
On NTRU-ν-um Modulo XN − 1

Marc Joye

August 22, 2022

Abstract

NTRU-ν-um is a fully homomorphic encryption schemes making
use of NTRU as a building block. NTRU-ν-um comes in two versions:
a first instantiation working with polynomials modulo XN − 1 with
N a prime [cyclic version] and a second instantiation working with
polynomials modulo XN+1 with N a power of two [negacyclic version].

This report shows that the cyclic version of NTRU-ν-um is not
secure. Specifically, it does not provide indistinguishability of encryp-
tions. More critically, the scheme leaks the underlying private LWE
keys. Source code for mounting the attacks is provided. The attacks
were practically validated on the given parameter sets.

Keywords: NTRU-ν-um · Fully homomorphic encryption · Key recovery
attack

1 NTRU-ν-um

We start with a brief description of the cyclic version of NTRU-ν-um (read
NTRUnium) and refer to the original paper [Klu22] for further details. The
scheme relies on the NTRU problem [HPS98].

Let Rq = (Z/qZ)[X]/(XN − 1) with N prime. Following [Klu22], an
NTRU sample is a polynomial c ∈ Rq of the form

c← e1

f
+ e2 + µ

1

where
f∈ Rq is the private key

e1, e2 ∈ Rq are error polynomials

µ ∈ Rq is the encoding of a cleartext m

such that

• f is invertible in Rq and has random coefficients (uniformly) chosen
in {−1, 0, 1};

• e1 and e2 are drawn according to some distributions;

• µ = ∆m with ∆ = q/p for some p | q and m ∈ Rp.

The decryption of c proceeds in three steps as:

1. Compute in Rq polynomial d← cf= e1 + e2f+ µf;

2. Rescale and round d to get d̄∈ Rp as d̄← ⌈d/∆⌋ (mod p);

3. Multiply in Rp by f−1 and return m← d̄f−1.

Remark 1. Letting e= e1 + e2f, correctness of the decryption requires
that ∥e∥∞ < ∆/2.

Example parameters Taken from [Klu22, Sect. 5], suggested parameters
are q = 2Q with 30 ⩽ Q ⩽ 42, p = 2P with 4 ⩽ P ⩽ 11, and N ∈
{2039, 4093, 8191, 16381} (primes).

2 Analysis

The blind rotation used in NTRU-ν-um as part of the (programmable)
bootstrapping procedure takes as inputs an LWE ciphertext c ∈ (Z/NZ)n+1

and a collection of n bootstrapping keys, and outputs an NTRU ciphertext
c′ ∈ Rq. Each bootstrapping key is a ‘gadget’ NTRU-type encryption of a
key digit of the LWE secret key. Specifically, given parameters B and ℓ such
that Bℓ | q, the bootstrapping key corresponding to key digit si ∈ {0, 1} is
given by

bsk[i]←
(
NTRU(si B

j)
)
0⩽j⩽ℓ−1

∈ (Rq)
ℓ

for 1 ⩽ i ⩽ n. An inspection of [Klu22, Theorem 1] indicates that the
variance of the noise present in the output ciphertext has a term proportional

2

to the variance of the noise present in the input bootstrapping keys; the
expansion factor being given by

ρ = 1
12

nNℓ (B2 − 1) .

Applied to the parameter sets with binary LWE keys in [Klu22, Table 1],
this yields

Table 1: Binary LWE keys

q N
√
ρ

NTRU-ν-um-C-11-B 230 211 − 9 215.64

NTRU-ν-um-C-12-B 238 212 − 3 218.14

NTRU-ν-um-C-13-B 241 213 − 1 219.68

NTRU-ν-um-C-14-B 242 214 − 3 220.23

A similar analysis can be done for ternary LWE keys. In this case,
expansion factor ρ has an extra multiplicative factor of 2 (again see [Klu22,
Theorem 1]). Applied to the parameter sets with ternary LWE keys in [Klu22,
Table 1], this leads to

Table 2: Ternary LWE keys

q N
√
ρ

NTRU-ν-um-C-11-T 230 211 − 9 214.40

NTRU-ν-um-C-12-T 238 212 − 3 220.46

NTRU-ν-um-C-13-T 242 213 − 1 220.20

NTRU-ν-um-C-14-T 242 214 − 3 220.70

In all cases, if σbsk denotes the standard deviation of the noise in the
bootstrapping keys then the noise in a ciphertext c′ resulting from the blind
rotation has a standard deviation which is lower-bounded by

√
ρ ·σbsk. That

noise should not “touch” the underlying cleartext, as otherwise decryption
would not be possible. In particular, this requires

√
ρ · σbsk ≪ ∆/2 (cf.

Remark 1), which limits the size of σbsk for the parameter sets of Tables 1
and 2.

3 Attacks

In this section, we exhibit two attacks against NTRU-ν-um modulo XN − 1.
The first attack is a general ciphertext-only attack that breaks the semantic

3

security of NTRU-ν-um encryption from mildly noisy ciphertexts. The
second attack targets NTRU-ν-um as a fully homomorphic encryption. It
builds on the knowledge of the bootstrapping keys. This second attack is a
total break as it uncovers the underlying LWE private keys.

3.1 A General Attack from Mildly Noisy Ciphertexts

Quotient polynomial XN − 1 factors as (X − 1)ΦN(X) where ΦN(X) =∑N−1
i=0 Xi. Importantly, since X−1 divides XN−1, an NTRU sample verifies

cf≡ e1 + e2f︸ ︷︷ ︸
=e

+µf (mod (q, X− 1))

or, equivalently,

c(1)f(1) ≡ e1(1) + e2(1)f(1)︸ ︷︷ ︸
=e(1)

+µ(1)f(1) (mod q) . (1)

The right-hand side of Equation (1) contains two terms. First, there is
an error term, e(1) = e1(1) + e2(1)f(1). Letting e := e(X) =

∑N−1
i=0 ei X

i

with E[ei] = 0 and Var(ei) = σ2, it turns out that E[e(1)] = 0 and

Var(e(1)) = Var
(∑N−1

i=0 ei
)

= Nσ2 . (2)

The second term in Equation (1), µ(1)f(1), satisfies

µ(1)f(1) mod q = ∆m(1)f(1) mod q

= ∆ ·
(
m(1)f(1) mod p

)
. (3)

A useful observation Another way to look at Equation (1) is to view c(1) ∈
Z/qZ as an NTRU encryption with N = 1 of cleartext m(1) ∈ Z/pZ. This
is a valid ciphertext, provided that the corresponding noise e(1) ∈ Z is
smaller (in absolute value) than ∆/2. Schematically, together with Eq. (3),
we have:

µ∗(1) =

m(1) e(1)

Figure 1: Noisy plaintext µ∗(1) = ∆m(1) + e(1) ∈ Z/qZ matching valid
ciphertext c(1) = µ∗(1)

f(1)
∈ Z/qZ, where e(1) = e1(1) + e2(1)f(1).

4

We call ‘mildly noisy’ an NTRU sample c ∈ Rq whose noise e ∈ R

satisfies
∥e∥∞ ≪ ∆

2
√
N

.

Informally, this means more than log2

√
N bits following (each coefficient

of) cleartext message m are “clean”; that is, are unaffected by the noise.
Such a ciphertext is a valid ciphertext modulo X− 1 and underlies, modulo
X− 1, a noisy plaintext µ∗(1) as illustrated in Fig. 1.

The notion of mildly noisy ciphertexts suggests the following attack.
The noise e(1), seen as a signed integer, is such that |e(1)|≪ ∆/2. In the
representation of µ∗(1) mod q, as can be seen in Fig. 1, this implies that
the two bits following m(1) must be 00 or 11. The configurations 01 or 10
are not possible. Furthermore, since private key f(X) =

∑N−1
i=1 fi X

i with
fi ∈ {−1, 0, 1}, the norm of its evaluation at 1 is upper-bounded by N. In
other words, f(1), seen as a signed integer, lies in {−N, . . . ,N}. The value
of f(1) is unknown but can be searched exhaustively.

For each candidate value for f(1) ∈ {0, . . . ,N}, one checks whether
c(1)f(1) mod q (= µ∗(1) mod q) has 01 or 10 for its two bits following the
cleartext position. If so, the tested candidate value for f(1) is disregarded.
The operation is repeated with another mildly noisy ciphertext until a single
candidate for f(1) remains. If we call F1 this unique candidate then the
correct value for f(1) is ±F1 (mod q)—the test does not permit to recover
the sign. To make the test more selective, extra noise can be increasingly
added to mildly noisy ciphertexts c prior to applying the test. In practice,
for typical parameters, about 10 ciphertexts suffice to recover the value of
±f(1). Once this value is known, ciphertexts in NTRU-ν-um can easily be
distinguished.

The scheme is therefore not semantically secure in the case mildly noisy
ciphertexts are known and made available to an attacker.

Remark 2. A GP-Pari implementation of the above attack is given in
appendix; see findkeyat1().

Variants There are several possible variants of the presented attack. For
example, instead of adding extra noise for more effectiveness, one can test
whether the resulting configurations are different from 000 or 111, and so
on for increasingly longer sequences of 0 and of 1.

The knowledge of a pair of cleartext/ciphertext allows the resolution of
the ambiguity on the sign of f(1).

5

When several pairs of cleartext/ciphertext are available, another way
to discriminate a candidate value for f(1) is to check whether or not the
ciphertext correctly decrypts modulo X − 1. The attacks can also be
combined.

3.2 A Key Recovery Attack against NTRU-ν-um

The evaluation keys in a fully homomorphic encryption scheme are public
keys for operating over encrypted data. In the case of NTRU-ν-um, they
consist of bootstrapping keys and of key-switching keys.

As seen in Section 2, given a binary LWE key s = (s1, . . . , sn) ∈ {0, 1}n,
the bootstrapping keys are NTRU-type encryptions of bits si (and of si Bj).
Ternary LWE keys s′ ∈ {−1, 0, 1}n can be expressed as the difference of two
binary strings: s′ = s(1) − s(2) where s(1), s(2) ∈ {0, 1}n [MP21]. In this
case, the bootstrapping keys are NTRU-type encryptions of bits s

(l)
i (and

of s(l)i Bj) for l ∈ {1, 2}.
A bit β ∈ {0, 1}—and in particular a key bit of an LWE key—is repre-

sented as a degree-0 plaintext µ(X) = ∆β, and thus µ(1) = ∆β. Decrypting
the corresponding NTRU ciphertext modulo X− 1 is therefore enough to
recover the value of β using key f(1). This supposes however that the
corresponding ciphertext is mildly noisy.

The analysis in Section 2 concludes that the noise in a bootstrapping
key cannot be too large. Specifically, the standard deviation should be such
that σbsk ≪ ∆

2
√
ρ

for some ρ > N, and so

σbsk ≪
∆

2
√
N

.

As a result, the NTRU-ν-um bootstrapping keys are mildly noisy ciphertexts,
which, as we have demonstrated, leaks the value of f(1). Moreover, as the
bootstrapping keys contain encryptions of LWE key bits, these LWE key
bits can be recovered using f(1). This in turn leads to the full recovery of
the LWE private key.

4 Concluding Remarks

Working modulo XN − 1 in NTRU-ν-um presents the convenient property
that XN = 1, which simplifies the mechanism of programmable bootstrap-
ping. This work unfortunately shows that this results in an insecure setting.

6

NTRU-ν-um also has a variant modulo XN + 1 with N a power of two.
The attacks presented in this report do not apply in this case—note that
polynomial XN + 1 is irreducible when N is a power of two. This negacyclic
version of NTRU-ν-um should nevertheless be used with caution. The
parameter selection in NTRU is quite tricky; in particular, NTRU is known
to have its security decreasing in the so-called ‘overstretched’ regime—that
is, when modulus q is much larger than degree N [ABD16, KF17]. An
improved analysis in [DvW21] concretely settles the NTRU fatigue point at
q ≈ 0.004N2.484. It has to be noted that all the parameter sets suggested
for NTRU-ν-um largely exceed the fatigue point.

References

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice
attack on overstretched NTRU assumptions. In M. Robshaw
and J. Katz, editors, Advances in Cryptology – CRYPTO
2016, Part I, volume 9814 of Lecture Notes in Com-
puter Science, pages 153–178. Springer, 2016. doi:10.1007/
978-3-662-53018-4_6.

[DvW21] Léo Ducas and Wessel P. J. van Woerden. NTRU fatigue: How
stretched is overstretched? In M. Tibouchi and H. Wang, editors,
Advances in Cryptology – ASIACRYPT 2021, Part IV, vol-
ume 13093 of Lecture Notes in Computer Science, pages 3–32.
Springer, 2021. doi:10.1007/978-3-030-92068-5_1.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU:
A ring-based public key cryptosystem. In J. P. Buhler, editor,
Algorithmic Number Theory Symposium (ANTS-III), volume
1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1198. doi:10.1007/BFb0054868.

[KF17] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks
on overstretched NTRU parameters. In J.-S. Coron and J. B.
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,
Part I, volume 10210 of Lecture Notes in Computer Science,
pages 3–26. Springer, 2017. doi:10.1007/978-3-319-56620-7_1.

7

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-56620-7_1

[Klu22] Kamil Kluczniak. NTRU-ν-um: Secure fully homomorphic en-
cryption from NTRU with small modulus. Cryptology ePrint
Archive, Report 2022/089, 2022. https://ia.cr/2022/089.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-
like cryptosystems. In M. Brenner et al., editors, 9th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography
(WAHC 2021), pages 17–28. ACM Press, 2021. doi:10.1145/
3474366.3486924.

[PAR22] The PARI Group, Univ. Bordeaux. PARI/GP version 2.13.4,
2022. Available from http://pari.math.u-bordeaux.fr/.

8

https://ia.cr/2022/089
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/3474366.3486924
http://pari.math.u-bordeaux.fr/

A Code

Below is an implementation of the attacks. They are developed with the
computer algebra system PARI/GP [PAR22].

PREC = 2^30; \\ default precision (i.e., modulus q)
MSG = 2^4; \\ default message precision (i.e., modulus p)
STDEV = 2^-25; \\ default standard deviation (torus notation)
DIM = 2039; \\ default N (prime)

/* --
General functions

-- */
\\ Draws at random an element in N(0,sd^2) using Box -Muller method ,
\\ and converts it as an integer in Z/qZ
nrandom(q = PREC , sd = STDEV) = {

my(X);
X = sqrt(-2*log(random (1.)))* cos (2*Pi*random (1.));
return(Mod(round(q*sd*X),q));

}

\\ Computes the inverse of a polynomial f in (Z/qZ)[X]/(X^N - 1)
polinv2(f) = {

my(i, q, l, g);
q = polcoef(lift(f),0).mod; l = valuation(q,2);
g = Mod(1 ,2)*f; g = liftall (1/g); g = Mod(1,q)*Mod(g,f.mod);
for(i=2, l,

g = g*(2 - f*g);
);
return(g);

}

/* --
NTRUnium

-- */
\\ Generates private key f
NTRUnium_keygen(N = DIM , q = PREC) = {

my(i, f);
f = Polrev(vector(N, i, random (3) - 1));
return(Mod(1,q)*Mod(f, x^N - 1));

}

\\ Encodes a message m in (Z/pZ)[X]/(X^N - 1) as an
\\ element mu in (Z/qZ)[X]/(X^N - 1)
NTRUnium_encode(m, q = PREC) = {

my(p, mu);
p = polcoef(lift(m),0).mod;
mu = q/p*liftall(m);
return(Mod(1,q)*Mod(mu ,m.mod));

}

\\ Encrypts encoded message mu with key f
NTRUnium_encrypt(f, mu , sd = STDEV) = {

my(i, q, N, e1, e2, finv);
q = polcoef(lift(f),0).mod; N = poldegree(f.mod);
e1 = sum(i=0, N-1, nrandom(q,sd)*x^i);
e2 = sum(i=0, N-1, nrandom(q,sd)*x^i);
finv = polinv2(f);
return(e1*finv + e2 + mu);

}

9

\\ Decrypts ciphertext c with key f
NTRUnium_decrypt(f, c, p = MSG) = {

my(q, d, finv);
q = polcoef(lift(c),0).mod;
d = liftall(c*f); d = round(d*p/q); d = Mod(1,p)*Mod(d,f.mod);
f = Mod(1,p)*f; finv = polinv2(f);
return(d*finv);

}

/* --
Attacks

-- */
findkeyat1(keylist = [], sd = STDEV , N = DIM , q = PREC , p = MSG) = {

if(keylist == [], keylist = vector(N,i,i));
cont = 1;
while(cont ,

print("-> ", #keylist);
m = Mod(1,p)*Mod(sum(i=0,N-1, random(p)*x^i), x^N - 1);
mu = NTRUnium_encode(m, q);
c = NTRUnium_encrypt(f, mu , sd);
C1 = subst(lift(c),x,1);
potlist = [];
for(i=1, #keylist ,

tmp = lift(C1*keylist[i]);
tau = 2^2;
tmp = bitand(tmp ,(tau -1)*q/(tau*p));
tmp = tau*p*tmp/q;
potkey = ((tmp ==0) || (tmp ==3));
if(potkey , potlist = concat(potlist ,i));

);
tt = #keylist;
keylist = vecextract(keylist , potlist);
cont = (# keylist < tt);

);
return(keylist);

}

keybitreco(F1 , sd = STDEV , N = DIM , q = PREC , p = MSG) = {
beta = Mod(1,p)*Mod(random (2), x^N - 1);
mu = NTRUnium_encode(beta , q);
c = NTRUnium_encrypt(f, mu , sd);
C1 = subst(lift(c),x,1);
d = liftall(C1*F1); d = Mod(1,p)*round(d*p/q);
betap = d/lift(F1);
ok = (betap == lift(beta));
return(ok);

}

setup(N = DIM , q = PREC , p = MSG) = {
ok = 0;
until(ok ,

f = NTRUnium_keygen(N, q);
tmp = iferr(finv = polinv2(f), E, E);
ok = (type(tmp) != "t_ERROR "));

F1 = centerlift(subst(lift(f),x ,1));
return(F1);

}

10

	NTRUnium
	Analysis
	Attacks
	A General Attack from Mildly Noisy Ciphertexts
	A Key Recovery Attack against NTRUnium

	Concluding Remarks
	Code

