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Abstract. This work explores several architectural optimizations to report a fast
and area-time (AT) product efficient hardware accelerator for a lattice based Key
Encapsulation Mechanism (KEM) scheme called the CRYSTALS-KYBER. Kyber
was recently chosen as the first quantum resistant KEM scheme for standardisation,
after three rounds of the National Institute of Standards and Technology (NIST)
initiated NIST PQC competition for the search of the best quantum resistant KEMs
and digital signatures (started in 2016). Kyber is based on Module-Learning with
Errors (M-LWE) class of Lattice-based Cryptography, that is known to manifest
efficiently on FPGAs. The architectural optimizations include inter-module and
intra-module pipelining, that is designed and balanced via FIFO based buffering to
ensure maximum parallelisation. The implementation results show that compared to
the state-of-the-art, the proposed architecture delivers 23.8-43.8% speedups at three
different security levels on Artix-7 and Zynq UltraScale+ devices, 50-75% reduction
in DSPs and no BRAM resources at comparable security level. Consequently, the
AT product efficiency is reported to be 45.8-51.9% higher in comparison with the
state-of-the-art designs.
Keywords: Post-quantum Cryptography (PQC), Lattice-based Cryptography (LBC),
Module-Learning with Errors (M-LWE), CRYSTALS-KYBER, Hardware accelerator.

1 Introduction
The advent of quantum computers threatens the security of all existing cryptosystems.
A Quantum algorithm, called Shor’s algorithm [Sho99], is capable of completely break-
ing all currently deployed Public-key Cryptography (PKC), including the RSA [Riv78]
and Elliptic Curve Cryptography (ECC) [Mil85]. In addition, Grover’s search quantum
algorithm [Gro96] reduces the complexity of the search space of a brute force attack on
symmetric-key encryption schemes (e.g., AES [RD01]) and hashing (e.g., SHA-3 [Dwo15])
to half. The National Institute of Standards and Technology (NIST) announced a formal
global call in 2016, to standardized a new Post-quantum Cryptography (PQC) based
Public-key Encryption (PKE) and digital signature schemes [Moo16]. In 2017, 69 pro-
posals were selected in the Round 1 of the NIST PQC, whereas four candidates and five
alternatives were shortlisted in July 2020 Round 3, for the final selection of PQC based
PKC candidates. Three out of these four candidate algorithms were lattice-based cryptog-
raphy (LBC) schemes, namely CRYSTALS-KYBER [ABD+20], SABER [ZZY+21], and
NTRU [HRSS17]. NIST intended to standardize no more than one of these lattice-based
Public-key Encryption and Key-establishment algorithm schemes and on July 5, 2022, NIST
announced the first group of winners from its six-year competition. CRYSTALS-Kyber
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was announced as the first PQC algorithm to be standardized as a Key-encapsulation
Mechanism (KEM) [GDD+22].

CRYSTALS-KYBER (hereafter called Kyber) [ABD+20] KEM is based on the module
learning with errors (M-LWE) problem, which is a lattice based hard problem. M-LWE is
an “algebraic” LWE with a tight formal mathematical security reduction of the ring-LWE
(R-LWE) problem [PP19]. Schemes based on the M-LWE problem have a more elaborate
algebraic structure and consequently, higher security than R-LWE schemes while achieving
higher performance than LWE schemes. In the M-LWE scheme, the parameter k is
introduced to restrict the dimensions of the public-key matrix A, but all elements of the
matrix are on the ring Zq[x]/(xn +1). Unlike SABER [ZZY+21], the polynomial operations
in Kyber can be computed using Number Theoretic Transform (NTT), which allows Kyber
to gain higher throughput performance. For the round 2 NIST PQC submission, the Kyber
team adopted a technique to reduce the parameter q of Kyber from 7, 681 to 3, 329, further
reducing the complexity of modular reduction and area resources.

This work presents a high-speed and Area-Time (AT) product efficient hardware
accelerator for the IND-CCA secure Kyber KEM scheme. The accelerator comprises of
Key Generation, Encryption and Decryption modules for the three NIST specific security
levels 1/3/5. The major contributions of this work are summarized as follows:

• Our Kyber accelerator aggressively exploits architectural parallelisation via optimal
inter-module and intra module pipelines. For balancing the pipeline, buffering is
provided at the interface of several modules. The computation order of the modules
is re-arranged to facilitate a fuller pipeline.

• A fully pipilined Radix-2-Multipath Delay Commutator (MDC)-NTT core is presented
that multiplexes the resources for both NTT and inverse-NTT (INTT) computations.
By using different delay units, the bit reversal operation in the NTT/INTT calculation
is completely eliminated. Due to pipelining, a single NTT/INTT computation requires
only 128 clock cycles, once the pipeline is full.

• Resource utilization is reduced in terms of DSPs and BRAMs by several strategies.
The hardware for NTT/INTT is shared. For balancing pipelining, buffering is done
via FIFOs (restricting first in first out data access) instead of BRAMs that allow
more flexible access but are more expensive in resource consumption. The data in
bit reversal order is fed directly into the INTT, and the INTT gets the result in
normal order. Thus the use of BRAM is eliminated from our architecture.

• Our proposed Kyber accelerator easily surpasses all comparable previously reported
FPGA implementations of Kyber implementations for comparable security levels in
terms of throughput performance and design efficiency (i.e., Area-Time (AT) product).
Compared to the state-of-the-art design, the proposed architecture has a speedup
of 1.238-1.438× at the three security levels for Artix-7 devices and 1.254-1.516×
for Zynq-UltraSale+, respectively. In terms of hardware efficiency, the proposed
architecture improved the AT efficiency by 51.9%, 50.0%, and 45.8% at three different
security levels.

This paper is organized as follows. Section II introduces the Kyber protocol and NTT,
and Section III presents the proposed overall architecture including various modules. A
fast pipelined scheduling scheme and storage methods for the Kyber hardware architecture
is presented in Section IV. Implementation results and comparison are provided in Section
V, and Section VI concludes our work.
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2 Preliminaries
In this section, Round 3 of the Kyber KEM is explained, describing the main NTT
construct in Kyber.

2.1 Kyber.v3 (NIST PQC Round 3)
Kyber KEM is the first lattice based PQC algorithm chosen by NIST for standardisation.
The relative balance between performance and security can be directly adjusted by tweaking
the size of the matrix k; the choice of k varies to 2, 3, or 4 for security levels 1 (Kyber512), 3
(Kyber768) and 5 (Kyber1024), respectively. The noise parameter η is adjusted according to
the security level. The IND-CCA secure Kyber KEM, submitted to NIST PQC Round 3 (so
called Kyber.CCA here) consists of three main steps: key generation (Kyber.CCA.KeyGen),
key encapsulation (Kyber.CCA.Enc), and key decapsulation (Kyber.CCA.Dec). The prime
of Kyber p is changed from 7681 to 3329, which enables that the polynomial multiplication
in Kyber can be accelerated using NTT. Kyber.CCA implementation is built on top of the
Kyber.CPA, using the Fujisaki-Okamoto transform [FO99]. Kyber.CPA comprises of three
components: key generation, encryption, and decryption. In each function, uniform and
binomial distributed samplers generate polynomial data, NTT and Inverse NTT (INTT)
are used to compute polynomial multiplications. The NTT/INTT results are compressed
and transmitted. For more details of Kyber, please refer to [ABD+20].

2.2 NTT in Kyber
The NTT algorithm is derived from the Fast Fourier Transform (FFT) algorithm. Compared
to standard schoolbook polynomial multiplication, the complexity of the NTT algorithm
is reduced from O(n2) to O(nlogn). The choice of modulus in the construction of Kyber
satisfies the modulus restriction for the NTT, and polynomial multiplication calculations
in Kyber can be accelerated using NTT.

For NTT transformations, polynomials are expressed in terms of a vector of coefficients,
e.g., the polynomial a(x) = a0 + a1x + ... + an−1x

n−1 + anx
n is represented as a set

of n points a(xi) = {(x0, y0), (x1, y1), ..., }. The NTT computation can be substantially
improved when using n special points, i.e. n powers of the rotation factor w.

Defining polynomial with n elements, k is an integer ranging from 0 to n − 1, w is
the square of ψ, where ψ is the primitive root of unity in NTT. The NTT and INTT
transformation are shown as follows:

âm =
n−1∑
k=0

akψ
(2m+1)k =

n−1∑
k=0

(akψ
k)wmkmod q (1)

ak = 1
n

n−1∑
m=0

âmψ
−(2m+1)k = ψ−k · 1

n

n−1∑
m=0

âmw
−mkmod q (2)

There are some differences between the NTT defined in Kyber [ABD+20]. In Kyber,
the base field Zq contains the primitive 256th root of unity but not the primitive 512th root
of unity. Thus, the polynomial x256 + 1 can be defined as a polynomial of 128 degrees of 2.
Let ζ = 17 be the first primitive 256th root of unity modulo q. The polynomial x256 + 1
can be written as:

f(x) =
255∑
i=0

fix
i (3)
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Therefore, any polynomial f(x) can be divided into two polynomials according to the
parity term after NTT calculation, as shown in the formula Eq.(4)-(5), where br7 means
bit reversal of the unsigned 7-bit integer i. In addition, when performing NTT calculations,
these two parity polynomials are calculated independently.

f̂2i =
127∑
j=0

f2iζ
(2br7i+1)j (4)

f̂2i+1 =
127∑
j=0

f2i+1ζ
(2br7i+1)j (5)

The polynomial multiplication NTT(f) ◦ NTT(g) = ĥ mod x2 − ζ2br7i+1, where f̂ , ĝ,
and ĥ are the polynomial in NTT representation, can be expressed as:

ĥ2i + ĥ2i+1x = f̂2iĝ2i + ζ2br7i+1f̂2i+1ĝ2i+1

+ x(f̂2if̂2i+1 + ĝ2iĝ2i+1) (6)

2.3 Related Work
Hardware based Kyber KEM accelerator designs for Kyber have primarily and rightly
focused on the optimizations of its most computationally intensive constituent component,
i.e., polynomial multiplication module (implemented via the NTT module) [GL21, ZLL+21,
YM21, TCW+21, BNAMK21a]. Several recent work on Kyber focus on the improvement
of the NTT memory access methods and modulo multiplication units. In 2020, Chen
et al. proposed a pipelined processor for the vector of polynomials using two-column
sequential storage and bit-inverted addressing access for the Round 1 prime of Kyber
(p = 7, 681) [CMC+20]. Zhang et al. in 2021 proposed an effective NTT structure for the
prime in Round 2 (p = 3, 329) [ZLL+21]. In the same year, Mojtaba et al. proposed to
apply the prime p = 3, 329 reduction module of the K2-RED algorithm without register
delays to four parallel-computing NTT butterfly units and achieve a high-speed polynomial
multiplication accelerator [BNAMK21a]. Ferhat et al. implemented different architectures
of multiplication units by increasing the number of butterfly units in the NTT based on
a unified butterfly structure [YM21], with lightweight, balanced, and high-performance
hardware architectures, using 1, 4, and 16 parallel butterfly units, respectively.

Several hardware-only complete Kyber implementations are reported in literature [HHLW20,
XL21, BNAMK21a, BNAMK21b, DMG21]. The first complete pure hardware implemen-
tation of Kyber was presented by Huang et al. in 2020; the module reuse technique
was undertaken as an optimization to achieve 129× speedup compared to Cortex-M4
processor, at the cost of high resource consumption [HHLW20]. In 2021, Xing et al.
proposed a low-cost, high-performance Kyber processor on the Artix-7 platform [XL21].
This architecture utilized a predefined control order table with short control codes for the
scheduling of various processes of NTT and uses different sized first-in-first-out (FIFO)
for data transmission/ reception to achieve good throughput performance with limited
computational resources. In the same year, Bisheh-Niasar et al. proposed a polynomial
multiplier for Kyber, using a 2×2 reconfigurable butterfly cell with pure combinational
logic (so called K2-RED modulo subtraction) cells [BNAMK21a], requiring only 798 LUTs
and 715 FFs on the Artix-7 device operating at 200MHz. The same reconfigurable butterfly
module was used in an instruction set processor for Kyber [BNAMK21b], whose overall
operating frequency was limited. In addition, Dang et al. implemented three different
lattice-based PQCs of NIST Round 3 in hardware [DMG21] and a 52.5%, 65.7%, 76.2%
improvement in speed of Kyber at three different security levels compared to earlier high
performance Kyber implementations [XL21].
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3 The Proposed Kyber Hardware Accelerator
The proposed Kyber accelerator comprises of the server and client side implementations.
The server-side accelerator includes the key generation and decapsulation functions while
the client-side implementation is a sub-set of components of server, performing only
key encapsulation function. An overall design of server-side Kyber accelerator is shown
in Fig. 1. It comprises of a controller, computational units and storage units. The
storage unit consists of multiple FIFOs and ROMs (in the NTT/INTT and polynomial
multiplication unit). In Fig. 1, the black, green, and purple colors indicate the data
flow for Kyber.CPA.KeyGen, Kyber.CPA.Dec and Kyber.CPA.Enc functions, respectively.
The dashed lines indicate the data flow through INTT, which is computed after the solid
line of the same color. To enable a pipelined execution, all modules use independent
resources except NTT/INTT modules that have shared resources. In our design, four
parallel data streams (totalling 48-bits for 12-bit streams) are simultaneously processed.
Therefore, two Point-wise Multiplication (PWM) units and four groups of parallel adders
(ADDs1) are used after NTT computation. A finite state machine based controller controls
the execution of the hash module, till enough random samples are generated. Then the
Kyber accelerator enters an pipelined state for computational units until the hash function
computation is needed again. The controller assembles the padding of hash module, based
on the hash function needed for the current state and feeds it into the hash module. In
addition, the controller includes four 256-bit registers for storing and distributing the
results generated by the hash module. There are several differences in the accelerator’s
execution for the three different security levels of Kyber. For Kyber512, the centered-3
binomial distribution (CBD3) sampling module is added to the overall architecture. For
Kyber1024, the compress/ decompress modules differ from the other two security levels.
Various modules are shared between key generation and decapsulation function on the
server-side for area minimization.

In the rest of this section, we present the main modules used in the Kyber accelerator,
i.e., the hash module, the sampling module, the NTT/INTT module, the PWM module,
and the compression and encoding modules. All descriptions are based on the Kyber768
implementation (e.g., FIFO sizes, k = 3 etc.), while differences for Kyber512 and Kyber1024
are mentioned.

3.1 SHA-3 Based Hash Module
The hash module generates the random distribution samples to the sampling modules, to
provide the coefficients of the noise polynomial and consequently can become the potential
computational bottle-neck of the design. Hence consideration is given to match the Hash
module throughput with other modules. Our design uses one Keccak core that is serially
for different SHA-3 functions. The Keccak core needs significant hardware resources, e.g.,
54.2% of the total LUTs used in the Kyber design [XL21].

Kyber uses four different SHA-3 functions, i.e., SHA3-256, SHA3-512, SHAKE128, and
SHAKE256. While the Keccak core computations remain identical for these functions,
the padding method differs for all of them. The maximum size of data output in a single
computation is also different, i.e., 1,344, 1,088 and 576 bits for SHA3-128, SHA3-256, and
SHA3-512, respectively.

The hash module receives up to 1,344-bits of data, in 64-bit chunks (in 21 cycles).
This data is fed to the Keccak core, after the controller has added the SHA-3 function
appropriate padding, e.g., SHA3-512 function takes 64-bit data inputs in 9 cycles and in
the subsequent 12 cycles 64-bit ‘0’ are padded to get a 1,344-bits of data. The Hash module
defaults to the squeeze stage from the second round of computation and automatically feeds
the results of the first round into the Kaccak core for further 24-round of computations;
However the Hash module also contains an absorb signal for cases when the amount of
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Figure 1: The overall server-side architecture diagram of Kyber768. The black, green, and
purple colored arrows indicate the data flow for Kyber.CPA.KeyGen, Kyber.CPA.Dec and
Kyber.CPA.Enc functions, respectively. The dashed line in the figure is the data flow after
the solid line of the same color is complete.

data is greater than the maximum amount of data that can be carried in a single round.
The architecture of the Hash module comprises of the input/output stages and a Keccak

core, as shown in Fig. 2. These three stages are independently buffered and operate in a
fully pipelined manner ensuring substantial acceleration. It has a 64 × 64 FIFO to cache-in
large volume of input data. The FIFO output is fed as 64-bit words into the 1,344-bit shift
register in a big-endian format (in 21 cycles). The Keccak core takes the data and applies
24 rounds of iterative operations on it. The internal state of the Keccak core is of 1,600-bits,
out of which the 1,344 most significant bits (MSBs) are taken for data output or squeezing
after 24 round calculations. Out of the output stage of the Hash module, the data is filled
in the 256-bit registers in the controller as 64-bits per cycle. Although 36-bit or 48-bit
inputs are generally used in the sampling module in the proposed architecture, going from
high-bit-width data to low-bit-width data, i.e., 48/32-bit will not cause discontinuities for
input to the sampling module. For absorbing stage, in the proposed architecture, the 1344
MSBs of output from the Hash module are selected to be XOR with the subsequent input.

3.2 Sampling of Noise
Kyber uses two types of sampling, namely uniform distribution sampling (Parse) and
central binomial distribution sampling (CBDη, η = 2, 3). All three security levels of Kyber
need Parse to get polyvector matrix Â (as well as ÂT ). For Kyber512, two different
CBD modules (CBD2, CBD3) are used, the other two security levels use only CBD2.
Fig. 3(a)-(b) represent the Parse and CBDη modules, respectively, where Fig. 3(c) shows
the state of the FIFO when a 64-bit data and 48-bit data conversion is performed.

While the hash module takes 21 clock cycles to output 1344-bits data (64-bits per
cycle) and a single computation of Keccak core takes 24 cycles, there is always meant to
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Figure 2: Hash module comprising of input/ output stages and a Keccak core

be a waiting interval even if pipelining is employed. The sampled data is stored in 64 × 32
FIFO called FIFOGET A, converted to 48 bits, and fed into the sampling module. For the
64To48 module, as shown in Fig.3(c), the 64-bit data is fed three times every four cycles.
The data is internally registered to enable a consecutive stream of 48-bits outputs in 4
consecutive cycles. The results of Parse do not need to be stored and can be multiplied
directly with the NTT results at output. However, the output of matrix Â requires 48
× 256 FIFO, called FIFOAMatrix, to filter out the Parse data. Results of Parse greater
than 3329 are discarded. For each set of matrix Â data, it is packaged into 64 48-bit data
outputs (64 × 4) for subsequent polynomial multiplication.

The CBD2 and CBD3 modules require 32 and 48 bits of data, respectively, to generate
eight output results. Data output from the Hash module is stored in a 64 × 32 FIFO called
FIFOHASHO. The CBD3 requires a 64To48 module before sampling while CBD2 does
not need this conversion. The FIFOHASHO pops out 64-bits of data once in alternate
clock cycles. The upper and lower halves of this data (32 bits each) are processed in two
consecutive cycles.

3.3 NTT/INTT Module
The polynomial multiplication is both a resource hungry and a computational bottle
neck in a lattice based cryptography design. The Kyber parameters were tweaked to be
more ‘NTT-friendly’ in 3rd round submission of NIST PQC and the use of NTT/INTT
for polynomial multiplication is part of Kyber specifications [ABD+20]. For polynomial
multiplication via NTT, first the NTT of the multiplicand and multiplier polynomials
is computed, a multiplication of the two vectors is carried out and then the inverse
NTT (INTT) is computed to complete the polynomial multiplication. Since NTT/INTT
calculations are not simultaneously performed, the same architecture is reused to minimize
resource consumption. To balance area and speed and match the throughput of data in the
subsequent modules, the Radix-2 multipath delay commutator (MDC)-based architecture
turns out to be the optimal choice.

A Switch-MDC-NTT (S-NTT) architecture is shown in Fig. 4. The S-NTT consists of
a pre-processing unit, seven general processing units, and one post-processing unit. All
of the first six general processing units contain a radix-2 butterfly unit (BF2), a modulo
multiplier, delay unit (D), and a two-channel commutator (C2), while the 7th general
processing unit only contains a BF2 unit and a delay unit. The MDC architecture employs
pipelining, significantly reducing the computation time by enabling simultaneous execution
of multiple consecutive NTT/INTT calculations. The BF2 unit performs addition and
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Figure 3: Sampling modules: (a) Parse module, (b) CBDη module, and (c) The output
stage of FIFOGET A and FIFOHASHO.

subtraction calculations for each cross of input data pair. The result of the subtraction
in BF2 is fed into C2 after the modulo reduction while the addition result does not
need to be reduced and hence fed into C2 after buffering to match the pipeline. The
internal architecture of the modulo multipliers follow Algorithm 4 in [XL21], which uses an
optimized Barrett reduction algorithm with multiple partitioning and addition operations.
The modulo multiplier is pipelined and requires six cycles for completion, the first two
perform the 12-bit multiplication and the last four perform the reduction operation.

The S-NTT contains both pre-processing and post-processing blocks, and both use
two modulo multiplication units for computation; However these two units do not execute
simultaneously. To reduce resource consumption, the modulo multiplication unit is reused
in these blocks. The pre-processing is performed at the start of the NTT, before entering
the first stage of NTT. For INTT, the data enters the first stage directly and the post-
processing multiplication is performed on the output of the seventh stage of the calculation.
Note that reusing the multiplier in pre-processing and post-processing causes the NTT
and INTT not to be pipelined when switching, but the delay in this case is negligible
considering the difficulty of merging the pipeline between the NTT and INTT itself in the
encapsulation and decapsulation functions in Kyber.
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Figure 4: The switch Radix-2 multipath delay commutator (MDC) NTT/INTT pipelined
architecture with seven stages.
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For NTT computation, the Cooley-Tukey butterfly structure is undertaken at all stages.
While the data flow of NTT/INTT is the same in the proposed architecture. In order to
ensure that the output order of INTT is the normal order, the INTT in S-NTT is input
in a bit-reversed order. Thus the result obtained from the polynomial multiplier can be
directly input into the INTT in order. The calculation units in S-NTT, such as BF2 and
modular multiplier, are all reused, but the delay unit (D) in each stage cannot be reused
due to the different input order. The blue line and block diagram in Fig. 4 represent
the alternative delay unit when calculating INTT. The result of INTT is sequential data
separated by parity and even, no BRAM unit is used to store data in the input and output
of S-NTT. The start-up time for the very first NTT and INTT calculation (when the
pipeline is not full) is 119 cycles. The cycle time for a single 256-point-wise calculation
after full pipelining is 128. Hence the first NTT/INTT computation requires 119+128
cycles but the subsequent NTT/INTT computations require only 128 cycles.

3.4 Point-wise Multiplications (PWMs) and ADDs
The point-wise multiplication (PWM) in Kyber is not as straightforward as required in
Ring-LWE. It requires different computations for even and odd values of the point-wise
multiplication product. For Kyber, assume that polynomials f̂ and ĝ are multiplied, and
the result is ĥ, root of unity ζ, then an optimized PWM calculation formula based on the
karatsuba algorithm from Eq.(6) was proposed in 2020 [XL21] as follows:

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1 · ζ2br(i)+1 (7)

ĥ2i+1 = (f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1) − (f̂2iĝ2i + f̂2i+1ĝ2i+1) (8)

Thus, the result of h2i comes from the sum of f̂2iĝ2i and f̂2i+1ĝ2i+1 · ζ2br(i)+1 as well
as f̂2i+1ĝ2i+1 · ζ2br(i)+1 comes from multiplying three 12-bit data (ζ2br(i)+1 can be stored
in ROM by precomputation). If f̂2i+1ĝ2i+1 do not perform reduction in time, it will
cause the bit width of the addition to increase. Also, note that the results of f̂2iĝ2i and
f̂2i+1ĝ2i+1 are directly usable in the calculation of ĥ2i+1, only one additional multiplication
is needed when calculating ĥ2i+1. Since the pipeline length has minimal impact on the
overall design calculation time, the proposed PWM design matches the frequency of the
other modules. As shown in Fig. 5, the PWM module requires eleven cycles to provide a
full pipeline operation. In the first two cycles two 12-bit multiplications and one 13×12 bit
multiplication is carried out. sum1 and sum2 in Fig. 5 are derived from f̂2i + f̂2i+1 and
ĝ2i + ĝ2i+1, respectively; However sum1 is reduced to modulo p to ensure that sum1 ×sum2
does not exceed 25 bits first. During the calculation of h2i+1 if the result becomes negative,
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Figure 5: The piplined point-wise multiplication modules.



10Efficient Pipelining Exploration for a High-performance CRYSTALS-Kyber Accelerator

24′hd01000 is added to ensure that the data in the input of Barrett reduction (BR) is
positive. In the 3rd cycle, the result of ĥ2i+1 is reduced to 12-bit and using the Barrett
reduction (BR) module, which is the same as the BR used in the NTT module. Thereafter,
ĥ2i+1 passes through a shift register until ĥ2i is output at the same time. After f̂2i+1ĝ2i+1
output from BR module, the 12-bit result is calculated with the value of ζ, added to f̂2iĝ2i

and the final result is reducing in one pass in the BR module.
Two PWM units are used in the overall design, allows simultaneous calculation of the

four polynomial coefficients. A 24 × 64 distributed ROM is pre-computed to provide ζ
values to two channels of PWMs according (ζ[23 : 12] and ζ[11 : 0]). Four 12-bit adder with
three input (ADDs1) units are used in the design for the adder. This unit will performs the
final addition for the 256 point-wise polynomial multiplication and the addition operation
of the noisy polynomial multiplication e2.

3.5 Storage: FIFOs and ROMs
The polynomials in lattice based cryptography schemes are large in dimension with low
bit-width components, e.g., a single polynomial of Kyber has 256 elements, each of 12-bit
size. High speed simultaneous access to several low bit-width data elements is critical to
ensure high throughput performance but also dictates the amount of on-chip resources.
The FPGA storage structures include Look-up-table RAM (LUTRAM) and Block RAMs
(BRAMs). While BRAMs are dual ported, allowing fast and dual read/write access, they
can be under-utilized due to their limited width-depth configurations, resulting in waste
of resources. FIFOs instead are much more resource efficient in comparison and can be
custom sized as needed. However, they only also access of data in the order that is pushed
in the FIFO. All pre-computed data in the design uses distributed ROM, e.g., rotation
factors in NTT/INTT and PWMs. Our Kyber accelerator has two types of FIFOs. One
for buffering large amounts of data that cannot be computed on-the-fly. The depth in this
type of FIFO does not need to match the total amount of data but just enough to meet
the current pipeline speed. Another type of FIFO is used for the complete storage of data.
Since the FIFO restricts first in first out access only, for NTT computations, the order of
input data is adjusted before pushing into the FIFOs. In a fully pipelined architecture,
the data is continuously pushed forward. Therefore, it can be consider that in many cases
the computation modules are also treated as a kind of storage module, which saves a lot
of storage units. Benefiting from the ability of INTT to directly use bit-reversal sequential
inputs and to output data in normal order, the proposed architecture does not use BRAM
to store data at all.

3.6 Decode Modules
In the kyber KEM, data in Kyber.CPA function is required to be compressed before
encoding. Compression is relatively easy to implement, with the quotient being output
by shifting the polynomial addition and reducing. Decompression does not require a
reduction module, but all the data is multiplied by ⌊3329/2⌋, using a constant multiplier
composed of LUTs to reduce DSP consumption. The encode module takes data input
from the INTT output. In a single inverse accessed address using BRAM, a pair of 12-bit
data is available. Various encoding modules are obtained by shifting the input data and
performing arithmetic operations. The bit width of the encoded output depends on the
need of subsequent calculations. For example, the encoded output of pk is 64 bits one
cycle, and the m output in Kyber.CPA.Dec generates 8 bits one cycle.

The Decode module is more complex, with different methods for the v vector and u
polyvector for different security levels in Decodedv. The same Decode method is used in
Kyber512 and Kyber768, and it takes only eight cycles to complete a round of computation
for v and u at 64 bits input. Fig. 6(a) shows the computation flow for the u decoding under
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Figure 6: Decodedv in different security levels. (a) Decodedv of Kyber512 and Kyber768.
(b) Decodedv of Kyber1024.

Kyber512 and Kyber768. For the u polyvector, a single cycle produces 48 bits of data after
processing 40 bits (4 groups) of data, and the 8 data parity generated in two consecutive
cycles are separated and fed into the FIFO in the same way as the sampled data. The
left-side of Fig. 6(a) represents the data processed in the current cycle, where the white
block is the 40-bit output data, the grey block is the data that cannot be output in the
current cycle and needs to be processed in the next cycle, and the red block represents the
data from the previous cycle. In addition, the grey block of the Input on the right side
represents FIFO which storage ct should be fetched in the current cycle. Thus, five 64-bit
data are fetched in eight consecutive cycles, generating 32 u polyvector data. Decoding v
in Kyber512 and Kyber768 is simpler, with a single round of 4 sets requiring 16 bits of
input and two times of input data taken from the FIFO every eight-cycle interval.

The decoding in Kyber1024 is more complicated than the other two security levels due
to the irregularity of individual data (11 bits) in the decoding of the u polyvector. If the
shifting method in Kyber768 is followed in Kyber1024, the generated single-round states
reach more than 25. Therefore, an adaptive feedback (AF) scheme is proposed using the
output control of the FIFO by the Decode module. In the AF scheme, the output of the
FIFO is controlled by the decode module, whose internal counter is constantly updated
with the current amount of unprocessed data to guide the output data and the FIFO read
data. Each time the decode module receives 64 bits of data, the internal counter is added
by 8. As shown in Fig. 6(b), in the case of the decode u vector, when the counter is
greater than 11 (88 bits), the feedback FIFO pauses to take out the data and uses the 88
bits of data to generate eight u coefficients in the subsequent two cycles. For decoding the
v vector coefficients, the feedback is performed and calculated when the counter is greater
than 5.

4 Data Flow in the Proposed Kyber Accelerator
In order to ensure simultaneous execution of various modules of the Kyber accelerator, its
modules are designed to support pipelining. The modules in kyber vary much in terms of
their input/output word sizes and speeds and need to be thoughtfully scheduled so that
data flow does not halt. This is ensured by using storage units whenever needed. For
example, in CBD2, a single 36 bit input results in eight 12-bit polynomial coefficients,
while in the NTT module, only 24 bits of data are input and 24 bits are output in a
single clock cycle. This section walks through the primary data flow for the main modules
of Kyber.CPA.Enc (Kyber768) as an example, as shown in Fig. 7. The primary data
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Figure 7: Execution order and clock cycles for main modules in Kyber.CPA.Enc of
Kyber768.

flow consists of the Hash module, NTT/INTT module, PWM modules, and the data
compression module. All cycles represent the total cycles of the current module calculation,
except for the NTT/INTT, which represent the cycles needed to write the output data.

The Hash function computation time is critical to the data sampling time. For
example, SHA3-256 takes 21 cycles to receive input data, 24 cycles for internal Keccak
core computations, and up to 17 cycles (64-bit data each) can be output in one squeeze.
Adding the time for data to pass through modules, a total of 70 cycles are needed for
one hash calculation. However, the overhead of input and out can be made negligible
by pipelining. In the Hash module, cycles for r[0] are computed from the start of data
input, and the 70 cycles include the output stage of the previous parallel computation of
the Hash module. The input data from r[1] is fed into the Hash module simultaneously
with r[0] generating the output. Thus the computation cycles of the single Hash module is
reduced to 53 cycles for CBD2 sampling. To ensure that the matrix ÂT gets the 256 data
points from sampling module, the Hash module calculates SHAKE-128 by squeezing four
times. Due to pipelining, the single calculation cycle is only 115 times.

The NTT/INTT computation is also pipelined, generating a complete a set of 256
coefficients every 128 cycles. During NTT computation, the first 64 cycles of data for each
output set are delayed by 64 cycles of output using shift registers to meet t̂T starting at
the NTT output stage. The compress module takes the INTT output and generates a pair
of data in a single pass, taking 512 cycles. The data flow of Fig. 7 consumes 1.9k cycles.

4.1 Primary Data Flow in Kyber768
The primary data flow starts with the sampling modules. A portion of the data generated
by the Hash module is stored in four 256-bit registers for re-entry into the Hash module,
while rest is sampled data is fed into the uniform Parse and binomial sampling CBD2/3.
A 64-bit data is fed into the Parse sampler every cycle, but the polyvector matrix ÂT

samples are not immediately generated. The 64-bit data is first fed to a 64 × 32 FIFOGET A

for caching before sampling. To match the 48-bit input per cycle of Parse sampling, the
FIFOGET A outputs 64 bits of data three times in four consecutive cycles. The 64To48
module reads 192 bits of data every four cycles and splits and reassembles to 48 bits per
cycle output. Each sampling cycle of Parse produces four results, but not all are valid.
This uncertainty in the generation of the matrix ÂT can cause difficulties in matching
data in subsequent polynomial multiplications. The 12 bits of valid results by Parse are
stitched together as 48 bits and fed into a 48 × 256 FIFOAMatrix. Due to the late timing
of the output of r̂ after the NTT calculation, the FIFOAMatrix waits for the complete
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output of r̂ from the NTT module before generating the output data to ensure that the
polynomial multiplication of t̂T does not conflict with matrix ÂT in the Kyber.CPA.Enc
calculation.

Binomial distribution sampler comprises of CBD2 and CBD3 that take 32-bit and
48-bit inputs every cycle, respectively, to generate 8 results. The NTT module that takes
CBD2 output as odd/ even samples of 256 data points separately, and only a pair of data
input is taken in a cycle. Hence the data generated by a single CBD2 cycle (8 × 12 bits)
is much more than what the NTT module can accommodate. Therefore, the data at the
odd positions from CBD2/3 is shifted back by 16 cycles, after which two FIFOs (FIFO1
and FIFO2, 48 × 128 FIFO) are utilized to store the sampling data.

As shown in Fig. 8, four consecutive even position data in order {0, 2, 4, 6} are
combined and written to FIFO1 in the first cycle. During the first 16 writing cycles, only
FIFO1 is used to store the even positioned data. Starting from the 17th cycle of CBD2
output, the FIFO1 data is replaced with the data output from the shift register, i.e., the
CBD2/3 odd results {1, 3, 5, 7}, and the even position data from the CBD2/3 {128, 130,
132, 134} is stored in FIFO2, simultaneously. Therefore, eight data locations stored at
the lowest part of these two FIFOs are {0, 128, 2, 130, 4, 132, 6, 134}. After that, an
output signal (The gradient area in Fig. 8) is generated every four cycles to ensure that
the FIFO data is read in order ({(0, 128), (2, 130), (4, 132), (6, 134)}). FIFO1 and FIFO2
continue to take in the results of the CBD while generating output data till the FIFO1
and FIFO2 signal to be empty. The data storage mechanism does not change for higher
security level but the depth of FIFO1 and FIFO2 is increased to match the higher data
size to be cached.

The polynomial multiplication module multiplies the data in different dimensions, i.e.,
matrix ÂT and vector t̂T , by the data in different dimensions, i.e., vector r̂, generated
by NTT. The operation carried out is ÂT

ji = ÂT [j][i] · r̂[i] or t̂Ti = t̂T [i] · r̂[i] (i, j ∈ 0, 1, 2
in Kyber768). The polynomial t̂T is the output of key generation function and is stored
in the 48 × 256 FIFOP K and fed into the PWM modules simultaneously as the NTT
produces its output. The r̂[i] generated by NTT is fed directly into the PWM module and
also stored in two FIFOs (FIFOSP 1 and FIFOSP 2 as well as FIFOEP 1 and FIFOEP 2 for
Kyber.CPA.KeyGen, 24 × 256 FIFO ). The order of the NTT outputs in continuous data
separated by parity {0, 2, 4, 6, ...1, 3, 5, 7, ...}. Fig. 9 shows the relationship between NTT
results and FIFOs during the polynomial multiplication stage. A differential approach
is used for FIFOSP 1 and FIFOSP 2 input to ensure that the order of the PWM module
input is {0, 1, 2, 3...}. In the first 64 cycles of NTT generating results, the two 12-bit
results of NTT will be spliced and input into FIFOSP 1. Starting from the 65th cycle,

CBD2 Output

32

Even Data

8/cycle

4/cycle

16

4/cycle

FIFO1

0

2

4

6

……

120

122

124

126

1

3

5

7

……

121

123

125

127

128

130

132

134

……

248

250

252

254

128

130

132

134

……

248

250

252

254

129

131

133

135

……

249

251

253

255

129

131

133

135

……

249

251

253

255

FIFO2

4/cycle

FIFO1 Write 11 0

FIFO2 Write 110

FIFO1 Read 11

FIFO2 Read 0 11

CBD2 Output

32

11

0

2

4

6

……

120

122

124

126

1

3

5

7

248

250

252

254

128

130

132

134

Odd Data

Even Data

Odd Data

FIFO1

FIFO2

CBD2 Output

32

Even Data

8/cycle

4/cycle

16

4/cycle

FIFO1

0

2

4

6

……

120

122

124

126

1

3

5

7

……

121

123

125

127

128

130

132

134

……

248

250

252

254

129

131

133

135

……

249

251

253

255

FIFO2

4/cycle

FIFO1 Write 1 0

FIFO2 Write 10

FIFO1 Read 1

FIFO2 Read 0 1

CBD2 Output

32

1

0

2

4

6

……

120

122

124

126

1

3

5

7

248

250

252

254

128

130

132

134

Odd Data

Even Data

Odd Data

FIFO1

FIFO2

Figure 8: The access process of CBD2 and FIFOs (FIFO1 and FIFO2). Eight data per
cycle in CBD output and 4 data per cycle input in FIFO1 and FIFO2.



14Efficient Pipelining Exploration for a High-performance CRYSTALS-Kyber Accelerator

NTT OutputNTT Output

64

2/cycle NTT OutputNTT Output NTT OutputNTT Output NTT OutputNTT Output

64 64 64

0

2
……

252

254

0

2
……

252

254

1

3
…

253

255

1

3
…

253

255

r[0] r[1]

FIFOSP1 Write 11

FIFOSP2 Write 11

FIFOSP1 Read

FIFOSP2 Read

11

1

A00A00

64

A00

64

A01A01

64

A01

64

FIFOSP1 Data In

FIFOSP2 Data In

4/cycle 4/cycle 4/cycle

1

3
…

253

255

1

3
…

253

255

0

2
…

252

254

0

2
…

252

254 0

2
…

252

254

0

2
…

252

254

1

3
...

253

255

1

3
...

253

255

11

11 11

11

1

3
…

253

255

1

3
…

253

255

0

2

252

254

0

2

252

254

11

11

1

3
…

253

255

0

2
…

252

254

A02A02

64

A02

64

11

11

11

11

11

11

…

NTT OutputNTT Output NTT OutputNTT Output

64 64

r[2]

11

1

0

2
…

252

254

0

2
…

252

254

1

3
…

253

255

1

3
…

253

255

…

…

…

…

NTT Output

64

2/cycle NTT Output NTT Output NTT Output

64 64 64

0

2
……

252

254

1

3
…

253

255

r[0] r[1]

FIFOSP1 Write 1

FIFOSP2 Write 1

FIFOSP1 Read

FIFOSP2 Read

1

1

A00

64

A01

64

FIFOSP1 Data In

FIFOSP2 Data In

4/cycle 4/cycle 4/cycle

1

3
…

253

255

0

2
…

252

254 0

2
…

252

254

1

3
...

253

255

1

1 1

1

1

3
…

253

255

0

2

252

254

1

1

1

3
…

253

255

0

2
…

252

254

A02

64

1

1

1

1

1

1

…

NTT Output NTT Output

64 64

r[2]

1

1

0

2
…

252

254

1

3
…

253

255

…

…

…

…

^ ^ ^

NTT Output

64

2/cycle NTT Output NTT Output NTT Output

64 64 64

0

2
……

252

254

1

3
…

253

255

r[0] r[1]

FIFOSP1 Write 1

FIFOSP2 Write 1

FIFOSP1 Read

FIFOSP2 Read

1

1

A00

64

A01

64

FIFOSP1 Data In

FIFOSP2 Data In

4/cycle 4/cycle 4/cycle

1

3
…

253

255

0

2
…

252

254 0

2
…

252

254

1

3
...

253

255

1

1 1

1

1

3
…

253

255

0

2

252

254

1

1

1

3
…

253

255

0

2
…

252

254

A02

64

1

1

1

1

1

1

…

NTT Output NTT Output

64 64

r[2]

1

1

0

2
…

252

254

1

3
…

253

255

…

…

…

…

^ ^ ^

^T

^T^T

Figure 9: The access process of NTT results.
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Figure 10: The access process of final ADDs (ADDs1) in polynomial multiplication.

the results of NTT will be input into FIFOSP 2, thus ensuring that the order of lowest
part data in these two FIFOs is {0, 1, 2, 3}. As the security level increases, more data
volumes can be matched simply by increasing the depth of FIFOs. The data in FIFOSP 1
and FIFOSP 2 will be used multiple times. Therefore, the data output by current FIFOs
will be stored in the same FIFOs again to reduce the use of storage resources. Since
r̂[0], r̂[1], ..., r̂[n] are computed sequentially, the output data is restored at the top of
the FIFOs and does not affect the polynomial multiplication computation of the current
stage. In Kyber.CCA.KeyGen, all CBD sampling results are required for NTT calculation.
Therefore, e from CBD is also stored in FIFO1 and FIFO2, waiting to be fed into the
NTT module as s and r.

Final step of polynomial multiplication calculation should add up different dimensional
data ({ÂT

00,...,ÂT
22}) to the same dimension, in the Kyber768 case, i.e. to compute

Â′T [j] = ÂT
j0 + ÂT

j1 + ÂT
j2 (j ∈ 0, 1, 2) and in the Kyber.CCA.Enc and Kyber.CCA.Dec

also should calculate ˆt′T = t̂T0 + t̂T1 + t̂T2 . The output of PWM is spaced, and the number of
cycles between data in t̂Ti and ÂT

ji is not the same, although it is possible to combine ÂT
j0,

ÂT
j1, ÂT

j2 using shift registers to perform additions, the area will increases dramatically as
the security level increases with the addition of shift registers. Therefore, using a FIFO to
access sequential results of ADDs (ADDs1) is still the best option. FIFOADD (48 × 64
FIFO) is set up to write and read data from the ADDs module. Fig. 10 shows the data
flow of ÂT

00 + ÂT
01 + ÂT

02 computation and states of FIFOADD at Kyber768. There are three
states in FIFOADD: store-only, store-read, and read-only. For Kyber512, only store-only
and read-only states are included, while for Kyber768 and Kyber1024, three states are
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Figure 11: The access process of INTT results and ADDs2.

all included, and two times the store-read state will be performed in Kyber1024. In the
store-only state, the FIFOADD is used to collect the result of the ADDs sequentially; in
the store-read state, the data stored in the FIFOADD is output sequentially first, and
when the ADDs produces the result, the calculation result is stored in the FIFOADD at
the same time; in the read-only state, the FIFOADD no longer accepts input, and all the
data currently stored in the FIFO is output.

The ADDs1 in the polynomial multiplication module generates four 12-bit data per
cycle, which needs to be separated and buffered in odd and even positions before INTT
calculation. Therefore, two FIFOs of the same size (24 × 256, FIFO3 and FIFO4) store
the data in odd and even positions, respectively. The S-NTT module reads the data stored
in FIFO3 FIFO4 directly in sequence and calculates them. As shown in Fig 11, the order
of INTT results is close to the sequential order {(0, 128), (2, 130), ... (1, 129), ...}. Firstly
using a shift register to delay INTT results in 64 cycles, then the output of the shift register
is combined with the output of the current INTT results into four 12-bit data in the order
{(0, 1, 128, 129), (2, 3, 130, 131), ...}. Two data with order {0, 1} of these four are fed
directly into ADDs2 to complete the polynomial adder calculation as well as the last two
data with order {128, 129} are stored in a FIFO (24 × 64, FIFO5). When S-NTT starts
to output the second set of INTT results, the input of ADDs2 is from FIFO5, and the
second set of INTT results will be shifted by 64 cycles.

4.2 Additional Data Flow in Key Decapsulation
Kyber.CCA.Dec contains both single Kyber.CPA.Enc and Kyber.CPA.Dec functions, while
Kyber.CPA.Dec is more like a reduced Kyber main data flow. Fig. 12 shows the data flow
in a single Kyber.CPA.Dec contains mainly NTT/INTT, polynomial multiplication, and
encode modules. In Kyber.CPA.Dec, when the server-side receives the cipher-text ct from
the client-side, it uses the decompress and decode module to process the data first, e.g., in
Kyber768, it takes 64 × 4 cycles to decompress and decode all the data to polyvector u
and vector v. The u and v output from decompress and decode module perform different
operations when fed into the computation unit. Polyvector u will be fed into FIFO1 and
FIFO1, and since every two cycles form 8 sets of data, the NTT starts the calculation
after 32 cycles. v store in the FIFO (48 × 64, FIFOev) and then output when ADDs2 is
running. When the NTT calculation is complete, results from the S-NTT module are only
multiplied with the secret key sk. Thus the NTT results do not need to be stored in FIFOs
again. In this case, the NTT result is shifted back 64 bits using a shift register, enabling a
succession of coefficients in the order {(0, 1, 2, 3),...} to be calculated simultaneously by
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the PWM unit for all four sets of data.
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Figure 12: Cycles and order in Kyber.CPA.Dec (Kyber768).

In addition, when the service-side architecture accepts the ct value, the ct value is
stored in FIFOA (64 × 128 FIFO) and FIFOv (48 × 256 FIFO) according to the difference
between the u vector and v vector, respectively. When Kyber.CPA.Enc generates u vector
and v vector, read FIFOA and FIFOv respectively to compare whether the decapsulation
results are correct.

5 Implementation and Results
The proposed Kyber hardware architecture has been synthesized and implemented using
Xilinx Vivado 2020.1 suite targeting two different devices, e.g., Artix XC7A200 and Zynq
UltraScale+ XCZU7EV. Designs in this work have passed the post-place & route (post-
PAR) simulation and functional verification. The main modules of the Kyber accelerator
are the same under the three different security levels, except for the increase in FIFO
depth due to the need of higher amounts of data.

Table 1 shows the speed and area of our Kyber accelerator architecture, compared
against the state-of-the-art architectures, for the three different security levels it offers.
Since the server side needs more computational processing, it consumes more resources
than the client-side. Since all the constituent client side modules are included in the server
side, we specify only the resources for the server side in Table 1, as done earlier in [XL21].

The DSPs are mainly used in the PWM module. In the S-INTT module, one pipeline
cycle is added to each stage to perform the 12-bit multiplication using LUT. The BRAM
block comes from the data storage prior to the INTT computation. Therefore, the proposed
architecture uses only one DSP in each of the two PWM units, and only two DSPs are
used for all security levels of the design. In addition, all storage units including distributed
FIFO and distributed ROM using LUT resources as well as no BRAM resources are used
in the proposed architecture. The accelerators at the three different security levels run at
almost the same frequency as the critical paths are the same.

Comparison with related work focuses only on the hardware implementation of
Kyber Round 3. Key, Enc, and Dec in Table 1 represent the Kyber.CCA.KeyGen,
Kyber.CCA.Enc, and Kyber.CCA.Dec, respectively. Exploiting a fully pipelined im-
plementation enables simultaneous execution of several modules, resulting in a 50.0%
higher throughput performance for Kyber512 compared to [DMG21] (Artix-7). Compared
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Table 1: Post-PAR Implementation Results for our Kyber Accelerator (Area and Timing)
and Comparison with The-state-of-the-art Designs

Design LUT FF DSP BRAM Slices ENS* F.
[MHz]

Key/Enc./Dec./Total**
[K Cycles]

Key/Enc./Dec./Total
[us]

Improv.
(Total Time)

AT***
(ENS×s)

FPGA
Device

Kyber-512 NIST PQC Security level 1
[BNAMK21b] 18,000 5,000 6 15 5,000 8,540 115 4.0/7.0/10.0 34.8/60.9/86.9/182.6 87.6% 1.56 Artix-7

XC7A100
[XL21] 6,785/7,412 3,981/4,644 3/3 2/2 2,126 2,818 161/167 3.8/5.1/6.7 23.4/30.5/41.3/95.2 75.9% 0.27 Artix-7

XC7A12
[BNAMK21a] 10,502 9,859 8 13 3,549 6,897 200 1.9/2.4/3.7 9.4/12.0/18.8/40.2 43.8% 0.28 Artix-7

XC7A100
[DMG21] 9,457 8,543 4 4.5 - - 220 2.2/3.2/4.5 10.0/14.7/20.5/45.2 50.0% - Artix-7

XC7A200
Ours 14,375/15,676 12,986/13,368 2/2 0/0 5,446 5,646 208 1.1/1.5/2.1 5.3/7.2/10.1/22.6 - 0.13 Artix-7

XC7A200
[DMG21] 9504 8957 4 4.5 - - 450 2.2/3.2/4.5 4.9/7.2/10.0/22.1 51.6% - Zynq-UltraScale+

XCZU7EV
Ours 14,142/15,436 13,003/13,323 2/2 0/0 - - 435 1.1/1.5/2.1 2.5/3.4/4.8/10.7 - - Zynq-UltraScale+

XCZU7EV
Kyber-768 NIST PQC Security level 3

[BNAMK21b] 16,000 6,000 9 16 4,000 8,036 115 7.0/10.0/14.0 60.9/86.9/121.7/269.5 87.3% 2.2 Artix-7
XC7A100

[XL21] 6,785/7,412 3,981/4,644 3/3 2/2 2,126 2,818 161/167 6.3/7.9/10.0 39.2/47.6/62.3/149.1 77.1% 0.42 Artix-7
XC7A12

[BNAMK21a] 11,783 10,424 12 14 3,952 7,896 200 2.7/3.2/4.8 13.3/16.3/24.0/53.6 36.4% 0.42 Artix-7
XC7A100

[DMG21] 10,530 9,837 6 6.5 - - 220 2.6/3.7/4.9 12.0/17.0/22.2/51.2 33.4% - Artix-7
XC7A200

Ours 15,636/16,926 12,976/13,526 2/2 0/0 5,864 6,064 208 1.7/2.4/3.0 8.2/11.5/14.4/34.1 - 0.21 Artix-7
XC7A200

[DMG21] 10,458 10,458 6 6.5 - - 450 2.6/3.7/4.9 5.9/8.3/10.9/25.1 35.1% - Zynq-UltraScale+
XCZU7EV

Ours 15,455/17,280 12,927/13,476 2/2 0/0 - - 435 1.7/2.4/3.0 3.9/5.5/6.9/16.3 - - Zynq-UltraScale+
XCZU7EV

Kyber-1024 NIST PQC Security level 5
[BNAMK21b] 16,000 6,000 12 17 5,000 9,532 112 10.0/14.0/18.0 86.9/121.7/156.5/365.1 86.6% 3.48 Artix-7

XC7A100
[XL21] 6,785/7,412 3,981/4,644 3/3 2/2 2,126 2,818 161/167 9.4/11.3/13.9 58.2/67.9/86.2/212.3 76.9% 0.59 Artix-7

XC7A12
[BNAMK21a] 13,347 11,639 16 16 4,585 9,321 185 3.5/4.1/6.2 17.3/20.6/31.3/69.2 29.2% 0.65 Artix-7

XC7A100
[DMG21] 11,623 11,131 8 8.5 - - 220 3.6/4.8/5.8 16.2/21.7/26.4/64.3 23.8% - Artix-7

XC7A200
Ours 16,088/17,975 12,954/13,748 2/2 0/0 6,263 6,463 208 2.7/3.4/4.1 13.0/16.3/19.7/49.0 - 0.32 Artix-7

XC7A200
[DMG21] 11,676 11,959 8 8.5 - - 450 3.6/4.8/5.8 7.9/10.6/12.9/31.4 25.4% - Zynq-UltraScale+

XCZU7EV
Ours 15,965/18,405 12,902/13,760 2/2 0/0 - - 435 2.7/3.4/4.1 6.2/7.8/9.4/23.4 - - Zynq-UltraScale+

XCZU7EV

*ENS (equivalent number of slices) = DSP × 100 + BRAM × 196 + Slices[KZW+22] ** Time(Total) = Time(Key+Enc+Dec) *** Area and time production (AT) = ENS × Time (Total)

with [BNAMK21a], which also uses the high-speed NTT architecture, the speedup on Ky-
ber512 is 47.0% for Key, 51.0% for Enc, and 50.7% for Dec (Artix-7). With faster devices
(Zynq-UltraScale+) with larger resources, the speedup is 51.6% compared with [DMG21]
in Kyber512. As the security level increases, the speedup is reduced as the proposed
architecture uses the same computational architecture. Compared with the state-of-the-art
architecture [DMG21], the total time of Key, Enc, and Dec are reduced by 33.4% and
23.8% under Kyber768 and Kyber1024, respectively (Artix-7). For Kyber1024, using the
faster hardware architecture (Zynq-UltraScale+), it takes 6.2, 7.8, and 9.4 us for Key,
Enc, and Dec, respectively. Compared with the designs in [XL21] and [BNAMK21b], the
proposed architecture achieves a speedup of 4-7.5x for all three different security levels
(Artix-7).

In terms of area, the proposed design is higher in LUT than the previous design due
to the use of more FIFO cells. However, for other on-chip resources, the proposed design
uses significantly less. Under Kyber512, compared with [BNAMK21b], [BNAMK21a],
and [DMG21], the DSP is reduced by 4, 6, and 2 blocks, and the BRAM is reduced by
15, 13, and 4.5 blocks, respectively. For a fairer comparison of resource consumption,
we estimate the equivalent number of slices (ENS) column, as undertaken in [KZW+22].
One DSP is taken as equivalent to 100 Slices, a 36K BRAM is equivalent to 196 Slices,
resulting in ENS computation ENS = DSP × 100 +BRAM × 196 + Slices. Compared
with [BNAMK21b] and [BNAMK21a], the proposed architecture reduces ENS by 24.5-
33.8% and 18.1-30.7% for the three different security levels, respectively. Compared
with [XL21], which implements a lightweight design, the proposed architecture uses
more resources, but the speed increase outweighs the resource consumption. Compared
with [DMG21], the proposed architecture uses more LUT resources but less DSP and
BRAM resources. The number of DSPs is reduced by 50.0%, 66.7%, and 75.0% for the
three different security levels, respectively. To better balance the advantages of area and
speed, we introduce the AT (area and time product) metric, where AT = ENS × Time(
Total). As can be seen from Table 1, the proposed architecture reduces 51.9%, 50.0%,
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and 45.8% at three different security levels compared with [XL21] and [BNAMK21a],
respectively. Therefore, the proposed Kyber accelerator significantly improved speed and
hardware efficiency compared to the state-of-the-art at all three different security levels.

6 Conclusion
This work presents a high-performance Kyber accelerator that undertakes an optimally
designed pipeline for parallel execution of various modules in the design. The accelerator
uses a pipelined MDC-NTT to speed up operations and adds cycles to the pipeline to reduce
DSP usage. Multiple FIFOs are used to buffer data for pipeline balancing. We performed
a hardware implementation of the proposed architecture using two different devices, the
Artix-7 and the Zynq-UltraScale+. The results show that the proposed Kyber accelerator
on the Artix-7 is 1.438×, 1.334×, and 1.238× faster at security level 1/3/5, respectively.
In terms of equivalent slice count, the proposed architecture reduces 45.8-51.9% in terms of
AT (area and time product) for three different security levels. On Zynq-UltraScale+, the
proposed architecture achieves a speedup of 1.516-1.254× compared to the state-of-the-art
design. Thus, the proposed architecture achieves significant hardware speed and efficiency
improvements.
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