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Abstract. We construct non-malleable codes in the split-state model with codeword
length m+ 3λ or m+ 5λ, where m is the message size and λ is the security parameter,
depending on how conservative one is. Our scheme is very simple and involves a
single call to a block cipher meeting a new security notion which we dub entropic
fixed-related-key security, which essentially means that the block cipher behaves like
a pseudorandom permutation when queried upon inputs sampled from a distribution
with sufficient min-entropy, even under related-key attacks with respect to an arbitrary
but fixed key relation. Importantly, indistinguishability only holds with respect to
the original secret key (and not with respect to the tampered secret key).
In a previous work, Fehr, Karpman, and Mennink (ToSC 2018) used a related
assumption (where the block cipher inputs can be chosen by the adversary, and where
indistinguishability holds even with respect to the tampered key) to construct a non-
malleable code in the split-state model with codeword length m+ 2λ. Unfortunately,
no block cipher (even an ideal one) satisfies their assumption when the tampering
function is allowed to be cipher-dependent. In contrast, we are able to show that
entropic fixed-related-key security holds in the ideal cipher model with respect to a
large class of cipher-dependent tampering attacks (including those which break the
assumption of Fehr, Karpman, and Mennink).
Keywords: non-malleability, split-state model, block ciphers, related-key security.

1 Introduction
Consider the classical setting in which a message µ is encoded via an algorithm Encode,
yielding a codeword σ. The decoding algorithm Decode allows one to recover µ from σ,
efficiently. The goal of such an encoding procedure is to prevent modifications to the
codeword, either benign (e.g., because of errors introduced by the communication medium)
or adversarial (e.g., because of malicious tampering attacks). In more detail, let σ̃ = f(σ)
be a modified codeword for some tampering function f over the codeword space. The
property of error correction guarantees that Decode(σ̃) still results in the original message
µ. The property of error detection, instead, guarantees that Decode(σ̃) either results in
the original message µ or in an error symbol ⊥ (denoting that tampering occurred but
the original message cannot be recovered). While the goals of error correction/detection
are very well understood, it is well known that these guarantees are simply impossible
for certain classes of tampering functions, particularly so for those classes that model
adversarial tampering (e.g., the family of constant functions).
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Motivated by this shortcoming, Dziembowski, Pietrzak, and Wichs introduced the beau-
tiful notion of non-malleable codes [DPW10, DPW18], which guarantees that Decode(σ̃)
either results in the original message or in a completely unrelated value. While being
weaker than error correction and error detection, non-malleability can be achieved for
much larger classes of tampering functions. Moreover, a non-malleable code can be used
to protect arbitrary cryptographic primitives against tampering attacks targeting the
memory (a.k.a. related-key attacks). The latter is achieved by simply storing the secret
key in encoded form, and by decoding it prior to invoking the underlying cryptographic
algorithms. Intuitively, this ensures that memory tampering either results in the same key
(and thus has no effect) or to a completely unrelated key (which does not harm1 security).

In this work, we focus on the so-called split-state model in which a codeword consists
of two parts (σ0, σ1) that can be tampered arbitrarily yet independently; namely, a
tampering function f has a type f = (f0, f1) and the mauled codeword is of the form
σ̃ = (σ̃0, σ̃1) = (f0(σ0), f1(σ1)). While non-malleable codes in the split-state model exist
unconditionally, Cheraghchi and Guruswami [CG16] established that the best achievable
rate for such codes in the information-theoretic setting is 1/2, where the rate refers to the
(asymptotic) ratio between the length of the message and the length of the codeword when
the message length goes to infinity. This lower bound motivated cryptographers to build
more efficient codes under (as weak as possible) computational assumptions. We refer the
reader to Section 1.3 for a summary of known results.

1.1 The Work of Fehr, Karpman, and Mennink
The starting point of our work is a paper by Fehr, Karpman, and Mennink [FKM18]
(improving previous works by Aggarwal, Agrawal, Gupta, Maji, Pandey, and Prab-
hakaran [AAG+16] and Kiayias, Liu, and Tselekounis [KLT16]), where the authors show
how to construct non-malleable codes in the split-state model assuming sufficiently strong
block ciphers. Their construction is the simplest possible cipher-based split-state non-
malleable code: The left part of the codeword is the key κ for a block cipher, and the right
part of the codeword is the ciphertext γ encrypting the message. Namely,

Encode(µ)→ (κ,Encrypt(κ, µ)) .

The length of the codeword in their candidate construction is m+ 2λ, where m is the size
of the message and λ is a security2 parameter, which is the shortest known today.

One of the explicit goals of Fehr et al. was to understand the assumptions needed
from the block cipher in order to prove non-malleability of the above simple construction
without relying on trusted setup or other (non-falsifiable) assumptions. Their main
technical result is that the latter is indeed possible assuming the underlying block cipher is:
(i) a pseudorandom permutation (PRP) under leakage (a.k.a. PRP-with-leakage security),
and (ii) related-key secure with respect to an arbitrary but fixed key relation (a.k.a. FRK
security). Property (i) means that the block cipher behaves as a PRP even given arbitrary
leakage on the secret key, so long as the latter is still unpredictable given the leakage.
Property (ii) means that the block cipher behaves as a PRP even if the adversary is allowed
to ask en-/decryption queries under a single related key (next to the original key), so long
as the related key is hard to guess.

As observed by an anonymous ToSC 2021 reviewer, the notion of FRK security as
defined in [FKM18] is impossible to achieve whenever the tampering function f is allowed to

1Of course, for this to work we must assume that the computations carried over by the underlying
cryptographic primitive are tamper proof.

2One should think of 2λ as the length of the block cipher key for security level λ; the reason for the
factor 2 is related to the security assumptions made on the block cipher.
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depend on the block cipher.3 There is a simple attack (originally due to Bernstein [Ber10])
against FRK security. Before describing the attack, we give more details on the definition of
FRK security from [FKM18]. As mentioned, the attacker is allowed to specify a tampering
function f that is applied to the secret key. The security experiment samples a uniformly
random key κ and computes κ̃ = f(κ). At this point, depending on the challenge bit b, the
adversary gets oracle access either to the oracles Encrypt(κ, ·),Decrypt(κ, ·),Encrypt(κ̃, ·)
and Decrypt(κ̃, ·) or to two uniformly random permutations π and π′ and their respective
inverses. The security guarantee states that, for any tampering function f , the adversary
cannot tell the difference between these two scenarios except with negligible advantage. It
is easy to see that, without further restrictions, this notion is not achievable. Indeed, an
adversary can fix κ̃ to be the 0k (where k is the key length) string and trivially distinguish
the two scenarios. Thus, the FRK security experiment additionally first checks that the
pre-image of κ̃ under the function f is a set with at most 2k/2 elements, and, if not, the
experiment aborts and the adversary is not allowed to query the oracle. Thanks to this
restriction the related key κ̃ is hard to guess if κ is chosen uniformly at random.

Now we are ready to describe the attack. Fix a block cipher Π = (Encrypt,Decrypt)
and consider the function f that outputs dEncrypt(κ, 0m)ek, where k is the key size, m is
the input size, and dwek denotes the first k bits of a string w. Since f(κ) is a truncated
evaluation of the block cipher, which behaves like a PRP, the tampering function f satisfies
the property that f(κ) is hard to predict for a random κ, and so the check on the preimage
size described in the previous paragraph does not cause the experiment to abort except
with extremely small probability. In fact, if there were many keys that map 0m to the
same value then we would have a distinguisher against the (standard) PRP security of Π.
The attacker against FRK security using this tampering function f behaves as follows:

1. Extract Tampered Key. Obtain an encryption of 0m under κ from the oracle,
call it x.

2. Test Oracle. Obtain an encryption of 0m under the tampered key f(κ) from the
oracle, call it y; compute offline the encryption z = Encrypt(dxek, 0m) and check if
z = y.

In the real world, we have z = y with probability one, while if Encrypt is replaced by an
independent and truly random permutation in the oracle, then z = y only with very small
probability. This contradicts the FRK security assumption from [FKM18], as it ranges
over all (hard to guess) functions, even ones that can depend on the block cipher. Note
that this attack applies even in the ideal cipher model (i.e., assuming that the block cipher
behaves like a truly random permutation for every choice of the key).

An analogous argument shows that the notion of PRP-with-leakage security as defined
in [FKM18] is impossible to achieve whenever the leakage function g is allowed to depend
on the block cipher. The latter can be seen by considering the leakage function g that
returns the first bit of Encrypt(κ, 0m) and later obtains an encryption of 0m from the
oracle. Clearly, the secret key is still unpredictable given the leakage; yet, the attacker can
distinguish the block cipher from a truly random permutation by comparing the output of
the leakage function with the first bit of the output obtained from the oracle.

The above attacks fit into a class of cipher-dependent attacks studied by Albrecht,
Farshim, Paterson, and Watson [AFPW11] in the context of modelling related-key attacks
in the ideal cipher model. Their class includes the attack of Bernstein [Ber10], as well as
another attack by Harris [Har09]. This discussion showcases the subtle challenges imposed
by cipher-dependent attacks, and we find it interesting to study how to handle such attacks
with as little impact as possible on the performance of the candidate schemes.

3An earlier version of this paper which made use of the faulty assumptions from [FKM18] was submitted
to ToSC 2021.
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1.2 Our Contributions
In this paper, we put forward a meaningful weakening of FRK security which intrinsically
rules out the above cipher-dependent attacks, while still being sufficient to formally prove
security of a slight tweak of the original construction by Fehr, Karpman, and Mennink.
The codeword size in our construction can be as small as m+ 3λ. Furthermore, we provide
evidence of the robustness of our new assumption by proving that it holds unconditionally
in the ideal cipher model with respect to a broad class of tampering functions covering, in
particular, Bernstein’s attack. We elaborate on these contributions below.

1.2.1 Entropic Fixed-Related-Key Security

In Section 3, we consider a different form of FRK security in which the attacker has
a limited access to the encryption and decryption oracle under the original key κ. In
particular, our notion of security relaxes the definition of [FKM18], which we discussed in
Section 1.1, in two ways:

1. The attacker has arbitrary oracle access to the encryption and decryption oracle
under the tampered key, but it is allowed to observe the output of the block cipher
under the original key κ only for random inputs sampled from a distribution with
sufficiently high min-entropy.

2. We do not require indistinguishability from a random permutation for the block
cipher instantiated with the tampered key.

We refer to our notion as entropic FRK security. Briefly, the rationale for the first relaxation
is that such a limited access to the encryption oracle under the original key would rule
out the “Extract Tampered Key” part of the aforementioned classes of cipher-dependent
attacks from Section 1.1; the rationale for the second relaxation is that having access to
the real-world encryption and decryption oracles under the tampered key, independently
of the challenge bit, would rule out the “Test Oracle” part of the aforementioned classes of
cipher-dependent attacks. To understand why this is indeed the case, consider the following
scenario: The oracle samples n messages µ1, . . . , µn independently from a distribution D
with s bits of min-entropy, i.e.,

∀µ ∈ {0, 1}m : Pr
D∼D

[D = µ] ≤ 2−s.

Then, the adversary learns the message/ciphertext pairs (µi, γi = Encrypt(κ, µi))i∈[n]; the
attacker has no further oracle access to Encrypt(κ, ·). In order to carry out the cipher-
dependent related-key attack described in Section 1.2, the adversary musts learn the
encryption under κ of a message that was also queried by the tampering function f on
input κ. Let τtamp denote the running time of f (so that f(κ) can compute encryptions
and decryptions of at most τtamp inputs). By a union bound, the probability that f queries
the cipher on one of the messages µ1, . . . , µn or ciphertexts γ1, . . . , γn is at most

2n · τtamp · 2−s. (1)

Therefore, if the min-entropy parameter s satisfies s� log τtamp + logn, it follows that the
probability that the cipher-dependent attack above succeeds is extremely small.

Moreover, we notice that the second relaxation means that we do not require any
privacy guarantee from the block cipher instantiated with the tampered key, besides that
oracle access to Encrypt(f(κ), ·) and Decrypt(f(κ), ·) for a tampering function f cannot
help in breaking the privacy of the ciphertexts computed under the original key. In contrast,
Fehr, Karpman and Mennink require indistinguishability of the block cipher from a random
permutation to hold even with respect to the tampered key. For this reason, their definition
requires that the tampered key cannot be easily guessed by the adversary, as otherwise
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there would be a trivial distinguisher. By giving up on the indistinguishability of the
block cipher under the tampered key, we additionally gain that we do not need anymore
any restriction on the unpredictability of the tampered key. Informally speaking, the
attacker could decide to tamper the original key and set it to an “easy to guess” tampered
key κ̃, thus receiving oracle access to Encrypt(κ̃, ·) and Decrypt(κ̃, ·) (independently of the
challenge bit). If such a tampered key is easy to guess, however, the same oracle access
could have been simulated by the adversary in its head. Thus, predictable tampered keys
cannot harm the security definition and can be allowed.

1.2.2 Our Construction

The non-malleable code construction we consider is a slight variation of the original
construction by [FKM18]. Namely, in Section 4, we consider the non-malleable code in
the split-state model that encodes a message µ as described below:

Encode(µ)→ (κ,Encrypt(κ, µ‖ρ)) ,

where κ is a uniformly random secret key and ρ is a uniformly random λ-bit string.
Notice that the only difference between our construction and the construction of Fehr,
Karpman, and Mennink is that we additionally sample a random string ρ and encrypt the
concatenation of µ‖ρ.

As a bonus, we substantially simplify the security analysis. Indeed, the original security
proof involves a case analysis according to the unpredictability of the tampered codeword:
if the tampered key κ̃ is unpredictable, then the security of the non-malleable code reduces
to the FRK security of the block cipher. Otherwise, it reduces to the PRP-with-leakage
security of the block cipher. In the latter case, the reduction leaks the full tampered key
and uses this leakage to simulate oracle access to Decrypt(κ̃, ·).

In our case, entropic FRK security directly provides oracle access to Decrypt(κ̃, ·), and
it considers such an oracle as the only leakage an adversary can get from a tampering
attack. This allows us to bypass the case analysis and reduce directly to the entropic FRK
security of the block cipher (independently of the unpredictability of the tampered key),
without explicitly assuming any form of leakage resilience from the block cipher.

1.2.3 Security in the Ideal Cipher Model

Recall that Bernstein’s cipher-dependent attack on the FRK security notion from [FKM18]
described in Section 1.1 applies even in the ideal cipher model. To further validate our
approach, in Section 5, we prove that, unlike the notion of FRK security, entropic FRK
security does hold (unconditionally) in the ideal cipher model, albeit with respect to a
restricted (but still broad) family of tampering functions which includes cipher-dependent
attacks such as Bernstein’s.

The main ideas behind our analysis follow what we already described in Section 1.2.1.
The intuition is that the tampering function, even with access to the original key κ, cannot
query the ideal cipher on the challenge messages, because those messages are sampled
from a distribution with high min-entropy. Thus, the tampered key is independent of the
challenge ciphertexts, and so are the queries to the tampered encryption and decryption
oracle. It is easy to see that, in the ideal cipher model, the only way for the adversary to
distinguish the ideal from the real experiment is to query the ideal cipher on the original key.
Thus, we give a bound on the unpredictability of the original key when the adversary has
oracle access to the tampered encryption and decryption oracle. However, we need to make
a simplifying assumption on the structure of the tampering functions. The problem is that
the tampered key could be chosen as a function of the outputs of the ideal cipher queried
on the tampered key itself. In principle, this allows for rejection-sampling adversarial
strategies that can leak partial information about the original key. For example, consider
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the tampering function that sets the tampered key to an arbitrary string κ̃ such that the
first bit of an encryption of the all-zero string under κ̃ matches the first bit of the original
key. The adversary can leak the first bit of κ through its oracle access. While these kind of
tampering functions do not seem to help breaking entropic FRK security, nevertheless they
make the analysis more complicated as they can bias in unexpected ways the distribution
of the original key given oracle access to the ideal cipher and the tampered encryption
and decryption oracle. Specifically, we cannot anymore easily argue that the output of the
ideal cipher queried on the tampered key is independent of the tampered key.

Our solution to avoid these contrived tampering attacks is to additionally assume that
the tampering functions do not query the ideal cipher on the tampered key. We notice that
this additional assumption holds true for the tampering functions of Bernstein’s [Ber10]
and Harris’ attacks [Har09] as discussed in [AFPW11]. Moreover, we point out that such a
restriction was already considered by Albrecht, Farshim, Paterson and Watson [AFPW11]
under the more generic notion of oracle-independence. We conjecture that full entropic
FRK security holds in the ideal cipher model, and leave a formal proof of this fact as an
interesting open problem.
Remark 1. It is natural to wonder whether one can prove the security of our proposed
construction directly in the ideal cipher model. While we believe that this would indeed be
possible, we do not pursue this direction. Our main goal is to base security on a falsifiable
assumption which is plausibly satisfied by real-world block ciphers and is easier to evaluate
in practice. Moreover, we believe that the notion of Entropic FRK security might have other
applications (for example, hybrid encryption and tamper-resilient secret-key encryption).

1.2.4 Parameter Instantiations

In Section 6, we give two possible parameter instantiations for our construction. The
first instantiation simply assumes that practical block ciphers (such as AES-128 and
SHACAL-2) directly have good entropic FRK security; this yields codewords of size close
to m+ 3λ at about λ bits of security.

Alternatively, we can be more conservative and consider the advantage upper bound
on entropic FRK security we establish in the ideal cipher model; this yields slightly longer
codeword size close to m+ 5λ at about λ bits of security.

1.3 Related Work
A long line of research explores constructions of non-malleable codes in the split-state
model, both with information-theoretic [DPW10, DKO13, ADL14, CG16, CG17, ADKO15,
CGL16, Li17, Li19, AO20, AKO+22] and computational [LL12, AAG+16, KLT16] security.
Currently, the best explicit non-malleable code in the information-theoretic setting achieves
rate 1/3 [AKO+22] (versus 1/2, which is the best possible rate in the information-theoretic
setting [CG16]). More precisely, this means that if m denotes the message length and
n = n(m) denotes the codeword length corresponding to m-bit messages, then

m

n
→ 1

3

when m→∞. Aggarwal et al. [AAG+16] show how to compile an information-theoretic
non-malleable code in the split-state model with rate bounded away from 1 into a non-
malleable code with much lower redundancy in the computational setting. Their con-
struction encodes the secret key κ of a secret key encryption scheme under the poor-rate
non-malleable code, obtaining a codeword (σ0, σ1), and then encrypts the message µ under
the key κ obtaining a ciphertext γ. The final encoding is σ′0 = (σ0, γ) and σ′1 = σ1.
Therefore, encoding m-bit messages using a k-bit key under this construction leads to
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codewords of length
m+ n(k), (2)

where n(k) is the codeword length of the underlying information-theoretic non-malleable
code on k-bit messages. The security proof requires the encryption scheme to be non-
malleable, i.e., a so-called authenticated encryption scheme, and the underlying non-
malleable code to satisfy a slightly stronger non-malleability flavor known as augmented
non-malleability, which is satisfied by the construction in [AKO+22].

Given the above, it is natural to compare our construction with the one obtained
by combining the compiler of Aggarwal et al. and the best known information-theoretic
non-malleable code. In general, known constructions of information-theoretic non-malleable
codes rely heavily on tools from pseudorandomness, such as randomness extractors, which
suffer from large hidden constants in their various parameters and from an impractical
running time (although asymptotically polynomial), such as the GUV seeded extrac-
tor [GUV09]. With this in mind:

1. The codeword length obtained by combining [AAG+16] and [AKO+22] according to
Eq. (2) would be

m+ 3k + o(k), (3)

where the o(k) term satisfies o(k)
k → 0 when k →∞ but hides a large constant.

2. As mentioned above, the running time of our encoding/decoding algorithms essentially
only involve evaluating the block cipher, while the encoding/decoding of [AKO+22]
involves objects from pseudorandomness whose running time is impractical.

3. The resulting security error would be at least the statistical security error ε(k) of
the underlying information-theoretic non-malleable code on k-bit messages. The
rate-1/3 code from [AKO+22] achieves statistical error 2−Ω(k/ log3 k), with Ω(·) hiding
a big constant. Hence, even ignoring hidden constants, one needs to take the key
length k to be k > λ · log3(λ) in order to get overall (computational) security error
2−λ. For usual values of the security parameter (say, λ = 256), this implies an extra
multiplicative factor of at least 83 = 512.

Combining Eq. (3) with the last item, we conclude that, even ignoring the large
hidden constants and impractical encoding/decoding procedures, achieving security error
comparable to 2−λ would require codewords of length larger than m+ 200λ for currently
reasonable values of λ. In contrast, our construction only requires codewords of length
close to m + 3λ or m + 5λ, depending on how conservative one is, to achieve the same
security level, and is easy to implement in practice since it only involves encoding/decoding
via a single call to a block cipher. Without considering [FKM18], the best previous
construction [KLT16] with concrete security required codewords of length m + 18λ (or
m+ 9λ+ 2 log2 λ) to obtain security 2−λ, and relied on non-falsifiable assumptions.

2 Preliminaries
2.1 Notation
We denote by [n] the set {1, . . . , n}; for any a ≤ b, we let [a, b] := {a, . . . , b}. For a string
x ∈ {0, 1}∗, we denote its length by |x|. We denote sets by calligraphic letters such as
X . The size of a set X is denoted by |X |. When x is chosen randomly from X , we write
x←$ X . We denote the family of permutations over a set X by P(X ). Sometimes we
will denote the family P({0, 1}m), for a natural number m, with P(m). Similarly, we
denote the family of keyed-permutations with keys ranging over {0, 1}k and permutation
set {0, 1}m by P(k,m). If I ⊆ [n] is a set and x ∈ Sn is a string, we define the projection
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xI = (xi)i∈I . When A is a randomized algorithm, we write y←$ A(x) to denote a run of
A on input x (and implicit random coins ρ) and output y; the value y is a random variable
and A(x; ρ) denotes a run of A on input x and randomness ρ.

2.2 Non-Malleable Codes in the Split-State Model
We start by giving the definition of coding schemes in the split-state model.

Definition 1. A split-state coding scheme Σ with message spaceM and codeword space
S = S0 × S1 is a pair of algorithms (Encode,Decode) such that (i) Encode is a randomized
encoding function Encode : M → S, (ii) Decode is a deterministic decoding function
Decode : S →M∪{⊥} and (iii) for all µ ∈M, Pr [Decode(Encode(µ)) = µ] = 1 (over the
randomness of the encoding algorithm). In the above, ⊥ is a special symbol stating that
the input codeword is invalid.

Let Σ = (Encode,Decode) be a 2-split state coding scheme. Fix any messages µ0, µ1 ∈
M and arbitrary tampering functions f0 : S0 → S0 and f1 : S1 → S1 with running time τ0
and τ1 respectively. For b ∈ {0, 1}, consider the experiment:

Expnm
Σ (µ0, µ1, b) := D̃ecode(σ̃0, σ̃1),

where (σ0, σ1)←$ Encode(µb) and σ̃j = fj(σj) for all j ∈ {0, 1}, and where D̃ecode is the
algorithm that outputs � if and only if µ̃ := Decode(σ̃0, σ̃1) ∈ {µ0, µ1} and returns µ̃
otherwise.

Definition 2 (Non-Malleability). Let Σ = (Encode,Decode) be a split-state coding scheme.
The non-malleability advantage of Σ is

Advnm
Σ (τ) := max

µ0,µ1
Aτ ,f0,f1

∣∣∣Pr [Aτ (Expnm
Σ (µ0, µ1, 0)) = 1]− Pr [Aτ (Expnm

Σ (µ0, µ1, 1)) = 1]
∣∣∣ ,

where the maximum is over all µ0, µ1 ∈M, all algorithms Aτ running in time at most τ ,
and all (f0, f1) with running time at most τ .

Informally, the goal of an adversary Aτ is to learn whether the encoded message is µ0
or µ1, and the only information Aτ gets to see is the result on the reconstructed message
corresponding to the tampering functions (f0, f1) of his choice. Intuitively, by requiring
for Advnm

Σ (τ) to be small, we are saying that no adversary (running in time at most τ) is
able to tell the difference between µ0 and µ1 with meaningful advantage.

3 Tamper-Resilient Block Ciphers
A block cipher Π = (Encrypt,Decrypt) is a pair of polynomial-time algorithms specified as
follows:

• The deterministic encryption algorithm takes as input a key κ ∈ {0, 1}k and a
message µ ∈ {0, 1}m, and outputs a ciphertext γ ∈ {0, 1}m.

• The deterministic decryption algorithm takes as input a key κ ∈ {0, 1}k and a
ciphertext γ ∈ {0, 1}m, and outputs a value in {0, 1}m.

We require the block cipher satisfies perfect correctness, namely for all κ ∈ {0, 1}k and
µ ∈ {0, 1}m it holds that Decrypt(κ,Encrypt(κ, µ)) = µ.

We proceed to discuss the notion of tamper resilience we require for the block ciphers
we use. Before presenting the main definition of this section, we introduce the notion of
(samplable) s-entropic distributions.
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Definition 3 (Entropic distribution). We say that a family of distributions D(1λ, aux),
parameterized by a security parameter λ and an auxiliary input aux, is s-entropic for a
function s(·) if for any λ, aux, and any possible output x we have

Pr[D(1λ, aux) = x] ≤ 2−s(λ).

We say that D is τsamp-samplable if there is a randomized algorithm running in time τsamp
which generates a sample of D(1λ, aux) given (1λ, aux) as input.

Let OΠ,f,D,n(b) be an oracle depending on block cipher Π, an arbitrary tampering
function f : {0, 1}k → {0, 1}k, an arbitrary s-entropic distribution D supported on the
message space {0, 1}m, and a natural number n. Whenever it is clear from context, we
omit the parameters Π and n from the definition of the oracle. The oracle acts as follows
when interacting with some adversary A who is allowed to make multiple queries:

• It chooses a uniformly random key κ←$ {0, 1}k.

• It samples n messages µ∗1, . . . , µ∗n independently according to the distributions
D(1λ, j), for j = 1, . . . , n. If b = 0, it computes γ∗j = Encrypt(κ, µ∗j ), and oth-
erwise computes γ∗j ← π(µ∗j ) where π←$ P({0, 1}m).

• The oracle reveals the message-ciphertext pairs (µ∗j , γ∗j )j∈[n] to the adversary A and
answers its queries as follows:

– Upon input (enc,µ), if µ = µ∗j for some j and f(κ) = κ then return the special
symbol �. Else it returns Encrypt(f(κ), µ).

– Upon input (dec,γ), if γ = γ∗j for some j and f(κ) = κ then return the special
symbol �. Else it returns Decrypt(f(κ), γ).

Note that this oracle differs from the one used in the FRK security definition from
[FKM18] (discussed in Section 1.1) because it does not allow unrestricted query access to
the functions Encrypt(κ, ·) and Decrypt(κ, ·). Namely, the adversary only observes outputs
of these functions on messages sampled independently from some distribution with enough
min-entropy.

Definition 4 (Entropic FRK security). For any function f : {0, 1}k → {0, 1}k and a
distribution D consider the oracle Ofrk := Of,D. For a block cipher Π, we define the FRK
advantage of Π as:

Advfrk
Π (q, τ, k, s, n) := max

Aq,τ ,D,f

∣∣∣Pr
[
AOfrk(0)() = 1

]
− Pr

[
AOfrk(1)() = 1

]∣∣∣ ,
where the probability above is taken over µj ←$D(1λ, j) independently for all j ∈ [n] and
κ←$ {0, 1}k, and where the first maximum is over all algorithms Aq,τ running in time at
most τ and asking q oracle queries and over all s-entropic distributions running in time at
most τ , and all tampering functions f : {0, 1}k → {0, 1}k running in time at most τ .

We note that in this work we only require Entropic FRK security with respect to q = 1
oracle queries and n = 1 message-ciphertext pairs. Nevertheless, we define this notion
with respect to general q and n as we believe it may find applications elsewhere at this
level of generality.

4 Our Construction
Our construction of non-malleable codes in the split-state model is based only on block
ciphers and is depicted in Fig. 1. The encoding of a message µ is (κ, γ), where κ is a
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Let Π = (Encrypt,Decrypt) be a block cipher and consider the split-state coding scheme
Σ = (Encode,Decode) defined below.

Encode(µ): The encoding algorithm proceeds as follows:

1. Sample κ←$ {0, 1}k, ρ← {0, 1}s and compute γ := Encrypt(κ, µ‖ρ);
2. Return σ := (κ, γ).

Decode(σ): The decoding algorithm proceeds as follows:

1. Parse σ as κ, γ;
2. Return µ where µ‖ρ← Decrypt(κ, γ).

Figure 1: Description of our non-malleable code.

random block cipher key and γ is an encryption of the string µ||ρ for a random λ-bit string
ρ. The decoding algorithm simply decrypts the ciphertext and discards the last λ bits of
the resulting plaintext.

The theorem below characterizes the non-malleability of our code in terms of the
security of the underlying block cipher.

Theorem 1. Let Π be a block cipher and let τ ′ = 2τ +O(1). Then, the split-state coding
scheme Σ described in Fig. 1 satisfies

Advnm
Σ (τ) ≤ 2Advfrk

Π (1, τ ′, k, s, 1) .

We give the main ideas behind the proof of the theorem. Given a tampering function
(f0, f1) against the non-malleable code, our reduction uses f0 to define the related key κ̃
in the Entropic FRK security experiment, and uses f1 to compute a ciphertext γ̃ that can
be decrypted using its oracle access to the tampered decryption oracle, thus providing a
decoding of the codeword. We can then replace the real codeword from (κ,Encrypt(κ, µ‖ρ))
with a fake codeword (κ, ω), where ω is an uniformly random string. Clearly, such a fake
codeword is independent of the encoded message. We now present the formal proof.

Proof. Consider an adversary A running in time τ and tampering function (f0, f1) with
running time τtamp ≤ τ which maximizes the advantage, i.e., such that

Advnm
Σ (τ) =

∣∣∣Pr [A(Expnm
Σ (µ0, µ1, 0)) = 1]− Pr [A(Expnm

Σ (µ0, µ1, 1)) = 1]
∣∣∣ .

Let the hybrid experiment Exp1(µ0, µ1, b), for b ∈ {0, 1}, be the same as Expnm
Σ (µ0, µ1, b)

except that it computes γ = π(µb‖ρ), where π is a uniformly random permutation. Let
D(1λ, 1) be the distribution which outputs a string µ||ρ such that µ = µb and ρ is uniformly
distributed over {0, 1}s. Let B be the following adversary against Entropic FRK security
of Π with related-key function f0.

Adversary B() with oracle access to Ofrk(b) = OΠ,f0,D,n(b):

1. Receive from the oracle the pair (µb||ρ, γ), where µb||ρ←$D(1λ, 1) and γ is
either the output of Encrypt(κ, µb||ρ) or the output of π(µb||ρ) depending
on the experiment.

2. Compute γ̃ = f1(γ).
3. Query the oracle Ofrk with (dec, γ̃), thus receiving the message µ̃‖ρ̃. Note

that f0 is used implicitly in this step, since the oracle Ofrk attempts to
decrypt γ̃ using the related key f0(κ).
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4. If µ̃ ∈ {µ0, µ1}, set µ̃ = �.
5. Run b′ ← A(µ̃).
6. Return 0 if b′ = b and return 1 otherwise.

Observe that B computes f1, runs A and performs some constant-time operation.
Therefore, its running time is bounded by τ+τtamp +O(1) ≤ τ ′. Also notice that, by design
of the FRK experiment, when both κ̃ = κ and γ̃ = γ the adversary B sets the message
µ̃ to be the output of the decryption oracle that is equal to �. Finally, we observe that
the simulation performed by B is perfect. We can verify this by inspection. Indeed, when
B is interacting with Ofrk(0), by definition of the security game for FRK we have that
γ = Encrypt(κ, µ‖ρ) as in experiment Expnm. On the other hand, when B is interacting
with Ofrk(1), we have that γ = π(µ‖ρ) as in experiment Exp1. Therefore,∣∣∣Pr [A(Expnm

Σ (µ0, µ1, b)) = 1]− Pr [A(Exp1(µ0, µ1, b)) = 1]
∣∣∣

=
∣∣∣Pr
[
BOfrk(0)() = 1

]
− Pr

[
BOfrk(1)() = 1

]∣∣∣ ≤ Advfrk
Π (1, τ ′, k, s, 1).

Finally, we show that, for all b ∈ {0, 1},

Pr [A(Exp1(µ0, µ1, 0)) = 1] = Pr [A(Exp1(µ0, µ1, 1)) = 1]

In fact, the only value that might depend on the bit b in the experiment Exp1(µ0, µ1, 0) is
the random variable γ = π(µb‖ρ). However, such random variable is uniformly distributed
over {0, 1}m.

5 Entropic FRK Security in the Ideal Cipher Model
In this section, we show that entropic FRK security holds in the ideal cipher model for a
natural family of cipher-dependent tampering functions (generalizing Bernstein’s attack,
as described in Section 1). Since Bernstein’s attack applies equally well in the ideal cipher
model, this result stands in sharp contrast with the fact that the notion of FRK security
considered in [FKM18] is unachievable even in the ideal cipher model.

Before we proceed to state and prove the result, we formally define what is meant by
entropic FRK security in the ideal cipher model w.r.t. a tampering family. The definition
is almost identical to the one in Section 3, except that both the adversary and the
tampering function are given oracle access to a random keyed permutation Π←$ P(k,m).
The latter essentially means that a random permutation is chosen for every possible
key, and the attacker as well as the tampering function, can query such permutations in
the forward direction (via queries (enc-ideal, κ′, µ)) and in the backward direction (via
queries (dec-ideal, κ′, γ)). An identical formalization was used in [AFPW11].

Definition 5 (Entropic FRK security in the ideal cipher model). Consider the same
oracle Ofrk := OΠ,f,D,n specified in Section 3, and let F be a family of cipher-dependent
tampering functions fΠ : {0, 1}k → {0, 1}k which can make queries to the encryption and
decryption algorithms of Π. We define the entropic-FRK advantage in the ideal cipher
model w.r.t. F as:

Advfrk-ideal
F (qO, qΠ, k,m, s, n) := max

A,D,f∈F

∣∣∣Pr
[
AOfrk(0),Π() = 1

]
− Pr

[
AOfrk(1),Π() = 1

]∣∣∣ ,
where the probabilities above are taken over µj ←$D(1λ, j) for all j, κ←$ {0, 1}k and
Π←$ P(k,m), and where the maximum is over all algorithms A asking qO oracle queries
to Ofrk, all s-entropic distributions D, and over all tampering functions fΠ ∈ F , where A
and f ask cumulatively qΠ oracle queries to Π.



Gianluca Brian, Antonio Faonio, João Ribeiro and Daniele Venturi 11

As discussed earlier, our security analysis in the ideal cipher model only holds w.r.t. a
large class of cipher-dependent tampering functions which we name oracle-independent.
The latter roughly means that fΠ(κ) does not output a key κ′ which was used as part of an
(enc-ideal, κ′, ·) or a (dec-ideal, κ′, ·) query. A similar notion (which was probabilistic
in nature and considered multiple tampering functions) was considered in [AFPW11].

Definition 6 (Oracle independence). For any f, κ and Π, let Qf,κ,Π be the set of keys
κ′ such that fΠ(κ) queries (enc-ideal, κ′, µ) for some µ or (dec-ideal, κ′, γ) for some γ.
We say that f is oracle-independent if for any κ and Π we have fΠ(κ) 6∈ Qf,κ,Π. Moreover,
we call F∗ the set of all oracle-independent tampering functions.

Theorem 2. For any parameters qO, qΠ, k,m, s, n such that qΠ ≤ 2k/4 and qO ≤ 2m−1

we have

Advfrk-ideal
F∗ (qO, qΠ, k,m, s, n) ≤ 4qΠ · (n · 2−s + 2−k/4 + 2−k/2) + 6qO · n · 2−m.

Proof. At a high level, we begin by introducing a hybrid experiment H(b) parameterized
by a challenge bit b. Then, we show that the advantage of any given adversary A in
distinguishing between H(0) and H(1) is appropriately close to the advantage of the
same adversary in distinguishing between the original Entropic FRK security experiment
described in Definition 5 with challenge bit b = 0 and b = 1, respectively. Finally, we argue
that the advantage in distinguishing between the experiments H(0) and H(1) is small,
which concludes the proof.

Let A be an adversary, f be a tampering function, and D be an s-entropic distribution
such that A asks at most qO oracle queries to Ofrk, f is oracle-independent, A and f ask
cumulatively at most qΠ oracle queries to Π, and A, f , and D maximize the advantage in
the FRK security experiment, i.e.,

Advfrk-ideal
F∗ (qO, qΠ, k,m, s, n) =

∣∣∣Pr
[
AOfrk(0),Π() = 1

]
− Pr

[
AOfrk(1),Π() = 1

]∣∣∣ . (4)

We now define the hybrid experiment H(b) where we run A, f , and D in an experiment
that is similar to the original FRK experiment with challenge bit b but where the hybrid
experiment aborts and outputs ⊥ if certain events hold. We describe the hybrid experiment
in the following and in pseudo-code in Fig. 2. Specifically, the oracles Ofrk and Π in the
hybrid H(b) are modified to raise flags flg1, flg2, and flg3. The hybrid experiment returns
⊥ if at least one of the flags is set to 1 during the experiment, otherwise it returns the
response bit output by A. Notice that in the pseudo-code description we assume that all
the variables are shared between the hybrid experiment and the two oracles. Thus, for
example, the flags are initially set to 0 by the hybrid experiment and might be updated
(and set to 1) at each invocation of the oracles by the adversary. For i = 1, 2, 3 we define
the event Ei to be the event that the flag flgi is set to 1. The events are as follows:

• Event E1. The function fΠ(κ) sends a query to Π of the form (enc-ideal, κ′, µ∗j )
or (dec-ideal, κ′, γ∗j ) for some j ∈ [n] and some κ′. In this case, we says that fΠ(κ)
queries on µ∗j . (Recall that µ∗1, . . . , µ∗n are the messages sampled by the sampler D,
and γ∗1 , . . . , γ∗n are the corresponding ciphertexts.)

• Event E2. The adversary A queries the secret key κ to Π.

• Event E3. The adversary A finds a collision. Namely, it holds that fΠ(κ) = κ
and either the adversary sends a query of the form (enc, x) with x 6∈ {µ∗1, . . . , µ∗n}
and receives Encrypt(κ, x) ∈ {γ∗1 , . . . , γ∗n}, or sends a query of the form (dec, y) with
y 6∈ {γ∗1 , . . . , γ∗n} and receives Decrypt(κ, y) ∈ {µ∗1, . . . , µ∗n}.

Note that the events Ei may at first sight have different probabilities in H(0) and H(1).
In fact, as we shall argue, E1 and E2 have the same probability of happening in H(0) and
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Oracle Ofrk(b) - Initialization Phase
κ←$ {0, 1}k

π ← P({0, 1}m)
for j ∈ [n] :

µ∗j ←$D(1λ, j)

if b = 0 :
γ∗j ← Π(enc-ideal, κ, µ∗j )

else γ∗j ← π(κ, µ∗j )

κ̃← fΠ(κ)

if (∃j : fΠ(κ) queries on µ∗j ) : //Event E1

flg1 ← 1
return (µ∗j , γ

∗
j )j∈[n]

Ofrk(b) - Query Phase
M∗ = {µ∗1, . . . , µ∗n}, C∗ = {γ∗1 , . . . , γ∗n}
upon input (enc, µ) :
γ ← Π(enc-ideal, κ̃, µ)
if κ = κ̃ ∧ µ ∈M∗ : return �
if κ = κ̃ ∧ µ 6∈ M∗ ∧ γ ∈ C∗ : flg3 ← 1//Event E3

return γ

upon input (dec, γ) :
µ← Π(dec-ideal, κ̃, γ)
if κ = κ̃ ∧ γ ∈ C∗ : return �
if κ = κ̃ ∧ γ 6∈ C∗ ∧ µ ∈M∗ : flg3 ← 1//Event E3

return γ

Ideal Cipher Π
for κ ∈ {0, 1}k : //Initialization
πκ←$ P({0, 1}m)

upon input (x, κ′, y) : //Query
if (κ′ = κ) : flg2 ← 1//Event E2

if x = enc-ideal : return πκ′ (y)

if x = dec-ideal : return π−1
κ′ (y)

Experiment H(b)
flg1, flg2, flg3 ← 0

b′ ← AOfrk(b),Π()
if (flg1 ∨ flg2 ∨ flg3) : return ⊥
else return b′

Figure 2: The hybrid experiment H(b) and the corresponding modified oracles. The differences
in the oracles between the original security experiment in Definition 5 and the hybrid experiment
are highlighted in blue.

H(1), while E3 does not. To avoid overloading the notation, we avoid explicitly writing
down whether we are referring to event Ei in H(0) or H(1) as this will always be clear
from context.

By inspection of the hybrid experiment we can notice that if the flags are not raised,
namely if (¬E1 ∧ ¬E2 ∧ ¬E3), then the hybrid experiment and the FRK experiment are
exactly the same. In fact, the changes introduced in the hybrid do not influence the
outputs of the oracles. Thus it follows that for b ∈ {0, 1} we have∣∣∣Pr

[
AOfrk(b),Π() = 1

]
− Pr [H(b) = 1]

∣∣∣ ≤ Pr [E1] + Pr [E2|¬E1] + Pr [E3|¬E2 ∧ ¬E1] .
(5)

We proceed to bound the three rightmost terms appropriately. First, notice that for
any choice of Π, index j, and key κ′, the probability that the i-th query of fΠ is of the
form (enc-ideal, κ′, µ∗j ) or (dec-ideal, κ′, γ∗j ) is at most 2−s(λ) since D is s-entropic and
the message samples from D are i.i.d. for different j. Taking a union bound over all j ∈ [n]
and the qΠ queries made by fΠ, it follows that

Pr [E1] ≤ qΠ · n · 2−s(λ). (6)

Notice that the event E1 is independent of the challenge bit b, i.e., Pr
[
E0

1
]

= Pr
[
E1

1
]
. In

fact the event E1 depends only on fΠ(κ) and it is independent of the query made by A to
the oracle Ofrk(b).

We now move to bound the probability of the event (E2|¬E1). To bound this event
we make use of our assumption that the tampering function is oracle-independent (recall
Definition 6). Since Π is an ideal cipher, the tuples (µ∗j , γ∗j ) for any j are independent
from κ. Moreover, conditioned on ¬E1 such tuples are independent of the tampered key κ̃,
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because κ̃ = fΠ(κ) and fΠ(κ) has not queried κ̃ on µ∗j for any j. Additionally, since f is
oracle-independent and Π is an ideal cipher, the queries of A to Ofrk and the oracle answers
are independent of κ̃ and κ. This means that the key κ is uniformly distributed over a
subset given the values (µ∗j , γ∗j )j∈[n]. Also, note that if the i-th query of A to Π features a
key κ′ different from κ and a message/ciphertext of its choice, then, because Π is an ideal
cipher, it only learns whether κ′ ∈ {κ, κ̃} and whether κ′ ∈ (fΠ)−1(κ̃). To see the latter,
namely that the adversary can learn whether κ′ is in the pre-image of the tampered key or
not, notice that the tampering function could set κ̃ according to an arbitrary predicate4

that depends on the queries it does to the ideal cipher on the original key κ. Thus, by
querying on κ′, the adversary could verify if the predicate is satisfied or not by κ′. For any
key κ′ we set Λ(κ′) to be the event that is true if and only if

|(fΠ)−1(fΠ(κ′))| < 2k/2.

Note that
Pr [E2|¬E1] ≤ Pr [Λ(κ) ∧ E2|¬E1] + Pr [E2|¬E1,¬Λ(κ)] . (7)

We begin by bounding the leftmost term in the right hand side of Eq. (7). More precisely,
we show that

Pr [Λ(κ) ∧ E2|¬E1] ≤ qΠ · 2−k/2. (8)

We can assume that Pr [Λ(κ)|¬E1] > qΠ·2−k/2, as otherwise Eq. (8) holds trivially. For each
κ and Π such that Λ(κ) holds there are at most 2k/2 values κ′ such that fΠ(κ) = fΠ(κ′),
and furthermore Λ(κ′) = 1 for all such κ′. This comes readily by the definition of the
event Λ(κ). We are interested in bounding the probability that A queries Π on κ for the
first time in the i-th query conditioned on Λ(κ) holding. Note that there are exactly
2k · Pr [Λ(κ)|¬E1] possible values for the key κ conditioned on Λ(κ) holding. Furthermore,
each previous query to κ′ 6= κ such that Λ(κ′) holds rules out at most 2k/2 key values by
definition of Λ(κ′). More precisely, it rules out κ′ along with all values in the preimage
(fΠ)−1(κ′), which are fewer than 2k/2. Therefore, the probability that A queries Π on κ
for the first time in the i-th query conditioned on Λ(κ) holding is at most

1
2k Pr [Λ(κ)|¬E1]− (i− 1)2k/2 ≤

1
qΠ · 2k/2 − (i− 1)2k/2 ≤ 2−k/2,

where the leftmost inequality uses our assumption that Pr [Λ(κ)|¬E1] ≥ qΠ · 2−k/2. Taking
a union bound over all qΠ queries yields Eq. (8).

We now bound the rightmost term in the right hand side of Eq. (7). Conditioned on
the event ¬Λ(κ), we consider the worst-case scenario where the adversary A knows the
value κ̃ and that all its queries are in (fΠ)−1(κ̃). Since ¬Λ(κ) holds, we know that there
are at least 2k/2 keys κ′ such that fΠ(κ′) = fΠ(κ). Moreover, each query to such a key
κ′ 6= κ only rules out κ′ itself, and κ is still uniformly distributed over the remaining set of
keys. Therefore, the probability that A queries Π on κ for the first time in the i-th query
is at most

1
2k/2 − (i− 1) ≤ 2−k/4,

where the last inequality uses our hypothesis that qΠ ≤ 2k/4. Taking a union bound over
all qΠ queries shows that

Pr [E2|¬E1,¬Λ(κ)] ≤ qΠ · 2−k/4.

4For example, the tampering function could set the tampered key to 0k if the first bit of πκ(0) is equal
to 0, or to 1k otherwise. By querying πκ′ (0), the adversary can assert whether κ′ is in the pre-image of κ̃.
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Combining this inequality with Eqs. (7) and (8) yields

Pr[E2|¬E1] ≤ qΠ · (2−k/4 + 2−k/2), (9)

as desired. Notice that the event E2 is independent of the challenge bit b, namely the
probability of E2 is the same in the distributions defined by H(0) and H(1). In fact, the
tuples (µ∗j , γ∗j )j∈[n] and the key κ are identically distributed in H(0) and H(1) given the
full views before the first query of A that triggers the event E2.

Finally, we bound the probability of the event (E3|¬E2). The only way to find collisions
conditioned on ¬E2 is for the adversary to query Ofrk. Notice that if b = 0 then the
probability of E3 is 0 because Π is a keyed permutation and we must have fΠ(κ) = κ for
E3 to hold. We now focus on the case b = 1. In this case, for any choice of (µ∗i , γ∗i )i∈[n] the
probability that the i-th distinct query of the form (enc, µ) with µ 6∈ {µ∗1, . . . , µ∗n} yields
πκ(µ) ∈ {γ∗1 , . . . , γ∗n} is at most

n

2m − i ≤ n · 2
−m+1,

because πκ(x) is uniformly random and distinct from the answers to all the previous
encryption queries. The last inequality uses our hypothesis that qO ≤ 2m−1. An analogous
argument shows that the probability that the i-th distinct query of the form (dec, y)
with γ 6∈ {γ∗1 , . . . , γ∗n} yields π−1

κ (γ) ∈ {µ∗1, . . . , µ∗n} is also at most n
2m−i ≤ n · 2−m+1.

Combining these bounds with a union bound over all qO queries to Ofrk yields

Pr [E3|¬E2 ∧ ¬E1] ≤ qO · n · 2−m+1. (10)

From Eqs. (6), (9) and (10) combined with Eq. (5) it follows that∣∣∣Pr
[
AOfrk(b),Π()=1

]
−Pr [H(b)=1]

∣∣∣ ≤ qΠ ·(2n · 2−s+2−k/4+2−k/2) + 2qO · n · 2−m (11)

for b ∈ {0, 1}.
It remains to upper bound the advantage in distinguishing between H(0) and H(1).

We claim that ∣∣∣Pr [H(0) = 1]− Pr [H(1) = 1]
∣∣∣ ≤ qO · n · 2−m+1. (12)

First, notice that for b ∈ {0, 1} we have Pr [H(b) = 1|E1 ∨ E2 ∨ E3] = 0 since, under this
conditioning, the hybrid always outputs ⊥. Thus, letting Ē := (¬E1 ∧¬E2 ∧¬E3), we are
left to show that

Pr
[
H(0) = 1 ∧ Ē

]
− Pr

[
H(1) = 1 ∧ Ē

]
≤ qO · n · 2−m+1.

We first argue that Pr
[
H(0) = 1|Ē

]
= Pr

[
H(1) = 1|Ē

]
. Conditioned on ¬E1 to hold,

we have that κ̃ when κ̃ 6= κ is independent of (µ∗i , γ∗i )i∈[n] even fixing Π, and thus the
queries to Ofrk made by A are independent of (µ∗i , γ∗i )i∈[n] (and thus of b). Conditioned
on ¬E2 to hold, the joint distribution of (µ∗i , γ∗i )i∈[n] and the outputs of the queries to Π
is independent of b, because Π is an ideal cipher and none of the queries by the adversary
A to Π intersect with the queries made by the oracle Ofrk to Π. Conditioned on ¬E3 to
hold, when fΠ(κ) = κ the joint distribution of (µ∗i , γ∗i )i∈[n] and the outputs of the queries
to Ofrk is independent of the challenge bit b, because both when b = 0 and b = 1 these
values are uniformly random from the set {0, 1}m and distinct.

Therefore, Eq. (12) follows if we show that∣∣∣∣ Pr
H(0)

[E1 ∨ E2 ∨ E3]− Pr
H(1)

[E1 ∨ E2 ∨ E3]
∣∣∣∣ ≤ qO · n · 2−m+1,



Gianluca Brian, Antonio Faonio, João Ribeiro and Daniele Venturi 15

where we stress that the first probability in the left hand side is over the probability space
induced by H(0), while the second probability is over the probability space induced by
H(1). Notice that, as we have already argued, the events E1 and E2 are independent of
the challenge bit b (and so they have the same probabilities in both probability spaces),
while E3 is not. As a result, we have∣∣∣∣ Pr

H(0)
[¬E1 ∧ ¬E2 ∧ ¬E3]− Pr

H(1)
[¬E1 ∧ ¬E2 ∧ ¬E3]

∣∣∣∣
=
∣∣∣∣ Pr
H(0)

[E3|¬E1 ∧ ¬E2]− Pr
H(1)

[E3|¬E1 ∧ ¬E2]
∣∣∣∣

= Pr
H(1)

[E3|¬E1 ∧ ¬E2]

≤ qO · n · 2−m+1,

as desired. The second equality holds because PrH(0) [E3|¬E1 ∧ ¬E2] = 0 as argued above,
and the last inequality follows from Eq. (10). Combining Eqs. (4), (11) and (12) with the
triangle inequality concludes the proof.

6 Setting Parameters
We provide two possible parameter instantiations for our coding scheme. The first in-
stantiation, based on arguments from [FKM18], leads to codewords of length close to
m+ 3λ and non-malleability advantage comparable to τtamp · 2−λ. A more conservative
instantiation, based on Theorem 2, leads to codewords of length close to m+ 5λ for the
same non-malleability advantage. In both cases, we achieve codewords significantly shorter
than the state of the art.

Fehr, Karpman, and Mennink [FKM18, Remarks after Definitions 3 and 4, and Section
6] argue that a good cipher, such as AES-128 and SHACAL-2, with keylength k should
have advantage close to

τtamp · 2−k/2

against fixed related-key attacks, with τtamp denoting the runtime of the tampering function.
Although, as we have shown, this argument breaks down with respect to their fixed related-
key security assumption, we believe that the cipher-dependent attacks which break their
assumption are necessarily contrived. Therefore, since our weaker entropic fixed related-key
security assumption precludes the relevant attacks, we find it reasonable to assume that
good ciphers Π with keylength k satisfy

Advfrk
Π (1, τtamp, k, s, 1) ≈ τtamp · (2−k/2 + 2−s). (13)

The additional rightmost term τtamp · 2−s stems from the discussion surrounding Eq. (1) –
the probability that the adversary learns encryptions (under the true key κ) of messages
which were also queried by the tampering function is at most τtamp · 2−s via a union bound
and the fact that padding the original message with an s-bit random string yields an
s-entropic distribution. Therefore, taking into account Theorem 1 and Eq. (13), in order
to obtain non-malleability advantage

Advnm
Σ (τtamp) ≈ τtamp · 2−λ

it is enough to set k ≈ 2λ and s ≈ λ in our coding scheme Σ described in Fig. 1. This
leads to codewords of overall length m+ k + s ≈ m+ 3λ.

As an alternative, more conservative instatiation method, we may instead consider the
advantage upper bound provided by Theorem 2 in the ideal cipher model. This result states
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that an ideal cipher with keylength k has entropic fixed related-key security advantage
roughly

τtamp · (2−k/4 + 2−s) (14)

when the message is padded with an s-bit random string. We extrapolate that a good cipher
should satisfy this property in practice, and remark that it is our belief that this bound is
loose and the true advantage in the ideal cipher model should be τtamp · (2−k/2 + 2−s). We
leave it as an interesting open problem to prove this conjecture. Similarly to the previous
paragraph, taking into account Theorem 1 and Eq. (14), in order to obtain non-malleability
advantage

Advnm
Σ (τtamp) ≈ τtamp · 2−λ

it is enough to set k ≈ 4λ and s ≈ λ in our coding scheme Σ described in Fig. 1. This
more conservative instantiation leads to codewords of overall length m+ k + s ≈ m+ 5λ.

7 Conclusions and Future Directions
We have given a construction of non-malleable codes in the split-state model with codeword
lengthm+3λ, wherem is the message size and λ is the security parameter. Our construction
involves a single call to a block cipher, and can be proven secure under a form of related-key
security which we named entropic FRK security. Previous work either achieved rather worse
codeword length under non-falsifiable assumptions [KLT16], or a similar (in fact, slightly
better) codeword length under a much stronger form of related-key security [FKM18] that
unfortunately does not hold in the presence of cipher-dependent tampering attacks. In
contrast, entropic FRK security holds unconditionally in the ideal cipher model w.r.t. a
large class of oracle-independent tampering functions (which includes cipher-dependent
tampering attacks which break the assumption from [FKM18]).

Natural directions for future work include reducing the codeword length even further,
for example through a better analysis of the entropic FRK assumption in the ideal cipher
model or through a different set of assumptions (indeed, while the assumptions of [FKM18]
do not hold against cipher-dependent tampering functions, the adaptation of Bernstein’s
attack [Ber10] to the context of non-malleable codes does not seem to trivially violate the
non-malleability of Fehr, Karpman, and Mennink’s construction) and establishing that
entropic FRK security holds in the ideal cipher model even for tampering functions that
are not oracle-independent. It would also be interesting to extend our techniques to obtain
practical non-malleable secret sharing [GK18] with very short shares based on related-key
secure block ciphers.
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