service. The non-private form of this contact discovery
simply involves the user sending the service his entire list of
contacts (e.g.., a phone’s address book). The service can then
scan its user database and discover any matches. However,
this exposes information about the user’s friends who have
not consented to use that service.

Private contact discovery generally focuses on prevent-
ing this particular leakage—that of a user’s friends who
are not also users of the service. A user carries out some
protocol with the service such that at the end, the user, or
both parties, receive the intersection of the user’s contact list
and the service’s user database. A common method is for
the user to hash each of their contacts before sending it to
the service. The service can then do the comparison using
hashes. While this is efficient, it has two main flaws. First,
the values being hashed are phone numbers, a small enough
space to brute force. Second, the service can detect when
two users share a contact, even if the service does not know
the identity of this contact. Signal supports PCD via Intel’s
SGX [53], but SGX has a growing list of vulnerabilities [57].

One cryptographic primitive that can be used to facilitate
PCD is private set intersection (PSI) [34]. In PSI, two parties
compute the intersection of their inputs without leaking
the other elements in their inputs. In the PCD setting, the
sizes of these two sets are very different, with the service’s
user database dwarfing the user’s address book by many
orders of magnitude, motivating the need for imbalanced PSI
designs [23, 32, 39, 41]. To further eliminate the need for
additional infrastructure, the “key” that identifies a friend in
PCD is often a phone number or email address. However,
this is not a private piece of information. As a result, in
PSI-based designs, a malicious client can add a victim’s
phone number to their address book to query for the victim’s
presence on different services.

A variation of PSI is authorized PSI, where the client
proves that it possesses authorization for each element in
their set [20, 21, 30]. We compare our approach to these
works in Section 8; the key distinction is that these works
require communication linear in the size of the larger
set, whereas our approach is sublinear, and these works
do not have a notion of deletions or updates. Finally, to
our knowledge, we are the first to highlight the need of
restricting queries to PCDs to avoid leaking participation
in online services, and to provide a concrete design and
implementation (the above works target other applications).

5.2. Vision and model

Imagine many online services, each of which offers users
a PCD so that they may privately find out if their friends
are using the service. What we want is the following: each
user will share with their friends a token that allows them to
discover them on the different services. If Alice tries to look
up Bob in a PCD but Alice has not been authorized by Bob
to do so, she will learn nothing about Bob’s existence in
any of the services. Conversely, if she has been authorized
and uses the token provided by Bob, she can learn whether
Bob is part of any of the many online services. We call this
an authenticated PCD protocol.

Authenticated PCD. Each service takes on the role of the
database server in Pirmission, while each user can simulta-
neously act as a data producer and a Pirmission client. To
simplify explanations, we will call two specific users Alice
and Bob. Alice will model a new user to a service, who
wishes to determine whether or not another user, Bob, is
also using the service. Alice will query the service, and
depending on a number of factors, will receive either a
negative response, or an identifier which she can use to
communicate with Bob within the service. We describe the
properties we require in the next section.

More formally, an authenticated PCD protocol consists
of a tuple of algorithms (Initialize, Insert, Update, Delete,
Query, Respond, Extract). The first four, described below,
are executed by the server.

• Initialize() → (D, pub), a randomized algorithm that
creates the database D and publishes public information.

9

In our specific construction, the public information is k
hash functions, h1 . . . hk.
• Insert(D,uid, duid, tuid) → D′, a deterministic algo-
rithm that inserts a user (uid, duid, tuid) into D.
• Update(D,uid, duid, tuid)→ D′, a deterministic algo-
rithm that updates data and tuid for uid.
• Delete(D,uid) → D′, a deterministic algorithm which
deletes a user from the database.
The remaining algorithms are similar to Pirmission’s:

• Query(uid, t, pub) → Q, a randomized algorithm exe-
cuted by the client that creates a query for user uid.
• Respond(D,Q)→ e, a randomized algorithm executed
by the server which takes the query provided by the client
and outputs an encrypted response e.
• Extract(e)→ (uid, duid) | ⊥, a deterministic algorithm
executed by the client that returns the data associated with
the queried user if the user is present in the database and
the provided access token was correct, or ⊥ otherwise.

Threat model. Similarly to Pirmission, we allow both users
and services to behave maliciously. Our design does not pre-
vent services from denying service or returning malformed
or false responses, but it does prevent services from learning
information about the users’ friends through their queries.

5.3. Properties

Given a service S, and two users, Alice and Bob, Alice
queries S for the presence of Bob.
1) S cannot identify Bob. Depending on the application,

after the protocol finishes, Alice may need to tell the
application about Bob. In other contexts (e.g., metadata-
private messaging [10, 67]) the users can interact with-
out S learning that they are friends. Formally, for any
PPT adversary A, security parameter λ, for any token
t, and any user IDs uid, uid′ (uid 6= uid′):

Pr[A(Query(uid, t)) = 1]−
Pr[A(Query(uid′, t)) = 1] ≤ negl(λ)

2) S cannot tell if Alice is friends with Bob. For any PPT
adversary A, security parameter λ, and for any t 6= t′:

Pr[A(Query(uid, , t)) = 1]−
Pr[A(Query(uid, t′)) = 1] ≤ negl(λ)

3) If Alice is friends with Bob, and Bob uses S, then Alice
learns that Bob uses S and his data (e.g., Bob’s public
key for the service). If t = tuid and uid ∈ D:

Extract(Respond(Query(uid, t, pub))) = (uid, duid)

4) Alice cannot discover whether Bob uses S unless she
has permission to query him. This is analogous to the
access control guarantee of Pirmission.

5) If Bob terminates his account on S and then becomes
friends with Alice, Alice will not be able to learn that
Bob used S before they were friends. This is analogous

to the forward secrecy property in Pirmission. In this
setting, if Bob terminates his account on S, then:

Pr[Alice guesses Bob used S|Alice has Bob’s token]−
Pr[Alice guesses Bob used S] ≤ negl(λ)

5.4. Construction

At a high level, we first observe that standard PIR is
not a good fit for PCD. The reason is that users have a uid
(phone number, email, etc.) for their friend, but not an index
into some array. Instead, we use PIR by keywords [25] which
allows one to query with an arbitrary identifier rather than an
index; we use a construction based on cuckoo hashing [8].

Initialize and insert. The service S maintains k tables of
users, corresponding to k hash functions h1, h2, . . . hk. S
also maintains k tables of tokens as per Pirmission. For each
user of the service, S hashes their uid with its first hash
function and stores a tuple of the identifier and associated
data in the corresponding location of the first table. When
a collision occurs, the server will replace the original item
in that table with the new item, and move the original item
to the location in the next table, pointed to by the value of
the next hash function.

Update and delete. For updates, S finds to which table and
position the user’s identifier maps, and updates its associated
data and/or token. Deletions are similar except that the data
and token are removed.

Query, respond, and extract. To query for a user with
identifier uid, the client makes k simultaneous queries, one
for each hi(uid). Each of these queries is a Pirmission
query as described in Section 4, although the same encrypted
token is used for all queries. Note that the querier does not
know a priori in which hash table uid is stored; however,
if uid is in the database, one of the queries should return
their information. Further, because the querier submits a
single encrypted token, the remaining queries reveal no
information about other users due to Pirmission’s access
control guarantee.

In Appendix C we show the security of this construction
and discuss a small leakage caused by hash collisions. One
might be able to avoid even this small leakage by leveraging
a recent single-round PIR by keywords proposal [52].

6. Token distribution

Pirmission requires a sub-token for each coefficient in
the BFV polynomial (§4.3), but the client can simply pro-
vide the client and the service a seed to a PRG; both clients
and the service can generate all the sub-tokens from this
seed. One thing to keep in mind is that if a service has
a seed from a user and the user reuses the seed in other
services, then a malicious server can look up the user in
those other services. This can be addressed by deriving a
service-specific seed from a master seed and only giving
each service the service-specific seed. Then, the producer

10

can give the master seed to each client. Clients can then
derive the service-specific seed, use the PRG to obtain the
token, and send the encryption of the token to the service.

Another possibility is for a producer to use a ciphertext-
policy attribute-based encryption scheme [11] to encrypt
one or more seeds under an appropriate policy and publish
these ciphertexts on some Web site or bulletin board. The
producer can then give each client a suitable decryption key.
After this, the producer can update the ciphertexts without
needing to send a message to the data client. Note that the
publication of a ciphertext, and the number of published
ciphertexts, could leak information about how many services
the data producer is using.

7. Implementation

Our implementation of Pirmission builds on SealPIR [1]
but we note that Pirmission’s techniques apply broadly:
they can used with XPIR [4], FastPIR [5], MulPIR [8],
OnionPIR [55], and Spiral [54] to enhance those protocols
with access control. We update SealPIR to support the latest
version of the SEAL homomorphic library (v4.0.0) [2] and
to support symmetric encryption as recommended by Ali
et al. [8] and recursive modulus switching [28]. We also
pack small records into a single BFV plaintext using SEAL’s
BatchEncoder for BFV, which performs the CRT batching
operation described in Section 4.3. We use this updated
and slightly faster SealPIR as our baseline. Adding access
control to SealPIR required fewer than 200 lines of C++
code.

Authenticated PCD. We extend the server in Pirmission to
embed a cuckoo hash table with three hash functions (sim-
ilarly to PIR-PSI [32]) inside its database. We use Pearson
hashing [60] to hash each phone number. In addition to 10-
digit phone numbers, for each user, the database also stores
either a 64-byte or 128-byte string of additional information.
This additional information could contain a public key or
additional profile information. Including a single byte used
for status information, our element size is either 75 or 139
bytes. Our PCD implementation requires 500 lines of code
on top of Pirmission.

8. Evaluation

In this section we evaluate the performance of Pirmission
and authenticated PCD, and compare them to other works
in the literature. We answer three main questions:
• What are the costs of adding access control to PIR?
• How do the guarantees and asymptotic costs of Pirmis-
sion compare to related works?
• What is the performance of our authenticated PCD
implementation, and how does it compare to other works
in terms of costs and guarantees?
We run all of our experiments on an Azure F16s v2

instance (2.60 GHz Intel Xeon Platinum 8272CL CPU and
64 GB) with Ubuntu 20.04. All of our results are on a

single core. PIR is an embarrassingly parallel workload so
performance improves linearly with the number of cores.

Parameters. We instantiate SealPIR and Pirmission with
BFV polynomial degree 4096 (this is the smallest degree
for which SEAL 4.0 supports homomorphic rotations). Note
that SealPIR also uses rotations to compress queries, so
this is not a limitation specific to Pirmission. We configure
SealPIR with a 20-bit plaintext modulus and Pirmission with
a 15-bit plaintext modulus; Pirmission requires the smaller
modulus to ensure that the noise of the extra operations it
performs does not lead to an incorrect result (see Footnote
1 in Section 4.4). Since 15-bits is not enough to prevent
brute force guessing of sub-tokens (§4.4), we boost security
to 60-bits with s = 4 masks; a malicious client without the
token needs to issue over a quintillion PIR queries to learn
the database record. To achieve sublinear communication
both Pirmission and SealPIR represent the database as a 2
dimensional matrix (§4.7), and use SealPIR’s technique [9]
to compress entire vectors. A PIR query is therefore 2
ciphertexts, one for each dimension.

8.1. The cost of access control

We study the overhead of Pirmission over SealPIR when
the database records are small (§4.5) and large (§4.6).

Small records. We let the database consist of small 256
byte records. Small records are common in applications like
messengers that use PIR to hide metadata [5, 10]. Both
systems pack records into as few BFV plaintexts as possible.
Figure 4 tabulates the results.

The time that the server takes to generate a reply with
Pirmission is around 2.8–3× higher than the time needed
by SealPIR. This overhead stems from a few sources: (1)
Pirmission queries two tables, the data table and the token
table; (2) Pirmission uses a smaller plaintext modulus so
it can pack fewer 256-byte records into plaintexts (i.e., the
data table is 25% larger in Pirmission than in SealPIR); and
(3) Pirmission also performs 1 HOMSUB and 4 HOMADD,
HOMROT, and PCMULT to compute the 4 masks.

The query size of Pirmission consists of 3 ciphertexts
(2 for the PIR query and 1 for the encrypted token),
whereas SealPIR’s is only 2 (no token). The response size
of Pirmission is about 50% larger than the response size
of SealPIR. This stems from the lower plaintext modulus
in Pirmission: when Pirmission performs the technique in
Section 4.7, it needs more plaintexts to represent the ci-
phertexts (interpreted as binary blobs) that are produced as
a result of the dot product between D and Qcol. Another
way to say this is that the cryptosystem’s expansion factor
F—which measures the ratio between a ciphertext and the
largest plaintext that can be encrypted in one ciphertext—
is larger when the plaintext modulus is smaller. This factor
impacts the response, which consists of F ciphertexts.

Large records. In this experiment with let the database have
n = 214 large records, each of size k · 7.2 KB, where k is
a parameter that we vary. These records are too large to fit
in a single BFV plaintext and hence both Pirmission and

11

SealPIR
(n = 214)

SealPIR
(n = 216)

SealPIR
(n = 218)

Pirmission
(n = 214)

Pirmission
(n = 216)

Pirmission
(n = 218)

Query Generation (ms) 1 1 1 2 2 2

Reply Generation (ms) 51 115 292 151 345 835

Reply Decode (ms) 1 1 1 1 1 1

Query Size (KB) 93 93 93 139 139 139

Response Size (KB) 185 185 185 278 278 278

Figure 4: Comparison of SealPIR and Pirmission when processing on a database with small records that are each 256 bytes.

SealPIR
(k = 1)

SealPIR
(k = 3)

SealPIR
(k = 6)

Pirmission
(k = 1)

Pirmission
(k = 3)

Pirmission
(k = 6)

Query Generation (ms) 1 1 1 2 2 2

Reply Generation (ms) 1,006 2,473 4,670 1,748 3,404 5,760

Reply Decode (ms) 1 3 7 1 5 10

Query Size (KB) 93 93 93 139 139 139

Response Size (KB) 185 555 1,110 278 1,112 1,668

Figure 5: Comparison of SealPIR to Pirmission, with n = 214 elements each of size k · 7.2 KB. As k increases, elements
become larger and the relative overhead of Pirmission over SealPIR decreases.

SealPIR must use the technique described in Section 4.6.
We give the results in Figure 5.

Unlike the small records experiment, the relative over-
head of Pirmission over SealPIR is only 23% when records
are large (k = 6). This is because SealPIR performs the
dot product between the query and k databases, whereas
Pirmission does so for k+1 databases. Indeed, Pirmission’s
overhead is highest for the k = 1 case. In both systems the
query size remains the same since the same query can be
reused for all k databases, and the response increases by a
factor of k since the client receives a response from each of
those k databases.

8.2. Comparison with other works

We compare Pirmission to two other bodies of work that
combine access control with private queries. We summarize
the difference in Figure 6.

At a high level, the works based on OT provide access
control but they have no notion of database updates or
deletions in their models and have linear communication.
If a producer wishes to update an element, the client needs
to fetch a new copy of the entire encrypted database (expen-
sive!) and the client learns that there is an update—which
is weaker than the guarantee provided by Pirmission.

On the other hand, accredited SPIR [44] supports dele-
tions (but not updates) and has lower communication com-
plexity than Pirmission. However, the concrete costs are
significantly higher—to the point that accredited SPIR is
not usable in practice. Specifically, accredited SPIR relies
on a PIR scheme due to Lipmaa [49] that has no known
implementation and has many practical drawbacks. First,

Lipmaa states that the communication costs of his protocol
are worse than the scheme we give in Figure 1 until N grows
past at least 240. Second, Lipmaa’s PIR scheme requires a
length-flexible additively homomorphic scheme, and Lipmaa
uses Damgård-Jurik [29], a generalization of Paillier [58].
The authors of XPIR [4] found that lattice-based cryptosys-
tems like BFV (the one SealPIR relies on) are orders of
magnitude more efficient than Paillier. More recently, Ali et
al. [8] confirmed that schemes based on Damgård-Jurik are
significantly more expensive than modern PIR schemes like
SealPIR—to the extent that the largest database that they
evaluate has only 2, 000 elements.

8.3. Authenticated Private Contact Discovery

Finally, we evaluate our proposed authenticated PCD de-
sign. To our knowledge, there are no previous PCD schemes
that require users to prove friendship, so we evaluate as
follows. First, we position our design in the context of PCD
designs in general, and authorized PSI designs in particular.
Second, we provide our empirical results.

The majority of PCD schemes use PSI, not PIR. This has
an immediate consequence in that in PSI, the client’s input
is a set of elements, whereas in PIR, it is a single index, or in
the case of batch PIR [9, 10, 38] a fixed number of indexes.
However, in the context of PCD, the sizes of the two sets
are generally very different, as the server’s user database
often dwarfs the size of the client’s contact list. Therefore,
standard PSI schemes, which include communication linear
in the size of the server’s set, are undesirable. Unbalanced
PSI [23, 24], which targets this use case, aims for sublinear
communication in the size of the server’s set. Unbalanced

12

Work Removing
Elements

Updating
Elements

Communication
Complexity

Computation
Complexity

OT-AC [17–19, 68] No No O(n) O(n)

Accredited SPIR [49] Yes No O(log2(n))? O(n)

Pirmission (this work) Yes Yes O(n1/d) O(n)

Figure 6: Comparison of Pirmission to related schemes. d is the dimension of the database’s hypercube representation (§4.1);
for good concrete costs d is usually 2 or 3. ?Concrete costs are orders of magnitude higher than Pirmission’s (see text).

Work Additional
Data

Forward
Secrecy

Communication
Complexity

IBE-PPIT [30] Yes No O(n)

Schnorr-PPIT [30] Yes No O(m · n)

Certified Sets [21] No Yes O(m · n)

RSA-PPIT [30] Yes Yes O(m · n)

PPSIP [31] Yes Yes O(m+ n)

This work Yes Yes O(m · n1/d)

Figure 7: Comparison of our authenticated PCD scheme
with authorized PSI and similar schemes. m is the size of the
user’s contact list and n is the size of the server’s database.

PSI designs generally involve the client making a separate
query for each item in its set, yielding a multiplicative cost
factor in the size of the client’s set. We can do the same thing
with our design by having the client make a query for each
contact. Because we are using PIR, we also get sublinear
communication in the size of the server’s user database.

Note that to our knowledge, there are no unbalanced
PSI constructions which have a notion access control. Con-
sequently, we compare against existing PSIs that do have
access control which are not unbalanced [21, 30, 31]. We
show the properties of these designs in Figure 7. The most
significant difference here is that these designs were not
created with PCD in mind; as a result, they all require
communication linear in the server’s database. In contrast,
our authenticated PCD proposal achieves sublinear commu-
nication. We also wanted to evaluate the concrete costs of
existing PSI with access control designs, but unfortunately,
none of them have implementations.

Concrete costs of authenticated PCD. Finally, we test our
own PCD implementation. We calculate the server’s cost to
look up a single contact in a database with a varying number
of users. Database entries include the user’s identifier in
addition to 64 or 128 bytes of client information (e.g.,
a public key, a URL). We show the setup and response
generation times in Figure 8. We do not show the client’s
query generation times, as it is essentially 10 ms throughout.
As expected, the cost of a contact lookup is essentially
that of making three consecutive Pirmission queries with
an equivalent-sized database.

9. Discussion

Pirmission extends PIR with a notion of access control.
Our motivation is that real databases often need to enforce
restrictions on which clients can access certain elements,
but existing PIR protocols have no mechanism for such
enforcement. One of the lessons we learned in designing
Pirmission is that the privacy requirements are often subtle
(e.g., forward secrecy), and care must be taken to ensure
no information leaks. We see this subtlety also reflected in
another property that Pirmission does not provide: integrity.

Integrity. In settings where a data producer owns the
database and outsources it to some malicious server, in-
tegrity does not hold: the server is free to manipulate the ac-
tual contents of the database. In standard PIR, the producer
could construct a Merkle tree (or a vector commitment)
of the database, publish the root, and store Merkle proofs
alongside each element (i.e., the element at index i consist
of the data and a Merkle proof to the root from leaf i). Then,
when a client fetches an element with PIR, it obtains the data
and a proof to check its authenticity. However, the above
approach does not work if we require our strong access
control property. If a client has access to every element in
the database except one, then by monitoring root changes it
can determine when that one element changes. Maintaining
integrity without leaking any information (not even updates)
is an interesting open question.

Preprocessing.. There are several recent PIR schemes [27,
37, 51, 59, 63] that perform an offline preprocessing phase
whereby clients download hints that they can then use later
to get quicker responses from the server. It is not clear
how to extend these schemes with access control because
the hints that clients download already encode information
about database elements. Hiding the fact that an element
has changed or providing forward secrecy without having
to change the key every time an element is updated seems
hard to do in this regime. It might be that a weaker notion
of access control could be provided for these protocols, and
this could be an interesting avenue of future work.

Acknowledgments

We thank Ryan Henry for a helpful discussion related
to our notion of forward secrecy that led to an improved
definition. We also thank Wei Dai and Yiping Ma for helping
us better understand SEAL’s key switching mechanism in

13

10

100

1,000

10,000

100,000

1,000,000

100 1,000 10,000 100,000

T
im

e
(m

s)

setup (75 bytes) query (75 bytes)

setup (139 bytes) query (139 bytes)

Number of users

Figure 8: Costs for authenticated PCD with 64 bytes of extra
information (75 bytes total, gray lines) and 128 bytes of
extra information (139 bytes total, blue lines). Note that
setup time includes insertion, scales linearly with users, and
is independent of the size of the extra information (the lines
are identical). The response time associated with 128 byte
extra information is about 2× that of 64 bytes.

the presence of maliciously generated Galois keys. Finally,
we thank Srinath Setty and Weidong Cui for helpful con-
versations that improved the presentation of our work.

References

[1] SealPIR: A computational pir library that achieves
low communication costs and high performance.
https://github.com/microsoft/sealpir, 2020.

[2] Simple encrypted arithmetic library — SEAL.
https://github.com/microsoft/SEAL, 2022.

[3] M. Abe, J. Camenisch, M. Dubovitskaya, and
R. Nishimaki. Universally composable adaptive
oblivious transfer (with access control) from standard
assumptions. In Proceedingsinproceedings of the
ACM workshop on Digital identity management, Nov
2013.

[4] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.
Killijian. XPIR: Private information retrieval for
everyone. In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS), July 2016.

[5] I. Ahmad, Y. Yang, D. Agrawal, A. E. Abbadi, and
T. Gupta. Addra: Metadata-private voice
communication over fully untrusted infrastructure. In
15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21), pages
313–329. USENIX Association, July 2021.

[6] W. Aiello, Y. Ishai, and O. Reingold. Priced
oblivious transfer: How to sell digital goods. In
Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 01 2001.

[7] N. Alexopoulos, A. Kiayias, R. Talviste, and
T. Zacharias. MCMix: Anonymous messaging via
secure multiparty computation. In Proceedings of the
USENIX Security Symposium, Aug. 2017.

[8] A. Ali, T. Lepoint, S. Patel, M. Raykova,
P. Schoppmann, K. Seth, and K. Yeo.
Communication–computation trade-offs in PIR. In

Proceedings of the USENIX Security Symposium,
2021.

[9] S. Angel, H. Chen, K. Laine, and S. Setty. PIR with
compressed queries and amortized query processing.
In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), May 2018.

[10] S. Angel and S. Setty. Unobservable communication
over fully untrusted infrastructure. In Proceedings of
the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Nov. 2016.

[11] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-policy attribute-based encryption. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), June 2007.

[12] N. Borisov, G. Danezis, and I. Goldberg. DP5: A
private presence service. In Proceedings of the
Privacy Enhancing Technologies Symposium (PETS),
June 2015.

[13] Z. Brakerski. Fully homomorphic encryption without
modulus switching from classical GapSVP. In
Proceedings of the International Cryptology
Conference (CRYPTO), 2012.

[14] Z. Brakerski, C. Gentry, and S. Halevi. Packed
ciphertexts in LWE-based homomorphic encryption.
In Proceedings of the International Conference on
Practice and Theory in Public Key Cryptography
(PKC), 2013.

[15] Z. Brakerski, C. Gentry, and V. Vaikuntanathan.
(Leveled) fully homomorphic encryption without
bootstrapping. In Proceedings of the Innovations in
Theoretical Computer Science (ITCS) Conference,
Jan. 2012.

[16] Z. Brakerski and V. Vaikuntanathan. Fully
homomorphic encryption from Ring-LWE and
security for key dependent messages. In Proceedings
of the International Cryptology Conference
(CRYPTO), Aug. 2011.

[17] J. Camenisch, M. Dubovitskaya, R. R. Enderlein, and
G. Neven. Oblivious transfer with hidden access
control from attribute-based encryption. In I. Visconti
and R. De Prisco, editors, Security and Cryptography
for Networks, pages 559–579, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[18] J. Camenisch, M. Dubovitskaya, and G. Neven.
Oblivious transfer with access control. In
Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2009.

[19] J. Camenisch, M. Dubovitskaya, G. Neven, and
G. M. Zaverucha. Oblivious transfer with hidden
access control policies. In Proceedings of the
International Conference on Practice and Theory in
Public Key Cryptography (PKC), 2011.

[20] J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy.
Blind and anonymous identity-based encryption and
authorised private searches on public key encrypted
data. In Proceedings of the International Conference
on Practice and Theory in Public Key Cryptography
(PKC), 2009.

14

https://github.com/microsoft/sealpir
https://github.com/microsoft/SEAL

[21] J. Camenisch and G. M. Zaverucha. Private
intersection of certified sets. In Proceedings of the
International Financial Cryptography Conference,
2009.

[22] H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine.
Simple encrypted arithmetic library v2.3.0-4.
https://sealcrypto.org, Dec. 2017.

[23] H. Chen, Z. Huang, K. Laine, and P. Rindal. Labeled
PSI from fully homomorphic encryption with
malicious security. In Proceedings of the ACM
Conference on Computer and Communications
Security (CCS), Oct. 2018.

[24] H. Chen, K. Laine, and P. Rindal. Fast private set
intersection from homomorphic encryption. In
Proceedings of the ACM Conference on Computer
and Communications Security (CCS), Oct. 2017.

[25] B. Chor, N. Gilboa, and M. Naor. Private information
retrieval by keywords. Cryptology ePrint Archive,
Report 1998/003, Feb. 1998.
http://eprint.iacr.org/1998/003.

[26] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In Proceedings of the
IEEE Symposium on Foundations of Computer
Science (FOCS), Oct. 1995.

[27] H. Corrigan-Gibbs and D. Kogan. Private information
retrieval with sublinear online time. In Proceedings
of the International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), May 2020.

[28] A. Costache, K. Laine, and R. Player. Evaluating the
effectiveness of heuristic worst-case noise analysis in
fhe. Cryptology ePrint Archive, Report 2019/493,
2019. https://ia.cr/2019/493.

[29] I. Damgård, M. Jurik, and J. Nielsen. A
generalization of paillier’s public-key system with
applications to electronic voting. International
Journal of Information Security, 9:371–385, 04 2003.

[30] E. De Cristofaro, S. Jarecki, J. Kim, and G. Tsudik.
Privacy-preserving policy-based information transfer.
In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS), June 2009.

[31] E. De Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear complexity. In
Proceedings of the International Financial
Cryptography and Data Security Conference, Jan.
2010.

[32] D. Demmler, P. Rindal, M. Rosulek, and N. Trieu.
PIR-PSI: Scaling private contact discovery. In
Proceedings of the Privacy Enhancing Technologies
Symposium (PETS), July 2018.

[33] J. Fan and F. Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive,
Report 2012/144, Mar. 2012.
https://eprint.iacr.org/2012/144.pdf.

[34] M. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In Proceedings
of the International Conference on the Theory and
Applications of Cryptographic Techniques

(EUROCRYPT), June 2004.
[35] C. Gentry, S. Halevi, and N. P. Smart. Fully

homomorphic encryption with polylog overhead. In
Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), Apr. 2012.

[36] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin.
Protecting data privacy in private information
retrieval schemes. In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing,
STOC ’98, page 151–160, New York, NY, USA,
1998. Association for Computing Machinery.

[37] A. Henzinger, M. M. Hong, H. Corrigan-Gibbs,
S. Meiklejohn, and V. Vaikuntanathan. One server for
the price of two: Simple and fast single-server private
information retrieval. Cryptology ePrint Archive,
Paper 2022/949, 2022.
https://eprint.iacr.org/2022/949.

[38] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai.
Batch codes and their applications. In Proceedings of
the ACM Symposium on Theory of Computing
(STOC), June 2004.

[39] D. Kales, C. Rechberger, T. Schneider, M. Senker,
and C. Weinert. Mobile private contact discovery at
scale. In Proceedings of the USENIX Security
Symposium, USA, 2019.

[40] A. Kirsch, M. Mitzenmacher, and U. Wieder. More
robust hashing: Cuckoo hashing with a stash. SIAM
J. Comput., 39(4):1543–1561, dec 2009.

[41] A. Kiss, J. Liu, T. Schneider, N. Asokan, and
B. Pinkas. Private set intersection for unequal set
sizes with mobile applications. Proceedings on
Privacy Enhancing Technologies, 2017, 10 2017.

[42] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: Single database, computationally-private
information retrieval. In Proceedings of the IEEE
Symposium on Foundations of Computer Science
(FOCS), Oct. 1997.

[43] A. Kwon, D. Lu, and S. Devadas. XRD: Scalable
messaging system with cryptographic privacy. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2029.

[44] M. Layouni. Accredited symmetrically private
information retrieval. In Advances in Information and
Computer Security, 2007.

[45] M. Layouni, M. Yoshida, and S. Okamura. Efficient
multi-authorizer accredited symmetrically private
information retrieval. In Information and
Communications Security, 2008.

[46] D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke:
Distributed private messaging immune to passive
traffic analysis. In Proceedings of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2018.

[47] D. Lazar, Y. Gilad, and N. Zeldovich. Yodel: Strong
metadata security for voice calls. In Proceedings of
the ACM Symposium on Operating Systems
Principles (SOSP), 2019.

15

https://sealcrypto.org
http://eprint.iacr.org/1998/003
https://ia.cr/2019/493
https://eprint.iacr.org/2012/144.pdf
https://eprint.iacr.org/2022/949

[48] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and
H. Wang. Adaptive oblivious transfer with access
control from lattice assumptions. In International
Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT),
2017.

[49] H. Lipmaa. An oblivious transfer protocol with
log-squared communication. In Information Security,
2005.

[50] V. Lyubashevsky, C. Peikert, , and O. Regev. On
ideal lattices and learning with errors over rings. In
Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), May 2010.

[51] Y. Ma, K. Zhong, T. Rabin, and S. Angel.
Incremental offline/online PIR. In Proceedings of the
USENIX Security Symposium, Aug. 2022.

[52] R. A. Mahdavi and F. Kerschbaum. Constant-weight
pir: Single-round keyword pir via constant-weight
equality operators. In Proceedings of the USENIX
Security Symposium, 2022.

[53] M. Marlinspike. Technology preview: Private contact
discovery for Signal.
https://signal.org/blog/private-contact-discovery/,
Sept. 2017.

[54] S. J. Menon and D. J. Wu. Spiral: Fast, high-rate
single-server PIR via FHE composition. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), May 2022.

[55] M. H. Mughees, H. Chen, and L. Ren. Onionpir:
Response efficient single-server pir. In Proceedings
of the ACM Conference on Computer and
Communications Security (CCS), 2021.

[56] M. Naor and B. Pinkas. Oblivious transfer and
polynomial evaluation. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), 1999.

[57] A. Nilsson, P. N. Bideh, and J. Brorsson. A survey of
published attacks on intel sgx, 2020.

[58] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Proceedings
of the International Conference on the Theory and
Applications of Cryptographic Techniques
(EUROCRYPT), May 1999.

[59] S. Patel, G. Persiano, and K. Yeo. Private stateful
information retrieval. In Proceedings of the ACM
Conference on Computer and Communications
Security (CCS), 2018.

[60] P. K. Pearson. Fast hashing of variable-length text
strings. Communications of the ACM, 33(6):677–680,
June 1990.

[61] M. O. Rabin. How to exchange secrets with
oblivious transfer. Cryptology ePrint Archive, Report
2005/187, 2005. https://ia.cr/2005/187.

[62] A. Sahai and B. Waters. Fuzzy identity-based
encryption. In Proceedings of the International
Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2005.

[63] E. Shi, W. Aqeel, B. Chandrasekaran, and B. Maggs.

Puncturable pseudorandom sets and private
information retrieval with near-optimal online
bandwidth and time. In Proceedings of the
International Cryptology Conference (CRYPTO),
Aug. 2021.

[64] N. P. Smart and F. Vercauteren. Fully homomorphic
SIMD operations. Designs, codes, and cryptography,
71(1), 2014.

[65] J. P. Stern. A new and efficient all-or-nothing
disclosure of secrets protocol. In International
Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT),
Oct. 1998.

[66] A. Vadapalli, K. Storrier, and R. Henry. Sabre:
Sender-anonymous messaging with fast audits. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2022.

[67] J. van den Hooff, D. Lazar, M. Zaharia, and
N. Zeldovich. Vuvuzela: Scalable private messaging
resistant to traffic analysis. In Proceedings of the
ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2015.

[68] Y. Zhang, M. H. Au, D. S. Wong, Q. Huang,
N. Mamoulis, D. W. Cheung, and S.-M. Yiu.
Oblivious transfer with access control: Realizing
disjunction without duplication. In Proceedings of the
International Conference on Pairing-Based
Cryptography, 2010.

Appendix A.
Effect of malicious Galois keys

In Section 4.4 we discuss how Pirmission uses rotations
to cause each entry in the plaintext Ti − t, where Ti is the
token at index i and t is the client’s guess (both of which
are 2-by-N/2 matrices), to contribute to different entries in
each of the masks of Di (d1, . . . , ds). One might wonder
whether specifying a bad Galois key can lead to the fol-
lowing behavior (please see Figure 3 for the accompanying
pseudocode).

Assume we have two operations Rot(c, j) and
KeySwitch(c, gk), such that HOMROT is Rot followed
by KeySwitch, and gk is the Galois key provided by the
client. As a simplified example, let us assume that we have
N = 4 and p = 11. Note that this parameter choice is
technically invalid since p 6≡ 1 (mod 2N) but the smallest
valid parameter setting requires matrices with 8 entries
which is far too verbose and it obscures the point we want

16

https://signal.org/blog/private-contact-discovery/
https://ia.cr/2005/187

to highlight. Let:

Ti =

[
1 3
5 8

]
t =

[
6 7
3 4

]
d1 = Encpk(Ti − t) = Encpk

([
6 7
2 4

])
tmp = Rot(d1, 1) = Encpk′

([
7 6
4 2

])
d2 = KeySwitch(tmp, gk)

The question is whether a bad gk can cause d2 to encrypt[
v1 v2
v3 v4

]
where at least one of v1, . . . , v4 is chosen by the client

(i.e., the client has control and knows what this value is).
Notice that if the client could do that, then a trivial attack is
to set one (or all) of these values to 0, so those entries will
contribute nothing as a mask during Line 11 in Figure 3.

This is not possible. The reason is as follows.
Assume that d1 requires secret key sk to be decrypted

(sk is generated by the client during KeyGen, see Sec-
tion 3.1). Assume tmp requires secret key sk′ for de-
cryption. Let us look deeper at the structure of tmp: it
actually consists of two polynomials (tmp[0], tmp[1]) since
ciphertexts in BFV [13, 33] are elements in a different
polynomial ring than the plaintexts and usually consist of
two or more polynomials per ciphertext. Galois keys are
symmetric encryptions of sk′ (to be precise, the data of sk′
in a different form) under sk. KeySwitch is basically the
homomorphic evaluation of decryption tmp[0]+tmp[1] ·sk′
under sk. Since the client provides the Galois key, we can
define sk′ to be whatever the Galois key gk is decrypted to
with secret key sk. A malicious client can only affect sk′
since that is all of the information provided by gk: tmp[0]
and tmp[1] are both computed by the server independently
of gk (i.e., Rot does not require any client-supplied value).
To get d2 to encrypt a matrix with all/some zeros (or some
other value v), the client needs to know what tmp encrypts
(which is a permutation of Ti − t) so that it can put the
information of Ti− t into the Galois key to affect the result.

Another way to think about this is the following. If some
bad Galois key provided by the client make d2 become all
zeros when

Ti − t =
[

6 7
2 4

]
then the same Galois key will not make d2 become all zeros
when

Ti − t =
[

2 3
4 5

]
Not only is trying to brute force the Galois key morally

equivalent to brute forcing t in the first place, in existing
PIR schemes the client specifies the Galois key once and

this key is reused over many PIR queries to amortize the
cost of transferring the Galois key.

Note that this does not mean that the client cannot pro-
vide a bad Galois key—it can. But doing so will just cause
d2 to have entries not under the control of the client, and
whenever these entries are non-zero they will be multiplied
by a random plaintext in Line 11 of Figure 3; the uniform
random mask will still be applied.

Appendix B.
Access control and sublinear communication

Pirmission can perform the access control and mask-
ing when the data table is expressed as a 2-dimensional
matrix. In this case, Pirmission only needs to perform the
masking once right after the matrix-multiplication between
D and Qcol that produces Ej . To do so, Pirmission also
represents the token table T as a matrix, and performs
the matrix-multiplication between T and Qcol. The result
is a vector P that contains encryptions of the elements
in the j-th column of T . Then, the server homomorphi-
cally subtracts the client’s encrypted token Encpk(t) from
each of the entries in P . The server then samples some
random BFV plaintext r ∈ M, and multiplies it with the
result of each subtraction. Notice that if the token is the
correct token for the element in row i and column j, then
P ′i = PCMULT(r,HOMSUB(Pi,Encpk(t))) = Encpk(0); it
will be some random value otherwise. All other entries in P ′
will also contain the encryption of a random BFV plaintext
(assuming the token provided by the client does not match
any of the tokens in those other entries).

Finally, the server homomorphically adds P ′ and Ej
entry-wise. At this point Ej will contain encryptions of
random elements in all positions except for those for which
the token was correct. When the server then performs the
dot product between Qrow and Ej (as described in Sec-
tion 4.7) it will either result in an encryption of Di,j or
some uniformly random value in the plaintext space.

Generalization. The above protocol can be generalized
to more than 2 dimensions by structuring the data and
token tables as a d-dimensional hypercube and having the
client issue d queries, each of size n1/d. Note that after
processing a query against each dimension the size of the
response grows exponentially since every time the resulting
vector of ciphertexts needs to be split into k chunks to be
processed in the next dimension. Most prior works stick to
d = 2. Regardless, the key point is that the masking is only
performed once right after the first dimension: the masking
either has no impact on the values (if the token is correct)
or erases all signal so there is no need for further masking
in the remaining dimensions.

Appendix C.
Leakage of authenticated PCD

There are two sources of “leakage” in our proposed
authenticated PCD design. However we think neither one

17

represents a significant threat to the privacy of the client
or of the users in the database. The first happens in the
following situation: suppose that Alice queries for her friend
Bob, and finds the correct response in the first hash table.
Some time later, Alice queries for Bob again, and the correct
response has moved to the second hash table. Alice then
learns that there is at least one user in the table whose
identifier hashes to the same value as Bob’s identifier under
h1. Either this user was just added or another user was added
which led to the eventual displacement of Bob. Therefore,
we can not argue indistinguishability of two user databases
over time, because an adversary can generate situations in
which this happens. The second source of leakage is similar:
because we are not using a stash with cuckoo hashing, the
probability of an insertion causing a cycle in the cuckoo hash
table is not negligible. Whenever this happens, the table has
to be rebuilt with new hash functions, and this is visible to
all clients.

Here is a concrete attack that gives an adversarial client
Alice information about whether or not a user Bob, who
she is not friends with, is using the service. For each
of the k hash functions, Alice creates three users of the
form Ui,j with 1 < i ≤ 3 and 1 < j ≤ k such that
hj(Ui,j id) = hj(Bob id). If this does not trigger a rebuild
of the database, then Alice knows that Bob was not using the
service. Otherwise, Bob might have been using the service.

We can make the probability of a rebuild negligible by
adding a stash s [40]. If an insertion would cause a cycle,
then the offending element will be added to the stash. si
will refer to the i − th element of the stash and sTi will
refer to the corresponding token. A client query will then
consist of k Pirmission queries and one encrypted token,
Ek(t

′). In addition to the k responses, the database server
will also compute (sTi −Ek(t′)) · ri + si for each element
of the stash and random elements ri. The database will
return these |s| values to the user, who can decrypt and
check each one, but will only be able to read the element
which matched the encrypted token. This addition of the
stash does not affect the query size at all, adds |s| additional
ciphertexts to the response size and a corresponding amount
of server computation. For our desired database sizes and
security parameters, |s| can be very small, only around 10
elements [40].

However, even with the stash, a client still learns when
an insertion causes one of their friends to move tables or
move to the stash. This can still leak information about users
who the client is not friends with. Further, even if we require
that all insertions be done before all queries, a similar form
of leakage is present. As an example, consider a cuckoo hash
table with two tables consisting of two slots each, T1 = 0, 1
and T2 = 2, 3. Call the two hash functions h1 and h2 and
consider two users, A and B. Let h1(A) = h1(B) = 0,
h2(A) = 2 and h2(B) = 3. Consider an alternative set of
users A′ and B′ with h1(A′) = 0, h1(B′) = 1, h2(A′) = 2,
and h2(B′) = 3. Even if we randomize the order in which
we insert users and the order in which we apply the hash
functions, the distributions of the final location of user A
(A′) will be distinguishable.

C.1. Security

Next, we justify the security properties of our system.
Properties (1) and (2) concern the privacy of the client and
properties (4) and (5) concern the security of the server,
which Pirmission partially achieves.

Client privacy. This follows directly from the security of
Pirmission. The only difference is in this case we have one
encrypted token and three encrypted query vectors.

Server security. Here, we must be more careful. In our ideal
server for Pirmission, we could assume that a client would
not learn any unauthorized information as long as it queried
an element to which it was granted access. As we discuss
in Section C, this is not true when we introduce the cuckoo
hash table, as a client learns additional information in the
slot in which their friend is located. However, the adversary
still can only ever learn information when they query for
one of their friends. If we bound the number of friends to
be � n, then in the worst case the adversary can only learn
about users who hash to the same slots as the adversary’s
friends.

We note that a recent single-round PIR by keyword
protocol [52] does not rely on Cuckoo hashing and can avoid
this issue altogether. We plan to update our implementation
with this new protocol to avoid all leakage.

18

	1 Introduction
	2 Background and related work
	3 Setting and threat model
	3.1 Setting
	3.2 Properties
	3.3 Threat Model

	4 PIR with Access Control
	4.1 Single-server PIR
	4.2 Adding access control
	4.3 Guaranteeing the correctness of the mask
	4.4 Preventing brute force guessing of tokens
	4.5 Supporting small database records
	4.6 Supporting large database records
	4.7 Achieving sublinear communication

	5 Authenticated PCD
	5.1 Private Contact Discovery (PCD)
	5.2 Vision and model
	5.3 Properties
	5.4 Construction

	6 Token distribution
	7 Implementation
	8 Evaluation
	8.1 The cost of access control
	8.2 Comparison with other works
	8.3 Authenticated Private Contact Discovery

	9 Discussion
	Appendix A: Effect of malicious Galois keys
	Appendix B: Access control and sublinear communication
	Appendix C: Leakage of authenticated PCD
	C.1 Security

