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Abstract. This work presents the fastest and the most area-time efficient design re-
ported till date for an FPGA based hardware accelerator designed for the CRYSTALS-
Kyber lattice based Key Encapsulation Mechanism (KEM) scheme. Kyber was
recently chosen as the first quantum resistant KEM scheme for standardisation, after
three rounds of the National Institute of Standards and Technology (NIST) PQC
initiation which commenced in 2016. Kyber is based on the Module-Learning with
Errors (M-LWE) class of Lattice-based cryptography, which is known to manifest
efficiently on FPGAs. The design methodology revolves around aggressively enabling
maximum inter-module and intra module architectural parallelisation. To facilitate
maximum throughput, FIFO-based buffering is provided and balanced to act as
inter/intra-module pipelining. Area-time efficiency is high by effective resource reuse
in case of NTT/INTT. A single NTT/INTT is computed in 128 cycles, once the
pipeline is full. The FPGA based implementation results show that compared to
the state-of-the-art, the proposed architecture delivers 24-52% speedups at three
different security levels on Artix-7 and Zynq UltraScale+ devices, 50-75% reduction
in DSPs and no BRAM resources usage for comparable security levels. Consequently,
the AT product efficiency is reported to be 48-54% higher in comparison with the
state-of-the-art designs.
Keywords: Post-quantum Cryptography (PQC), Lattice-based Cryptography (LBC),
Module-Learning with Errors (M-LWE), CRYSTALS-Kyber, Hardware accelerator.

1 Introduction
The advent of quantum computers threatens the security of all existing cryptosystems.
A Quantum algorithm, called Shor’s algorithm [Sho99], is capable of completely break-
ing all currently deployed Public-key Cryptography (PKC), including RSA [RSA78] and
Elliptic Curve Cryptography (ECC) [Mil85]. In addition, Grover’s search quantum al-
gorithm [Gro96] reduces the complexity of the search space of a brute force attack on
symmetric-key encryption schemes (e.g., AES [RD01]) and hashing (e.g., SHA-3 [Dwo15])
to half. The National Institute of Standards and Technology (NIST) announced a formal
global call in 2016, to standardize new Post-quantum Cryptography (PQC) based Public-
key Encryption (PKE) and digital signature schemes [Moo16]. In 2017, 69 proposals
were selected in Round 1 of the NIST PQC and four candidates and five alternatives
were shortlisted in Round 3 in July 2020. Three out of these four candidate algorithms
were lattice-based cryptographic (LBC) schemes, namely CRYSTALS-Kyber [ABD+20],
SABER [ZZY+21], and NTRU [HRSS17]. NIST intended to standardize no more than
one of these lattice-based Public-key Encryption and Key-encapsulation algorithms and

mailto:{zni03, a.khalid, d.kundi}@qub.ac.uk, m.oneill@ecit.qub.ac.uk
mailto:liuweiqiang@nuaa.edu.cn


2Efficient Pipelining Exploration for a High-performance CRYSTALS-Kyber Accelerator

on July 5, 2022, NIST announced the first group of winners from its six-year competition.
CRYSTALS-Kyber was announced as the first PQC algorithm to be standardized as a
Key-encapsulation Mechanism (KEM) [GDD+22].

CRYSTALS-Kyber (hereafter called Kyber) [ABD+20] KEM is based on the module
learning with errors (M-LWE) problem, which is a lattice based hard problem. M-LWE is
an “algebraic” LWE with a tight formal mathematical security reduction of the ring-LWE
(R-LWE) problem [PP19]. Schemes based on the M-LWE problem have a more elaborate
algebraic structure and consequently, higher security than R-LWE schemes while achieving
higher performance than LWE schemes. In the M-LWE scheme, a parameter k is introduced
to restrict the dimensions of the public-key matrix A, but all elements of the matrix are on
the ring Zq[x]/(xn +1). Unlike the lattice-based scheme SABER [ZZY+21], the polynomial
operations in Kyber can be computed using the Number Theoretic Transform (NTT),
which allows Kyber to gain a high throughput performance. For round 2 of the NIST
PQC submission, the Kyber team adopted a technique to reduce the parameter q of Kyber
from 7, 681 to 3, 329, further reducing the complexity of the modular reduction and area
resources.

This work presents a high-speed and Area-Time (AT) product efficient hardware
accelerator for the IND-Chosen-ciphertext Attack-2 (IND-CCA2) secure Kyber KEM
scheme. The accelerator comprises of Key Generation, Encapsulation and Decapsulation
modules for the three NIST specific security levels 1/3/5. The major contributions of this
work are summarized as follows:

• Our Kyber accelerator aggressively exploits architectural parallelisation via optimal
inter-module and intra module pipelines. To balance the pipeline, buffering is
provided at the interface of several modules. The computation order of the modules
is re-arranged to facilitate an optimal usage of pipeline.

• A fully pipilined Radix-2-Multipath Delay Commutator (MDC)-NTT core is presented
that multiplexes the resources for both the NTT and inverse-NTT (INTT) computa-
tions. By using different delay units, the bit reversal operation in the NTT/INTT
calculation is completely eliminated. Due to pipelining, a single NTT/INTT compu-
tation requires only 128 clock cycles, once the pipeline is full.

• Resource utilization is reduced in terms of DSPs and BRAMs by several strategies.
The hardware for NTT/INTT is shared. To balance pipeline, buffering is done via
FIFOs (restricting first in first out data access) instead of BRAMs that allow more
flexible access but are more expensive in resource consumption. The data input order
of the FIFOs for NTT/INTT module has been organized so as not to require the use
of any BRAM in our proposed architecture.

• Our proposed Kyber accelerator surpasses all previously reported FPGA based
implementations with comparable security levels in terms of execution time and
design efficiency (i.e., Area-Time (AT) product). Compared to the state-of-the-art
design, the proposed architecture has a speedup of ×1.24-1.44 at the three security
levels on an Artix-7 and ×1.25-1.52 on a Zynq-UltraSale+. In terms of hardware
efficiency, the proposed architecture improves the AT efficiency by 53.5%, 50.0%,
and 48.4% for the three different security levels, respectively.

While intra module architectural pipelining in hardware designs is not a novel accel-
eration technique, however, considering simultaneously the intra and the inter module
parallelization maximization and consequently balance and orchestrate the whole data
buffering and data flow based on that is not considered earlier for ultra high speed PQC
hardware. Consequently, our results easily surpass the state of the art substantially, both
in terms of throughput and efficiency.
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This paper is organized as follows. Section II introduces the Kyber protocol and NTT,
and Section III presents the proposed overall architecture including various modules. A fast
pipelined scheduling scheme and memory approaches for the Kyber hardware architecture
are presented in Section IV. Implementation results and a comparison with previous designs
are provided in Section V, and Section VI concludes our work.

2 Preliminaries
In this section, the Kyber KEM is explained, describing the main NTT construct in Kyber.

2.1 Kyber.v3 (NIST PQC Round 3)
Kyber KEM is the first lattice based PQC algorithm chosen by NIST for standardisation.
The relative balance between performance and security can be directly adjusted by tweaking
the size of the matrix k; the choice of k varies to 2, 3, or 4 for security levels 1 (Kyber512),
3 (Kyber768) and 5 (Kyber1024), respectively. The noise parameter η is adjusted according
to the security level. The IND-CCA2 secure Kyber KEM, submitted to NIST PQC Round 3
referred to a Kyber.CCA consists of three main steps: key generation (Kyber.CCA.KeyGen),
key encapsulation (Kyber.CCA.Enc), and key decapsulation (Kyber.CCA.Dec). The prime
used in Kyber, p is changed from 7681 to 3329, which enables the polynomial multiplication
in Kyber to be accelerated using NTT. The Kyber.CCA implementation is built on top of
the Kyber.CPA, using the Fujisaki-Okamoto transform [FO99]. Kyber.CPA comprises of
three components: key generation (Kyber.CPA.KeyGen), encryption (Kyber.CPA.Enc),
and decryption (Kyber.CPA.Dec). A functional description of the three constituent
functions of Kyber.CPA are described as follows, for more details of Kyber, the reader is
kindly referred to [ABD+20].

Algorithm 1 Kyber.CCA.KeyGen()
1: Output: Public key pk, Secret key sk
2: z = B32

3: (pk, sk′) := Kyber.CPA.KeyGen()
4: sk := (sk′||pk||H(pk)||z)
5: return (pk, sk)

Algorithm 2 Kyber.CCA.Enc(pk)
1: Input: Public key pk
2: Output: Ciphertext c, Shared key ss
3: m = B32

4: m =H(m)
5: (K̄, r) := G(m||H(pk))
6: c:= Kyber.CPA.Enc(pk,m, r)
7: ss := KDF(K̄||H(c))
8: return (c, ss)

Algorithm 3 Kyber.CCA.Dec(c, sk)
1: Input: Ciphertext c, Secret key sk
2: Output: Shared key ss
3: m′ := Kyber.CPA.Enc(sk,c)
4: (K̄ ′,r′) := G(m′||h)
5: c′ := Kyber.CPA.Enc(pk,m′,r′)
6: if c = c′ then
7: ss := KDF(K̄ ′||H(c))
8: else
9: ss := KDF(z||H(c))

10: end if
11: return ss

Kyber.CPA.KeyGen(): Before a communication could be established between Alice
and Bob, the Key generation function generates a set of public key pk and secret key
sk. First, a matrix A is generated directly in the NTT domain by uniform sampling;
vectors s and e are generated by binomial distribution sampling. Then, the polynomial
t̂ = Â◦NTT(s) + NTT(e) is computed, and the key pair is generated by sk = (NTT(s))
and pk = (pk, ρ), where ρ is a random number.



4Efficient Pipelining Exploration for a High-performance CRYSTALS-Kyber Accelerator

Kyber.CPA.Enc(pk,m, r): First, the matrix AT is generated in the NTT domain
by uniform sampling, other vectors generated are r, e1 and polynomial e2 by seed r. The
vector u and v are then computed by u = NTT−1( ÂT ◦r̂)+e1 and v = NTT−1( t̂T

◦r̂) + e2 + Decompressq(Decode1(m), 1). Next, u and v are compressed and encoded to
produce c1 and c2. Finally, the Ciphertext c = (c1||c2) is returned.

Kyber.CPA.Dec(sk, c): The vectors u and v from the input c are compressed. Then
the message m′ is calculated from m′ = Encode1(Compressq(v−NTT−1(ŝT ◦ NTT(u), 1))).
The m′ is returned as the output of the function.

Algo. 1, 2, and 3 show the Kyber.CCA.KeyGen, Kyber.CCA.Enc and Kyber.CCA.Dec
functions in Kyber.CCA, respectively. Kyber.CCA.KeyGen() calls Kyber.CPA.KeyGen()
function to generate public key pk and sk′. The secret key sk is then generated by
sk=(sk′||pk||H(pk)||z), where H represents SHA3-256. Kyber.CCA.Enc() receives the
public key pk and calls the Kyber.CPA.Enc(pk, m, r) function to generate the ciphertext c.
The shared secret ss is then generated by SHAKE-256. The output includes the ciphertext
c and shared secret ss. Kyber.CCA.Dec() takes the ciphertext c and the secret key sk as
inputs. First Kyber.CPA.Enc(sk,c) function is called to recover the message m, and then
Kyber.CPA.Dec(pk,m′,r′) computes the new ciphertext c′. If the comparison between c
and c′, returns a success, the encryption is successful.

2.2 NTT in Kyber
The NTT algorithm is derived from the Fast Fourier Transform (FFT) algorithm. Compared
to standard schoolbook polynomial multiplication, the complexity of the NTT algorithm
is reduced from O(n2) to O(nlogn). The choice of modulus in the construction of Kyber
satisfies the modulus restriction for the NTT, and polynomial multiplication calculations in
Kyber can be accelerated using NTT. Table 1 shows the number of times the NTT/INTT
(single NTT/INTT for 256 points) is needed during the key generation, encapsulation and
decapsulation functions in Kyber, under three different security levels.

For NTT transformations, polynomials are expressed in terms of a vector of coefficients,
e.g., the polynomial a(x) = a0 + a1x + ... + an−1x

n−1 + anx
n is represented as a set

of n points a(xi) = {(x0, y0), (x1, y1), ..., }. The NTT computation can be substantially
improved when using n special points, i.e. n powers of the rotation factor w.

Give a polynomial with n elements, k is an integer ranging from 0 to n − 1, w is
the square of ψ, where ψ is the primitive root of unity in NTT, the NTT and INTT
transformation are shown as follows:

âm =
n−1∑
k=0

akψ
(2m+1)k =

n−1∑
k=0

(akψ
k)wmkmod q (1)

ak = 1
n

n−1∑
m=0

âmψ
−(2m+1)k = ψ−k · 1

n

n−1∑
m=0

âmw
−mkmod q (2)

There are some differences between the NTT defined in Kyber [ABD+20] and the
classical NTT. In Kyber, the base field Zq contains the primitive 256th root of unity but
not the primitive 512th root of unity. Thus, the polynomial x256 + 1 can be defined as
a polynomial of 128 degrees of 2. Let ζ = 17 be the first primitive 256th root of unity
modulo q. The polynomial x256 + 1 can be written as:

f(x) =
255∑
i=0

fix
i (3)
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Table 1: Number of calls for the NTT/INTT operation in the key generation, encapsulation
and decapsulation, for the three security levels.

Functions Number of NTT calls
Security Levels: 1/3/5

Number of INTT calls
Security Levels: 1/3/5

Key Generation 4/6/8 0/0/0
Encapsulation 2/3/4 3/4/5
Decapsulation 4/6/8 4/5/6

Therefore, any polynomial f(x) can be divided into two polynomials according to
the parity term after the NTT calculation, as shown in Eq.(4)-(5), where br7 means bit
reversal of the unsigned 7-bit integer i. In addition, when performing NTT calculations,
these two parity polynomials are calculated independently.

f̂2i =
127∑
j=0

f2iζ
(2br7i+1)j (4)

f̂2i+1 =
127∑
j=0

f2i+1ζ
(2br7i+1)j (5)

The polynomial multiplication NTT(f) ◦ NTT(g) = ĥ mod x2 − ζ2br7i+1, where f̂ , ĝ,
and ĥ are polynomials in NTT representation, can be expressed as:

ĥ2i + ĥ2i+1x = f̂2iĝ2i + ζ2br7i+1f̂2i+1ĝ2i+1

+ x(f̂2if̂2i+1 + ĝ2iĝ2i+1) (6)

2.3 Related Work
Hardware based Kyber KEM accelerator designs have primarily focused on the optimiza-
tions of its most computationally intensive constituent component, i.e., the polynomial
multiplication module (implemented via the NTT module) [GL21, ZLL+21, YMÖS21,
TCW+21, BNAMK21a]. Several recent works on Kyber focus on the improving the NTT
memory access and modulo multiplication units. In 2020, Chen et al. proposed a pipelined
processor for the vector of polynomials using two-column sequential storage and bit-inverted
addressing access for Kyber (p = 7, 681) [CMC+20]. Zhang et al. in 2021 proposed an
effective NTT structure for the prime in Round 2 (p = 3, 329) [ZLL+21]. In the same
year, Mojtaba et al. proposed to apply the prime p = 3, 329 reduction module of the
K2-RED algorithm without register delays to four parallel-computing NTT butterfly units
to achieve a high-speed polynomial multiplication accelerator [BNAMK21a]. Ferhat et
al. implemented different architectures of multiplication units by increasing the number
of butterfly units in the NTT based on a unified butterfly structure [YMÖS21], with
lightweight, balanced, and high-performance hardware architectures, using 1, 4, and 16
parallel butterfly units, respectively.

Several hardware-only complete Kyber implementations have also been reported in the
literature [HHLW20, XL21, BNAMK21a, BNAMK21b, DMG21]. The first implementation
on whole hardware device of Kyber was presented by Huang et al. in 2020; the module reuse
technique was undertaken as an optimization to achieve a 129× speedup compared to a
Cortex-M4 processor implementation, at the cost of high resource consumption [HHLW20].
In 2021, Xing et al. proposed a low-cost, high-performance Kyber processor on the Artix-7
platform [XL21]. This architecture utilized a predefined control order table with short
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control codes for the scheduling of various NTT processes and used different sized FIFOs
for data transmission/ reception to achieve good throughput performance with limited
computational resources. In the same year, Bisheh-Niasar et al. proposed a polynomial
multiplier for Kyber, using a 2×2 reconfigurable butterfly cell with pure combinational
logic referred to K2-RED modulo subtraction cells [BNAMK21a], requiring only 801 LUTs
and 717 FFs on an Artix-7 device operating at 200MHz. The same reconfigurable butterfly
module was used in an instruction set processor for Kyber [BNAMK21b], whose overall
operating frequency was limited. In addition, Dang et al. implemented three different
lattice-based PQCs of NIST Round 3 (Kyber, SABER, NTRU) in hardware [DMG21] and
a 52.5%, 65.7%, 76.2% improvement in speed of Kyber at three different security levels
compared to earlier high performance Kyber implementations [XL21].

3 The Proposed Kyber Hardware Accelerator
The proposed Kyber accelerator comprises server and client side implementations. The
server-side accelerator includes the key generation and decapsulation functions while
the client-side implementation consist a sub-set of components, performing only the
key encapsulation function. An overall design of the server-side Kyber accelerator is
shown in Fig. 1. It comprises a controller, computational units and storage units. The
storage unit consists of multiple FIFOs and ROMs (in the NTT/INTT and polynomial
multiplication unit). In Fig. 1, the black, green, and purple colors indicate the data flow
for Kyber.CPA.KeyGen, Kyber.CPA.Dec and Kyber.CPA.Enc functions, respectively. The
dashed lines indicate the data flow through INTT, which is computed after the solid line
of the same color. To enable a pipelined execution, all modules use independent resources
except NTT/INTT modules that have shared resources. In our design, four parallel data
blocks (totalling 48-bits for 12-bit blocks) are simultaneously processed. Therefore, two
Point-wise Multiplication (PWM) units and four groups of parallel adders (ADDs1) are
used after the NTT computation. A finite state machine based controller controls the
execution of the hash module, until enough random samples are generated. Then the
Kyber accelerator enters a pipelined state for computational units until the hash function
computation is needed again. The controller assembles the padding for the hash module,
based on the hash function needed for the current state and feeds it into the hash module.
In addition, the controller includes four 256-bit registers for storing and distributing the
results generated by the hash module. There are several differences in the accelerator’s
execution for the three different security levels of Kyber. For Kyber512, the centered-3
binomial distribution (CBD3) sampling module is added to the overall architecture. For
Kyber1024, the compress/ decompress modules differ from the other two security levels.
Various modules are shared between the key generation and decapsulation functions on
the server-side for area minimization.

In the rest of this section, we present the main modules used in the Kyber accelerator,
i.e., the hash module, the sampling module, the NTT/INTT module, the PWM module,
and the compression and encoding modules. All descriptions are based on the Kyber768
implementation (e.g., FIFO sizes, k = 3 etc.), while differences for Kyber512 and Kyber1024
are mentioned.

3.1 SHA-3 Based Hash Module
The hash module generates the random distribution samples to the sampling modules, to
provide the coefficients of the noise polynomial and consequently can become the potential
computational bottle-neck of the design. Hence consideration is given to match the Hash
module throughput with other modules. Our design uses one Keccak core [Tea20] that
is implemented serially for different SHA-3 functions. The Keccak core needs significant
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Figure 1: The overall server-side Kyber768 architecture. The black, green, and purple
colored arrows indicate the data flow for Kyber.CPA.KeyGen, Kyber.CPA.Dec and Ky-
ber.CPA.Enc functions, respectively. The dashed line in the figure is the data flow after
the solid line of the same color is complete.

hardware resources, e.g., 54.2% of the total LUTs used in the Kyber design [XL21].
Kyber uses four different SHA-3 functions, i.e., SHA3-256, SHA3-512, SHAKE128, and

SHAKE256. While the Keccak core computations remain identical for these functions,
the padding method differs for all of them. The maximum size of data output in a single
computation is also different, i.e., 1,344, 1,088 and 576 bits for SHA3-128, SHA3-256, and
SHA3-512, respectively.

The hash module receives up to 1,344-bits of data, in 64-bit chunks (in 21 cycles).
This data is fed to the Keccak core, after the controller has added the SHA-3 function
appropriate padding, e.g., the SHA3-512 function takes 64-bit data inputs in 9 cycles and
in the subsequent 12 cycles 64-bit ‘0’ values are padded to get 1,344-bits of data. The
Hash module defaults to the squeeze stage from the second round of computation and
automatically feeds the results of the first round into the Keccak core for a further 24
rounds of computations; However the Hash module also contains an absorb signal for cases
when the amount of data is greater than the maximum amount of data that can be carried
in a single round.

The architecture of the Hash module comprises the input/output stages and a Keccak
core, as shown in Fig. 2. These three stages are independently buffered and operate in a
fully pipelined manner ensuring substantial acceleration. It has a 64 × 64 FIFO to cache-in
large volume of input data. The FIFO output is fed as 64-bit words into the 1,344-bit
shift register in big-endian format (in 21 cycles). The Keccak core takes the data and
applies 24 rounds of iterative operations on it. The internal state of the Keccak core is
1,600 bits in length, out of which the 1,344 most significant bits (MSBs) are taken for
data output or absorbing after the 24 round calculations. At the output stage of the Hash
module, the data is loaded into the 256-bit registers in the controller, 64-bit per cycle.
Although 36-bit or 48-bit inputs are generally used in the sampling module in the proposed



8Efficient Pipelining Exploration for a High-performance CRYSTALS-Kyber Accelerator

architecture, going from high-bit-width data to low-bit-width data, i.e., 48/32-bit will not
cause discontinuities for input to the sampling module. For the absorbing stage, in the
proposed architecture, the 1,344 MSBs of the output from the Hash module are selected
to be XORed with the subsequent input.

3.2 Sampling of Noise
Kyber uses two types of sampling, namely uniform distribution sampling (Parse) and
central binomial distribution sampling (CBDη, η = 2, 3). All three security levels of Kyber
need Parse to get polyvector matrix Â (as well as ÂT ). For Kyber512, two different
CBD modules (CBD2, CBD3) are used, the other two security levels use only CBD2.
Fig. 3(a) and (b) represent the Parse and CBDη modules, respectively, where Fig. 3(c)
shows the state of the FIFO when a 64-bit to 48-bit data conversion is performed.

While the hash module takes 21 clock cycles to output 1,344-bit of data (64-bit per
cycle) and a single computation of Keccak takes 24 cycles, there is always meant to be
a waiting interval even if pipelining is employed. The sampled data is stored in 64 × 32
FIFO called FIFOGET A, converted to 48 bits, and fed into the sampling module. For the
64To48 module, as shown in Fig.3(c), 64-bit data blocks are fed three times every four
cycles. The data is internally registered to enable a consecutive stream of 48-bit outputs in
4 consecutive cycles. The results of Parse do not need to be stored and can be multiplied
directly with the NTT results at output. As the results of Parse greater than 3,329 are
discarded, a 48 × 256 FIFO is required, called FIFOAMatrix, to filter out the Parse data
Â. For each set of matrix Â data, it is packaged into 64 48-bit data outputs (64 × 4) for
subsequent polynomial multiplication.

The CBD2 and CBD3 modules require 32 and 48 bits of data, respectively, to generate
eight output results. Data output from the Hash module is stored in a 64 × 32 FIFO called
FIFOHASHO. The CBD3 requires a 64To48 module before sampling while CBD2 does
not need this conversion. The FIFOHASHO pops out 64-bits of data once in alternate
clock cycles. The upper and lower halves of this data (32 bits each) are processed in two
consecutive cycles.

3.3 NTT/INTT Module
The polynomial multiplication is both a resource hungry and a computational bottle
neck in a lattice based cryptography design. The Kyber parameters were tweaked to
be more ‘NTT-friendly’ in the 3rd round submission to the NIST PQC and the use of
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Figure 3: Sampling modules: (a) Parse module, (b) CBDη module, and (c) The output
stage of FIFOGET A and FIFOHASHO.

NTT/INTT for polynomial multiplication is now part of Kyber specifications [ABD+20].
For polynomial multiplication via NTT, first the NTT of the multiplicand and multiplier
polynomials is computed, a multiplication of the two vectors is carried out and then
the inverse NTT (INTT) is computed to complete the polynomial multiplication. Since
NTT/INTT calculations are not simultaneously performed, the same architecture is reused
to minimize resource consumption. To balance area and speed and match the throughput
of data in the subsequent modules, the Radix-2 multipath delay commutator (MDC)-based
architecture turns out to be the optimal choice [KZW+22].

A Switch-MDC-NTT (S-NTT) architecture is shown in Fig. 4. The S-NTT consists of
a pre-processing unit, seven general processing units, and one post-processing unit. All
of the first six general processing units contain a radix-2 butterfly unit (BF2), a modulo
multiplier, delay unit (D), and a two-channel commutator (C2), while the 7th general
processing unit only contains a BF2 unit and a delay unit. The MDC architecture employs
pipelining, significantly reducing the computation time by enabling simultaneous execution
of multiple consecutive NTT/INTT calculations. The BF2 unit performs addition and
subtraction calculations for each cross of input data pair. The result of the subtraction
in BF2 is fed into C2 after the modulo reduction while the addition result does not
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Figure 4: The switch Radix-2 multipath delay commutator (MDC) NTT/INTT pipelined
architecture with seven stages.
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need to be reduced and hence is fed into C2 after buffering to match the pipeline. The
internal architecture of the modulo multipliers follow Algorithm 4 in [XL21], which uses an
optimized Barrett reduction algorithm with multiple partitioning and addition operations.
The modulo multiplier is pipelined and requires six cycles for completion, the first two
perform the 12-bit multiplication and the last four perform the reduction operation.

The S-NTT contains both pre-processing and post-processing blocks, and both use
two modulo multiplication units for computation; However these two units do not execute
simultaneously. To reduce resource consumption, the modulo multiplication unit is reused
in these blocks. The pre-processing is performed at the start of the NTT, before entering
the first stage of NTT. For INTT, the data enters the first stage directly and the post-
processing multiplication is performed on the output of the seventh stage of the calculation.
Note that reusing the multiplier in pre-processing and post-processing causes the NTT
and INTT not to be pipelined when switching, but the delay in this case is negligible
considering the difficulty of merging the pipeline between the NTT and INTT itself in the
encapsulation and decapsulation functions in Kyber.

For NTT computation, the Cooley-Tukey butterfly structure is undertaken at all stages.
While the data flow of NTT/INTT is the same in the proposed architecture. In order to
ensure that the output order of INTT is the normal order, the INTT in S-NTT is input
in a bit-reversed order. Thus the result obtained from the polynomial multiplier can be
directly input into the INTT in order. The calculation units in S-NTT, such as BF2 and
modular multiplier, are all reused, but the delay unit (D) in each stage cannot be reused
due to the different input order. The blue line and block diagram in Fig. 4 represent
the alternative delay unit when calculating INTT. The result of INTT is sequential data
separated by parity and even, no BRAM unit is used to store data in the input and output
of S-NTT. The start-up time for the very first NTT and INTT calculation (when the
pipeline is not full) is 119 cycles. The cycle time for a single 256-point-wise calculation
after full pipelining is 128. Hence the first NTT/INTT computation requires 119+128
cycles but the subsequent NTT/INTT computations require only 128 cycles.

3.4 Point-wise Multiplications (PWMs) and ADDs
The point-wise multiplication (PWM) in Kyber is not as straightforward as required in
Ring-LWE. It requires different computations for even and odd values of the point-wise
multiplication product. For Kyber, assume that polynomials f̂ and ĝ are multiplied, and
the result is ĥ, root of unity ζ, then an optimized PWM calculation formula based on the
Karatsuba algorithm from Eq.(6) was proposed in 2020 [XL21] as follows:

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1 · ζ2br(i)+1 (7)
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g2i^g2i^

f2i+1f̂2i+1^
g2i+1^g2i+1^

ζ
2br(i)+1

h2iĥ2i^
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g2i^

f2i+1^
g2i+1^

ζ
2br(i)+1

h2i^

h2i+1^

Figure 5: The piplined point-wise multiplication modules.
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ĥ2i+1 = (f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1) − (f̂2iĝ2i + f̂2i+1ĝ2i+1) (8)

Thus, the result of h2i comes from the sum of f̂2iĝ2i and f̂2i+1ĝ2i+1 · ζ2br(i)+1 and
f̂2i+1ĝ2i+1 · ζ2br(i)+1 comes from multiplying three 12-bit data (ζ2br(i)+1 can be stored
in ROM by precomputation). If f̂2i+1ĝ2i+1 is not reduced in time, it will cause the bit
width of the addition to increase. Also, note that the results of f̂2iĝ2i and f̂2i+1ĝ2i+1
are directly usable in the calculation of ĥ2i+1, and only one additional multiplication is
needed when calculating ĥ2i+1. Since the pipeline length has minimal impact on the overall
design calculation time, the proposed PWM design matches the frequency of the other
modules. As shown in Fig. 5, the PWM module requires eleven cycles to provide a full
pipeline operation. In the first two cycles two 12-bit multiplications and one 13×12 bit
multiplication is carried out. sum0 and sum1 in Fig. 5 are derived from f̂2i + f̂2i+1 and
ĝ2i + ĝ2i+1, respectively; However sum1 is reduced to modulo p to ensure that sum0 ×sum1
does not exceed 25 bits first. During the calculation of h2i+1 if the result becomes negative,
24′hd01000 is added to ensure that the data in the input of Barrett reduction (BR) is
positive. In the 3rd cycle, the result of ĥ2i+1 is reduced to 12-bit and using the Barrett
reduction (BR) module, which is the same as the BR used in the NTT module. Thereafter,
ĥ2i+1 passes through a shift register until ĥ2i is output at the same time. After f̂2i+1ĝ2i+1
is output from the BR module, the 12-bit result is calculated with the value of ζ, added to
f̂2iĝ2i and the final result is reduced in one pass in the BR module.

Two PWM units are used in the overall design, allowing simultaneous calculation of
the four polynomial coefficients. A 24 × 64 distributed ROM is pre-computed to provide ζ
values to two channels of PWMs (ζ[23 : 12] and ζ[11 : 0]). Four 12-bit adders with three
input (ADDs1) units are used in the design for the adder. This unit will perform the final
addition for the 256 point-wise polynomial multiplication.

3.5 Storage: FIFOs and ROMs

The polynomials in lattice based cryptography schemes are large in dimension with low
bit-width components, e.g., a single polynomial of Kyber has 256 elements, each of 12-bit
size. High speed simultaneous access to several low bit-width data elements is critical to
ensure high throughput performance but also dictates the amount of on-chip resources.
The FPGA storage structures include Look-up-table RAM (LUTRAM) and Block RAMs
(BRAMs). While BRAMs are dual ported, allowing fast and dual read/write access, they
can be under-utilized due to their limited width-depth configurations, resulting in a waste
of resources. FIFOs instead are much more resource efficient in comparison and can
be custom sized as needed. However, they only also access of data in the order that is
pushed into the FIFO. There are distributed ROMs and two types of FIFOs in our Kyber
accelerator. All pre-computed data in the design uses distributed ROM, e.g., rotation
factors in NTT/INTT and PWMs. For two types of FIFOs, one for buffering large amounts
of data that cannot be computed on-the-fly. The depth in this type of FIFO does not need
to match the total amount of data but just enough to meet the current pipeline speed.
Another type of FIFO is used for the complete storage of data. Since the FIFO restricts
first in first out access only, for NTT computations, the order of input data is adjusted
before it is input into the FIFOs. In a fully pipelined architecture, the data is continuously
pushed forward. Therefore, it can be consider that in many cases the computation modules
are also treated as a kind of storage module, which saves a lot of storage units. Benefiting
from the ability of INTT to directly use bit-reversal sequential inputs and to output data
in normal order, the proposed architecture does not use BRAM to store data at all.
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3.6 Decode Modules
In Kyber KEM, data in the Kyber.CPA function is required to be compressed before
encoding. Compression is relatively easy to implement, with the quotient being output by
shifting the polynomial addition and reducing. Decompression does not require a reduction
module, but all the data is multiplied by ⌊3, 329/2⌋, using a constant multiplier composed
of LUTs to reduce DSP consumption. The encode module takes data input from the
INTT output. Various encoding modules are obtained by shifting the input data and
performing arithmetic operations. The bit width of the encoded output depends on the
need of subsequent calculations. For example, the encoded output of v and u is 64 bits
one cycle, and the m output in Kyber.CPA.Dec generates 8 bits one cycle.
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Figure 6: Decodedv in different security levels. (a) Decodedv of Kyber512 and Kyber768.
(b) Decodedv of Kyber1024.

The Decode module is more complex, with different methods for the v vector and u
polyvector for different security levels in Decodedv. The same Decode method is used in
Kyber512 and Kyber768, and it takes only eight cycles to complete a round of computation
for v and u with 64 bit inputs. Fig. 6(a) shows the computation flow for the u decoding
under Kyber512 and Kyber768. For the u polyvector, a single cycle produces 48 bits of
data after processing 40 bits (4 groups) of data, and the 8 data parity both generated
in two consecutive cycles are separated and fed into the FIFO in the same way as the
sampled data. The Fig. 6(a) represents the data processed in the current cycle, where the
white block is the 40-bit output data, the grey block is the data that cannot be output in
the current cycle and needs to be processed in the next cycle, and the red block represents
the data from the previous cycle. In addition, the grey block of the Input signal represents
a FIFO should be fetched in the current cycle. Thus, five 64-bit data blocks are fetched in
eight consecutive cycles, generating 32 polyvector data of u.

The decoding in Kyber1024 is more complicated than the other two security levels due
to the irregularity of individual data block (11 bits) in the decoding of the u polyvector.
If the shifting method in Kyber768 is followed in Kyber1024, the generated single-round
states reach more than 25. Therefore, an adaptive feedback (AF) scheme is proposed using
the output control of the FIFO by the Decode module. In the AF scheme, the output of
the FIFO is controlled by the decode module, whose internal counter is constantly updated
with the current amount of unprocessed data to guide the output data and the FIFO
read data. Each time the decode module receives 64 bits of data, the internal counter is
increased by 8. As shown in Fig. 6(b), in the case of the decode u vector, when the counter
is greater than 11 (88 bits), the feedback FIFO pauses to take out the data and uses the
88 bits of data to generate eight u coefficients in the subsequent two cycles. For decoding
the v vector coefficients, the feedback is performed and calculated when the counter is



Ziying Ni, Ayesha Khalid, Dur-e-Shahwar Kundi, Máire O’Neill and Weiqiang Liu 13

greater than 5.

4 Data Flow in the Proposed Kyber Accelerator

In order to ensure simultaneous execution of various modules of the Kyber accelerator, its
modules are designed to support pipelining. The modules in Kyber vary much in terms of
their input/output word sizes and speeds and need to be thoughtfully scheduled so that
data flow does not halt. This is ensured by using storage units whenever needed. For
example, in CBD2, a single 36 bit input results in eight 12-bit polynomial coefficients,
while in the NTT module, only 24 bits of data are input and 24 bits are output in a
single clock cycle. This section walks through the primary data flow for the main modules
of Kyber.CPA.Enc (Kyber768) as an example, as shown in Fig. 7. The primary data
flow consists of the Hash module, NTT/INTT module, PWM modules, and the data
compression module. All cycles represent the total cycles of the current module calculation,
except for the NTT/INTT, which represent the cycles needed to write the output data.

The Hash function computation time is critical to the data sampling time. For example,
SHA3-256 takes 21 cycles to receive input data, 24 cycles for the internal Keccak core
computations, and up to 17 cycles (64-bit data each) can be output in one squeeze. Adding
the time for data to pass through modules, a total of 70 cycles is needed for one hash
calculation. However, the overhead of input and out can be made negligible by pipelining.
In the Hash module, cycles for r[0] are computed from the start of data input, and the 70
cycles include the output stage of the previous parallel computation of the Hash module.
The input data from r[1] is fed into the Hash module simultaneously with r[0] generating
the output. Thus the computation cycles of the single Hash module are reduced to 53
cycles for CBD2 sampling. To ensure that the matrix ÂT gets the 256 data points from
the sampling module, the Hash module calculates SHAKE-128 by squeezing four times.
Due to pipelining, the single calculation cycle is only 115 times.

The NTT/INTT computation is also pipelined, generating a complete a set of 256
coefficients every 128 cycles. During NTT computation, the first 64 cycles of data for each
output set are delayed by 64 cycles of output using shift registers to meet t̂T starting at
the NTT output stage. The compress module takes the polynomial addition output after
INTT calculation and generates a pair of data in a single pass, taking 512 cycles. The
data flow of Fig. 7 consumes 1.9k cycles in total.

r[0]r[0]Hash

7070Cycles 5353 5353

e1[0]e1[0]

5353

e1[1]e1[1]

5353

e1[2]e1[2]

5353

AT
00AT
00

127127 115115 115115 115115 115115

e2e2

5353 115115 115115 115115 115115

Comp.(v)Comp.(v) Comp.(u0)Comp.(u0) Comp.(u1)Comp.(u1)

128128 128128 128128

Comp.(u2)Comp.(u2)

128128

Compress

Cycles

PWM t0r[0]t0r[0]

6464Cycles

t1r[1]t1r[1]

6464

t2r[2]t2r[2]

6464

A00r[0]

6464

A00r[0]

64 646464 646464 646464 646464 646464 646464 646464 64646464 64 64

A00r[0]

64 64 64 64 64 64 64 64 64

r

^r[0] r[1]^ ^r[2]

^ ^ ^ ^^

^^ ^ ^ ^ ^ ^ ^ ^

NTT NTT(r[0])NTT(r[0]) NTT(r[1])NTT(r[1]) NTT(r[2])NTT(r[2])

128128 128128 128128Cycles 128128 128128 128128 128128

r[1] r[2]

INTT(A0◦r) INTT(A1◦r) INTT(A2◦r)INTT(t ◦r)
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Figure 7: Execution order and clock cycles for main modules in Kyber.CPA.Enc of
Kyber768.



14Efficient Pipelining Exploration for a High-performance CRYSTALS-Kyber Accelerator

CBD2 Output

32

Even Data

8/cycle

4/cycle

16

4/cycle

FIFO1

0

2

4

6

……

120

122

124

126

1

3

5

7

……

121

123

125

127

128

130

132

134

……

248

250

252

254

128

130

132

134

……

248

250

252

254

129

131

133

135

……

249

251

253

255

129

131

133

135

……

249

251

253

255

FIFO2

4/cycle

FIFO1 Write 11 0

FIFO2 Write 110

FIFO1 Read 11

FIFO2 Read 0 11

CBD2 Output

32

11

0

2

4

6

……

120

122

124

126

1

3

5

7

248

250

252

254

128

130

132

134

Odd Data

Even Data

Odd Data

FIFO1

FIFO2

CBD2 Output

32

Even Data

8/cycle

4/cycle

16

4/cycle

FIFO1

0

2

4

6

……

120

122

124

126

1

3

5

7

……

121

123

125

127

128

130

132

134

……

248

250

252

254

129

131

133

135

……

249

251

253

255

FIFO2

4/cycle

FIFO1 Write 1 0

FIFO2 Write 10

FIFO1 Read 1

FIFO2 Read 0 1

CBD2 Output

32

1

0

2

4

6

……

120

122

124

126

1

3

5

7

248

250

252

254

128

130

132

134

Odd Data

Even Data

Odd Data

FIFO1

FIFO2

11

Figure 8: The access process of CBD2 and FIFOs (FIFO1 and FIFO2). 8 data blocks per
cycle in CBD output and 4 data blocks per cycle input into FIFO1 and FIFO2.

4.1 Primary Data Flow in Kyber768

The primary data flow starts with the sampling modules. A portion of the data generated
by the Hash module is stored in four 256-bit registers for re-entry into the Hash module,
while the rest is sampled data and is fed into the uniform Parse and binomial sampling
CBD2/3. A 64-bit data is fed into the Parse sampler every cycle, but the polyvector
matrix ÂT samples are not immediately generated. The 64-bit data is first input into a 64
× 32 FIFOGET A for caching before sampling. To match the 48-bit input per cycle of Parse
sampling, the FIFOGET A outputs 64 bits of data three times in four consecutive cycles.
The 64To48 module reads 192 bits of data every four cycles and splits and reassembles
into 48 bit block per cycle. Each sampling cycle of Parse produces four results, but not
all are valid. This uncertainty in the generation of the matrix ÂT can cause difficulties
in matching data in subsequent polynomial multiplications. The 12 bits of valid results
by Parse are stitched together as 48 bits and fed into a 48 × 256 FIFOAMatrix. Due to
the late timing of the output of r̂ after the NTT calculation, the FIFOAMatrix waits for
the complete output of r̂ from the NTT module before generating the output data to
ensure that the polynomial multiplication of t̂T does not conflict with matrix ÂT in the
Kyber.CPA.Enc calculation.

The binomial distribution sampler comprises CBD2 and CBD3 that take 32-bit and
48-bit inputs every cycle, respectively, to generate 8 results. The NTT module takes the
CBD2 output as odd/ even samples of 256 data points separately, and only a pair of data
inputs is taken in each cycle. Hence the data generated by a single CBD2 cycle (8 × 12
bits) is much more than what the NTT module can accommodate. Therefore, the data of
r at the odd positions from CBD2/3 is shifted back by 16 cycles, after which two FIFOs
(FIFO1 and FIFO2, 48 × 128 FIFO) are utilized to store the sampling data. e1 and e2 do
not need to perform NTT calculation, the data output from CBD2 is directly stored in
FIFOe1 (96 × 128 FIFO) and FIFOe2 (96 × 32 FIFO).

As shown in Fig. 8, four consecutive even position data blocks in order {0, 2, 4, 6} are
combined and written to FIFO1 into the first cycle. During the first 16 writing cycles,
only FIFO1 is used to store the even positioned data blocks. Starting from the 17th cycle
of CBD2 output, the FIFO1 data is replaced with the data output from the shift register,
i.e., the CBD2/3 odd results {1, 3, 5, 7}, and the even position data blocks from CBD2/3
{128, 130, 132, 134} are stored in FIFO2, simultaneously. Therefore, eight data locations
stored at the lowest part of these two FIFOs are {0, 128, 2, 130, 4, 132, 6, 134}. After
that, the output signals (shown as greyed out in bottom of Fig. 8, the FIFO(1/2) Read) is
generated every four cycles to ensure that the FIFO data is read in order ({(0, 128), (2,
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Figure 9: The access process of NTT results.

130), (4, 132), (6, 134)}). FIFO1 and FIFO2 continue to take in the results of the CBD
while generating output data until the FIFO1 and FIFO2 signal that they are empty. The
data storage mechanism does not change for higher security level but the depth of FIFO1
and FIFO2 is increased to match the higher data size to be cached.

The polynomial multiplication module multiplies the data, i.e., matrix ÂT and vector
t̂T , by the vector r̂, generated by the NTT. The operation carried out is ÂT

ji = ÂT [j][i] · r̂[i]
or t̂Ti = t̂T [i] · r̂[i] (i, j ∈ 0, 1, 2 in Kyber768). The polynomial t̂T is the output of the
key generation function and is stored in the FIFOP K (48 × 256 FIFO) and fed into the
PWM modules simultaneously as the NTT produces its output. The r̂[i] generated by the
NTT is fed directly into the PWM module and also stored in two FIFOs (FIFOSP 1 and
FIFOSP 2 as well as FIFOEP 1 and FIFOEP 2 for Kyber.CPA.KeyGen, 24 × 256 FIFO).
The order of the NTT outputs in continuous data separated by parity is {0, 2, 4, 6, ...,
1, 3, 5, 7, ...}. Fig. 9 shows the relationship between NTT results and FIFOs during
the polynomial multiplication stage. A different approach is used for the FIFOSP 1 and
FIFOSP 2 input to ensure that the order of the PWM module input is {0, 1, 2, 3...}. In
the first 64 cycles of the NTT operate, its two 12-bit results will be spliced and input into
FIFOSP 1. Starting from the 65th cycle, the results of the NTT will be input into FIFOSP 2,
thus ensuring that the order of the lowest part in these two FIFOs is {0, 1, 2, 3}. As the
security level increases, more data can be accommodated simply by increasing the depth
of the FIFOs. The data in FIFOSP 1 and FIFOSP 2 will be used multiple times. Therefore,
the data output by current FIFOs will be stored in the same FIFOs again to reduce the
use of storage resources. Since r̂[0], r̂[1], ..., r̂[n] are computed sequentially, the output
data is restored at the top of the FIFOs and does not affect the polynomial multiplication
computation of the current stage. In Kyber.CCA.KeyGen, all CBD sampling results are
required for NTT calculation. Therefore, e from CBD is also stored in FIFO1 and FIFO2,
waiting to be fed into the NTT module as s and r.

The final step of the polynomial multiplication calculation should add up the different
dimensional data ({ÂT

00,...,ÂT
22}) to the same dimension, in the Kyber768 case, i.e. to

compute Â′T [j] = ÂT
j0 +ÂT

j1 +ÂT
j2 (j ∈ 0, 1, 2) and in Kyber.CCA.Enc and Kyber.CCA.Dec

also should calculate ˆt′T = t̂T0 + t̂T1 + t̂T2 . The output of PWM is spaced, and the number
of cycles between data in t̂Ti and ÂT

ji is not the same, although it is possible to combine
ÂT

j0, ÂT
j1, ÂT

j2 using shift registers to perform additions, the area will increase dramatically
as the security level increases with the addition of shift registers. Therefore, using a FIFO
to access sequential results of ADDs (ADDs1) is still the best option. FIFOADD (48 × 64
FIFO) is set up to write and read data from the ADDs module. Fig. 10 shows the data
flow of the ÂT

00 + ÂT
01 + ÂT

02 computation and the states of FIFOADD in Kyber768. There
are three states in FIFOADD: store-only, store-read, and read-only. For Kyber512, only
store-only and read-only states are included, while for Kyber768 and Kyber1024, the three
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Figure 10: The access process of final ADDs (ADDs1) in polynomial multiplication of
Kyber768.
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Figure 11: The access process of INTT results and ADDs2.

states are all included, and the store-read state will be performed twice in Kyber1024. In
the store-only state, the FIFOADD is used to collect the result of the ADDs sequentially;
in the store-read state, the data stored in the FIFOADD is output sequentially first, and
when the ADDs produces the result, the calculation result is stored in the FIFOADD at
the same time; in the read-only state, the FIFOADD no longer accepts input, and all the
data currently stored in the FIFO is output.

The ADDs1 in the polynomial multiplication module generates four 12-bit data per
cycle, which needs to be separated and buffered in odd and even positions before INTT
calculation. Therefore, two FIFOs of the same size (24 × 256, FIFO3 and FIFO4) store
the data in odd and even positions, respectively. The S-NTT module reads the data stored
in FIFO3 FIFO4 directly in sequence and calculates them. As shown in Fig 11, the order
of INTT results is close to the sequential order {(0, 128), (2, 130), ... (1, 129), ...}. Firstly
using a shift register to delay INTT results in 64 cycles, then the output of the shift register
is combined with the output of the current INTT results into four 12-bit data in the order
{(0, 1, 128, 129), (2, 3, 130, 131), ...}. Two data with order {0, 1} of these four are fed
directly into ADDs2 to complete the polynomial adder calculation as well as the last two
data with order {128, 129} are stored in a FIFO (24 × 64, FIFO5). When S-NTT starts
to output the second set of INTT results, the input of ADDs2 is from FIFO5, and the
second set of INTT results will be shifted by 64 cycles.
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4.2 Additional Data Flow in Key Decapsulation
Kyber.CCA.Dec contains both single Kyber.CPA.Enc and Kyber.CPA.Dec functions, while
Kyber.CPA.Dec is more like a reduced Kyber main data flow. Fig. 12 shows the data flow
in a single Kyber.CPA.Dec and contains mainly NTT/INTT, polynomial multiplication,
and encode modules. In Kyber.CPA.Dec, when the server-side receives the cipher-text c
from the client-side, it uses the decompress and decode module to process the data first,
e.g., in Kyber768, it takes 64×4 cycles to decompress and decode all the data to polyvector
u and vector v. The u and v output from the decompress and decode modules perform
different operations when fed into the computation unit. Polyvector u will be fed into
FIFO1 and FIFO2, and since every two cycles form 8 sets of data blocks, the NTT starts
the calculation after 32 cycles. v store in the FIFO (48 × 64 FIFO, FIFOev) and then
output when ADDs2 is running. When the NTT calculation is complete, results from the
S-NTT module are only multiplied with sT , which is stored in FIFOsk (48 × 256 FIFO).
Thus the NTT results do not need to be stored in FIFOs again. In this case, the NTT
result is shifted back 64 bits using a shift register, enabling a succession of coefficients in
the order {(0, 1, 2, 3),...} to be calculated simultaneously by the PWM unit for all four
sets of data.

Decompress
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Figure 12: Cycles and order in Kyber.CPA.Dec (Kyber768).

In addition, when the service-side architecture accepts the ciphertext c value, the c
value is stored in FIFOA (64 × 128 FIFO) and FIFOv (48 × 256 FIFO) according to the
difference between the u vector and v vector, respectively.

When Kyber.CPA.Enc generates c′ = (c′
1||c′

2), they are compared with the data blocks
from FIFOA and FIFOv respectively to define if the decapsulation results are correct.

5 Implementation and Results
The proposed Kyber hardware architecture has been synthesized and implemented using
Xilinx Vivado 2020.1 suite targeting two different devices, e.g., Artix XC7A200 and Zynq
UltraScale+ XCZU7EV. The designs proposed in this paper have passed the post-place &
route (post-PAR) simulation and functional verification. The main modules of the Kyber
accelerator are the same under the three different security levels, except for the increase in
FIFO depth due to the need of higher amounts of data.

Table 2 shows the speed and area of our Kyber accelerator architecture, compared
against the state-of-the-art architectures, for the three different security levels it offers.
Since the server side needs more computational processing, it consumes more resources
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than the client-side. we specify the resources for the client-side and server side respectively
in Table 2, as done in [XL21].

The DSPs are mainly used in the PWM module. In the S-NTT module, one pipeline
cycle is added to each stage to perform the 12-bit multiplication using LUTs. Therefore,
the proposed architecture uses only one DSP in each of the two PWM units, and only two
DSPs are used for all security levels of the design. In addition, all storage units including
distributed FIFO and distributed ROM using LUT resources as well as no BRAM resources
are used in the proposed architecture. The accelerators at the three different security
levels run at almost the same frequency as the critical paths are the same.

Comparison with related work focuses only on the hardware implementation of Ky-
ber Round 3. Key, Enc, and Dec in Table 2 represent the Kyber.CCA.KeyGen, Ky-
ber.CCA.Enc, and Kyber.CCA.Dec, respectively. Exploiting a fully pipelined implementa-
tion enables simultaneous execution of several modules, resulting in a 50% higher speed
performance for Kyber512 compared to [DMG21] (Artix-7). Compared with [BNAMK21a],
which also uses a high-speed NTT architecture, the speedup for Kyber512 is 44% for Key,
40% for Enc, and 46% for Dec (Artix-7). With faster devices (Zynq-UltraScale+) with
larger resources, the speedup is 51.6% compared with [DMG21] for Kyber512. As the
security level increases, the speedup is reduced as the proposed architecture uses the same
computational architecture. Compared with the state-of-the-art architecture [DMG21],
the total time for Key, Enc, and Dec is reduced by 33.4% and 23.8% under Kyber768 and
Kyber1024, respectively (Artix-7). For Kyber1024, using the faster hardware architecture
(Zynq-UltraScale+), it takes 6.2, 7.8, and 9.4 us for Key, Enc, and Dec, respectively.
Compared with the designs in [XL21] and [BNAMK21b], the proposed architecture achieves
a speedup of 4-7.5x for all three different security levels (Artix-7).

In terms of area, the proposed design is higher in LUTs than the previous design
due to the use of more FIFO cells. However, for other on-chip resources, the proposed
design uses significantly less. For Kyber512, compared with [BNAMK21b], [BNAMK21a],
and [DMG21], the number of DSP is reduced by 4, 6, and 2 blocks, and the number of
BRAM is reduced by 15, 13, and 4.5 blocks, respectively. For a fairer comparison of
resource consumption, we estimate the equivalent number of slices (ENS), as undertaken
in [KZW+22]. One DSP is taken as equivalent to 100 Slices, a 36K BRAM is equivalent to
196 Slices, resulting in the ENS computation, ENS = DSP ×100+BRAM ×196+Slices.
Compared with [BNAMK21b] and [BNAMK21a], the proposed architecture reduces ENS by
24.5-33.8% and 18.1-30.7% for the three different security levels, respectively. Compared
with [XL21], which implements a lightweight design, the proposed architecture uses
more resources, but the speed increase outweighs the resource consumption. Compared
with [DMG21], the proposed architecture uses more LUT resources but less DSP and
BRAM resources. The number of DSPs is reduced by 50.0%, 66.7%, and 75.0% for the three
different security levels, respectively. To better balance the advantages of area and speed,
we introduce the AT (area and time product) metric, where AT = ENS × Time( Total).
As can be seen from Table 2, the proposed architecture reduces the AT in 53.5%, 50.0%,
and 48.4% for the three different security levels compared with [XL21] and [BNAMK21a],
respectively. Therefore, the proposed Kyber accelerator significantly improves speed and
hardware efficiency compared to the state-of-the-art at all three different security levels.

6 Conclusion
This work presents an ultra high-performance FPGA based Kyber accelerator that un-
dertakes an optimally designed pipelined architecture for parallel execution of various
modules in the design. The accelerator uses a pipelined MDC-NTT to speed up operations
but to keep the area efficiency high, resource reuse is orchestrated during NTT/INTT.
Multiple FIFOs are used to buffer data for pipeline balancing. We performed a hardware
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Table 2: Post-PAR Implementation Results for our Kyber Accelerator (Area and Timing)
and Comparison with The-state-of-the-art Designs.

Design LUT FF DSP BRAM Slices ENS* F.
[MHz]

Key/Enc./Dec./Total**

[K Cycles]
Key/Enc./Dec./Total

[us]
Improv.

(Total Time)
AT***

(ENS×s)
FPGA
Device

Kyber-512 NIST PQC Security level 1

[BNAMK21b] 18,000 5,000 6 15 5,000 8,540 115 4.0/7.0/10.0 34.8/60.9/86.9/182.6 87.6% 1.56 Artix-7
XC7A100

[XL21] 6,785/7,412 3,981/4,644 2/2 3/3 2,126 2,914 161/167 3.8/5.1/6.7 23.4/30.5/41.3/95.2 75.9% 0.28 Artix-7
XC7A12

[BNAMK21a] 10,502 9,859 8 13 3,549 6,897 200 1.9/2.4/3.7 9.4/12.0/18.8/40.2 43.8% 0.28 Artix-7
XC7A100

[DMG21] 9,457 8,543 4 4.5 - - 220 2.2/3.2/4.5 10.0/14.7/20.5/45.2 50.0% - Artix-7
XC7A200

Ours 14,375/15,676 12,986/13,368 2/2 0/0 5,446 5,646 208 1.1/1.5/2.1 5.3/7.2/10.1/22.6 - 0.13 Artix-7
XC7A200

[DMG21] 9504 8957 4 4.5 - - 450 2.2/3.2/4.5 4.9/7.2/10.0/22.1 51.6% - Zynq-UltraScale+
XCZU7EV

Ours 14,142/15,436 13,003/13,323 2/2 0/0 - - 435 1.1/1.5/2.1 2.5/3.4/4.8/10.7 - - Zynq-UltraScale+
XCZU7EV

Kyber-768 NIST PQC Security level 3

[BNAMK21b] 16,000 6,000 9 16 4,000 8,036 115 7.0/10.0/14.0 60.9/86.9/121.7/269.5 87.3% 2.2 Artix-7
XC7A100

[XL21] 6,785/7,412 3,981/4,644 2/2 3/3 2,126 2,914 161/167 6.3/7.9/10.0 39.2/47.6/62.3/149.1 77.1% 0.43 Artix-7
XC7A12

[BNAMK21a] 11,783 10,424 12 14 3,952 7,896 200 2.7/3.2/4.8 13.3/16.3/24.0/53.6 36.4% 0.42 Artix-7
XC7A100

[DMG21] 10,530 9,837 6 6.5 - - 220 2.6/3.7/4.9 12.0/17.0/22.2/51.2 33.4% - Artix-7
XC7A200

Ours 15,636/16,926 12,976/13,526 2/2 0/0 5,864 6,064 208 1.7/2.4/3.0 8.2/11.5/14.4/34.1 - 0.21 Artix-7
XC7A200

[DMG21] 10,458 10,458 6 6.5 - - 450 2.6/3.7/4.9 5.9/8.3/10.9/25.1 35.1% - Zynq-UltraScale+
XCZU7EV

Ours 15,455/17,280 12,927/13,476 2/2 0/0 - - 435 1.7/2.4/3.0 3.9/5.5/6.9/16.3 - - Zynq-UltraScale+
XCZU7EV

Kyber-1024 NIST PQC Security level 5

[BNAMK21b] 16,000 6,000 12 17 5,000 9,532 112 10.0/14.0/18.0 86.9/121.7/156.5/365.1 86.6% 3.48 Artix-7
XC7A100

[XL21] 6,785/7,412 3,981/4,644 2/2 3/3 2,126 2,914 161/167 9.4/11.3/13.9 58.2/67.9/86.2/212.3 76.9% 0.62 Artix-7
XC7A12

[BNAMK21a] 13,347 11,639 16 16 4,585 9,321 185 3.5/4.1/6.2 17.3/20.6/31.3/69.2 29.2% 0.65 Artix-7
XC7A100

[DMG21] 11,623 11,131 8 8.5 - - 220 3.6/4.8/5.8 16.2/21.7/26.4/64.3 23.8% - Artix-7
XC7A200

Ours 16,088/17,975 12,954/13,748 2/2 0/0 6,263 6,463 208 2.7/3.4/4.1 13.0/16.3/19.7/49.0 - 0.32 Artix-7
XC7A200

[DMG21] 11,676 11,959 8 8.5 - - 450 3.6/4.8/5.8 7.9/10.6/12.9/31.4 25.4% - Zynq-UltraScale+
XCZU7EV

Ours 15,965/18,405 12,902/13,760 2/2 0/0 - - 435 2.7/3.4/4.1 6.2/7.8/9.4/23.4 - - Zynq-UltraScale+
XCZU7EV

*ENS (equivalent number of slices) = DSP × 100 + BRAM × 196 + Slices[KZW+22] ** Time(Total) = Time(Key+Enc+Dec) *** Area and time production (AT) = ENS × Time (Total)

implementation of the proposed architecture using two different devices, the Artix-7 and
the Zynq-UltraScale+. The results show that the proposed Kyber accelerator on the
Artix-7 is 1.44×, 1.33×, and 1.24× faster for security levels 1/3/5, respectively. In terms
of equivalent slice count, the proposed architecture reduces AT (area and time product)
48.4-53.5% for the three different security levels. In the Zynq-UltraScale+ device, the
proposed architecture achieves a speedup of 1.52-1.25× compared to the state-of-the-art
designs reported till date.
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