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Abstract. The FX construction provides a way to increase the effective
key length of a block cipher E. We prove security of a tweakable version
of the FX construction in the post-quantum setting, i.e., against a quan-
tum attacker given only classical access to the secretly keyed construction
while retaining quantum access to E. We then use our results to prove
post-quantum security—in the same model—of the (plain) FX construc-
tion, Elephant (a finalist of NIST’s lightweight cryptography standard-
ization effort), and Chaskey (an ISO-standardized lightweight MAC).

1 Introduction

The development of large-scale quantum computers would have a significant
impact on cryptography. For example, for symmetric-key cryptosystems— even
ideal ciphers—one must at least double the key length in order to achieve the
same security against quantum attackers as is enjoyed against classical adver-
saries, due to the possibility of using Grover’s search algorithm [7] to carry out
a key-recovery attack. In general, however, doubling the key length may not
be sufficient [11,12,4], and it is therefore critical to understand the security of
various symmetric-key constructions against quantum attackers.

One can consider two models of quantum attacks [3]. In the so-called Q2
model, the attacker is given quantum access to any underlying public primi-
tives (e.g., a block cipher) as well as the secretly keyed construction itself. In
contrast, the Q1 model assumes the adversary has quantum access to all pub-
lic primitives but only classical access to the secretly keyed construction. The
distinction between Q1 and Q2 is significant: for many symmetric-key construc-
tions, polynomial-query attacks are known in the Q2 model [11,12,9] but not in



the Q1 model. At the same time, however, the Q2 model appears to be highly
unrealistic, particularly for real-world applications where the honest parties only
run the construction on classical inputs, and do not expose any quantum inter-
face to an attacker (which is necessarily the case whenever the honest devices
implementing the construction are entirely classical). The Q1 model is a much
better fit for realistic quantum attacks—a quantum adversary would easily have
quantum access to any public primitives—and, indeed, recent work [8,1,4] has
focused on that model. From here on, by “post-quantum security” we will mean
the Q1 model by default.

Proving security in the Q1 model (without just assuming the stronger Q2
model) is challenging since it requires reasoning about a combination of classical
and quantum oracles. Indeed, there are at present only a limited number of
positive results about security in this model. Jaeger et al. [8] recently showed
partial positive results for the FX construction, which provides a mechanism for
key-length extension of an ideal cipher; their results imply security either for non-
adaptive adversaries or for a variant of the FX construction using a public keyed
function in place of a public keyed permutation. The FX construction degenerates
to the Even-Mansour scheme [5] when the public primitive is unkeyed, and so
their work also implies security for the Even-Mansour construction either for
non-adaptive adversaries or for a variant of the construction based on a public
random function. Subsequent work by Alagic et al. [1] was able to show post-
quantum security of the full Even-Mansour construction (i.e., using a random
permutation) against adaptive adversaries. However, their work left open the
question of extending this result to the FX construction.

1.1 Our Results

Let E : {0, 1}m × {0, 1}n → {0, 1}n be a block cipher that we will treat in
our analysis as ideal. We consider a tweakable version of the FX construction
TFXf1,f2 [E] : ({0, 1}m × {0, 1}κ)× (T × {0, 1}n)→ {0, 1}n, defined as

TFXf1,f2k,k′ [E](t, x) = Ek(x⊕ f1(t, k′))⊕ f2(t, k′) ,

where T is a tweak space, κ ≥ n, and f1, f2 are functions satisfying some tech-
nical conditions we omit here. As our main result, we prove that the above is
a secure (post-quantum) tweakable block cipher. Concretely (cf. Theorem 1),

we show that an adaptive adversary making qC classical queries to TFXf1,f2k,k′ [E]
and qQ quantum queries to E (where we allow queries in both the forward and
inverse directions) can distinguish the former from an ideal tweakable cipher
only with probability O

(
2−(m+n)/2 · (qC

√
qQ + qQ

√
qC)
)
. A key building block

of our result is a generalization of existing “resampling lemmas” [6,1] to cover
ideal ciphers (cf. Lemma 2), something that may be of independent interest.

We use our result to derive various corollaries regarding the post-quantum
security of other symmetric-key constructions:

1. By taking κ = 2n, T = ∅, f1(k1, k2) = k1, and f2(k1, k2) = k2, the TFX
construction degenerates to the FX construction. Our result thus implies
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post-quantum security of the full FX construction against adaptive adver-
saries, answering the open question from Jaeger et al. [8].

2. If we take m = 0 (so E is now a public random permutation) and choose
the tweak space T and the functions f1, f2 appropriately, TFX becomes the
tweakable block cipher at the core of (a slightly simplified variant of) Ele-
phant [2], a lightweight authenticated encryption scheme currently under
consideration for standardization by NIST [14]. Our main result implies post-
quantum security for this variant of Elephant.

3. Taking m = 0 again, we can set T , f1, f2 such that TFX captures the three
pseudorandom permutations used in Chaskey [13], a lightweight MAC that
is an ISO standard. We thus prove post-quantum security of Chaskey.

To our knowledge, these are the first proofs of security for any versions of
Elephant and Chaskey against quantum adversaries.

Paper organization. In Section 2, we establish some notation, recall a “repro-
gramming lemma” from prior work [1], and establish a “resampling lemma” for
the ideal-cipher model that will be useful for proving our main result. We intro-
duce the tweakable FX construction, and prove it secure in the post-quantum
setting, in Section 3. Finally, in Section 4 we describe the applications of our
main result to the post-quantum security of FX, Elephant, and Chaskey.

2 Preliminaries

Notation and basic definitions. We let P(n) denote the set of all permu-
tations on {0, 1}n. In the public permutation model, a permutation P ← P(n)
is sampled uniformly and then provided as an oracle (in both the forward and
inverse directions) to all parties. A block cipher E : {0, 1}m × {0, 1}n → {0, 1}n
is a keyed permutation, i.e., Ek(·) = E(k, ·) is a permutation of {0, 1}n for
all k ∈ {0, 1}m. We say E is a pseudorandom permutation if Ek (for uniform
k ∈ {0, 1}m) is indistinguishable from a uniform permutation in P(n), where
indistinguishability is required to hold even when the adversary may query its
oracle in both the forward and inverse directions.

For a set S, let E(S, n) be the set of all functions E : S × {0, 1}n → {0, 1}n
such that Ek is a permutation on {0, 1}n for all k ∈ S. When S = {0, 1}m we
also write E(m,n). In the ideal-cipher model a cipher E ← E(m,n) is sampled
uniformly and then provided as an oracle, in both the forward and inverse di-
rections, to all parties. (When m = 0 this defaults to the public permutation
model.) A tweakable block cipher Ẽ : {0, 1}m × T × {0, 1}n → {0, 1}n is a
family of permutations indexed by both a key k ∈ {0, 1}m and a tweak t ∈ T ,
i.e., we now require that Ẽk(t, ·) = Ẽ(k, t, ·) is a permutation of {0, 1}n for all
k ∈ {0, 1}m and t ∈ T . A tweakable block cipher Ẽ is secure if Ẽk (for uniform
choice of k ∈ {0, 1}m) is indistinguishable from a uniform Ẽ ∈ E(T , n).

In all the security notions mentioned above we consider algorithms having
only classical access to secretly keyed primitives. When we consider constructions
of keyed primitives (e.g., a tweakable block cipher) from ideal public primitives
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(e.g., an ideal cipher), however, we provide the distinguisher with quantum oracle
access to the public primitive. Thus, for example, a distinguisher in the ideal-
cipher model has the ability to apply the unitary operators

|k〉|x〉|y〉 7→ |k〉|x〉|Ek(x)⊕ y〉
|k〉|x〉|y〉 7→ |k〉|x〉|E−1k (x)⊕ y〉

to quantum registers of the adversary’s choice. (We emphasize that this includes
evaluating E/E−1 on arbitrary superpositions of both keys and inputs.) This is
well-motivated, as in practice E would be instantiated by a public block cipher;
adversaries with quantum computers would thus be able to coherently execute
the reversible circuit for computing E. On the other hand, as discussed in the
introduction, secretly keyed primitives would be implemented by honest parties;
if they only evaluate the primitive on classical inputs then the attacker has no
way to obtain quantum access to that primitive.

A reprogramming lemma. For a function F : {0, 1}m → {0, 1}n and a set
B ⊂ {0, 1}m × {0, 1}n such that each x ∈ {0, 1}m is the first element of at most
one tuple in B, define

F (B)(x) :=

{
y if (x, y) ∈ B
F (x) otherwise.

We rely on the following lemma, taken verbatim from [1]:

Lemma 1. Let D be a distinguisher in the following experiment:

Phase 1: D outputs descriptions of a function F0 = F : {0, 1}m → {0, 1}n
and a randomized algorithm B whose output is a set B ⊂ {0, 1}m × {0, 1}n
where each x ∈ {0, 1}m is the first element of at most one tuple in B. Let
B1 = {x | ∃y : (x, y) ∈ B} and ε = maxx∈{0,1}m {PrB←B[x ∈ B1]} .

Phase 2: B is run to obtain B. Let F1 = F (B). A uniform bit b is chosen, and
D is given quantum access to Fb.

Phase 3: D loses access to Fb, and receives the randomness r used to invoke B
in phase 2. Then D outputs a guess b′.

For any D making q queries in expectation when its oracle is F0, it holds that

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 2q ·
√
ε .

A resampling lemma for ideal ciphers. As a building block for our main
result, we prove a resampling lemma for ideal ciphers that generalizes earlier
results for random functions [6] and permutations [1]. We consider the exper-
iment in which a distinguisher D is first given quantum access to an ideal ci-
pher E : {0, 1}m × {0, 1}n → {0, 1}n. Then, a key k0 ∈ {0, 1}m and two points
s0, s1 ∈ {0, 1}n are chosen according to some distribution, and in a second
phase D is given access either to the original function E(0) = E or a modified
function E(1) that is the same as E except that the values of Ek0(s0) and Ek0(s1)
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are swapped. (See below for details.) We show, roughly speaking, that so long as
the distribution of k0, s0, s1 has high min-entropy and D makes only a bounded
number of queries in the first phase of its execution, D cannot distinguish these
two possibilities. Compared to prior work of Alagic et al. [1], our proof handles
the case m > 0 (i.e., ideal ciphers and not just random permutations) and also
allows for distributions over k0, s0, s1 other than the uniform distribution.

For s0, s1 ∈ {0, 1}n, define swaps0, s1 ∈ P(n) as

swaps0, s1(x) =


s1 if x = s0

s0 if x = s1

x otherwise.

Lemma 2 (Ideal-cipher resampling). Fix a probability distribution D on
{0, 1}m+2n, and let

ε = max
k∗∈{0,1}m
s∗∈{0,1}n

Pr
(k,s0,s1)∼D

[(k∗, s∗) ∈ {(k, s0), (k, s1)}].

Consider the following experiment involving a distinguisher D:

Phase 1: Choose uniform E ∈ E(m,n), and give D quantum access to E.
Phase 2: Choose k ∈ {0, 1}m and s0, s1 ∈ {0, 1}n according to D. Let E(0) = E

and define E(1) : {0, 1}m × {0, 1}n → {0, 1}n by

E
(1)
k∗ (x) =

{
Ek∗(x) if k∗ 6= k

Ek∗ ◦ swaps0, s1(x) if k∗ = k .

A uniform bit b ∈ {0, 1} is chosen, and D is given k, s0, s1, and quantum
access to E(b). Then D outputs a guess b′.

For any D making at most q queries to E in phase 1,

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 2
√

2qε .

The proof is given in Appendix A.

3 Post-Quantum Security of Tweakable FX

Let E : {0, 1}m × {0, 1}n → {0, 1}n be a block cipher and T a finite set, and fix
two functions f1, f2 : T × {0, 1}κ → {0, 1}n. We consider a tweakable version of
the FX construction TFXf1,f2 [E] : ({0, 1}m × {0, 1}κ)× (T × {0, 1}n)→ {0, 1}n
defined as

TFXf1,f2k,k′ [E](t, x) = Ek(x⊕ f1(t, k′))⊕ f2(t, k′) .

We require the tweak functions f1, f2 to satisfy some structural properties:

Definition 1. We say that f : T × {0, 1}κ → {0, 1}n is proper with respect
to T if it satisfies the following two properties:
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Uniformity: For all t ∈ T and all y ∈ {0, 1}n,

Prk′←{0,1}κ [f(t, k′) = y] = 2−n.

XOR-uniformity: For all distinct t, t′ ∈ T and all y ∈ {0, 1}n,

Prk′←{0,1}κ [f(t, k′)⊕ f(t′, k′) = y] = 2−n.

Note uniformity implies f(t, ·) is surjective for any t ∈ T , and κ ≥ n.

Theorem 1. Let TFX be as above and let A be an adversary making qC classical
queries to its first oracle and qQ quantum queries to its second oracle. Then if
f1, f2 are proper with respect to T , it holds that∣∣∣∣∣∣∣ Pr

k←{0,1}m;k′←{0,1}κ;
E←E(m,n)

[
ATFX

f1,f2
k,k′ [E],E

= 1

]
− Pr
Ẽ←E(T ,n);
E←E(m,n)

[
AẼ,E = 1

]∣∣∣∣∣∣∣
≤ (3 + 2

√
2) · 2−(m+n)/2 ·

(
qC
√
qQ + qQ

√
qC
)
.

Our high-level proof is similar to the proof of security for the Even-Mansour
construction by Alagic et al. [1]. However, our proof of Lemma 4 differs substan-
tially from the proof of the corresponding lemma in their work. In particular,
by modifying the sequence of hybrid experiments, we are able to avoid a certain
“bad event” whose probability is difficult to compute in our setting.

Proof. As noted, the high-level structure of our proof is similar to the proof of
security for the Even-Mansour construction by Alagic et al. [1]; for that reason,
we copy some portions of their proof (with appropriate updates for our setting).

Without loss of generality, we assume A never makes a redundant classical
query; that is, once it learns an input/output pair (x, y) associated with some
tweak t by making a query to its classical oracle, it never again submits the
query (t, x) (resp., (t, y)) to the forward (resp., inverse) direction of that oracle.
We divide an execution of A into qC + 1 stages 0, . . . , qC , where the jth stage
corresponds to the time between the jth and (j+1)st classical queries of A. (The
0th stage is the period of time before A makes its first classical query, and the
qCth stage is the period of time after A makes its last classical query.) A may
adaptively distribute its qQ quantum queries between these stages arbitrarily,

and we let qQ,j be the expected number of quantum queries that AẼ,E makes

in the jth stage. (This probability is taken over Ẽ ← E(T , n) and E ← E(m,n)
and any internal randomness/measurements of A.) Note that

∑qC
j=0 qQ,j = qQ.

We write K to stand for (k, k′). Since f1, f2 are fixed, we write TFXK in

place of TFXf1,f2k,k′ . In a given execution of A, we denote its ith classical query by
the tuple (ti, xi, yi, bi), where ti ∈ T is the tweak, (xi, yi) ∈ {0, 1}n × {0, 1}n is
the input/output pair, and bi ∈ {0, 1} indicates the query direction, i.e., bi = 0
(resp., bi = 1) means that the ith classical query was in the forward (resp.,
inverse) direction. We let Tj =

(
(t1, x1, y1, b1), . . . , (tj , xj , yj , bj)

)
be the ordered

list consisting of the first j queries of A.
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Our proof involves a sequence of experiments in which A’s oracles are mod-
ified based on the classical queries made by A thus far. We first establish the
appropriate notation.

We use the product symbol
∏

to denote sequential composition of operations,
i.e.,

∏n
i=1 fi = f1 ◦ · · · ◦ fn. (Note that order matters, since function composition

is not commutative in general.) For an ideal cipher E, a key K = (k, k′), and a
list Tj =

(
(t1, x1, y1, b1), . . . , (tj , xj , yj , bj)

)
as above, define the operators

−→
S Tj ,E,K =

j∏
i=1

swap1−biEk(xi⊕f1(ti,k′)), yi⊕f2(ti,k′)

−→
QTj ,E,K =

j∏
i=1

swap1−bi
xi⊕f1(ti,k′), E−1

k (yi⊕f2(ti,k′))

←−
S Tj ,E,K =

1∏
i=j

swapbiEk(xi⊕f1(ti,k′)), yi⊕f2(ti,k′)

←−
QTj ,E,K =

1∏
i=j

swapbi
xi⊕f1(ti,k′), E−1

k (yi⊕f2(ti,k′))

where, as usual, f0 is the identity map and f1 = f for any function f . We define
the modified cipher ETj ,K as

E
Tj ,K
k∗ (x) =

{
Ek∗(x) k∗ 6= k
←−
S Tj ,E,K ◦

−→
S Tj ,E,K ◦ Ek(x) k∗ = k.

(1)

Since Ek ◦ swapx, y = swapEk(x), Ek(y) ◦ Ek, we have

←−
S j,E,K ◦

−→
S Tj ,E,K ◦ Ek =

←−
S Tj ,E,K ◦ Ek ◦

−→
QTj ,E,K = Ek ◦

←−
QTj ,E,K ◦

−→
QTj ,E,K .

Roughly speaking, ETj ,K is the minimal modification of E that is consistent with
the forward (→) and backward (←) queries from the transcript Tj when pre-
composed (S) or post-composed (Q) with E. For compactness we occasionally
write Ej in place of ETj ,K when Tj and K are understood from the context.

We now define a sequence of hybrid experiments Hj , for j = 0, . . . , qC .

Experiment Hj. Sample uniform ciphers Ẽ ∈ E(T , n) and E ∈ E(m,n), and a
uniform key K ∈ {0, 1}m × {0, 1}κ. Then:

1. Run A, answering its classical queries using Ẽ and its quantum queries
using E, stopping immediately before its (j + 1)st classical query. Let Tj =(
(t1, x1, y1, b1), . . . , (tj , xj , yj , bj)

)
be the list of classical queries so far.

2. For the remainder of the execution of A, answer its classical queries using
TFXK [ETj ,K ] and its quantum queries using ETj ,K .

We can compactly represent Hj as the experiment in which A’s queries are
answered using the oracle sequence

E, Ẽ, E, · · · , Ẽ, E,︸ ︷︷ ︸
j classical queries

TFXK [Ej ], Ej , · · · ,TFXK [Ej ], Ej︸ ︷︷ ︸
qC − j classical queries

.
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Each instance of Ẽ or TFXK [Ej ] represents a single classical query, while each
instance of E or Ej represents a stage during which A makes multiple quantum
queries to that oracle but no queries to its classical oracle. Observe that H0

corresponds to the execution of A in the real world, i.e., ATFXK [E],E , and HqC

is the execution of A in the ideal world, i.e., AẼ,E .
For j = 0, . . . , qC − 1, we introduce additional experiments H′j :

Experiment H′j . Sample uniform ciphers Ẽ ∈ E(T , n) and E ∈ E(m,n), and
uniform K ∈ {0, 1}m × {0, 1}κ. Then:

1. Run A, answering its classical queries using Ẽ and its quantum queries
using E, stopping immediately after its (j+ 1)st classical query. Let Tj+1 =(
(t1, x1, y1, b1), . . . , (tj+1, xj+1, yj+1, bj+1)

)
be the classical queries so far.

2. For the remainder of the execution of A, answer its classical queries using
TFXK [ETj+1,K ] and its quantum queries using ETj+1,K .

Thus, H′j corresponds to running A using the oracle sequence

E, Ẽ, E, · · · , Ẽ, E,︸ ︷︷ ︸
j classical queries

Ẽ, Ej+1, TFXK [Ej+1], Ej+1 · · · ,TFXK [Ej+1], Ej+1︸ ︷︷ ︸
qC − j − 1 classical queries

.

In Lemmas 3 and 4, we establish the following bounds on the distinguisha-
bility of H′j and Hj+1, as well as Hj and H′j , for 0 ≤ j < qC :

∣∣Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]
∣∣ ≤ 2 · qQ,j+1 ·

√
2 · (j + 1)

2m+n
.∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]

∣∣ ≤ 2
√

2 ·
√

qQ
2m+n

+ 3j · 2−n.

Using the above, we have

|Pr[A(H0) = 1]− Pr[A(HqC ) = 1]|

≤
qC−1∑
j=0

(
2
√

2 ·
√

qQ
2m+n

+ 3j · 2−n + 2 · qQ,j+1

√
2 · (j + 1)

2m+n

)

≤ 3q2C · 2−n +

qC−1∑
j=0

(
2
√

2 ·
√

qQ
2m+n

+ 2 · qQ,j+1

√
2qC

2m+n

)

≤ 3q2C · 2−n + 2−(m+n)/2 ·
(

2
√

2qC
√
qQ + 2

√
2 · qQ

√
qC

)
.

An easy argument finishes the proof (see [1] for details). ut

We now prove Lemmas 3 and 4.

Lemma 3. For j = 0, . . . , qC − 1,

Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]| ≤ 2 · qQ,j+1

√
2 · (j + 1)/2m+n ,

where qQ,j+1 is the expected number of queries A makes to E in the (j + 1)st
stage in the ideal world (i.e., in HqC .)
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Proof. Let A be a distinguisher between H′j and Hj+1. We construct from A a
distinguisher D for the experiment from Lemma 1:

Phase 1: D samples uniform Ẽ ∈ E(T , n) and E ∈ E(m,n). It then runs A, an-
swering its quantum queries using E and its classical queries using Ẽ, until af-
ter it responds to A’s (j+1)st classical query. Let Tj+1 =

(
(t1, x1, y1, b1), . . . ,

(tj+1, xj+1, yj+1, bj+1)
)

be the list of input/output pairs A received from its
classical oracle thus far. D defines F (a, k∗, x) := Eak∗(x) for a ∈ {1,−1}. It
also defines the following randomized algorithm B: sample K ← {0, 1}m ×
{0, 1}κ and then compute the set B of input/output pairs to be repro-

grammed so that F (B)(a, k∗, x) = (E
Tj+1,K
k∗ )

a
(x) for all a, k∗, x.

Phase 2: B is run to generate B, and D is given quantum access to an oracle Fb.
D resumes running A, answering its quantum queries using Fb. Phase 2 ends
when A makes its next (i.e., (j + 2)nd) classical query.

Phase 3: D is given the randomness used by B to generate K. It resumes run-
ning A, answering its classical queries using TFXK [ETj+1,K ] and its quantum
queries using ETj+1,K . Finally, it outputs whatever A outputs.

It is immediate that if b = 0 (i.e., D’s oracle in phase 2 is F0 = F ), then A’s
output is identically distributed to its output in Hj+1, whereas if b = 1 (i.e., D’s
oracle in phase 2 is F1 = F (B)), then A’s output is identically distributed to its
output in H′j . It follows that |Pr[A(H′j) = 1]−Pr[A(Hj+1) = 1]| is equal to the
distinguishing advantage of D in the reprogramming experiment of Lemma 1.
To bound this quantity, we bound the parameter ε and the expected number of
queries made by D in phase 2 (when F = F0.)

The value of ε can be bounded using the definition of ETj+1,K and the fact

that F (B)(a, k∗, x) = (E
Tj+1,K
k∗ )

a
(x). Fixing E and Tj+1, the probability that

any particular input (a, k∗, x) is reprogrammed is at most the probability (over
K) that it is in the set{

(1, k, xi ⊕ f1(ti ⊕ k′)), (1, k, E−1k (yi ⊕ f2(ti ⊕ k′))),
(−1, k, Ek(xi ⊕ f1(ti ⊕ k′))), (−1, k, yi ⊕ f2(ti ⊕ k′))

}j+1

i=1

.

Since both f1(ti⊕k′) and f2(ti⊕k′) are uniform (by uniformity of f1, f2), taking
a union bound gives ε ≤ 2(j + 1)/2m+n.

The expected number of queries made by D in phase 2 when F = F0 is equal
to the expected number of queries made by A in its (j + 1)st stage in Hj+1.
Since Hj+1 and HqE are identical until after the (j+ 1)st stage is complete, this
is precisely qQ,j+1. ut

Lemma 4. For j = 0, . . . , qC ,∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ 2

√
2 ·
√

qQ
2(m+n)

+
3j

2n
.

Proof. We first introduce additional experiments H∗j and H∗∗j .

Experiment H∗j . Sample uniform Ẽ ∈ E(T , n) and E ∈ E(m,n), and uniform
K = (k, k′) ∈ {0, 1}m × {0, 1}κ. Then
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1. Run A, answering its classical queries using Ẽ and its quantum queries using
E, until A makes its (j + 1)st classical query (tj+1, xj+1, bj+1 = 0), which
we assume for concreteness to be in the forward direction.1

2. Choose uniform s ∈ {0, 1}n, and define E(1) as

E
(1)
k∗ (x) =

{
Ek∗(x) if k∗ 6= k(
Ek ◦ swapf1(tj+1,k′)⊕xj+1, s

)
(x) if k∗ = k.

Continue running A, answering its remaining classical queries (including the
(j+1)st) using TFXK [(E(1))Tj ,K ], and its quantum queries using (E(1))Tj ,K .

Experiment H∗∗j is the same as H∗j , except that the (j+1)st query is answered

using Ẽ. Thus we can write H∗j and H∗∗j as the following oracle sequences:

H∗j : E, Ẽ, E, · · · , Ẽ, E, TFXK [(E(1))j ], (E(1))j , · · · ,TFXK [(E(1))j ], (E(1))j

H∗∗j : E, Ẽ, E, · · · , Ẽ, E︸ ︷︷ ︸
j classical queries

, Ẽ , (E(1))j , · · · ,TFXK [(E(1))j ], (E(1))j︸ ︷︷ ︸
qC − j classical queries

where, recall, we let (E(1))j denote (E(1))Tj ,K . We have∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ ∣∣Pr[A(Hj) = 1]− Pr[A(H∗j ) = 1]

∣∣
+
∣∣Pr[A(H∗j ) = 1]− Pr[A(H∗∗j ) = 1]

∣∣
+
∣∣Pr[A(H∗∗j ) = 1]− Pr[A(H′j) = 1]

∣∣ ,
and we now bound the three differences on the right-hand side.

Let A be a distinguisher between Hj and H∗j . We construct from A a distin-
guisher D for the resampling experiment of Lemma 2. Fix D to be the uniform
distribution over {0, 1}m+n (so ε = 2−(m+n) in Lemma 2). D does:

Phase 1: D is given quantum access to an ideal cipher E. It samples a uniform
Ẽ ← E(T , n) and then runs A, answering its quantum queries with E and
its classical queries with Ẽ (in the appropriate directions), until A submits
its (j + 1)st classical query (tj+1, xj+1, bj+1 = 0). At that point, D has a list
Tj =

(
(t1, x1, y1, b1), · · · , (tj , xj , yj , bj)

)
of the queries/answers A has made

to its classical oracle thus far.
Phase 2: D is given uniform s0, s1 ∈ {0, 1}n, k ∈ {0, 1}m, and quantum oracle

access to a cipher E(b). D samples a uniform k′ ∈ {0, 1}κ conditioned on
f1(tj+1, k

′) = s0⊕xj+1 (at least one such k′ must exist since f1 is surjective)
and sets K := (k, k′). It then continues running A, answering its remaining
classical queries (including the (j + 1)st) using TFXK [(E(b))Tj ,K ], and its
remaining quantum queries using (E(b))Tj ,K . D outputs whatever A does.

Note that in phase 1, distinguisher D perfectly simulates experiments Hj and
H∗j for A until the point where A makes its (j + 1)st classical query. If b = 0,

1 As in [1], the case of an inverse query is entirely symmetric.
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D gets access to E(0) = E in phase 2. Since D answers all quantum queries
using (E(0))Tj ,K and all classical queries using TFXK [(E(0))Tj ,K ], we see that D
perfectly simulates Hj for A in that case. If, on the other hand, b = 1 in phase 2,
then D gets access to E(1), where

E
(1)
k∗ (x) =

{
Ek∗(x) if k∗ 6= k

Ek ◦ swaps0, s1(x) if k∗ = k .

Since f1(tj+1, k
′) := s0 ⊕ xj+1, it holds that

E
(1)
k∗ (x) =

{
Ek∗(x) if k∗ 6= k

Ek ◦ swapf1(tj+1,k′)⊕xj+1, s1(x) if k∗ = k .

Moreover, the uniformity property of f1 and the fact that s0 (and hence s0⊕xj+1)
is uniform imply that the joint distribution of k′ and s0 ⊕ xj+1 is equal to the

joint distribution of k̃ and f1(tj+1, k̃) for a uniform k̃. Thus, in this case D
perfectly simulates H∗j for A. Applying Lemma 2 thus gives

∣∣Pr[A(Hj) = 1]− Pr[A(H∗j ) = 1]
∣∣ ≤ 2

√
2qQ · ε ≤ 2

√
2qQ

2n+m
. (2)

Next, we bound the distinguishability of H∗j and H∗∗j . Recall they differ in

that in H∗j the (j+1)st query is answered with TFXK [(E(1))Tj ,K ](xj+1), whereas

in H∗∗j that query is answered with Ẽtj+1(xj+1). In H∗j we have

yj+1
def
= TFXK [(E(1))Tj ,K ](tj+1, xj+1)

= (E
(1)
k )Tj ,K(xj+1 ⊕ f1(tj+1, k

′))⊕ f2(tj+1, k
′)

= E
Tj ,K
k (s)⊕ f2(tj+1, k

′) ;

uniformity of f2 implies that yj+1 is uniform. This is not identical to the distri-

bution of yj+1 in H∗∗j , which is uniform subject to the constraint that Ẽtj+1 is a
permutation. Define the set Yj+1 = {yi | ti = tj+1}, i.e., these are the outputs of

Ẽ that A received for the same tweak tj+1 used in the (j+ 1)st query. Bounding
the probability that yj+1 ∈ Yj+1 when yj+1 is uniform gives an upper bound on
the probability with which A can distinguish H∗j and H∗∗j . Thus,

∣∣Pr[A(H∗j ) = 1]− Pr[A(H∗∗j ) = 1]
∣∣ ≤ |Yj+1|

2n
≤ j

2n
. (3)

Finally, we bound the distinguishability of H∗∗j and H′j . Recall that the
difference between these experiments is that from the (j + 1)st query onward
the former uses (E(1))Tj ,K while the latter uses ETj+1,K (both for the quantum
queries of A and to instantiate TFX for the classical queries of A). It follows
that the two experiments are identical if (E(1))Tj ,K and ETj+1,K are equal. In
what follows we bound the probability that they are not equal.
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Both (E(1))Tj ,K and ETj+1,K involve j+1 swaps: (E(1))Tj ,K involves j swaps
from the first j queries plus the extra swap by the definition of E(1) (i.e.,
f1(tj+1, k

′) ⊕ xj+1 and s are swapped), whereas ETj+1,K induces j + 1 swaps
from the first j+ 1 queries. Since the (j+ 1)st query is a forward query, we have

(E
(1)
k∗ )

Tj ,K
(x) =

{
Ek∗(x) k∗ 6= k
←−
S Tj ,E(1),K ◦

−→
S Tj ,E(1),K ◦ E

(1)
k (x) k∗ = k .

(4)

Comparing Equations (1) and (4), we see that (E(1))Tj ,K = ETj+1,K for all
k∗ 6= k. So we only need to consider k∗ = k, in which case

(E
(1)
k )Tj ,K(x) =

←−
S Tj ,E(1),K ◦

−→
S Tj ,E(1),K ◦ E

(1)
k (x)

and

(Ek)Tj+1,K(x) =
←−
S Tj+1,E,K ◦

−→
S Tj+1,E,K ◦ Ek(x) .

Set X = {x1 ⊕ f1(t1, k
′), . . . , xj ⊕ f1(tj , k

′)}, and let Bad0 be the event that
xj+1 ⊕ f1(tj+1, k

′) ∈ X and Bad1 be the event that s ∈ X . We first bound the

probabilities of these events, and then show that (E
(1)
k )Tj ,K = E

Tj+1,K
k when

neither Bad0 nor Bad1 occurs.
Since s is uniform and independent of everything else, it is immediate that

Pr[Bad1] ≤ j/2n. We continue with bounding the probability of Bad0, which is
more complex since we have to consider the tweaks from the first j + 1 queries
of A. Intuitively, when considering a query whose tweak was the same as tj+1,
we rely on the assumption that A does not repeat queries; for queries where the
tweaks are different, we use the XOR-uniformity property of f1, f2. We start by
introducing the two sets

X= = {xi ⊕ f1(ti, k
′) | 1 ≤ i ≤ j, ti = tj+1}

X 6= = {xi ⊕ f1(ti, k
′) | 1 ≤ i ≤ j, ti 6= tj+1} .

These partition X into inputs using the same tweak as the (j+ 1)st query (X=)
and those using a different tweak (X 6=). Hence,

Pr[Bad0] = Pr[Bad=0 ] + Pr[Bad6=0 ] ,

where Bad=0 is the event that xj+1 ⊕ f1(tj+1, k
′) ∈ X= and Bad6=0 is the event

that xj+1 ⊕ f1(tj+1, k
′) ∈ X 6=. For Bad=0 , we have

xj+1 ⊕ f1(tj+1, k
′) ∈ {xi ⊕ f1(ti, k

′) | ti = tj+1}
⇔ xj+1 ∈ {xi ⊕ f1(ti, k

′)⊕ f1(tj+1, k
′) | ti = tj+1}

⇔ xj+1 ∈ {xi | ti = tj+1} ,

i.e., event Bad=0 is equivalent to xj+1 ∈ {xi | ti = tj+1}. Since A does not repeat

queries, this means Pr[Bad=0 ] = 0. For Bad6=0 , rewriting yields

xj+1 ⊕ f1(tj+1, k
′) ∈ {xi ⊕ f1(ti, k

′) | ti 6= tj+1}
⇔ xj+1 ∈ {xi ⊕ f1(ti, k

′)⊕ f1(tj+1, k
′) | ti 6= tj+1} .
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XOR-uniformity property of f1 implies that every element in the set above is
uniformly distributed, hence Pr[Bad6=0 ] ≤ |X 6=|/2n ≤ j/2n. Summarizing,

Pr[Bad0] = Pr[Bad=0 ] + Pr[Bad6=0 ] ≤ 0 +
|X 6=|
2n
≤ j

2n
.

If neither Bad0 or Bad1 happens, then E
(1)
k (xi⊕f1(ti, k

′)) = Ek(xi⊕f1(ti, k
′))

for every 1 ≤ i ≤ j. Given that, we have

−→
S Tj ,E(1),K =

j∏
i=1

swap1−bi
E

(1)
k (xi⊕f1(ti,k′)), yi⊕f2(ti,k′)

=

j∏
i=1

swap1−biEk(xi⊕f1(ti,k′)), yi⊕f2(ti,k′) =
−→
S Tj ,E,K

and

←−
S Tj ,E(1),K =

1∏
i=j

swapbi
E

(1)
k (xi⊕f1(ti,k′)), yi⊕f2(ti,k′)

=

1∏
i=j

swapbiEk(xi⊕f1(ti,k′)), yi⊕f2(ti,k′) =
←−
S Tj ,E,K .

Therefore,

(E
(1)
k )Tj ,K(x) =

←−
S j,E(1),K ◦

−→
S j,E(1),K ◦ E

(1)
k (x)

=
←−
S j,E,K ◦

−→
S j,E,K ◦ swapEk(f1(tj+1,k′)⊕xj+1), yj+1⊕f2(tj+1,k′) ◦ Ek(x)

=
←−
S j+1,E,K ◦

−→
S j+1,E,K ◦ Ek(x) = E

Tj+1,K
k .

Putting everything together, we conclude that∣∣Pr[A(H∗∗j ) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ Pr[Bad0] + Pr[Bad1] ≤ 2j

2n
. (5)

Combining Equations (2), (3), and (5) concludes the proof. ut

4 Applications of Our Result

In this section we show how Theorem 1 can be used to prove post-quantum
security of the FX construction, a variant of the authenticated encryption scheme
Elephant, and the message authentication code Chaskey.

4.1 The FX Construction

The FX construction [10] provides a mechanism for extending the key length of a
cipher. Given a block cipher E : {0, 1}m×{0, 1}n → {0, 1}n, the FX construction
yields a new block cipher FX : ({0, 1}m × {0, 1}2n)× {0, 1}n → {0, 1}n via

FXk,k1,k2(x) = Ek(x⊕ k1)⊕ k2 .
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The FX construction is a special case of the TFX construction where κ = 2n,
T = ∅, f1(k1, k2) = k1, and f2(k1, k2) = k2. It is easy to verify that f1 and
f2 are proper: they clearly satisfy uniformity, and XOR-uniformity is satisfied
vacuously since T = ∅. Specializing Theorem 1 to this case thus yields the
following:

Theorem 2. Let FX be as above and let A be an adversary making qC classical
queries to its first oracle and qQ quantum queries to its second oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}m;k1,k2←{0,1}n;
E←E(m,n)

[
AFXk,k1,k2 ,E = 1

]
− Pr

P←P(n);
E←E(m,n)

[
AP,E = 1

]∣∣∣∣∣∣∣
≤ (3 + 2

√
2) · 2−(m+n)/2

(
qC
√
qQ + qQ

√
qC
)
.

The above solves a problem left open by Jaeger et al. [8], who prove a similar
result about security of the FX construction but only for non-adaptive attackers.

4.2 (A variant of) Elephant

Elephant is a lightweight authenticated encryption scheme (with associated data)
under consideration for standardization by NIST [2]. It is based on a tweakable
block cipher that we denote here by Ẽ, which is in turn constructed from a
specified public permutation P . Prior work [2] proves—in the purely classical
setting—that Elephant is a secure authenticated encryption scheme if Ẽ is a
secure tweakable block cipher, and that Ẽ is a secure tweakable block cipher if P
is modeled as a public random permutation. It is straightforward to verify that
this proof carries over to the setting of quantum adversaries with classical access
to Elephant, provided that Ẽ is post-quantum secure.

The tweakable block cipher Ẽ : {0, 1}m×T ×{0, 1}n → {0, 1}n (where m ≤ n)
used by Elephant is defined as

Ẽk(t, x) = P (x⊕ f(t, P (k‖0n−m)))⊕ f(t, P (k‖0n−m)),

where f : T × {0, 1}n → {0, 1}n is a function that is proper with respect to T .
The particular structure of T is not relevant for us. We are unable to ana-
lyze Ẽ directly since it uses P both to define an Even-Mansour cipher as well
as for expansion of k. Instead, we consider the simplified tweakable block cipher
Ẽ′ : {0, 1}n × T × {0, 1}n → {0, 1}n defined as

Ẽ′k(t, x) = P (x⊕ f(t, k))⊕ f(t, k).

This amounts to replacing P (k‖0n−m) with a uniform k ∈ {0, 1}n. Since a public
random permutation is equivalent to a degenerate ideal cipher that takes no key,
post-quantum security of Ẽ′ follows directly from Theorem 1:
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Theorem 3. Let Ẽ′ be as above and let A be an adversary making qC classical
queries to its first oracle and qQ quantum queries to its second oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
AẼ′k,P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ (3 + 2

√
2) · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

As discussed earlier, the above theorem in combination with [2, Theorem B.3]
implies post-quantum security (in the public random permutation model) of the
variant of Elephant which uses Ẽ′ in place of Ẽ.

4.3 Chaskey

Chaskey [13], a lightweight MAC that is an ISO standard, is constructed from
a specified permutation P : {0, 1}n → {0, 1}n. Define Fk,k′(x) = P (x ⊕ k) ⊕ k′;
this is just an Even-Mansour cipher based on P . Evaluating Chaskey using key k
involves evaluating Fk,k, Fk⊕k1,k1 , and Fk⊕k2,k2 , where k1 = 2k, k2 = 4k, and
multiplication is in the field GF (2n) with respect to a particular representation
of field elements as n-bit strings. Prior work [13] shows that Chaskey is secure if
these three instances of F are indistinguishable from three independent random
permutations—a notion called 3PRP security—and also proves 3PRP security
of F when P is modeled as a public random permutation. Although this prior
work considered classical adversaries only, it is not hard to verify that the proofs
carry through to imply security of Chaskey against quantum adversaries making
classical MAC queries so long as 3PRP security of F holds against adversaries
making classical queries to the secretly keyed ciphers and quantum queries to P .

Theorem 1 readily implies 3PRP security of F in the post-quantum setting:

Theorem 4. Let A be a quantum algorithm making qC classical queries to its
first three oracles and qQ quantum queries to its fourth oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n,
P←P(n)

[
AFk,k,Fk⊕k1,k1 ,Fk⊕k2,k2 ,P = 1

]
− Pr
R1,R2,R3,P←P(n)

[
AR1,R2,R3,P = 1

]∣∣∣∣∣∣∣
≤ (3 + 2

√
2) · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
,

where k ∈ {0, 1}n is uniform, k1 = 2k, and k2 = 4k.

Proof. A public random permutation P is equivalent to a degenerate ideal cipher
that takes no key (i.e., with m = 0). Letting T = {0, 1, 2} ⊂ GF (2n) and defining
f1(t, k) = k ⊕ (2tk) and f2(t, k) = 2t · k, we see that

TFXf1,f2k [P ](0, x) = P (x⊕ k)⊕ k = Fk,k(x)

TFXf1,f2k [P ](1, x) = P (x⊕ k ⊕ 2k)⊕ 2k = Fk⊕k1,k1(x)

TFXf1,f2k [P ](2, x) = P (x⊕ k ⊕ 4k)⊕ 4k = Fk⊕k2,k2(x).
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The theorem thus follows from Theorem 1 once we verify that f1, f2 satisfy the
required properties. Uniformity of f1 and f2 follow readily from invertibility of
non-zero elements in GF (2n). Finally, note that

f1(t, k)⊕ f1(t′, k) = 2 · (t⊕ t′) · k and f2(t, k)⊕ f2(t′, k) = (2t ⊕ 2t
′
) · k,

with t⊕ t′ and 2t ⊕ 2t
′

non-zero for distinct t, t′; XOR-uniformity follows. This
concludes the proof of the theorem. ut

As discussed earlier, the above theorem in combination with prior results [13,
Theorem 1,2] implies post-quantum security of Chaskey (in the public random
permutation model).
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A Proof of Lemma 2

Proof. The proof of this lemma is similar to the proof of the resampling lemma
for random permutations. Here, we detail the parts of the proof that are dif-
ferent. Let F be the internal register (called “database register”) of a super-
position oracle for an ideal cipher, i.e., F = F0mF0m−11 . . . F1m where each
Fk = Fk,0n , . . . Fk,1n is a database register for a random permutation. Each
Fk is initialized in the initial state |φ0〉 for a random permutation, namely,

|φ0〉 = (2n!)
−1/2 ∑

π∈P(n)

|π〉.

By analogy to the proof of [1, Lemma 5], define the projectors

(Pk0s0s1)KX =

{
1 s0 = s1

1− |k0〉〈k0| ⊗ (|s0〉〈s0|+ |s0〉〈s0|)X s0 6= s2

and (
P inv
k0s0s1

)
KY F

=

{
1 s0 = s1

|k0〉〈k0|K ⊗
∑
y∈{0,1}n |y〉〈y|Y ⊗ (1− |y〉〈y|)⊗2Fk0,s0Fk0,s1 s0 6= s1.
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With this generalized definition of P and P inv, it is straightforward to see that
Equations (11) and (12) from [1] still hold, i.e.,[

SwapFk,s0Fk,s1 , OKXY F (Pk,s0s1)KX

]
= 0

and [
SwapFk,s0Fk,s1 , O

inv
KXY F

(
P inv
k,s0s1

)
KY F

]
= 0.

For an arbitrary state |ψ〉KXE , let

|ψ〉KXE =
∑

k∈{0,1}m
x∈{0,1}m

|k〉K |x〉X ⊗ |ψkx〉E

be its expansion in the computational basis on X. By the definition of ε, we
obtain generalizations of Equations (13) and (15) from [1], namely,

E(k0,s0,s1)∼D
[
‖ (Pk0s0s1)KX |ψ〉KXE‖

2
2

]
=

∑
k∈{0,1}m
x∈{0,1}m

‖|ψkx〉‖22EB∼D
[
‖ (ΠB)KX |k〉K |x〉X‖

2
2

]
=

∑
k∈{0,1}m
x∈{0,1}m

‖|ψkx〉‖22 Pr
(k0,s0,s1)∼D

[(k, x) ∈ {(k0, s0), (k0, s1)}]

≤ ε

and
E

s0,s1

[∥∥(P̄ inv
k0s0s1

)
KY F

|ψ〉KYEF
∥∥2
2

]
≤ ε.

The remainder of the proof is analogous to the proof of [1, Lemma 5]. ut
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