
Revisiting Higher-Order Masked
Comparison for Lattice-Based Cryptography:
Algorithms and Bit-sliced Implementations

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede

imec-COSIC KU Leuven, Kasteelpark Arenberg 10 - bus 2452, 3001 Leuven, Belgium
{firstname}.{lastname}@esat.kuleuven.be

Abstract. Masked comparison is one of the most expensive operations in side-channel se-
cure implementations of lattice-based post-quantum cryptography, especially for higher
masking orders. First, we introduce two new masked comparison algorithms, which im-
prove the arithmetic comparison of D’Anvers et al. [DHP+21] and the hybrid comparison
method of Coron et al. [CGMZ21a] respectively. We then look into implementation-
specific optimizations, and show that small specific adaptations can have a significant
impact on the overall performance. Finally, we implement various state-of-the-art
comparison algorithms and benchmark them on the same platform (ARM-Cortex M4)
to allow a fair comparison between them. We improve on the arithmetic comparison
of D’Anvers et al. with a factor ≈20% by using Galois Field multiplications and the
hybrid comparison of Coron et al. with a factor ≈25% by streamlining the design. Our
implementation-specific improvements allow a speedup of a straightforward comparison
implementation of ≈33%. We discuss the differences between the various algorithms
and provide the implementations and a testing framework to ease future research.
Keywords: Lattice-Based Cryptography · Side-Channel Protection · Masking ·
Fujisaki-Okamoto transform

1 Introduction
Current standards for public-key cryptography, such as RSA or ECC, are under threat of
quantum computers. In response, the cryptographic community started work on replacement
algorithms that are secure in the presence of large-scale quantum computers. Such quantum
computer resisting algorithms are known under the term post-quantum cryptography. In
2016, the National Institute of Standards and Technology (NIST) started a standardization
process to find a new post-quantum encryption and digital signature standard [NIS16]. At
the moment we are in the final stage of this process, with 4 encryption finalists and 3 signature
finalists. Out of these finalists, 3 encryption schemes (Kyber [SAB+20], Saber [DKR+20]
and NTRU [CDH+20]) and 2 signature schemes (Dilithium [LDK+20] and Falcon [PFH+20])
are from the family of lattice-based cryptographic schemes. In this paper we will specifically
focus on lattice-based schemes.

When deploying the future standard, one has to take into account the possibility of
side-channel attacks. Side-channel attacks are attacks that use information leakage as a result
of computation, such as timing, power consumption or electromagnetic radiation. These
leakages give an adversary extra information that could be used to break the cryptographic
primitive with smaller effort compared to breaking the underlying mathematics.

Similar to other cryptographic families, lattice-based encryption schemes are vulnerable
to side-channel attacks. This has been shown in [SW07, DTVV19, GJN20] for timing attacks

mailto:{firstname}.{lastname}@esat.kuleuven.be

2

or in [ABGV08, WZW13, PPM17, ACLZ20, RRCB20, XPRO20, UXT+21] for power con-
sumption and electromagnetic radiation attacks. These attacks highlight the importance of
protectionmechanisms against side-channel attacks. In their latest update [AASA+20], NIST
specifically highlights side-channel protection of post-quantum cryptographic primitives as
an important challenge.

One popular method to protect against side-channel attacks is masking. Masking has
been introduced by Chari et al. [CJRR99] and provides a framework to harden cryptographic
implementations against side-channel leakage. The main idea of masking is to split sensitive
values into S shares, so that an adversary that has access to at most t<S shares does not
learn any sensitive information. The parameter t denotes the order of the masking, and is
typically equal to S−1. The terminology around masking has been extended by Barthe
et al. [BBD+16], introducing Non-Inference (NI) and Strong Non-Inference (SNI) to allow
easier composition of masked building blocks, typically called gadgets.

Masked implementations of encryption standardization candidates were presented
for Saber by Van Beirendonck et al. [VBDK+21] for first order, and later by Coron et
al. [CGMZ21a] for higher masking orders. A masked Kyber implementation for generic
masking orders was introduced by Bos et al. [BGR+21]. Fritzmann et al. [FVBBR+21]
optimized a masked implementation of Saber and Kyber using instruction set extensions.
For the signature candidates, Dilithium was masked by Migliore et al. [MGTF19].

Looking at the cost of the masking the various building blocks, one can see that there
are different bottlenecks between masked and unmasked implementations. Unmasked im-
plementations are typically dominated by the polynomial multiplication and the generation
of the public matrix. For masked implementations, the most expensive building block is an
equality check/comparison operation between the input ciphertext array and a re-encrypted
ciphertext array. In this paper, we specifically look at different methods to securely imple-
ment this comparison. A complicating factor is that the input ciphertext is compressed for
both Kyber and Saber, which will have an effect on which methods can be used in practice.

One observation that one can make is that there is a clear difference between first order
and higher order masking, in that there are specific methods that can be used to speed-up
first-order masking that do not scale to higher orders. For the comparison, one can use
the first-order method of Oder et al. [OSPG18]. Their idea is to implement a check to
see if a masked array is zero by hashing both shares separately and comparing only the
hashed values in the end. A small change to their method, necessary for security has been
discussed in [BDH+21]. The compression can be performed efficiently using table based
A2B conversion [Deb12, VDV21], specifically developed for first order masking.

For higher orders, several techniques have been developed, which follow the same pattern:
first, a preprocessing on the arithmetically masked array, secondly, a conversion from the
arithmetic to the Boolean masking domain, thirdly, a postprocessing, and finally a compar-
ison on the final Boolean masked values. The difference between the various methods lies
in the preprocessing and postprocessing steps.

Barthe et al. [BBE+18] solved the masked comparison challenge by switching from the
arithmeticmasking domain to aBooleanmasked representation, and then performing the com-
parison usingmasked bitwise operations. Bache et al. [BPO+20] showed amethod to compress
the number of array coefficients that needs to be compared by taking a random sum. Bhasin et
al. [BDH+21] showed a security problem in this method, and adapted the idea to get around
the security problems. The drawback of this method is that it only works for specific cases, i.e.,
prime moduli without compression of the ciphertext. D’Anvers et al. [DHP+21] later showed
how to implement this method for both prime and power-of-two moduli with compression.

A different approach was taken by Bos et al. [BGR+21], who instead of compressing
the masked ciphertext, leave it uncompressed and perform two masked checks to see if it
is within the required range, i.e. a high- and low-end check. Removing the compression here
comes at a cost of two (cheaper) checks per coefficient. Coron et al. [CGMZ21a] introduced

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 3

several new ideas to more efficiently perform this range check.

Our contributions Our contributions are threefold: first we introduce an improved version
of the comparison method of [DHP+21]. Instead of working with arithmetic multiplications
modulo some big power-of-two, we propose to work in a Galois field, which saves us a
conversion from the Boolean to the arithmetic masking domain and significantly reduces the
cost of the comparison operation. We also develop a streamlined version of the Kyber-specific
compression of Coron et al. [CGMZ21a]. Both our algorithms outperform the comparisons
they are based on.

Secondly, we discuss specific implementation details such as bitslicing, and changing the
Boolean representation after A2B conversion. We show that these implementation changes
have a significant impact in reducing the cost of the algorithms.

In the third and final part of the paper we compare the state-of-the-art comparison meth-
ods. We implement several algorithms using the same underlyingA2B conversion implementa-
tion and on the same target platform. We then perform the benchmarking on both Saber and
Kyber. By doing this we aim to make an fair and practically useful comparison between the
various comparison methods available. We will make our optimized implementations of these
algorithms available at https://github.com/KULeuven-COSIC/Masked-Comparison.

2 Preliminaries

2.1 Notation

We denote with b·c flooring a number to the nearest lower integer, and with d·c rounding, with
ties rounded upwards. bxcq→p is a shorthand for modulus switching and rounding an input
x∈Zq to an output in Zp, i.e, bxcq→p=

⌊
p
qx
⌋
. Similarly, d·cq→p=

⌈
p
q ·
⌋
. These operations

are extended for vectors, polynomials or vectors of polynomials coefficient-wise. As we will
see in Subsection 2.2, these operations are also extended for masked variables by applying
them share-wise. Let x�b denote bitwise shifting x to the right with b positions, which is
equal to floor(x/2b). For an array or a polynomial x, denote with x[i] the ith coefficient of x.

Let x $←−χ denote sampling x according to a distribution χ, and let x r←−χ denote a pseu-
dorandom sampling based on a seed r. Let U(S) denote the uniform distribution over a set S.

2.2 Masking

Masking is a technique to protect implementations of cryptographic algorithms against
side-channel attacks. The main idea is to split sensitive values into S shares so that an
adversary only learns sensitive information if he has access to at least t+1 shares, where
typically t+1=S. For a sensitive value x we will denote that it is masked with x(·), where
x=x(·). The notation x(i) specifically denotes the ith share of the masked x(·).

There are various methods to accomplish a sharing, and we will specifically utilize two:
Boolean masking and arithmetic masking. In Boolean masking, a sensitive value is masked
by XOR’ing it with uniformly random strings such that xB(·) =

⊕S−1
i=0 xB

(i). For arithmetic
masking, one chooses a masking modulus q and after which masking is performed by sub-
tracting uniformly random strings such that xA(·) =

∑S−1
i=0 xA

(i) mod q. Arithmetic masking
is typically used when performing arithmetic operations on the shares, as linear operations
(addition, multiplication with a constant) are efficient under this masking. Boolean masking
is typically used when performing Boolean operations on data. For more information on
masking we refer to [ISW03, BBD+16].

https://github.com/KULeuven-COSIC/Masked-Comparison

4

Algorithm 1: PKE.KeyGen.

1 sdA
$←−{0,1}256 ;

2 A
sdA←−−U(Rk×k

q) ;
3 (s,e) $←−χ(Rk×1

q)×χ(Rk×1
q) ;

4 t←bA·s+eeq→q2 ;
5 return pk :=(sdA,t),sk :=s ;

Algorithm 3: PKE.Dec.
Input: sk=s
Input: c=(uc,vc)

1 u←bucep→q ;
2 v←bvceT→q ;
3 m←bv−sT ·ueq→2 ;
4 return m ;

Algorithm 2: PKE.Enc.
Input: pk=(sdA,t)
Input: m∈M
Input: r $←−{0,1}256

1 A
sdA←−−U(Rk×k

q) ;
2 (r,e1,e2) r←−

χ(Rk×1
q)×χ(Rk×1

q)×χ(R1×1
q) ;

3 u←A·r+e1 ;
4 v←(q

q2
·t)·r+e2+

⌈
q
2

⌋
·m ;

5 uc←bueq→p ;
6 vc←bveq→T ;
7 return c :=(uc,vc) ;

2.3 Lattice-based encryption
In this paper we will specifically look at the comparison operation that happens at the
end of the decapsulation if compiled using the Fujisaki-Okamoto transformation. To give
some context we introduce lattice-based encryption in this section, and will explain the
Fujisaki-Okamoto (FO) transformation in the next section. We focus on a general algorithm
that can be used to describe both Saber and Kyber.

Algorithms 1 to 3 depict a lattice-based encryption procedure. It works on vectors of
ring elements Rkq , with Rq=Zq[X]/(Xn+1). In both Saber and Kyber, n=256 and k has
a value between 2 and 4 depending on the security level. The main difference between the
two is that Saber works with a power of two modulus q = 213 while Kyber works with a
prime q=3329. Both algorithms compress the ciphertext from modulus q to lower moduli
p and T for transmission of the ciphertext (and the public key in case of Saber). The values
of p and T differ between the various versions of Kyber and Saber. Both are chosen to be
powers-of-two, with p=210 or 211 while T has a smaller value typically around T =24. The
modulus q2 is the public key compression modulus, which equals 210 for Saber, but q2 =q
for Kyber as it has no public key compression. The distribution χ(Rkq) returns vectors with
small coefficients that are drawn from a binomial distribution. For more information we
refer to the original publications of Kyber [BDK+18] and Saber [DKRV18].

2.4 FO
The encryption scheme described in Subsection 2.3 only provides security from passive adver-
saries (IND-CPA). To achieve active security (IND-CCA) one can use a generic transformation
such as a post-quantum version of the Fujisaki-Okamoto transformation [FO99, HHK17].
The main idea of such a transformation is to make the encryption deterministic based on a
random seed, which is then transmitted as the message. During decapsulation, the ciphertext
is decrypted into the random seed, which allows the ciphertext to be recomputed. The
re-encrypted ciphertext is then compared with the input ciphertext and the procedure is
aborted if both ciphertexts are not the same.

Algorithms 4 to 6 give a more detailed look into the Fujisaki-Okamoto transformation,
where the functions G and H are cryptographic hash functions and where KDF is a key
derivation function. We will denote variables computed during re-encryption with an accent,
to clearly distinguish from the input ciphertext.

In this paper we will specifically look at the comparison in line 5 of Algorithm 6. The input
ciphertext is a publicly known value, and thus not sensitive to leakage. The re-encrypted

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 5

Algorithm 4: KEM.KeyGen.

1 z
$←−{0,1}256 ;

2 (pk,sk′)=PKE.KeyGen() ;
3 sk=(sk′||pk||H(pk)||z) ;
4 return pk,sk ;

Algorithm 5: KEM.Encaps.
Input: Public key of KEM pk

1 m
$←−{0,1}256 ;

2 m←H(m) ;
3 (K̄,r)=G(m||H(pk)) ;
4 c=PKE.Enc(pk,m,r) ;
5 K=KDF(K̄||H(c)) ;
6 return c,K ;

Algorithm 6: KEM.Decaps.
Input: Ciphertext of KEM c
Input: Secret key of KEM sk

1 Extract (sk′||pk||H(pk)||z) from sk ;
2 m′=PKE.Dec(sk′,c) ;
3 (K̄′,r′)=G(m′||H(pk)) ;
4 c′=PKE.Enc(pk,m′,r′) ;
5 if c=c′ then
6 K=KDF(K̄′||H(c)) ;
7 else
8 K=KDF(z||H(c)) ;
9 end

10 return K ;

ciphertext depends on the secret, is therefore sensitive and should be masked. This re-
encrypted ciphertext has initially coefficients modulo q, but is compressed in lines 5 and
6 of Algorithm 2 before the comparison. The comparison operation we investigate in this
paper includes the compression as an integral part of the algorithm. The re-encrypted
ciphertext (before compression) is typically arithmetically masked. We will also ignore the
ring structure of the ciphertext, and consider a polynomial in R=Zq[X]/(Xn+1) as a vector
in Zn and a vector of polynomials in Rk as a vector in Zkn. This is reasonable as we don’t
use any property of the ring in the comparison operation.

3 Comparison methods
On a high level, a comparison algorithm can be constructed by subtracting the input cipher-
text from the re-encrypted ciphertext and performing a bitwise OR on all bits representing
the result of the subtraction. However, in practice, there are some obstacles that need to
be overcome to do this.

Firstly, the re-encrypted ciphertext is typically arithmetically masked, which works
well for the subtraction of both ciphertexts, but is ill-suited for the subsequent bitwise
OR operation. Therefore, one typically wants to perform an arithmetic to Boolean (A2B)
conversion on the data between the subtraction and the bitwise OR.

Secondly, the input and re-encrypted ciphertext are not in the same domain, as the
input ciphertext is compressed. Moreover, the A2B conversion is not straightforward when
working with prime moduli q.

We will first discuss these issues, and then give an overview of three state-of-the-art
comparison techniques.

3.1 A2B and Compression
In this section we will discuss the subtraction of both ciphertexts and subsequent A2B
conversion. We will first tackle the case of Saber, i.e. power-of-two q, and then talk about
Kyber, i.e. prime q. While the power-of-two technique is relatively straightforward, the
necessary adaptations to make this technique work for prime moduli were introduced by
Fritzmann et al. [FVBBR+21].

Looking at the first ciphertext component uc, we want to compute ∆u(·) =A2B(u′c
(·)−uc)

from the input ciphertext uc and the re-encrypted uncompressed ciphertext u′(·).

6

First we look at the case of power-of-two q,p. To efficiently compute ∆u(·) we want to
compute the arithmetic operations in the arithmetic domain, while computing the flooring
operation in the Boolean domain. To this end we rewrite the equation as:

A2B(u′c
(·)−uc)=A2B

(⌈
p

q
·u′(·)

⌋
−uc

)
(1)

=A2B
(⌈

p

q
·u′(·)−uc

⌋)
(2)

=A2B
(⌊

p

q
·u′(·)−uc+

1
2

⌋)
(3)

=A2B
(⌊

p

q
·
(
u′

(·)− q
p
·uc+

q

2p

)⌋)
(4)

=A2B
(
u′

(·)− q
p
·uc+

q

2p

)
� log2(p

q
). (5)

For prime q, the step from Equation 4 to Equation 5 is not straightforward for two reasons:
firstly, log2(pq) is not an integer, which would mean we have to shift with a fractional number
which makes no sense, and secondly, the term in the A2B conversion has an infinite fractional
representation.

Fritzmann et al. [FVBBR+21] noticed that only a limited precision is needed in the
fractional representation. Given a number of bits needed for the required precision τ , they
rewrite the expression above as:

A2B(u′c
(·)−uc)=A2B

(⌊
p

q
·u′(·)−uc+

1
2

⌋)
(6)

=A2B
(⌊

1
2τ

⌊
2τ
(
p

q
·u′(·)−uc+

1
2

)⌋⌋)
(7)

=A2B
(⌊

2τ ·
(
p

q
·u′(·)−uc+

1
2

)⌋)
�τ, (8)

where we can get to Equation 7 if τ is large enough to avoid any error due to the flooring
operation, as proven in [FVBBR+21]. Note that the flooring operation, the multiplications
and the shift operation are performed independently on each share. In practice we need τ to
be an integer bigger than log2(S)−log2

(
dq/2e
q −0.5

)
, which is 13 for Kyber if S=3.

Similar derivations can be performed to calculate ∆v(·) =A2B(v′c
(·)−vc), where one

only needs to replace u with v and the modulus p with T . To simplify the algorithms
presented in the rest paper, we will define a function precalcq→p(u′

(·)
, uc) that calcu-

lates ∆u(·) = A2B(u′c
(·)−uc) from u′

(·) and uc as described above. Similarly, we define
precalcq→T (v′(·),vc) as the function that calculates ∆v(·) =A2B(v′c

(·)−vc) from v′
(·) and vc.

3.2 Simple method
The simplest method to perform the comparison would be to perform the preprocessing
as described above. This would result in a Boolean masked array of coefficients, of which
should be checked if it equals zero. Then one can do the zero check by performing a bitwise
masked OR operation, which can easily be obtained from a masked AND [CGV14] operation
combined with masked NOT operations, the latter operation only requiring a bitwise negation
of one share. This description can be seen as a variant of the comparison method as used
by Barthe et al. [BBE+18] to mask the GLP signature scheme. The resulting algorithm is
given in Algorithm 7.

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 7

Algorithm 7: Simple.
Input: Input ciphertext: uc,vc
Input: Re-encrypted ciphertext: u′(·),v′(·)

1 ∆u(·) =precalcq→p(u′
(·)
,uc) ;

2 ∆v(·) =precalcq→T (v′(·),vc) ;
3 result=OR(∆u(·) | ∆v(·)) ;
4 return result ;

3.3 Arithmetic comparison

The masked OR operation in the simple approach needs to be calculated on kn coefficients of
log2(p) bits and n coefficients of log2(T) bits. To reduce the number of masked OR operations,
D’Anvers et al. [DHP+21] propose a technique to reduce the k(n+1) coefficients that need to
be checked into one (bigger) coefficient by summing them together. This technique is inspired
by the random sum method of Bache et al. [BPO+20]. However, to avoid chosen ciphertext
attacks where adaptations in one coefficient are offset with an inverse adaptation in another
coefficient, all coefficients are first multiplied with a random number before summation. As
this random number is the same for all shares of a coefficient, and due to distributivity (i.e,∑
iR ·x[i] =R ·

∑
ix[i]), it can be proven that the resulting sum equals zero if all masked

coefficients are zero.

One drawback of this method is that there is a small collision probability in which an
incorrect input ciphertext is wrongly accepted. This collision probability equals 2−s with s
a security parameter related to the bit-size of R, and can not be influenced by an adversary.
As such, it is not possible to increase the probability of obtaining a failure using for example
failure boosting [DGJ+19]. In many adversarial models, the adversary is limited in the
number of queries Q he can perform, and the parameter s should be chosen such that an
adversary can not reasonably find collisions, or: 2s≥Q.

For a more detailed description of the algorithm and more in-depth security analysis we
refer the interested reader to the original publication [DHP+21].

Algorithm 8: Arithmetic.
Input: Input ciphertext: uc,vc
Input: Re-encrypted ciphertext: u′(·),v′(·)

1 ∆u(·) =precalcq→p(u′
(·)
,uc) ;

2 ∆v(·) =precalcq→T (v′(·),vc) ;
3 b(·) =B2Ap·2s−1(∆u(·)) | B2Ap·2s−1(∆v(·)) ;
4 E(·) =0 ;
5 for i=1 to (k+1)n do
6 r

$←−U({0,1}s) ;
7 E(·) +=r·b(·)[i] mod p·2s−1 ;
8 end
9 result=OR(E(·)) ;

10 return result ;

8

3.4 Hybrid comparison
Coron et al. [CGMZ21a] introduce a hybrid method to perform the comparison. They first
build several subfunctions and combine them into one comparison algorithm aimed at prime
moduli q, as used in Kyber. These subfunctions include two new tests to check the zeroness
of a polynomial and ‘decompress-and-multiply’, a method to process a masked ciphertext
without performing compression, by instead decompressing the nonsensitive input ciphertext
uc. In this section we give an high-level overview of their comparison algorithm, which is
given in Algorithm 9. For more details we refer to [CGMZ21a], [FVBBR+21] and [BDH+21].

The idea of the hybrid method is that the first and second ciphertext parts are processed
using different approaches. The reason is that the first part of the ciphertext u only undergoes
a small compression, while the second part v typically undergoes stronger compression. The
decompress-and-multiply technique is only efficient for small compression, and is therefore
only used for u, while v is processed in a more traditional approach. We will first look into
the processing of the first part of the ciphertext u, then discuss the second part v and finally
the postprocessing to combine both parts.

To process the first part of the ciphertext, instead of compressing the masked coefficients
of u′(·), the public ciphertext uc is decompressed. For each coefficient uc[i], this results
in multiple possible decompressed values u[i][j]. For each of these possible decompressed
values we subtract u[i][j] from the masked recomputed ciphertext u′(·)[i]. The result
of this subtraction should equal zero for one j (the one corresponding to the original
decompressed value of uc[i]). We then perform amaskedmultiply on all these values ∆u×(·) =∏
j(u[i][j]−u′(·)[i]), which results in a masked zero if and only if the decompressed ciphertext

equals the recomputed ciphertext. These steps are given in line 1 to 6 of Algorithm 9.
Meanwhile, the second part of the ciphertext undergoes the simple comparison procedure

from Subsection 3.2 in line 7-8 of Algorithm 9. This results in a Boolean masked bit repre-
senting the result of the comparison of vc and v′(·). This bit is then converted to arithmetic
masking modulo q and added to the processed first ciphertext part.

The result of the above algorithm is a vector in Znk+1
q that needs to be equal to zero.

This vector fulfills the condition to use the ReduceComparison technique of Bhasin et
al. [BDH+21], which reduces the number of coefficients that need to be checked for zeroness.
This reduction is performed in line 11-17. The algorithm is then finished by performing a
zero check on the resulting polynomial.

As is the case in the ReduceComparison technique, this algorithm also has a probability
of accepting invalid ciphertexts. This probability is upper bounded by q−l2 , with q the
modulus and l2 the number of coefficients after compression. As before, the adversary can
not increase this collision probability as it is entirely dependent on internal values of r.

4 New comparison algorithms
In previous section we detailed three state-of-the art comparison algorithms. In this section
we first improve on the arithmetic comparison technique, and then present a simplified
version of the hybrid comparison technique. We will show in Section 6 that both techniques
outperform their original algorithms.

4.1 Galois field Compression
We first describe an improved version of the arithmetic compression method described in
Subsection 3.3. The main difference between both algorithms is that the multiplication is
changed from an arithmetic multiplication modulo p·2s−1 to a multiplication in a Galois
field. The main advantage of this approach is that addition in a Galois Field is an XOR of
the inputs, which works well on a Boolean representation. Therefore, multiplication and

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 9

Algorithm 9: Hybrid method.
Input: Input ciphertext: uc,vc
Input: Re-encrypted ciphertext: u′(·),v′(·)
// Adapted procedure for u

1 for i=1 to kn do
2 ∆u×(·)[i]=1 ;
3 for u[i][j] in Decompress(uc[i]) do
4 ∆u×(·)[i]×=(u[i][j]−u′(·)[i]) ;
5 end
6 end

// Normal procedure for v

7 ∆v(·) =precalcq→T (v′(·),vc) ;
8 resBv

(·) =OR(∆v(·)) ;
9 resAv

(·) =B2Aq(resBv
(·)) ;

10 b(·) =∆u×(·)|resAv
(·) ;

// Compression
11 E(·) =0 ;
12 for j=1 to l2 do
13 for i=1 to kn+1 do
14 r

$←−U([0,q)) ;
15 E(·)[j]+=r·b(·)[i] mod q ;
16 end
17 end

// Final comparison
18 result=PolyZeroTest(E(·)) ;
19 return result ;

addition can be natively perfomed on Boolean masked shares, eliminating the need for the
expensive B2Ap·2s−1 conversion.

More precisely, for the multiplication operation we represent the inputs as polynomials
with binary coefficients in Z2[X] and perform a polynomial multiplication, after which a
reduction modulo an irreducible polynomial f is executed. We represent this multiplication
operation with the � symbol.

It is possible to avoid the reduction step of this multiplication to reduce complexity of the
algorithm. The downside is an increase in the number of coefficients that need to be processed
in the OR operation. In section Subsection 3.3wewill see that the OR operation cost is negligible
compared to the rest of the algorithm, and as suchwe implement theGalois fieldmultiplication
without the reduction. That is, as a multiplication between binary polynomials.

The Galois field comparison method can be found in Algorithm 10.

Theorem 1 (Correctness and Security of Algorithm 10). The Galois field compression
method of Algorithm 10 returns 1 upon input of a valid ciphertext (uc,vc)=(du′(·)cq←p,(dv′(·)cq←T)
and 0 with probability at least 1−2−s if this condition is not fulfilled.

Proof. This proof largely follows the analogous proof of [DHP+21], with the difference that
some sums are replaced with XOR operations, and some arithmetic multiplications with
GF multiplications. We first derive the value of E(·) at the end of the algorithm.

10

Algorithm 10: Galois field.
Input: Input ciphertext: uc,vc
Input: Re-encrypted ciphertext: u′(·),v′(·)

1 ∆u(·) =precalcq→p(u′
(·)
,uc) ;

2 ∆v(·) =precalcq→T (v′(·),vc) ;
3 b(·) =∆u(·) | ∆v(·) ;
4 E(·) =0 ;
5 for i=1 to (k+1)n do
6 r

$←−U({0,1}s) ;
7 E(·)⊕=r�b(·)[i] ;
8 end
9 result=OR(E(·)) ;

10 return result ;

E(·) =
S−1⊕
k=0

E(k) (9)

=
S−1⊕
k=0

(k+1)n−1⊕
i=0

(ri�b(k)[i])

 (10)

=
(k+1)n−1⊕

i=0

(
S−1⊕
k=0

(ri�b(k)[i])
)

(11)

=
(k+1)n−1⊕

i=0
ri�

(
S−1⊕
k=0

b(k)[i]
)

(12)

=

 ⊕kn−1
i=0 ri�

(⊕S−1
k=0 ∆u(k)[i]

)
⊕
⊕n−1

i=0 rkn+i�
(⊕S−1

k=0 ∆v(k)[i]
) , (13)

which by definition of precalcq→p and precalcq→T equals:

E(·) =

⊕kn−1

i=0 ri�
(∑S−1

k=0

⌈
u′

(k)
⌋
q→p
−uc

)
⊕
⊕n−1

i=0 rkn+i�
(∑S−1

k=0

⌈
v′

(k)
⌋
q→T
−vc

)
, (14)

We will further denote the terms (
∑S−1
k=0

⌈
u′

(k)
⌋
q→p
−uc) and (

∑S−1
k=0

⌈
v′

(k)
⌋
q→T
−vc) with

βi and γi respectively, for conciseness. This gives the following simplified expression for E(·):

E(·) =
(⊕kn−1

i=0 ri�βi
⊕
⊕n−1

i=0 rkn+i�γi

)
, (15)

Correctness If the input ciphertext (uc,vc) matches the recomputed compressed ciphertext
(
⌈
u′

(·)
⌋
q→p

,
⌈
v′

(·)
⌋
q→T

), then all βi and γi are zero and thus E(·) is zero. This proves the
first statement.

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 11

Security If the input ciphertext does not match the recomputed ciphertext, there is at
least one βi or γi that does not equal zero. Without loss of generality, we will assume that
β0 is a nonzero coefficient. We can then separate this coefficient from the equation:

E(·) =

 r0�β0
⊕
⊕kn−1

i=1 ri�βi
⊕
⊕n−1

i=0 rkn+i�γi

, (16)

and simplify this equation into:

E(·) =(r0�X)⊕Y, (17)

by taking:

X=β0 and Y =
(
kn−1⊕
i=1

ri�βi

)
⊕

(
n−1⊕
i=0

rkn+i�γi

)
. (18)

The adversary is tasked with finding a value X and Y so that E(·) =(r0�X)⊕Y =0. A
necessary condition for this is that (r0�X)⊕Y mod f=0, with f an irreducible polynomial
of degree 2s. Which means that the condition can be rewritten as:

r0 =Y ·X−1 mod f. (19)

As r0 is independent of the terms X and Y and is unknown to the adversary, the prob-
ability of finding a ciphertext such that this condition is fulfilled is limited to the guessing
entropy of r0, which equals 2−s. This proof can be easily generalized if another value of βi
or γi is nonzero.

Theorem 2 (t-SNI of Algorithm 10). The Galois field compression method of Algorithm 10
is t-SNI secure.

Proof. Due to the similarities with the arithmetic comparison method, we can rely on the
proof from [DHP+21]. To support this claim we will highlight the differences between the
Galois field method and the arithmetic comparison method, and then show that they do
not change the security proof.

The t-SNI security proof of the arithmetic masking [DHP+21] divides the algorithm in
4 types of gadgets. Gadget G0 and G1 correspond to the preprocessing in the arithmetic
comparison and are exactly the same in the Galois field method. Gadget G4 corresponds to
the final equality test in the arithmetic masking method which is the same as OR operation on
line 9. The only difference between both algorithms is thus gadgetsG2 andG3. GadgetG2 is
no longer needed in the Galois field method as we no longer need to perform B2A conversion.

This leaves us gadget G3 which is different between both approaches. In the arithmetic
masking, gadget G3 computes an arithmetic random sum, while in the Galois field method,
the gadget computes a random sum on binary polynomials. However, both approaches
perform computations on each share separately. This property is what is used in the original
proof [DHP+21] and as it also applies on the Galois field method, the original proof still
holds for the Galois field method.

4.2 Streamlined hybrid
In this section we introduce an improved version of the hybrid compression technique
from [CGMZ21a]. One disadvantage of the hybrid method is that it is complex in comparison
to the other comparison methods, due to the various subfunctions used. The aim of the
streamlined hybrid method is to simplify the implementation of the hybrid method, while
also improving its efficiency.

12

One of the main speedups of the hybrid comparison method is due to the reduction of the
number of coefficients that need to be converted from arithmetic to boolean masking in the
A2B step. This is achieved by using the decompress-and-multiply technique from [CGMZ21a]
and then perform the comparison reduction from [BDH+21]. These steps are only efficient
for the first ciphertext part u. In the streamlined hybrid method we still use these techniques
as they provide a significant speedup.

After these operations we revert to the standard simple procedure from Algorithm 7.
As we will show in Section 5, the A2B and OR operations can be sped up significantly using
implementation tricks. This means that while these operations theoretically don’t scale as
well as some alternatives in [CGMZ21a], they do outperform these functions in practical
implementations. Due to their simplicity and efficiency we choose the postprocessing of the
simple method over the postprocessing of the hybrid method. Specifically, we convert the
remaining coefficients, from both the compressed ciphertext and the second ciphertext part
v, to the Boolean domain and perform the OR operation on the Boolean masked coefficients.
Algorithm 11 gives a high level overview of our streamlined hybrid method.

Algorithm 11: streamlined hybrid method.
Input: Input ciphertext: uc,vc
Input: Re-encrypted ciphertext: u′(·),v′(·)
// Adapted procedure for u

1 E(·) =0 ;
2 for i=0 to kn−1 do
3 ∆u(·)[i]=1 ;
4 for u[i][j] in Decompress(uc[i]) do
5 ∆u(·)[i]×=(u[i][j]−u′(·)[i]) ;
6 end
7 for j=1 to l2 do
8 r

$←−U([0,q)) ;
9 E(·)[j]+=r·∆u(·) mod q ;

10 end
11 end
12 EB

(·) =A2B(b 2λ+τ

q ·E
(·)+2τ−1 mod 2λ+τc)�τ ;

// Normal procedure for v

13 ∆v(·) =precalcq→T (v′(·),vc) ;
14 resBv

(·) =OR(∆v(·)|EB(·)) ;
15 return result ;

Theorem 3 (Correctness and Security of Algorithm 11). For λ+log2(2τ/(2τ−1))> log2(q)
and λ+ τ ≥ log2(q · (S+1)), the streamlined hybrid compression method of Algorithm 11
returns 1 upon input of a valid ciphertext (uc,vc) = (du′(·)cq←p,(dv′(·)cq←T) and 0 with
probability at least 1−q−l2 if the above condition is not fulfilled.

Proof. The ciphertext consists of two parts. The second part v is treated in the same way
as the simple method, and thus shares the same characteristics: if vc = dv′(·)cq←T then
∆v(·) =0, and if the ciphertexts do not match then ∆v(·) 6=0.

As such we will focus the proof on the value of EB(·). We will first consider a valid first ci-
phertext part uc=(du′(·)cq←p), and then an invalid first ciphertext part where uc 6=du′(·)cq←p.

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 13

Correctness If uc= (du′(·)cq←p), then by definition of Decompress, for each coefficient i
one of the decompressed values u[i][j] equals u′(·)[i], which means u[i][j]−u′(·)[i]=0 for this
u[i][j]. This also implies that one term of the multiplication is zero for each coefficient and
thus ∆u(·) is the zero vector. If ∆u(·) is a zero vector, then E(·) is a sum of terms that are
all zero, and thus E(·) equals zero.

This leaves the A2B conversion of line 12 of Algorithm 11. While E(·) is the zero vector,
the individual shares are not necessarily equal to zero. However, similar to the derivation
in [FVBBR+21], we can write:

S−1⊕
k=0

EB
(k) =b 1

2τ
S−1∑
k=0
b2

λ+τ

q
·E(k)+2τ−1 mod 2λ+τcc (20)

=b 1
2τ

S−1∑
k=0
b2

λ+τ

q
·E(k)c+ 2τ−1

2τ c mod 2λ (21)

=b 1
2τ

S−1∑
k=0

(
2λ+τ

q
·E(k)−ek

)
+ 2τ−1

2τ c mod 2λ, (22)

where e is a rounding error in [0,1). Now we can use the fact that E(·) equals zero to simplify
this expression to:

S−1⊕
k=0

EB
(k) =b

S−1∑
k=0

(
−ek
2τ

)
+ 2τ−1

2τ c mod 2λ, (23)

At the upper bound, where all ek=0, we have:

S−1⊕
k=0

EB
(k) =b2

τ−1
2τ c=0 mod 2λ, (24)

while at the lower bound, with ek=1, this gives

S−1⊕
k=0

EB
(k) =b−S2τ + 2τ−1

2τ c=b
2τ−1−S

2τ c mod 2λ, (25)

which also results in zero as long as 2τ−1>S, or τ > log2(S−1).
We proved that if uc=(du′(·)cq←p), then

⊕S−1
k=0EB

(·) equals zero, and we know from the
proofs of the simple method that if vc=dv′(·)cq←T then ∆v(·) =0. As the result is computed
as an OR of these values, we proved that a valid ciphertext (uc,vc)=(du′(·)cq←p,(dv′(·)cq←T)
will return 0.

Security If the ciphertext is invalid, (uc,vc) 6=(du′(·)cq←p,(dv′(·)cq←T), at least one of the
coefficients of uc or vc is invalid. As vc is processed using exactly the same procedure as the
simple comparison, we know that an invalid coefficient of v will propagate to a nonzero ∆v(·)

and the result of the algorithm will be 1.
The second case is that uc has at least one invalid coefficient, and without loss of gen-

eralization we will assume that this is the first coefficient. This is synonymous to the fact
that none of the decompressed values u[0][j] equals the recomputed ciphertext u′(·)[0]. As
the multiplication to obtain ∆u(·) is calculated in the field Zq, and none of the terms are
zero, we know that ∆u(·)[0] 6=0.

14

Following Theorem 1 of [DHP+21], a nonzero input ∆u(·)[0] 6=0 leads to a nonzero output
E(·) with probability 1−q−l2 . This means that with this probability, at least one of the
terms of E(·) is nonzero.

In the end, our goal is to have at least one coefficient of EB(·) to be nonzero, which would
result in a returned value of 1 due to the OR operation. If a coefficient of E(·) is nonzero
(and without loss of generalization we assume it is the first coefficient), we have:

S−1⊕
k=0

EB
(·)[0]=b 1

2τ
S−1∑
k=0

(
2λ+τ

q
·E(k)[0]−ek

)
+ 2τ−1

2τ c mod 2λ (26)

=b
(

2λ

q
·E(·)[0]

)
+

2τ−1−
∑S−1
k=0 ek

2τ c mod 2λ (27)

with ek a value in [0,1) as derived above. Remember that E(·) 6=0. As such EB(·) can only
occur due to over- or underflow. The two closest values are E(·) =1 or E(·) =q−1.

First we will look at the possibility of an underflow. The worst case scenario is that
E(·) =1 and all ek=1, which gives:

S−1⊕
k=0

EB
(·)[0]=b2

λ

q
+ 2τ−1−S

2τ c mod 2λ. (28)

This does not equal zero as long as 2λ
q + 2τ−1−S

2τ ≥1, or equivalently λ+τ≥ log2(q ·(S+1)).
For the scenario of an overflow, we have a worst case scenario E(·) =q−1 and ek=0.

S−1⊕
k=0

EB
(·)[0]=b

(
2λ

q
·(q−1)

)
+ 2τ−1

2τ c mod 2λ (29)

which is not zero as long as
(

2λ
q ·(q−1)

)
+ 2τ−1

2τ <2λ, or 2λ+τ

2τ−1 >q.
In conclusion, a non valid ciphertext will result in at least one nonzero coefficient in

resBv
(·) with probability at least 1−q−l2 , and thus a result of 1.

Theorem 4 (t-SNI of Algorithm 11). The streamlined hybrid method of Algorithm 11 is
t-SNI secure.

Proof. The streamlined hybrid comparison is a combination of the hybrid comparison and the
simple comparison. As such we can use the t-SNI security of the gadgets of the hybrid compar-
ison, as proved in [CGMZ21a], to prove t-SNI security of the streamlined hybrid comparison.
In this proof we will divide the streamlined hybrid method into gadgets that correspond
to gadgets already proven t-SNI secure for the hybrid comparison ([CGMZ21a][BDH+21])
or the simple comparison ([DHP+21]).

The streamlined hybrid comparison can be split into 4 gadgets. Gadget G1 to G3
correspond to gadgets in the hybrid comparison: Gadget G1 is the masked multiplication
calculated in line 3 to 5 of Algorithm 11. These lines correspond to the secMultList algorithm
of [CGMZ21a], and is proven t-SNI secure according to theorem 16 of that paper. Gadget
G2 represents line 7 to 10, which corresponds to the ReduceComparison technique from
[BDH+21], proven t-SNI secure in theorem 2 of that paper. Gadget G3 is the A2B conver-
sion, which should be chosen as a t-SNI secure A2B conversion. The rest of the algorithm,
considered gadget G4, proceeds exactly as the simple comparison method and has therefore
the same security guarantees.

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 15

Table 1: Cycles counts (x1000) between the different optimization levels for the simple
comparison

Non bitsliced bitsliced bitsliced +
reinterpretation

Precalc 27 26 26
A2B 56,006 (x18.6) 3,015 (x1) 2,384 (x0.79)
OR 7,690 (x8.4) 909 (x1) 244 (x0.27)
Total 63,723 (x16.1) 3,950 (x1) 2,654 (x0.67)

5 Implementation aspects
To obtain an efficient implementation of the comparison, it is not only important to search
for an optimal algorithm, but also to consider implementation aspects. In this section we
will first look at the importance of bitslicing the A2B conversion and the OR operation. We
will show that bitslicing the A2B conversion gives a significant speedup and is essential
to obtain an efficient implementation. Moreover, bitslicing is applied in the comparison
implementation by D’Anvers et al. [DHP+21] but not in the implementations by Bos et
al. [BGR+21] and Coron et al. [CGMZ21a]. This makes comparing these results difficult.

Bitslicing typically needs a pre- and postprocessing to correctly align the memory. In
the second part of this section we will show that it is not always necessary to perform this
postprocessing in our case, due to a reinterpretation of the outputs.

5.1 Bitslicing
Most comparison implementations use the A2B conversion and OR operation of Coron et
al. [CGV14]. A first observation is that this A2B conversion and the OR function involve
almost exclusively bitwise operations. These operations can be bitsliced on a 32-bit CPU,
where 32 inputs are taken as input and the bitwise operations are performed on all 32 inputs
at the same time.

Such an implementation requires an pre- and postprocessing to rearrange the inputs in
memory. This means that 32 input coefficients are taken in, and re-arranged in memory. In
the preprocessing, the first bit of each coefficient is put in the first register, the second bit of
each coefficient in the second register, and so on. Bitwise calculations are then performed on
each register, digesting 32 coefficients at the same time. At the end of the A2B conversion,
the postprocessing restores the output to the 32 coefficients of log2(p) or log2(T) bits.

Due to this pre- and post-A2B memory realignment, the speedup is not a full factor 32,
but as can be seen from Table 1, bitslicing does have a significant impact on the efficiency
of the algorithm.

5.2 Reinterpretation of the Boolean masked bits
After the A2B conversion, the main goal of the previous comparison techniques is to check
if all coefficients of the polynomial or vector are zero. This is equivalent to stating that all
Boolean masked bits need to be zero. As such, after A2B conversion one can represent the
bits at will, for example by representing it as a vector with coefficients in Z232 instead of
coefficients in Zp and ZT .

There are multiple advantage to such a change in representation. For example, in the
simple comparison method it is more efficient to perform the OR operation on coefficients of
32 bits due to bitslicing. It is also possible to use such a representation switch in the Galois
field method, where line 4 to 8 of Algorithm 10 would work on a vector with coefficients in

16

Table 2: Cycle cost (x1000) of all subfunctions of a bitsliced A2B.

Saber (2nd order) Saber (3th order)
pre-A2B memory realignment 16 (26%) 22 (22%)
A2B 32 (52%) 58 (59%)
post-A2B memory realignment 14 (23%) 19 (19%)

Z232 instead of Zp, which results in fewer coefficients that need to be processed, and thus
lower execution time and less randomness consumption.

Moreover, the representation can be chosen in such a way to avoid any post-A2B memory
alignment in the bitsliced A2B function. Remember that the coefficients at the output are
aligned inmemory as log2(p) (or log2(T) for v) registers of 32 bits. We can then reinterpret the
registers to be log2(p) coefficients inZ232 . This means that we reinterpret the 32 coefficients of
log2(p) bits into log2(p) coefficients of 32 bits. The reason this works is that if all 32 coefficients
of log2(p) bits are zero, then it must also be true that the log2(p) coefficients of 32 bits are zero.

Avoiding the post-A2B memory alignment step has a significant impact on the total A2B
cost, as can be seen in Table 2, where the postprocessing accounts for 19-23% of the full A2B
procedure. Table 1 depicts the impact of a reinterpretation of the coefficients, as described
in this section. Our method leads to a speedup of around 23% for the simple comparison.
To the best of our knowledge, such a change of representation has not been presented or
implemented in previous works.

6 Evaluation
We have implemented and benchmarked the various algorithms described in this paper.
Benchmarking was performed on an STM32F407 board with an ARM-Cortex M4F using
arm-none-eabi-gcc version 9.2.1 with -O3. The system clock was set to 24 Mhz and TRNG
clock to 48 Mhz, in accordance to the popular benchmarking framework PQM4 [KRSS].
Randomness is sampled from the on-chip TRNG and its sampling cost is included in the
cycle counts.

The Simple, Galois field and streamlined hybrid methods can be optimized using the
optimized bitslicing from Subsection 5.2, which is the case for the numbers in Table 3. The
arithmetic method has a security parameters s = 54, while the Galois field method has
an increased security of s = 64, which should be sufficient for cases where an adversary
has a limit of 264 queries. The reasoning for the specific s values is that for these values
the implementation variables nicely align with 32 bit registers of our microprocessor. For
the Galois Field method with reinterpretation of the Boolean masked bits we have 32 bit
coefficients and 64 bit randomness r, which results in a 96 bit output E(·). If one would want
to increase s, one can select 32 bits coefficients with for example 96 or 128 bit randomness r
which would result in respectively 128 and 160 bits E(·) at the output. However, we believe
such an increase of s is overkill in most scenarios as discussed in Subsection 3.3.

The Hybrid method is the original implementation of Coron et al. [CGMZ21a], adapted
to allow execution on an ARM platform and with bitsliced A2B conversion to allow fair
comparison. Both the hybrid and streamlined hybrid method have a collision probability
under 2−128. Note that it would be possible to increase this collision probability to around
2−64 without sacrificing security in many situations as discussed above. However, since the
cycle cost between both options is minimal, we stick to a similar value as in [CGMZ21a].

We choose not to measure stack memory usage, as these comparison methods can be
easily optimized for this if implemented in a full decapsulation operation. The idea of such
optimization would be a greedy approach: Immediately after a coefficient of u′(·) or v′(·) is
available, as much of the comparison is calculated as possible. Such a greedy approach would

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 17

Table 3: Results on Cortex M4

Cycles Randomness (bytes)
order 2 3 2 3

Simple× Saber 2.5M 3.9M 35K 72K
Kyber 4.4M 7.1M 57K 118K

Simple† (new) Saber 1.6M 2.6M 26K 53K
Kyber 3.1M 5.3M 48K 100K

Arithmetic [DHP+21] Saber 3.4M 6.5M 90K 205K
Kyber 5.3M 9.7M 111K 251K

GF† (new) Saber 2.7M 4.0M 26K 49K
Kyber 4.2M 6.7M 47K 95K

Hybrid [CGMZ21a] Kyber 3,3M 4.5M 80K 94K
Streamlined hybrid† (new) Kyber 2.5M 3.6M 44K 62K

× with bitslicing but without reinterpretation of the masked Boolean bits
† with bitslicing and reinterpretation of the masked Boolean bits

Table 4: Cycle counts (x1000) for subfunctions in the simple, streamlined hybrid and Galois
field comparison methods for a 3th order implementation

Kyber Saber
Simple Streamlined hybrid GF Simple GF

Preprocessing 467 2,510 468 27 27
A2B 4,595 1,084 4,595 2,385 2,385
Postprocessing 1,619 1,619
OR 244 43 6 244 6
Total 5,306 3,637 6,688 2,656 4,037

lead to a minimal stack usage compared to other functions in the decapsulation, as only the
coefficient in current use and a limited number of intermediate variables need to be stored.

In the rest of this section we will compare the different methods to the simple method.
We will start with the (streamlined) hybrid comparison, and then move to the arithmetic/GF
method.

6.1 Hybrid comparison

The (streamlined) hybrid comparison essentially performs an additional preprocessing step
in order to reduce the number of coefficients that need to be A2B converted. As can be seen
in Table 4, the preprocessing becomes significantly more expensive, but it is compensated
with a larger subsequent reduction in A2B cost. Notably, the hybrid comparison only works
for prime moduli schemes, i.e. Kyber, and not for power-of-two q.

Our streamlined hybrid comparison, using the simple method to finish calculations,
outperforms the hybrid comparison from [CGMZ21b]. While the initial calculations are
the same, the final comparison is significantly faster in the streamlined hybrid comparison.
An additional advantage is that the codebase of the streamlined hybrid comparison is less
complex as it requires less functions and the complexity of the functions is lower.

18

6.2 Arithmetic/GF comparison

Comparing the arithmetic and Galois field comparisonmethods weighs clearly in favour of the
Galois field method. This is mostly due to the elimination of the expensive B2A conversion.

On the other hand, on the ARM-Cortex M4 there is native support for the arithmetic
multiplication, while lacking support for the Galois field multiplication. This impacts
the cost of the multiply-accumulate operation, which costs 197k cycles for the arithmetic
operations, and 1,619k cycles for the Galois field multiply-accumulate (these numbers include
randomness sampling, multiplication and addition to obtain E(·)).

In a scenario where the Galois field multiplication would have similar hardware support,
for example in a hardware implementation or a hardware-software codesign, the Galois Field
multiplication would slightly outperform the simple comparison method as can be derived
from Table 4. This would come at a slight increase of implementation complexity.

It is possible to combine the streamlined hybrid method with the Galois field method.
The streamlined hybrid method focusses on reducing the preprocessing cost, while the Galois
field method focusses on the postprocessing cost. It is therefore straightforward to combine
both methods, in which the output of the A2B conversion would serve as the interface
between both methods.

7 Conclusion
The state-of-the art higher-order masked comparison techniques can be generalized into a
common framework which consists of a preprocessing, an A2B conversion, a postprocessing
and a final OR operation. In the most simple case, preprocessing is kept to the bare minimum
and no postprocessing is performed. Coron et al. [CGMZ21b] introduced a hybrid method,
specifically aimed at prime moduli q, to reduce the A2B cost by performing additional
preprocessing. We sped up this design with ≈ 25% in our streamlined hybrid algorithm.
D’Anvers et al. [DHP+21] introduced a technique to speed up the OR operation at an
increased postprocessing cost. We improved this method with ≈ 20% by replacing the
arithmetic multiplication with a Galois field multiplication. While this method does not
outperform the simple comparison method on a microprocessor platform due to the lack
of hardware support for the Galois field multiplication, it might be interesting to compare
both methods on other platforms where support for the multiplication can be build in.

We also looked into implementation optimizations. We reiterated the importance of
bitslicing, and showed that additional speedups are possible when reinterpreting the output
of the Boolean masked bits output from the A2B conversion. The latter optimization
simplifies our codebase and reduces the cycle count of the simple method with ≈33%.

Our comparison was performed on an ARM-Cortex M4 microprocessor. Interesting
future work could be to make a similar comparison on other platforms, where one can add
hardware support for the masked A2B and OR operations, or the multiplications needed
in the hybrid and Galois field compression methods.

Acknowledgements
This work was supported in part by CyberSecurity Research Flanders with reference num-
ber VR20192203, the Research Council KU Leuven (C16/15/058), the Horizon 2020 ERC
Advanced Grant (695305 Cathedral) and SRC grant 2909.001. Michiel Van Beirendonck is
funded by an FWO PhD fellowship strategic basic research. Jan-Pieter D’Anvers is funded
by FWO (Research Foundation – Flanders) as junior post-doctoral fellow (contract number
133185 / 1238822N LV).

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 19

References
[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,

Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin
Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel
Smith-Tone. Status Report on the Second Round of the NIST
Post-Quantum Cryptography Standardization Process, 2020.
https://csrc.nist.gov/publications/detail/nistir/8309/final.

[ABGV08] Ali CanAtici, Lejla Batina, BenediktGierlichs, and IngridM.R. Verbauwhede.
Power analysis on ntru implementations for rfids: First results. 2008.

[ACLZ20] Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden.
Defeating NewHope with a single trace. In Jintai Ding and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, pages 189–205. Springer, Heidelberg, 2020.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong
non-interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 354–384.
Springer, Heidelberg, April / May 2018.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöp-
pelmann, and Michiel Van Beirendonck. Attacking and defending
masked polynomial comparison. IACR TCHES, 2021(3):334–359, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8977.

[BDK+18] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle. Crystals - kyber: A cca-secure
module-lattice-based kem. In 2018 IEEE European Symposium on Security
and Privacy (EuroS P), pages 353–367, 2018.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and
Christine van Vredendaal. Masking kyber: First- and higher-
order implementations. IACR TCHES, 2021(4):173–214, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/9064.

[BPO+20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider,
and Tim Güneysu. High-speed masking for polynomial compari-
son in lattice-based kems. IACR TCHES, 2020(3):483–507, 2020.
https://tches.iacr.org/index.php/TCHES/article/view/8598.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost
Rijneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Technical
report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

https://csrc.nist.gov/publications/detail/nistir/8309/final
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/8598
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

20

[CGMZ21a] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina
Zeitoun. High-order polynomial comparison and masking lattice-based
encryption. Cryptology ePrint Archive, Report 2021/1615, 2021.
https://ia.cr/2021/1615.

[CGMZ21b] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina
Zeitoun. High-order table-based conversion algorithms and masking
lattice-based encryption. Cryptology ePrint Archive, Report 2021/1314,
2021. https://ia.cr/2021/1314.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order.
In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731
of LNCS, pages 188–205. Springer, Heidelberg, September 2014.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer,
Heidelberg, August 1999.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching
from arithmetic to Boolean masking. In Emmanuel Prouff and Patrick
Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 107–121.
Springer, Heidelberg, September 2012.

[DGJ+19] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson,
Frederik Vercauteren, and Ingrid Verbauwhede. Decryption failure attacks
on IND-CCA secure lattice-based schemes. In Dongdai Lin and Kazue Sako,
editors, PKC 2019, Part II, volume 11443 of LNCS, pages 565–598. Springer,
Heidelberg, April 2019.

[DHP+21] Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel van Beirendonck,
and Ingrid Verbauwhede. Higher-order masked ciphertext comparison for
lattice-based cryptography. Cryptology ePrint Archive, Report 2021/1422,
2021. https://ia.cr/2021/1422.

[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik
Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and
Andrea Basso. SABER. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-LWR based key exchange, CPA-secure
encryption and CCA-secure KEM. In Antoine Joux, Abderrahmane Nitaj,
and Tajjeeddine Rachidi, editors, AFRICACRYPT 18, volume 10831 of
LNCS, pages 282–305. Springer, Heidelberg, May 2018.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid
Verbauwhede. Timing attacks on error correcting codes in post-quantum
schemes. In Proceedings of ACM Workshop on Theory of Implementation
Security Workshop, TIS’19, page 2–9, New York, NY, USA, 2019. Association
for Computing Machinery.

[FO99] Eiichiro Fujisaki andTatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 537–554. Springer, Heidelberg, August 1999.

https://ia.cr/2021/1615
https://ia.cr/2021/1314
https://ia.cr/2021/1422
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Jan-Pieter D’Anvers, Michiel Van Beirendonck, Ingrid Verbauwhede 21

[FVBBR+21] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(1):414–460, Nov. 2021.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery
timing attack on post-quantum primitives using the Fujisaki-Okamoto
transformation and its application on FrodoKEM. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of
LNCS, pages 359–386. Springer, Heidelberg, August 2020.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stof-
felen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation.
In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti
Yung, editors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer,
Heidelberg, June 2019.

[NIS16] NIST Computer Security Division. Post-Quantum Cryptogra-
phy Standardization, 2016. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR TCHES,
2018(1):142–174, 2018. https://tches.iacr.org/index.php/TCHES/
article/view/836.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, CHES 2017, volume 10529 of LNCS, pages 513–533.
Springer, Heidelberg, September 2017.

https://github.com/mupq/pqm4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://tches.iacr.org/index.php/TCHES/article/view/836
https://tches.iacr.org/index.php/TCHES/article/view/836
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

22

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and
Shivam Bhasin. Generic side-channel attacks on CCA-secure lattice-
based PKE and KEMs. IACR TCHES, 2020(3):307–335, 2020.
https://tches.iacr.org/index.php/TCHES/article/view/8592.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien
Stehlé. CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[SW07] Joseph H. Silverman and William Whyte. Timing attacks on NTRUEncrypt
via variation in the number of hash calls. In Masayuki Abe, editor,
CT-RSA 2007, volume 4377 of LNCS, pages 208–224. Springer, Heidelberg,
February 2007.

[UXT+21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/em analysis on
post-quantum kems. Cryptology ePrint Archive, Report 2021/849, 2021.
https://ia.cr/2021/849.

[VBDK+21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation
of SABER. ACM JETC, 17(2):10:1–10:26, 2021.

[VDV21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, and Ingrid Ver-
bauwhede. Analysis and comparison of table-based arithmetic
to boolean masking. IACR TCHES, 2021(3):275–297, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8975.

[WZW13] An Wang, Xuexin Zheng, and Zongyue Wang. Power analysis attacks and
countermeasures on ntru-based wireless body area networks. KSII Trans-
actions on Internet and Information Systems (TIIS), 7(5):1094–1107, 2013.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald.
Magnifying side-channel leakage of lattice-based cryptosystems with chosen
ciphertexts: The case study of kyber. Cryptology ePrint Archive, Report
2020/912, 2020. https://eprint.iacr.org/2020/912.

https://tches.iacr.org/index.php/TCHES/article/view/8592
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2021/849
https://tches.iacr.org/index.php/TCHES/article/view/8975
https://eprint.iacr.org/2020/912

	Introduction
	Preliminaries
	Notation
	Masking
	Lattice-based encryption
	FO

	Comparison methods
	A2B and Compression
	Simple method
	Arithmetic comparison
	Hybrid comparison

	New comparison algorithms
	Galois field Compression
	Streamlined hybrid

	Implementation aspects
	Bitslicing
	Reinterpretation of the Boolean masked bits

	Evaluation
	Hybrid comparison
	Arithmetic/GF comparison

	Conclusion

