
Solutions to quantum weak coin flipping
∗

Atul Singh Arora
†1

, Jérémie Roland
‡2

, Chrysoula Vlachou
§3

, and Stephan Weis
¶4

1
Institute for Quantum Information and Matter and Department of Computing and Mathematical Sciences,

California Institute of Technology, Pasadena, California, USA

2
Université libre de Bruxelles, Brussels, Belgium

3
Instituto de Telecomunicações Lisbon and Departamento de Matemática, Instituto Superior Técnico, Universidade

de Lisboa, Lisbon Portugal

4
Wald-Gymnasium, Berlin, Germany

August 25, 2022

Abstract

Weak coin flipping is an important cryptographic primitive, as it is the strongest known secure two-

party computation primitive, that classically becomes secure only when certain assumptions are made

(e.g. computational hardness), while quantumly there exist protocols that achieve arbitrarily close to

perfect security. This breakthrough result was established by C. Mochon in 2007 [arXiv:0711.4114],

however, his proof of existence was partially non-constructive, thus, setting back the proposal of ex-

plicit protocols. In this work, we report three different solutions to the quantum weak coin flipping

problem. In particular, we propose different methods that result—either analytically or numerically—in

the operators needed to construct weak coin flipping protocols with different levels of security, includ-

ing nearly perfect security. In order to develop these methods, we study the quantum weak coin flipping

problem from both an algebraic and a geometric perspective. We also analytically construct illustrative

examples of weak coin flipping protocols achieving different levels of security.

∗
Parts of the original work presented in this paper have been presented in the STOC19

(https://dl.acm.org/doi/10.1145/3313276.3316306) and SODA21 (https://epubs.siam.org/doi/10.1137/1.9781611976465.58) con-

ferences.

†
atul.singh.arora@gmail.com, asarora@caltech.edu

‡
Jeremie.Roland@ulb.be

§
chrysoula.vlachou@lx.it.pt

¶
weis@waldgymnasium.de

1

1 Introduction

The problem we study in this paper is rather easy to state. Suppose there are two parties, conventionally

called Alice and Bob, who are placed in physically remote locations and can communicate with each other

using a communication channel. They wish to exchange messages over this channel in order to agree on a

random bit, while having a priori known opposite preferred outcomes. This is easy to do—Alice flips a coin

and sends a message with the outcome to Bob. However, this requires Bob to trust Alice. Can Bob modify

the scheme to be sure that Alice did not cheat? More generally, can we construct a protocol, which involves

an exchange of messages over a communication channel, to decide on a random bit while ensuring that an

honest party, i.e. one that follows the protocol, can not be deceived? It turns out that if one communicates

over a classical communication channel, then a cheating party can always force their desired outcome

on the honest party; unless we make further assumptions, such as computational hardness. On the other

hand, if Alice and Bob use a quantum communication channel, then protocols solving this problem up to

vanishing errors have been shown to exist [Moc07]. This was a seminal result from 2007, however there

is a non-constructive part in this analysis, which implies that we know there exists a solution without

knowing the solution itself. In this paper, we build upon the previous pioneering works to develop explicit

protocols for quantum weak coin flipping, as this problem is referred to in the literature.

The coin flipping problem, since 1983 when it was introduced by M. Blum [Blu83], occupies an inter-

esting place in the overall landscape of cryptography. In 1994 it was shown that the—even today—widely

used public key cryptosystem RSA can be broken using a quantum computer [Sho94]. A decade earlier,

a method for key distribution using quantum channels was proposed [BB84] whose security, in principle,

relied only on the validity of the laws of physics. It was thought that quantum mechanics could also rev-

olutionize secure two-party computation. This is another branch of cryptography comprising protocols in

which two distrustful parties wish to jointly compute a function on their inputs without having to reveal

these inputs to each other. Success here, was marred by a cascade of impossibility results. In a central re-

sult of classical cryptography, it was shown that a primitive called oblivious transfer is universal for secure

two-party computation [Kil88], but there exists no protocol that offers perfect security without relying on

further assumptions, such as computational hardness; classical secure two-party computation with perfect

security is thus impossible [Col07]. Oblivious transfer deprived quantum mechanics of being the panacea

for cryptography, as it was shown that even if the communication is quantum, oblivious transfer can not

be implemented with perfect security [Lo97; CKS13]. Bit commitment, a secure two-party computation

primitive weaker than oblivious transfer was targeted, but it turned out to be also impossible—in the same

sense—even in the quantum setting [CK11]. Thus, coin flipping was considered, an even weaker secure

two-party computation primitive, which has two variants: strong and weak coin flipping (WCF). In a coin

flipping protocol the two distrustful parties need to establish a shared random bit; for strong coin flipping

the preferences of the parties are unknown to each other, in contrast to WCF where the parties have a

priori known opposite preferences. And while strong coin flipping suffered the same fate as that of oblivi-

ous transfer and bit commitment [CK09], WCF was poised for fame; it is the strongest known primitive in

the two-party setting which admits no secure classical protocol, but can be implemented over a quantum

channel with near perfect security [Moc07].

In particular, in a quantum strong coin flipping protocol a dishonest party can successfully cheat

with probability at least
1√
2

[Kit03], and the best known explicit protocol
1

has a cheating probability of

1

2
+ 1

4
[Amb04]. As for WCF, the existence of protocols with arbitrarily perfect security was proved non-

constructively, by elaborate successive reductions of the problem based on the formalism introduced earlier

by A. Y. Kitaev for the study of strong coin flipping [Kit03]. Consequently, the structure of the protocols

1
A strong coin flipping protocol with the minimum cheating probability is known [CK09], but relies on the use of near perfect

WCF as a black box.

2

whose existence is proved was lost. A systematic verification led to a simplified proof of existence by D.

Aharonov et al. [Aha+14b], but over a decade later an explicit, nearly perfectly secure WCF protocol was

missing, despite various approaches ranging from the distillation of a protocol using the proof of exis-

tence to numerical search [NST14; NST15]. While an explicit WCF protocol has remained evasive, several

connections have been discovered. In particular, nearly perfect WCF provides, via black-box reductions,

optimal protocols for strong coin flipping [CK09], bit commitment [CK11] and a variant of oblivious trans-

fer [CGS13]. It is also used to implement other cryptographic tasks such as leader election [Gan09] and

dice rolling [AS10].

The most significant advance in the study of WCF was the invention of the so-called point games,

attributed to A. Y. Kitaev by C. Mochon [Moc07]. In this context, there are three equivalent formalisms

which can be used to describe WCF protocols and their security properties: explicit protocols given by pairs

of dual semi-definite programs (SDPs), Time Dependent Point Games (TDPGs) and Time Independent Point

Games (TIPGs). The existence of quantum WCF protocols with almost perfect security was established

using the TIPG formalism [Moc07], however the proposal of explicit protocols was hindered by the fact

that no constructive method was given for obtaining a protocol from a TDPG, while they were shown to be

equivalent. In this work, we start by constructing a new framework that allows us to convert point games

into protocols granted that we can find unitaries satisfying certain constraints; we further use perturbative

methods to obtain a protocol with cheating probability
1

2
+ 1

10
, improving the former best known protocol

with cheating probability
1

2
+ 1

6
[Moc05].

2
We then introduce a more systematic method for converting the

point games used by C. Mochon (including the ones approaching perfect security) into explicit unitaries,

which in turn can be readily converted into explicit WCF protocols. This approach also circumvents part

of the previous formalism, thus leading to a simplification of the overall context. However, it is tailored

for the aforementioned point games and it is not expected a priori to work in general. To address this,

we develop a numerical algorithm that allows us to provably perform the non-constructive step in the

aforementioned conversion of a TDPG into an explicit protocol. This, in effect, permits us to numerically

construct WCF protocols corresponding to any TIPG. Finally, we give another analytic solution to the

point games employed by C. Mochon, which is inspired by the techniques used in the numerical solution

and it is exact; it is not affected by the algorithm’s numerical accuracy.

Below, we briefly introduce the various formalisms
3

in order to be able to informally describe and

summarize our contributions in Section 1.1. In Section 2, we present these formalisms in more detail, as

we need to build on these results afterwards.

Let us start with two features of WCF. First, without loss of generality, we can say that, if the outcome

value of the bit is 0 it means that Alice won, while Bob wins on outcome 1; since in a WCF protocol the

parties have opposite known preferences this is just a matter of labeling. Second, there are four situations

which can arise in a WCF scenario, of which three are of interest. Let us denote by HH the situation where

both Alice and Bob are honest, i.e. they follow the protocol. We want the protocol to be such that both

Alice and Bob (a) win with equal probability and (b) are in agreement with each other. In the situation

HC where Alice is honest and Bob is cheating, the protocol must protect Alice from a cheating Bob, who

tries to convince her that he has won. His probability of succeeding by using his best cheating strategy is

denoted by 𝑃∗
𝐵

, where the subscript denotes the cheating party. The CH situation where Bob is honest and

Alice is cheating naturally points us to the corresponding definition of 𝑃∗
𝐴

. The situation CC where both

players are cheating is not of interest to us as nothing can be said with respect to the protocol; neither

party is actually following it.

The trivial example of a WCF protocol is where Alice flips a coin and reveals the outcome to Bob over

the telephone. A cheating Alice can simply lie and always win against an honest Bob; that means 𝑃∗
𝐴
= 1.

2
Strictly speaking, these are families of protocols whose cheating probability approaches the said value asymptotically.

3
We have suppressed the technical details.

3

On the other hand, a cheating Bob can not do anything to convince Alice that he has won, unless it happens

by random chance on the coin flip. This corresponds to 𝑃∗
𝐵
= 1

2
. We say that a protocol has bias 𝜖 if neither

party can force their preferred outcome with probability greater than 1/2 + 𝜖 , for 𝜖 ≥ 0. For the above

naive protocol the bias is 𝜖 = max[𝑃∗
𝐴
, 𝑃∗
𝐵
] − 1

2
, which amounts to 𝜖 = 1

2
; the worst possible. Constructing

protocols where one of the parties is protected is nearly trivial; constructing protocols where neither party

is able to cheat against an honest party is the real challenge.

Given a WCF protocol it is not a priori clear how the maximum success probability of a cheating

party, 𝑃∗
𝐴/𝐵 , should be computed, as their strategy space can be dauntingly large. It turns out that all

quantum WCF protocols can be defined using the exchange of a message register interleaved with the

parties applying the unitaries 𝑈𝑖 locally (see Figure 1) until a final measurement— say Π𝐴 denoting Alice

won and Π𝐵 denoting Bob won—is made in the end. Computing 𝑃∗
𝐴

in this case reduces to a semi-definite

Figure 1: General structure of a WCF protocol.

program (SDP) in 𝜌 , the corresponding quantum state: maximize 𝑃∗
𝐴
= tr(Π𝐴𝜌) given the constraint that

the honest party follows the protocol. Similarly for computing 𝑃∗
𝐵

we can define another SDP. Using SDP

duality one can turn this maximization problem over cheating strategies into a minimization problem

over dual variables 𝑍𝐴/𝐵 . Any dual feasible assignment then provides an upper bound on the cheating

probabilities 𝑃∗
𝐴/𝐵 . Handling SDPs is, in general, straightforward, but in this case, there are two SDPs, and

we must optimize both simultaneously. Note that we assume that the protocol is known and we are trying

to bound 𝑃∗
𝐴

and 𝑃∗
𝐵

. However, our goal is to find good protocols. Therefore, we would like a formalism

which allows us to do both, construct protocols and find the associated 𝑃∗
𝐴

and 𝑃∗
𝐵

. A. Y. Kitaev gave us

such a formalism.

He converted this problem about matrices (𝑍 , 𝜌 and𝑈) into a problem about points on a plane, and C.

Mochon called it ”Kitaev’s Time Dependent Point Game formalism” (TDPG). Therein, we are concerned

with a sequence of frames, also referred to as configurations. Each frame is a finite collection of points

in the positive quadrant of the 𝑥𝑦-plane with probability weights assigned to them. This sequence must

start with a fixed frame and end with a frame that has only one point. The fixed starting frame consists of

two points at (0, 1) and (1, 0) with equal weights 1/2. The end frame must be a single point, say at (𝛽, 𝛼),
with weight 1. The objective of the protocol designer is to get this end point as close to the point (1

2
, 1

2
)

as possible by transitioning through intermediate frames (see Figure 2) following certain rules. The magic

4

1

1 ½

½

1

1 ½ ½

1

1 1

½

Figure 2: Point game.

of this formalism, roughly stated, is that if one abides by these rules, then corresponding to every such

sequence of frames, there exists a WCF protocol with 𝑃∗
𝐴
= 𝛼 , 𝑃∗

𝐵
= 𝛽 .

Let us now describe these rules. Consider a given frame and focus on a set of points that fall along a

vertical (or horizontal) line. Let the 𝑦 (or 𝑥) coordinate of the 𝑖th point be given by 𝑧𝑔𝑖 and its weight by

𝑝𝑔𝑖 , and let 𝑧ℎ𝑖 and 𝑝ℎ𝑖 denote the corresponding quantities for the points in the subsequent frame. Then,

the following conditions must hold:

1. the probabilities are conserved, viz.

∑
𝑖 𝑝𝑔𝑖 =

∑
𝑖 𝑝ℎ𝑖

2. for all _ > 0 ∑︁
𝑖

_𝑧𝑔𝑖

_ + 𝑧𝑔𝑖
𝑝𝑔𝑖 ≤

∑︁
𝑖

_𝑧ℎ𝑖

_ + 𝑧ℎ𝑖
𝑝ℎ𝑖 . (1)

From one frame to the next, we can either make a horizontal or a vertical transition. By combining these

sequentially we can obtain the desired form of the final frame, i.e. a single point. The points in the frames

and the rules of the transitions arise from the variables 𝑍𝐴/𝐵 of the dual SDP and their constraints, re-

spectively. Just as the state 𝜌 evolves through the protocol, so do the dual variables 𝑍𝐴/𝐵 . The points and

their weights in the TDPG are exactly the eigenvalue pairs of 𝑍𝐴/𝐵 with the probability weight assigned

to them by the honest state |𝜓 ⟩ at a given point in the protocol. Given an explicit WCF protocol and a

feasible assignment for the dual variables witnessing a given bias, it is straightforward to construct the

TDPG. However, going backwards, constructing the WCF dual from a TDPG is non-trivial and no general

construction is known.

Before proceeding, it is useful to encode the points on a line and their weights into a function from the

interval [0,∞) to itself. Let

⟦𝑎⟧ (𝑧) = 𝛿𝑎,𝑧, (2)

i.e. ⟦𝑎⟧ (𝑧) is zero when 𝑧 ≠ 𝑎 and one when 𝑧 = 𝑎. The transition from a given frame to the next is written

as

∑
𝑖 𝑝𝑔𝑖

�
𝑧𝑔𝑖

�
→ ∑

𝑖 𝑝ℎ𝑖 ⟦𝑧ℎ𝑖⟧. The corresponding function is written as 𝑡 =
∑
𝑖 𝑝ℎ𝑖 ⟦𝑧ℎ𝑖⟧ − ∑

𝑖 𝑝𝑔𝑖
�
𝑧𝑔𝑖

�
. If

the transition/function satisfies the conditions 1. and 2. above, it is termed as a valid transition/function.

If we restrict ourselves to transitions involving only one initial and one final point, i.e.

�
𝑧𝑔

�
→ ⟦𝑧ℎ⟧,

the second condition reduces to 𝑧𝑔 ≤ 𝑧ℎ . This is called a raise, and it means that we can always increase

the coordinate of a single point. What about going from one initial point to many final points, i.e.

�
𝑧𝑔

�
→∑

𝑖 𝑝ℎ𝑖 ⟦𝑧ℎ𝑖⟧? Note that the points before and after must lie along either a horizontal or a vertical line. The

second condition in this case becomes 1/𝑧𝑔 ≥ ⟨1/𝑧ℎ⟩, which means that the harmonic mean of the final

points must be greater than or equal to that of the initial point, where ⟨𝑓 (𝑧ℎ)⟩ :=

(∑
𝑖 𝑓 (𝑧ℎ𝑖)𝑝ℎ𝑖

)
/
(∑

𝑗 𝑝ℎ 𝑗

)
.

This is called a split. Finally, we can ask what happens upon merging many points into a single point, i.e.∑
𝑖 𝑝𝑔𝑖

�
𝑧𝑔𝑖

�
→ ⟦𝑧ℎ⟧. The second condition becomes

〈
𝑧𝑔

〉
≤ 𝑧ℎ , which means that the final position must

not be smaller than the average initial position. This is called a merge. While these three valid transitions

do not exhaust the set of possible valid moves, they are enough to construct games approaching bias 1/6.

Let us consider a simple game as an example (see Figure 2). We start with the initial frame and raise

the point (1, 0) vertically to (1, 1); this is a raise, an allowed move. Next we merge the points (0, 1) and

5

(1, 1) using a horizontal merge. The 𝑥-coordinate of the resulting point can at best be
1

2
.0 + 1

2
.1 = 1

2
where

we used the fact that both points have weight 1/2. Thus, we end up with a single point having all the

weight at (1

2
, 1). This formalism tells us that there must exist a protocol which yields 𝑃∗

𝐴
= 1 while 𝑃∗

𝐵
= 1

2
,

which is exactly the telephone protocol that we presented earlier. It is a neat consistency check but it

yields the worst possible bias. This is because we did not use the split move. If we use a split once, we

can, by essentially matching the weights, already obtain a game with 𝑃∗
𝐴
= 𝑃∗

𝐵
= 1√

2

. Various protocols

corresponding to this bias were found [SR02; NS03; KN04] before the point game formalism was known.

In fact, this bias, 𝜖 = 1√
2

− 1

2
, is exactly the lower bound for the bias of strong coin flipping protocols. It was

an exciting time —we imagine—as the technique used to bound strong coin flipping failed for WCF. The

matter was not resolved, and this protocol remained the best known WCF protocol for some time; until

C. Mochon showed that using multiple splits at the beginning followed by a raise, and thereafter simply

using merges, we can obtain a game with bias almost 1/6 [Moc05]. Obtaining lower biases, however, is

not a straightforward extension of the above, and we need other moves which can not be decomposed into

the three basic ones: splits, merges and raises.

1.1 Contributions

1.1.1 TDPG-to-Explicit-protocol Framework (TEF) and a protocol approaching bias 1/10

In Section 3 we provide a framework for converting a TDPG into an explicit WCF protocol. We start

by defining a “canonical form” for any given frame of a TDPG, which allows us to write the WCF dual

variables, 𝑍s, and the honest state |𝜓 ⟩ associated with each frame of the TDPG. We then define a sequence

of quantum operations, unitaries and projections, which describe how Alice and Bob transition from the

initial to the final frame. It turns out that there is only one non-trivial quantum operation, 𝑈 , in the

sequence. Using the SDP formalism we write the constraints at each step of the sequence on the 𝑍s and

show that they are indeed satisfied. The aforementioned constraints can be summarized as in Theorem 1

below. In Section 3 one can find the full version, Theorem 31, together with its proof and a detailed

description of the framework.

Theorem 1 (TEF constraint (simplified)). If a unitary matrix 𝑈 acting on the space
span{|𝑔1⟩ , |𝑔2⟩ . . . , |ℎ1⟩ , |ℎ2⟩ . . . } satisfying the constraints4

𝑈 |𝑣⟩ = |𝑤⟩ ,∑︁
𝑖

𝑥ℎ𝑖 |ℎ𝑖⟩ ⟨ℎ𝑖 | −
∑︁
𝑖

𝑥𝑔𝑖𝐸ℎ𝑈 |𝑔𝑖⟩ ⟨𝑔𝑖 |𝑈 †𝐸ℎ ≥ 0 (3)

can be found for every transition (see Definition 14 and Definition 15) of a TDPG, then an explicit protocol
with the corresponding bias can be obtained using the TDPG–to–Explicit–protocol Framework (TEF). Here,
{|𝑔𝑖⟩}, {|ℎ𝑖⟩} are orthonormal vectors. If the transition is horizontal, then

• the initial points have 𝑥𝑔𝑖 as their 𝑥-coordinate and 𝑝𝑔𝑖 as their corresponding probability weight,

• the final points have 𝑥ℎ𝑖 as their 𝑥-coordinate and 𝑝ℎ𝑖 as their corresponding probability weight,

• 𝐸ℎ is a projection onto the span {|ℎ𝑖⟩} space,

• |𝑣⟩ = ∑
𝑖

√
𝑝𝑔𝑖 |𝑔𝑖⟩ /

√︁∑
𝑝𝑔𝑖 , |𝑤⟩ = ∑

𝑖

√
𝑝ℎ𝑖 |ℎ𝑖⟩ /

√︁∑
𝑝ℎ𝑖 .

If the transition is vertical, the 𝑥𝑔𝑖 and 𝑥ℎ𝑖 become the𝑦-coordinates𝑦𝑔𝑖 and𝑦ℎ𝑖 with everything else unchanged.

4
We use 𝐴 ≥ 𝐵 to mean that 𝐴 − 𝐵 has non-negative eigenvalues; we implicitly assume that 𝐴 and 𝐵 are Hermitian.

6

The TDPG already specifies the coordinates 𝑥ℎ𝑖 , 𝑥𝑔𝑖 and the probabilities 𝑝ℎ𝑖 , 𝑝𝑔𝑖 satisfying the scalar

condition Equation (1), therefore our task reduces to finding the correct𝑈 which satisfies the matrix con-

straints Equation (3). Given such a unitary 𝑈 we show in detail how we can progressively build the se-

quence of unitaries corresponding to the complete WCF protocol. In fact, we need to reverse the order of

the operations in the sequence we get in order to obtain the final protocol. Note that the message regis-

ter is initially decoupled, then it gets entangled, and finally emerges decoupled again. This simplifies the

analysis, and also entails that we don’t need to keep it coherent for the whole duration of the protocol.

Keeping the message register coherent for each round individually is sufficient. We continue by introduc-

ing what we call the blinkered unitary, that satisfies the required constraints for split and merge moves.

In particular, any valid transition from 𝑚 initial to 𝑛 final points that can be implemented by means of

the blinkered unitary, can be seen as a combination of an𝑚 → 1 merge and an 1 → 𝑛 split (see Section

3.1.1 and Appendix C). With these the former best known explicit protocol with bias 1/6 [Moc05] can

already be derived from its TDPG. We finally study the family of TDPGs with bias 1/10 and isolate the

precise moves required to implement it. These can not be produced by a combination of merges and splits,

therefore, we need to look beyond the blinkered unitary. We give analytic expressions for the required

unitaries and show that they satisfy the corresponding constraints. This allows us, in effect, to convert

the family of games with bias 1/10, proposed by C. Mochon into explicit protocols, thus breaking the bias

1/6 barrier. However, we essentially guessed the form that the blinkered unitary and the unitaries of the

1/10 game should have in these cases, and then showed that they indeed satisfy the required constraints.

Games achieving lower biases, though, correspond to larger unitary matrices, therefore this approach be-

comes untenable. We overcome this issue in Section 4, where we find a way to systematically construct

the unitaries for the whole family of C. Mochon’s games achieving bias 𝜖 (𝑘) = 1/(4𝑘 + 2) for arbitrary

integers 𝑘 > 0.

1.1.2 Exact Unitaries for C. Mochon’s assignments—an algebraic solution

As we saw, TEF allows us to convert any TDPG into an explicit protocol, granted that the unitaries satis-

fying Equation (3) can be found corresponding to each valid transition used in the game (see Theorem 1).

Using A. Y. Kitaev’s and C. Mochon’s formalism [Moc07], we have that the following—an even weaker

requirement—is enough (see Section 4.1): Suppose that a valid function, 𝑡 , can be written as a sum of valid

functions. Then, in order to obtain the effective solution for 𝑡 (see Definition 34), it suffices to find unitaries

corresponding to the valid functions appearing in the sum.

We consider the class of valid functions that C. Mochon uses in his family of point games approaching

bias 𝜖 (𝑘) = 1

4𝑘+2
for an arbitrary integer 𝑘 > 0. These are of the form (see Definition 32)

𝑡 =

𝑛∑︁
𝑖=1

−𝑓 (𝑥𝑖)∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧ ,

where 0 ≤ 𝑥1 < 𝑥2 · · · < 𝑥𝑛 ∈ R, 𝑓 (𝑥) is a polynomial
5
, and the notation follows Equation (2). We refer

to these as 𝑓 -assignments and in particular, when 𝑓 is a monomial, we call them monomial assignments.
We observe that the 𝑓 -assignments can be expressed as a sum of monomial assignments, and we give

formulas for the unitaries corresponding to these monomial assignments. There are four types of monomial

assignments—which we call balanced or unbalanced (depending on whether the number of points with

negative weights in the point game is equal to the number of points with positive weight or not) and

aligned or misaligned (depending on whether the power of the polynomial 𝑓 (𝑥) is even or odd). The

formulas for their solutions (see Definition 34) and their proofs of correctness comprise most of Section 4

whose central result is summarized in the following theorem.

5
with some restrictions which we suppress for brevity

7

Theorem 2 (informal
6
). Let 𝑡 be an 𝑓 -assignment (see Definition 32). Then, 𝑡 can be expressed as 𝑡 =

∑
𝑖 𝛼𝑖𝑡

′
𝑖

where 𝛼𝑖 > 0 and 𝑡 ′𝑖 are monomial assignments (see Definition 32). Each 𝑡 ′𝑖 admits a solution (see Definition 34)
given in either Proposition 39, Proposition 40, Proposition 41 or Proposition 42, depending on the form of 𝑡 ′𝑖 .

Here, we present the case of a balanced and aligned monomial assignment given by 𝑡 =
∑𝑛
𝑖=1
𝑥𝑚
ℎ𝑖
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧−∑𝑛

𝑖=1
𝑥𝑚𝑔𝑖 𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
with𝑏 =𝑚/2 being an integer. Given an orthonormal basis {|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛⟩ , |𝑔1⟩ , |𝑔2⟩ . . . |𝑔𝑛⟩} ,

the solution (see Definition 34) is

𝑂 =

𝑛−𝑏−1∑︁
𝑖=−𝑏

(
Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩ ⟨𝑣 ′ | (𝑋𝑔)𝑖Π⊥

𝑔𝑖
√
𝑐ℎ𝑖𝑐𝑔𝑖

+ h.c.

)
where 𝑋ℎ :=

∑𝑛
𝑖=1
𝑥ℎ𝑖 |ℎ𝑖⟩ ⟨ℎ𝑖 |, |𝑤⟩ :=

∑𝑛
𝑖=1

√
𝑝ℎ𝑖 |ℎ𝑖⟩, |𝑤 ′⟩ := (𝑋ℎ)𝑏 |𝑤⟩, 𝑐ℎ𝑖 := ⟨𝑤 ′ | (𝑋ℎ)𝑖Π⊥

ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩,

Π⊥
ℎ𝑖

:=

projector orthogonal to span{(𝑋ℎ)−|𝑖 |+1 |𝑤 ′⟩ , (𝑋ℎ)−|𝑖 |+2 |𝑤 ′⟩ . . . , |𝑤 ′⟩} 𝑖 < 0

projector orthogonal to span{(𝑋ℎ)−𝑏 |𝑤 ′⟩ , (𝑋ℎ)−𝑏+1 |𝑤 ′⟩ , . . . (𝑋ℎ)𝑖−1 |𝑤 ′⟩} 𝑖 > 0

I 𝑖 = 0,

and 𝑋𝑔, |𝑣⟩ , |𝑣 ′⟩ , 𝑐𝑔𝑖 ,Π⊥
𝑔𝑖

are defined analogously.

In Section 4.5 we illustrate as an example the construction of a WCF protocol with bias 1/14 from the

corresponding point game by means of the TEF and the analytical solutions to the monomial assignments.

Having found these unitaries, we have effectively solved our problem, since the TEF allows the conver-

sion of point games—including the ones with arbitrarily small bias—into WCF protocols with the respective

bias. We should also note that this approach bypasses one of C. Mochon’s reductions, thus providing not

only a solution but also a simplification of the formalism. However, we considered a specific family of point

games (the one proposed by C. Mochon). Our next contribution provides a solution which is applicable

beyond these point games.

1.1.3 Elliptic Monotone Align (EMA) algorithm

We now introduce the Elliptic Monotone Align (EMA) algorithm (Section 5), which allows us to numeri-

cally find the unitary corresponding to any strictly valid function (see Definition 127), thus being applicable

beyond the family of point games used above. If we remove the projector in Equation (3), we can express

the inequality as 𝑋ℎ ≥ 𝑈𝑋𝑔𝑈
†

where 𝑋ℎ, 𝑋𝑔 are diagonal matrices with positive entries (see Section 5.1).

It is possible to show that, without loss of generality, we can restrict ourselves to orthogonal matrices (see

Appendix E). Once we restrict to real numbers, the set of vectors E𝑋ℎ
:= {|𝑢⟩ | ⟨𝑢 |𝑋ℎ |𝑢⟩ = 1} describes the

boundary of an ellipsoid, since

∑
𝑖 𝑢

2

𝑖 /(𝑥−1

ℎ𝑖
) = 1 for 𝑥ℎ𝑖 fixed and 𝑢𝑖 variable. Similarly, E𝑂𝑋𝑔𝑂

𝑇 represents

a rotated ellipsoid where 𝑂 is orthogonal (see Figure 3). The larger the 𝑥ℎ𝑖 (or 𝑥𝑔𝑖) is, the higher is the

curvature of the ellipsoid along the associated direction. Geometrically, the aforesaid inequality can be

seen as the containment of the E𝑋ℎ
ellipsoid inside the E𝑂𝑋𝑔𝑂

𝑇 ellipsoid, as we describe in Section 5.2. The

orthogonal matrix we are looking for also has the property 𝑂 |𝑣⟩ = |𝑤⟩ from Equation (3). Imagine that

in addition, we have ⟨𝑤 |𝑋ℎ |𝑤⟩ = ⟨𝑣 |𝑋𝑔 |𝑣⟩ which in terms of the point game means that the average is

preserved; such is the case for the merge move. In terms of the ellipsoids, this means that the ellipsoids

touch along the |𝑤⟩ direction. More precisely, the point |𝑐⟩ := |𝑤⟩ /
√︁
⟨𝑤 |𝑋ℎ |𝑤⟩ belongs to both E𝑋ℎ

and

E𝑂𝑋𝑔𝑂
𝑇 . Since the inequality tells us that the smaller E𝑋ℎ

is contained inside the larger E𝑂𝑋𝑔𝑂
𝑇 , and we

now know that they touch at |𝑐⟩, we conclude that their normal vectors evaluated at |𝑐⟩ must be equal.

Furthermore, the inner ellipsoid must be more curved than the outer one at the point of contact. Mark

the point |𝑐⟩ on the E𝑂𝑋𝑔𝑂
𝑇 ellipsoid, and imagine rotating the E𝑋𝑔

ellipsoid to the E𝑂𝑋𝑔𝑂
𝑇 ellipsoid. The

normal vector at |𝑐⟩ must be mapped to the normal vector of E𝑋ℎ
at this point. It turns out that to evaluate

6
We suppressed some constraints on 𝑓 for brevity.

8

Figure 3: On the left the ellipsoids correspond to the diagonal matrices 𝑋𝑔 and 𝑋ℎ , and the vectors |𝑤⟩
and |𝑣⟩ indicate the direction. On the right, the larger ellipsoid is now rotated to 𝑂𝑋𝑔𝑂

𝑇
, and the point of

contact is along the vector |𝑤⟩ = 𝑂 |𝑣⟩.

the normal vectors |𝑛ℎ⟩ on E𝑋ℎ
and

��𝑛𝑔〉 on E𝑋𝑔
at the marked point, we only need to know 𝑋ℎ, 𝑋𝑔, |𝑣⟩ and

|𝑤⟩. Complete knowledge of 𝑂 is not required and yet we can be sure that 𝑂
��𝑛𝑔〉 = |𝑛ℎ⟩ which means 𝑂

must have a term |𝑛ℎ⟩
〈
𝑛𝑔

��
. In fact, we can even evaluate the curvature from the aforesaid quantities. It

turns out that when this condition is expressed precisely, it becomes an instance of the same problem we

started with one less dimension, allowing us to iteratively find 𝑂 , which so far we only assumed to exist.

This, however, only works under our assumption that ⟨𝑤 |𝑋ℎ |𝑤⟩ = ⟨𝑣 |𝑋𝑔 |𝑣⟩. Whenever this is not

the case, we resort to the following method. Recall that a monotone function ` is defined to be a function

which has the property “𝑥 ≥ 𝑦 =⇒ ` (𝑥) ≥ ` (𝑦)”. An operator monotone function is a generalization

of the aforesaid property to matrices, which in our notation can be expressed as “𝑋ℎ ≥ 𝑂𝑋𝑔𝑂
𝑇 =⇒

` (𝑋ℎ) ≥ 𝑂` (𝑋𝑔)𝑂𝑇 ”. It is known that for a certain class of operator monotone functions, `, the inverse

`−1
is also an operator monotone. Using these results in conjunction with results from [Aha+14b] we can

show that, after an appropriate scaling of the ellipsoids, there is always an operator monotone ` such that

⟨𝑤 | ` (𝑋ℎ) |𝑤⟩ = ⟨𝑣 | ` (𝑋𝑔) |𝑣⟩. This result also admits a simple geometric interpretation. It means that to

establish that E𝑋ℎ
is inside E𝑂𝑋𝑔𝑂

𝑇 , we can—instead of looking at all different directions and make sure

that E𝑋ℎ
is indeed inside E𝑂𝑋𝑔𝑂

𝑇 — look along a single direction |𝑤⟩ and make sure that all the different

ellipsoids E` (𝑋ℎ) are inside the corresponding E𝑂` (𝑋𝑔)𝑂𝑇 ellipsoids along just this direction, for every

operator monotone ` in the class indicated earlier. Since the orthogonal matrix which solves the initial

problem also solves the one mapped by `, we can use our technique on the latter to proceed. It is essentially

a combination of these steps that constitutes our EMA algorithm, which is informally summarized below.

Definition 3 (EMA algorithm (informal)). Given a valid transition, the algorithm proceeds in three phases.

1. INITIALIZATION

• Bring the final points close to zero until the corresponding ellipsoids start to touch (tightening

procedure).

• Find the spectrum of the matrices which represent the ellipsoid. Evaluate the smallest matrix

size 𝑛 needed to represent the problem using ellipsoids.

• Using the aforesaid, define

(
𝑋

(𝑛)
ℎ
, 𝑋

(𝑛)
𝑔 ,

��𝑤 (𝑛) 〉 , ��𝑣 (𝑛) 〉) := X
(𝑛)

where the superscript denotes

the size of the matrix and vectors.

9

2. ITERATION

Input: X
(𝑘)

Output: X
(𝑘−1)

, the vector

���𝑢 (𝑘)
ℎ

〉
and the orthogonal matrices 𝑂

(𝑘)
𝑔 ,𝑂

(𝑘)
ℎ

Procedure:

• Shrink the outer ellipsoid until it touches the inner ellipsoid (tightening procedure).

• Use operator monotone functions to make the ellipsoids touch along the |𝑤⟩ direction.

• Evaluate the curvatures and the normal vector along the |𝑤⟩ direction.

• Use the curvatures to specify X
(𝑘−1)

and find the orthogonal matrices 𝑂
(𝑘)
𝑔 ,𝑂

(𝑘)
ℎ

.

3. RECONSTRUCTION

Evaluate 𝑂 (𝑛)
recursively using 𝑂 (𝑘) = 𝑂 (𝑘)

𝑔

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂

(𝑘)
ℎ

.

Theorem 4 (Correctness of the EMA algorithm (informal)). Given a transition of a TDPG, the EMA Algo-
rithm always finds a𝑈 such that the constraints in Theorem 1 are satisfied.

In Section 5.4 one can find the complete algorithm and the proof of its correctness; in particular Defi-

nition 79 and Theorem 80 are the corresponding formal statements. The results obtained from a numerical

implementation of the EMA algorithm are discussed in Section 5.5.

Despite the apparent simplicity of the main argument there were many difficulties we had to address

in the course of this approach. First, we had to extend the results about operator monotone functions in

order to use them for the tightening procedure and be certain that the solution stays unchanged under

these transformations. We also extended some results related to different representations of the aforesaid

transitions, as these situations arise in the tightening procedure (see Section 5.3.1). Finding an easy method

for evaluating the curvatures—by means of the Weingarten map—(see Sections 5.2 and 5.4 and Appendix

F) is also a key ingredient of our analysis. The trickiest part of the algorithm is to handle the cases where

one of the tangent directions of an ellipsoid has infinite curvature. In these cases, the analysis presented

so far breaks down, as the normal vector is no longer well-defined; this is for instance the case for the split

move. To address this issue we had to introduce what we call the wiggle-v method (see Section 5.3.3 and

Section 5.4).

By employing the EMA algorithm we can numerically convert any point game—including those with

arbitrarily small bias— into a WCF protocol. However, such a numerical approach has downsides, as it relies

on assumptions concerning the accuracy of the algorithm. For instance, we assume that the algorithm can

find the roots of polynomials and diagonalize matrices with arbitrary precision; this is not exactly the case,

though, as errors arise related to these processes. Therefore, we also propose an analytical solution based

on this geometric approach and inspired by the EMA algorithm, as described below in Section 1.1.4.

1.1.4 Exact unitaries for C. Mochon’s assignments—a geometric solution

Our last contribution is yet another analytic solution for the 𝑓 -assignments of C. Mochon’s point games,

based this time on the ellipsoid picture. The main result of this geometric approach is summarized in a

restatement of Theorem 2 as follows:

Theorem 5 (informal
7
). Let 𝑡 be an 𝑓 -assignment (see Definition 32). Then, 𝑡 can be expressed as 𝑡 =

∑
𝑖 𝛼𝑖𝑡

′
𝑖

where 𝛼𝑖 > 0 and 𝑡 ′𝑖 are monomial assignments (see Definition 32), and each 𝑡 ′𝑖 admits a solution (see Defini-
tion 34) of the form given in either Proposition 102 or Proposition 104.

7
Some constraints on 𝑓 have been suppressed for brevity.

10

We prove this result in Section 6. We first show how to construct the solution for the simplest 𝑓 -

assignment; the one for which 𝑓 (𝑥) = 𝑥0 = 1. We call it the 𝑓0-assignment because of the zeroth degree

of the polynomial. This construction has all the basic ingredients needed for finding the solution corre-

sponding to higher degree monomial assignments, and can be explained intuitively.

Consider an 𝑓0-assignment to which we are applying the aforementioned ellipsoid approach, assuming

that the contact condition, i.e. ⟨𝑤 |𝑋ℎ |𝑤⟩ = ⟨𝑣 |𝑋𝑔 |𝑣⟩ holds, until the point where we have obtained a

problem of the same form with one less dimension. It turns out that for an 𝑓0-assignment, this contact

condition holds, and, in fact, it continues to hold for all sub-instances of the problem analogously. More

precisely, these conditions correspond to ⟨𝑤 | (𝑋ℎ)𝑘 |𝑤⟩ = ⟨𝑣 | (𝑋𝑔)𝑘 |𝑣⟩, for successively larger integers

𝑘 > 0. Furthermore, since the assignment is a valid function, we know that an 𝑂 satisfying the necessary

conditions exists (see Corollary 144 and Lemma 146). This allows us to iteratively find the solution, 𝑂 , for

the 𝑓0-assignment in Section 6.1. This procedure, however, breaks down for monomial assignments as the

contact condition ceases to hold after a number of iterations. The key idea then, is to invert the inequality

and use𝑋−1

ℎ
≤ 𝑂𝑋−1

𝑔 𝑂𝑇 instead of𝑋ℎ ≥ 𝑂𝑋𝑔𝑂𝑇 . Intuitively, for a monomial assignment of degree𝑚, the 𝑘

that appears above in the contact condition starts from𝑚; using the inverse leads to successively smaller

𝑘 and this allows us to iteratively find the solution,𝑂 , to monomial assignments in Section 6.2. Having the

solutions for monomial assignments effectively gives us the solution to any 𝑓 -assignment, thus permitting

us to construct WCF protocols for the whole family of these point games, including the ones achieving

bias arbitrarily close to zero.

11

2 Existence of almost perfect quantumWCF protocols

The contents of this section are based on two works: the first is by C. Mochon [Moc07]—part of which

is attributed to A.Y. Kitaev—and the second is by D. Aharonov, A. Chailloux, M. Ganz, I. Kerenidis and L.

Magnin [Aha+14b], who simplified and verified the former. We present the results needed to understand

and build our analysis upon, but for their proofs we refer to the original works [Moc07; Aha+14b].

2.1 WCF protocol as an SDP and its dual

Any WCF protocol can be expressed in the following general form (see [Amb04] and page 9 of [Moc07]):

Definition 6 (WCF protocol with bias 𝜖). For 𝑛 even, an 𝑛-message WCF protocol between two parties,

Alice and Bob, is described by

• three Hilbert spaces: 𝐴 and 𝐵 corresponding to Alice’s and Bob’s private work-spaces (Bob does not

have any access to 𝐴 and, similarly, Alice for 𝐵) and a message space 𝑀 ;

• an initial product state |𝜓0⟩ =
��𝜓𝐴,0〉 ⊗ ��𝜓𝑀,0〉 ⊗ ��𝜓𝐵,0〉 ∈ 𝐴 ⊗ 𝑀 ⊗ 𝐵;

• a set of 𝑛 unitaries {𝑈1, . . .𝑈𝑛} acting on 𝐴 ⊗𝑀 ⊗ 𝐵 with𝑈𝑖 = 𝑈𝐴,𝑖 ⊗ I𝐵 for 𝑖 odd and𝑈𝑖 = I𝐴 ⊗𝑈𝐵,𝑖
for 𝑖 even;

• a set of honest states {|𝜓𝑖⟩ : 𝑖 ∈ [𝑛]} defined as |𝜓𝑖⟩ = 𝑈𝑖𝑈𝑖−1 . . .𝑈1 |𝜓0⟩;

• a set of 𝑛 projectors {𝐸1, . . . 𝐸𝑛} acting on 𝐴 ⊗𝑀 ⊗ 𝐵 with 𝐸𝑖 = 𝐸𝐴,𝑖 ⊗ I𝐵 for 𝑖 odd, and 𝐸𝑖 = I𝐴 ⊗ 𝐸𝐵,𝑖
for 𝑖 even, such that 𝐸𝑖 |𝜓𝑖⟩ = |𝜓𝑖⟩;

• two positive operator valued measures (POVMs) {Π (0)
𝐴
,Π (1)

𝐴
} acting on 𝐴 and {Π (0)

𝐵
,Π (1)

𝐵
} acting on

𝐵.

The WCF protocol proceeds as follows:

• In the beginning, Alice holds

��𝜓𝐴,0〉 ��𝜓𝑀,0〉 and Bob

��𝜓𝐵,0〉.

• For 𝑖 = 1 to 𝑛:

– If 𝑖 is odd, Alice applies 𝑈𝑖 and measures the resulting state with the POVM {𝐸𝑖 , I − 𝐸𝑖}. On

the first outcome, she sends the message qubits to Bob; on the second outcome, she ends the

protocol by outputting “0”, i.e, she declares herself to be the winner.

– If 𝑖 is even, Bob applies 𝑈𝑖 and measures the resulting state with the POVM {𝐸𝑖 , I − 𝐸𝑖}. On

the first outcome, he sends the message qubits to Alice; on the second outcome, he ends the

protocol by outputting “1”, i.e., he declares himself to be the winner.

– Alice and Bob measure their part of the state with the final POVM and output the outcome of

their measurements. Alice wins on outcome “0” and Bob on outcome “1”.

The WCF protocol has the following properties:

• Correctness: When both parties are honest, their outcomes are always the same: Π (0)
𝐴

⊗ I𝑀 ⊗
Π (1)
𝐵

|𝜓𝑛⟩ = Π (1)
𝐴

⊗ I𝑀 ⊗ Π (0)
𝐵

|𝜓𝑛⟩ = 0.

• Balanced: When both parties are honest, they win with probability 1/2:

𝑃𝐴 =

���Π (0)
𝐴

⊗ I𝑀 ⊗ Π (0)
𝐵

|𝜓𝑛⟩
���2 = 1

2
and 𝑃𝐵 =

���Π (1)
𝐴

⊗ I𝑀 ⊗ Π (1)
𝐵

|𝜓𝑛⟩
���2 = 1

2
.

12

• 𝜖-biased: When Alice is honest, the probability that both parties agree on Bob winning is 𝑃∗
𝐵
≤ 1

2
+𝜖 .

Conversely, when Bob is honest, the probability that both parties agree on Alice winning is 𝑃∗
𝐴
≤ 1

2
+𝜖 .

For a depiction of the protocol see Figure 4.

Figure 4: Every quantum WCF protocol can be cast into this general form.

To define the bias of the protocol, we need to know 𝑃∗
𝐴

and 𝑃∗
𝐵

corresponding to the best possible

cheating strategy of the opponent. This is formalized by the following (primal) semi-definite program:

Theorem 7 (Primal).
𝑃∗
𝐵
= max Tr((Π (1)

𝐴
⊗ I𝑀)𝜌𝐴𝑀,𝑛) over all 𝜌𝐴𝑀,𝑖 satisfying the constraints

• Tr𝑀 (𝜌𝐴𝑀,0) = Tr𝑀𝐵 (|𝜓0⟩ ⟨𝜓0 |) =
��𝜓𝐴,0〉 〈

𝜓𝐴,0
��;

• for 𝑖 odd, Tr𝑀 (𝜌𝐴𝑀,𝑖) = Tr𝑀 (𝐸𝑖𝑈𝑖𝜌𝐴𝑀,𝑖−1𝑈
†
𝑖
𝐸𝑖);

• for 𝑖 even, Tr𝑀 (𝜌𝐴𝑀,𝑖) = Tr𝑀 (𝜌𝐴𝑀,𝑖−1).

𝑃∗
𝐴
= max Tr((I𝑀 ⊗ Π (0)

𝐵
)𝜌𝑀𝐵,𝑛) over all 𝜌𝐵𝑀,𝑖 satisfying the constraints

13

• Tr𝑀 (𝜌𝑀𝐵,0) = Tr𝐴𝑀 (|𝜓0⟩ ⟨𝜓0 |) =
��𝜓𝐵,0〉 〈

𝜓𝐵,0
��;

• for 𝑖 even, Tr𝑀 (𝜌𝑀𝐵,𝑖) = Tr𝑀 (𝐸𝑖𝑈𝑖𝜌𝑀𝐵,𝑖−1𝑈
†
𝑖
𝐸𝑖);

• for 𝑖 odd, Tr𝑀 (𝜌𝑀𝐵,𝑖) = Tr𝑀 (𝜌𝑀𝐵,𝑖−1).

Remark 8. In fact, one can restrict to unitaries without loss of generality (see page 9 of [Moc07]) by simulat-

ing the projections as coherent measurements and absorbing them into the final measurement. Generality

is not lost because (a) the projections can only improve the bias and (b) a protocol with projections can be

converted into one without projections. The use of projectors, though, can simplify the proofs, as we will

see later. One could have, in addition to the measurement {𝐸𝑖 , I − 𝐸𝑖}, introduced a similar measurement,

say {𝐹𝑖 , I− 𝐹𝑖}, before the unitary. This would yield tr𝑀 (𝜌𝐴𝑀,𝑖) = tr𝑀 (𝐸𝑖𝑈𝑖𝐹𝑖𝜌𝐴𝑀,𝑖−1𝐹𝑖𝑈
†
𝑖
𝐸𝑖) for the SDP of

𝑃∗
𝐵

.

Notice that 𝑃∗
𝐵

depends on Alice’s actions specified in the protocol —as we optimize over all possible

actions of Bob—and thus involves variables such as 𝜌𝐴𝑀,𝑖 and 𝑈𝐴,𝑖 . Analogously, 𝑃∗
𝐴

depends on Bob’s

actions.

A feasible solution to an optimization problem satisfies the constraints but is not necessarily optimal.

For the primal problems, a feasible solution gives a lower bound on 𝑃∗
𝐴

and 𝑃∗
𝐵

(for details and the proof

see [Aha+14b; Moc07]). Instead, we can consider the corresponding dual problems, a feasible solution to

which gives an upper bound on 𝑃∗
𝐴

and 𝑃∗
𝐵

(for details and the proof see [Aha+14b; Moc07]). We can further

prove that in this case strong duality holds [Moc07; Aha+14b]; this means that the optimal value of the

dual program yields 𝑃∗
𝐴

and 𝑃∗
𝐵

exactly and not just a bound. In terms of the protocol, it means that there

exist cheating strategies corresponding to the optimal values of the dual.

Theorem 9 (Dual).
𝑃∗
𝐵
= min Tr(𝑍𝐴,0

��𝜓𝐴,0〉 〈
𝜓𝐴,0

��) over all 𝑍𝐴,𝑖 under the constraints

1. ∀𝑖, 𝑍𝐴,𝑖 ≥ 0;

2. for 𝑖 odd, 𝑍𝐴,𝑖−1 ⊗ I𝑀 ≥ 𝑈 †
𝐴,𝑖
𝐸𝐴,𝑖 (𝑍𝐴,𝑖 ⊗ I𝑀)𝐸𝐴,𝑖𝑈𝐴,𝑖 ;

3. for 𝑖 even, 𝑍𝐴,𝑖−1 = 𝑍𝐴,𝑖 ;

4. 𝑍𝐴,𝑛 = Π (1)
𝐴

.

𝑃∗
𝐴
= min Tr(𝑍𝐵,0

��𝜓𝐵,0〉 〈
𝜓𝐵,0

��) over all 𝑍𝐵,𝑖 under the constraints

1. ∀𝑖, 𝑍𝐵,𝑖 ≥ 0;

2. for 𝑖 even, I𝑀 ⊗ 𝑍𝐵,𝑖−1 ≥ 𝑈 †
𝐵,𝑖
𝐸𝐵,𝑖 (I𝑀 ⊗ 𝑍𝐵,𝑖)𝐸𝐵,𝑖𝑈𝐵,𝑖 ;

3. for 𝑖 odd, 𝑍𝐵,𝑖−1 = 𝑍𝐵,𝑖 ;

4. 𝑍𝐵,𝑛 =
∏(0)
𝐵

.

We add one more constraint to the above dual SDPs.

5.
��𝜓𝐴,0〉 is an eigenvector of𝑍𝐴,0 with eigenvalue 𝛽 > 0 and

��𝜓𝐵,0〉 is an eigenvector of𝑍𝐵,0 with eigenvalue
𝛼 > 0.

Remark 10. As in Remark 8, the dual SDP for 𝑃∗
𝐵

would have yielded the constraint

𝑍𝐴,𝑖−1 ⊗ I𝑀 ≥ 𝐹𝐴,𝑖𝑈
†
𝐴,𝑖
𝐸𝐴,𝑖

(
𝑍𝐴,𝑖 ⊗ I𝑀

)
𝐸𝐴,𝑖𝑈𝐴,𝑖𝐹𝐴,𝑖 for 𝑖 odd.

14

In the next subsection we will see why the fifth constraint is useful; before that we define the dual
feasible points to be those that satisfy this constraint:

Definition 11 (dual feasible points). We call dual feasible points any two sets of matrices {𝑍𝐴,0, . . . , 𝑍𝐴,𝑛}
and {𝑍𝐵,0, . . . , 𝑍𝐵,𝑛} that satisfy the conditions 1 to 5 as listed in Theorem 9.

Related to the dual feasible points, the following proposition also holds (see [Aha+14b; Moc07] for the

proof):

Proposition 12. 𝑃∗
𝐴
= inf 𝛼 and 𝑃∗

𝐵
= inf 𝛽 where the infimum is over all dual feasible points and 𝛽, 𝛼 are

defined in constraint 5 of the definition of the dual feasible points.

2.2 TDPGs with EBM transitions/functions

We would like now to remove all inessential information from the two aforesaid dual problems; that is the

basis information. A. Y. Kitaev achieved this by considering, at a given step, the dual variables 𝑍𝐴, 𝑍𝐵 as

observables with |𝜓 ⟩ governing the probability. This combines the evolution of the certificates on cheating

probabilities with the evolution of the honest state—the state obtained when none of the parties is cheat-

ing.
8

Let us start with the definition of the function ‘Prob’, which essentially permits us to remove the

basis dependence of the dual SDP.

Definition 13 (Prob). Consider𝑍 ≥ 0 and let Π [𝑧]
represent the projector on the eigenspace of eigenvalue

𝑧 ∈ spectrum(𝑍). We have 𝑍 =
∑
𝑧 𝑧Π

[𝑧]
. Let |𝜓 ⟩ be a vector, not necessarily normalized. We define the

function Prob[𝑍,𝜓] : [0,∞) → [0,∞) as

Prob[𝑍,𝜓] (𝑧) =
{
⟨𝜓 | Π [𝑧] |𝜓 ⟩ if 𝑧 ∈ sp(𝑍)
0 else.

If 𝑍 = 𝑍𝐴 ⊗ I𝑀 ⊗ 𝑍𝐵 , using the same notation, we define the 2−variate function Prob[𝑍𝐴, 𝑍𝐵,𝜓] :

[0,∞) × [0,∞) → [0,∞), with finite support, as

Prob[𝑍𝐴, 𝑍𝐵,𝜓] (𝑧𝐴, 𝑧𝐵) =
{
⟨𝜓 | Π [𝑧𝐴] ⊗ I𝑀 ⊗ Π [𝑧𝐵] |𝜓 ⟩ if (𝑧𝐴, 𝑧𝐵) ∈ sp(𝑍𝐴) × sp(𝑍𝐵),
0 else.

We would like the point game framework to be protocol-independent. The following definitions of

Expressible by Matrices (EBM) transitions facilitate such a description.

Definition 14 (Line Transition). A line transition is an ordered pair of finitely supported functions 𝑔, ℎ :

[0,∞) → [0,∞), which we conveniently denote as 𝑔 → ℎ.

Definition 15 (EBM line transition). Let 𝑔, ℎ : [0,∞) → [0,∞) be two functions with finite supports. The

line transition 𝑔 → ℎ is EBM if there exist two matrices 0 ≤ 𝐺 ≤ 𝐻 and a vector |𝜓 ⟩, not necessarily

normalized, such that 𝑔 = Prob [𝐺, |𝜓 ⟩] and ℎ = Prob [𝐻, |𝜓 ⟩].

Definition 16 (EBM transition). Let 𝑔, ℎ : [0,∞) × [0,∞) → [0,∞) be two functions with finite supports.

The transition 𝑔 → ℎ is an

• EBM horizontal transition if for all 𝑦 ∈ [0,∞), 𝑔(., 𝑦) → ℎ(., 𝑦) is an EBM line transition, and

8
Originally, using a similar maneuver, A. Y. Kitaev settled the solvability of the quantum strong coin flipping problem by

giving a lower bound on its bias [Kit03].

15

• EBM vertical transition if for all 𝑥 ∈ [0,∞), 𝑔(𝑥, .) → ℎ(𝑥, .) is an EBM line transition.

Remark 17. When clear from the context, we refer to an EBM line transition also as an EBM transition.

When we wrote the dual SDP, the order of the constraints got inverted, i.e. the condition associated

with the final measurements and states appeared first and the condition associated with the initial state

appeared in the end. We expect the final state to be an EPR-like state to which two points of the point

game can be associated in the basis-independent description of the dual (2–variate function from Defini-

tion 13), while the initial state of the protocol should be unentangled and correspond to a single point in

the basis-independent description of the dual. The rules for moving these points must be related to the

dual constraints and they are already formalized into EBM transitions. The notation

�
𝑥𝑔, 𝑦𝑔

�
(𝑥,𝑦) =

{
1 𝑥𝑔 = 𝑥 and 𝑦𝑔 = 𝑦

0 else

is useful for the description of the EBM point games that follows.

Definition 18 (EBM point game). An EBM point game is a sequence of functions {𝑔0, 𝑔1, . . . , 𝑔𝑛} with

finite support such that

• 𝑔0 = 1/2 ⟦0, 1⟧ + 1/2 ⟦1, 0⟧;

• for all even 𝑖 , 𝑔𝑖 → 𝑔𝑖+1 is an EBM vertical transition;

• for all odd 𝑖 , 𝑔𝑖 → 𝑔𝑖+1 is an EBM horizontal transition;

• 𝑔𝑛 = 1 ⟦𝛽, 𝛼⟧ for some 𝛼, 𝛽 ∈ [0, 1]. We call ⟦𝛽, 𝛼⟧ the final point of the EBM point game.

Since we started with a WCF protocol, considered its dual and re-expressed it as a TDPG (which is just

a basis-independent representation), the following proposition (for the proof see [Aha+14b]) should not

come as a surprise.

Proposition 19 (WCF =⇒ EBM point game). Given a WCF protocol with cheating probabilities 𝑃∗
𝐴

and
𝑃∗
𝐵

, along with a positive real number 𝛿 > 0, there exists an EBM point game with final point
�
𝑃∗
𝐵
+ 𝛿, 𝑃∗

𝐴
+ 𝛿

�
.

The converse statement—given an EBM TDPG the corresponding WCF protocol can be constructed—is

not as easy to see, but indeed it holds. By using only “allowed moves” one can be sure that there exists

a corresponding sequence of unitaries 𝑈𝑖 , measurements Π𝐴/𝐵 and an initial state |𝜓0⟩ complemented by

the dual variables 𝑍𝐴,𝑖 and 𝑍𝐵,𝑖 which certify the bias corresponding to the coordinates of the final point

in the point game.

Theorem 20 (EBM to protocol). Given an EBM point game with final point ⟦𝛽, 𝛼⟧, there exists a WCF
protocol with 𝑃∗

𝐴
≤ 𝛼 and 𝑃∗

𝐵
≤ 𝛽 .

One can find a proof in [Moc07; Aha+14b]. We also sketch an alternative proof later in Section 3 after

Theorem 31. This establishes the equivalence between EBM TDPGs and WCF protocols.

2.3 TDPGs with valid functions

To check whether a given transition is EBM is not an easy task; A. Y. Kitaev and C. Mochon [Moc07] intro-

duced the following alternative characterization of EBM line transitions in order to simplify the analysis.

We use the notation from Equation (2).

16

Proposition 21. Let 𝑔 → ℎ where 𝑔 =
∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
and ℎ =

∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ with all 𝑥𝑔𝑖 , 𝑥ℎ𝑖 being non-

negative and distinct (𝑥𝑔𝑖 ≠ 𝑥𝑔𝑗 and 𝑥ℎ𝑖 ≠ 𝑥ℎ 𝑗
for every 𝑖 ≠ 𝑗), and 𝑝𝑔𝑖 , 𝑝ℎ𝑖 > 0. Then, the transition is EBM if

it is strictly valid, i.e. the following equality holds and the inequalities are strictly satisfied:

𝑛ℎ∑︁
𝑖=1

𝑝ℎ𝑖 =

𝑛𝑔∑︁
𝑖=1

𝑝𝑔𝑖

𝑛ℎ∑︁
𝑖=1

𝑝ℎ𝑖
_𝑥ℎ𝑖

_ + 𝑥ℎ𝑖
≥

𝑛𝑔∑︁
𝑖=1

𝑝𝑔𝑖
_𝑥𝑔𝑖

_ + 𝑥𝑔𝑖
∀_ > 0, and

𝑛ℎ∑︁
𝑖=1

𝑥ℎ𝑖𝑝ℎ𝑖 ≥
𝑛𝑔∑︁
𝑖=1

𝑥𝑔𝑖𝑝𝑔𝑖 .

Conversely, a transition is valid, i.e. satisfies these inequalities (see also Definition 120), if the transition
𝑔 → ℎ is EBM.

Whenever 𝑔 and ℎ have disjoint support, we can equivalently consider the function 𝑡 = ℎ − 𝑔 and

rewrite the above relationships as∑︁
𝑥 ∈supp(𝑡)

𝑡 (𝑥) = 0∑︁
𝑥 ∈supp(𝑥)

𝑡 (𝑥) 𝑓_ (𝑥) ≥ 0 ∀_ > 0, and

∑︁
𝑥 ∈supp(𝑥)

𝑡 (𝑥)𝑥 ≥ 0,

where 𝑓_ (𝑥) =
_𝑥

(_ + 𝑥) . (4)

We may therefore speak of valid and EBM functions instead of transitions (see Definition 120, Definition 106

and Corollary 123), and rephrase Definition 18 in terms of EBM or valid functions instead of transitions

(see Definition 109). We can also extend the definitions of EBM line/horizontal/vertical transitions to EBM

or valid line/horizontal/vertical functions (see Definition 108). The proof of the above Proposition 21, as

presented in [Moc07; Aha+14b], uses an interesting connection with operator monotone functions through

conic duality arguments, and in Appendix A we include the conic duality analysis leading to the proof. In

[Aha+14b; Moc07] the authors start by noticing that the set of EBM functions is a convex cone 𝐾 and its

dual, 𝐾∗
, is the set of operator monotone functions. Then, they show that the bi-dual cone, 𝐾∗∗ = cl(𝐾), is

the set of valid functions. This way, they prove that the set of EBM functions and the set of valid functions

are the same up to closures. We also briefly sketch this proof in Appendix B in the course of showing that

the aforementioned sets are also equal to the set of functions satisfying the constraints of our framework

introduced in Section 3.

This alternative characterization of EBM transitions significantly simplifies the analysis, as it removes

entirely the matrices and trades them for scalar conditions, albeit infinitely many of them, one for each

_ > 0. This simplification, though, comes with a catch. The two cones—the cone of EBM functions and

the dual of the cone of operator monotone functions—are the same, but given an element in the second we

do not have a recipe for finding the matrices certifying that it is an EBM function; only their existence is

guaranteed and this is where C. Mochon’s approach becomes non-constructive. Without these matrices,

we can not find the protocol.

Below, we present examples of valid transitions describing allowed moves in a TDPG. In the first, we

see what can be done with a single point; we can increase its coordinates to raise it in the frame. The

second example is that of merging two (or more) points into one, and the third is about splitting a single

point into two (or more). The proofs for the validity of these transitions can be found in [Moc07].

Example 22 (Point raise). 𝑝
�
𝑥𝑔

�
→ 𝑝 ⟦𝑥ℎ⟧ with 𝑥ℎ ≥ 𝑥𝑔 is a valid transition.

17

Example 23 (Point merge). 𝑝𝑔1

�
𝑥𝑔1

�
+ 𝑝𝑔2

�
𝑥𝑔2

�
→ (𝑝𝑔1

+ 𝑝𝑔2
) ⟦𝑥ℎ⟧ with 𝑥ℎ ≥ 𝑝𝑔

1
𝑥𝑔

1
+𝑝𝑔

2
𝑥𝑔

2

𝑝𝑔
1
+𝑝𝑔

2

is a valid

transition, or generally

∑
𝑖 𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
→ (∑𝑖 𝑝𝑔𝑖) ⟦𝑥ℎ⟧ with 𝑥ℎ ≥

〈
𝑥𝑔

〉
is a valid transition.

Example 24 (Point split). 𝑝𝑔
�
𝑥𝑔

�
→ 𝑝ℎ1

⟦𝑥ℎ1
⟧+𝑝ℎ2

⟦𝑥ℎ2
⟧ with 𝑝𝑔 = 𝑝ℎ1

+𝑝ℎ2
and

𝑝𝑔

𝑥𝑔
≥ 𝑝ℎ

1

𝑥ℎ
1

+ 𝑝ℎ
2

𝑥ℎ
2

is a valid

transition, or generally

(∑
𝑖 𝑝ℎ𝑖

) �
𝑥𝑔

�
→ ∑

𝑖 𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ with
1

𝑥𝑔
≥

〈
1

𝑥ℎ

〉
is a valid transition.

2.4 Time-Independent Point Games (TIPGs)

The protocol with bias 1/6 [Moc05] can be expressed as a TDPG which uses only the moves described in

Example 22, Example 23, Example 24. However, the point game formalism can be further simplified, and it

is in this simplified formalism that C. Mochon constructed his family of point games achieving arbitrarily

small bias. Instead of considering the entire sequence of horizontal and vertical transitions, he focused on

just two functions (hence the name time-independent), as described below:

Definition 25 (TIPG). A time-independent point game (TIPG) is a valid horizontal function, denoted by 𝑎,

and a valid vertical function, denoted by 𝑏, such that

𝑎 + 𝑏 = 1 ⟦𝛽, 𝛼⟧ − 1

2

⟦0, 1⟧ − 1

2

⟦1, 0⟧

for some 𝛼, 𝛽 > 1/2. Further

• we call the point ⟦𝛽, 𝛼⟧ the final point of the game, and

• we call the set S = ((supp(𝑎) ∪ supp(𝑏)) \supp(𝑎 + 𝑏), the set of intermediate points.

Remark 26. When clear from the context, we may use the word TIPG even when 𝑎 + 𝑏 is not necessarily

⟦𝛽, 𝛼⟧ − 1

2
(⟦0, 1⟧ + ⟦1, 0⟧) but some other function, 𝑐 , with finite support in [0,∞) × [0,∞) satisfying∑

𝑥 ∈supp(𝑐) 𝑐 (𝑥) = 0.

Theorem 27 (TIPG to valid point games). Given a TIPG with a valid horizontal function 𝑎 and a valid
vertical function 𝑏 such that 𝑎 +𝑏 = 1 ⟦𝛽, 𝛼⟧− 1

2
⟦0, 1⟧− 1

2
⟦1, 0⟧, we can construct, for all 𝜖 > 0, a valid point

game with its final point being ⟦𝛽 + 𝜖, 𝛼 + 𝜖⟧, where the number of transitions depends on 𝜖 .

If we have a valid point game we can combine the horizontal and vertical functions to obtain 𝑎 and 𝑏.

In particular, if the valid point game with final point ⟦𝛽, 𝛼⟧ is specified by 𝑎1, 𝑎2 . . . 𝑎𝑛 valid horizontal and

𝑏1, 𝑏2 . . . 𝑏𝑛 valid vertical functions, then the corresponding TIPG is specified by𝑎 =
∑𝑛
𝑖=1
𝑎𝑖 and𝑏 =

∑𝑛
𝑖=1
𝑏𝑖 ,

which are horizontally and vertically valid, respectively, and satisfy 𝑎 + 𝑏 = ⟦𝛽, 𝛼⟧ − 1

2
⟦0, 1⟧ − 1

2
⟦1, 0⟧.

It is a little counter-intuitive that a TIPG can be converted to a valid TDPG with an arbitrarily small

cost on the bias, as it is not clear how a time ordered sequence can be extracted. We might run into

causal loops; we expect a point to be present to create another point which in turn is required to produce

the first point. The trick is to employ the method of the catalyst state [Moc07; Aha+14b]: we deposit a

little bit of weight wherever there is negative weight for 𝑎, for instance, and then we can implement a

scaled down round of 𝑎 and 𝑏. The scaling is proportional to the weight that is placed in the beginning.

Repeating this procedure multiple times yields the required final state along with the catalyst state which

stays unchanged. Absorbing the catalyst state leads to a small increase in the bias. The number of rounds

increases with how small we want this increase in the bias. In particular, we have the following corollary,

whose proof along with the proof of Theorem 27 can be found in [Moc07; Aha+14b].

Corollary 28. Consider a TIPG with a valid horizontal function 𝑎 = 𝑎+ − 𝑎− and a valid vertical function
𝑏 = 𝑏+ −𝑏− such that 𝑎 +𝑏 = ⟦𝛽, 𝛼⟧− 1

2
⟦0, 1⟧− 1

2
⟦1, 0⟧. Let Γ be the largest coordinate of all the points that

appear in the TIPG. Then, for all 𝜖 > 0, we can construct a point game with O
(
∥𝑏 ∥Γ2

𝜖2

)
valid transitions and

final point ⟦𝛽 + 𝜖, 𝛼 + 𝜖⟧.

18

2.5 C. Mochon’s TIPG achieving bias 𝜖 (𝑘) = 1/(4𝑘 + 2)
The existence of quantum WCF protocols with arbitrarily small bias was established by C. Mochon as

follows. He constructed a family of TIPGs, parametrized by an integer 𝑘 > 0, such that the final point is�
1

2
+ 𝜖 (𝑘), 1

2
+ 𝜖 (𝑘)

�
, where 𝜖 (𝑘) = 1/(4𝑘 + 2). To achieve bias 𝜖 (𝑘) we must have 𝑘 = O(1

𝜖
), therefore for

large 𝑘 we achieve almost zero bias [Moc07] (see Figure 5a). Let us briefly describe the general structure

(a) Illustration of C. Mochon’s TIPG for 𝑘 =

2.

(b) C. Mochon’s TIPG may be understood in three stages, the initial splits, the ladder, and the raises.

Figure 5: Mochon’s TIPG

of these games. Apart from their initial points, ⟦0, 1⟧ and ⟦1, 0⟧, all the other points involved are placed

on a regular lattice, i.e. at locations of the form ⟦𝑎𝜔,𝑏𝜔⟧ where 𝑎, 𝑏 ∈ N and 𝜔 ∈ (0,∞). The final point of

the games is at ⟦𝛼, 𝛼⟧ for 𝛼 = Z𝜔 = 1

2
+ O

(
1

𝑘

)
where Z ∈ N, and in general, they have the following three

stages (see Figure 5b):

1. Split. The point ⟦0, 1⟧ is vertically split into many points along the 𝑦-axis. The resulting points lie

between Z𝜔 and Γ𝜔 with Z , Γ ∈ N. Analogously, the point ⟦1, 0⟧ is horizontally split into many

points along the 𝑥-axis.

2. Ladder. This is the main non-trivial move of the games parametrized by an integer 𝑘 > 0, and it

consists of points along the diagonal and along the axes (see the second image in Figure 5b). The

points on the axis are transformed by the ladder into the final points ⟦𝛼 − 𝑘𝜔, 𝛼⟧ and ⟦𝛼, 𝛼 − 𝑘𝜔⟧.

3. Raise. The two points ⟦𝛼 − 𝑘𝜔, 𝛼⟧ and ⟦𝛼, 𝛼 − 𝑘𝜔⟧ are raised to the final point ⟦𝛼, 𝛼⟧.

For each integer 𝑘 > 0 there exist parameters 𝜔, Γ ∈ (0,∞) such that the two initial splits are valid,

the ladder corresponds to a horizontally and vertically valid function, and 𝛼 = 1

2
+ O

(
1

𝑘

)
(see [Moc07;

Aha+14b]).

The key technical tool that C. Mochon introduced is the following: given a set of point coordinates, he

constructed a way of assigning non-trivial weights to them such that this assignment is valid while still

19

retaining considerable freedom. This weight assignment is parametrized by a polynomial and works for

essentially all polynomials up to a certain degree. In other words, he simplified the validity condition by

restricting to a class of functions which are easy to manipulate and valid by construction.

Lemma 29. Let

• 𝑥1, 𝑥2 . . . 𝑥𝑛 be non-negative and distinct real numbers,

• 𝑓 be a polynomial of degree at most 𝑛 − 1 satisfying 𝑓 (−_) ≥ 0 for all _ ≥ 0.

Then, 𝑎 =
∑𝑛
𝑖=1

−𝑓 (𝑥)∏
𝑗≠𝑖 (𝑥 𝑗−𝑥𝑖) ⟦𝑥𝑖⟧ is a valid function.

This function 𝑎, i.e. the function that C. Mochon uses to assign the probability weights to the points of

his TIPGs, is what we call in our analysis an 𝑓 -assignment; in Section 4 we provide for this Definition 32,

which is tailored to our purpose of constructing an analytical solution.

20

3 TDPG-to-Explicit-protocol Framework (TEF) and bias 1/10 game and
protocol

In this section, we give a framework for converting TDPGs into explicit protocols granted that an EBM-

like condition (see Definition 15) holds, and we then use it to construct the unitaries that specify WCF

protocols approaching bias 1/10.

Our goal is to construct a protocol (see Definition 6) such that its dual (see Theorem 9) matches a given

TDPG. The main difference in our construction, compared to [Aha+14b] and [Moc07], is that the message

register decouples after each round by suitably placing the cheat-detection projectors. Consequently, the

non-trivial constraint that the dual matrices must satisfy turns out to be similar to the EBM condition.

With Definition 13 in mind, intuitively, the most natural way of constructing 𝑍 and |𝜓 ⟩, given an arbitrary

frame, is to construct an entangled state that encodes the weight, and define 𝑍 to contain the coordinates

corresponding to this weight. The so-called Canonical Form makes this precise.

Definition 30 (Canonical Form). The tuple (|𝜓 ⟩ , 𝑍𝐴, 𝑍𝐵) is said to be in the Canonical Form with respect

to a set of points in a frame of a TDPG
9

if |𝜓 ⟩ = ∑
𝑖

√
𝑃𝑖 |𝑖𝑖⟩𝐴𝐵⊗|𝜑⟩𝑀 ,𝑍𝐴 =

∑
𝑥𝑖 |𝑖⟩ ⟨𝑖 |𝐴 and𝑍𝐵 =

∑
𝑦𝑖 |𝑖⟩ ⟨𝑖 |𝐵

where |𝜑⟩𝑀 represents the state of extra uncoupled registers which might be present.

The label |𝑖𝑖⟩ corresponds to a point with coordinates 𝑥𝑖 , 𝑦𝑖 and weight 𝑃𝑖 in the frame (see also Fig-

ure 6a). It is tempting to imagine that we systematically construct, from each frame of a TDPG, a canonical

form of |𝜓 ⟩ 𝑠 and 𝑍s, and the unitaries can be deduced from the evolution of |𝜓 ⟩. However, this approach

has two problems: first, the unitaries are not necessarily decomposable into moves by Alice and Bob who

communicate only through the message register and, second, the constraints imposed on consecutive 𝑍s,

of the form 𝑍𝑛−1 ⊗ I ≥ 𝑈 †
𝑛 (𝑍𝑛 ⊗ I)𝑈𝑛 , are not satisfied in general. Our approach solves these issues. The

outputs of our framework are variables indexed as

��𝜓 (𝑖)
〉
, 𝑍 (𝑖) , 𝑈 (𝑖) (see Definition 18 and Proposition 19)

and they are produced in the reverse time convention with respect to the protocol. This means that the

variables at the 𝑖th step of the protocol (which follows the forward time convention) would be given by

|𝜓𝑖⟩ =
��𝜓 (𝑁−𝑖)

〉
, 𝑍𝑖 = 𝑍 (𝑁−𝑖) and 𝑈𝑖 = 𝑈

†
(𝑁−𝑖) . Furthermore, our results extend naturally to the case where

𝑈𝑖 may not be unitary and contains projections, e.g. 𝑈𝑖𝐸𝑖 = 𝐸 (𝑁−𝑖)𝑈
†
(𝑁−𝑖) . After presenting the framework,

we construct the unitaries that implement the three basic moves of a TDPG given in Example 22, Exam-

ple 24 and Example 23. When generalized to 𝑛 points these moves are enough to construct the protocol

with bias 1/6 from its TDPG [Moc05; Moc07], however they do not exhaust the set of possible moves and

we need to consider more advanced ones to go below bias 1/6.

3.1 The framework

Let us start with an informal outline of our framework. Assume that a canonical description is given. Let

the labels on the points we want to transform be {𝑔𝑖}, and let us also assume that we wish to apply a

horizontal-transition, i.e. Alice performs the non-trivial step. Let the labels of the points that will be left

unchanged be {𝑘𝑖} (see Figure 6b). We can write the state as

��𝜓 (1)
〉
=

(∑︁
𝑖

√︁
𝑝𝑔𝑖 |𝑔𝑖𝑔𝑖⟩𝐴𝐵 +

∑︁
𝑖

√
𝑝𝑘𝑖 |𝑘𝑖𝑘𝑖⟩𝐴𝐵

)
⊗ |𝑚⟩𝑀 .

9
One could define the canonical form for any frame but we only use it for those arising from TDPGs.

21

(a) Frame of a TDPG

(b) The points which are unchanged from one frame to another are labeled by {𝑘𝑖 }. Among the

points that change, the initial ones are labeled by {𝑔𝑖 } and the final ones by {ℎ𝑖 }.

Figure 6: Illustrations for the Canonical Form

We
10

want Bob to send his part of |𝑔𝑖⟩ states to Alice through the message register. One way is that to

conditionally swap to obtain��𝜓 (2)
〉
=

∑︁
𝑖

√︁
𝑝𝑔𝑖 |𝑔𝑖𝑔𝑖⟩𝐴𝑀 ⊗ |𝑚⟩𝐵 +

∑︁
𝑖

√
𝑝𝑘𝑖 |𝑘𝑖𝑘𝑖⟩𝐴𝐵 ⊗ |𝑚⟩𝑀 .

This way, all the points align along the 𝑦−axis, while the respective 𝑥−coordinates remain the same due to

the fact that it is a horizontal transition. Let {ℎ𝑖} be the labels of the new points after the transformation.

We assume that ℎ𝑖 , 𝑔𝑖 and 𝑘𝑖 index orthonormal vectors. Alice can update the probabilities and labels by

locally performing a unitary to obtain��𝜓 (3)
〉
=

∑︁
𝑖

√
𝑝ℎ𝑖 |ℎ𝑖ℎ𝑖⟩𝐴𝑀 ⊗ |𝑚⟩𝐵 +

∑︁
𝑖

√
𝑝𝑘𝑖 |𝑘𝑖𝑘𝑖⟩𝐴𝐵 ⊗ |𝑚⟩𝑀 .

It is precisely this step which yields the non-trivial constraint. Bob must now accept this by ‘unswapping’

to get ��𝜓 (4)
〉
=

(∑︁
𝑖

√
𝑝ℎ𝑖 |ℎ𝑖ℎ𝑖⟩𝐴𝐵 +

∑︁
𝑖

√
𝑝𝑘𝑖 |𝑘𝑖𝑘𝑖⟩𝐴𝐵

)
⊗ |𝑚⟩𝑀 .

10
To be explicit, for X ∈ {A,M,B}, the Hilbert space X is the span of the orthonormal vectors

{{|𝑔𝑖 ⟩𝑋 }𝑖 , {|𝑘𝑖 ⟩𝑋 }𝑖 , {|ℎ𝑖 ⟩𝑋 }𝑖 , |𝑚⟩}

22

In the actual protocol the sequence is in the reverse time convention. Note also that we add a few extra

frames to the final TDPG to go from a given frame to the next of the original TDPG. This is irrelevant,

when resource usage is not of interest, as the bias does not change.

We now fill in the details and prove the correctness of the above sequence of steps.

1. First frame. ��𝜓 (1)
〉
=

(∑︁
𝑖

√︁
𝑝𝑔𝑖 |𝑔𝑖𝑔𝑖⟩𝐴𝐵 +

∑︁
𝑖

√
𝑝𝑘𝑖 |𝑘𝑖𝑘𝑖⟩𝐴𝐵

)
⊗ |𝑚⟩𝑀

𝑍𝐴(1) =
∑︁
𝑖

𝑥𝑔𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖 |𝐴 +
∑︁
𝑖

𝑥𝑘𝑖 |𝑘𝑖⟩ ⟨𝑘𝑖 |𝐴

𝑍𝐵(1) =
∑︁
𝑖

𝑦𝑔𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖 |𝐵 +
∑︁
𝑖

𝑦𝑘𝑖 |𝑘𝑖⟩ ⟨𝑘𝑖 |𝐵 .

Proof. Follows from the assumption of starting with a Canonical Form. □

2. Bob sends to Alice. With 𝑦 ≥ max{𝑦𝑔𝑖 } the following choice��𝜓 (2)
〉
=

∑︁
𝑖

√︁
𝑝𝑔𝑖 |𝑔𝑖𝑔𝑖⟩𝐴𝑀 ⊗ |𝑚⟩𝐵 +

∑︁
𝑖

√
𝑝𝑘𝑖 |𝑘𝑖𝑘𝑖⟩𝐴𝐵 ⊗ |𝑚⟩𝑀

𝑈 (1) = 𝑈
SWP{ ®𝑔,𝑚}
𝐵𝑀

𝑍𝐴(2) = 𝑍
𝐴
(1) and 𝑍𝐵(2) = 𝑦I

{ ®𝑔,𝑚}
𝐵

+
∑︁
𝑖

𝑦𝑘𝑖 |𝑘𝑖⟩ ⟨𝑘𝑖 |𝐵 ,

is a viable choice, in the sense that it satisfies the properties (1)

��𝜓 (2)
〉
= 𝑈 (1)

��𝜓 (1)
〉
, and (2)𝑈

†
(1)

(
𝑍𝐵(2) ⊗ I𝑀

)
𝑈 (1) ≥(

𝑍𝐵(1) ⊗ I𝑀
)
.

Proof. We have to prove that the above properties (1) and (2) are satisfied. (1) It follows trivially from

the defining action of𝑈 (1) .
(2) For ease of notation, let𝑈 = 𝑈 (1) and note that𝑈 † = 𝑈 , so that we can write

𝑈

(
𝑍𝐵(2) ⊗ I𝑀

)
𝑈

= 𝑦

©«
𝑈

(
I
{ ®𝑔,𝑚}
𝐵

⊗ I{ ®𝑔,𝑚}
𝑀

)
𝑈 +𝑈

(
I
{ ®𝑔,𝑚}
𝐵

⊗ I{®𝑘,®ℎ}
𝑀

)
︸ ︷︷ ︸

outside𝑈 ’s action space

𝑈

ª®®®®®¬
+𝑈

(∑︁
𝑦𝑘𝑖 |𝑘𝑖⟩ ⟨𝑘𝑖 | ⊗ I

)
︸ ︷︷ ︸

outside𝑈 ’s action space

𝑈 = 𝑍 (2) ⊗ I𝑀 ≥ 𝑍 (1) ⊗ I𝑀

so long
11

as 𝑦 ≥ 𝑦𝑔𝑖 which is guaranteed by the choice of 𝑦. □

11
By the action space of𝑈 we mean the space where𝑈 acts non-trivially.

23

3. Alice’s non-trivial step. Consider the following choice��𝜓 (3)
〉
=

∑︁
𝑖

√
𝑝ℎ𝑖 |ℎ𝑖ℎ𝑖⟩𝐴𝑀 ⊗ |𝑚⟩𝐵 +

∑︁
𝑖

√
𝑝𝑘𝑖 |𝑘𝑖𝑘𝑖⟩𝐴𝐵 ⊗ |𝑚⟩𝑀

𝐸 (2)𝑈 (2) = 𝐸 (2)
(
|𝑤⟩ ⟨𝑣 | + other terms acting on span{ |ℎ𝑖ℎ𝑖⟩ , |𝑔𝑖𝑔𝑖⟩}

)
𝐴𝑀

𝑍𝐴(3) =
∑︁
𝑖

𝑥ℎ𝑖 |ℎ𝑖⟩ ⟨ℎ𝑖 | +
∑︁
𝑖

𝑥𝑘𝑖 |𝑘𝑖⟩ ⟨𝑘𝑖 | and 𝑍𝐵(3) = 𝑍
𝐵
(2)

where

|𝑣⟩ =
∑
𝑖
√
𝑝𝑔𝑖 |𝑔𝑖𝑔𝑖 ⟩√︁∑
𝑖 𝑝𝑔𝑖

, |𝑤⟩ =
∑
𝑖
√
𝑝ℎ𝑖 |ℎ𝑖ℎ𝑖 ⟩√︁∑
𝑖 𝑝ℎ𝑖

, 𝐸 (2) =
(∑︁

|ℎ𝑖 ⟩ ⟨ℎ𝑖 |𝐴 +
∑︁

|𝑘𝑖 ⟩ ⟨𝑘𝑖 |𝐴
)
⊗ I𝑀

subject to the condition∑︁
𝑥ℎ𝑖 |ℎ𝑖ℎ𝑖⟩ ⟨ℎ𝑖ℎ𝑖 | ≥

∑︁
𝑥𝑔𝑖𝐸 (2)𝑈 (2) |𝑔𝑖𝑔𝑖⟩ ⟨𝑔𝑖𝑔𝑖 |𝑈 †

(2)𝐸 (2) (5)

and the conservation of probability, viz.

∑
𝑝𝑔𝑖 =

∑
𝑝ℎ𝑖 . We claim that this choice is viable, in the

sense that it satisfies the conditions (1)𝐸 (2)
��𝜓 (3)

〉
= 𝑈 (2)

��𝜓 (2)
〉
, and (2)𝑍𝐴(3)⊗I𝑀 ≥ 𝐸 (2)𝑈 (2)

(
𝑍𝐴(2) ⊗ I𝑀

)
𝑈

†
(2)𝐸 (2) .

Proof. We must show that (1) and (2) as above hold. For (1) we observe that 𝐸 (2)
��𝜓 (3)

〉
=

��𝜓 (3)
〉

and

the statement holds by construction of𝑈 (2) .
(2) Consider the spaceH = span {|𝑔1𝑔1⟩ , |𝑔2𝑔2⟩ . . . , |ℎ1ℎ1⟩ , |ℎ2, ℎ2⟩ . . . } which is a subspace of A⊗M
(space of Alice and the message register). One can write A ⊗ M = H ⊕ H⊥

. We separate all

expressions which act on the H space from the rest. We start with the RHS, excluding the𝑈 (2) ’s,

𝑍𝐴(2) ⊗ I𝑀 =
∑︁

𝑥𝑔𝑖 |𝑔𝑖𝑔𝑖⟩ ⟨𝑔𝑖𝑔𝑖 |︸ ︷︷ ︸
I

+
∑︁

𝑥𝑔𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖 | ⊗ (I − |𝑔𝑖⟩ ⟨𝑔𝑖 |) +
∑︁

𝑥𝑘𝑖 |𝑘𝑖⟩ ⟨𝑘𝑖 | ⊗ I.

Note that 𝑍𝐴(2) ⊗ I𝑀 is block diagonal with respect to H ⊕ H⊥
, with term I making the first block

(corresponding to H), and the rest constituting the second block. Next consider the LHS,

𝑍𝐴(3) ⊗ I𝑀 =
∑︁

𝑥ℎ𝑖 |ℎ𝑖ℎ𝑖 ⟩ ⟨ℎ𝑖ℎ𝑖 |︸ ︷︷ ︸
I

+
∑︁

𝑥ℎ𝑖 |ℎ𝑖 ⟩ ⟨ℎ𝑖 | ⊗ (I − |ℎ𝑖 ⟩ ⟨ℎ𝑖 |) +
∑︁

𝑥𝑘𝑖 |𝑘𝑖 ⟩ ⟨𝑘𝑖 | ⊗ I,

which is also block diagonal with respect to H ⊕ H⊥
and has only term I in the first block. Con-

sequently, only on these will 𝑈 (2) have a non-trivial action (as 𝑈 (2) is of the form

[
𝑈 0

0 IH⊥

]
wrt

H ⊕H⊥
). Let us first evaluate the non-H part where we only need to apply the projector. The result

after separating equations where possible is∑︁
𝑥ℎ𝑖 |ℎ𝑖⟩ ⟨ℎ𝑖 | ⊗ (I − |ℎ𝑖⟩ ⟨ℎ𝑖 |) ≥ 0, and

∑︁
(𝑥𝑘𝑖 − 𝑥𝑘𝑖) |𝑘𝑖⟩ ⟨𝑘𝑖 | ⊗ I ≥ 0,

which imply 𝑥ℎ𝑖 ≥ 0. The non-trivial part yields∑︁
𝑥ℎ𝑖 |ℎ𝑖ℎ𝑖⟩ ⟨ℎ𝑖ℎ𝑖 | ≥

∑︁
𝑥𝑔𝑖𝐸 (2)𝑈 (2) |𝑔𝑖𝑔𝑖⟩ ⟨𝑔𝑖𝑔𝑖 |𝑈 †

(2)𝐸 (2)

completing the proof. □

24

4. Bob accepts Alice’s change. The following holds:��𝜓 (4)
〉
=

(∑︁
𝑖

√
𝑝ℎ𝑖 |ℎ𝑖ℎ𝑖⟩𝐴𝐵 +

∑︁
𝑖

√
𝑝𝑘𝑖 |𝑘𝑖𝑘𝑖⟩𝐴𝐵

)
⊗ |𝑚⟩𝑀

𝐸 (3)𝑈 (3) = 𝐸 (3)𝑈
SWP{ ®ℎ,𝑚}
𝐵𝑀

𝑍𝐴(4) = 𝑍
𝐴
(3) and 𝑍𝐵(4) = 𝑦

∑︁
𝑖

|ℎ𝑖⟩ ⟨ℎ𝑖 | +
∑︁
𝑖

𝑦𝑘𝑖 |𝑘𝑖⟩ ⟨𝑘𝑖 |𝐵 ,

where 𝐸 (3) = (∑ |ℎ𝑖⟩ ⟨ℎ𝑖 | +
∑ |𝑘𝑖⟩ ⟨𝑘𝑖 |)𝐵 ⊗ I𝑀 .

Proof. We have to prove: (1) 𝐸 (3)
��𝜓 (4)

〉
= 𝑈 (3)

��𝜓 (3)
〉

and (2)𝑍𝐵(4) ⊗ I𝑀 ≥ 𝐸 (3)𝑈 (3)
(
𝑍𝐵(3) ⊗ I𝑀

)
𝑈

†
(3)𝐸 (3) .

The first equality (1) can be shown by a direct application of 𝑈 †𝐸 on

��𝜓 (4)
〉
, where 𝐸,𝑈 denote 𝐸 (3)

and𝑈 (3) , respectively, in this proof for ease of notation.

(2) Note that

𝐸𝑈

(
I
{ ®𝑔,𝑚}
𝐵

⊗ I{
®ℎ,®𝑔,®𝑘,𝑚}
𝑀

)
𝑈 †𝐸 = 𝐸𝑈

(
I
{𝑚}
𝐵

⊗ I{
®ℎ,®𝑔,®𝑘,𝑚}
𝑀

)
𝑈 †𝐸 + 𝐸

(
I
{ ®𝑔}
𝐵

⊗ I{
®ℎ,®𝑔,®𝑘,𝑚}
𝑀

)
𝐸

= 𝐸𝑈

(
I
{𝑚}
𝐵

⊗ I{
®ℎ,𝑚}
𝑀

)
𝑈 †𝐸 =

∑︁
|ℎ𝑖 ⟩ ⟨ℎ𝑖 | ⊗ I{𝑚}

𝑀
.

Since the other term in 𝑍𝐵(3) ⊗ I is not in the action space of𝑈 it follows that

𝐸𝑈 (𝑍𝐵(3) ⊗ I)𝑈
†𝐸 = 𝑦

∑︁
|ℎ𝑖⟩ ⟨ℎ𝑖 | ⊗ I{𝑚}

𝑀
+

∑︁
𝑦𝑘𝑖 |𝑘𝑖⟩ ⟨𝑘𝑖 | ⊗ I𝑀 .

It only remains to show that 𝑍𝐵(4) ⊗ I𝑀 ≥ 𝐸𝑈

(
𝑍𝐵(3) ⊗ I𝑀

)
𝑈 †𝐸 which holds as 𝑦

∑ |ℎ𝑖⟩ ⟨ℎ𝑖 | ⊗ I𝑀 ≥
𝑦
∑ |ℎ𝑖⟩ ⟨ℎ𝑖 | ⊗ I{𝑚}

𝑀
and the 𝑦𝑘𝑖 term is common. □

The above analysis can be distilled in the following Theorem 31, which includes the so-called TEF con-
straints, i.e. the conditions of our framework, which—when satisfied by some unitary—permit the trans-

formation of the TDPG into an explicit WCF protocol by means of this unitary. The proof of the theorem

is a straightforward consequence of the above.

Theorem 31. For an 𝑥-transition (where Alice performs the non-trivial step)

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖 ⟦𝑥𝑘𝑖⟧ +
𝑛𝑔∑︁
𝑖=1

𝑝𝑔𝑖
�
𝑥𝑔𝑖

�
→

𝑛ℎ∑︁
𝑖=1

𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ +
𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖 ⟦𝑥𝑘𝑖⟧

to be implementable under the TDPG-to-Explicit-protocol Framework (TEF) it suffices to find a 𝑈 (2) that sat-
isfies the inequality

𝑛ℎ∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖ℎ𝑖⟩ ⟨ℎ𝑖ℎ𝑖 |𝐴𝑀 ≥
𝑛𝑔∑︁
𝑖=1

𝑥𝑔𝑖𝐸
ℎ
(2)𝑈 (2) |𝑔𝑖𝑔𝑖⟩ ⟨𝑔𝑖𝑔𝑖 |𝐴𝑀 𝑈

†
(2)𝐸

ℎ
(2) (6)

and the honest action constraint𝑈 (2) |𝑣⟩ = |𝑤⟩, where |ℎ𝑖⟩ and |𝑔𝑖⟩ are orthonormal basis vectors,

|𝑣⟩ = N
(∑︁√︁

𝑝𝑔𝑖 |𝑔𝑖𝑔𝑖⟩𝐴𝑀
)

and |𝑤⟩ = N
(∑︁√

𝑝ℎ𝑖 |ℎ𝑖ℎ𝑖⟩𝐴𝑀
)

for N(|𝜓 ⟩) = |𝜓 ⟩ /
√︁
⟨𝜓 |𝜓 ⟩, 𝐸ℎ =

(∑𝑛ℎ
𝑖=1

|ℎ𝑖⟩ ⟨ℎ𝑖 |𝐴 + ∑ |𝑘𝑖⟩ ⟨𝑘𝑖 |𝐴
)
⊗ I𝑀 with𝑈 (2) ’s non-trivial action restricted

to span
{
{|𝑔𝑖𝑔𝑖⟩𝐴𝑀 }, {|ℎ𝑖ℎ𝑖⟩𝐴𝑀 }

}
, and |𝑘𝑖⟩ correspond to the points that are left unchanged in the transition.

25

Theorem 31 also leads to Theorem 20 by showing that the EBM condition implies that the inequality

appearing in Theorem 31 can be satisfied. There are two difficulties, the first is that in Equation (6) there

is a projector and the second is that the matrices have a certain dimension; neither of the two holds for

EBM. We address these issues in Section 5, by arguing that the projector can be seen as the limiting case

of one of the matrices having diverging eigenvalues (see Section 5.1). We also show in Appendix E that it

is sufficient to restrict to orthogonal matrices, and—as C. Mochon proved—in particular to matrices of size

𝑛ℎ + 𝑛𝑔 − 1 (see Lemma 146). Together, these establish Theorem 20.

The set of functions satisfying the TEF constraints is the closure of the set of EBM functions which,

in turn, is the set of valid functions (see Appendix B). Thus, using the TEF, we can directly associate valid

games with WCF protocols, granted that the non-trivial unitary,𝑈 (2) , can be found. This allows us to skip

the notion of strictly valid functions (see Definition 127) and makes our approach simpler, in some sense,

compared to the previous one which relied on strictly valid functions.

3.1.1 Special case: the blinkered unitary

So far we have not specified the non-trivial 𝑈 (2)—which we call 𝑈 from now, and, similarly, 𝐸ℎ(2) =

𝐸—beyond requiring it to have a certain action on the honest state. We now define the blinkered unitary,

an important class of such unitaries, as

𝑈 = |𝑤⟩ ⟨𝑣 | + |𝑣⟩ ⟨𝑤 | +
∑︁
𝑖

|𝑣𝑖⟩ ⟨𝑣𝑖 | +
∑︁
𝑖

|𝑤𝑖⟩ ⟨𝑤𝑖 | + Ioutside H,

where H = span {|𝑔1𝑔1⟩ , |𝑔2𝑔2⟩ . . . , |ℎ1ℎ1⟩ , |ℎ2, ℎ2⟩ . . . }. We can ignore the last term and restrict our

analysis to the H -operator space, where |𝑣⟩ , {|𝑣𝑖⟩} form a complete orthonormal basis with respect to

span{|𝑔𝑖𝑔𝑖⟩}, and so do |𝑤⟩ , {|𝑤𝑖⟩} for span{|ℎ𝑖ℎ𝑖⟩}. The blinkered unitary can be used to implement the

two non-trivial operations of the set of basic moves, namely the merge (see Example 23) and the split (see

Example 24).

• Merge: 𝑔1, 𝑔2 → ℎ1

From the very definitions we construct

|𝑣⟩ =
√
𝑝𝑔1

|𝑔1𝑔1⟩ +
√
𝑝𝑔2

|𝑔2𝑔2⟩
𝑁

, |𝑣1⟩ =
√
𝑝𝑔2

|𝑔1𝑔1⟩ −
√
𝑝𝑔1

|𝑔2𝑔2⟩
𝑁

, |𝑤⟩ = |ℎ1ℎ1⟩

with 𝑁 =
√
𝑝𝑔1

+ 𝑝𝑔2
and𝑈 = |𝑤⟩ ⟨𝑣 | + |𝑣⟩ ⟨𝑤 | + |𝑣1⟩ ⟨𝑣1 | = 𝑈 †. We need

𝐸𝑈 |𝑔1𝑔1⟩ =
√
𝑝𝑔1

|𝑤⟩
𝑁

and 𝐸𝑈 |𝑔2𝑔2⟩ =
√
𝑝𝑔2

|𝑤⟩
𝑁

,

since the constraint is 𝑥ℎ |ℎ1ℎ1⟩ ⟨ℎ1ℎ1 | ≥
∑
𝑥𝑔𝑖𝐸𝑈 |𝑔𝑖𝑔𝑖⟩ ⟨𝑔𝑖𝑔𝑖 |𝑈 †𝐸; it becomes 𝑥ℎ ≥ 𝑝𝑔

1
𝑥𝑔

1
+𝑝𝑔

2
𝑥𝑔

2

𝑁 2
,

which is precisely the merge condition (see Example 23).

• Split: 𝑔1 → ℎ1, ℎ2

Here, we construct

|𝑣⟩ = |𝑔1𝑔1⟩ , |𝑤⟩ =
√
𝑝ℎ1

|ℎ1ℎ1⟩ +
√
𝑝ℎ2

|ℎ2ℎ2⟩
𝑁

, |𝑤1⟩ =
√
𝑝ℎ2

|ℎ1ℎ1⟩ −
√
𝑝ℎ1

|ℎ2ℎ2⟩
𝑁

with 𝑁 =
√
𝑝ℎ1

+ 𝑝ℎ2
and𝑈 = |𝑣⟩ ⟨𝑤 | + |𝑤⟩ ⟨𝑣 | + |𝑤1⟩ ⟨𝑤1 | = 𝑈 †. We evaluate 𝐸𝑈 |𝑔1𝑔1⟩ = |𝑤⟩ which

we substitute into the constraint to obtain

𝑥ℎ1
|ℎ1ℎ1⟩ ⟨ℎ1ℎ1 | + 𝑥ℎ2

|ℎ2ℎ2⟩ ⟨ℎ2ℎ2 | − 𝑥𝑔1
|𝑤⟩ ⟨𝑤 | ≥ 0.

26

This yields the matrix equation[
𝑥ℎ1

𝑥ℎ2

]
−
𝑥𝑔1

𝑁 2

[
𝑝ℎ1

√
𝑝ℎ1
𝑝ℎ2√

𝑝ℎ1
𝑝ℎ2

𝑝ℎ2

]
≥ 0

I ≥
𝑥𝑔1

𝑁 2

𝑝ℎ

1

𝑥ℎ
1

√︃
𝑝ℎ

1

𝑥ℎ
1

𝑝ℎ
2

𝑥ℎ
2√︃

𝑝ℎ
1

𝑥ℎ
1

𝑝ℎ
2

𝑥ℎ
2

𝑝ℎ
2

𝑥ℎ
2

𝑥𝑔1

𝑁 2

(
𝑝ℎ1

𝑥ℎ1

+
𝑝ℎ2

𝑥ℎ2

)
≤ 1,

where in the first step we used the fact that for 𝐹 > 0, 𝐹 −𝑀 ≥ 0 ⇒ I −
√
𝐹
−1

𝑀
√
𝐹
−1 ≥ 0, and the

last equation is obtained by writing the matrix as ⟨𝜓 | |𝜓 ⟩, and then demanding 1 ≥ ⟨𝜓 |𝜓 ⟩. This last

equation is exactly the split condition (see Example 24).

The above two conditions can be readily generalized for an𝑚 → 1 point merge and a 1 → 𝑛 points

split, respectively, by simply constructing the appropriate vectors (see Appendix C). Furthermore,

for a

• general𝑚 → 𝑛: 𝑔1, 𝑔2 . . . 𝑔𝑚 → ℎ1, ℎ2 . . . ℎ𝑛 transition,

we can show that one obtains the constraint
1∑𝑚

𝑖=1
𝑝𝑔𝑖𝑥𝑔𝑖

≥ ∑𝑛
𝑖=1
𝑝ℎ𝑖

1

𝑥ℎ𝑖
, by using the appropriate

blinkered unitary (see Appendix C).

This class of unitaries is enough to convert the 1/6 game into an explicit protocol, but falls short for

point games going beyond this bias; the general 𝑚 → 𝑛 blinkered transition effectively behaves like an

𝑚 → 1 merge followed by a 1 → 𝑛 split, which are insufficient to break the 1/6 limit. Next, we show how

to construct the unitaries for a WCF protocol approaching bias 1/10.

3.2 Bias 1/10 game and protocol

In Section 2.5 we presented the family of TIPGs achieving bias 𝜖 (𝑘) = 1/(4𝑘 + 2), where 𝑘 is the number

of points involved in the non-trivial step, which was proposed by C. Mochon. Here, we consider the game

with 𝑘 = 2 and by means of the TEF we construct the corresponding WCF protocol with bias 1/10.

We assume an equally spaced 𝑛-point lattice given by 𝑥 𝑗 = 𝑥0 + 𝑗𝛿𝑥 where 𝛿𝑥 = 𝛿𝑦 is small and 𝑥0 will

be determined through the constraints
12

; similarly 𝑦 𝑗 = 𝑦0 + 𝑗𝛿𝑦 and we also define Γ𝑘+1 = 𝑦𝑛−𝑘 = 𝑥𝑛−𝑘 .

Let 𝑃 (𝑥 𝑗) be the probability weight associated with the point [𝑥 𝑗 , 0] which is such that

𝑛∑︁
𝑗=1

𝑃 (𝑥 𝑗) =
1

2

and

𝑛∑︁
𝑗=1

𝑃 (𝑥 𝑗)
𝑥 𝑗

=
1

2

.

Similarly with the point (0, 𝑦 𝑗) we associate 𝑃 (𝑦 𝑗) where 𝑦 𝑗 = 𝑥 𝑗 as we also assume that 𝑥0 = 𝑦0. These

choices explicitly impose symmetry between Alice and Bob which in turn means that we only have to do

the analysis for one of them.

With respect to Figure 7 we use the assignment that C. Mochon employed (see Definition 32) with

𝑓 (𝑦𝑖) = (𝑦−2 − 𝑦𝑖) (Γ1 − 𝑦𝑖) (Γ2 − 𝑦𝑖) as
𝑓 (𝑦 𝑗)𝑐 (𝑥 𝑗)∏
𝑘≠𝑗 (𝑦𝑘−𝑦 𝑗) . The probabilities become

𝑃2(𝑦 𝑗+2) =
−𝑓 (𝑦 𝑗+2)𝑐 (𝑥 𝑗)
4 · 3(𝛿𝑦)2𝑦 𝑗+2

, 𝑃1(𝑦 𝑗+1) =
−𝑓 (𝑦 𝑗+1)𝑐 (𝑥 𝑗)
3 · 2(𝛿𝑦)2𝑦 𝑗+1

,

𝑃1(𝑥 𝑗) =
−𝑓 (𝑦 𝑗−1)𝑐 (𝑥 𝑗)
3 · 2(𝛿𝑦)2𝑦 𝑗−1

, 𝑃2(𝑥 𝑗) =
−𝑓 (𝑦 𝑗−2)𝑐 (𝑥 𝑗)
4 · 3(𝛿𝑦)2𝑦 𝑗−2

, 𝑃 (𝑥 𝑗) =
𝑓 (0)𝑐 (𝑥 𝑗)𝛿𝑦

𝑦 𝑗+2𝑦 𝑗+1𝑦 𝑗−1𝑦 𝑗−2

12
Essentially, 𝑥0 provides a bound on 𝑃∗

𝐵
.

27

P2(xj)

P(xj)

P1(xj)

P1(yj+1)

P2(yj+2)

xj

yj+1

yj+2

Figure 7: 1/10-bias TIPG: The 3 → 2 move

where we added the minus sign to account for the fact that 𝑓 is negative for coordinates between𝑦−2 and Γ1.

Imposing the symmetry constraint 𝑃1(𝑦 𝑗) = 𝑃1(𝑥 𝑗) we get 𝑐 (𝑥 𝑗) =
𝑐0 𝑓 (𝑥 𝑗)
𝑥 𝑗

, where 𝑐0 is a constant. Similarly,

the symmetry constraint for 𝑃2 entails 𝑃2(𝑦 𝑗) = 𝑃2(𝑥 𝑗). Finally, we can evaluate 𝑃 (𝑥 𝑗) =
𝑐0𝑥0 (𝑥0−𝑥 𝑗)

𝑥5

𝑗

𝛿𝑥 +
O(𝛿𝑥2) which, in the limit 𝛿𝑥 → 0, means that∑︁

𝑃 (𝑥 𝑗) =
1

2

=
∑︁ 𝑃 (𝑥 𝑗)

𝑥 𝑗
→

∫ Γ

𝑥0

(𝑥0 − 𝑥)𝑑𝑥
𝑥5

=

∫ Γ

𝑥0

(𝑥0 − 𝑥)𝑑𝑥
𝑥6

.

This evaluates to

𝑥0

∫ Γ

𝑥0

(
1

𝑥5
− 1

𝑥6

)
𝑑𝑥 =

∫ Γ

𝑥0

(
1

𝑥4
− 1

𝑥5

)
𝑑𝑥 ⇒ 𝑥0 =

3

5

=⇒ 𝜖 =
3

5

− 1

2

=
1

10

.

Below we consider the moves involved in this game in order to construct the unitaries of the corre-

sponding protocol and we prove that they are valid transitions. For ease of notation, henceforth, we use

|𝑔1⟩ instead of |𝑔1𝑔1⟩, and similarly |ℎ1⟩ instead of |ℎ1ℎ1⟩.

3.2.1 The 3 → 2 move and its validity

Here, we consider the 3 → 2 move, i.e., a transition from 3 initial to 2 final points.

Recall that

|𝑣⟩ =
√
𝑝𝑔1

|𝑔1⟩ +
√
𝑝𝑔2

|𝑔2⟩ +
√
𝑝𝑔3

|𝑔3⟩
𝑁𝑔

and let

|𝑣1⟩ =
√
𝑝𝑔3

|𝑔2⟩ −
√
𝑝𝑔2

|𝑔3⟩
𝑁𝑣1

, |𝑣2⟩ =
− (𝑝𝑔

2
+𝑝𝑔

3
)

√
𝑝𝑔

1

|𝑔1⟩ +
√
𝑝𝑔2

|𝑔2⟩ +
√
𝑝𝑔3

|𝑔3⟩
𝑁𝑣2

where 𝑁 2

𝑣1

= 𝑝𝑔3
+ 𝑝𝑔2

and 𝑁 2

𝑣2

=
(𝑝𝑔

2
+𝑝𝑔

3
)2

𝑝𝑔
1

+ 𝑝𝑔2
+ 𝑝𝑔3

. Also,

|𝑤⟩ =
√
𝑝ℎ1

|ℎ1⟩ +
√
𝑝ℎ2

|ℎ2⟩
𝑁ℎ

and |𝑤1⟩ =
√︁
𝑝ℎ

2

|ℎ1⟩ −
√
𝑝ℎ1

|ℎ2⟩
𝑁ℎ

.

28

Now we define ��𝑣 ′
1

〉
= cos\ |𝑣1⟩ + sin\ |𝑣2⟩ and

��𝑣 ′
2

〉
= sin\ |𝑣1⟩ − cos\ |𝑣2⟩ ,

where cos\ ≈ 1, and the full unitary as

𝑈 = |𝑤⟩ ⟨𝑣 | +
(
𝛼

��𝑣 ′
1

〉
+ 𝛽 |𝑤1⟩

) 〈
𝑣 ′

1

�� + ��𝑣 ′
2

〉 〈
𝑣 ′

2

�� + (
𝛽
��𝑣 ′

1

〉
− 𝛼 |𝑤1⟩

)
⟨𝑤1 | + |𝑣⟩ ⟨𝑤 | ,

where |𝛼 |2 + |𝛽 |2 = 1 for 𝛼, 𝛽 ∈ C13
. We need terms of the form 𝐸𝑈 |𝑔𝑖⟩ with 𝐸 = I{ℎ𝑖 }. This entails that 𝐸𝑈

acts on the {|𝑔𝑖⟩} space as

𝐸𝑈𝐸𝑔 = |𝑤⟩ ⟨𝑣 | + 𝛽 |𝑤1⟩
〈
𝑣 ′

1

�� = |𝑤⟩ ⟨𝑣 | + 𝛽 |𝑤1⟩ (cos\ ⟨𝑣1 | + sin\ ⟨𝑣2 |) ,

where 𝐸𝑔 is the projector on the {|𝑔𝑖⟩} space. Consequently we have

𝐸𝑈 |𝑔1⟩ =
√
𝑝𝑔1

𝑁𝑔
|𝑤⟩ +

[
cos\ · 0 − sin\

𝑝𝑔2
+ 𝑝𝑔3√

𝑝𝑔1
𝑁𝑣2

]
𝛽 |𝑤1⟩

𝐸𝑈 |𝑔2⟩ =
√
𝑝𝑔2

𝑁𝑔
|𝑤⟩ +

[
cos\

√
𝑝𝑔3

𝑁𝑣1

+ sin\

√
𝑝𝑔2

𝑁𝑣2

]
𝛽 |𝑤1⟩

𝐸𝑈 |𝑔3⟩ =
√
𝑝𝑔3

𝑁𝑔
|𝑤⟩ +

[
− cos\

√
𝑝𝑔2

𝑁𝑣1

+ sin\

√
𝑝𝑔3

𝑁𝑣2

]
𝛽 |𝑤1⟩ .

Recall that the constraint equation was∑︁
𝑥ℎ𝑖 |ℎ𝑖⟩ ⟨ℎ𝑖 | −

∑︁
𝑥𝑔𝑖𝐸𝑈 |𝑔𝑖⟩ ⟨𝑔𝑖 |𝑈 †𝐸 ≥ 0

where the first sum becomes
⟨𝑥ℎ⟩

√
𝑝ℎ

1
𝑝ℎ

2

𝑁 2

ℎ

(𝑥ℎ1
− 𝑥ℎ2

)
h.c.

𝑝ℎ
2
𝑥ℎ

1
+𝑝ℎ

1
𝑥ℎ

2

𝑁 2

ℎ

in the |𝑤⟩ , |𝑤1⟩ basis. Since we plan to use the 3 → 2 move with one point on the axis, we take 𝑥𝑔1

= 0.

Consequently we only need to evaluate

𝑥𝑔2
𝐸𝑈 |𝑔2⟩ ⟨𝑔2 |𝑈 †𝐸 ¤=𝑥𝑔2

𝑝𝑔

2

𝑁 2

𝑔
𝛽

(
cos\

√
𝑝𝑔

3
𝑝𝑔

2

𝑁𝑔𝑁𝑣
1

+ sin\
𝑝𝑔

2

𝑁𝑔𝑁𝑣
2

)
h.c.

(
cos

√
𝑝𝑔

3

𝑁𝑣
1

+ sin\
√
𝑝𝑔

2

𝑁𝑣
2

)
2

|𝛽 |2

𝑥𝑔3
𝐸𝑈 |𝑔3⟩ ⟨𝑔3 |𝑈 †𝐸 ¤=𝑥𝑔3

𝑝𝑔

3

𝑁 2

𝑔
𝛽

(
− cos\

√
𝑝𝑔

2
𝑝𝑔

3

𝑁𝑔𝑁𝑣
1

+ sin\
𝑝𝑔

3

𝑁𝑔𝑁𝑣
2

)
h.c.

(
− cos

√
𝑝𝑔

2

𝑁𝑣
1

+ sin

√
𝑝𝑔

3

𝑁𝑣
2

)
2

|𝛽 |2

which means that the constraint equation becomes

⟨𝑥ℎ ⟩ −

〈
𝑥𝑔

〉 √
𝑝ℎ

1
𝑝ℎ

2

𝑁 2

ℎ

(𝑥ℎ1
− 𝑥ℎ2

) − 𝛽 cos\

√
𝑝𝑔

2
𝑝𝑔

3

𝑁𝑔𝑁𝑣
1

(𝑥𝑔2
− 𝑥𝑔3

) − 𝛽 sin\
〈
𝑥𝑔

〉 𝑁𝑔

𝑁𝑣
2

h.c.

𝑝ℎ
2
𝑥ℎ

1
+𝑝ℎ

1
𝑥ℎ

2

𝑁 2

ℎ

− |𝛽 |2
[

cos
2 \

𝑁 2

𝑣
1

(𝑝𝑔3
𝑥𝑔2

+ 𝑝𝑔2
𝑥𝑔3

) + sin
2 \(

𝑁 2

𝑣
2
/𝑁 2

𝑔

) 〈
𝑥𝑔

〉
+

2 cos\ sin\
√
𝑝𝑔

3
𝑝𝑔

2

𝑁𝑣
1
𝑁𝑣

2

(
𝑥𝑔2

− 𝑥𝑔3

)]
 ≥ 0.

Since this transition is average non-decreasing viz. ⟨𝑥ℎ⟩ −
〈
𝑥𝑔

〉
≥ 0 (see Lemma 135 and Lemma 33), we

set the off-diagonal elements of the matrix above to zero and show that the second diagonal element is

13
There is some freedom in choosing 𝑈 in the sense that 𝛼 |𝑣⟩ + 𝛽 |𝑤1⟩ would also work instead of 𝛼

��𝑣 ′
1

〉
+ 𝛽 |𝑤1⟩(in that case

|𝑣⟩ ⟨𝑤 | should be replaced by |𝑣1⟩ ⟨𝑤 |), as these do not influence the constraint equation.

29

positive. Setting the off-diagonal to zero one can obtain \ by solving the quadratic equation in terms of 𝛽

although the expression is not particularly pretty. To establish existence and positivity we need to simplify

our expressions.

So far, everything was exact. To proceed, we write \
𝑁𝑔

𝑁𝑣
2

= O(𝛿𝑦) at most (where 𝛿𝑦 = 𝛿𝑥 is the lattice

spacing) and we take 𝛿𝑦 to be small. Thus, to first order in \
𝑁𝑔

𝑁𝑣
2

, the constraints become

√
𝑝ℎ

1
𝑝ℎ

2

𝑁 2

ℎ

(𝑥ℎ1
− 𝑥ℎ2

) − 𝛽
√
𝑝𝑔

2
𝑝𝑔

3

𝑁𝑔𝑁𝑣
1

(𝑥𝑔2
− 𝑥𝑔3

)

𝛽
〈
𝑥𝑔

〉 = \
𝑁𝑔

𝑁𝑣2

+ O(𝛿𝑦2)

and

𝑝ℎ2
𝑥ℎ1

+ 𝑝ℎ1
𝑥ℎ2

𝑁 2

ℎ

− |𝛽 |2
[
𝑝𝑔3
𝑥𝑔2

+ 𝑝𝑔2
𝑥𝑔3

𝑁 2

𝑣1

+ 2\
𝑁𝑔

𝑁𝑣2

√
𝑝𝑔3
𝑝𝑔2

𝑁𝑔𝑁𝑣1

(𝑥𝑔2
− 𝑥𝑔3

)
]
+ O(𝛿𝑦2) ≥ 0.

If our claim is wrong when we evaluate \
𝑁𝑔

𝑁𝑣
2

, we will get zero order terms but as we show later, indeed,

\
𝑁𝑔

𝑁𝑣
2

= O(𝛿𝑦2). With respect to Figure 7 we have

𝑃2 (𝑦 𝑗+2) = 𝑝ℎ2
=

−𝑓 (𝑦 𝑗+2)
4 · 3𝛿𝑦2𝑦 𝑗+2

, 𝑃1 (𝑦 𝑗+1) = 𝑝𝑔3
=

−𝑓 (𝑦 𝑗+1)
3 · 2𝛿𝑦2𝑦 𝑗+1

𝑃1 (𝑥 𝑗) = 𝑝ℎ1
=

−𝑓 (𝑦 𝑗−1)
3 · 2𝛿𝑦2𝑦 𝑗−1

, 𝑃2 (𝑥 𝑗) = 𝑝𝑔2
=

−𝑓 (𝑦 𝑗−2)
4 · 3𝛿𝑦2𝑦 𝑗−2

, 𝑃 (𝑥 𝑗) = 𝑝𝑔1
=

𝑓 (0)𝛿𝑦
𝑦 𝑗+2𝑦 𝑗+1𝑦 𝑗−1𝑦 𝑗−2

,

where we assumed 𝑓 (0) > 0 and 𝑓 (𝑦) < 0 for 𝑦 > 𝑦 ′
0
, 𝑦 ′

0
= 𝑦0 + 𝛿𝑦, and we scaled by 𝛿𝑦. We now convert

all expressions to first order in 𝛿𝑦:

𝑓 (𝑦 𝑗+𝑚) = 𝑓 (𝑦 𝑗) +
𝜕𝑓

𝜕𝑦
𝑚𝛿𝑦 + O(𝛿𝑦2) ⇒ 1

𝑦 𝑗+𝑚
=

1

𝑦 𝑗
−𝑚𝛿𝑦

𝑦2

𝑗

+ O(𝛿𝑦2),

where
𝜕𝑓

𝜕𝑦
is

𝜕𝑓 (𝑦)
𝜕𝑦

|𝑦 𝑗 . We define and evaluate

𝑃𝑚
𝑘

=
−𝑓 (𝑦 𝑗+𝑚)
𝑘𝛿𝑦2𝑦 𝑗+𝑚

=
1

𝑘𝑦 𝑗𝛿𝑦
2

[
−𝑓 −𝑚𝛿𝑦

(
𝜕𝑓

𝜕𝑦
− 𝑓

𝑦 𝑗

)
+ O(𝛿𝑦2)

]
,

where 𝑓 means 𝑓 (𝑦 𝑗). In this notation

𝑝ℎ2
= 𝑃2

12
, 𝑝ℎ1

= 𝑃−1

6
and 𝑝𝑔2

= 𝑃−2

12
, 𝑝𝑔3

= 𝑃1

6
.

With an eye at the off-diagonal condition we evaluate

𝑃
𝑚1

𝑘1

𝑃
𝑚2

𝑘2

=
1

𝑘1𝑘2

(
1

𝑦 𝑗𝛿𝑦
2

)
2
[
𝑓 2 + 𝑓 𝛿𝑦

(
𝜕𝑓

𝜕𝑦
− 𝑓

𝑦 𝑗

)
(𝑚1 +𝑚2) + O(𝛿𝑦2)

]
and

𝑃
𝑚1

𝑘1

+ 𝑃𝑚2

𝑘2

=
1

𝑦 𝑗𝛿𝑦
2

[
−

(
1

𝑘1

+ 1

𝑘2

)
𝑓 −

(
𝑚1

𝑘1

+ 𝑚2

𝑘2

)
𝛿𝑦

(
𝜕𝑓

𝜕𝑦
− 𝑓

𝑦 𝑗

)
+ O(𝛿𝑦2)

]
.

Moreover, we have

√
𝑝ℎ1
𝑝ℎ2

=

√︃
𝑃2

12
𝑃−1

6
=

1

𝑦 𝑗𝛿𝑦
2

√︄
1

12 · 6

[
𝑓 2 + 𝑓 𝛿𝑦

(
𝜕𝑓

𝜕𝑦
− 𝑓

𝑦 𝑗

)
+ O(𝛿𝑦2)

]
𝑁 2

ℎ
= 𝑃2

12
+ 𝑃−1

6
=

1

4𝑦 𝑗𝛿𝑦
2

[
−𝑓 + O(𝛿𝑦2)

]
,

30

and similarly

√︁
𝑝𝑔2
𝑝𝑔3

=

√︃
𝑃−2

12
𝑃1

6
=

1

𝑦 𝑗𝛿𝑦
2

√︄
1

12 · 6

[
𝑓 2 − 𝑓 𝛿𝑦

(
𝜕𝑓

𝜕𝑦
− 𝑓

𝑦 𝑗

)
+ O(𝛿𝑦2)

]
𝑁 2

𝑔 = 𝑃−2

12
+ 𝑃1

6
+ 𝑝𝑔1

=
1

4𝑦 𝑗𝛿𝑦
2

[
−𝑓 + O(𝛿𝑦2)

]
and 𝑁 2

𝑣1

=
1

4𝑦 𝑗𝛿𝑦
2

[
−𝑓 + O(𝛿𝑦2)

]
,

where we already neglected the terms that contribute to the ratio
𝑁𝑔

𝑁𝑣
2

in higher than first order. Actually,

for 𝛽 = 1

\
𝑁𝑔

𝑁𝑣2

=

4

√︃
1

12·6 (−3𝛿𝑦)
[
𝑓 (�1 + 𝛿𝑦

2𝑓

(
𝜕𝑓

𝜕𝑦
− 𝑓

𝑦 𝑗

)
) − 𝑓 (�1 − 𝛿𝑦

2𝑓

(
𝜕𝑓

𝜕𝑦
− 𝑓

𝑦 𝑗

)
) + O(𝛿𝑦2)

]
⟨𝑥𝑔⟩

= O(𝛿𝑦2).

This shows that to first order the off-diagonal term is zero for \ = 0. Now, we show that the second diagonal

element is positive to first order in 𝛿𝑦. Using the fact that \
𝑁𝑔

𝑁𝑣
2

= O(𝛿𝑦2), the positivity condition reads

𝑝ℎ2
𝑥ℎ1

+ 𝑝ℎ1
𝑥ℎ2

𝑁 2

ℎ

−
𝑝𝑔3
𝑥𝑔2

+ 𝑝𝑔2
𝑥𝑔3

𝑁 2

𝑣1

+ O(𝛿𝑦2) ≥ 0,

which, in turn, becomes

𝑃2

12
𝑦 𝑗−1 + 𝑃−1

6
𝑦 𝑗+2

𝑁 2

ℎ

−
𝑃1

6
𝑦 𝑗−2 + 𝑃−2

12
𝑦 𝑗+1

𝑁 2

𝑣1

+ O(𝛿𝑦2) = 2𝛿𝑦 + O(𝛿𝑦2) ≥ 0.

This establishes the validity of the 3 → 2 transition for a closely spaced lattice. Note that only the proof

of validity was done perturbatively to first order in 𝛿𝑦. The unitary itself is known exactly, as \ can be

obtained by solving the quadratic. Using 𝑓 (𝑦) = (𝑦 ′
0
− 𝑦) (Γ1 − 𝑦) (Γ2 − 𝑦) we can implement the last two

moves in Figure 7 as they constitute a 3 → 1 and a 2 → 1 merge. The only remaining task is to implement

the 2 → 2 move of the last step, because previously we assumed

√
𝑝𝑔2

≠ 0.

3.2.2 The 2 → 2 move and its validity

We claim that the 2 → 2 move can be implemented using

𝑈 = |𝑤⟩ ⟨𝑣 | + (𝛼 |𝑣⟩ + 𝛽 |𝑤1⟩) ⟨𝑣1 | + |𝑣⟩ ⟨𝑤 | + (𝛽 |𝑣⟩ − 𝛼 |𝑤1⟩) ⟨𝑤1 |

where as before |𝛼 |2 + |𝛽 |2 = 1,

|𝑣⟩ = 1

𝑁𝑔

(√︁
𝑝𝑔1

|𝑔1⟩ +
√︁
𝑝𝑔2

|𝑔2⟩
)
, |𝑤⟩ = 1

𝑁ℎ

(√
𝑝ℎ1

|ℎ1⟩ +
√
𝑝ℎ2

|ℎ2⟩
)
,

|𝑣1⟩ =
1

𝑁𝑔

(√︁
𝑝𝑔2

|𝑔1⟩ −
√︁
𝑝𝑔1

|𝑔2⟩
)

and |𝑤1⟩ =
1

𝑁ℎ

(√
𝑝ℎ2

|ℎ1⟩ −
√
𝑝ℎ1

|ℎ2⟩
)
.

We evaluate the constraint equation using

𝐸𝑈 |𝑔1⟩ =
√
𝑝𝑔1

|𝑤⟩ + 𝛽𝑒−𝑖𝜙𝑔𝑒𝑖𝜙ℎ√𝑝𝑔2
|𝑤1⟩

𝑁𝑔
, 𝐸𝑈 |𝑔2⟩ =

√
𝑝𝑔2

|𝑤⟩ − 𝛽𝑒−𝑖𝜙𝑔𝑒𝑖𝜙ℎ√𝑝𝑔1
|𝑤1⟩

𝑁𝑔
,

and

𝐸𝑈 |𝑔1⟩ ⟨𝑔1 |𝑈 †𝐸 =
1

𝑁 2

𝑔

⟨𝑤 | ⟨𝑤1 |
|𝑤⟩ 𝑝𝑔1

𝛽𝑒𝑖 (𝜙ℎ−𝜙𝑔)
√
𝑝𝑔2
𝑝𝑔1

|𝑤1⟩ h.c. |𝛽 |2 𝑝𝑔2

31

as [
⟨𝑥ℎ⟩ −

〈
𝑥𝑔

〉
1

𝑁 2

𝑔

[√
𝑝ℎ1
𝑝ℎ2

(𝑥ℎ1
− 𝑥ℎ2

) − 𝛽√𝑝𝑔1
𝑝𝑔2

(𝑥𝑔1
− 𝑥𝑔2

)
]

h.c.
1

𝑁 2

𝑔

[
𝑝ℎ2
𝑥ℎ1

+ 𝑝ℎ1
𝑥ℎ2

− |𝛽 |2 (𝑝𝑔2
𝑥𝑔1

+ 𝑝𝑔1
𝑥𝑔2

)
]]

≥ 0,

where we absorbed the phase freedom in 𝛽 , a free parameter, which will be fixed shortly. We use the same

strategy as above and take the first diagonal element to be zero. We must show that√︄
𝑝ℎ1
𝑝ℎ2

𝑝𝑔1
𝑝𝑔2

(𝑥ℎ1
− 𝑥ℎ2

)
(𝑥𝑔1

− 𝑥𝑔2
) = 𝛽 ≤ 1, and

1

𝑁 2

𝑔

[
𝑝ℎ2
𝑥ℎ1

+ 𝑝ℎ1
𝑥ℎ2

− |𝛽 |2 (𝑝𝑔2
𝑥𝑔1

+ 𝑝𝑔1
𝑥𝑔2

)
]
≥ 0.

For this transition 𝑓 (𝑦 𝑗−2) = 0, which we use to write

𝑓 (𝑦 𝑗+𝑘) =
𝜕𝑓

𝜕𝑦

����
𝑦 𝑗−2

(𝑘 + 2)𝛿𝑦 = −(𝑘 + 2)𝛼𝛿𝑦, with 𝛼 = − 𝜕𝑓

𝜕𝑦

����
𝑦 𝑗−2

= (Γ1 − 𝑦 𝑗−2) (Γ2 − 𝑦 𝑗−2).

From Figure 8 we have

𝑝ℎ1
= 𝑃1(𝑥 𝑗) =

−𝑓 (𝑦 𝑗−1)
3 · 2𝛿𝑦2𝑦 𝑗−1

=
𝛼 + O(𝛿𝑦)

6𝛿𝑦𝑦 𝑗
, 𝑝ℎ2

= 𝑃2(𝑦 𝑗+2) =
−𝑓 (𝑦 𝑗+2)

4 · 3𝛿𝑦2𝑦 𝑗+2

=
𝛼 + O(𝛿𝑦)

3𝛿𝑦𝑦 𝑗

𝑥ℎ1
= 𝑦 𝑗−1, 𝑥ℎ2

= 𝑦 𝑗+2

while

𝑝𝑔1
= 𝑃 (𝑥 𝑗) =

𝑓 (0)𝛿𝑦
𝑦 𝑗+2𝑦 𝑗+1𝑦 𝑗−1𝑦 𝑗−2

=
𝑓 (0)𝛿𝑦 + O(𝛿𝑦2)

𝑦4

𝑗

, 𝑝𝑔2
= 𝑃1 (𝑦 𝑗+1) =

−𝑓 (𝑦 𝑗+1)
3 · 2𝛿𝑦2𝑦 𝑗+1

=
𝛼 + O(𝛿𝑦)

2𝛿𝑦𝑦 𝑗

𝑥𝑔1
= 0, 𝑥𝑔2

= 𝑦 𝑗+1 .

This entails

Figure 8: The first 2 → 2 transition

𝛽 =

√︄
𝑝ℎ1
𝑝ℎ2

𝑝𝑔1
𝑝𝑔2

(𝑥ℎ1
− 𝑥ℎ2

)
(𝑥𝑔1

− 𝑥𝑔2
) =

√︄
𝑦 ′

0
𝛼 + O(𝛿𝑦)
𝑓 (0) =

√︄
(Γ1 − 𝑦 𝑗−2) (Γ2 − 𝑦 𝑗−2) + O(𝛿𝑦)

Γ1Γ2

≤ 1,

where we used 𝑓 (0) = 𝑦 ′
0
Γ1Γ2 and the fact that 𝛿𝑦 is small compared to Γs. Analogously, for the second

condition we have

1

𝑁 2

𝑔

[
𝑝ℎ2
𝑥ℎ1

+ 𝑝ℎ1
𝑥ℎ2

− |𝛽 |2 (𝑝𝑔2
𝑥𝑔1

+ 𝑝𝑔1
𝑥𝑔2

)
]
≥ 1

𝑁 2

𝑔

[
𝑝ℎ2
𝑥ℎ1

+ 𝑝ℎ1
𝑥ℎ2

− 𝑝𝑔2
𝑥𝑔1

]
=

1

2𝛿𝑦𝑁 2

𝑔

[𝛼 + O(𝛿𝑦)] = 1

2𝛿𝑦𝑁 2

𝑔

[
(Γ1 − 𝑦 𝑗−2) (Γ2 − 𝑦 𝑗−2) + O(𝛿𝑦)

]
≥ 0,

32

where the last step holds for 𝛿𝑦 small enough. The 2 → 2 move corresponding to the leftmost (see Figure 9)

and bottom-most set of points can be shown to be implementable similarly.

Figure 9: The final 2 → 2 transition.

33

4 Approaching bias 𝜖 (𝑘) = 1/(4𝑘 + 2) : an algebraic solution

While we succeeded at constructing the unitaries involved in the bias 1/10 protocol, we did not follow a

systematic method. Here, we construct the unitaries corresponding to the valid functions that characterize

C. Mochon’s point games (see Lemma 29). These, together with the TEF, allow us to construct explicit

WCF protocols with bias approaching 𝜖 (𝑘) = 1/(4𝑘 + 2) for arbitrary integers 𝑘 > 0. In this section, the

unitaries we construct are additionally real (i.e. orthogonal matrices). As we shall see in Section 5, since

this restriction anyway does not lead to a loss of generality,
14

all vector spaces considered here are over

the field of real numbers.

Notation:

• For a Hermitian matrix 𝐴 with spectral decomposition (including zero eigenvalues) 𝐴 =
∑
𝑖 𝑎𝑖 |𝑖⟩ ⟨𝑖 |,

we define the pseudo-inverse or the generalized inverse of 𝐴 as 𝐴⊣
:=

∑
𝑖: |𝑎𝑖 |>0

𝑎−1

𝑖 |𝑖⟩ ⟨𝑖 |.

• We write functions 𝑡 with finite support in the following two ways (unless otherwise stated): (1) as

𝑡 =
∑𝑛
𝑖=1
𝑝𝑖 ⟦𝑥𝑖⟧ where we assume 𝑝𝑖 > 0 for all 𝑖 ∈ {1, 2 . . . 𝑛} and that 𝑥𝑖 ≠ 𝑥 𝑗 for 𝑖 ≠ 𝑗 and (2)

as 𝑡 =
∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ − ∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
where 𝑝ℎ𝑖 and 𝑝𝑔𝑖 are strictly positive and 𝑥ℎ𝑖 and 𝑥𝑔𝑖 are all

distinct.

4.1 The 𝑓 −assignments

We start with the definition of 𝑓 -assignments tailored to the purpose of the analysis that follows.

Definition 32 (𝑓 -assignments). Given a set of real numbers 0 ≤ 𝑥1 < 𝑥2 · · · < 𝑥𝑛 and a polynomial of

degree at most 𝑛 − 2 satisfying 𝑓 (−_) ≥ 0 for all _ ≥ 0, an 𝑓 -assignment is given by the function

𝑡 =

𝑛∑︁
𝑖=1

−𝑓 (𝑥𝑖)∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)︸ ︷︷ ︸

:=𝑝𝑖

⟦𝑥𝑖⟧ = ℎ − 𝑔,

(up to a positive multiplicative factor) where ℎ contains the positive part of 𝑡 and 𝑔 the negative part

(without any common support), viz. ℎ =
∑
𝑖:𝑝𝑖>0

𝑝𝑖 ⟦𝑥𝑖⟧ and 𝑔 =
∑
𝑖:𝑝𝑖<0

(−𝑝𝑖) ⟦𝑥𝑖⟧.

• When 𝑓 is a monomial, viz. has the form 𝑓 (𝑥) = c𝑥𝑞 , where c > 0 and 𝑞 ≥ 0 we call the assignment

a monomial assignment. For 𝑞 = 0 we call the assignment an 𝑓0-assignment.

• We say that an assignment is balanced if the number of points with negative weights, 𝑝𝑖 < 0, equals

the number of points with positive weights, 𝑝𝑖 > 0. We say an assignment is unbalanced if it is not

balanced.

• We say that a monomial assignment is aligned if the degree of the monomial is an even number

(𝑞 = 2(𝑏 − 1), 𝑏 ∈ N). We say that a monomial assignment is misaligned if it is not aligned.

An 𝑓0-assignment starts with a point that has a negative weight regardless of the total number of points

and thereafter, the sign alternates. With this as the base structure, working out the signs of the weights for

monomial assignments is facilitated. The only mathematical property which is needed to find an analytic

solution, turns out to be the following:

14
Briefly, we introduce the so-called Expressible-By-Real-Matrices (EBRM) transitions and functions, which are the analogue

of EBM transitions and functions with the further restriction that the matrices and vectors involved are real; we then show that

we can reduce the problem from EBM to EBRM transitions (see Appendix E).

34

Lemma 33. Fix integers𝑚 ≤ 𝑛 − 2 and 𝑛 ≥ 2. Consider an 𝑓 -assignment of the form 𝑡 =
∑
𝑖

−(−𝑥𝑖)𝑚∏
𝑗≠𝑖 (𝑥 𝑗−𝑥𝑖) ⟦𝑥𝑖⟧

for 𝑛 points 0 ≤ 𝑥1 < · · · < 𝑥𝑛 and use it to implicitly define 𝑝ℎ𝑖 and 𝑝𝑔𝑖 as follows: 𝑡 =
∑
𝑖 (𝑥ℎ𝑖)𝑚𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ −∑

𝑖 (𝑥𝑔𝑖)𝑚𝑝𝑔𝑖
�
𝑥𝑔𝑖

�
. Let

〈
𝑥𝑙

〉
:=

∑
𝑖 (𝑥ℎ𝑖)𝑙𝑝ℎ𝑖 −

∑
𝑖 (𝑥𝑔𝑖)𝑙𝑝𝑔𝑖 . Then,

〈
𝑥𝑙

〉
= 0 for 0 ≤ 𝑙 ≤ 𝑛 − 2. Further,〈

𝑥𝑛−1

〉
:=

∑
𝑖 (𝑥ℎ𝑖)𝑛−1𝑝ℎ𝑖 −

∑
𝑖 (𝑥𝑔𝑖)𝑛−1𝑝𝑔𝑖 = (−1)𝑚+𝑛 which is strictly positive when 𝑛 +𝑚 is even (i.e. when 𝑡

is unbalanced misaligned and balanced aligned (see Definition 32)).

For the proof we refer to Appendix D.1.

Suppose that the 𝑓 -assignment
15

can be decomposed into a sum of valid functions, and let us call these

valid functions in the decomposition, constituents. In Section 1.1.2 we claimed that in order to implement

the valid function corresponding to an 𝑓 -assignment it suffices to implement the constituent functions.

Let us briefly justify this claim. The difficulty is that the constituent functions might be negative at various

locations, where there are no points present. A similar difficulty was encountered while transforming

a TIPG into a TDPG, and it was handled using the technique of the catalyst state (following [Moc07;

Aha+14b]), as we described in Section 2.4 after Theorem 27. This technique also applies here; for the 𝑓 -

assignment of the TIPG, we can again use a catalyst state, scale the constituent functions accordingly, and

proceed thereafter as in the original proof [Aha+14b], to obtain the corresponding TDPG. The orthogonal

matrices for the constituent functions are, thus, sufficient to get a TDPG with the same bias as for the

𝑓 −assignment. This motivates Definition 34 below. We can then apply the TEF from Section 3 to the

TDPG and obtain a WCF protocol approaching the same bias as the TIPG that we started with, in the limit

of infinite rounds of communication. We emphasize that while we used the term valid functions, it was

only for convenience and not a necessity.
16

Definition 34 (Solving an assignment). Given a finitely supported function 𝑡 =
∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧−

∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
and

{
|𝑔1⟩ , |𝑔2⟩ . . .

��𝑔𝑛𝑔 〉 , |ℎ1⟩ , |ℎ2⟩ . . .
��ℎ𝑛ℎ 〉} an orthonormal basis, we say that an orthogonal matrix 𝑂

solves 𝑡 if 𝑂 satisfies the following: 𝑂 |𝑣⟩ = |𝑤⟩ and 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ where |𝑣⟩ =

∑𝑛𝑔

𝑖=1

√
𝑝𝑔𝑖 |𝑔𝑖⟩,

|𝑤⟩ =
∑𝑛ℎ
𝑖=1

√
𝑝ℎ𝑖 |ℎ𝑖⟩, 𝑋ℎ =

∑𝑛ℎ
𝑖=1
𝑥ℎ𝑖 |ℎ𝑖⟩ ⟨ℎ𝑖 |, 𝑋𝑔 =

∑𝑛𝑔

𝑖=1
𝑥𝑔𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖 | and the projector 𝐸ℎ =

∑𝑛ℎ
𝑖=1

|ℎ𝑖⟩ ⟨ℎ𝑖 |.
Moreover, we say that 𝑡 has an effective solution if 𝑡 =

∑
𝑖∈𝐼 𝑡

′
𝑖 and 𝑡 ′𝑖 has a solution for all 𝑖 ∈ 𝐼 , where 𝐼 is

a finite set.

We first give a decomposition of an 𝑓 -assignment into monomials which happens to be quite general.

Another decomposition and its applications are given in Appendix D.2.

Lemma 35 (𝑓 -assignment as a sum of monomials). Consider a set of real coordinates satisfying 0 ≤ 𝑥1 <

𝑥2 · · · < 𝑥𝑛 and let 𝑓 (𝑥) = (𝑟1 − 𝑥) (𝑟2 − 𝑥) . . . (𝑟𝑘 − 𝑥) where 𝑘 ≤ 𝑛 − 2. Let 𝑡 =
∑𝑛
𝑖=1
𝑝𝑖 ⟦𝑥𝑖⟧ be the

corresponding 𝑓 -assignment. Then

𝑡 =

𝑘∑︁
𝑙=0

𝛼𝑙

(
𝑛∑︁
𝑖=1

−(−𝑥𝑖)𝑙∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧
)
,

where 𝛼𝑙 ≥ 0.
15

While an 𝑓 -assignment is a valid function for all polynomials 𝑓 satisfying the conditions in Definition 32, in what follows, we

restrict to polynomials 𝑓 with real roots. In fact, to be consistent with Definition 32, the roots must additionally be non-negative.

16
We already argued along similar lines in Section 3 after Theorem 31 but for readability, we adapt the reasoning to the present

discussion. Recall from Section 2.3 that (strictly) valid transitions were introduced as an alternative characterization of EBM

transitions (see Proposition 21) to simplify the formalism—to show that a transition is EBM we need to verify constraints in-

volving matrices, while to check its validity we need to verify constraints on scalars. In Appendix B we establish that the set

of TEF functions, i.e. the set of functions which satisfy the constraints of Theorem 31, is equal to the set of valid functions (see

Definition 126), which, in turn, due to conic duality, is equal to the closure of the set of EBM functions (see Definition 106). Here,

we find the matrices themselves, therefore, we may work with TEF functions directly and circumvent the part of the formalism

which uses conic duality (see Appendix A).

35

In the course of our analysis we have to use matrix inverses, therefore having a coordinate equal to

zero breaks our argument. However, we can use the following lemma that tells us that the solution to the

𝑓 -assignment is invariant under a shift of the origin.

Lemma 36. Consider a set of real coordinates satisfying 0 ≤ 𝑥1 < 𝑥2 · · · < 𝑥𝑛 and let 𝑓 (𝑥) = (𝑎1 − 𝑥) (𝑎2 −
𝑥) . . . (𝑎𝑘 − 𝑥) where 𝑘 ≤ 𝑛 − 2 and the roots {𝑎𝑖}𝑘𝑖=1

of 𝑓 are non-negative. Let 𝑡 =
∑𝑛
𝑖=1
𝑝𝑖 ⟦𝑥𝑖⟧ be the

corresponding 𝑓 -assignment. Consider a set of real coordinates satisfying 0 < 𝑥1 + 𝑐 < 𝑥2 + 𝑐 · · · < 𝑥𝑛 + 𝑐
where 𝑐 > 0 and let 𝑓 ′(𝑥) = (𝑎1 +𝑐 −𝑥) (𝑎2 +𝑐 −𝑥) . . . (𝑎𝑘 +𝑐 −𝑥). Let 𝑡 ′ =

∑𝑛
𝑖=1
𝑝 ′𝑖

�
𝑥 ′𝑖

�
be the corresponding

𝑓 -assignment with 𝑥 ′𝑖 := 𝑥𝑖 + 𝑐 . The solution to 𝑡 and to 𝑡 ′ are the same.

Proof sketch. We write 𝑡 =
∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧−

∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
and define 𝑋ℎ :=

∑𝑛ℎ
𝑖=1
𝑥ℎ𝑖 |ℎ𝑖⟩, 𝑋𝑔 :=

∑𝑛𝑔

𝑖=1
𝑥𝑔𝑖 |𝑔𝑖⟩.

If 𝑡 is solved by𝑂 then we must have𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ . We then show that𝑋ℎ +𝑐Iℎ ≥ 𝐸ℎ𝑂 (𝑋𝑔 +𝑐I𝑔)𝑂𝑇𝐸ℎ ,

where Iℎ :=
∑𝑛ℎ
𝑖=1

|ℎ𝑖⟩ ⟨ℎ𝑖 | and I𝑔 :=
∑𝑛𝑔

𝑖=1
|𝑔𝑖⟩ ⟨𝑔𝑖 |. Together with the observation that 𝑝 ′𝑖 = 𝑝𝑖 as the 𝑐’s

cancel, this establishes that 𝑂 also solves 𝑡 ′. Since 𝑐 is an arbitrary real number, it follows that 𝑂 solves 𝑡

if and only if it solves 𝑡 ′.
We now establish 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂

𝑇𝐸ℎ ⇐⇒ 𝑋ℎ + 𝑐Iℎ ≥ 𝐸ℎ𝑂 (𝑋𝑔 + 𝑐I𝑔)𝑂𝑇𝐸ℎ . Observe that

𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ ⇐⇒ 𝐸ℎ (𝑋ℎ −𝑂𝑋𝑔𝑂𝑇)𝐸ℎ ≥ 0 ∵ 𝑋ℎ = 𝐸ℎ𝑋ℎ𝐸ℎ

⇐⇒ 𝐸ℎ (𝑋ℎ + 𝑐Iℎ𝑔 −𝑂 (𝑋𝑔 − 𝑐Iℎ𝑔)𝑂𝑇)𝐸ℎ ≥ 0 ⇐⇒ 𝑋ℎ + 𝑐Iℎ ≥ 𝐸ℎ𝑂 (𝑋𝑔 + 𝑐Iℎ𝑔)𝑂𝑇𝐸ℎ,

where Iℎ𝑔 := I. Further,

𝑋𝑔 + 𝑐Iℎ𝑔 ≥ 𝑋𝑔 + 𝑐I𝑔 =⇒ 𝐸ℎ𝑂 (𝑋𝑔 + 𝑐Iℎ𝑔)𝑂𝑇𝐸ℎ ≥ 𝐸ℎ𝑂 (𝑋𝑔 + 𝑐I𝑔)𝑂𝑇𝐸ℎ

which together yield

𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ ⇐⇒ 𝑋ℎ + 𝑐Iℎ ≥ 𝐸ℎ𝑂 (𝑋𝑔 + 𝑐I𝑔)𝑂𝑇𝐸ℎ .

□

Having decomposed the 𝑓 -assignment into a sum of monomial assignments, we now give the solution

for each one of the different types of monomial assignments.

4.2 Solution to the 𝑓0-assignment

We begin with the solution of the 𝑓0-assignment. We first look at the balanced case, where the number of

points involved, 2𝑛, is even. This corresponds to an 𝑛 → 𝑛 transition, i.e. a transition from 𝑛 initial points

to 𝑛 final points.

4.2.1 The balanced case

Proposition 37 (Solution to balanced 𝑓0-assignments). Let

• 𝑡 =
∑𝑛
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ − ∑𝑛

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
be an 𝑓0-assignment over {𝑥1, 𝑥2 . . . 𝑥2𝑛}

• {|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛⟩ , |𝑔1⟩ , |𝑔2⟩ . . . |𝑔𝑛⟩} be an orthonormal basis, and

• finally

𝑋ℎ :=

𝑛∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖 ⟩ ⟨ℎ𝑖 | � diag(𝑥ℎ1
, . . . 𝑥ℎ𝑛 , 0, . . . 0︸ ︷︷ ︸

𝑛-zeros

), 𝑋𝑔 :=

𝑛∑︁
𝑖=1

𝑥𝑔𝑖 |𝑔𝑖 ⟩ ⟨𝑔𝑖 | � diag(0, . . . 0︸ ︷︷ ︸
𝑛-zeros

, 𝑥𝑔1
, . . . 𝑥𝑔𝑛),

|𝑤⟩ :=

𝑛∑︁
𝑖=1

√︁
𝑝ℎ𝑖 |ℎ𝑖 ⟩ � (

√︁
𝑝ℎ1

, . . .
√︁
𝑝ℎ𝑛 , 0, . . . 0︸ ︷︷ ︸

𝑛-zeros

)𝑇 , |𝑣⟩ :=

𝑛∑︁
𝑖=1

√︁
𝑝𝑔𝑖 |𝑔𝑖 ⟩ � (0, . . . 0︸ ︷︷ ︸

𝑛-zeros

,
√︁
𝑝𝑔1
, . . .

√︁
𝑝𝑔𝑛)𝑇 .

36

Then,

𝑂 :=

𝑛−1∑︁
𝑖=0

(
Π⊥
ℎ𝑖−1

(𝑋ℎ)𝑖 |𝑤⟩ ⟨𝑣 | (𝑋𝑔)𝑖Π⊥
𝑔𝑖−1√

𝑐ℎ𝑖𝑐𝑔𝑖
+ h.c.

)
satisfies 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂

𝑇𝐸ℎ and 𝑂 |𝑣⟩ = |𝑤⟩, where 𝐸ℎ :=
∑𝑛
𝑖=1

|ℎ𝑖⟩ ⟨ℎ𝑖 |, Π⊥
ℎ−1

= Π⊥
𝑔−1

= I,

Π⊥
ℎ𝑖

:= projector orthogonal to span{(𝑋ℎ)𝑖 |𝑤⟩ , (𝑋ℎ)𝑖−1 |𝑤⟩ , . . . |𝑤⟩}, 𝑐ℎ𝑖 := ⟨𝑤 | (𝑋ℎ)𝑖Π⊥
ℎ𝑖−1

(𝑋ℎ)𝑖 |𝑤⟩ ,

and analogously

Π⊥
𝑔𝑖

:= projector orthogonal to span{(𝑋𝑔)𝑖 |𝑣⟩ , (𝑋𝑔)𝑖−1 |𝑣⟩ , . . . |𝑣⟩}, 𝑐𝑔𝑖 := ⟨𝑣 | (𝑋𝑔)𝑖Π⊥
𝑔𝑖−1

(𝑋𝑔)𝑖 |𝑣⟩ .

Proof. Using Lemma 33 for 2𝑛 points, we get〈
𝑥𝑘

〉
= 0 for 𝑘 ∈ {0, 1, 2 . . . , 2𝑛 − 2}, (7)

and 〈
𝑥2𝑛−1

〉
> 0. (8)

We define the basis of interest here, essentially using the Gram-Schmidt method. Let

|𝑤0⟩ := |𝑤⟩

|𝑤1⟩ :=
(I − |𝑤0⟩ ⟨𝑤0 |) (𝑋ℎ) |𝑤⟩

√
𝑐ℎ1

...

|𝑤𝑘⟩ :=

(
I − ∑𝑘−1

𝑖=0
|𝑤𝑖⟩ ⟨𝑤𝑖 |

)
(𝑋ℎ)𝑘 |𝑤⟩

√
𝑐ℎ𝑘

. (9)

We indicate the term with the highest power of 𝑋ℎ appearing in |𝑤𝑘⟩ by

M(|𝑤𝑘⟩) =
〈
𝑥2𝑘
ℎ

〉
· (𝑋ℎ)𝑘 |𝑤⟩

where the scalar factor represents the dependence on the highest power of 𝑥ℎ (appearing as

〈
𝑥𝑙
ℎ

〉
) in |𝑤𝑘⟩.

For instance, here the

〈
𝑥2𝑘
ℎ

〉
factor comes from

√
𝑐ℎ𝑘 . Note that the projectors can be expressed in terms of

these vectors more concisely,

Πℎ𝑖 := I − Π⊥
ℎ𝑖

=

𝑖∑︁
𝑗=0

��𝑤 𝑗

〉 〈
𝑤 𝑗

�� .
It also follows that 𝑂 can be re-written as 𝑂 =

∑𝑛−1

𝑗=0

(��𝑤 𝑗

〉 〈
𝑣 𝑗

�� + ��𝑣 𝑗 〉 〈
𝑤 𝑗

��) , where

��𝑣 𝑗 〉 is analogously

defined. It is evident that 𝑂 |𝑣⟩ = |𝑤⟩. Let 𝐷 = 𝑋ℎ − 𝐸ℎ𝑂𝑋𝑔𝑂𝑇𝐸ℎ and note that

〈
𝑣 𝑗

��𝐷 |𝑣𝑖⟩ = 0 (because

𝑋ℎ |𝑣𝑖⟩ = 0 and 𝐸ℎ |𝑣𝑖⟩ = 0
17

). We assert that it has the following rank-1 form

𝐷 =

0 . . . 0

...
. . .

...

0 . . . ⟨𝑤𝑛−1 |𝐷 |𝑤𝑛−1⟩

17

The conclusion holds even without the projector as 𝑂 maps span(|𝑣1⟩ , |𝑣2⟩ , . . . |𝑣𝑛⟩) to span(|𝑤1⟩ , |𝑤2⟩ . . . |𝑤𝑛⟩) on which

𝑋𝑔 has no support.

37

in the (|𝑤0⟩ , |𝑤1⟩ , . . . |𝑤𝑛−1⟩) basis, together with ⟨𝑤𝑛−1 |𝐷 |𝑤𝑛−1⟩ > 0. To see this, we simply compute

⟨𝑤𝑖 |𝐷
��𝑤 𝑗

〉
= ⟨𝑤𝑖 |𝑋ℎ

��𝑤 𝑗

〉
− ⟨𝑤𝑖 |𝑂𝑋𝑔𝑂𝑇

��𝑤 𝑗

〉
= ⟨𝑤𝑖 |𝑋ℎ

��𝑤 𝑗

〉
− ⟨𝑣𝑖 |𝑋𝑔

��𝑣 𝑗 〉 .
For (𝑖, 𝑗) for any 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 except for the case where both 𝑖 = 𝑗 = 𝑛 − 1, the two terms are the

same. This is because the term with the highest possible power 𝑙 (of

〈
𝑥𝑙

〉
) in ⟨𝑤𝑖 |𝑋ℎ

��𝑤 𝑗

〉
can be deduced

by observing

M(⟨𝑤𝑖 |)𝑋ℎM(
��𝑤 𝑗

〉
) =

〈
𝑥2𝑖
ℎ

〉
·
〈
𝑥

2𝑗

ℎ

〉
·
〈
𝑥
𝑖+𝑗+1

ℎ

〉
. (10)

For the analogous expression with 𝑔s to be the same, we must have 2𝑖, 2 𝑗 and 𝑖 + 𝑗 + 1 ≤ 2𝑛 − 2, using

Equation (7). The first two conditions are always satisfied (for 0 ≤ 𝑖, 𝑗 ≤ 𝑛−1). The last can only be violated

when 𝑖 = 𝑗 = 𝑛 − 1. This establishes that the matrix has the asserted form. To prove the positivity of

⟨𝑤𝑛−1 |𝐷 |𝑤𝑛−1⟩, consider ⟨𝑤𝑛−1 |𝑋ℎ |𝑤𝑛−1⟩ and ⟨𝑣𝑛−1 |𝑋𝑔 |𝑣𝑛−1⟩. When these terms are expanded in powers

of

〈
𝑥𝑘
ℎ

〉
and

〈
𝑥𝑘𝑔

〉
respectively, only terms with 𝑘 > 2𝑛 − 2 would remain; the others would get canceled

due to Equation (7). From Equation (9) it follows that

⟨𝑤𝑛−1 |𝐷 |𝑤𝑛−1⟩ =
1

𝑐ℎ𝑛−1

⟨𝑤 | (𝑋ℎ)2𝑛−2+1 |𝑤⟩ − 1

𝑐𝑔𝑛−1

⟨𝑣 | (𝑋𝑔)2𝑛−2+1 |𝑣⟩

and it is not hard to see that 𝑐ℎ𝑛−1
= 𝑐ℎ𝑛−1

(
〈
𝑥2𝑛−2

ℎ

〉
,
〈
𝑥2𝑛−3

ℎ

〉
, . . . ,

〈
𝑥1

ℎ

〉
) does not depend on

〈
𝑥2𝑛−1

ℎ

〉
(and

analogously for 𝑐𝑔𝑛−1
). Also, 𝑐ℎ𝑛−1

= 𝑐𝑔𝑛−1
=: 𝑐𝑛−1. We thus have

⟨𝑤𝑛−1 |𝐷 |𝑤𝑛−1⟩ =
〈
𝑥2𝑛−1

ℎ

〉
𝑐𝑛−1

> 0

using Equation (8). Hence, 𝑋ℎ − 𝐸ℎ𝑂𝑋𝑔𝑂𝑇𝐸ℎ ≥ 0.

In the above, we assumed span{|𝑤⟩ , 𝑋ℎ |𝑤⟩ , 𝑋 2

ℎ
|𝑤⟩ , . . . , 𝑋𝑛

ℎ
|𝑤⟩} equals span{|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛⟩} which is

justified by Lemma 134. □

4.2.2 The unbalanced case

We now consider unbalanced 𝑓0-assignments, and we start by reviewing the result we just proved from a

slightly different perspective to see where it fails in this case. We write 𝐷𝑖 𝑗 = ⟨𝑤𝑖 |𝐷
��𝑤 𝑗

〉
, and note that

the maximum power, 𝑙 , which appears as

〈
𝑥𝑙
𝑔/ℎ

〉
is given by max{2𝑖, 2 𝑗, 𝑖 + 𝑗 + 1}. This yields a matrix with

each term depending on the power as

𝐷 =

𝐷00(⟨𝑥⟩)

𝐷10(
〈
𝑥2

〉
, . . .) 𝐷11(

〈
𝑥3

〉
, . . .) h.c.

𝐷20(
〈
𝑥4

〉
, . . .) 𝐷21(

〈
𝑥4

〉
, . . .) 𝐷22(

〈
𝑥5

〉
, . . .)

. . .

.

We represent this dependence as

M(𝐷) =

⟨𝑥⟩〈
𝑥2

〉 〈
𝑥3

〉〈
𝑥4

〉 〈
𝑥4

〉 〈
𝑥5

〉
. . .

.

38

For concreteness, consider the balanced 𝑓0-case over {𝑥1, 𝑥2, 𝑥3, 𝑥4}, where ⟨𝑥⟩ =
〈
𝑥2

〉
= 0 and

〈
𝑥3

〉
> 0.

For this two-dimensional case, we have

M(𝐷) =
[

0 0

0

〈
𝑥3

〉]
≥ 0.

Using the same method for an 𝑓0-assignment over {𝑥1, 𝑥2 . . . 𝑥5}, we have ⟨𝑥⟩ =
〈
𝑥2

〉
=

〈
𝑥3

〉
= 0 and〈

𝑥4

〉
> 0, and trying to solve in three dimensions, we would obtain

M(𝐷) =

0 0

〈
𝑥4

〉
0 0

〈
𝑥4

〉〈
𝑥4

〉 〈
𝑥4

〉 〈
𝑥5

〉 (11)

which does not seem to work directly. It turns out that the projector appearing in the TEF constraint,

removes the troublesome part and yields a zero matrix. This unbalanced assignment takes three points to

two points. We define 𝑋ℎ := diag(𝑥ℎ1
, 𝑥ℎ2

, 0, 0, 0), |𝑤⟩ = (√𝑝ℎ1
,
√
𝑝ℎ2
, 0, 0, 0) along with |𝑤0⟩ := |𝑤⟩ and

|𝑤1⟩ := (I − |𝑤0⟩ ⟨𝑤0 |)𝑋ℎ |𝑤0⟩ . We can write 𝐸ℎ =
∑

1

𝑖=0
|𝑤𝑖⟩ ⟨𝑤𝑖 | and have the same unitary as before,

except that now |𝑣2⟩ is left unchanged, i.e. 𝑂 =
∑

1

𝑖=0
|𝑤𝑖⟩ ⟨𝑣𝑖 | + |𝑣2⟩ ⟨𝑣2 |. We can show that 𝐷 ′ = 𝑋ℎ −

𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ ≥ 0 because every vector in |𝜓 ⟩ ∈ span{|𝑣0⟩ , |𝑣1⟩ , |𝑣2⟩} satisfies 𝐷 ′ |𝜓 ⟩ = 0 (as 𝑋ℎ |𝜓 ⟩ = 0 and

𝐸ℎ |𝜓 ⟩ = 0). This entails that it suffices to restrict to a 2× 2 matrix in span{|𝑤0⟩ , |𝑤1⟩}. From Equation (11)

this is zero, hence 𝐷 ′ = 0. By generalizing this example, we can obtain the solution for an unbalanced

𝑓0-assignment, as presented in the following Proposition:

Proposition 38 (Solution to unbalanced 𝑓0-assignments). Let

• 𝑡 =
∑𝑛−1

𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ − ∑𝑛

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
, be an 𝑓0-assignment over 0 < 𝑥1 < 𝑥2 · · · < 𝑥2𝑛−1

• {|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛−1⟩ , |𝑔1⟩ , |𝑔2⟩ . . . |𝑔𝑛⟩} be an orthonormal basis, and

• finally

𝑋ℎ :=

𝑛−1∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖 ⟩ ⟨ℎ𝑖 | � diag(𝑥ℎ1
, . . . 𝑥ℎ𝑛−1

, 0, . . . 0︸ ︷︷ ︸
𝑛 zeros

), 𝑋𝑔 :=

𝑛∑︁
𝑖=1

𝑥𝑔𝑖 |𝑔𝑖 ⟩ ⟨𝑔𝑖 | � diag(0, . . . 0︸ ︷︷ ︸
𝑛−1 zeros

, 𝑥𝑔1
, . . . , 𝑥𝑔𝑛),

|𝑤⟩ :=

𝑛−1∑︁
𝑖=1

√︁
𝑝ℎ𝑖 |ℎ𝑖 ⟩ � (

√︁
𝑝ℎ1

, . . .
√︁
𝑝ℎ𝑛−1

, 0, . . . 0︸ ︷︷ ︸
𝑛 zeros

)𝑇 , |𝑣⟩ :=

𝑛∑︁
𝑖=1

√︁
𝑝𝑔𝑖 |𝑔𝑖 ⟩ � (0, . . . 0︸ ︷︷ ︸

𝑛−1 zeros

,
√︁
𝑝𝑔1
, . . .

√︁
𝑝𝑔𝑛)𝑇

• and 𝐸ℎ :=
∑𝑛−1

𝑖=1
|ℎ𝑖⟩ ⟨ℎ𝑖 |.

Then,

𝑂 :=

(
𝑛−2∑︁
𝑖=0

Π⊥
ℎ𝑖−1

(𝑋ℎ)𝑖 |𝑤⟩ ⟨𝑣 | (𝑋𝑔)𝑖Π⊥
𝑔𝑖−1√

𝑐ℎ𝑖𝑐𝑔𝑖
+ h.c.

)
+
Π⊥
𝑔𝑛−2

(𝑋𝑔)𝑛−1 |𝑣⟩ ⟨𝑣 | (𝑋𝑔)𝑛−1Π⊥
𝑔𝑛−2

𝑐𝑔𝑖

satisfies 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ and 𝐸ℎ𝑂 |𝑣⟩ = |𝑤⟩, where Π⊥

ℎ−1

= Π⊥
𝑔−1

= I,

Π⊥
ℎ𝑖

:= projector orthogonal to span{(𝑋ℎ)𝑖 |𝑤⟩ , (𝑋ℎ)𝑖−1 |𝑤⟩ , . . . |𝑤⟩}, 𝑐ℎ𝑖 := ⟨𝑤 | (𝑋ℎ)𝑖Π⊥
ℎ𝑖−1

(𝑋ℎ)𝑖 |𝑤⟩ ,

and analogously

Π⊥
𝑔𝑖

:= projector orthogonal to span{(𝑋𝑔)𝑖 |𝑣⟩ , (𝑋𝑔)𝑖−1 |𝑣⟩ , . . . |𝑣⟩}, 𝑐𝑔𝑖 := ⟨𝑣 | (𝑋𝑔)𝑖Π⊥
𝑔𝑖−1

(𝑋𝑔)𝑖 |𝑣⟩ .

39

Proof. In this case, we use Lemma 33 for 2𝑛 − 1 points. We have〈
𝑥𝑘

〉
= 0 (12)

but this time, 𝑘 ∈ {0, 1, . . . 2𝑛 − 3} and

〈
𝑥2𝑛−2

〉
> 0. We define the basis similarly by setting |𝑤0⟩ := |𝑤⟩

and for all 𝑘 ∈ Z satisfying 0 ≤ 𝑘 ≤ 𝑛 − 2 we have

|𝑤𝑘⟩ :=
Π⊥
ℎ𝑘−1

(𝑋ℎ)𝑘 |𝑤⟩
√
𝑐ℎ𝑘

=

(
I − ∑𝑘−1

𝑖=0
|𝑤𝑖⟩ ⟨𝑤𝑖 |

)
(𝑋ℎ)𝑘 |𝑤⟩

√
𝑐ℎ𝑘

.

We also define |𝑣0⟩ := |𝑣⟩ and for all 𝑘 ∈ Z satisfying 0 ≤ 𝑘 ≤ 𝑛 − 1 we have

|𝑣𝑘⟩ :=
Π⊥
𝑔𝑘−1

(𝑋𝑔)𝑘 |𝑣⟩
√
𝑐𝑔𝑘

=

(
I − ∑𝑘−1

𝑖=0
|𝑣𝑖⟩ ⟨𝑣𝑖 |

)
(𝑋𝑔)𝑘 |𝑣⟩

√
𝑐ℎ𝑘

.

This means that𝑂 =
∑𝑛−2

𝑖=0
(|𝑤𝑖⟩ ⟨𝑣𝑖 | + |𝑣𝑖⟩ ⟨𝑤𝑖 |)+|𝑣𝑛⟩ ⟨𝑣𝑛 | and so 𝐸ℎ𝑂 |𝑣⟩ = |𝑤⟩ follows directly. To establish

𝐷 := 𝑋ℎ − 𝐸ℎ𝑂𝑋𝑔𝑂𝑇𝐸ℎ ≥ 0, it suffices to show ⟨𝑤𝑖 |𝐷
��𝑤 𝑗

〉
≥ 0 for 𝑖, 𝑗 ∈ Z satisfying 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 2. Just

as in the balanced case, this is because 𝐷 |𝑣𝑖⟩ = 0, as 𝑋ℎ |𝑣𝑖⟩ = 0 and 𝐸ℎ |𝑣𝑖⟩ = 0. As before, we denote the

highest-power term of 𝑋ℎ appearing in |𝑤𝑘⟩, for 𝑘 in {0, 1 . . . 𝑛 − 2}, by

M(|𝑤𝑘⟩) =
〈
𝑥2𝑘
ℎ

〉
· (𝑋ℎ)𝑘 |𝑤⟩

and analogously, the highest power of 𝑋𝑔 appearing in |𝑣𝑘⟩ for 𝑘 in {0, 1, . . . 𝑛 − 2}, by

M(|𝑣𝑘⟩) =
〈
𝑥2𝑘
𝑔

〉
· (𝑋𝑔)𝑘 |𝑣⟩ .

Again, the highest power 𝑙 of

〈
𝑥𝑙

〉
in ⟨𝑤𝑖 |𝐷

��𝑤 𝑗

〉
is max{2 𝑗, 2𝑖, 𝑖+ 𝑗 +1} which can be deduced by evaluating

M(⟨𝑤𝑖 |)𝑋ℎM(
��𝑤 𝑗

〉
) =

〈
𝑥

2𝑗

ℎ

〉
·
〈
𝑥2𝑖
ℎ

〉
·
〈
𝑥
𝑖+𝑗+1

ℎ

〉
, and similarly

M(⟨𝑣𝑖 |)𝐸ℎ𝑂𝑋𝑔𝑂𝐸ℎM(|𝑣𝑖⟩) =
〈
𝑥

2𝑗
𝑔

〉
·
〈
𝑥2𝑖
𝑔

〉
·
〈
𝑥
𝑖+𝑗+1

𝑔

〉
.

The highest possible power is attained for 𝑖 = 𝑗 = 𝑛 − 2. This yields 2𝑛 − 3 and thus, using Equation (12),

we conclude that ⟨𝑤𝑖 |𝐷
��𝑤 𝑗

〉
= 0 for all 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 2. □

4.3 Solution to monomial assignments

There are four different types of monomial assignments depending on whether they are balanced or un-

balanced and aligned or misaligned. One could find a single expression for all of them but it does not

seem to aid clarity, therefore we present the solutions to all four different types separately. To go beyond

the previous solutions to the 𝑓0−assignments, the additional technique we introduce here is the use of the

pseudo-inverses 𝑋 ⊣
ℎ

and 𝑋 ⊣
𝑔 , but the idea is essentially unchanged.

4.3.1 The balanced case

Even monomials (as opposed to odd monomials) seem to align well at the bottom; see Figure 10a, therefore

justifying our choice to call them aligned (as opposed to misaligned).

Proposition 39 (Solution to balanced aligned monomial assignments). Let

40

(a) 2𝑛 = 8, 𝑚 = 2𝑏 =

2. Balanced aligned

monomial assignment

(b) 2𝑛 = 8, 𝑚 = 2𝑏 − 1 = 3. Balanced

misaligned monomial assignment

Figure 10: Balanced monomial assignments

• 𝑚 = 2𝑏 be an even non-negative integer

• 𝑡 =
∑𝑛
𝑖=1
𝑥𝑚
ℎ𝑖
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ − ∑𝑛

𝑖=1
𝑥𝑚𝑔𝑖 𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
, be a monomial assignment over 0 < 𝑥1 < 𝑥2 · · · < 𝑥2𝑛

• {|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛⟩ , |𝑔1⟩ , |𝑔2⟩ . . . |𝑔𝑛⟩} be an orthonormal basis, and

• finally

𝑋ℎ :=

𝑛∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖 ⟩ ⟨ℎ𝑖 | � diag(𝑥ℎ1
, . . . 𝑥ℎ𝑛 , 0, . . . 0︸ ︷︷ ︸

𝑛 zeros

), 𝑋𝑔 :=

𝑛∑︁
𝑖=1

𝑥𝑔𝑖 |𝑔𝑖 ⟩ ⟨𝑔𝑖 | � diag(0, . . . 0︸ ︷︷ ︸
𝑛 zeros

, 𝑥𝑔1
, . . . 𝑥𝑔𝑛),

|𝑤⟩ :=

𝑛∑︁
𝑖=1

√
𝑝ℎ𝑖 |ℎ𝑖⟩ � (√𝑝ℎ1

, . . .
√
𝑝ℎ𝑛 , 0, . . . 0︸ ︷︷ ︸

𝑛 zeros

)𝑇 and |𝑤 ′⟩ := (𝑋ℎ)𝑏 |𝑤⟩ ,

|𝑣⟩ :=

𝑛∑︁
𝑖=1

√︁
𝑝𝑔𝑖 |𝑔𝑖⟩ � (0, . . . 0︸ ︷︷ ︸

𝑛 zeros

,
√︁
𝑝𝑔1
, . . .

√︁
𝑝𝑔𝑛)𝑇 and |𝑣 ′⟩ := (𝑋𝑔)𝑏 |𝑣⟩ .

Then,

𝑂 :=

𝑛−𝑏−1∑︁
𝑖=−𝑏

(
Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩ ⟨𝑣 ′ | (𝑋𝑔)𝑖Π⊥

𝑔𝑖√
𝑐ℎ𝑖𝑐𝑔𝑖

+ h.c.

)
satisfies 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂

𝑇𝐸ℎ and 𝐸ℎ𝑂 |𝑣 ′⟩ = |𝑤 ′⟩, where we write (𝑋ℎ/𝑔)−𝑘 instead of (𝑋 ⊣
ℎ/𝑔)

𝑘 (for 𝑘 > 0),
𝐸ℎ :=

∑𝑛
𝑖=1

|ℎ𝑖⟩ ⟨ℎ𝑖 | , 𝑐ℎ𝑖 := ⟨𝑤 ′ | (𝑋ℎ)𝑖Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩

Π⊥
ℎ𝑖

:=

projector orthogonal to span{(𝑋ℎ)−|𝑖 |+1 |𝑤 ′⟩ , (𝑋ℎ)−|𝑖 |+2 |𝑤 ′⟩ . . . , |𝑤 ′⟩} 𝑖 < 0

projector orthogonal to span{(𝑋ℎ)−𝑏 |𝑤 ′⟩ , (𝑋ℎ)−𝑏+1 |𝑤 ′⟩ , . . . (𝑋ℎ)𝑖−1 |𝑤 ′⟩} 𝑖 > 0

I 𝑖 = 0,

and analogously 𝑐𝑔𝑖 := ⟨𝑣 ′ | (𝑋𝑔)𝑖Π⊥
𝑔𝑖
(𝑋𝑔)𝑖 |𝑣 ′⟩ and

Π⊥
𝑔𝑖

:=

projector orthogonal to span{(𝑋𝑔)−|𝑖 |+1 |𝑣 ′⟩ , (𝑋𝑔)−|𝑖 |+2 |𝑣 ′⟩ . . . , |𝑣 ′⟩} 𝑖 < 0

projector orthogonal to span{(𝑋𝑔)−𝑏 |𝑣 ′⟩ , (𝑋𝑔)−𝑏+1 |𝑣 ′⟩ , . . . (𝑋𝑔)𝑖−1 |𝑣 ′⟩} 𝑖 > 0

I 𝑖 = 0.

41

Proof. The orthonormal basis of interest here is��𝑤 ′
𝑖

〉
:=

Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩
√
𝑐ℎ𝑖

, which entails (13)

Π⊥
ℎ𝑖

=

Iℎ 𝑖 = 0

Iℎ −
∑

0

𝑗=𝑖+1

���𝑤 ′
𝑗

〉 〈
𝑤 ′
𝑗

��� 𝑖 < 0

Iℎ −
∑𝑖−1

𝑗=−𝑏

���𝑤 ′
𝑗

〉 〈
𝑤 ′
𝑗

��� 𝑖 > 0

(14)

where Iℎ := 𝐸ℎ . We define

��𝑣 ′𝑖 〉 and Π⊥
𝑔𝑖

analogously. Here, we keep track of both the highest and lowest

power, 𝑙 in ⟨𝑤 ′ |𝑋 𝑙
ℎ
|𝑤 ′⟩ and ⟨𝑣 ′ |𝑋 𝑙𝑔 |𝑣 ′⟩, which appear in the matrix elements

〈
𝑤 ′
𝑖

��𝐷 ���𝑤 ′
𝑗

〉
. To this end, we

use

〈
𝑥𝑙
ℎ

〉′
:= ⟨𝑤 ′ |𝑋 𝑙

ℎ
|𝑤 ′⟩ = ⟨𝑤 |𝑋 𝑙+2𝑏

ℎ
|𝑤⟩ and

〈
𝑥𝑙𝑔

〉′
:= ⟨𝑣 ′ |𝑋 𝑙𝑔 |𝑣 ′⟩ = ⟨𝑣 |𝑋 𝑙+2𝑏

𝑔 |𝑣⟩. We denote the minimum

and maximum powers, 𝑙 , by

M(
��𝑤 ′
𝑖

〉
) =

(〈
𝑥0

ℎ

〉′ |𝑤 ′⟩ ,
〈
𝑥0

ℎ

〉′ |𝑤 ′⟩
)

𝑖 = 0(〈
𝑥
−2 |𝑖 |
ℎ

〉′
(𝑋ℎ)−|𝑖 | |𝑤 ′⟩ ,

〈
𝑥0

ℎ

〉′ |𝑤 ′⟩
)

𝑖 < 0(〈
𝑥−2𝑏
ℎ

〉′ (𝑋ℎ)−𝑏 |𝑤 ′⟩ ,
〈
𝑥2𝑖
ℎ

〉′ (𝑋ℎ)𝑖 |𝑤 ′⟩
)

𝑖 > 0,

and we define 𝐷 := 𝑋ℎ − 𝐸ℎ𝑂𝑋𝑔𝑂𝑇𝐸ℎ �
〈
𝑤 ′
𝑖

�� (𝑋ℎ − 𝐸ℎ𝑂𝑋𝑔𝑂𝑇𝐸ℎ) ���𝑤 ′
𝑗

〉
, as usual. It suffices to restrict to the

span of the {
��𝑤 ′
𝑖

〉
} basis because𝑋ℎ

��𝑣 ′𝑖 〉 = 0 and 𝐸ℎ
��𝑣 ′𝑖 〉 = 0. The lowest power, 𝑙 , appearing in 𝐷 is attained

for 𝑖 = 𝑗 = −𝑏 (as −𝑏 ≤ 𝑖, 𝑗 ≤ 𝑛 − 𝑏 − 1). This can be evaluated to be −2𝑏 by observing that

M(
〈
𝑤 ′

−𝑏
��)𝑋ℎM(

��𝑤 ′
−𝑏

〉
) =

(〈
𝑥−2𝑏
ℎ

〉′ 〈
𝑥−2𝑏
ℎ

〉′ 〈
𝑥−2𝑏+1

ℎ

〉′
,
〈
𝑥0

ℎ

〉′ 〈
𝑥0

ℎ

〉′ ⟨𝑥ℎ⟩′) ,
where we multiplied component-wise. To find the highest power, 𝑙 , in the matrix 𝐷 , note that for 𝑖, 𝑗 > 0

we have

M(
〈
𝑤 ′
𝑖

��)𝑋ℎM(
��𝑤 ′
𝑗

〉
) =

(〈
𝑥−2𝑏
ℎ

〉′ 〈
𝑥−2𝑏+1

ℎ

〉′ 〈
𝑥−2𝑏
ℎ

〉′
,
〈
𝑥2𝑖
ℎ

〉′ 〈
𝑥

2𝑗

ℎ

〉′ 〈
𝑥
𝑖+𝑗+1

ℎ

〉′)
so 𝑙 = max{2𝑖, 2 𝑗, 𝑖 + 𝑗 + 1}. As argued for the 𝑓0-assignment, 𝑙 = 2𝑛 − 2𝑏 − 1 for 𝑖 = 𝑗 = 𝑛 − 𝑏 − 1,

otherwise 𝑙 < 2𝑛 − 2𝑏 − 1. Thus, only the 𝐷𝑛−𝑏−1,𝑛−𝑏−1 term in 𝐷 , depends on

〈
𝑥2𝑛−2𝑏−1

ℎ

〉′
. All other terms,

at most, depend on

〈
𝑥−2𝑏
ℎ

〉′
,
〈
𝑥−2𝑏+1

ℎ

〉′
, . . .

〈
𝑥2𝑛−2𝑏−2

ℎ

〉′
, i.e.

〈
𝑥0

ℎ

〉
,
〈
𝑥1

ℎ

〉
, . . .

〈
𝑥2𝑛−2

ℎ

〉
. The analogous argument

for

〈
𝑣 ′𝑖

��𝑋𝑔 ���𝑣 ′𝑗 〉, the observation that

〈
𝑤 ′
𝑖

��𝐷 ���𝑤 ′
𝑗

〉
=

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
−
〈
𝑣 ′𝑖

��𝑋𝑔 ���𝑣 ′𝑗 〉, and the fact that

〈
𝑥0

〉
=

〈
𝑥1

〉
=

· · · =
〈
𝑥2𝑛−2

〉
= 0 entail that these terms vanish. It remains to show that 𝐷𝑛−𝑏−1,𝑛−𝑏−1 ≥ 0. Noting that

in

〈
𝑤 ′
𝑛−𝑏−1

��𝐷 ��𝑤 ′
𝑛−𝑏−1

〉
, the only term which would not get cancelled due to the aforesaid reasoning, must

come from the part of

��𝑤 ′
𝑛−𝑏−1

〉
containing𝑋𝑛−𝑏−1

ℎ
|𝑤 ′⟩. It suffices to show that the coefficient of this term is

positive because we know that

〈
𝑥2𝑛−2𝑏−1

〉′
=

〈
𝑥2𝑛−1

〉
> 0. We know this coefficient to be exactly 1/𝑐ℎ𝑛−𝑏−1

(see Equation (14) and Equation (13)) establishing that 𝐷 ≥ 0. □

To proceed further, it is helpful to have a more concise way of viewing the proof. Let us consider a

concrete example of a balanced aligned monomial assignment with 2𝑛 = 8 and𝑚 = 2𝑏 = 2 (see Figure 10a).

We represent the range of dependence of

〈
𝑤 ′

0

��𝑋ℎ ��𝑤 ′
0

〉
on

〈
𝑥𝑙
ℎ

〉
diagrammatically by enclosing in a left

bracket, the terms

〈
𝑥3

〉
= ⟨𝑥⟩′ and

〈
𝑥2

〉
=

〈
𝑥0

〉′
(replacing |𝑤⟩ with

��𝑤 ′
0

〉
) and writing

��𝑤 ′
0

〉
next to it.

Similarly, for

��𝑤 ′
−1

〉
,
��𝑤 ′

1

〉
and

��𝑤 ′
2

〉
we enclose in a left bracket, the terms{〈

𝑥0
〉
,
〈
𝑥1

〉
,
〈
𝑥2

〉
,
〈
𝑥3

〉}
=

{〈
𝑥−2

〉′
,
〈
𝑥−1

〉′
, . . . ⟨𝑥⟩′

}
,

42

{〈
𝑥0

〉
,
〈
𝑥1

〉
, . . . ,

〈
𝑥5

〉}
=

{〈
𝑥−2

〉′
,
〈
𝑥−1

〉′
, . . .

〈
𝑥3

〉′}
,

and

{〈
𝑥0

〉
,
〈
𝑥1

〉
, . . .

〈
𝑥7

〉}
=

{〈
𝑥−2

〉′
,
〈
𝑥−1

〉′
, . . .

〈
𝑥5

〉′}
,

respectively. The highest power 𝑙 of

〈
𝑥𝑙
ℎ

〉
that appears in

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
is 𝑙 = 7 when (and only when)

𝑖 = 𝑗 = 2. Thus, the matrix 𝐷 , restricted to the subspace spanned by the {
��𝑤 ′
𝑖

〉
} basis (again, we can

safely ignore the subspace span{
��𝑣 ′𝑖 〉} because 𝐷

��𝑣 ′𝑖 〉 = 0), has only one non-zero entry which we saw was

positive as

〈
𝑥7

〉
> 0.

A direct extension of this analysis to the balanced misaligned monomial assignment fails, as we can

see concretely in the case with 2𝑛 = 8 and𝑚 = 2𝑏 − 1 = 3 (see Figure 10b). From hindsight, we write both

the

��𝑣 ′𝑖 〉s and the

��𝑤 ′
𝑖

〉
s. We start with

��𝑤 ′
0

〉
= 𝑋

3/2

ℎ
|𝑤⟩ and

��𝑣 ′
0

〉
= 𝑋

3/2

𝑔 |𝑣0⟩, and as before, enclose the terms{〈
𝑥0

〉′
=

〈
𝑥3

〉
,
〈
𝑥1

〉′
=

〈
𝑥4

〉}
in a left bracket. We then multiply

��𝑤 ′
0

〉
with 𝑋−1

ℎ
(and

��𝑣 ′
0

〉
with 𝑋−1

𝑔 respec-

tively) and project out the components along the previous vectors. We represent these by

��𝑤 ′
−1

〉
and

��𝑣 ′−1

〉
,

and in the figure we enclose the terms

{
⟨𝑥⟩ =

〈
𝑥−2

〉′
,
〈
𝑥2

〉
=

〈
𝑥−1

〉′
. . .

〈
𝑥4

〉
= ⟨𝑥⟩′

}
in the left and right

brackets. We do not go lower, because then we pickup a dependence on

〈
𝑥−1

〉
which persists for subsequent

vectors. In general, we stop after taking 𝑏 steps down (here 𝑏 = 1). We go up by multiplying

��𝑤 ′
0

〉
with 𝑋ℎ

(and

��𝑣 ′
0

〉
with 𝑋𝑔 resp.) and projecting out the components along the previous vectors. We represent these

by

��𝑤 ′
1

〉
and

��𝑣 ′
1

〉
, and in the figure we enclose the terms

{
⟨𝑥⟩ =

〈
𝑥−2

〉′
,
〈
𝑥2

〉
=

〈
𝑥−1

〉′
. . .

〈
𝑥6

〉
=

〈
𝑥3

〉′}
in

the brackets. Finally, we construct

��𝑤 ′
2

〉
and

��𝑣 ′
2

〉
by taking a step up using𝑋ℎ and𝑋𝑔, respectively. These are

essentially fixed to be the vectors orthogonal to the previous ones, once we restrict to span{|ℎ1⟩ , |ℎ2, ⟩ . . . |ℎ𝑛⟩}
and span{|𝑔1⟩ , |𝑔2, ⟩ . . . |𝑔𝑛⟩}. Taking a step down using 𝑋−1

ℎ
and 𝑋−1

𝑔 we could have constructed

��𝑤 ′
−2

〉
and

��𝑣 ′−2

〉
, but these are the same as

��𝑤 ′
2

〉
and

��𝑣 ′
2

〉
, as we have a 3-dimensional space. If we were to use

𝑂 =
∑

2

𝑖=−1

(��𝑤 ′
𝑖

〉 〈
𝑣 ′𝑖

�� + h.c.

)
then we would have obtained dependence on

〈
𝑥7

〉
in the row corresponding

to

��𝑤 ′
2

〉
and a dependence on

〈
𝑥8

〉
for the term

〈
𝑤 ′

2

��𝐷 ��𝑤 ′
2

〉
. This already hints that the matrix is neg-

ative because it has the form

[
0 𝑏

𝑏 𝑐

]
with 𝑏 ≠ 0; thus this choice cannot work. We therefore define

𝑂 :=
(∑

1

𝑖=−1

��𝑤 ′
𝑖

〉 〈
𝑣 ′𝑖

�� + h.c.

)
+

��𝑤 ′
2

〉 〈
𝑤 ′

2

�� + ��𝑣 ′
2

〉 〈
𝑣 ′

2

��
. Further, instead of using

𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ (15)

for establishing positivity, we equivalently use

𝐸ℎ ≥
(
𝑋 ⊣
ℎ

)
1/2

𝑂𝑋𝑔𝑂
𝑇

(
𝑋 ⊣
ℎ

)
1/2

, (16)

which is easily obtained by multiplying by (𝑋 ⊣
ℎ
)1/2

on both sides. The reason is that to establish positivity,

we must include

��𝑤 ′
2

〉
in the basis (we can neglect the null vectors of 𝐸ℎ), and even though the RHS of

Equation (15) would not contribute, the LHS would get non-trivial contributions along the rows. Using the

inverses allows us to remove this dependence. To see this, note that span{
��𝑤 ′

−1

〉
,
��𝑤 ′

0

〉
. . .

��𝑤 ′
2

〉
} equals the

ℎ-space, i.e. span{|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛⟩}. Further, span{𝑋 1/2

ℎ

��𝑤 ′
𝑖

〉
}2

𝑖=−1
also equals the ℎ-space (but the vectors

are not, in general, orthonormal any more). Finally, observe that 𝑋
1/2

ℎ

��𝑤 ′
2

〉
is a null vector of the RHS of

Equation (16). Therefore, to prove the positivity it suffices to restrict to span{𝑋 1/2

ℎ

��𝑤 ′
𝑖

〉
}1

𝑖=−1
. An arbitrary

normalized vector in this space can be written as

|𝜓 ⟩ =
∑

1

𝑖=−1
𝛼𝑖𝑋

1/2

ℎ

��𝑤 ′
𝑖

〉√︂∑
1

𝑖, 𝑗=−1
𝛼𝑖𝛼 𝑗

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉 =⇒ 𝑋
1/2

𝑔 𝑂𝑇 (𝑋 ⊣
ℎ
)1/2 |𝜓 ⟩ =

∑
1

𝑖=−1
𝛼𝑖𝑋

1/2

𝑔

��𝑣 ′
𝑖

〉√︂∑
1

𝑖, 𝑗=−1
𝛼𝑖𝛼 𝑗

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
=⇒ ⟨𝜓 | (𝑋 ⊣

ℎ
)1/2𝑂𝑋𝑔𝑂

𝑇 (𝑋 ⊣
ℎ
)1/2 |𝜓 ⟩ =

∑
1

𝑖, 𝑗=−1
𝛼𝑖𝛼 𝑗

〈
𝑣 ′
𝑖

��𝑋𝑔 ���𝑣 ′𝑗 〉∑
1

𝑖, 𝑗=−1
𝛼𝑖𝛼 𝑗

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉 = 1,

43

where we get equality by noting that

〈
𝑣 ′𝑖

��𝑋𝑔 ���𝑣 ′𝑗 〉s depend on (at most)

{〈
𝑥𝑔

〉
,

〈
𝑥2

𝑔

〉
. . .

〈
𝑥6

𝑔

〉}
and analo-

gously

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
depend on (at most)

{
⟨𝑥ℎ⟩ ,

〈
𝑥2

ℎ

〉
. . .

〈
𝑥6

ℎ

〉}
, which are the same as

〈
𝑥𝑖

〉
= 0 for 𝑖 ∈

{0, 1, . . . 6}. Since we proved the RHS of Equation (16) equals 1 for all normalized |𝜓 ⟩s, we conclude that

we have the correct unitary.

Proposition 40 (Solution to balanced misaligned monomial assignments). Let

• 𝑚 = 2𝑏 − 1 be an odd non-negative integer (i.e. 𝑏 ≥ 1)

• 𝑡 =
∑𝑛
𝑖=1
𝑥𝑚
ℎ𝑖
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ − ∑𝑛

𝑖=1
𝑥𝑚𝑔𝑖 𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
, be a monomial assignment over {𝑥1, 𝑥2 . . . 𝑥2𝑛}

• (|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛⟩ , |𝑔1⟩ , |𝑔2⟩ . . . |𝑔𝑛⟩) be an orthonormal basis

• finally

𝑋ℎ :=

𝑛∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖 ⟩ ⟨ℎ𝑖 | � diag(𝑥ℎ1
, . . . 𝑥ℎ𝑛 , 0, . . . 0︸ ︷︷ ︸

𝑛 zeros

), 𝑋𝑔 :=

𝑛∑︁
𝑖=1

𝑥𝑔𝑖 |𝑔𝑖 ⟩ ⟨𝑔𝑖 | � diag(0, . . . 0︸ ︷︷ ︸
𝑛 zeros

, 𝑥𝑔1
, . . . 𝑥𝑔𝑛),

|𝑤⟩ := (√𝑝ℎ1
, . . .

√
𝑝ℎ𝑛 , 0, . . . 0︸ ︷︷ ︸

𝑛 zeros

) and |𝑤 ′⟩ := (𝑋ℎ)𝑏−
1

2 |𝑤⟩

|𝑣⟩ := (0, . . . 0︸ ︷︷ ︸
𝑛 zeros

,
√︁
𝑝𝑔1
, . . .

√︁
𝑝𝑔𝑛) and |𝑣 ′⟩ := (𝑋𝑔)𝑏−

1

2 |𝑣⟩ .

Then,

𝑂 :=

𝑛−𝑏−1∑︁
𝑖=−𝑏+1

(
Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩ ⟨𝑣 ′ | (𝑋𝑔)𝑖Π⊥

𝑔𝑖
√
𝑐ℎ𝑖𝑐𝑔𝑖

+ h.c.

)
+
Π⊥
𝑔𝑛−𝑏 (𝑋𝑔)

𝑛−𝑏 |𝑣 ′⟩ ⟨𝑣 ′ | (𝑋𝑔)𝑛−𝑏Π⊥
𝑔𝑛−𝑏

𝑐𝑔𝑛−𝑏+1

+
Π⊥
ℎ𝑛−𝑏

(𝑋ℎ)𝑛−𝑏 |𝑤 ′⟩ ⟨𝑤 ′ | (𝑋ℎ)𝑛−𝑏Π⊥
ℎ𝑛−𝑏

𝑐ℎ𝑛−𝑏

satisfies 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ and 𝐸ℎ𝑂 |𝑣 ′⟩ = |𝑤 ′⟩, where we write 𝑋−𝑘

ℎ/𝑔 instead of (𝑋 ⊣
ℎ/𝑔)

𝑘 for 𝑘 > 0, 𝑐ℎ𝑖 :=

⟨𝑤 ′ | (𝑋ℎ)𝑖Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩,

Π⊥
ℎ𝑖

:=

projector orthogonal to span{(𝑋 ⊣

ℎ
) |𝑖 |−1 |𝑤 ′⟩ , (𝑋 ⊣

ℎ
) |𝑖 |−2 |𝑤 ′⟩ . . . , |𝑤 ′⟩} 𝑖 < 0

projector orthogonal to span{(𝑋 ⊣
ℎ
)𝑏−1 |𝑤 ′⟩ , (𝑋 ⊣

ℎ
)𝑏−2 |𝑤 ′⟩ , . . . , |𝑤 ′⟩ , 𝑋ℎ |𝑤 ′⟩ , . . . (𝑋ℎ)𝑖−1 |𝑤 ′⟩} 𝑖 > 0

I 𝑖 = 0,

and analogously 𝑐𝑔𝑖 := ⟨𝑣 ′ | (𝑋𝑔)𝑖Π⊥
𝑔𝑖
(𝑋𝑔)𝑖 |𝑣 ′⟩,

Π⊥
𝑔𝑖

:=

projector orthogonal to span{(𝑋 ⊣

𝑔) |𝑖 |−1 |𝑣 ′⟩ , (𝑋 ⊣
𝑔) |𝑖 |−2 |𝑣 ′⟩ . . . , |𝑣 ′⟩} 𝑖 < 0

projector orthogonal to span{(𝑋 ⊣
𝑔)𝑏−1 |𝑣 ′⟩ , (𝑋 ⊣

𝑔)𝑏−2 |𝑣 ′⟩ , . . . |𝑣 ′⟩ , 𝑋𝑔 |𝑣 ′⟩ , . . . (𝑋𝑔)𝑖−1 |𝑣 ′⟩} 𝑖 > 0

I 𝑖 = 0.

Proof. The proof is very similar to that of Proposition 39. The orthonormal basis of interest here is��𝑤 ′
𝑖

〉
:=

Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩
√
𝑐ℎ𝑖

which entails

Π⊥
ℎ𝑖

=

Iℎ 𝑖 = 0

Iℎ −
∑

0

𝑗=𝑖−1

���𝑤 ′
𝑗

〉 〈
𝑤 ′
𝑗

��� 𝑖 < 0

Iℎ −
∑𝑖
𝑗=−𝑏+1

���𝑤 ′
𝑗

〉 〈
𝑤 ′
𝑗

��� 𝑖 > 0

44

where Iℎ := 𝐸ℎ . We define

��𝑣 ′𝑖 〉 and Π⊥
𝑔𝑖

analogously. Our strategy is to keep track of the highest and lowest

powers, 𝑙 , in ⟨𝑤 ′ |𝑋 𝑙
ℎ
|𝑤 ′⟩ and ⟨𝑣 ′ |𝑋 𝑙𝑔 |𝑣 ′⟩, which appear in the matrix elements

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
and

〈
𝑣 ′𝑖

��𝑋𝑔 ���𝑣 ′𝑗 〉.

For brevity we write

〈
𝑥𝑙
ℎ

〉′
:= ⟨𝑤 ′ |𝑋 𝑙

ℎ
|𝑤 ′⟩ and

〈
𝑥𝑙𝑔

〉′
:= ⟨𝑣 ′ |𝑋 𝑙𝑔 |𝑣 ′⟩. The minimum and maximum powers,

𝑙 , are denoted by

M(
��𝑤 ′
𝑖

〉
) =

(〈
𝑥0

ℎ

〉′ |𝑤 ′⟩ ,
〈
𝑥0

ℎ

〉′ |𝑤 ′⟩
)

𝑖 = 0(〈
𝑥
−2 |𝑖 |
ℎ

〉′
(𝑋ℎ)−|𝑖 | |𝑤 ′⟩ ,

〈
𝑥0

ℎ

〉′ |𝑤 ′⟩
)

𝑖 < 0(〈
𝑥
−2(𝑏−1)
ℎ

〉′
(𝑋ℎ)−(𝑏−1) |𝑤 ′⟩ ,

〈
𝑥2𝑖
ℎ

〉′ (𝑋ℎ)𝑖 |𝑤 ′⟩
)

𝑖 > 0.

Establishing 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ is equivalent to establishing

𝐸ℎ ≥ 𝑋−1/2

ℎ
𝑂𝑋𝑔𝑂

𝑇𝑋
−1/2

ℎ
. (17)

It is easy to see that 𝑋
1/2

ℎ

��𝑤 ′
𝑛−𝑏

〉
is a vector with zero eigenvalue for the RHS as 𝑋𝑔𝑂

𝑇
��𝑤 ′
𝑛−𝑏

〉
= 0. Any

vector |𝜓 ⟩ ∈ span{|𝑔1⟩ , |𝑔2⟩ . . . |𝑔𝑛⟩} is a vector with zero eigenvalue for both the LHS and the RHS. Thus,

for the positivity we can restrict to span{|ℎ1⟩ , |ℎ2⟩ , . . . |ℎ𝑛⟩}\span{𝑋 1/2

ℎ

��𝑤 ′
𝑛−𝑏

〉
}, i.e. to vectors in the ℎ-

space orthogonal to 𝑋
1/2

ℎ

��𝑤 ′
𝑛−𝑏

〉
. It turns out to be easier to test for positivity on a larger space. It is

clear that span

{
𝑋

1/2

ℎ

��𝑤 ′
𝑖

〉}𝑛−𝑏
𝑖=−𝑏+1

= span{|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛⟩} = span{
��𝑤 ′
𝑖

〉
}𝑛−𝑏
𝑖=−𝑏+1

, (due to Lemma 134). As

neglecting vectors with components along 𝑋
1/2

ℎ

��𝑤 ′
𝑛−𝑏

〉
suffices to satisfy Equation (17), we can restrict to

span{𝑋 1/2

ℎ

��𝑤 ′
𝑖

〉
}𝑛−𝑏−1

𝑖=−𝑏+1
(which might still contain vectors with components along 𝑋

1/2

ℎ

��𝑤 ′
𝑛−𝑏

〉
as the basis

vectors are not orthogonal but it only means that we check for positivity over a larger set of vectors).

These ensure that the troublesome vectors

��𝑤 ′
𝑛−𝑏

〉
and

��𝑣 ′
𝑛−𝑏

〉
do not appear in the remaining analysis. Let

|𝜓 ⟩ =
(∑𝑛−𝑏−1

𝑖=−𝑏+1
𝛼𝑖𝑋

1/2

ℎ

��𝑤 ′
𝑖

〉)
/𝑐 where 𝑐 =

√︁
⟨𝜓 |𝜓 ⟩. To establish Equation (17), it is enough to show that for

all choices of 𝛼𝑖s,

1 ≥ ⟨𝜓 |𝑋−1/2

ℎ
𝑂𝑋𝑔𝑂

𝑇𝑋
−1/2

ℎ
|𝜓 ⟩ =

∑𝑛−𝑏−1

𝑖, 𝑗=−𝑏+1
𝛼𝑖𝛼 𝑗

〈
𝑣 ′𝑖

��𝑋𝑔 ���𝑣 ′𝑗 〉∑𝑛−𝑏−1

𝑖, 𝑗=−𝑏+1
𝛼𝑖𝛼 𝑗

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉 = 1 (18)

where the second step follows from 𝑋
1/2

𝑔 𝑂𝑇𝑋
−1/2

ℎ
|𝜓 ⟩ = ∑𝑛−𝑏−1

𝑖=−𝑏+1
𝛼𝑖𝑋

1/2

𝑔

��𝑣 ′𝑖 〉 and the last step follows from

the counting argument below. Start by noting that〈
𝑥𝑖
ℎ

〉′
=

〈
𝑥𝑖+2𝑏−1

ℎ

〉
and

〈
𝑥0

〉
= ⟨𝑥⟩ = · · · =

〈
𝑥2𝑛−2

〉
= 0. (19)

To determine the highest power of 𝑙 in ⟨𝑤 ′ |𝑋 𝑙
ℎ
|𝑤 ′⟩ which appears in the matrix elements

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
(for

−𝑏 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 𝑏 − 1) it suffices to consider the expectation values

〈
𝑤 ′
𝑛−𝑏−1

��𝑋ℎ ��𝑤 ′
𝑛−𝑏−1

〉
. To this end,

we evaluate

M(
〈
𝑤 ′
𝑛−𝑏−1

��)𝑋ℎM(
��𝑤 ′
𝑛−𝑏−1

〉
)

=

(〈
𝑥
−2(𝑏−1)
ℎ

〉′ 〈
𝑥
−2(𝑏−1)
ℎ

〉′ 〈
𝑥
−2(𝑏−1)+1

ℎ

〉′
,

〈
𝑥

2(𝑛−𝑏−1)
ℎ

〉′ 〈
𝑥

2(𝑛−𝑏−1)
ℎ

〉′ 〈
𝑥

2(𝑛−𝑏−1)+1

ℎ

〉′)
=

(
⟨𝑥ℎ⟩ ⟨𝑥ℎ⟩

〈
𝑥2

ℎ

〉
,
〈
𝑥2𝑛−3

ℎ

〉 〈
𝑥2𝑛−3

ℎ

〉 〈
𝑥2𝑛−2

ℎ

〉)
.

The highest power is, manifestly, 𝑙 = 2𝑛 − 2. To find the lowest power 𝑙 in ⟨𝑤 ′ |𝑋 𝑙
ℎ
|𝑤 ′⟩ appearing in〈

𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
(for −𝑏 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 𝑏 − 1) it suffices to consider

〈
𝑤 ′

−𝑏+1

��𝑋ℎ ��𝑤 ′
−𝑏+1

〉
. To this end, we

45

evaluate

M(
〈
𝑤 ′

−𝑏+1

��)𝑋ℎM(
��𝑤 ′

−𝑏+1

〉
) =

(〈
𝑥
−2(𝑏−1)
ℎ

〉′ 〈
𝑥
−2(𝑏−1)
ℎ

〉′ 〈
𝑥
−2(𝑏−1)+1

ℎ

〉′
,
〈
𝑥0

ℎ

〉′ 〈
𝑥0

ℎ

〉′ ⟨𝑥ℎ⟩′)
=

(
⟨𝑥ℎ⟩ ⟨𝑥ℎ⟩

〈
𝑥2

ℎ

〉
,

〈
𝑥2𝑏−1

ℎ

〉 〈
𝑥2𝑏−1

ℎ

〉 〈
𝑥2𝑏
ℎ

〉)
.

The lowest power is, manifestly, 𝑙 = 1. We thus conclude that the numerator of Equation (18) is a func-

tion of ⟨𝑥ℎ⟩ ,
〈
𝑥2

ℎ

〉
, . . .

〈
𝑥2𝑛−2

ℎ

〉
and, an analogous argument entails that the denominator is a function of〈

𝑥𝑔
〉
,

〈
𝑥2

𝑔

〉
, . . .

〈
𝑥2𝑛−2

𝑔

〉
with the same form. Using Equation (19), we conclude that the numerator and the

denominator are the same. □

4.3.2 The unbalanced case

The techniques we have used so far also work when the number of points in a monomial assignment are

odd, i.e. for unbalanced monomial assignments, both aligned and misaligned. We illustrate how the so-

lution is constructed by considering a concrete example of an unbalanced aligned monomial assignment.

We start with 2𝑛 − 1 = 7 points and 𝑚 = 2𝑏 = 2 (see Figure 11a). We use the diagrammatic repre-

sentation introduced previously. In this case, we have 4 initial and 3 final points; the standard basis is

{|𝑔1⟩ , |𝑔2⟩ , . . . |𝑔4⟩ , |ℎ1⟩ , |ℎ2⟩ , |ℎ3⟩}. The basis of interest is again constructed by starting at |𝑤 ′⟩ and using

(a) 2𝑛 − 1 = 7; 𝑚 = 2𝑏 = 2. Un-

balanced aligned monomial assign-

ment.

(b) 2𝑛 − 1 = 7;𝑚 = 2𝑏 − 1 = 1.

Unbalanced misaligned mono-

mial assignment.

Figure 11: Visualizing unbalanced monomial assignment with simple examples.

𝑋−1

ℎ
until we reach

〈
𝑥0

〉
, and then by using 𝑋ℎ until the space is spanned (analogously for |𝑣 ′⟩ with 𝑋−1

𝑔

and 𝑋𝑔). It is

{��𝑣 ′−1

〉
,
��𝑣 ′

0

〉
,
��𝑣 ′

1

〉
,
��𝑣 ′

2

〉}
and

{��𝑤 ′
−1

〉
,
��𝑤 ′

0

〉
,
��𝑤 ′

1

〉}
. In the same vein as the earlier solutions, we

define 𝑂 :=
∑

1

𝑖=−1

(��𝑤 ′
𝑖

〉 〈
𝑣 ′𝑖

�� + h.c.

)
+

��𝑣 ′
2

〉 〈
𝑣 ′

2

��
. In 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂

𝑇𝐸ℎ , the

��𝑣 ′
2

〉
term is removed by the pro-

jector, 𝐸ℎ :=
∑

3

𝑖=1
|ℎ𝑖⟩ ⟨ℎ𝑖 |. Using

〈
𝑥0

〉
= ⟨𝑥⟩ = · · · =

〈
𝑥5

〉
= 0 and the counting arguments from before, it

follows that 𝐷 = 𝑋ℎ − 𝐸ℎ𝑂𝑋𝑔𝑂𝑇𝐸ℎ = 0.

For an unbalanced misaligned monomial assignment let us consider the example with 2𝑛 − 1 = 7 and

𝑚 = 2𝑏−1 = 1. We have 3 initial and 4 final points; the standard basis is {|𝑔1⟩ , |𝑔2⟩ , |𝑔3⟩ , |ℎ1⟩ , |ℎ2⟩ , . . . |ℎ4⟩}.
We construct the basis of interest by starting at |𝑤 ′⟩ and using 𝑋ℎ until the space is spanned (analogously

for |𝑣 ′⟩ with 𝑋𝑔). More generally, we first go down for 𝑏 − 2 steps (which is zero in this case), until ⟨𝑥⟩ is

reached in the diagram. The bases are

{��𝑣 ′
0

〉
,
��𝑣 ′

1

〉
,
��𝑣 ′

2

〉}
and

{��𝑤 ′
0

〉
,
��𝑤 ′

1

〉
,
��𝑤 ′

2

〉
,
��𝑤 ′

3

〉}
. As before, we define

𝑂 :=
∑

2

𝑖=0

(��𝑤 ′
𝑖

〉 〈
𝑣 ′𝑖

�� + h.c.

)
+

��𝑤 ′
3

〉 〈
𝑤 ′

3

��
. This time we use 𝐸ℎ ≥ 𝑋

−1/2

ℎ
𝑂𝑋𝑔𝑂

𝑇𝑋
−1/2

ℎ
which is equivalent to

𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ for 𝐸ℎ :=

∑
4

𝑖=1
|ℎ𝑖⟩ ⟨ℎ𝑖 |. Using an argument similar to the balanced misaligned case, we

46

can reduce the positivity condition to

1 ≥

∑
2

𝑖, 𝑗=0
𝛼𝑖𝛼 𝑗

〈
𝑣 ′𝑖

��𝑋𝑔 ���𝑣 ′𝑗 〉∑
2

𝑖, 𝑗=0
𝛼𝑖𝛼 𝑗

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
but the counting argument doesn’t make the fraction 1. This is because we now have an

〈
𝑥6

ℎ

〉
dependence

in the denominator and an

〈
𝑥6

𝑔

〉
dependence in the numerator. However, we also know that this term only

appears in

〈
𝑤 ′

2

��𝑋ℎ ��𝑤 ′
2

〉
that too with a positive coefficient (as we saw in the unbalanced 𝑓0−assignment).

Further, we know

〈
𝑥6

ℎ

〉
>

〈
𝑥6

𝑔

〉
and therefore we can conclude that the numerator is smaller than the

denominator ensuring the inequality is always satisfied. We state the general solution for both these cases

and prove their correctness below.

Proposition 41 (Solution to unbalanced aligned monomial assignments). Let

• 𝑚 = 2𝑏 be an even non-negative integer

• 𝑡 =
∑𝑛−1

𝑖=1
𝑥𝑚
ℎ𝑖
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ − ∑𝑛

𝑖=1
𝑥𝑚𝑔𝑖 𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
, be a monomial assignment over {𝑥1, 𝑥2 . . . 𝑥2𝑛−1}

• (|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛−1⟩ , |𝑔1⟩ , |𝑔2⟩ . . . |𝑔𝑛⟩) be an orthonormal basis

• finally

𝑋ℎ :=

𝑛−1∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖 ⟩ ⟨ℎ𝑖 | � diag(𝑥ℎ1
, . . . 𝑥ℎ𝑛−1

, 0, . . . 0︸ ︷︷ ︸
𝑛 zeros

), 𝑋𝑔 :=

𝑛∑︁
𝑖=1

𝑥𝑔𝑖 |𝑔𝑖 ⟩ ⟨𝑔𝑖 | � diag(0, . . . 0︸ ︷︷ ︸
𝑛−1 zeros

, 𝑥𝑔1
, . . . 𝑥𝑔𝑛),

|𝑤⟩ := (√𝑝ℎ1
, . . .

√
𝑝ℎ𝑛−1

, 0 . . . 0︸︷︷︸
𝑛 zeros

) and |𝑤 ′⟩ := (𝑋ℎ)𝑏 |𝑤⟩ ,

|𝑣⟩ := (0, 0, . . . 0︸ ︷︷ ︸
𝑛−1 zeros

,
√︁
𝑝𝑔1
,
√︁
𝑝𝑔2

. . .
√︁
𝑝𝑔𝑛) and |𝑣 ′⟩ := (𝑋𝑔)𝑏 |𝑣⟩ .

Then

𝑂 :=

𝑛−𝑏−2∑︁
𝑖=−𝑏

(
Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩ ⟨𝑣 ′ | (𝑋𝑔)𝑖Π⊥

𝑔𝑖√
𝑐ℎ𝑖𝑐𝑔𝑖

+ h.c.

)
+
Π⊥
𝑔𝑛−𝑏−1

(𝑋𝑔)𝑛−𝑏−1 |𝑣 ′⟩ ⟨𝑣 ′ | (𝑋𝑔)𝑛−𝑏−1Π⊥
𝑔𝑛−𝑏−1

𝑐𝑔𝑛−𝑏−1

satisfies 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ and 𝐸ℎ𝑂 |𝑣 ′⟩ = |𝑤 ′⟩, where by 𝑋−𝑘

ℎ/𝑔 we mean (𝑋 ⊣
ℎ/𝑔)

𝑘 for 𝑘 > 0, and all
𝑐ℎ𝑖 , 𝑐𝑔𝑖 ,Π

⊥
ℎ𝑖
,Π⊥

𝑔𝑖
are as defined in Proposition 39.

Proof. Many observations from the proof of Proposition 39 carry over to this case. We import the defini-

tions of

{��𝑤 ′
𝑖

〉}𝑛−𝑏−2

𝑖=−𝑏 and {
��𝑣 ′𝑖 〉}𝑛−𝑏−1

𝑖=−𝑏 , together with the observations that M(
〈
𝑤 ′

−𝑏
��)𝑋ℎM(

��𝑤 ′
−𝑏

〉
) has no

dependence on a term

〈
𝑥𝑙
ℎ

〉′
with 𝑙 < −2𝑏 and that M(

〈
𝑤 ′
𝑛−𝑏−2

��)𝑋ℎM(
��𝑤 ′
𝑛−𝑏−2

〉
) has no dependence on a

term

〈
𝑥𝑙
ℎ

〉′
with 𝑙 > 2𝑛−2𝑏−4+1 = 2𝑛−3−2𝑏. We can restrict to span{

��𝑤 ′
−𝑏

〉
,
��𝑤 ′

−𝑏+1

〉
. . .

��𝑤 ′
𝑛−𝑏−2

〉
} to estab-

lish the positivity of𝐷 := 𝑋ℎ−𝐸ℎ𝑂𝑋𝑔𝑂𝑇𝐸ℎ . Using the analogous observation forM(
〈
𝑣 ′−𝑏

��)𝑋𝑔M(
��𝑣 ′−𝑏〉) and

M(
〈
𝑣 ′
𝑛−𝑏−2

��)𝑋𝑔M(
��𝑣 ′
𝑛−𝑏−2

〉
), along with the fact that

〈
𝑥𝑙

〉′
=

〈
𝑥𝑙+2𝑏

〉
and

〈
𝑥0

〉
=

〈
𝑥1

〉
= · · · =

〈
𝑥2𝑛−3

〉
= 0,

it follows that 𝐷 = 0. □

Proposition 42 (Solution to unbalanced misaligned monomial assignments). Let

47

• 𝑚 = 2𝑏 − 1 be an odd non-negative integer

• 𝑡 =
∑𝑛
𝑖=1
𝑥𝑚
ℎ𝑖
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ − ∑𝑛−1

𝑖=1
𝑥𝑚𝑔𝑖 𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
be a monomial assignment over {𝑥1, 𝑥2 . . . 𝑥2𝑛−1}

• (|ℎ1⟩ , |ℎ2⟩ . . . |ℎ𝑛⟩ , |𝑔1⟩ , |𝑔2⟩ . . . |𝑔𝑛−1⟩) be an orthonormal basis

• finally

𝑋ℎ :=

𝑛∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖 ⟩ ⟨ℎ𝑖 | � diag(𝑥ℎ1
, . . . 𝑥ℎ𝑛 , 0, . . . 0︸ ︷︷ ︸

𝑛−1 zeros

)𝑋𝑔 :=

𝑛−1∑︁
𝑖=1

𝑥𝑔𝑖 |𝑔𝑖 ⟩ ⟨𝑔𝑖 | � diag(0, . . . 0︸ ︷︷ ︸
𝑛 zeros

, 𝑥𝑔1
, . . . 𝑥𝑔𝑛−1

),

|𝑤⟩ := (√𝑝ℎ1
, . . .

√
𝑝ℎ𝑛 , 0, . . . 0︸ ︷︷ ︸

𝑛−1 zeros

) and |𝑤 ′⟩ := (𝑋ℎ)𝑏−
1

2 |𝑤⟩ ,

|𝑣⟩ := (0, . . . 0︸ ︷︷ ︸
𝑛 zeros

,
√︁
𝑝𝑔1
, . . .

√︁
𝑝𝑔𝑛−1

) and |𝑣 ′⟩ := (𝑋𝑔)𝑏−
1

2 |𝑣⟩ .

Then

𝑂 :=

𝑛−𝑏−1∑︁
𝑖=−𝑏+1

(
Π⊥
ℎ𝑖
(𝑋ℎ)𝑖 |𝑤 ′⟩ ⟨𝑣 ′ | (𝑋𝑔)𝑖Π⊥

𝑔𝑖
√
𝑐ℎ𝑖𝑐𝑔𝑖

+ h.c.

)
+
Π⊥
ℎ𝑛−𝑏

(𝑋ℎ)𝑛−𝑏 |𝑤 ′⟩ ⟨𝑤 ′ | (𝑋ℎ)𝑛−𝑏Π⊥
ℎ𝑛−𝑏

𝑐ℎ𝑛−𝑏
,

satisfies 𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ and 𝐸ℎ𝑂 |𝑣 ′⟩ = |𝑤 ′⟩, where by 𝑋−𝑘

ℎ/𝑔 we mean (𝑋 ⊣
ℎ/𝑔)

𝑘 for 𝑘 > 0, and all
𝑐ℎ𝑖 , 𝑐𝑔𝑖 ,Π

⊥
ℎ𝑖
,Π⊥

𝑔𝑖
are as defined in Proposition 40.

Proof. For this proof, we can use the definitions and observations from the proof of Proposition 40. We

import the definitions of

{��𝑤 ′
𝑖

〉}
𝑛−𝑏
𝑖=−𝑏+1

and

{��𝑣 ′𝑖 〉}𝑛−𝑏−1

𝑖=−𝑏+1
along with the observation that

M(
〈
𝑤 ′

−𝑏+1

��)𝑋ℎM(
��𝑤 ′

−𝑏+1

〉
)

has no dependence on a term

〈
𝑥𝑙
ℎ

〉′
with 𝑙 < −2𝑏 + 2 and

M(
〈
𝑤 ′
𝑛−𝑏−1

��)𝑋ℎM(
��𝑤 ′
𝑛−𝑏−1

〉
)

has no dependence on a term

〈
𝑥𝑙

〉
with 𝑙 > 2𝑛−2𝑏−1.Also from the previous proof we have that establishing

𝑋ℎ ≥ 𝐸ℎ𝑂𝑋𝑔𝑂
𝑇𝐸ℎ is equivalent to establishing

1 ≥

∑𝑛−𝑏−1

𝑖, 𝑗=−𝑏+1
𝛼𝑖𝛼 𝑗

〈
𝑣 ′𝑖

��𝑋𝑔 ���𝑣 ′𝑗 〉∑𝑛−𝑏−1

𝑖, 𝑗=−𝑏+1
𝛼𝑖𝛼 𝑗

〈
𝑤 ′
𝑖

��𝑋ℎ ���𝑤 ′
𝑗

〉
for all real {𝛼𝑖}𝑛−𝑏−1

𝑖=−𝑏+1
. We know that ⟨𝑥⟩ =

〈
𝑥2

〉
= · · · =

〈
𝑥2𝑛−3

〉
= 0. As we have the dependence on〈

𝑥2𝑛−2

ℎ

〉
, we can’t conclude that the fraction is one. However, as we saw in the proof of Proposition 39,

dependence on

〈
𝑥2𝑛−2

ℎ

〉
in the denominator only appears in the

〈
𝑤 ′
𝑛−𝑏−1

��𝑋ℎ ��𝑤 ′
𝑛−𝑏−1

〉
term, that too with the

positive coefficient, 1/𝑐ℎ𝑛−𝑏−1
. The analogous statement holds for the numerator. This, using

〈
𝑥2𝑛−2

〉
> 0,

entails that the denominator is larger than or equal to the numerator, concluding the proof. □

48

4.4 Main result

Our observations so far can be combined to prove Theorem 2, which we formally state here.

Theorem 43. Let 𝑡 be an 𝑓 -assignment (see Definition 32) on strictly positive coordinates (without loss of
generality; see Lemma 36). Suppose 𝑓 has real and strictly positive roots. Then, in order to obtain its effective
solution (see Definition 34), it suffices to write it as 𝑡 =

∑
𝑖 𝛼𝑖𝑡

′
𝑖 where 𝛼𝑖 are positive and 𝑡 ′𝑖 are monomial

assignments (see Definition 32 and Lemma 35). Furthermore, each 𝑡 ′𝑖 admits a solution given by either Propo-
sition 39, Proposition 40, Proposition 41, or Proposition 42.

Proof. In Section 4.1 we established that it suffices to express an 𝑓 -assignment as a sum of monomial

assignments and find the solution for each one of them, in order to find the solution to the 𝑓 -assignment.

A monomial assignment now, can be balanced or unbalanced and aligned or misaligned (see Definition 32).

The solution in each case is given by either Proposition 39, Proposition 40, Proposition 41, or Proposition 42.

□

4.5 Example: a bias-1/14 protocol

The 𝑓 -assignment for the TIPG approaching bias 𝜖 (3) = 1/14 (𝑘 = 3 for 𝜖 (𝑘) = 1

4𝑘+2
) has the following

form. Let

𝑥 ′
0
= 0 < 𝑟 ′

1
< 𝑟 ′

2
< 𝑥 ′

1
< 𝑥 ′

2
< 𝑥 ′

3
< 𝑥 ′

4
< 𝑥 ′

5
< 𝑥 ′

6
< 𝑟 ′

3
< 𝑟 ′

4
< 𝑟 ′

5
.

This is an 𝑓 -assignment (see Figure 12) on {𝑥 ′
0
, 𝑥 ′

1
. . . 𝑥 ′

6
} with 𝑓 ′(𝑥) = (𝑟 ′

1
−𝑥) (𝑟 ′

2
−𝑥) (𝑟 ′

3
−𝑥) (𝑟 ′

4
−𝑥) (𝑟 ′

5
−𝑥)

viz.

𝑡 ′ =
6∑︁
𝑖=0

−𝑓 ′(𝑥 ′𝑖)∏
𝑗≠𝑖 (𝑥 ′𝑗 − 𝑥 ′𝑖)

⟦𝑥 ′𝑖⟧ .

For a positive number Δ, we can consider an 𝑓 -assignment on {𝑥0, 𝑥1 . . . 𝑥6} where 𝑥𝑖 = 𝑥 ′𝑖 + Δ, with

𝑓 (𝑥) = (𝑟1 − 𝑥) (𝑟2 − 𝑥) . . . (𝑟5 − 𝑥) where 𝑟𝑖 = 𝑟
′
𝑖 + Δ viz.

𝑡 =

6∑︁
𝑖=0

−𝑓 (𝑥𝑖)∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧ .

Lemma 36 guarantees that the solution to 𝑡 and 𝑡 ′ are the same. We decompose 𝑡 into a sum of monomial

assignments, i.e.

𝑡 =

6∑︁
𝑖=0

−𝑟1𝑟2𝑟3𝑟4𝑟5∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧︸ ︷︷ ︸
I

+
6∑︁
𝑖=0

−

:=𝛼1︷ ︸︸ ︷
(𝑟2𝑟3𝑟4𝑟5 + 𝑟1𝑟3𝑟4𝑟5 + 𝑟1𝑟2𝑟3𝑟5 + 𝑟1𝑟2𝑟3𝑟4) (−𝑥𝑖)∏

𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)
⟦𝑥𝑖⟧︸ ︷︷ ︸

II

+
6∑︁
𝑖=0

−𝛼2 (−𝑥𝑖)2∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧︸ ︷︷ ︸
III

+
6∑︁
𝑖=0

−𝛼3 (−𝑥𝑖)3∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧︸ ︷︷ ︸
IV

+
6∑︁
𝑖=0

−𝛼4 (−𝑥𝑖)4∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧︸ ︷︷ ︸
V

+
6∑︁
𝑖=0

−𝛼5 (−𝑥𝑖)5∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧︸ ︷︷ ︸
VI

,

where 𝛼𝑙 is the coefficient of (−𝑥)𝑙 in 𝑓 (𝑥). Since the total number of points in each assignment are 7, they

are unbalanced monomial assignments. Terms I, III and V each have an even powered monomial therefore

they correspond to the aligned case. Their solutions, thus, are given in Proposition 41. Analogously, the

remaining terms II, IV and VI each have an odd powered monomial therefore they correspond to the

misaligned case. Their solutions, thus, given in Proposition 42.

49

Figure 12: The TDPG (or equivalently, the reversed protocol) approaching bias 𝜖 (𝑘 = 3) = 1/14 may be

seen as proceeding in three stages, as illustrated by the three images (left to right). First, the initial points

(indicated by unfilled squares) are split along the axes (indicated by the filled squares). Second, the points

on the axes (unfilled squares) are transferred, by means of the ladder described in Section 2.5 (indicated

by the circles), into two final points (filled squares). Third, the two points from the previous step (unfilled

squares) and the catalyst state (indicated, after being raised into one point by the little unfilled box) are

merged into the final point (filled box). The second stage is illustrated by the TIPG,—or more precisely, by

its main move, the ladder—approaching bias 1/14. The weight of these points is given (up to a constant)

by the 𝑓 –assignment shown above. The roots of the polynomial correspond to the locations of the vertical

lines and the location of the points in the graph is representative of the general construction.

Let us now see how all these pieces fit together to give the full protocol. We describe the procedure

in the language of TDPGs each step of which can be thought of as a short-hand to denote an exchange

and manipulation of qubits between Alice and Bob, granted that the associated unitaries are known. As

we have already done all the hard work in finding these unitaries
18

, we can now proceed at this level of

description. Concretely, the bias 1/14 game (see Figure 12) goes as follows:

1. The first frame. This simply corresponds to the function
1

2
(⟦0, 1⟧ + ⟦1, 0⟧).

2. The split. Deposit weights along the axis as specified by the TIPG; more precisely, split the point

⟦0, 1⟧ into a set of points along the 𝑦–axis and analogously, split the point ⟦1, 0⟧ into a set of points

along the 𝑥–axis, to match the distribution of points along the axis by the bias 1/14 game.

3. The Catalyst State. Deposit a small amount of weight, 𝛿catalyst, at all the points that appear in

the TIPG. This can be done by raising the points which are along the 𝑦–axis, i.e. if the points

along the axes are denoted as

∑
𝑖 𝑝split,𝑖 ⟦0, 𝑦𝑖⟧, then raise them to obtain

∑
𝑖 (𝑝split,𝑖 − 𝛿split,𝑖) ⟦0, 𝑦𝑖⟧ +∑

𝑖, 𝑗 𝛿catalyst ⟦𝑥𝑖 , 𝑦 𝑗⟧, where 𝛿catalyst > 0 can be chosen to be arbitrarily small and the second sum is

over points (𝑥𝑖 , 𝑦 𝑗) which appear in the TIPG (excluding the axes
19

).

4. The Ladder.

18
In this section we found the unitaries for 𝑓 -assignments and in Section 3 we found those corresponding to splits and merges.

19
One needs to use the analogous procedure, i.e. use

∑
𝑖 𝑝split,𝑖 ⟦𝑥𝑖 , 0⟧ as well for the one point of the TIPG which has a

𝑦–coordinate smaller than that of the points along the 𝑦–axis.

50

(a) Denote the monomial decomposition of the valid functions by constituent valid functions.

Globally scale these constituent valid functions sufficiently so that no negative weight appears

when they are applied.

(b) Apply all the scaled down constituent horizontal valid functions.

(c) Apply all the scaled down constituent vertical valid functions.

(d) Repeat these two steps until all the weight has been transferred from the axes into the two final

points of the ladder
20

.

The unitaries corresponding to these constituent valid functions correspond to the solutions of the

monomial assignments.

5. Raise and merge. Raise and merge the last two points into the point (1 − 𝛿 ′)
�

4

7
+ 𝛿 ′′, 4

7
+ 𝛿 ′′

�
where

𝛿 ′ represents the total weight used by the catalyst, while 𝛿 ′′ comes from the truncation of the ladder.

Then, using the method developed in the proof of Theorem 27 in [Aha+14b; Moc07], the catalyst

state can be absorbed to obtain a single point

�
4

7
+ 𝛿, 4

7
+ 𝛿

�
. Thus, 𝑃∗

𝐴
= 𝑃∗

𝐵
= 1

2
+ 1

14
+ 𝛿 , where 𝛿 can

be made arbitrarily small by making the catalyst state smaller and the ladder longer.

The protocol is the reverse: it starts with a single point corresponding to uncorrelated states and whose

coordinates encode the cheating probabilities, and ends with two points along the axis with equal weights,

corresponding to the state
|𝐴𝐴⟩+ |𝐵𝐵⟩√

2

.

20
It would automatically become impossible to apply the moves once the weights on the axes becomes sufficiently small.

51

5 Elliptic Monotone Align (EMA) algorithm

So far we have exclusively studied C. Mochon’s point games. In the following, we construct a numerical

algorithm that generates the required unitary for any given Λ-valid function (see Definition 120). Note that

corresponding to any WCF protocol with valid functions, one can find a WCF protocol with strictly valid

functions (see Lemma 132), which in turn are Λ-valid for some finite Λ (see Lemma 129, Corollary 123);

thus we do not lose generality by restricting to Λ-valid functions.

5.1 The Canonical Projective Form (CPF) and the Canonical Orthogonal Form (COF)

One can formalize the TEF constraint Equation (5) by associating to each transition, what we call a Canon-
ical Projective Form (CPF). This essentially compiles the coordinates and weights which define a transition,

into vectors and matrices.

Definition 44 (Canonical Projective Form (CPF) for a given transition). For a given transition (see Def-

inition 14) the Canonical Projective Form (CPF) is given by the set of 𝑚 × 𝑚 matrices 𝑋ℎ , 𝑋𝑔, 𝑂 , 𝐷 and

𝑚-dimensional vectors |𝑣⟩, |𝑤⟩ given by

𝑋ℎ :=

𝑛ℎ∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖⟩ ⟨ℎ𝑖 | , 𝑋𝑔 :=

𝑛𝑔∑︁
𝑖=1

𝑥𝑔𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖 | ,

|𝑤⟩ :=

𝑛ℎ∑︁
𝑖=1

√
𝑝ℎ𝑖 |ℎ𝑖⟩ , |𝑣⟩ :=

𝑛𝑔∑︁
𝑖=1

√︁
𝑝𝑔𝑖 |𝑔𝑖⟩ ,

𝐷 := 𝑋ℎ − 𝐸ℎ𝑂𝑋𝑔𝑂†𝐸ℎ

and 𝑂 is a unitary which satisfies 𝑂 |𝑣⟩ = |𝑤⟩,
where 𝐸ℎ =

∑ |ℎ𝑖⟩ ⟨ℎ𝑖 |,
{
|𝑔1⟩ , |𝑔2⟩ . . .

��𝑔𝑛𝑔 〉 , |ℎ1⟩ , |ℎ2⟩ . . .
��ℎ𝑛ℎ 〉} are orthonormal basis vectors and 𝑚 =

𝑛𝑔 + 𝑛ℎ .

A transition satisfying the TEF constraint Equation (5) corresponds to 𝐷 ≥ 0 for the associated CPF,

motivating the following definition.

Definition 45 (legal CPF). A CPF is legal if 𝐷 ≥ 0.

So far, we have only recompiled the TEF constraint, into a supposedly more usable form, i.e. into a

CPF. However, removing the projector from the CPF, allows one to interpret the legality condition above,

geometrically and this, as we mentioned in the introduction, is at the heart of the EMA algorithm. To this

end, we define a Canonical Orthogonal Form for each transition.

Definition 46 ((𝑛, b)-COF for a transition, b-COF for a transition). For a given transition (see Definition 14)

and two numbers 𝑛 ≥ max(𝑛ℎ, 𝑛𝑔) and b ≥ max(𝑥ℎ1
, 𝑥ℎ2

. . . 𝑥ℎ𝑛ℎ
), an (𝑛, b)-COF is given by the set of 𝑛 ×𝑛

matrices 𝑋ℎ , 𝑋𝑔, 𝑂 , 𝐷 and vectors |𝑣⟩, |𝑤⟩ where

𝑋ℎ := diag(𝑥ℎ1
, 𝑥ℎ2

. . . , 𝑥ℎ𝑛ℎ
, b, b . . .) and 𝑋𝑔 := diag(𝑥𝑔1

, 𝑥𝑔2
. . . , 𝑥𝑔𝑛𝑔 , 0, 0 . . .),

|𝑣⟩ :=

𝑛𝑔∑︁
𝑖=1

√︁
𝑝𝑔𝑖 |𝑖⟩ and |𝑤⟩ :=

𝑛ℎ∑︁
𝑖=1

√
𝑝ℎ𝑖 |𝑖⟩ ,

𝐷 := 𝑋ℎ −𝑂𝑋𝑔𝑂𝑇

and 𝑂 is an orthogonal matrix which satisfies 𝑂 |𝑣⟩ = |𝑤⟩ .
A b-COF is an (𝑛, b)-COF with 𝑛 = 𝑛ℎ + 𝑛𝑔 − 1.

52

The legality condition this time, is defined in the limit of b → ∞. We explain this shortly.

Definition 47 (𝑛-legal COF, legal COF). An (𝑛, b)-COF is an 𝑛-legal COF if 𝐷 ≥ 0 in the limit b → ∞. A

legal COF is a b-COF such that 𝐷 ≥ 0 in the limit b → ∞.

The EMA algorithm would produce a legal COF for a given Λ-valid transition. However, to use TEF,

we need a legal CPF for the transition. We therefore first observe that a legal COF also yields a legal CPF.

Imagine one finds a legal COF corresponding to some transition. Then, they can sandwich 𝐷 between

a positive matrix, say 𝐸, as 𝐸𝐷𝐸 to get

𝑋ℎ

1

. . .

1

−

1

. . .

1

b−1/2

. . .

b−1/2

︸ ︷︷ ︸
:=𝐸

𝑈𝑋𝑔𝑈
†

1

. . .

1

b−1/2

. . .

b−1/2

.

Note that 𝐷 ≥ 0 ⇐⇒ 𝐸𝐷𝐸 ≥ 0, because 𝐸 is diagonal. Since the COF is legal, 𝐷 ≥ 0 for b → ∞
and in this limit 𝐸 becomes a projector. After some relabeling (and appropriately expanding the space to

𝑚 = 𝑛𝑔 + 𝑛ℎ dimensions) the inequality reduces to a CPF. This observation readily extends to the 𝑛-legal

case where 𝑛 ≤ 𝑛𝑔 + 𝑛ℎ . These arguments establish the following statement:

Proposition 48. Consider a transition (see Definition 14). If there exists an 𝑛-legal COF corresponding to it,
then there also exists a legal CPF for this transition.

One can also show the reverse, i.e. that given a legal CPF one can find the corresponding𝑚−legal COF.

In particular, we are given

𝑋ℎ

0

. . .

0

−

1

. . .

1

0

. . .

0

︸ ︷︷ ︸
:=𝐸ℎ

𝑈

[
0

𝑋𝑔

]
𝑈 †

1

. . .

1

0

. . .

0

≥ 0.

Replacing the appended diagonal zeros in the first matrix (the one containing 𝑋ℎ) with 1s yields an equiv-

alent inequality. Next, we can conjugate by a permutation matrix to get[
0

𝑋𝑔

]
= �̃�

[
𝑋𝑔

0

]
�̃� .

Finally, we write the diagonal zeros in 𝐸ℎ as 1/b1/2
and use the reverse of the trick above to recover an

𝑚−legal COF with𝑚 := 𝑛𝑔+𝑛ℎ . This sketches the proof of the following proposition. The full proof requires

some care, and since we do not use it further, we omit it.

Proposition 49. Consider a transition (see Definition 14). If there exists a legal CPF corresponding to it, then
there also exists an𝑚-legal COF for this transition with𝑚 := 𝑛𝑔 + 𝑛ℎ .

Two aspects of the definition of COFs merit further discussion. To this end, recall that to convert

an arbitrary point game into a protocol (with essentially the same bias), it suffices to consider Λ-valid

transitions. Further, a Λ-valid transition is also an EBM transition (see Corollary 123). Thus, it suffices to

53

show that EBM transitions admit a COF (for details, see Appendix E). With this in mind, the first aspect

of the definition of COFs which is noteworthy, is that we used orthogonal matrices. This was because

one can show that EBM transitions are the same as EBRM transitions, i.e. EBM but with the additional

constraint that the matrices involved are real (see Appendix E.1). The second noteworthy aspect is that the

dimensions of the matrices involved is taken to be 𝑛𝑔 +𝑛ℎ while for EBM/EBRM, we did not have any such

constraint. It turns out one can always generate matrices of size 𝑛𝑔 + 𝑛ℎ − 1 from arbitrary sized matrices

corresponding to an EBM/EBRM transition (see Appendix E.2). In the following, we discuss the geometric

interpretation of the COF.

5.2 The inequality as containment of ellipsoids and Convex Geometry tools

In this section, we show that the matrix inequality of the form 0 ≤ 𝐺 ≤ 𝐻 can be geometrically viewed

as the containment of an ellipsoid inside another. Consider an unnormalized vector |𝑢⟩ = ∑
𝑗 𝑢 𝑗

��ℎ 𝑗 〉 with

𝑢 𝑗 ∈ R. The set {|𝑢⟩ | ⟨𝑢 |𝑋ℎ |𝑢⟩ = 1}, where 𝑋ℎ = diag(𝑥ℎ1
, 𝑥ℎ2

. . .), describes the surface of an ellipsoid.

This is easy to see as the constraint corresponds to

𝑥ℎ1
𝑢2

1
+ 𝑥ℎ2

𝑢2

2
+ · · · = 1 which is of the form

𝑢2

1

𝑎2

1

+
𝑢2

2

𝑎2

2

+ · · · = 1.

This is the equation of an ellipsoid in the variables {𝑢𝑖} with axes 𝑎1 = 1/√𝑥ℎ1
, 𝑎2 = 1/√𝑥ℎ2

. . . . An

inequality would correspond to points inside or outside the ellipsoid. If we start with some arbitrary

(possibly unnormalized) vector |𝑢⟩, then the point on the ellipse along this direction is given by Eℎ (|𝑢⟩) =
|𝑢 ⟩√

⟨𝑢 |𝑋ℎ |𝑢 ⟩
. Finally, the set

{
|𝑢⟩ | ⟨𝑢 |𝑂𝑋𝑔𝑂† |𝑢⟩ = 1

}
also corresponds to the equation of an ellipsoid with

axes

{
1/√𝑥𝑔𝑖

}
except that it is rotated by 𝑂 . We can define a similar map from a vector |𝑢⟩ to a point on

the rotated ellipsoid as E𝑔 (|𝑢⟩) = |𝑢 ⟩√
⟨𝑢 |𝑈𝑋𝑔𝑈

† |𝑢 ⟩
. Accordingly, our inequality can be seen as

𝑋ℎ −𝑂𝑋𝑔𝑂† ≥ 0 ⇐⇒ ⟨𝑢 |𝑋ℎ |𝑢⟩ − ⟨𝑢 |𝑂𝑋𝑔𝑂† |𝑢⟩ ≥ 0 ∀ |𝑢⟩
⇐⇒ ⟨𝑢 |𝑂𝑋𝑔𝑂† |𝑢⟩ ≤ 1 ∀ {|𝑢⟩ | ⟨𝑢 |𝑋ℎ |𝑢⟩ = 1} ,

which means that every point denoted by |𝑢⟩ on the ℎ-ellipsoid must be on or inside the 𝑔-ellipsoid. If

⟨𝑥ℎ⟩ −
〈
𝑥𝑔

〉
= 0, then for |𝑢⟩ = |𝑤⟩ the inequality saturates. This, in turn, means that also for Eℎ (|𝑤⟩) the

inequality is saturated as it is the same vector up to a scaling, with the difference being that Eℎ (|𝑤⟩) is a

point on the ℎ-ellipsoid. Since the inequality is saturated it means that the ellipsoids must touch at this

point, i.e., E𝑔 (|𝑤⟩) = Eℎ (|𝑤⟩); moreover, the curvature of the smaller ellipsoid should be larger than the

curvature of the larger ellipsoid at the point of contact. Therefore, the curvature of an ellipsoid and the

normal vectors along the direction of the contact are important in our analysis.

To formalize our approach we apply tools from Convex Geometry in the case of ellipsoids. One can

find more details in Appendix ?? and a presentation of these results on general convex bodies in Section

2.5 of the book by R. Schneider [Sch09]. The central tool of our analysis is the so-called Weingarten map,

which— defined intuitively—is the differential of the normal vector at a given point on the ellipsoid (or

any manifold in general). Employing the Weingarten map permits us to evaluate curvatures and related

quantities at the point of contact, as briefly described below. Let the point of contact be |𝑐⟩ = ∑
𝑐𝑖 |𝑖⟩. Then,

the normal vector at this point is |𝑢 (𝑐)⟩ = N (∑𝑥𝑖𝑐𝑖 |𝑖⟩), where we denote N (|𝜓 ⟩) := |𝜓 ⟩ /
√︁
⟨𝜓 |𝜓 ⟩. For a

normalized direction vector |𝑢⟩ the support function corresponding to an ellipsoid 𝑋 is given by

ℎ(𝑢) =
√︁
⟨𝑢 |𝑋−1 |𝑢⟩ =

√︃∑︁
𝑥−1

𝑖
𝑢2

𝑖
. (20)

54

The derivative of the support function yields the point on the ellipsoid where the tangent plane corre-

sponding to the direction |𝑢⟩ touches the said ellipsoid, and it is given as 𝜕𝑖ℎ(𝑢) =
𝑥−1

𝑖
𝑢𝑖

ℎ (𝑢) . Furthermore, the

second derivative of the support function

𝜕𝑗 𝜕𝑖ℎ(𝑢) =
1

ℎ(𝑢)

(
−
𝑥−1

𝑗 𝑥
−1

𝑖 𝑢𝑖𝑢 𝑗

ℎ2(𝑢) + 𝑥−1

𝑖 𝛿𝑖 𝑗

)
(21)

contains as eigenvalues the radii of the curvature of the ellipsoid at the aforesaid point and as eigenvectors

the directions of the principle curvature. Hereafter, we omit the 1/ℎ factor as it cancels out in the equations

of interest.

5.3 Definitions and lemmas for the EMA algorithm

Solving the WCF problem has been reduced to finding explicit matrices for a given EBM transition 𝑔 =∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
→ ℎ =

∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ where 𝑔 and ℎ have disjoint support or, equivalently, for a given EBM

function 𝑎 = ℎ − 𝑔 =
∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ −∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
. Here we describe our EMA algorithm, which runs by

converting iteratively the above problem into the same problem of one less dimension until it is solved.

We start by setting the notation involved.

At step 𝑘 of the iteration, the transition 𝑔 → ℎ and the associated function 𝑎 = ℎ − 𝑔 are given by

𝑔 (𝑘) → ℎ (𝑘) and 𝑎 (𝑘) , respectively, and they remain fixed for each step. Therefore, we do not write an

explicit dependence on it in the following definitions. By [𝑥min, 𝑥max] we denote the smallest interval

containing supp(𝑎), and we call it the support domain for 𝑎. Similarly, we refer to the smallest interval

containing supp(𝑔)∪supp(ℎ) as the transition support domain for the transition𝑔 → ℎ. We use the variables

𝜒, b ∈ R to denote an interval [𝜒, b] ⊇ [𝑥min, 𝑥max]. In Section 1.1.3 we motivated the use of operator

monotone functions to make the ellipsoids touch along a certain direction; the following definitions are

tailored to this purpose.

Definition 50 (𝑓_ on (𝛼, 𝛽)). 𝑓_ : (𝛼, 𝛽) → R is defined for _ ∈ R\[−𝛽,−𝛼] as 𝑓_ (𝑥) := −1

_+𝑥 .

Definition 51 (𝑓_ on [𝛼, 𝛽]). 𝑓_ : [𝛼, 𝛽] → R ∪ {∞,−∞}21
is defined for _ ∈ R\(−𝛽,−𝛼). For _ ∈

R\[−𝛽,−𝛼] we define 𝑓_ (𝑥) := −1

_+𝑥 .

For _ = −𝛽 and −𝛼 we keep the same defn except for 𝑥 = 𝛽, 𝛼 in which case we define 𝑓−𝛽 (𝛽) := ∞
and 𝑓−𝛼 (𝛼) := −∞.

As we also described in Section 1.1.3, we have to expand the smaller ellipsoid until it touches the larger

one. An ellipsoid corresponding to a positive diagonal matrix,𝑋ℎ (as in Section 5.2), is smaller than another

ellipsoid corresponding to 𝛾𝑋ℎ for 0 < 𝛾 < 1. If the 𝑋ℎ matrix corresponds to a function ℎ, what would

be the corresponding function for 𝛾𝑋ℎ? The following definition of ℎ𝛾 formalizes the answer. We also

introduce 𝑙𝛾 which helps us check the validity condition for a transition.

Definition 52 (𝑙𝛾 , 𝑙
1

𝛾 , 𝑎𝛾). Consider the transition 𝑔 → ℎ and let 𝑎 = ℎ − 𝑔. For 𝛾 ∈ (0, 1] we define the

finitely supported functions ℎ𝛾 : R→ [0,∞) and 𝑎𝛾 (𝑥) : R→ R as

ℎ𝛾 (𝑥) := ℎ(𝑥/𝛾) and 𝑎𝛾 (𝑥) := ℎ𝛾 (𝑥) − 𝑔(𝑥) .

Let 𝑆𝛾 = [𝑥min(𝛾), 𝑥max(𝛾)] be the support domain of 𝑎𝛾 .

We define 𝑙𝛾 : R\[−𝑥max(𝛾),−𝑥min(𝛾)] → R as

𝑙𝛾 (_) :=
∑︁

𝑥 ∈supp(𝑎𝛾)
𝑎𝛾 (𝑥) 𝑓_ (𝑥),

where 𝑓_ is defined on 𝑆𝛾 . We also define 𝑙1𝛾 :=
∑
𝑥 ∈supp(𝑎𝛾) 𝑎𝛾 (𝑥)𝑥 .

21
This is the extended real line with 1/∞ = −1/∞ := 0.

55

We now define a function,𝑚, which, given the transition 𝑔 → ℎ, indicates if the transition correspond-

ing to the scaled ellipsoid 𝑔 → ℎ𝛾 is valid.

Definition 53 (𝑚(𝛾, 𝜒, b)). We define𝑚 : ((0, 1],R,R) → {0, 1} to be

𝑚(𝛾, 𝜒, b) :=

{
0 if any of the following root conditions hold

1 else,

where the first root condition is satisfied if there exists a _ ∈ R\(−b,−𝜒) such that 𝑙𝛾 (_) = 0, and the

second root condition is satisfied if 𝑙1𝛾 = 0.

As we are dealing with different representations of the same object, it is useful to define a relation

between the matrix instance of the problem—involving matrices—and its function instance that involves

transitions and functions.

Definition 54 (Matrix Instance, X → Function Instance, x). For a Matrix Instance defined as the tuple

X := (𝑋ℎ, 𝑋𝑔, |𝑤⟩ , |𝑣⟩), where 𝑋ℎ, 𝑋𝑔 are diagonal matrices and |𝑤⟩ , |𝑣⟩ are vectors on R𝑛 for some 𝑛

with equal norm, i.e. ⟨𝑤 |𝑤⟩ = ⟨𝑣 |𝑣⟩, we define the Function Instance to be the tuple x : (𝑔, ℎ, 𝑎), where

ℎ = Prob[𝑋ℎ, |𝑤⟩], 𝑔 = Prob[𝑋𝑔, |𝑣⟩] and 𝑎 = ℎ − 𝑔.

Definition 55 (Attributes of the Function Instance, x). For a given tuple x := (𝑔, ℎ, 𝑎) as in Definition 54

we define the attributes𝑛ℎ, 𝑛𝑔, {𝑝𝑔𝑖 }, {𝑝ℎ𝑖 }, {𝑥𝑔𝑖 }, {𝑥ℎ𝑖 } as they appear by declaring𝑔 → ℎ to be a transition,

i.e.,

• 𝑛ℎ as the number of times ℎ is non-zero,

• 𝑛𝑔 as the number of times 𝑔 is non-zero,

• {𝑝ℎ𝑖 }, {𝑥ℎ𝑖 }, {𝑝𝑔𝑖 }, {𝑥𝑔𝑖 } implicitly as ℎ =
∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ , 𝑔 =

∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
for 𝑝ℎ𝑖 , 𝑝𝑔𝑖 > 0.

The support domain for 𝑎 is denoted by [𝑥min, 𝑥max], i.e., the attributes 𝑥min, 𝑥max are defined to be such that

[𝑥min, 𝑥max] is the smallest interval containing supp(𝑎).

Definition 56 (Attributes of the Matrix Instance, X). For a tuple X as defined in Definition 54 we have the

following:

• Spectral domain: The spectral domain of X is denoted by [𝜒, b] where the attributes 𝜒, b are such that

[𝜒, b] is the smallest interval containing spec{𝑋𝑔 ⊕ 𝑋ℎ}.

• Solution: We say 𝑂 is a solution to the matrix instance X =
(
𝑋ℎ, 𝑋𝑔, |𝑤⟩ , |𝑣⟩

)
if 𝑋ℎ ≥ 𝑂𝑋𝑔𝑂

𝑇
and

𝑂 |𝑣⟩ = |𝑤⟩.

• Notation: With respect to a standard orthonormal basis {|𝑖⟩}, we use the notation𝑋ℎ :=
∑𝑘
𝑖=1
𝑦ℎ𝑖 |𝑖⟩ ⟨𝑖 |,

𝑋𝑔 :=
∑𝑘
𝑖=1
𝑦𝑔𝑖 |𝑖⟩ ⟨𝑖 |, |𝑤⟩ :=

∑𝑘
𝑖=1

√
𝑞ℎ𝑖 |𝑖⟩, and |𝑣⟩ :=

∑𝑘
𝑖=1

√
𝑞𝑔𝑖 |𝑖⟩.

With the notation in place, we can now state and prove some results that we need in our algo-

rithm. First, we generalize the results obtained in [Aha+14b] about operator monotones and their rela-

tion with EBM functions. Second, we prove some results that formalize the intuitive notions of tighten-

ing—stretching the smaller ellipsoid until it touches the larger ellipsoid. Finally, we generalize them in the

case where the curvature of the smaller ellipsoid becomes infinite.

56

5.3.1 Generalizations

Our approach for achieving the aforementioned generalization is schematically represented in Figure 13.

Our starting point would be the relations between EBM, EBRM and COF which we already outlined (see

the discussion above Section 5.2) while deferring the details to Appendix E. For readers familiar with those

details, our main objective here is twofold. First, we generalize the relation between EBM and EBRM func-

tions (see Corollary 144) from matrices with their spectrum in [0,Λ] to matrices with their spectrum in

[𝜒, b]. Second, we extend the result from valid functions to valid transitions, including the case of over-

lapping support. To establish the first, our strategy is to find a relation between [0,Λ]-valid functions (see

Definition 120) and [𝜒, b]-valid functions (which we define shortly) and then a relation between [0,Λ]-
EBRM functions (see Definition 140) and [𝜒, b]-EBRM functions (which again, we define shortly). Then

we use the link (see Corollary 144) between [0,Λ]-valid and [0,Λ]-EBRM functions to establish the equiv-

alence of [𝜒, b]-valid functions and [𝜒, b]-EBRM functions. Along the way we sharpen our understanding

of operator monotone functions which should make the definitions of 𝑓_ , 𝑙 and 𝑚 (see Definition 52 and

Definition 53) obvious. The second objective can be met with by a single, albeit, slightly long argument.

𝑎(𝑥) is

Corollary Corollary 144

⇐⇒ 𝑎(𝑥) is

Λ − valid Λ − EBRM

⇕ Cor. Corollary 65 ⇕ Cor. Corollary 67

𝑎(𝑥 ′ − 𝜒) is

Lemma 68⇐⇒ 𝑎(𝑥 ′ − 𝜒) is

[𝜒, b] − valid [𝜒, b] − EBRM

⇕ Lemma 69

ℎ → 𝑔 is

[𝜒 ′, b ′] EBRM

Lemma 146

=⇒
[𝜒 ′, b ′] − COF

if 𝑎 = ℎ − 𝑔 and

trivial⇐=

[𝜒, b] ∪ spec(𝑔 + ℎ) ⊂ [𝜒 ′, b ′]

Figure 13: Generalization schematised.

Let us start with extending our definition of the COF to accommodate matrices with their spectrum in

[𝜒, b].

Definition 57 (COF with spectrum in [𝜒, b]). For a given transition𝑔 → ℎ let [𝜒, b] be such that it contains

supp(𝑔) and supp(ℎ). We define the COF with its spectrum in [𝜒, b] by the set of 𝑛×𝑛 matrices𝑋ℎ, 𝑋𝑔,𝑂, 𝐷

and vectors |𝑣⟩ , |𝑤⟩ where

𝑋ℎ := diag{𝑥ℎ1
, 𝑥ℎ2

. . . , 𝑥ℎ𝑛ℎ
, b, b . . . } and 𝑋𝑔 := diag{𝑥𝑔1

, 𝑥𝑔2
. . . , 𝑥𝑔𝑛𝑔 , 𝜒, 𝜒 . . . },

|𝑣⟩ :=

𝑛𝑔∑︁
𝑖=1

√︁
𝑝𝑔𝑖 |𝑖⟩ and |𝑤⟩ :=

𝑛ℎ∑︁
𝑖=1

√
𝑝ℎ𝑖 |𝑖⟩ ,

𝐷 := 𝑋ℎ −𝑂𝑋𝑔𝑂†, 𝑛 = 𝑛𝑔 + 𝑛ℎ − 1

57

and 𝑂 is an orthogonal matrix which satisfies |𝑣⟩ = 𝑂 |𝑤⟩.

Definition 58 (Legal COF with spectrum in [𝜒, b]). A COF with spectrum in [𝜒, b] is legal if 𝐷 ≥ 0.

Definition 59 (Operator monotone functions on [𝜒, b]). A function 𝑓 : [𝜒, b] → R is operator monotone

on [𝜒, b] if for all real symmetric matrices𝐻,𝐺 with spec(𝐻⊕𝐺) ∈ [𝜒, b] and𝐻 ≥ 𝐺 we have 𝑓 (𝐻) ≥ 𝑓 (𝐺).

Lemma 60. 𝑓 (𝑥) is an operator monotone function on [𝜒, b] if and only if 𝑓 ′(𝑥 ′) = 𝑓 (𝑥 ′−𝑥0) is an operator
monotone function on [𝜒 + 𝑥0, b + 𝑥0].

Proof. Consider real symmetric matrices 𝐻 ≥ 𝐺 with spec(𝐻 ⊕ 𝐺) ∈ [𝜒, b] and let 𝑓 (𝑥) be operator

monotone on [𝜒, b]. We must consider 𝑓 ′(𝑥 ′) = 𝑓 (𝑥 = 𝑥 ′ − 𝑥0) which is the same as 𝑓 ′(𝑥 + 𝑥0) = 𝑓 (𝑥).
We show that 𝑓 ′ is an operator monotone on [𝜒 + 𝑥0, b + 𝑥0]. Note that 𝐻 ′

:= 𝐻 + 𝑥0I and 𝐺 ′
:= 𝐺 + 𝑥0I

are such that 𝐻 ′ ≥ 𝐺 ′
and spec(𝐻 ′ ⊕ 𝐺 ′) ∈ [𝜒 + 𝑥0, b + 𝑥0]. Note that 𝑓 ′(𝐻 ′) = 𝑓 (𝐻) and 𝑓 ′(𝐺 ′) = 𝑓 (𝐺)

because

𝑓 ′(𝐻 ′) = 𝑓 ′(𝐻 + 𝑥0I) = 𝑂ℎ 𝑓 ′(𝐻𝑑 + 𝑥0I)𝑂𝑇ℎ = 𝑂ℎ 𝑓 (𝐻𝑑)𝑂𝑇ℎ = 𝑓 (𝐻)

and similarly for𝐺 where 𝐻 = 𝑂ℎ𝐻𝑑𝑂
𝑇
ℎ

for𝑂ℎ orthogonal and 𝐻𝑑 diagonal. Since 𝑓 is operator monotone

on [𝜒, b] we have 𝑓 (𝐻) ≥ 𝑓 (𝐺) which entails 𝑓 ′(𝐻 ′) ≥ 𝑓 ′(𝐺 ′). Since this holds for all 𝐻 ′,𝐺 ′
with their

spec(𝐻 ′ ⊕ 𝐺 ′) ∈ [𝜒 + 𝑥0, b + 𝑥0] we can conclude that 𝑓 ′ is an operator monotone on [𝜒 + 𝑥0, b + 𝑥0]. The

other way follows by setting 𝜒 + 𝑥0 to 𝜒 , b + 𝑥0 to b , 𝑥0 to −𝑥0 but since all these were arbitrary to start

with, the reasoning goes through unchanged. □

Corollary 61 (Characterisation of operator monotone functions on [0,Λ]). Any operator monotone func-
tion 𝑓 : [0,Λ] → R can be written as

𝑓 (𝑥) = 𝑐0 + 𝑐1𝑥 −
∫

1

_ + 𝑥 𝑑�̃� (_)

with the integral ranging over _ ∈ (−∞,−Λ) ∪ (0,∞) satisfying
∫

1

_ (1+_)𝑑�̃� (_) < ∞.

Proof. Consider the characterisation given in Lemma 118 according to which we had 𝑓 (𝑥) = 𝑐 ′
0
+ 𝑐1𝑥 +∫

_𝑥
+𝑥𝑑𝜔 () with

∫
_

1+_𝑑𝜔 (_) < ∞. We can write

𝑓 (𝑥) = 𝑐 ′
0
+ 𝑐1𝑥 +

∫ (
_ − _2

_ + 𝑥

)
𝑑𝜔 (_) = 𝑐0 + 𝑐1𝑥 −

∫
2𝑑𝜔 ()
_ + 𝑥

where with 𝑑�̃� = _2𝑑𝜔 (_) we obtain the claimed form. Note that the finiteness of

∫
_

1+_𝑑𝜔 is necessary to

conclude that 𝑐0 = 𝑐
′
0
+

∫
_

1+_𝑑𝜔 is also finite. □

Corollary 62 (Characterisation of operator monotone functions on [𝜒, b]). Any operator monotone func-
tion 𝑓 ′ : [𝜒, b] → R can be written as

𝑓 ′(𝑥 ′) = 𝑐 ′
0
+ 𝑐 ′

1
𝑥 ′ −

∫
1

_′ + 𝑥 ′𝑑�̃�
′(_′)

with the integral over _′ ∈ (−∞,−b) ∪ (−𝜒,∞) satisfying
∫

1

(_′+𝜒) (1+_′+𝜒)𝑑�̃�
′(_′) < ∞.

Proof. We follow the convention that 𝑥 ′ ∈ [𝜒, b] while 𝑥 ∈ [0, b − 𝜒]. From Lemma 60 we know that 𝑓 (𝑥)
is operator monotone on [0, b − 𝜒] if and only if 𝑓 ′(𝑥 ′) = 𝑓 (𝑥 ′ − 𝜒) is operator monotone on [𝜒, b] where

58

𝑥 ′ = 𝑥 + 𝜒 . Since we already have a characterisation for 𝑓 (𝑥) we can characterise 𝑓 ′(𝑥 ′) as 𝑓 (𝑥 ′− 𝜒). From

Corollary 61 we have

𝑓 ′(𝑥 ′) = 𝑐0 + 𝑐1(𝑥 ′ − 𝜒) −
∫

𝑑�̃� (_)
_ + 𝑥 ′ − 𝜒 = 𝑐 ′

0
+ 𝑐1𝑥

′ −
∫

𝑑�̃� ′(_′)
_′ + 𝑥 ′

where _′ = _ − 𝜒 . Since we had _ ∈ (−∞,−(b − 𝜒)) ∪ (0,∞) it entails _′ ∈ (−∞,−b) ∪ (−𝜒,∞). The

condition on the integral

∫
𝑑�̃� (_)
_ (_+𝑥) < ∞ can be expressed in terms of _′ as

∫
𝑑�̃�′ (_′)

(_′+𝜒) (1+_′+𝜒) < ∞ with

𝑑�̃� ′(_′) = 𝑑�̃� (_′ + 𝜒). With 𝑐1 = 𝑐
′
1

and 𝑐 ′
0
= 𝑐0 − 𝑐1𝜒 we obtain the claimed form. □

We now generalize the definition of Λ-valid functions to [𝜒, b]–valid functions.

Definition 63 ([𝜒, b]–valid function). A finitely supported function 𝑎 : R → R with supp(𝑎) ∈ [𝜒, b] is

[𝜒, b]–valid if for every operator monotone function 𝑓 on [𝜒, b] we have

∑
𝑥 ∈supp(𝑎) 𝑎(𝑥) 𝑓 (𝑥) ≥ 0.

Remark 64. Since in Corollary 62 𝑑�̃� ′
is a measure, to establish [𝜒, b] validity of functions, it would

suffice to restrict our attention to operator monotones 𝑓 ′(𝑥 ′) = 𝑥 ′, 𝑓 ′(𝑥 ′) = − 1

_′+𝑥′ with 𝑥 ′ ∈ [𝜒, b],
_′ ∈ (−∞,−b) ∪ (−𝜒,∞).

By shifting the characterisation of operator monotone functions we can shift valid functions as well.

Corollary 65 (𝑎(𝑥) is [𝜒, b]–valid ⇐⇒ 𝑎(𝑥 ′ − 𝑥0) is [𝜒 + 𝑥0, b + 𝑥0]–valid). A finitely supported function
𝑎 : R→ R with supp(𝑎) ∈ [𝜒, b] is [𝜒, b]–valid if and only if the function 𝑎′(𝑥 ′) := 𝑎(𝑥 ′ − 𝑥0) : [0,∞) → R
is [𝜒 − 𝑥0, b − 𝑥0]–valid.

Proof. 𝑎 is [𝜒, b] valid entails

∑
𝑥 ∈supp(𝑎) 𝑎(𝑥) 𝑓 (𝑥) ≥ 0 for all 𝑓 operator monotone on [𝜒, b]. We can write

the sum as

∑
𝑎(𝑥 ′ − 𝑥0) 𝑓 (𝑥 ′ − 𝑥0) ≥ 0. Using Lemma 60 we note that 𝑓 ′(𝑥 ′) = 𝑓 (𝑥 ′ − 𝑥0) is operator

monotone on [𝜒 +𝑥0, b +𝑥0]. For 𝑎′(𝑥 ′) = 𝑎(𝑥 ′ −𝑥0) we thus have

∑
𝑎′(𝑥 ′) 𝑓 ′(𝑥 ′) ≥ 0 which means 𝑎′(𝑥 ′)

is a [𝜒 + 𝑥0, b + 𝑥0]–valid function. The other way follows similarly. □

We have, thus, established a relation between [0,Λ]-valid functions and [𝜒, b]- valid functions, and we

proceed to establish its analogue for EBRM functions.

Definition 66 (EBRM on [𝜒, b]). A finitely supported function 𝑎 : R→ R is EBRM on [𝜒, b] if there exist

real symmetric matrices𝐻 ≥ 𝐺 with their spectrum in [𝜒, b] and a vector |𝑤⟩ such that 𝑎 = Prob[𝐻, |𝑤⟩] −
Prob[𝐺, |𝑤⟩].

Corollary 67 (𝑎(𝑥) is EBRM on [𝜒, b] ⇐⇒ 𝑎(𝑥 + 𝜒) is EBRM on [0, b − 𝜒]). A finitely supported function
𝑎 : R→ R with supp(𝑎) ∈ [𝜒, b] is EBRM on [𝜒, b] if and only if the function 𝑎′(𝑥) := (𝑥 + 𝜒) : [0,∞) → R
is EBRM on [0, b − 𝜒].

Proof. If 𝑎 is EBRM on [𝜒, b] it follows that there exist real symmetric matrices with𝐻 ≥ 𝐺 and a vector |𝑤⟩
such that spec[𝐻 ⊕𝐺] ∈ [𝜒, b] and 𝑎 = Prob[𝐻, |𝑤⟩] − Prob[𝐺, |𝑤⟩]. Clearly, 𝐻 ′

:= 𝐻 − 𝜒I ≥ 𝐺 − 𝜒I =: 𝐺 ′

and 𝑎′(𝑥) = Prob[𝐻 ′, |𝑤⟩] − Prob[𝐺 ′, |𝑤⟩] = 𝑎(𝑥 + 𝜒) with spec[𝐻 ′ ⊕ 𝐺 ′] ∈ [0, b − 𝜒]. This means 𝑎′ is

EBRM on [0, b − 𝜒]. The other way follows similarly. □

We combine the above to prove the equivalence between [𝜒, b]-valid and [𝜒, b]-EBRM function:

Lemma 68 (𝑎(𝑥) is [𝜒, b]–valid function ⇐⇒ 𝑎(𝑥) is EBRM on [𝜒, b]). A finitely supported function
𝑎 : R→ R with supp(𝑎) ∈ [𝜒, b] being [𝜒, b]-valid is equivalent to it being [𝜒, b]-EBRM.

Proof. From Corollary 65 we know that 𝑎(𝑥) being [𝜒, b]-valid is equivalent to 𝑎(𝑥 + 𝜒) being Λ-valid

with Λ = b − 𝜒 . From Corollary 144 we know that 𝑎(𝑥 + 𝜒) is equivalently EBRM on [0, b − 𝜒]. Finally

using Corollary 67 we know that 𝑎(𝑥 + 𝜒) being EBRM on [0, b − 𝜒] is equivalent to 𝑎(𝑥) being EBRM on

[𝜒, b]. □

59

It only remains to extend the result from valid functions to valid transitions:

Lemma 69 (EBRM function ⇐⇒ EBRM transition even with common support). If we write an EBRM
function 𝑎 with spectrum in [𝜒 ′, b ′] as 𝑎 = ℎ−𝑔 withℎ,𝑔 : [0,∞) → [0,∞) which may have common support,
then 𝑔 → ℎ is an EBRM transition with spectrum in [𝜒, b] and with the smallest matrix size being at most
𝑛𝑔 + 𝑛ℎ − 1, where [𝜒, b] is the smallest interval containing [𝜒 ′, b ′] and supp(ℎ) ∪ supp(𝑔).

Conversely, if 𝑔 → ℎ is an EBRM transition with spectrum in [𝜒, b] and with the smallest matrix size
being at most 𝑛𝑔 + 𝑛ℎ − 1, with ℎ,𝑔 : [0,∞) → [0,∞) which may have common support, then 𝑎 = ℎ − 𝑔 is an
EBRM function with its spectrum in [𝜒, b].

Proof. To prove the first statement we write 𝑎 = 𝑎+ − 𝑎− with 𝑎+ =
∑𝑛′

ℎ

𝑖=1
𝑝 ′
ℎ𝑖
⟦𝑥ℎ𝑖⟧ and 𝑎− =

∑𝑛′𝑔
𝑖=1
𝑝 ′𝑔𝑖

�
𝑥𝑔𝑖

�
,

for 𝑎+, 𝑎− : [0,∞) → [0,∞), represent the positive and the negative parts of 𝑎. Note that 𝑎+ and 𝑎− by

virtue of this definition can’t have any common support. Consider Δ =
∑𝑛Δ
𝑖=1
𝑐𝑖 ⟦𝑥𝑖⟧ : [0,∞) → [0,∞) to

be such that ℎ = 𝑎+ +Δ and 𝑔 = 𝑎− +Δ. This is always the case because ℎ −𝑔 = 𝑎. Consider the case where

supp(Δ) ∩ supp(𝑎) = ∅. In this case 𝑛𝑔 = 𝑛
′
𝑔 + 𝑛Δ and 𝑛ℎ = 𝑛′

ℎ
+ 𝑛Δ. Since 𝑎 is an EBRM function we have

a legal COF, viz 𝑂 ′𝑋 ′
𝑔𝑂

′𝑇 ≤ 𝑋 ′
ℎ

and |𝑤 ′⟩ = 𝑂 ′ |𝑣 ′⟩, of dimension 𝑛′ = 𝑛′𝑔 + 𝑛′ℎ − 1 from Lemma 146. To

obtain the matrices corresponding to 𝑔 → ℎ we expand the space to 𝑛 = 𝑛𝑔 +𝑛ℎ − 1 dimensions and define

𝑋𝑔 = 𝑋 ′
𝑔 ⊕ 𝑋 , 𝑋ℎ = 𝑋 ′

ℎ
⊕ 𝑋 , 𝑂 = 𝑂 ′ ⊕ I, |𝑣⟩ = |𝑣 ′⟩ + ∑𝑛

𝑖=𝑛′
√
𝑐𝑖+1−𝑛′ |𝑖⟩ where 𝑋 = diag{𝑥1, 𝑥2 . . . 𝑥𝑛Δ}. This

is just an elaborate way of adding the points in Δ to the matrices and the vectors in such a way that the

part corresponding to Δ remains unchanged. The other cases can be similarly demonstrated with the only

difference being in the relation between 𝑛𝑔, 𝑛
′
𝑔 and 𝑛ℎ, 𝑛

′
ℎ
. Suppose Δ is non-zero only at one point. If Δ

adds a point where 𝑎− had a point then it does not contribute to increasing the number of points in 𝑔 (that

is 𝑛𝑔 = 𝑛′𝑔), but it does increase the number in ℎ (that is 𝑛ℎ = 𝑛′
ℎ
+ 1). This means that we have one extra

dimension to find the matrices certifying 𝑔 → ℎ is EBRM which is precisely what is needed to append that

extra idle point as described above. Similarly one can reason for adding a point where 𝑎+ had a point and

finally extend it to the most general case of supp(Δ) ∩ supp(𝑎) ≠ ∅ which may involve multiple points.

For the converse, since 𝑔 → ℎ is an EBRM transition from Lemma 146 we know that it admits a legal

COF, that is 𝑂𝑋𝑔𝑂
𝑇 ≤ 𝑋ℎ and 𝑂 |𝑣⟩ = |𝑤⟩ with dimension 𝑛𝑔 + 𝑛ℎ − 1. To show that 𝑎 = ℎ − 𝑔 = 𝑎+ − 𝑎−

is an EBRM function it suffices to show that 𝑎 is a valid function. This follows directly from the COF

and operator monotones as 𝑂𝑓 (𝑋𝑔)𝑂𝑇 ≤ 𝑓 (𝑋ℎ) implies ⟨𝑣 | 𝑓 (𝑋𝑔) |𝑣⟩ ≤ ⟨𝑤 | 𝑓 (𝑋ℎ) |𝑤⟩ which in turn is∑
ℎ(𝑥) 𝑓 (𝑥) −∑

𝑔(𝑥) 𝑓 (𝑥) ≥ 0 and that is the same as

∑
𝑎(𝑥) 𝑓 (𝑥) ≥ 0 for all 𝑓 operator monotone on the

spectrum of 𝑋ℎ ⊕ 𝑋𝑔, viz. 𝑎 is valid. From Lemma 68 we conclude that 𝑎 is also EBRM with size at most

𝑛𝑔 + 𝑛ℎ − 1. □

5.3.2 For the finite part

In this subsection we formalize the notions of tightening and stretching of ellipsoids and present some

results that are relevant to perform the tightening/stretching in the course of the EMA algorithm.

Fact 70 (Weyl’s Monotonicity Theorem (see [Bha13])). If𝐻 is positive semi-definite and𝐴 is Hermitian then
_
↓
𝑗
(𝐴 + 𝐻) ≥ _

↓
𝑗
(𝐴) for all 𝑗 where _↓

𝑗
(𝑀) represents the 𝑗 th largest eigenvalue of the Hermitian matrix 𝑀 .

Corollary 71. If 𝐻 ≥ 𝐺 then _↓
𝑗
(𝐻) ≥ _

↓
𝑗
(𝐺) for all 𝑗 .

We now state a continuity condition which we subsequently use to establish that when we stretch

the ℎ ellipsoid, there would always exist the perfect amount of stretching that makes the ℎ ellipsoid just

touch the 𝑔 ellipsoid. The non-triviality here is that we have to conclude this without fully knowing the

ellipsoids.

Claim 72 (Continuity of 𝑙). Let [𝑥min, 𝑥max] be the smallest interval containing supp(𝑎). 𝑙 (_) is continuous
in the intervals _ ∈ (−𝑥min,∞] and _ ∈ [−∞,−𝑥max) (see Definition 52).

60

Proof. Since 𝑙 (_) is just a rational function of _ it suffices to show that the denominator doesn’t become

zero in the said range. The roots of the denominator are of the form _ +𝑥 = 0 for 𝑥 ∈ {{𝑥𝑔𝑖 }, {𝑥ℎ𝑖 }}. Hence

the largest root is _ = −𝑥min and the smallest _ = −𝑥max. Neither of the intervals defined in the statement

contain any roots and therefore we can conclude that 𝑙 (_) is continuous therein. Note that the function 𝑓_
on [𝑥min, 𝑥max] is not even defined for _ in (−𝑥max,−𝑥min). □

Lemma 73 (Tightening with the matrix spectrum unknown). Consider a finitely supported valid func-
tion 𝑎. Let [𝑥min(𝛾), 𝑥max(𝛾)] be the smallest interval containing supp(𝑎𝛾) (see Definition 52). Consider
𝑚(𝛾, 𝑥min(𝛾), 𝑥max(𝛾)) as a function of 𝛾 (see Definition 53). Then, 𝑚 has at least one root in the interval
(0, 1].

Proof. To prove the claim it suffices to show that 𝑙𝛾 (_) has a root in the range (0,∞) for some 𝛾 ∈ (0, 1].
Note that we are given a valid function 𝑎 which means supp(𝑎) ∈ [0,∞). We assume that 𝑙𝛾=1(_) > 0 for all

_ ∈ (0,∞) because if this was not the case then we trivially have𝛾 = 1 as a root, i.e.𝑚(1, 𝑥min(1), 𝑥max(1)) =
0. Since

∑
ℎ(𝑥) = ∑

𝑔(𝑥), we have

𝑙 () =
∑︁

ℎ(𝑥) (_𝑓_ (𝑥) + 1) −
∑︁

𝑔(𝑥) (_𝑓_ (𝑥) + 1) =
∑︁

ℎ(𝑥) 𝑥

_ + 𝑥 −
∑︁

𝑔(𝑥) 𝑥

_ + 𝑥 .

Therefore for the remainder of this proof we redefine 𝑓_ = 1

_
𝑥
_+𝑥 without changing the value of 𝑙 or by

extension 𝑙𝛾 (the 1/_ factor is partly why we restricted _ to (0,∞) instead of the more general (−𝑥min,∞)).
Note that lim𝛾→0

+ 𝑙𝛾 (_) < 0 for all _ ∈ (0,∞) because ℎ𝛾 (𝑥) = ℎ(𝑥/𝛾) which means lim𝛾→0

∑
ℎ𝛾 (𝑥) 𝑓_ (𝑥) =

lim𝛾→0

∑
ℎ(𝑥) 𝑓_ (𝛾𝑥) = 0 since lim𝑥→0 𝑓_ (𝑥) = 0. This, in turn, means that

lim𝛾→0
+ 𝑙𝛾 (_) = −∑

𝑔(𝑥) 𝑓_ (𝑥) < 0. Each term constituting 𝑙𝛾 (_) is finite for _ ∈ (0,∞) since for _ > 0 the

denominators are of the form _ + 𝑥 which are always positive. Hence 𝑙𝛾 (_) as a function of _ ∈ [0,∞) and

𝛾 ∈ (0, 1] is continuous. By continuity then between 𝛾 = 0
+

and 𝛾 = 1 there should be a root.

It remains to justify why we extended the range of _ from (0,∞) to (−∞,−𝑥max) ∪ (−𝑥min,∞) in the

definition of𝑚 (see Definition 53) as it appears in the statement of the lemma. This is due to the fact that

𝑙𝛾 (_) is continuous for _ in the stated range (see Lemma 72) and so there might be a root which appears

in the extended range. □

Once we are guaranteed that there is at least one perfect stretching amount, we want to know the

spectrum of the matrices. We state a slightly more general result which is a direct consequence of the

previous results.

Lemma 74 (Matrix spectrum from a valid function). Consider a valid function 𝑎, i.e. an 𝑎 such that 𝑙 (_) ≥ 0

and 𝑙1 ≥ 0 for all _ ∈ [0,∞) (see Definition 52) and let [𝜒, b] be such that for all _ ∈ [−∞,−b) ∪ (−𝜒,∞] we
have 𝑙 (_) ≥ 0. Then, there exists a legal COF, corresponding to the function 𝑎, with its spectrum contained in
[𝜒, b].

Proof. Since 𝑙 (_) ≥ 0 for _ ∈ (−∞,−b) ∪ (−𝜒,∞) and 𝑙1 ≥ 0 we know from Corollary 62 that 𝑎 is [𝜒, b]-
valid. From Lemma 68 we know that 𝑎 is EBRM on [𝜒, b]. Finally, from Lemma 146 we know that there

exists a legal COF with spectrum in [𝜒, b]. □

Recall that our analysis involves operator monotone functions 𝑓 with the property that 𝑓 −1
is also an

operator monotone (see Section 1.1.3). We now establish that 𝑓_s (see Definition 51) also have this property.

Lemma 75 (𝐻 ≥ 𝐺 ⇐⇒ 𝑓_ (𝐻) ≥ 𝑓_ (𝐺)). Let 𝐻,𝐺 be real symmetric matrices, [𝜒, b] be the smallest
interval containing spec[𝐻 ⊕𝐺] and 𝑓_ be on (𝜒, b) (see Definition 50; 𝑓_ is defined for _ ∈ R\[−b,−𝜒]). Then,
𝐻 ≥ 𝐺 if and only if 𝑓_ (𝐻) ≥ 𝑓_ (𝐺).

61

Proof. 𝐻 ≥ 𝐺 =⇒ 𝑓_ (𝐻) ≥ 𝑓_ (𝐺) because 𝑓_ is an operator monotone function for matrices with

spectrum in [𝜒, b]. We prove the converse. We find the inverse function of 𝑓_ and show that it is also an

operator monotone. Start with recalling that for 𝑥 ∈ [𝜒, b] we have

𝑦 = 𝑓_ (𝑥) =
−1

_ + 𝑥 =⇒ 𝑥 = −1

𝑦
− _

where _ ∈ R\[𝜒, b]. Thus 𝑓 −1

_
(𝑦) = − 1

𝑦
− _. For a given _ either 𝑓_ (𝜒) and 𝑓_ (b) are both greater than zero

or both less than zero. Hence the operator monotones 𝑓 ′
′ (𝑦) on [𝑓 (𝜒), 𝑓_ (b)] permit _′ = 0. Consequently

𝑓 ′
_′=0

(𝑦) = −1

𝑦
is an operator monotone on [𝑓_ (𝜒), 𝑓_ (b)]. A constant is also an operator monotone. Thus

we conclude 𝑓 −1

_
(𝑦) is an operator monotone on the required interval establishing the converse. □

5.3.3 For the infinite part; wiggle-v

The results of the previous section permit us to tighten the ellipsoids as needed, and after that we need to

find the operator monotone 𝑓_ for which the ellipsoids touch along a certain direction. Under the action

of this operator monotone it is possible that the curvature along some direction becomes infinite, i.e., the

corresponding matrix has a divergence (see the case of an ellipse getting mapped to a line). Our algorithm

fails in this situation because the associated normal vector is ill-defined. To remedy this problem, we show

that tightness is preserved under the action of 𝑓_ . This means that if for some _′ we consider the ellipsoids

obtained by applying 𝑓_′ and we find that they touch along a certain direction, then for some other _′′ ≠ _′

they continue to touch but along a different direction. This allows us to consider the sequence leading to

the divergence, and we use it in the analysis of the algorithm. We start by showing this result in the case

where everything is well-defined, and then extend it to the divergent case.

Lemma 76 (Strict inequality under 𝑓_). 𝐻 > 𝐺 if and only if 𝑓_ (𝐻) > 𝑓_ (𝐺) where 𝑓_ is on (𝜒, b) ⊃
spec[𝐻 ⊕ 𝐺].

Proof. Note that 𝐻 > 𝐺 ⇐⇒ 𝐻 ′
:= 𝐻 + _I > 𝐺 + _I =: 𝐺 ′

, where _ ∈ (R ∪ {∞,−∞})\[−b,−𝜒]
by Definition 50. There can be two cases, either both matrices are strictly positive or both are strictly

negative. Let us consider the former, and the latter follows similarly. We have

𝐻 ′ > 𝐺 ′ > 0 ⇐⇒ I > 𝐻 ′−1/2𝐺 ′𝐻 ′−1/2 ⇐⇒ I < 𝐻 ′1/2𝐺 ′−1𝐻 ′1/2 ⇐⇒ 𝐻 ′−1 < 𝐺 ′−1,

where the first and third inequalities follow from the fact that multiplication by a positive matrix doesn’t

affect the inequality and the second follows from matrix diagonalization. The last inequality is the same

as 𝑓_ (𝐻) > 𝑓_ (𝐺) completing our proof. □

Corollary 77 (Tightness preservation under 𝑓_). Let𝐻 ≥ 𝐺 and 𝑓_ be on (𝜒, b) ⊃ spec[𝐻 ⊕𝐺]. There exists
a |𝑤⟩ such that ⟨𝑤 | (𝐻 −𝐺) |𝑤⟩ = 0 if and only if there exists a |𝑤_⟩ such that ⟨𝑤_ | (𝑓_ (𝐻) − 𝑓_ (𝐺)) |𝑤_⟩ = 0.

Proof. The contrapositive of the aforesaid condition is that 𝑓_ (𝐻) > 𝑓_ (𝐺) if and only if 𝐻 > 𝐺 which

holds from Lemma 76. □

Lemma 78 (Extending tightness preservation under 𝑓_ to apparently divergent situations). Let 𝑋ℎ, 𝑋𝑔 be
diagonal matrices with spec[𝑋ℎ] ∈ (𝜒, b], spec[𝑋𝑔] ∈ [𝜒, b) and let 𝑓_ be on [−b,−𝜒]. Let, further, 𝑂 be an
orthogonal matrix such that 𝑋ℎ ≥ 𝑂𝑋𝑔𝑂𝑇 .

There exists a vector |𝑤⟩ such that ⟨𝑤 |
(
𝑓−b (𝑋ℎ) −𝑂𝑓−b (𝑋𝑔)𝑂𝑇

)
|𝑤⟩ = 0 if and only if there exists a |𝑤_⟩

such that ⟨𝑤_ |
(
𝑓_ (𝑋ℎ) −𝑂𝑓_ (𝑋𝑔)𝑂𝑇

)
|𝑤_⟩ = 0 for a _ ∈ R\(−b,−𝜒).

Similarly, there exists a vector |𝑤⟩ such that ⟨𝑤 |
(
𝑓−𝜒 (𝑋ℎ) −𝑂𝑓−𝜒 (𝑋𝑔)𝑂𝑇

)
|𝑤⟩ = 0 if and only if there

exists a |𝑤_⟩ such that ⟨𝑤_ |
(
𝑓_ (𝑋ℎ) −𝑂𝑓_ (𝑋𝑔)𝑂𝑇

)
|𝑤_⟩ = 0 for a _ ∈ R\(−b,−𝜒).

62

Proof. In this tightness statement the problem is that 𝑋ℎ has an eigenvalue b which means that 𝑓−b (𝑋ℎ) is

not well-defined. We assume that 𝑋ℎ can be expressed as

𝑋ℎ =

[
𝑋 ′
ℎ

bI′′

]
where 𝑋 ′

ℎ
has no eigenvalue equal to b and I′′ is the identity matrix in the subspace. We can write

𝑋ℎ > 𝑂𝑋𝑔𝑂
𝑇 ⇐⇒

[
𝑓_ (𝑋 ′

ℎ
)

𝑓_ (bI′′)

]
> 𝑂𝑓_ (𝑋𝑔)𝑂𝑇 for _ ∈ R\[−b,−𝜒]

⇐⇒
[
𝑓_ (𝑋 ′

ℎ
)
I′′

]
>

[
I′

𝑓_ (bI′′)−1/2

]
𝑂𝑓_ (𝑋𝑔)𝑂𝑇

[
I′

𝑓_ (bI′′)−1/2

]
_ ∈ R\[−b,−𝜒]

where the last expression has a well-defined limit for _ = −b . This establishes the contrapositive of the

statement we wanted to prove once we note the following: If ⟨𝑤 |
(
𝑓−b (𝑋ℎ) −𝑂𝑓−b (𝑋𝑔)𝑂𝑇

)
|𝑤⟩ = 0, then[

0

I′′

]
|𝑤⟩ = 0, otherwise due to the spectrum constraint of 𝑋𝑔 the aforesaid expression would be ∞.

This entails

⟨𝑤 |
([

𝑓−b (𝑋 ′
ℎ
)
I′′

]
−

[
I′

𝑓−b (bI′′)−1/2

]
𝑂𝑓−b (𝑋𝑔)𝑂𝑇

[
I′

𝑓−b (bI′′)−1/2

])
|𝑤⟩ = 0.

The proof for the case of 𝑓−𝜒 (𝑋𝑔) follows similarly. □

5.4 The algorithm

We first present our algorithm and then we motivate and prove the correctness of each step.

Definition 79 (EMA Algorithm). Given a finitely supported function 𝑎 (we assume it is Λ-valid (see Def-

inition 120)) proceed in the following three phases:

• PHASE 1: INITIALIZATION

– Tightening procedure: Let [𝑥min(𝛾 ′), 𝑥max(𝛾 ′)] be the support domain for 𝑎𝛾 ′ (see Def-

inition 52) where 𝛾 ′ ∈ (0, 1] is a variable. Let 𝛾 ∈ (0, 1] be the largest root of

𝑚(𝛾 ′, 𝑥min(𝛾 ′), 𝑥max(𝛾 ′)), and let 𝑥max := 𝑥max(𝛾) and 𝑥min := 𝑥min(𝛾).
– Spectral domain for the representation: Find the smallest interval [𝜒, b] such that 𝑙𝛾 (_) ≥ 0

for _ ∈ (R ∪ {∞,−∞})\[𝜒, b]. If supp(𝑔), supp(ℎ) is not contained in [𝜒, b] then from all

expansions of [𝜒, b] that contain the aforesaid sets, pick the smallest. Relabel this interval to

[𝜒, b].
– Shift: Transform 𝑎(𝑥) → 𝑎′(𝑥 ′) := 𝑎(𝑥 ′ + 𝜒 − 1), where instead of 1 any positive constant

would do (see Corollary 67). Similarly transform

𝑔(𝑥) → 𝑔′(𝑥 ′) := 𝑔(𝑥 ′ + 𝜒 − 1) and ℎ(𝑥) → ℎ′(𝑥 ′) := ℎ(𝑥 ′ + 𝜒 − 1) .

Relabel 𝑎′ to 𝑎, 𝑔′ to 𝑔 and ℎ′ to ℎ.

– The matrices: For 𝑛 := 𝑛𝑔 + 𝑛ℎ − 1 define 𝑛 × 𝑛 matrices with spectrum in [𝜒, b] and 𝑛-

dimensional vectors as

𝑋
(𝑛)
𝑔 = diag[𝜒, 𝜒, . . . 𝑥𝑔1

, 𝑥𝑔2
. . . , 𝑥𝑔𝑛𝑔] and 𝑋

(𝑛)
ℎ𝛾

= diag[𝛾𝑥ℎ1
, 𝛾𝑥ℎ2

, . . . , 𝛾𝑥ℎ𝑛ℎ
, b, b, . . .],���𝑣 (𝑛) 〉 � [

0, 0 . . . ,
√︁
𝑝𝑔1
,
√︁
𝑝𝑔2
, . . . ,

√︁
𝑝𝑔𝑛𝑔

]
,

���𝑤 (𝑛)
〉
�

[√
𝑝ℎ1
,
√
𝑝ℎ2
, . . . ,

√︁
𝑝ℎ𝑛ℎ

, 0, 0 . . .

]
,

where 𝑔 =
∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
and ℎ =

∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧.

63

– Bootstrapping the iteration:

* Basis:

{���𝑡 (𝑛+1)
ℎ𝑖

〉}
where

���𝑡 (𝑛+1)
ℎ𝑖

〉
:= |𝑖⟩ for 𝑖 = 1, 2 . . . 𝑛 with |𝑖⟩ referring to the standard

basis in which the matrices and the vectors were originally expressed.

* Matrix Instance: X
(𝑛) = {𝑋 (𝑛)

ℎ
, 𝑋

(𝑛)
𝑔 ,

��𝑤 (𝑛) 〉 , ��𝑣 (𝑛) 〉}.
• PHASE 2: ITERATION

– Objective: Find the objects

���𝑢 (𝑘)
ℎ

〉
,𝑂

(𝑘)
𝑔 ,𝑂

(𝑘)
ℎ

and 𝑠 (𝑘) .

– Input: Assume we are given

* Basis:

{���𝑡 (𝑘+1)
ℎ𝑖

〉}
* Matrix Instance: X

(𝑘) =
(
𝑋

(𝑘)
ℎ
, 𝑋

(𝑘)
𝑔 ,

��𝑤 (𝑘) 〉 , ��𝑣 (𝑘) 〉) with attribute 𝜒 (𝑘) > 0

* Function Instance: X
(𝑘) → x

(𝑘) =
(
ℎ (𝑘) , 𝑔 (𝑘) , 𝑎 (𝑘)

)
– Output:

* Basis:

{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ𝑖

〉}
* Matrix Instance: X

(𝑘−1) =
(
𝑋

(𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉)
with attribute 𝜒 (𝑘−1) > 0

* Function Instance: X
(𝑘−1) → x

(𝑘−1) =
(
ℎ (𝑘−1) , 𝑔 (𝑘−1) , 𝑎 (𝑘−1))

* Unitary Constructors: Either 𝑂
(𝑘)
𝑔 and 𝑂

(𝑘)
ℎ

are returned or 𝑂 (𝑘)
is returned. If 𝑂 (𝑘)

is

returned, set 𝑂
(𝑘)
𝑔 := 𝑂 (𝑘)

and 𝑂
(𝑘)
ℎ

= I.

* Relation: If 𝑠 (𝑘) is not specified, define 𝑠 (𝑘) := 1.

If 𝑠 (𝑘) = 1 then use

𝑂 (𝑘)
:= 𝑂

(𝑘)
ℎ

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂

(𝑘)
𝑔

else use

𝑂 (𝑘)
:=

[
𝑂

(𝑘)
ℎ

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂

(𝑘)
𝑔

]𝑇
.

– Algorithm:

* Boundary condition: If 𝑛𝑔 = 0 and 𝑛ℎ = 0 then set 𝑘0 = 𝑘 and jump to PHASE 3.

* Tighten: Define 𝑋
(𝑘)
ℎ𝛾′

:= 𝛾 ′𝑋 (𝑘)
where 𝛾 ′ ∈ (0, 1] is a variable. Let 𝛾 be the largest root of

𝑚(𝛾 ′, 𝜒 (𝑘)
𝛾 ′ , b

(𝑘)
𝛾 ′) for 𝑎 (𝑘) where 𝜒

(𝑘)
𝛾 ′ , b

(𝑘)
𝛾 ′ are such that [𝜒 (𝑘)

𝛾 ′ , b
(𝑘)
𝛾 ′] is the smallest interval

containing spec[𝑋 (𝑘)
ℎ𝛾′

⊕𝑋 (𝑘)
𝑔]. Relabel𝑋

(𝑘)
ℎ𝛾

to𝑋
(𝑘)
ℎ

, 𝜒
(𝑘)
𝛾 to 𝜒 (𝑘) and b

(𝑘)
𝛾 to b (𝑘) , and 𝑎

(𝑘)
𝛾 to

𝑎 (𝑘) , ℎ (𝑘)𝛾 toℎ (𝑘) , 𝑙 (𝑘)𝛾 to 𝑙 (𝑘) . Update 𝑥min and 𝑥max to be such that supp(𝑎 (𝑘)) ∈ [𝑥 (𝑘)
min
, 𝑥

(𝑘)
max

]
is the smallest such interval. Define 𝑠 (𝑘) := 1.

* Honest align: If 𝑙1(𝑘) = 0 then define [= −𝜒 (𝑘) + 1

𝑋
′(𝑘)
ℎ

:= 𝑋
(𝑘)
ℎ

+ [, 𝑋
′(𝑘)
𝑔 := 𝑋𝑔 + [.

Else: Pick a root _ of the function 𝑙 (𝑘) (_′) in the domainR\(−b (𝑘) ,−𝜒 (𝑘)). In the following

two cases we consider the function 𝑓_ on [𝜒 (𝑘) , b (𝑘)].
◦ If _ ≠ −𝜒 (𝑘) then: Let [= −𝑓_ (𝜒 (𝑘)) + 1 where any positive constant could be chosen

instead of 1. Define

𝑋
′(𝑘)
ℎ

:= 𝑓_ (𝑋 (𝑘)
ℎ

) + [, 𝑋
′(𝑘)
𝑔 := 𝑓_ (𝑋 (𝑘)

𝑔) + [.

64

◦ If _ = −𝜒 (𝑘) then: Update 𝑠 (𝑘) = −1. Let [= −𝑓_ (b (𝑘)) −1 where any positive constant

could be chosen instead of 1. Define

𝑋
′(𝑘)
ℎ

:= 𝑋
′′(𝑘)
𝑔 , 𝑋

′(𝑘)
𝑔 := 𝑋

′′(𝑘)
ℎ

,

where 𝑋
′′(𝑘)
ℎ

:= −𝑓_ (𝑋 (𝑘)
ℎ

) − [,𝑋 ′′(𝑘)
𝑔 := −𝑓_ (𝑋 (𝑘)

𝑔) − [, and make the replacements���𝑣 (𝑘)〉 →
���𝑤 (𝑘)

〉
and

���𝑤 (𝑘)
〉
→

���𝑣 (𝑘)〉 .
* Remove spectral collision: If _ = −𝜒 (𝑘) or _ = −b (𝑘) then

1. Idle point: If for some 𝑗 ′, 𝑗 , we have 𝑞
(𝑘)
𝑔𝑗′ = 𝑞

(𝑘)
ℎ 𝑗

and 𝑦
(𝑘)
𝑔𝑗′ = 𝑦

(𝑘)
ℎ 𝑗

then the solution is

given by Definition 81

Jump to End.

2. Final Extra: If for some 𝑗, 𝑗 ′ we have 𝑞
(𝑘)
𝑔𝑗′ > 𝑞

(𝑘)
ℎ 𝑗

and 𝑦
(𝑘)
𝑔𝑗′ = 𝑦

(𝑘)
ℎ 𝑗

then the solution is

given by Definition 82

Jump to End.

3. Initial Extra: If for some 𝑗, 𝑗 ′ we have 𝑞
(𝑘)
𝑔𝑗′ < 𝑞

(𝑘)
ℎ 𝑗

and 𝑦
(𝑘)
𝑔𝑗′ = 𝑦

(𝑘)
ℎ 𝑗

then the solution

is given by Definition 83

Jump to End.

* Evaluate the Reverse Weingarten Map:

1. Consider the point

��𝑤 (𝑘) 〉 /√︃〈
𝑤 (𝑘)

��𝑋 ′(𝑘)
ℎ

��𝑤 (𝑘) 〉
on the ellipsoid 𝑋

′(𝑘)
ℎ

. Evaluate the

normal at this point as

���𝑢 (𝑘)
ℎ

〉
= N

(∑𝑛
(𝑘)
ℎ

𝑖=1

√︃
𝑝
(𝑘)
ℎ𝑖
𝑥
′(𝑘)
ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉)
. Similarly evaluate���𝑢 (𝑘)

𝑔

〉
, the normal at the point

��𝑣 (𝑘) 〉 /√︃〈
𝑤 (𝑘)

��𝑋 ′(𝑘)
𝑔

��𝑤 (𝑘) 〉
on the ellipsoid 𝑋

′(𝑘)
𝑔 .

2. Evaluate the Reverse Weingarten maps 𝑊
′(𝑘)
ℎ

and 𝑊
′(𝑘)
𝑔 along

���𝑢 (𝑘)
ℎ

〉
and

���𝑢 (𝑘)
𝑔

〉
, re-

spectively. For a given diagonal matrix 𝑋 =
∑
𝑖 𝑦𝑖 |𝑖⟩ ⟨𝑖 | > 0 and normal vector

|𝑢⟩ =
∑
𝑖 𝑢𝑖 |𝑖⟩ the Reverse Weingarten map is given by𝑊𝑖 𝑗 =

(
− 𝑦−1

𝑗
𝑦−1

𝑖
𝑢𝑖𝑢 𝑗

𝑟 2
+ 𝑦−1

𝑖 𝛿𝑖 𝑗

)
where 𝑟 =

√︃∑
𝑦−1

𝑖
𝑢2

𝑖
.

3. Find the eigenvectors and eigenvalues of the Reverse Weingarten maps. The eigenvec-

tors of𝑊 ′
ℎ

form the ℎ tangent and normal vectors

{{���𝑡 (𝑘)
ℎ𝑖

〉}
,

���𝑢 (𝑘)
ℎ

〉}
. The correspond-

ing radii of curvature are obtained from the eigenvalues

{
{𝑟 (𝑘)
ℎ𝑖

}, 0
}
=

{
{𝑐 (𝑘)−1

ℎ𝑖
}, 0

}
which are the inverses of the curvature values. The tangents are labeled in decreasing

order of radii of curvature (which is increasing order of curvature). Similarly for the

𝑔 tangent and normal vectors. Fix the sign freedom in the eigenvectors by requiring〈
𝑡
(𝑘)
ℎ𝑖

|𝑤 (𝑘)
〉
≥ 0 and

〈
𝑡
(𝑘)
𝑔𝑖 |𝑣 (𝑘)

〉
≥ 0.

* Finite Method: If _ ≠ −b (𝑘) and _ ≠ −𝜒 (𝑘) , (finite case) then

1. 𝑂 (𝑘)
:=

���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
𝑔

��� + ∑𝑘−1

𝑖=1

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
𝑔𝑖

���
2.

��𝑣 (𝑘−1) 〉
:= 𝑂 (𝑘) ��𝑣 (𝑘) 〉 − 〈

𝑢
(𝑘)
ℎ

���𝑂 (𝑘) ��𝑣 (𝑘) 〉 ���𝑢 (𝑘)
ℎ

〉
and

��𝑤 (𝑘−1) 〉
:=

��𝑤 (𝑘) 〉 − 〈
𝑢
(𝑘)
ℎ

|𝑤 (𝑘)
〉 ���𝑢 (𝑘)

ℎ

〉
.

3. Define 𝑋
(𝑘−1)
ℎ

:= diag{𝑐 (𝑘)
ℎ1

, 𝑐
(𝑘)
ℎ2

. . . , 𝑐
(𝑘)
ℎ𝑘−1

}, 𝑋 (𝑘−1)
𝑔 := diag{𝑐 (𝑘)𝑔1

, 𝑐
(𝑘)
𝑔2

. . . 𝑐
(𝑘)
𝑔𝑘−1

}.

65

4. Jump to End.

* Wiggle-v Method: If _ = −b (𝑘) or _ = −𝜒 (𝑘) (infinite case) then

1.

���𝑢 (𝑘)
ℎ

〉
renamed to

���𝑢 (𝑘)
ℎ

〉
,

���𝑢 (𝑘)
𝑔

〉
remains the same.

2. Let 𝜏 = cos\ :=

〈
𝑢
(𝑘)
𝑔 |𝑣 (𝑘)

〉
/
〈
𝑢
(𝑘)
ℎ

|𝑤 (𝑘)
〉
. Let

���𝑡 (𝑘)
ℎ

〉
be an eigenvector of 𝑋

′(𝑘)−1

ℎ
with

zero eigenvalue. Redefine���𝑢 (𝑘)
ℎ

〉
:= cos\

���𝑢 (𝑘)
ℎ

〉
+ sin\

���𝑡 (𝑘)
ℎ

〉
,���𝑡 (𝑘)

ℎ𝑘

〉
= 𝑠

(
− sin\

���𝑢 (𝑘)
ℎ

〉
+ cos\

���𝑡 (𝑘)
ℎ

〉)
where the sign 𝑠 ∈ {1,−1} is fixed by demanding

〈
𝑡
(𝑘)
ℎ𝑘

|𝑤 (𝑘)
〉
≥ 0.

3. 𝑂 (𝑘)
and

��𝑣 (𝑘−1) 〉 , ��𝑤 (𝑘−1) 〉
are evaluated as step 1. and 2. of the finite case above.

4. Define

𝑋
′(𝑘−1)
ℎ

:= diag{𝑐 (𝑘)
ℎ1

, . . . , 𝑐
(𝑘)
ℎ𝑘−1

}, 𝑋 ′(𝑘−1)
𝑔 := diag{𝑐 (𝑘)𝑔1

, . . . , 𝑐
(𝑘)
𝑔𝑘−1

}.

Let [𝜒 ′(𝑘−1) , b ′(𝑘−1)] denote the smallest interval containing spec[𝑋 ′(𝑘−1)
ℎ

⊕ 𝑋 ′(𝑘−1)
𝑔].

Let _′ = −𝜒 ′(𝑘−1) + 1 where instead of 1 any positive number would also work. Con-

sider 𝑓_′′ on [𝜒 ′(𝑘−1) , b ′(𝑘−1)], and let [= −𝑓_′ (𝜒 ′(𝑘−1)) + 1. Define

𝑋
(𝑘−1)
ℎ

:= 𝑓_′ (𝑋 ′(𝑘−1)
ℎ

) + [, 𝑋
(𝑘−1)
𝑔 := 𝑓_′ (𝑋 ′(𝑘−1)

𝑔) + [.

5. Jump to End.

* End: Restart PHASE 2 with the newly obtained (𝑘 − 1)-sized objects.

• PHASE 3: RECONSTRUCTION

Let 𝑘0 be the iteration at which the algorithm stops. Using the relation

𝑂 (𝑘) = 𝑂 (𝑘)
𝑔

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂

(𝑘)
ℎ

(or its transpose if 𝑠 (𝑘) = −1), evaluate𝑂 (𝑘1)
from𝑂 (𝑘0)

:= I𝑘0
, then𝑂 (𝑘2)

from𝑂 (𝑘1)
, then𝑂 (𝑘3)

from

𝑂 (𝑘2)
and so on until𝑂 (𝑛)

is obtained. 𝑂 (𝑛)
solves the matrix instance X

(𝑛)
we started with. In terms

of EBRM matrices, the solution is given by 𝐻 = 𝑋
(𝑛)
ℎ
, 𝐺 = 𝑂 (𝑛)𝑋𝑔𝑂 (𝑛)𝑇

, and |𝑤⟩ =
��𝑤 (𝑛) 〉

.

Theorem 80 (Correctness of the EMA Algorithm). Given a Λ-valid function, 𝑎, the EMA algorithm (see
Definition 79) always finds an orthogonal matrix 𝑂 of size at most 𝑛 × 𝑛 where 𝑛 = 𝑛𝑔 + 𝑛ℎ , such that the
constraints on 𝑂 stated in Theorem 1 corresponding to the function 𝑎, are satisfied.

Definition 81 (Spectral Collision: Case Idle Point).{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
,

���𝑡 (𝑘)
ℎ2

〉
, . . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
component-wise

:={���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
,

𝑂 (𝑘)
:=

𝑘∑︁
𝑖=1

|𝑎𝑖⟩
〈
𝑡
(𝑘+1)
ℎ𝑖

��� ,

66

where {|𝑎1⟩ , |𝑎2⟩ . . . |𝑎𝑘⟩}
component-wise

:=

{ ���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
, . . . ,

����𝑡 (𝑘+1)
ℎ 𝑗′−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′+1

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉 }
𝑗 < 𝑗 ′{ ���𝑡 (𝑘+1)

ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

����𝑡 (𝑘+1)
ℎ 𝑗′−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′+1

〉
. . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉 }
𝑗 > 𝑗 ′{���𝑡 (𝑘+1)

ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
𝑗 = 𝑗 ′,

and

𝑋
(𝑘−1)
ℎ

:=
∑︁
𝑖≠𝑗

𝑦
(𝑘)
ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉 〈
𝑡
(𝑘+1)
ℎ𝑖

��� and 𝑋
(𝑘−1)
𝑔 := 𝑂 (𝑘)𝑋 (𝑘)

𝑔 𝑂 (𝑘)𝑇 − 𝑦ℎ 𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉 〈
𝑡
(𝑘+1)
ℎ 𝑗

��� ,���𝑤 (𝑘−1)
〉
= N

[���𝑤 (𝑘)
〉
−

√︁
𝑝ℎ 𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉]
and

���𝑣 (𝑘−1)
〉
= N

[
𝑂 (𝑘)

���𝑣 (𝑘) 〉 − √︁
𝑝ℎ 𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉]
.

This specifies the matrix instance X
(𝑘−1)

:= {𝑋 (𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉}.
Definition 82 (Spectral Collision: Case Final Extra). X

(𝑘−1)
:= (𝑋 (𝑘−1)

ℎ
, 𝑋

(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉), where𝑋
(𝑘−1)
ℎ

=∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���, 𝑋
(𝑘−1)
𝑔 =

∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���, ��𝑣 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
,

��𝑤 (𝑘−1) 〉 =

N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
and the coordinates and weights are given by{

𝑞
(𝑘−1)
ℎ1

, . . . 𝑞
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
ℎ1

, 𝑞
(𝑘)
ℎ2

. . . , 𝑞
(𝑘)
ℎ 𝑗−1

, 𝑞
(𝑘)
ℎ 𝑗+1

, . . . 𝑞
(𝑘)
ℎ𝑘

}
{
𝑞
(𝑘−1)
𝑔1

, . . . 𝑞
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
𝑔2

. . . , 𝑞
(𝑘)
𝑔𝑗′−1

, 𝑞
(𝑘)
𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗
, 𝑞

(𝑘)
𝑔𝑗′+1

, 𝑞
(𝑘)
𝑔𝑗′+2

. . . 𝑞
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
𝑔1

, . . . 𝑦
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
𝑔2
, . . . 𝑦

(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
ℎ1

, . . . 𝑦
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
ℎ1

, . . . 𝑦
(𝑘)
ℎ 𝑗−1

, 𝑦
(𝑘)
ℎ 𝑗+1

. . . , 𝑦
(𝑘)
ℎ𝑘

}
,

the basis is given by{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
component-wise

={���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+2

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
.

The orthogonal matrices are given by 𝑂
(𝑘)
ℎ

:=
∑ ���𝑡 (𝑘+1)

ℎ𝑖

〉
⟨𝑎𝑖 | where

{|𝑎1⟩ , . . . |𝑎𝑘⟩} →
{���𝑢 (𝑘)

ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
and 𝑂

(𝑘)
𝑔 := �̃� (𝑘)𝑂 (𝑘)

ℎ
,

with �̃� (𝑘)
:=N

[√︂
𝑞
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉
+

√︂
𝑞
(𝑘)
𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗

���𝑡 (𝑘)
ℎ 𝑗′

〉]
N

[√︃
𝑞
(𝑘)
𝑔1

〈
𝑢
(𝑘)
ℎ

��� + √︃
𝑞
(𝑘)
𝑔𝑗′

〈
𝑡
(𝑘)
ℎ 𝑗′

���]
+ N

[√︂
𝑞
(𝑘)
𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉
−

√︂
𝑞
(𝑘)
ℎ 𝑗

���𝑡 (𝑘)
ℎ 𝑗′

〉]
N

[√︃
𝑞
(𝑘)
𝑔𝑗′

〈
𝑢
(𝑘)
ℎ

��� − √︃
𝑞
(𝑘)
𝑔1

〈
𝑡
(𝑘)
ℎ 𝑗′

���]
+

∑︁
𝑖∈{1,...𝑘 }\𝑗 ′

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

��� .

67

Definition 83 (Spectral Collision: Case Initial Extra). X
(𝑘−1)

:= (𝑋 (𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉) where

𝑋
(𝑘−1)
ℎ

=
∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���, 𝑋
(𝑘−1)
𝑔 =

∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���, ��𝑣 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
,��𝑤 (𝑘−1) 〉 = N

[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
and the coordinates and weights are given by{

𝑞
(𝑘−1)
ℎ1

, . . . 𝑞
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
ℎ1

. . . , 𝑞
(𝑘)
ℎ 𝑗−1

, 𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′ , 𝑞
(𝑘)
ℎ 𝑗+1

, 𝑞
(𝑘)
ℎ 𝑗+2

. . . 𝑞
(𝑘)
ℎ𝑘−1

}
{
𝑞
(𝑘−1)
𝑔1

, . . . 𝑞
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
𝑔1
, 𝑞

(𝑘)
𝑔2

. . . , 𝑞
(𝑘)
𝑔𝑗′−1

, 𝑞
(𝑘)
𝑔𝑗′+1

, . . . 𝑞
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
𝑔1

, . . . 𝑦
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
𝑔1
, . . . 𝑦

(𝑘)
𝑔𝑗′−1

, 𝑦
(𝑘)
𝑔𝑗′+1

. . . , 𝑦
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
ℎ1

, . . . 𝑦
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
ℎ1

, . . . 𝑦
(𝑘)
ℎ𝑘−1

}
,

the basis is given by{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
component-wise

={���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+2

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
.

The orthogonal matrices are given by 𝑂
(𝑘)
ℎ

:= �̃� (𝑘) ∑ |𝑎𝑖⟩
〈
𝑡
(𝑘+1)
ℎ𝑖

��� where

{|𝑎1⟩ , . . . |𝑎𝑘⟩}
component-wise

=

{���𝑡 (𝑘)
ℎ1

〉
,

���𝑡 (𝑘)
ℎ2

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉
,

���𝑢 (𝑘)
ℎ

〉}
,

�̃� (𝑘)
:=N

[√︃
𝑞
(𝑘)
𝑔𝑗′

���𝑢 (𝑘)
ℎ

〉
+

√︂
𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′

���𝑡 (𝑘)
ℎ 𝑗

〉]
N

[√︃
𝑞
(𝑘)
ℎ𝑘

〈
𝑢
(𝑘)
ℎ

��� + √︃
𝑞
(𝑘)
𝑔𝑗

〈
𝑡
(𝑘)
ℎ 𝑗

���]
+ N

[√︂
𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′

���𝑢 (𝑘)
ℎ

〉
−

√︃
𝑞
(𝑘)
𝑔𝑗′

���𝑡 (𝑘)
ℎ 𝑗

〉]
N

[√︃
𝑞
(𝑘)
𝑔𝑗

〈
𝑢
(𝑘)
ℎ

��� − √︃
𝑞
(𝑘)
ℎ𝑘

〈
𝑡
(𝑘)
ℎ 𝑗

���]
+

∑︁
𝑖∈{1,...𝑘 }\𝑗

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

��� ,
and 𝑂

(𝑘)
ℎ

is given by the basis change

{���𝑡 (𝑘+1)
ℎ1

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
→

{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
.

Below, we describe in detail the exact steps of the algorithm and then provide a proof or justification

for the claims made in each step.

5.4.1 PHASE 1: INITIALIZATION

We are given a Λ-valid transition 𝑔 → ℎ and the EBRM function 𝑎 = ℎ −𝑔. Since the function is EBRM we

know that there exist matrices 𝐻 ≥ 𝐺 and a vector |𝜓 ⟩ such that 𝑎 = Prob[𝐻, |𝜓 ⟩] − Prob[𝐺, |𝜓 ⟩]. We also

know that the maximum matrix size we need to consider is 𝑛𝑔 +𝑛ℎ − 1. We want to know the spectrum of

the matrices involved to proceed. In terms of the ellipsoids 𝐻 ≥ 𝐺 means that the 𝐻 ellipsoid is inside the

𝐺-ellipsoid. We try to expand the 𝐻 -ellipsoid (which means scaling down the matrix 𝐻) until it touches

the 𝐺-ellipsoid. If we already knew 𝐻 and 𝐺 , we could find the spectrum; however what we know is the

function 𝑎 = ℎ − 𝑔. We use the equivalence between EBRM and valid functions to perform the tightening

procedure even without knowing the matrices. We use 𝑎𝛾 = ℎ𝛾 − 𝑔, where ℎ𝛾 (𝑥) = ℎ(𝑥/𝛾) and check if 𝑎𝛾
stays valid as we shrink 𝛾 from one to zero. We stop when we see any signature of tightness. Using this

𝑎𝛾 we determine the spectrum of the matrices certifying the EBRM claim.

68

We start with the tightening procedure until we find some operator monotone labeled by _ for which

𝑙𝛾 ′ (_) disappears. This corresponds to the ellipsoids touching, since after applying this operator monotone

the ellipsoids must touch along the |𝑤⟩ direction.

Tightening procedure Let [𝑥min(𝛾 ′), 𝑥max(𝛾 ′)] be the support domain for 𝑎𝛾 ′ with 𝛾 ′ ∈ (0, 1] a variable,

and 𝛾 ∈ (0, 1] the largest root of𝑚(𝛾 ′, 𝑥min(𝛾 ′), 𝑥max(𝛾 ′)). Let 𝑥max := 𝑥max(𝛾) and 𝑥min := 𝑥min(𝛾).
First we must show that there would indeed be a root of𝑚 as a function of 𝛾 ′ in the range (0, 1]. This

is a direct consequence of Lemma 73. Second we must show that if we can find the matrices certifying

𝑎𝛾 is EBRM, then we can find the matrices certifying 𝑎 is EBRM. This follows from the observation that

𝛾𝑋ℎ ≥ 𝑂𝑋𝑔𝑂𝑇 ⇒ 𝑋ℎ ≥ 𝛾𝑋ℎ ≥ 𝑂𝑋𝑔𝑂𝑇 .

We found a signature of tightness, and we can proceed to find the spectrum of the matrices involved.

Spectral domain for the representation Find the smallest interval [𝜒, b] such that 𝑙𝛾 (_) ≥ 0 for

_ ∈ (R ∪ {∞,−∞})\[𝜒, b]. If supp(𝑔), supp(ℎ) are not contained in [𝜒, b] then from all expansions of

[𝜒, b] that contain the aforesaid sets, pick the smallest. Relabel this interval to [𝜒, b].
The interval so obtained contains the spectrum of the matrices that certify 𝑎𝛾 is EBRM. This is justified

by Lemma 74 using the fact that 𝑙1𝛾 ≥ 0 from the previous step.

We need our matrices to be positive to be able to use the elliptic picture. We therefore shift the spectrum

so that the smallest eigenvalue required is one (or any positive number).

Shift Transform

𝑎(𝑥) → 𝑎′(𝑥 ′) := 𝑎(𝑥 ′ + 𝜒 − 1)

where instead of 1 any positive constant would do (see Corollary 67). Similarly transform

𝑔(𝑥) → 𝑔′(𝑥 ′) := 𝑔(𝑥 ′ + 𝜒 − 1) and ℎ(𝑥) → ℎ′(𝑥 ′) := ℎ(𝑥 ′ + 𝜒 − 1).

Relabel 𝑎′ to be 𝑎, 𝑔′ to be 𝑔 and ℎ′ to be ℎ. We do not deduce ℎ and 𝑔 from 𝑎 as its positive and negative

part because they might now have common support due to the tightening procedure.

We use Corollary 67 to deduce that if 𝑎(𝑥) is EBRM with spectrum in [𝜒, b] then 𝑎′(𝑥 ′) = 𝑎(𝑥 ′ + 𝜒 − 1)
is EBRM with spectrum in [1, b − 𝜒 + 1]. We must also show that if we can find the matrices certifying 𝑎′

is EBRM then we can find the matrices certifying 𝑎 is EBRM. This is a direct consequence of the fact that

𝑋 ′
ℎ
≥ 𝑂𝑋 ′

𝑔𝑂
𝑇 ⇐⇒ 𝑋ℎ − (𝜒 − 1)I ≥ 𝑂 (𝑋𝑔 − (𝜒 − 1)I)𝑂𝑇 . The orthogonal matrix, 𝑂 , remains unchanged.

With the spectrum determined and adjusted to the elliptic picture, we fix everything except the or-

thogonal matrix by using the COF (up to a permutation).

The matrices For 𝑛 := 𝑛𝑔 + 𝑛ℎ − 1 we define 𝑛 × 𝑛 matrices with spectrum in [𝜒, b] and 𝑛-dimensional

vectors as

𝑋
(𝑛)
𝑔 = diag[𝜒, 𝜒, . . . 𝑥𝑔1

, 𝑥𝑔2
. . . , 𝑥𝑔𝑛𝑔] and 𝑋

(𝑛)
ℎ𝛾

= diag[𝛾𝑥ℎ1
, 𝛾𝑥ℎ2

, . . . , 𝛾𝑥ℎ𝑛ℎ
, b, b, . . .],���𝑣 (𝑛) 〉 � [

0, 0 . . . ,
√︁
𝑝𝑔1
,
√︁
𝑝𝑔2
, . . . ,

√︁
𝑝𝑔𝑛𝑔

]
,

���𝑤 (𝑛)
〉
�

[√
𝑝ℎ1
,
√
𝑝ℎ2
, . . . ,

√︁
𝑝ℎ𝑛ℎ

, 0, 0 . . .

]
,

where 𝑔 =
∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
and ℎ =

∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧. Note that 𝑛𝑔 and 𝑛ℎ may be different. We use Lemma 69

to deduce that 𝑔 → ℎ is a valid transition from the validity of 𝑎. Then, we use Lemma 146 to write the

diagonal matrices as described above given the valid transition 𝑔 → ℎ, up to a permutation. Our objective

is to find a matrix𝑂 (𝑛)
such that𝑂 (𝑛) ��𝑣 (𝑛) 〉 = ��𝑤 (𝑛) 〉

, while satisfying the inequality𝑋
(𝑛)
ℎ

≥ 𝑂 (𝑛)𝑋 (𝑛)
𝑔 𝑂 (𝑛)𝑇

.

Finally we employ the description containing the basis and the matrix instance, which can be iteratively

reduced to a simpler form.

69

Bootstrapping the iteration

– Basis:

{���𝑡 (𝑛+1)
ℎ𝑖

〉}
where

���𝑡 (𝑛+1)
ℎ𝑖

〉
:= |𝑖⟩ for 𝑖 = 1, 2 . . . 𝑛 where |𝑖⟩ refers to the standard basis in which

the matrices and the vectors were originally written.

– Matrix Instance: X
(𝑛) = {𝑋 (𝑛)

ℎ
, 𝑋

(𝑛)
𝑔 ,

��𝑤 (𝑛) 〉 , ��𝑣 (𝑛) 〉}.
5.4.2 PHASE 2: ITERATION

We take as input the matrices 𝑋𝑔, 𝑋ℎ together with the vectors |𝑤⟩ , |𝑣⟩ and produce the same objects with

one less dimension. We also output objects that, once we have iteratively reduced the problem to triviality,

can be put together to find the orthogonal matrix 𝑂 . See Figure 14 for a schematic reference.

Figure 14: Overview of the main step, the iteration, of the algorithm (excluding the boundary condition).

• Objective: Find the objects

���𝑢 (𝑘)
ℎ

〉
,𝑂

(𝑘)
𝑔 ,𝑂

(𝑘)
ℎ

and 𝑠 (𝑘) . These objects together relate 𝑂 (𝑘)
to 𝑂 (𝑘−1)

where 𝑂 (𝑘)
and 𝑂 (𝑘−1)

solve the matrix instances X
(𝑘)

and X
(𝑘−1)

, respectively.

70

• Input: We assume we are given

– Basis:

{���𝑡 (𝑘+1)
ℎ𝑖

〉}
– Matrix Instance: X

(𝑘) =
(
𝑋

(𝑘)
ℎ
, 𝑋

(𝑘)
𝑔 ,

��𝑤 (𝑘) 〉 , ��𝑣 (𝑘) 〉) ,

with attribute 𝜒 (𝑘) > 0

– Function Instance: X
(𝑘) → x

(𝑘) =
(
ℎ (𝑘) , 𝑔 (𝑘) , 𝑎 (𝑘)

)
• Output:

– Basis:

{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ𝑖

〉}
– Matrix Instance: X

(𝑘−1) =
(
𝑋

(𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉)
with attribute 𝜒 (𝑘−1) > 0

– Function Instance: X
(𝑘−1) → x

(𝑘−1) =
(
ℎ (𝑘−1) , 𝑔 (𝑘−1) , 𝑎 (𝑘−1))

– Unitary Constructors: Either𝑂
(𝑘)
𝑔 and𝑂

(𝑘)
ℎ

are returned or𝑂 (𝑘)
is returned. If𝑂 (𝑘)

is returned,

set 𝑂
(𝑘)
𝑔 := 𝑂 (𝑘)

and 𝑂
(𝑘)
ℎ

= I.

– Relation: If 𝑠 (𝑘) is not specified, define 𝑠 (𝑘) := 1.

If 𝑠 (𝑘) = 1 then use

𝑂 (𝑘)
:= 𝑂

(𝑘)
ℎ

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂

(𝑘)
𝑔

else use

𝑂 (𝑘)
:=

[
𝑂

(𝑘)
ℎ

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂

(𝑘)
𝑔

]𝑇
.

Our task is to solve the matrix instance X
(𝑘)

, i.e. find an orthogonal matrix 𝑂 (𝑘)
such that

𝑋
(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇

and 𝑂 (𝑘) ��𝑣 (𝑘) 〉 =
��𝑤 (𝑘) 〉

. We assume that the solution exists and show

that the solution to the smaller instance, denoted by X
(𝑘−1)

, must also exist. More precisely,

we show that 𝑂 (𝑘)
must have the form 𝑂 (𝑘) =

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂 (𝑘)

which satisfies the

aforesaid constraints, granted that we can find 𝑂 (𝑘−1)
acting on a 𝑘 − 1-dimensional Hilbert

space orthogonal to

���𝑢 (𝑘)
ℎ

〉
and satisfies constraints of the same form in the smaller dimension,

viz. 𝑋
(𝑘−1)
ℎ

≥ 𝑂 (𝑘−1)𝑋 (𝑘−1)
𝑔 𝑂 (𝑘−1)𝑇

and 𝑂 (𝑘−1) ��𝑣 (𝑘−1) 〉 =
��𝑤 (𝑘−1) 〉

. Hence the assumption that

𝑂 (𝑘)
is a solution allows us to deduce that 𝑂 (𝑘−1)

must also be a solution. This allow us to

iteratively solve the problem. In certain trivial cases, where a point appears both before and

after a transition i.e., 𝑋
(𝑘)
𝑔 and 𝑋

(𝑘)
ℎ

have a common eigenvalue, the solution is of the form

𝑂 (𝑘) = 𝑂 (𝑘)
ℎ

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂

(𝑘)
𝑔 .

Finally, in one of the “infinite” cases denoted by the “wiggle-v method” the solution has the

form

𝑂 (𝑘) =
[(���𝑢 (𝑘)

ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂 (𝑘)

]𝑇
.

• Algorithm:

If we reach a stage where the vector constraints have disappeared then we can simply stop:

– Boundary condition: If 𝑛𝑔 = 0 and 𝑛ℎ = 0 then set 𝑘0 = 𝑘 and jump to PHASE 3.

We assumed that an 𝑂 (𝑘)
satisfying the necessary constraints exists, which means that there

exists an 𝑂 (𝑘)
such that 𝑋

(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇

as there is no vector

��𝑣 (𝑘) 〉 , ��𝑤 (𝑘) 〉
to impose

71

further constraints. Using Corollary 71 with 𝐻 = 𝑋
(𝑘)
ℎ

and 𝐺 = 𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇

we conclude

that 𝑂 (𝑘)
need only be a permutation matrix. Note that this step can never be entered right

after the X
(𝑛)

instance as we start with assuming 𝑛𝑔, 𝑛ℎ > 0. Further, since the protocol by

construction always returns 𝑋ℎ and 𝑋𝑔 in the ascending order the permutation matrix is I.

Finally, we deal with the case, where we need to expand the inner 𝐻 -ellipsoid (which corresponds

to shrinking the 𝐻 matrix) until it touches the outer 𝐺-ellipsoid working with the function 𝑎.

– Tighten: Define 𝑋
(𝑘)
ℎ𝛾′

:= 𝛾 ′𝑋 (𝑘)
where 𝛾 ′ ∈ (0, 1] is a variable. Let 𝛾 be the largest root

of 𝑚(𝛾 ′, 𝜒 (𝑘)
𝛾 ′ , b

(𝑘)
𝛾 ′) for 𝑎 (𝑘) where 𝜒

(𝑘)
𝛾 ′ , b

(𝑘)
𝛾 ′ are such that [𝜒 (𝑘)

𝛾 ′ , b
(𝑘)
𝛾 ′] is the smallest interval

containing spec[𝑋 (𝑘)
ℎ𝛾′

⊕𝑋 (𝑘)
𝑔]. Relabel𝑋

(𝑘)
ℎ𝛾

to𝑋
(𝑘)
ℎ

, 𝜒
(𝑘)
𝛾 to 𝜒 (𝑘) and b

(𝑘)
𝛾 to b (𝑘) and 𝑎

(𝑘)
𝛾 to 𝑎 (𝑘) ,

ℎ
(𝑘)
𝛾 to ℎ (𝑘) , 𝑙 (𝑘)𝛾 to 𝑙 (𝑘) (for ease of notation). Update 𝑥min and 𝑥max to be such that supp(𝑎 (𝑘)) ∈
[𝑥 (𝑘)

min
, 𝑥

(𝑘)
max

] is the smallest such interval. Define 𝑠 (𝑘) := 1.

Our task is to show that𝑚 as a function of 𝛾 ′ has a root. Unlike the first tightening procedure

this time we know the spectrum of the matrices involved. Since we know that the matrix in-

stance has a solution we know that 𝑙𝛾 ′=1(_) ≥ 0 and 𝑙1
𝛾 ′=1

≥ 0 for _ ∈ (R∪{∞,−∞})\[𝜒 (𝑘)
𝛾 ′=1

, b
(𝑘)
𝛾 ′=1

]
using Lemma 68. We also know that 𝜒

(𝑘)
𝛾 ′ > 0 which means that 𝑎 (𝑘) is a valid function (as de-

duced by the function instance of X
(𝑘)

). Thus we can show that𝑚(𝛾 ′) has a root in the required

range by using the same reasoning as in Lemma 73.

The tightening procedure guarantees that we find a _ corresponding to an operator monotone.

After applying this function, the ellipsoids—which we do not even know completely yet—must

touch along the |𝑤⟩ direction. This is the key to reducing the problem to a smaller instance of

itself. Recall the picture with the𝐻 ellipsoid contained inside the𝐺 ellipsoid. If, in addition, we

know that they touch at a given point then it must be so that the inner ellipsoid is more curved

than the outer ellipsoid. When expressed algebraically, this condition essentially becomes the

requirement that an ellipsoid 𝐻 (𝑘−1)
, encoding the curvature of the ellipsoid 𝐻 (𝑘)

at the point

of contact, must be contained inside the corresponding 𝐺 (𝑘−1)
ellipsoid which encodes the

curvature of the 𝐺 (𝑘)
ellipsoid. The vector condition also reduces similarly. Subtleties arise

when _ happens to have boundary values in its allowed range as this yields infinities.

– Honest align: If 𝑙1(𝑘) = 0 then define [= −𝜒 (𝑘) + 1

𝑋
′(𝑘)
ℎ

:= 𝑋
(𝑘)
ℎ

+ [and 𝑋
′(𝑘)
𝑔 := 𝑋𝑔 + [.

Else: Pick a root _ of 𝑙 (𝑘) (_′) in the domain R\(−b (𝑘) ,−𝜒 (𝑘)). In the following two cases we

consider the function 𝑓_ on [𝜒 (𝑘) , b (𝑘)].
* If _ ≠ −𝜒 (𝑘) , then let [= −𝑓_ (𝜒 (𝑘)) + 1 where any positive constant can be chosen instead

of 1. Define

𝑋
′(𝑘)
ℎ

:= 𝑓_ (𝑋 (𝑘)
ℎ

) + [X
′(𝑘)
𝑔 := 𝑓_ (𝑋 (𝑘)

𝑔) + [.

* If _ = −𝜒 (𝑘) , then update 𝑠 (𝑘) = −1. Let [= −𝑓_ (b (𝑘)) − 1 where any positive constant

could be chosen instead of 1. Define

𝑋
′(𝑘)
ℎ

:= 𝑋
′′(𝑘)
𝑔 and 𝑋

′(𝑘)
𝑔 := 𝑋

′′(𝑘)
ℎ

,

where 𝑋
′′(𝑘)
ℎ

:= −𝑓_ (𝑋 (𝑘)
ℎ

) − [and 𝑋
′′(𝑘)
𝑔 := −𝑓_ (𝑋 (𝑘)

𝑔) − [,
and make the replacements���𝑣 (𝑘)〉 →

���𝑤 (𝑘)
〉

and

���𝑤 (𝑘)
〉
→

���𝑣 (𝑘)〉 .
72

If _ = −𝜒 (𝑘) or −b (𝑘) it means that at least one of the matrices (among 𝑋
(𝑘)
𝑔 and 𝑋

(𝑘)
ℎ

under 𝑓_)

diverges. We must remove eigenvalues common to both matrices as isolating the divergence

makes it easier to handle.

– Remove spectral collision: If _ = −𝜒 (𝑘) or _ = −b (𝑘) then
If it so happens that the coordinate and its corresponding probability are the same we must

leave the associated vector unchanged (up to a relabeling). The following simply formalizes this

procedure and encodes the remaining non-trivial part into a problem of one less dimension.

1. Idle point: If for some 𝑗 ′, 𝑗 , we have 𝑞
(𝑘)
𝑔𝑗′ = 𝑞

(𝑘)
ℎ 𝑗

and𝑦
(𝑘)
𝑔𝑗′ = 𝑦

(𝑘)
ℎ 𝑗

then the solution is given

by {���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
,

���𝑡 (𝑘)
ℎ2

〉
, . . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
component-wise

:={���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
,

𝑂 (𝑘)
:=

𝑘∑︁
𝑖=1

|𝑎𝑖⟩
〈
𝑡
(𝑘+1)
ℎ𝑖

��� ,
where {|𝑎1⟩ , |𝑎2⟩ . . . |𝑎𝑘⟩}

component-wise

:=

{ ���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
, . . . ,

����𝑡 (𝑘+1)
ℎ 𝑗′−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′+1

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉 }
𝑗 < 𝑗 ′{ ���𝑡 (𝑘+1)

ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

����𝑡 (𝑘+1)
ℎ 𝑗′−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′+1

〉
. . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉 }
𝑗 > 𝑗 ′{���𝑡 (𝑘+1)

ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
𝑗 = 𝑗 ′,

𝑋
(𝑘−1)
ℎ

:=
∑︁
𝑖≠𝑗

𝑦
(𝑘)
ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉 〈
𝑡
(𝑘+1)
ℎ𝑖

��� , 𝑋 (𝑘−1)
𝑔 := �̄� (𝑘)𝑋 (𝑘)

𝑔 �̄� (𝑘)𝑇 − 𝑦ℎ 𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉 〈
𝑡
(𝑘+1)
ℎ 𝑗

��� ,���𝑤 (𝑘−1)
〉
= N

[���𝑤 (𝑘)
〉
− √︁

𝑝ℎ 𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉]
,

���𝑣 (𝑘−1)
〉
= N

[
�̄� (𝑘)

���𝑣 (𝑘) 〉 − √︁
𝑝ℎ 𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉]
.

This specifies X
(𝑘−1)

:= {𝑋 (𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉}.
Jump to End.

We want to find an 𝑂 (𝑘)
such that 𝑋

(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇

and 𝑂 (𝑘) ��𝑣 (𝑘) 〉 =
��𝑤 (𝑘) 〉

. We do

this in two stages. First, we re-arrange the entries of𝑋
(𝑘)
𝑔 as𝑋

′(𝑘)
𝑔 := 𝑂

(𝑘)
𝑝 𝑋

(𝑘)
𝑔 𝑂

(𝑘)𝑇
𝑝 and de-

fine

���𝑣 (𝑘)𝑝

〉
:= 𝑂

(𝑘)
𝑝 |𝑣⟩ for an𝑂

(𝑘)
𝑝 to be specified later. The re-arrangement is such that 𝑥𝑔𝑗′

sits at the 𝑗, 𝑗 location while the rest of the elements of𝑋
′(𝑘)
𝑔 are arranged in increasing or-

der. Second, we solve our initial problem under the assumption that 𝑗 = 𝑗 ′. The non-trivial

part here is showing that we can consider 𝑂 (𝑘)
to be of the form

(
| 𝑗⟩ ⟨ 𝑗 | +𝑂 (𝑘−1)) 𝑂 (𝑘)

without loss of generality.

Let us start with the first step. We denote the orthogonal matrix 𝑂 =
∑
𝑖 |𝑏𝑖⟩ ⟨𝑎𝑖 | by

{|𝑎1⟩ , |𝑎2⟩ , . . . |𝑎𝑘⟩} → {|𝑏1⟩ , |𝑏2⟩ , . . . |𝑏𝑘⟩} where {|𝑏𝑖⟩} and {|𝑎𝑖⟩} are two orthonormal

basis. With this notation and for 𝑗 < 𝑗 ′, we define 𝑂
(𝑘)
𝑝 as{���𝑡 (𝑘+1)

ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
→{ ���𝑡 (𝑘+1)

ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
, . . . ,

����𝑡 (𝑘+1)
ℎ 𝑗′−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′+1

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉 }
,

73

for 𝑗 ′ < 𝑗 we define it as{���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
→{ ���𝑡 (𝑘+1)

ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

����𝑡 (𝑘+1)
ℎ 𝑗′−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′+1

〉
. . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

����𝑡 (𝑘+1)
ℎ 𝑗′

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉 }

and for 𝑗 ′ = 𝑗 we set𝑂
(𝑘)
𝑝 = I(𝑘) . For the second step, we solve under the assumption that

𝑗 ′ = 𝑗 . We have 𝑋
′ (𝑘)
𝑔 = diag{𝑥 ′𝑔1

, 𝑥 ′𝑔2

. . . 𝑥 ′𝑔𝑘 } and 𝑋
(𝑘)
ℎ

= diag{𝑥ℎ1
, 𝑥ℎ2

. . . 𝑥ℎ𝑘 } which are

such that 𝑥ℎ 𝑗
= 𝑥 ′𝑔𝑗 ;

��𝑣 ′(𝑘) 〉 � (
√︁
𝑞′𝑔1
,
√︁
𝑞′𝑔2
, . . .

√︁
𝑞′𝑔𝑘)𝑇 ,

��𝑤 (𝑘) 〉 � (√𝑞ℎ1
,
√
𝑞ℎ2
, . . .

√
𝑞ℎ𝑘)𝑇 are

such that𝑞ℎ 𝑗
= 𝑞′𝑔𝑗 . Let us define the matrix instance to be X

′(𝑘) = {𝑋 (𝑘)
ℎ
, 𝑋

′(𝑘)
𝑔 ,

��𝑣 ′(𝑘) 〉 , ��𝑤 (𝑘) 〉}.
We have to find an 𝑂 ′(𝑘)

such that 𝑋
(𝑘)
ℎ

≥ 𝑂 ′(𝑘)𝑋 ′(𝑘)
𝑔 𝑂 ′(𝑘)𝑇

and 𝑂 ′(𝑘) ��𝑣 ′(𝑘) 〉 = |𝑤⟩.
Let X

′(𝑘−1) =

{
𝑋

(𝑘−1)
ℎ

, 𝑋
′(𝑘−1)
𝑔 ,

��𝑣 ′(𝑘−1) 〉 , ��𝑤 (𝑘−1) 〉}
be the matrix instance obtained after

removing the 𝑗 th entry from the vectors, i.e.,

��𝑣 ′(𝑘−1) 〉
:=

∑
𝑖≠𝑗

√︁
𝑞′𝑔𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉
,

��𝑤 (𝑘−1) 〉
:=∑

𝑖≠𝑗

√
𝑞ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉
and similarly define

𝑋
′(𝑘−1)
𝑔 = diag{𝑥 ′𝑔1

, 𝑥 ′𝑔2

. . . 𝑥 ′𝑔𝑗−1

, 𝑥 ′𝑔𝑗+1

, . . . 𝑥𝑔𝑘 } and

𝑋
(𝑘−1)
ℎ

= diag

{
𝑥ℎ1
, 𝑥ℎ2

. . . 𝑥ℎ 𝑗−1
, 𝑥ℎ 𝑗+1

, . . . 𝑥ℎ𝑘
}
. Note that 𝑎 (𝑘) = 𝑎 (𝑘−1)

as the 𝑗 th point

gets canceled. This means that if there is an 𝑂 ′(𝑘)
satisfying the aforementioned con-

straints 𝑎 (𝑘) is EBRM on the spectral domain of X
(𝑘)

. Since 𝑎 (𝑘) = 𝑎 (𝑘−1)
we know

that 𝑎 (𝑘−1)
is also EBRM on the same domain. From Lemma 69 (we justify that 𝑘 is

large enough separately) we conclude that there must also exist an 𝑂 ′(𝑘−1)
which satis-

fies 𝑋
(𝑘−1)
ℎ

≥ 𝑂 ′(𝑘−1)𝑋 ′(𝑘−1)
𝑔 𝑂 ′(𝑘−1)𝑇

and 𝑂 ′(𝑘−1) ��𝑣 ′(𝑘−1) 〉 = ��𝑤 (𝑘) 〉
.

With all this in place we can claim that without loss of generality we can write 𝑂 ′(𝑘) =��𝑡ℎ 𝑗

〉 〈
𝑡ℎ 𝑗

�� + 𝑂 ′(𝑘−1)
because if we can find some other �̃� ′(𝑘)

which satisfies the required

constraints then there exists an 𝑂 ′(𝑘−1)
which satisfies the corresponding constraints in

the smaller dimension and that means we can show 𝑂 ′(𝑘)
also satisfies the required con-

straints

𝑋
(𝑘)
ℎ

= 𝑥ℎ 𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉 〈
𝑡
(𝑘+1)
ℎ 𝑗

��� +𝑋 (𝑘−1)
ℎ

≥ 𝑥𝑔𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉 〈
𝑡
(𝑘+1)
ℎ 𝑗

��� +𝑂′(𝑘−1)𝑋 ′(𝑘−1)
𝑔 𝑂′(𝑘−1)

0

(���𝑡 (𝑘+1)
ℎ 𝑗

〉 〈
𝑡
(𝑘+1)
ℎ 𝑗

��� +𝑂′(𝑘−1)
)
𝑋

′(𝑘)
𝑔

(���𝑡 (𝑘+1)
ℎ 𝑗

〉 〈
𝑡
(𝑘+1)
ℎ 𝑗

��� +𝑂′(𝑘−1)
)𝑇

= 𝑂′(𝑘)𝑋 ′(𝑘)
𝑔 𝑂′(𝑘)𝑇 ,

along with

𝑂′(𝑘)
���𝑣′(𝑘) 〉 =

√︃
𝑞′𝑔𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉
+𝑂′(𝑘−1)

���𝑣′(𝑘−1)
〉
=

√︃
𝑞′𝑔𝑗

���𝑡 (𝑘+1)
ℎ 𝑗

〉
+

���𝑤 (𝑘−1)
〉
=

���𝑤 (𝑘−1)
〉
.

It remains to combine the two steps to produce the matrix𝑂 (𝑘)
, the vectors

{���𝑛 (𝑘)
ℎ

〉
,

{���𝑡 (𝑘)
ℎ𝑖

〉}}
,

along with X
(𝑘−1)

. We use 𝑋
′(𝑘)
𝑔 = 𝑂

(𝑘)
𝑝 𝑋

(𝑘)
𝑔 𝑂

(𝑘)𝑇
𝑝 from the first step and substitute it in

the inequality which we showed would hold, i.e.

𝑋
(𝑘)
ℎ

≥ 𝑂 ′(𝑘)𝑋 ′(𝑘)
𝑔 𝑂 ′(𝑘)𝑇 = 𝑂 ′(𝑘)𝑂 (𝑘)

𝑝 𝑋𝑔𝑂
(𝑘)𝑇
𝑝 𝑂 ′(𝑘)𝑇

and using 𝑂
(𝑘)
𝑝

��𝑣 (𝑘) 〉 = ��𝑣 ′(𝑘) 〉 we have

𝑂 ′(𝑘)
���𝑣 ′(𝑘)〉 = 𝑂 ′(𝑘)𝑂 (𝑘)

𝑝

���𝑣 (𝑘)〉 =

���𝑤 (𝑘)
〉
.

Comparing to the form 𝑋
(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇

,

𝑂 (𝑘) ��𝑣 (𝑘) 〉 =
��𝑤 (𝑘) 〉

for 𝑂 (𝑘) =
(���𝑛 (𝑘)

ℎ

〉 〈
𝑛
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂 (𝑘)

, we get 𝑂 (𝑘) = 𝑂 (𝑘)
𝑝 ,

���𝑛 (𝑘)
ℎ

〉
=

74

���𝑡 (𝑘+1)
ℎ 𝑗

〉
and𝑂 (𝑘−1) = 𝑂 ′(𝑘−1)

. Note that this𝑂 (𝑘)
is consistent with comparing the equality

with the form 𝑂 (𝑘) ��𝑣 (𝑘) 〉 =
��𝑤 (𝑘) 〉

. The basis for the (𝑘 − 1)-dimensional problem, is the

same as before except for the fact that we removed

���𝑡 (𝑘+1)
ℎ 𝑗

〉
. We define{���𝑡 (𝑘)

ℎ1

〉
,

���𝑡 (𝑘)
ℎ2

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
=

{
𝑡
(𝑘+1)
ℎ1

, 𝑡
(𝑘+1)
ℎ2

. . . 𝑡
(𝑘+1)
ℎ 𝑗−1

, 𝑡
(𝑘+1)
ℎ 𝑗+1

, . . . 𝑡
(𝑘+1)
ℎ𝑘

}
.

Identifying X
(𝑘−1) =

{
𝑋

(𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑣 (𝑘−1) 〉 , ��𝑤 (𝑘−1) 〉}
with X

′(𝑘−1) =
{
𝑋

(𝑘−1)
ℎ

, 𝑋
′(𝑘−1)
𝑔 ,

��𝑣 ′(𝑘−1) 〉 , ��𝑤 (𝑘−1) 〉}
we complete the argument since𝑂 (𝑘−1)

was already identified with 𝑂 ′(𝑘−1)
.

2. Final Extra: If for some 𝑗, 𝑗 ′ we have 𝑞
(𝑘)
𝑔𝑗′ > 𝑞

(𝑘)
ℎ 𝑗

and 𝑦
(𝑘)
𝑔𝑗′ = 𝑦

(𝑘)
ℎ 𝑗

then the solution is

X
(𝑘−1)

:= (𝑋 (𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉) where 𝑋
(𝑘−1)
ℎ

=
∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���,
𝑋

(𝑘−1)
𝑔 =

∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���,��𝑣 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
, and��𝑤 (𝑘−1) 〉 = N

[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
, where the coordinates and weights are given by

{
𝑞
(𝑘−1)
ℎ1

, . . . 𝑞
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
ℎ1

, 𝑞
(𝑘)
ℎ2

. . . , 𝑞
(𝑘)
ℎ 𝑗−1

, 𝑞
(𝑘)
ℎ 𝑗+1

, . . . 𝑞
(𝑘)
ℎ𝑘

}
{
𝑞
(𝑘−1)
𝑔1

, . . . 𝑞
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
𝑔2

. . . , 𝑞
(𝑘)
𝑔𝑗′−1

, 𝑞
(𝑘)
𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗
, 𝑞

(𝑘)
𝑔𝑗′+1

, 𝑞
(𝑘)
𝑔𝑗′+2

. . . 𝑞
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
𝑔1

, . . . 𝑦
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
𝑔2
, . . . 𝑦

(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
ℎ1

, . . . 𝑦
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
ℎ1

, . . . 𝑦
(𝑘)
ℎ 𝑗−1

, 𝑦
(𝑘)
ℎ 𝑗+1

. . . , 𝑦
(𝑘)
ℎ𝑘

}
,

the basis is given by{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
component-wise

={���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+2

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
.

The orthogonal matrices are given by 𝑂
(𝑘)
ℎ

:=
∑ ���𝑡 (𝑘+1)

ℎ𝑖

〉
⟨𝑎𝑖 | where

{|𝑎1⟩ , . . . |𝑎𝑘⟩} →
{���𝑢 (𝑘)

ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
,

and 𝑂
(𝑘)
𝑔 := �̃� (𝑘)𝑂 (𝑘)

ℎ
, where

�̃� (𝑘)
:=N

[√︂
𝑞
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉
+

√︂
𝑞
(𝑘)
𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗

���𝑡 (𝑘)
ℎ 𝑗′

〉]
N

[√︃
𝑞
(𝑘)
𝑔1

〈
𝑢
(𝑘)
ℎ

��� + √︃
𝑞
(𝑘)
𝑔𝑗′

〈
𝑡
(𝑘)
ℎ 𝑗′

���]
+ N

[√︂
𝑞
(𝑘)
𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉
−

√︂
𝑞
(𝑘)
ℎ 𝑗

���𝑡 (𝑘)
ℎ 𝑗′

〉]
N

[√︃
𝑞
(𝑘)
𝑔𝑗′

〈
𝑢
(𝑘)
ℎ

��� − √︃
𝑞
(𝑘)
𝑔1

〈
𝑡
(𝑘)
ℎ 𝑗′

���]
+

∑︁
𝑖∈{1,...𝑘 }\𝑗 ′

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

��� .
Jump to End.

We are given X
(𝑘) = (𝑋 (𝑘)

ℎ
, 𝑋

(𝑘)
𝑔 ,

��𝑤 (𝑘) 〉 , ��𝑣 (𝑘) 〉),
where 𝑋

(𝑘)
ℎ

=
∑𝑘
𝑖=1
𝑦
(𝑘)
ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉 〈
𝑡
(𝑘+1)
ℎ𝑖

���,
𝑋

(𝑘)
𝑔 =

∑𝑘
𝑖=1
𝑦
(𝑘)
𝑔𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉 〈
𝑡
(𝑘+1)
ℎ𝑖

���, ��𝑣 (𝑘) 〉 =
∑𝑘
𝑖=1
𝑞
(𝑘)
𝑔𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉
, and

��𝑤 (𝑘) 〉 =
∑𝑘
𝑖=1
𝑞
(𝑘)
ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉

75

with the corresponding function instance being x
(𝑘) = (ℎ (𝑘) , 𝑔 (𝑘) , 𝑎 (𝑘)), where

𝑎 (𝑘) =
∑
𝑖∈{1,...𝑘 }\𝑗 𝑞

(𝑘)
ℎ𝑖

[𝑦ℎ𝑖] −
∑
𝑖∈{1,...𝑘 }\𝑗 ′ 𝑞

(𝑘)
𝑔𝑖 [𝑦𝑔𝑖] − (𝑞 (𝑘)𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗
) [𝑦ℎ 𝑗

]. Since we assume that

X
(𝑘)

has a solution it follows that 𝑎 (𝑘) is [𝜒, b]-valid. Thus the transition 𝑔 (𝑘−1)
:= 𝑎 (𝑘)− →

𝑎
(𝑘)
+ =: ℎ (𝑘−1)

is also [𝜒, b]-valid where 𝑔 (𝑘−1)
comprises 𝑛

(𝑘−1)
𝑔 = 𝑛

(𝑘)
𝑔 points and ℎ (𝑘−1)

comprises 𝑛
(𝑘−1)
ℎ

= 𝑛
(𝑘)
ℎ

− 1 points (using the attributes corresponding to the function

instance (ℎ (𝑘−1) , 𝑔 (𝑘−1) , ℎ (𝑘−1) − 𝑔 (𝑘−1)). We denote this by 𝑔 =
∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖 [𝑥𝑔𝑖] and ℎ =∑𝑛ℎ

𝑖=1
𝑝ℎ𝑖 [𝑥ℎ𝑖]). Since𝑘 = 𝑛

(𝑘)
𝑔 +𝑛 (𝑘)

ℎ
−1 the aforesaid relation yields𝑘−1 = 𝑛

(𝑘−1)
𝑔 +𝑛 (𝑘−1)

ℎ
−1.

We conclude that the matrix instance

X
(𝑘−1)

:= (𝑋 (𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉),
where 𝑋

(𝑘−1)
ℎ

=
∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���,
𝑋

(𝑘−1)
𝑔 =

∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���,��𝑣 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
and

��𝑤 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
, has a solution for

{
𝑞
(𝑘−1)
ℎ1

, . . . 𝑞
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
ℎ1

, 𝑞
(𝑘)
ℎ2

. . . , 𝑞
(𝑘)
ℎ 𝑗−1

, 𝑞
(𝑘)
ℎ 𝑗+1

, . . . 𝑞
(𝑘)
ℎ𝑘

}
{
𝑞
(𝑘−1)
𝑔1

, . . . 𝑞
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
𝑔2

. . . , 𝑞
(𝑘)
𝑔𝑗′−1

, 𝑞
(𝑘)
𝑔𝑗′ − 𝑞

(𝑘)
ℎ 𝑗
, 𝑞

(𝑘)
𝑔𝑗′+1

, 𝑞
(𝑘)
𝑔𝑗′+2

. . . 𝑞
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
𝑔1

, . . . 𝑦
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
𝑔2
, . . . 𝑦

(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
ℎ1

, . . . 𝑦
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
ℎ1

, . . . 𝑦
(𝑘)
ℎ 𝑗−1

, 𝑦
(𝑘)
ℎ 𝑗+1

. . . , 𝑦
(𝑘)
ℎ𝑘

}
,

as the corresponding function instance x
(𝑘−1)

is indeed given by (ℎ (𝑘−1) , 𝑔 (𝑘−1) , 𝑎 (𝑘−1) =

𝑎 (𝑘)). Here {
���𝑡 (𝑘)
ℎ𝑖

〉
} constitute an orthonormal basis which we will soon relate to

���𝑡 (𝑘+1)
ℎ𝑖

〉
.

We used 𝑞
(𝑘)
𝑔1

= 0 as 𝑦
(𝑘)
𝑔1

= 𝜒 . To verify this note that 𝑘 − 1 > 𝑛
(𝑘−1)
𝑔 , which means that

many 𝑞𝑔𝑖 are zero; by convention we write the smallest eigenvalue, 𝜒 first to increase the

matrix size so the first 𝑖 = 1, 2 . . .

(
𝑘 − 1 − 𝑛 (𝑘−1)

𝑔

)
𝑞𝑖s are zero. This means that there must

exist an 𝑂 (𝑘−1)
which solves X

(𝑘−1)
.

Let us see carefully the following basis change. Note that𝑋 ′
ℎ
≥ 𝑂 ′𝑋 ′

𝑔𝑂
′𝑇

with𝑂 ′ |𝑣 ′⟩ = |𝑤 ′⟩
is equivalent to 𝑋ℎ ≥ 𝑂𝑋𝑔𝑂𝑇 with𝑂 |𝑣⟩ = |𝑤⟩ where𝑂 = 𝑂𝑇

ℎ
𝑂 ′𝑂𝑔,𝑂𝑔 |𝑣⟩ = |𝑣 ′⟩,𝑂ℎ |𝑤⟩ =

|𝑤 ′⟩,𝑂ℎ𝑋ℎ𝑂𝑇ℎ = 𝑋 ′
ℎ
,𝑂𝑋𝑔𝑂

𝑇
𝑔 = 𝑋 ′

𝑔 which is easy to see by a simple substitution. We first ex-

pand the matrix X
(𝑘−1)

to 𝑘 dimensions as follows. We had 𝑋
(𝑘−1)
ℎ

≥ 𝑂 (𝑘−1)𝑋 (𝑘−1)
𝑔 𝑂 (𝑘−1)𝑇

with 𝑂 (𝑘−1) ��𝑣 (𝑘−1) 〉 = ��𝑤 (𝑘−1) 〉
which we expand as

𝑦
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑋 (𝑘−1)
ℎ︸ ︷︷ ︸

:=𝑋
′(𝑘)
ℎ

≥

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)

︸ ︷︷ ︸
:=𝑂′(𝑘)

(
𝑦
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑋 (𝑘−1)
𝑔

)
︸ ︷︷ ︸

:=𝑋
′(𝑘)
𝑔

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)𝑇

with

��𝑣 ′(𝑘) 〉 = N
[√︃
𝑞
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉
+

��𝑣 (𝑘−1) 〉]
and

��𝑤 ′(𝑘) 〉 = N
[√︃
𝑞
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉
+

��𝑤 (𝑘−1) 〉]
.

The matrix instance X
′(𝑘)

:= (𝑋 ′(𝑘)
ℎ

, 𝑋
′(𝑘)
𝑔 ,

��𝑣 ′(𝑘) 〉 , ��𝑤 ′(𝑘) 〉) yields x
′(𝑘) = x

(𝑘)
. We can

now use the equivalence we pointed out above to establish a relation between 𝑋
(𝑘)
ℎ

≥

76

𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇

and 𝑋
′(𝑘)
ℎ

≥ 𝑂 ′(𝑘)𝑋 ′(𝑘)
𝑔 𝑂 ′(𝑘)𝑇

by finding 𝑂𝑔 and 𝑂ℎ . We define, somewhat

arbitrarily, {���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
component-wise

={���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+2

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
.

We require𝑂
(𝑘)
ℎ

��𝑤 (𝑘) 〉 = ��𝑤 ′(𝑘) 〉
. This is a permutation matrix given by

{���𝑡 (𝑘+1)
ℎ1

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
→{���𝑢 (𝑘)

ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
, and this yields 𝑂

(𝑘)𝑇
ℎ

𝑋
′(𝑘)
ℎ

𝑂
(𝑘)
ℎ

= 𝑋
(𝑘)
ℎ

. It remains to find 𝑂
(𝑘)
𝑔

which we require to satisfy 𝑂
(𝑘)
𝑔

��𝑣 (𝑘) 〉 = ��𝑣 ′(𝑘) 〉. First, observe that

𝑂
(𝑘)
ℎ

��𝑣 (𝑘) 〉 = √︃
𝑞
(𝑘)
𝑔1

���𝑢 (𝑘)
ℎ

〉
+ ∑𝑘

𝑖=2

√︃
𝑞
(𝑘)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖−1

〉
. We now apply

�̃� (𝑘)
:= N

[√︂
𝑞
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉
+

√︂
𝑞
(𝑘)
𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗

���𝑡 (𝑘)
ℎ 𝑗′

〉]
N

[√︃
𝑞
(𝑘)
𝑔1

〈
𝑢
(𝑘)
ℎ

��� + √︂
𝑞
(𝑘)
𝑔𝑗′

〈
𝑡
(𝑘)
ℎ 𝑗′

���]
+ N

[√︂
𝑞
(𝑘)
𝑔𝑗′ − 𝑞 (𝑘)

ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉
−

√︂
𝑞
(𝑘)
ℎ 𝑗

���𝑡 (𝑘)
ℎ 𝑗′

〉]
N

[√︂
𝑞
(𝑘)
𝑔𝑗′

〈
𝑢
(𝑘)
ℎ

��� − √︃
𝑞
(𝑘)
𝑔1

〈
𝑡
(𝑘)
ℎ 𝑗′

���]
+

∑︁
𝑖∈{1,...𝑘 }\𝑗 ′

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���
to get 𝑂

(𝑘)
𝑔

��𝑣 (𝑘) 〉 =
��𝑣 ′(𝑘) 〉, where we defined 𝑂

(𝑘)
𝑔 := �̃� (𝑘)𝑂 (𝑘)

ℎ
. Using 𝑦

(𝑘)
ℎ 𝑗

= 𝑦
(𝑘)
𝑔𝑗′ we can

also see that𝑂
(𝑘)𝑇
𝑔 𝑋

′(𝑘)
𝑔 𝑂

(𝑘)
𝑔 is essentially𝑋

(𝑘)
𝑔 with 𝜒 (𝑘) at

���𝑡 (𝑘+1)
ℎ1

〉
replaced by𝑦𝑔𝑗′ (= 𝑦ℎ 𝑗

).
One can conclude therefore that 𝑋

′(𝑘)
𝑔 ≥ 𝑂 (𝑘)

𝑔 𝑋
(𝑘)
𝑔 𝑂

(𝑘)𝑇
𝑔 . Substituting we get

𝑋
′(𝑘)
ℎ

≥ 𝑂 ′(𝑘)𝑋 ′(𝑘)
𝑔 𝑂 ′(𝑘)𝑇 ≥ 𝑂 ′(𝑘)𝑂 (𝑘)

𝑔 𝑋
(𝑘)
𝑔 𝑂

(𝑘)𝑇
𝑔 𝑂 ′(𝑘)𝑇

⇐⇒ 𝑂
(𝑘)𝑇
ℎ

𝑋
′(𝑘)
ℎ

𝑂
(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑇
ℎ

𝑂 ′(𝑘)𝑂 (𝑘)
𝑔︸ ︷︷ ︸

:=𝑂 (𝑘)

𝑋
(𝑘)
𝑔 𝑂

(𝑘)𝑇
𝑔 𝑂 ′(𝑘)𝑇𝑂 (𝑘)

ℎ

⇐⇒ 𝑋
(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇

and similarly

𝑂 ′(𝑘)
���𝑣 ′(𝑘)〉 =

���𝑤 ′(𝑘)
〉

⇐⇒ 𝑂 ′(𝑘)𝑂 (𝑘)
𝑔

���𝑣 (𝑘)〉 = 𝑂
(𝑘)
ℎ

���𝑤 (𝑘)
〉

⇐⇒ 𝑂 (𝑘)
���𝑣 (𝑘)〉 =

���𝑤 (𝑘)
〉
,

concluding the proof.

3. Initial Extra: If for some 𝑗, 𝑗 ′ we have 𝑞
(𝑘)
𝑔𝑗′ < 𝑞

(𝑘)
ℎ 𝑗

and 𝑦
(𝑘)
𝑔𝑗′ = 𝑦

(𝑘)
ℎ 𝑗

then the solution is

X
(𝑘−1)

:= (𝑋 (𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉), where 𝑋
(𝑘−1)
ℎ

=
∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���,
𝑋

(𝑘−1)
𝑔 =

∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���,��𝑣 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
,

77

and

��𝑤 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
, with the coordinates and weights given by

{
𝑞
(𝑘−1)
ℎ1

, . . . 𝑞
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
ℎ1

. . . , 𝑞
(𝑘)
ℎ 𝑗−1

, 𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′ , 𝑞
(𝑘)
ℎ 𝑗+1

, 𝑞
(𝑘)
ℎ 𝑗+2

. . . 𝑞
(𝑘)
ℎ𝑘−1

}
{
𝑞
(𝑘−1)
𝑔1

, . . . 𝑞
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
𝑔1
, 𝑞

(𝑘)
𝑔2

. . . , 𝑞
(𝑘)
𝑔𝑗′−1

, 𝑞
(𝑘)
𝑔𝑗′+1

, . . . 𝑞
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
𝑔1

, . . . 𝑦
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
𝑔1
, . . . 𝑦

(𝑘)
𝑔𝑗′−1

, 𝑦
(𝑘)
𝑔𝑗′+1

. . . , 𝑦
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
ℎ1

, . . . 𝑦
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
ℎ1

, . . . 𝑦
(𝑘)
ℎ𝑘−1

}
,

and the basis is given by{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
component-wise

={���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+2

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
.

The orthogonal matrices are given by 𝑂
(𝑘)
ℎ

:= �̃� (𝑘) ∑ |𝑎𝑖⟩
〈
𝑡
(𝑘+1)
ℎ𝑖

��� where

{|𝑎1⟩ , . . . |𝑎𝑘⟩}
component-wise

=

{���𝑡 (𝑘)
ℎ1

〉
,

���𝑡 (𝑘)
ℎ2

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉
,

���𝑢 (𝑘)
ℎ

〉}
,

�̃� (𝑘)
:= N

[√︂
𝑞
(𝑘)
𝑔𝑗′

���𝑢 (𝑘)
ℎ

〉
+

√︂
𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′

���𝑡 (𝑘)
ℎ 𝑗

〉]
N

[√︂
𝑞
(𝑘)
ℎ𝑘

〈
𝑢
(𝑘)
ℎ

��� + √︃
𝑞
(𝑘)
𝑔𝑗

〈
𝑡
(𝑘)
ℎ 𝑗

���]
+ N

[√︂
𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′

���𝑢 (𝑘)
ℎ

〉
−

√︂
𝑞
(𝑘)
𝑔𝑗′

���𝑡 (𝑘)
ℎ 𝑗

〉]
N

[√︃
𝑞
(𝑘)
𝑔𝑗

〈
𝑢
(𝑘)
ℎ

��� − √︂
𝑞
(𝑘)
ℎ𝑘

〈
𝑡
(𝑘)
ℎ 𝑗

���]
+

∑︁
𝑖∈{1,...𝑘 }\𝑗

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���
and 𝑂

(𝑘)
ℎ

is given by the basis change

{���𝑡 (𝑘+1)
ℎ1

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
→

{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
.

Jump to End.

This proof is very similar to the previous.

We are given X
(𝑘) = (𝑋 (𝑘)

ℎ
, 𝑋

(𝑘)
𝑔 ,

��𝑤 (𝑘) 〉 , ��𝑣 (𝑘) 〉),
where 𝑋

(𝑘)
ℎ

=
∑𝑘
𝑖=1
𝑦
(𝑘)
ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉 〈
𝑡
(𝑘+1)
ℎ𝑖

���,
𝑋

(𝑘)
𝑔 =

∑𝑘
𝑖=1
𝑦
(𝑘)
𝑔𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉 〈
𝑡
(𝑘+1)
ℎ𝑖

���, ��𝑣 (𝑘) 〉 =
∑𝑘
𝑖=1
𝑞
(𝑘)
𝑔𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉
,

��𝑤 (𝑘) 〉 =
∑𝑘
𝑖=1
𝑞
(𝑘)
ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉
with the

corresponding function instance being x
(𝑘) = (ℎ (𝑘) , 𝑔 (𝑘) , 𝑎 (𝑘)) where

𝑎 (𝑘) =
∑︁

𝑖∈{1,...𝑘 }\𝑗
𝑞
(𝑘)
ℎ𝑖

[𝑦ℎ𝑖] + (𝑞 (𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′) [𝑦ℎ 𝑗
] −

∑︁
𝑖∈{1,...𝑘 }\𝑗 ′

𝑞
(𝑘)
𝑔𝑖 [𝑦𝑔𝑖] .

Since we assume that X
(𝑘)

has a solution it follows that 𝑎 (𝑘) is [𝜒, b]-valid. Thus, the transition

𝑔 (𝑘−1)
:= 𝑎 (𝑘)− → 𝑎

(𝑘)
+ =: ℎ (𝑘−1)

is also [𝜒, b]-valid where 𝑔 (𝑘−1)
comprises 𝑛

(𝑘−1)
𝑔 = 𝑛

(𝑘)
𝑔 − 1

points and ℎ (𝑘−1)
comprises 𝑛

(𝑘−1)
ℎ

= 𝑛
(𝑘)
ℎ

points (using the attributes corresponding to the

function instance (ℎ (𝑘−1) , 𝑔 (𝑘−1) , ℎ (𝑘−1) −𝑔 (𝑘−1))) We use the notation 𝑔 =
∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖 [𝑥𝑔𝑖] and ℎ =∑𝑛ℎ

𝑖=1
𝑝ℎ𝑖 [𝑥ℎ𝑖]). Since𝑘 = 𝑛

(𝑘)
𝑔 +𝑛 (𝑘)

ℎ
−1, the aforesaid relation yields𝑛

(𝑘−1)
𝑔 +𝑛 (𝑘−1)

ℎ
−1 = 𝑘−1. We

conclude that the matrix instance X
(𝑘−1)

:= (𝑋 (𝑘−1)
ℎ

, 𝑋
(𝑘−1)
𝑔 ,

��𝑤 (𝑘−1) 〉 , ��𝑣 (𝑘−1) 〉) where 𝑋
(𝑘−1)
ℎ

=∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���, 𝑋 (𝑘−1)
𝑔 =

∑𝑘−1

𝑖=1
𝑦
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

���, ��𝑣 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
𝑔𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
,

78

and��𝑤 (𝑘−1) 〉 = N
[∑𝑘−1

𝑖=1

√︃
𝑞
(𝑘−1)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉]
has a solution for

{
𝑞
(𝑘−1)
ℎ1

, . . . 𝑞
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
ℎ1

. . . , 𝑞
(𝑘)
ℎ 𝑗−1

, 𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′ , 𝑞
(𝑘)
ℎ 𝑗+1

, 𝑞
(𝑘)
ℎ 𝑗+2

. . . 𝑞
(𝑘)
ℎ𝑘−1

}
{
𝑞
(𝑘−1)
𝑔1

, . . . 𝑞
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑞
(𝑘)
𝑔1
, 𝑞

(𝑘)
𝑔2

. . . , 𝑞
(𝑘)
𝑔𝑗′−1

, 𝑞
(𝑘)
𝑔𝑗′+1

, . . . 𝑞
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
𝑔1

, . . . 𝑦
(𝑘−1)
𝑔𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
𝑔1
, . . . 𝑦

(𝑘)
𝑔𝑗′−1

, 𝑦
(𝑘)
𝑔𝑗′+1

. . . , 𝑦
(𝑘)
𝑔𝑘

}
{
𝑦
(𝑘−1)
ℎ1

, . . . 𝑦
(𝑘−1)
ℎ𝑘−1

}
component-wise

=

{
𝑦
(𝑘)
ℎ1

, . . . 𝑦
(𝑘)
ℎ𝑘−1

}
,

as the corresponding function instance x
(𝑘−1)

is indeed given by

(ℎ (𝑘−1) , 𝑔 (𝑘−1) , 𝑎 (𝑘−1) = 𝑎 (𝑘)). Here {
���𝑡 (𝑘)
ℎ𝑖

〉
} constitute an orthonormal basis which we will

soon relate to

���𝑡 (𝑘+1)
ℎ𝑖

〉
. We used the fact that 𝑞

(𝑘)
ℎ𝑘

= 0 as 𝑦
(𝑘)
ℎ𝑘

= b . To verify this note that

𝑘 −1 > 𝑛
(𝑘−1)
ℎ

which means that many 𝑞ℎ𝑖 are zero; by convention we write the smallest eigen-

value, 𝑥ℎ1
first all the way until 𝑥ℎ𝑛ℎ

and then to increase the matrix size we append zeros so

the 𝑖 = 𝑛ℎ, 𝑛ℎ + 1 . . . 𝑘 yield 𝑞ℎ𝑖 = 0. This means that there must exist an 𝑂 (𝑘−1)
which solves

X
(𝑘−1)

.

As far as the basis change is concerned, we have that 𝑋 ′
ℎ
≥ 𝑂 ′𝑋 ′

𝑔𝑂
′𝑇

with 𝑂 ′ |𝑣 ′⟩ = |𝑤 ′⟩ is

equivalent to 𝑋ℎ ≥ 𝑂𝑋𝑔𝑂𝑇 with 𝑂 |𝑣⟩ = |𝑤⟩, where 𝑂 = 𝑂𝑇
ℎ
𝑂 ′𝑂𝑔, 𝑂𝑔 |𝑣⟩ = |𝑣 ′⟩, 𝑂ℎ |𝑤⟩ = |𝑤 ′⟩,

𝑂ℎ𝑋ℎ𝑂
𝑇
ℎ
= 𝑋 ′

ℎ
, 𝑂𝑋𝑔𝑂

𝑇
𝑔 = 𝑋 ′

𝑔 .

We first expand the matrix X
(𝑘−1)

to 𝑘 dimensions as follows. We already had 𝑋
(𝑘−1)
ℎ

≥
𝑂 (𝑘−1)𝑋 (𝑘−1)

𝑔 𝑂 (𝑘−1)𝑇
with 𝑂 (𝑘−1) ��𝑣 (𝑘−1) 〉 = ��𝑤 (𝑘−1) 〉

and we expand it as

𝑦
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑋 (𝑘−1)
ℎ︸ ︷︷ ︸

:=𝑋
′(𝑘)
ℎ

≥

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)

︸ ︷︷ ︸
:=𝑂′(𝑘)

(
𝑦
(𝑘)
ℎ 𝑗

���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑋 (𝑘−1)
𝑔

)
︸ ︷︷ ︸

:=𝑋
′(𝑘)
𝑔

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)𝑇
,

with

��𝑣 ′(𝑘) 〉 = N
[√︃
𝑞
(𝑘)
𝑔𝑗′

���𝑢 (𝑘)
ℎ

〉
+

��𝑣 (𝑘−1) 〉]
and

��𝑤 ′(𝑘) 〉 = N
[√︃
𝑞
(𝑘)
𝑔𝑗′

���𝑢 (𝑘)
ℎ

〉
+

��𝑤 (𝑘−1) 〉]
. The matrix instance

X
′(𝑘)

:= (𝑋 ′(𝑘)
ℎ

, 𝑋
′(𝑘)
𝑔 ,

��𝑣 ′(𝑘) 〉 , ��𝑤 ′(𝑘) 〉) yields x
′(𝑘) = x

(𝑘)
. We can now use the equivalence

we pointed out above to establish a relation between 𝑋
(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇

and 𝑋
′(𝑘)
ℎ

≥
𝑂 ′(𝑘)𝑋 ′(𝑘)

𝑔 𝑂 ′(𝑘)𝑇
by finding 𝑂𝑔 and 𝑂ℎ . We define, somewhat arbitrarily,{���𝑢 (𝑘)
ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
component-wise

={���𝑡 (𝑘+1)
ℎ 𝑗

〉
,

���𝑡 (𝑘+1)
ℎ1

〉
,

���𝑡 (𝑘+1)
ℎ2

〉
, . . .

���𝑡 (𝑘+1)
ℎ 𝑗−1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+1

〉
,

���𝑡 (𝑘+1)
ℎ 𝑗+2

〉
. . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
.

We require𝑂
(𝑘)
𝑔

��𝑣 (𝑘) 〉 = ��𝑣 ′(𝑘) 〉. This is a permutation matrix given by

{���𝑡 (𝑘+1)
ℎ1

〉
, . . .

���𝑡 (𝑘+1)
ℎ𝑘

〉}
→{���𝑢 (𝑘)

ℎ

〉
,

���𝑡 (𝑘)
ℎ1

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉}
.

We have 𝑂
(𝑘)𝑇
𝑔 𝑋

′(𝑘)
𝑔 𝑂

(𝑘)
𝑔 = 𝑋

(𝑘)
𝑔 as 𝑦

(𝑘)
ℎ 𝑗

= 𝑦
(𝑘)
𝑔𝑗′ . It remains to find 𝑂

(𝑘)
ℎ

which we require to

79

satisfy𝑂
(𝑘)
ℎ

��𝑤 (𝑘) 〉 = ��𝑤 ′(𝑘) 〉
. Let us define𝑂

(𝑘)
ℎ

= �̃� (𝑘)
(∑𝑘

𝑖=1
|𝑎𝑖⟩

〈
𝑡
(𝑘+1)
ℎ𝑖

���) , and observe that for

�̃� (𝑘) = I we have 𝑂
(𝑘)
ℎ

��𝑤 (𝑘) 〉 = 𝑞 (𝑘)
ℎ𝑘

���𝑢 (𝑘)
ℎ

〉
+ ∑𝑘−1

𝑖=1
𝑞
(𝑘)
ℎ𝑖

���𝑡 (𝑘)
ℎ𝑖

〉
where

{|𝑎1⟩ , . . . |𝑎𝑘⟩}
component-wise

=

{���𝑡 (𝑘)
ℎ1

〉
,

���𝑡 (𝑘)
ℎ2

〉
. . .

���𝑡 (𝑘)
ℎ𝑘−1

〉
,

���𝑢 (𝑘)
ℎ

〉}
.

If we define

�̃� (𝑘)
:=N

[√︂
𝑞
(𝑘)
𝑔𝑗′

���𝑢 (𝑘)
ℎ

〉
+

√︂
𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′

���𝑡 (𝑘)
ℎ 𝑗

〉]
N

[√︂
𝑞
(𝑘)
ℎ𝑘

〈
𝑢
(𝑘)
ℎ

��� + √︃
𝑞
(𝑘)
𝑔𝑗

〈
𝑡
(𝑘)
ℎ 𝑗

���]
+ N

[√︂
𝑞
(𝑘)
ℎ 𝑗

− 𝑞 (𝑘)𝑔𝑗′

���𝑢 (𝑘)
ℎ

〉
−

√︂
𝑞
(𝑘)
𝑔𝑗′

���𝑡 (𝑘)
ℎ 𝑗

〉]
N

[√︃
𝑞
(𝑘)
𝑔𝑗

〈
𝑢
(𝑘)
ℎ

��� − √︂
𝑞
(𝑘)
ℎ𝑘

〈
𝑡
(𝑘)
ℎ 𝑗

���]
+

∑︁
𝑖∈{1,...𝑘 }\𝑗

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
ℎ𝑖

��� ,
we get 𝑂

(𝑘)
ℎ

��𝑤 (𝑘) 〉 =
��𝑤 ′(𝑘) 〉

. We can also see that 𝑂
(𝑘)𝑇
ℎ

𝑋
′(𝑘)
𝑔 𝑂

(𝑘)
ℎ

is essentially 𝑋𝑔 with b (𝑘)

at

���𝑡 (𝑘+1)
ℎ𝑘

〉
replaced by 𝑦ℎ 𝑗

. We therefore conclude that 𝑋
′(𝑘)
𝑔 ≥ 𝑂 (𝑘)

𝑔 𝑋
(𝑘)
𝑔 𝑂

′(𝑘)
𝑔 . Substituting we

obtain

𝑋
′(𝑘)
ℎ

≥ 𝑂 ′(𝑘)𝑋 ′(𝑘)
𝑔 𝑂 ′(𝑘)𝑇 ≥ 𝑂 ′(𝑘)𝑂 (𝑘)

𝑔 𝑋
(𝑘)
𝑔 𝑂

(𝑘)𝑇
𝑔 𝑂 ′(𝑘)𝑇

⇐⇒ 𝑂
(𝑘)𝑇
ℎ

𝑋
′(𝑘)
ℎ

𝑂
(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑇
ℎ

𝑂 ′(𝑘)𝑂 (𝑘)
𝑔︸ ︷︷ ︸

:=𝑂 (𝑘)

𝑋
(𝑘)
𝑔 𝑂

(𝑘)𝑇
𝑔 𝑂 ′(𝑘)𝑇𝑂 (𝑘)

ℎ

⇐⇒ 𝑋
(𝑘)
ℎ

≥ 𝑂 (𝑘)𝑋 (𝑘)
𝑔 𝑂 (𝑘)𝑇 ,

and similarly

𝑂 ′(𝑘)
���𝑣 ′(𝑘)〉 =

���𝑤 ′(𝑘)
〉

⇐⇒ 𝑂 ′(𝑘)𝑂 (𝑘)
𝑔

���𝑣 (𝑘)〉 = 𝑂
(𝑘)
ℎ

���𝑤 (𝑘)
〉

⇐⇒ 𝑂 (𝑘)
���𝑣 (𝑘)〉 =

���𝑤 (𝑘)
〉
,

which completes the proof.

– Evaluate the Reverse Weingarten Map:

1. Consider the point

��𝑤 (𝑘) 〉 /√︃〈
𝑤 (𝑘)

��𝑋 ′(𝑘)
ℎ

��𝑤 (𝑘) 〉
on the ellipsoid 𝑋

′(𝑘)
ℎ

. Evaluate the normal at this point as���𝑢 (𝑘)
ℎ

〉
= N

(∑𝑛
(𝑘)
ℎ

𝑖=1

√︃
𝑝
(𝑘)
ℎ𝑖
𝑥
′(𝑘)
ℎ𝑖

���𝑡 (𝑘+1)
ℎ𝑖

〉)
. Similarly evaluate

���𝑢 (𝑘)
𝑔

〉
, the normal at the point��𝑣 (𝑘) 〉 /√︃〈

𝑤 (𝑘)
��𝑋 ′(𝑘)

𝑔

��𝑤 (𝑘) 〉
on the ellipsoid 𝑋

′(𝑘)
𝑔 .

2. Evaluate the Reverse Weingarten maps𝑊
′(𝑘)
ℎ

and𝑊
′(𝑘)
𝑔 along

���𝑢 (𝑘)
ℎ

〉
and

���𝑢 (𝑘)
𝑔

〉
, respec-

tively. For a given diagonal matrix

𝑋 =
∑
𝑖 𝑦𝑖 |𝑖⟩ ⟨𝑖 | > 0 and normal vector |𝑢⟩ = ∑

𝑖 𝑢𝑖 |𝑖⟩ the Reverse Weingarten map is given

by𝑊𝑖 𝑗 =

(
− 𝑦−1

𝑗
𝑦−1

𝑖
𝑢𝑖𝑢 𝑗

𝑟 2
+ 𝑦−1

𝑖 𝛿𝑖 𝑗

)
where 𝑟 =

√︃∑
𝑦−1

𝑖
𝑢2

𝑖
.

3. Find the eigenvectors and eigenvalues of the Reverse Weingarten maps. The eigenvectors

of𝑊 ′
ℎ

form the ℎ tangent and normal vectors

{{���𝑡 (𝑘)
ℎ𝑖

〉}
,

���𝑢 (𝑘)
ℎ

〉}
. The corresponding radii of

80

curvature are obtained from the eigenvalues

{
{𝑟 (𝑘)
ℎ𝑖

}, 0
}
=

{
{𝑐 (𝑘)−1

ℎ𝑖
}, 0

}
which are the in-

verses of the curvature values. The tangents are labeled in decreasing order of radii of cur-

vature (i.e.,increasing order of curvature). Similarly for the 𝑔 tangent and normal vectors.

Fix the sign freedom in the eigenvectors by requiring

〈
𝑡
(𝑘)
ℎ𝑖

|𝑤 (𝑘)
〉
≥ 0 and

〈
𝑡
(𝑘)
𝑔𝑖 |𝑣 (𝑘)

〉
≥ 0.

– Finite Method: If _ ≠ −b (𝑘) and _ ≠ −𝜒 (𝑘) , i.e. if it is the finite case then

1. 𝑂 (𝑘)
:=

���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
𝑔

��� + ∑𝑘−1

𝑖=1

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
𝑔𝑖

���
2.

��𝑣 (𝑘−1) 〉
:= 𝑂 (𝑘) ��𝑣 (𝑘) 〉 − 〈

𝑢
(𝑘)
ℎ

���𝑂 (𝑘) ��𝑣 (𝑘) 〉 ���𝑢 (𝑘)
ℎ

〉
and

��𝑤 (𝑘−1) 〉
:=

��𝑤 (𝑘) 〉 − 〈
𝑢
(𝑘)
ℎ

|𝑤 (𝑘)
〉 ���𝑢 (𝑘)

ℎ

〉
.

3. Define 𝑋
(𝑘−1)
ℎ

:= diag{𝑐 (𝑘)
ℎ1

, 𝑐
(𝑘)
ℎ2

. . . , 𝑐
(𝑘)
ℎ𝑘−1

},
𝑋

(𝑘−1)
𝑔 := diag{𝑐 (𝑘)𝑔1

, 𝑐
(𝑘)
𝑔2

. . . 𝑐
(𝑘)
𝑔𝑘−1

}.
4. Jump to End.

First, we need to prove that 𝑂 (𝑘)
must have the form(���𝑢 (𝑘)

ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂 (𝑘)

for𝑂 (𝑘)
:=

���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
𝑔

���+∑𝑘−1

𝑖=1

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
𝑔𝑖

��� if𝑂 (𝑘)
is to be a solution of the matrix instance

X
(𝑘)

. This is best explained by imagining that Arthur is trying to find the orthogonal

matrix and Merlin already knows the orthogonal matrix but has still been following the

steps performed so far. Recall that we are now at a point where∑︁
𝑎′(𝑥)𝑥 = ⟨𝑤 |𝑋 ′

ℎ
|𝑤⟩ − ⟨𝑣 |𝑋 ′

𝑔 |𝑣⟩ = ⟨𝑤 |𝑋 ′
ℎ
|𝑤⟩ − ⟨𝑤 |𝑂𝑋 ′

𝑔𝑂
𝑇 |𝑤⟩ = 0.

From Merlin’s point of view along the |𝑤⟩ direction the ellipsoids 𝑋 ′
ℎ

and 𝑂𝑋 ′
𝑔𝑂

𝑇
touch.

Suppose he started with the ellipsoids 𝑋 ′
ℎ
, 𝑋 ′

𝑔 and only subsequently rotated the second

one. He can mark the point along the direction |𝑣⟩ on the 𝑋 ′
𝑔 ellipsoid as the point that

would after rotation touch the𝑋 ′
ℎ

ellipsoid because as𝑋 ′
𝑔 → 𝑂𝑋 ′

𝑔𝑂
𝑇

the point along the |𝑣⟩
direction would get mapped to the point along the direction𝑂 |𝑣⟩ = |𝑤⟩. Now, since the el-

lipsoids touch it must be so, Merlin deduces, that the normal of the ellipsoid𝑋 ′
𝑔 at the point

|𝑣⟩ /
√︁
⟨𝑣 |𝑋 ′

𝑔 |𝑣⟩ is mapped to the normal of the ellipsoid 𝑋 ′
ℎ

at the point |𝑤⟩ /
√︃
⟨𝑤 |𝑋 ′

ℎ
|𝑤⟩

when 𝑋 ′
𝑔 is rotated to 𝑂𝑋 ′

𝑔𝑂
𝑇

, i.e. 𝑂
��𝑢𝑔〉 = |𝑢ℎ⟩.

From Arthur’s point of view, who has been following Merlin’s reasoning, in addition to

knowing that 𝑂 must satisfy 𝑂 |𝑣⟩ = |𝑤⟩ he now knows that it must also satisfy 𝑂
��𝑢𝑔〉 =

|𝑢ℎ⟩.
Merlin further concludes that the curvature of the 𝑋 ′

𝑔 ellipsoid at the point |𝑣⟩ /
√︁
⟨𝑣 |𝑋 ′

𝑔 |𝑣⟩
must be larger than the curvature of the 𝑋 ′

ℎ
ellipsoid at the point |𝑤⟩ /

√︃
⟨𝑤 |𝑋 ′

ℎ
|𝑤⟩. To

be precise, he needs to find a method for evaluating this curvature. He knows that the

brute-force way of doing this is to find a coordinate system with its origin on the said

point and then imagining the manifold, locally, as a function from 𝑛 − 1 coordinates to

one coordinate, call it 𝑥𝑛 (𝑥1, 𝑥2 . . . 𝑥𝑛−1). The curvature of this object is a generalization of

the second derivative which forms a matrix with its elements given by 𝜕𝑥𝑖 𝜕𝑥 𝑗𝑥𝑛 . Since this

matrix is symmetric he knows it can be diagonalized. The directions of the eigenvectors

of this matrix he calls the principle directions of curvature and the curvature values are

the corresponding eigenvalues. He recalls that there is a simpler way of evaluating these

principle directions and curvatures by using the Weingarten map. The eigenvectors of the

Reverse Weingarten map𝑊 ′
ℎ

, evaluated for𝑋 ′
ℎ

at |𝑤⟩, yield the normal and tangent vectors

and the corresponding eigenvalues are the radii of curvature (curvature is the inverse of

the radius of curvature). Similarly for the Reverse Weingarten map𝑊 ′
𝑔 evaluated for 𝑋 ′

𝑔 at

81

|𝑣⟩. With this knowledge Merlin can write, for some �̃�𝑖 𝑗 ∈ R such that

∑
𝑗 �̃�𝑖 𝑗�̃� 𝑗𝑘 = 𝛿𝑖𝑘 ,

𝑂 (𝑘) = |𝑢ℎ⟩
〈
𝑢𝑔

�� + ∑︁
𝑖, 𝑗

�̃�𝑖 𝑗
��𝑡ℎ𝑖 〉 〈

𝑡𝑔𝑗

��

=

©«
|𝑢ℎ⟩ ⟨𝑢ℎ | +

∑︁
𝑖, 𝑗

�̃�𝑖 𝑗
��𝑡ℎ𝑖 〉 〈

𝑡ℎ 𝑗

��︸ ︷︷ ︸
=𝑂 (𝑘−1)

ª®®®®®®®¬
©«
|𝑢ℎ⟩

〈
𝑢𝑔

�� + ∑︁
𝑖

��𝑡ℎ𝑖 〉 〈
𝑡𝑔𝑖

��︸ ︷︷ ︸
=�̄� (𝑘)

ª®®®®®®¬
.

He then turns to his intuition about the curvature of the smaller ellipsoid being more than

that of the larger ellipsoid. He observes that equivalently, the radius of curvature of the

smaller ellipsoid must be smaller than that of the larger ellipsoid. To make this precise

he notes that the Weingarten map𝑊 ′
𝑔 gets transformed to 𝑂𝑊 ′

𝑔𝑂
𝑇

when 𝑋 ′
𝑔 is rotated as

𝑂𝑋 ′
𝑔𝑂

𝑇
. He considers the point |𝑤⟩ /

√︃
⟨𝑤 |𝑋 ′

ℎ
|𝑤⟩, which is shared by both the 𝑋 ′

ℎ
and the

𝑂𝑋 ′
𝑔𝑂

𝑇
ellipsoid. It must be so that along all directions in the tangent plane, the smaller

𝑋 ′
ℎ

ellipsoid must have a smaller radius of curvature than the 𝑂𝑋 ′
𝑔𝑂

𝑇
ellipsoid, i.e. for

all |𝑡⟩ ∈ span{
��𝑡ℎ𝑖 〉}, ⟨𝑡 |𝑊 ′

ℎ
|𝑡⟩ ≤ ⟨𝑡 |𝑂𝑊 ′

𝑔𝑂
𝑇 |𝑡⟩. Restricting his attention to the tangent

space he deduces the statement is equivalent to𝑊 ′
ℎ
≤ 𝑂𝑊 ′

𝑔𝑂
𝑇

. He writes this explicitly

as

∑
𝑐−1

ℎ𝑖

��𝑡ℎ𝑖 〉 〈
𝑡ℎ𝑖

�� ≤ ∑
𝑐−1

𝑔𝑖
𝑂

��𝑡𝑔𝑖 〉 〈
𝑡𝑔𝑖

��𝑂𝑇 . Now he uses the form of 𝑂 he had deduced to

obtain

∑
𝑐−1

ℎ𝑖

��𝑡ℎ𝑖 〉 〈
𝑡ℎ𝑖

�� ≤ ∑
𝑐−1

𝑔𝑖
𝑂 (𝑘−1) ��𝑡ℎ𝑖 〉 〈

𝑡ℎ𝑖

��𝑂 (𝑘−1)𝑇
. From this he concludes that the

inequality 𝑋
(𝑘−1)
ℎ

≥ 𝑂 (𝑘−1)𝑋 (𝑘−1)
𝑔 𝑂 (𝑘−1)𝑇

must hold.

Arthur summarizes that Merlin’s reasoning entails that 𝑂 (𝑘)
must always have the form

𝑂 (𝑘) =
(���𝑢 (𝑘)

ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂 (𝑘) ,

and that 𝑂 (𝑘−1)
must satisfy the constraint

𝑋
(𝑘−1)
ℎ

≥ 𝑂 (𝑘−1)𝑋 (𝑘−1)
𝑔 𝑂 (𝑘−1)𝑇 . Merlin, surprised by the similarity of the constraint he

obtained with the one he started with, extends his reasoning to the vector itself. He knows

that 𝑂 (𝑘) ��𝑣 (𝑘) 〉 = ��𝑤 (𝑘) 〉
but now he substitutes for 𝑂 (𝑘)

to obtain(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂 (𝑘) ��𝑣 (𝑘) 〉 = ��𝑤 (𝑘) 〉

.

He observes that 𝑂 (𝑘−1)
can not influence the

���𝑢 (𝑘)
ℎ

〉
component of the vector 𝑂 (𝑘) ��𝑣 (𝑘) 〉.

He thus projects out the

���𝑢 (𝑘)
ℎ

〉
component to obtain

𝑂 (𝑘−1)
(
𝑂 (𝑘)

���𝑣 (𝑘) 〉 − ⟨𝑢ℎ |𝑂 (𝑘)
���𝑣 (𝑘) 〉 |𝑢ℎ⟩)︸ ︷︷ ︸

=|𝑣 (𝑘−1) ⟩

=

���𝑤 (𝑘)
〉
−

〈
𝑢
(𝑘)
ℎ

|𝑤 (𝑘)
〉 ���𝑢 (𝑘)

ℎ

〉
︸ ︷︷ ︸

=|𝑤 (𝑘−1) ⟩

.

With this, Arthur realizes, he can reduce his problem involving a 𝑘-dimensional orthog-

onal matrix into a smaller problem in 𝑘 − 1 dimensions with exactly the same form. Since

Merlin’s orthogonal matrix was an arbitrary solution and the constraints involved do not

depend explicitly on it but only on the initial problem, Arthur concludes that this reduction

must hold for all solutions.

– Wiggle-v Method: If _ = −b (𝑘) or _ = −𝜒 (𝑘) then
The above method of matching the normals works well as long as the appropriate operator

monotone—the one that gives 𝑋 ′
ℎ

and 𝑋 ′
𝑔 for which |𝑤⟩ /

√︃
⟨𝑤 |𝑋 ′

ℎ
|𝑤⟩ is a point on both 𝑋 ′

ℎ

82

and 𝑂𝑋 ′
𝑔𝑂

𝑇
)—doesn’t yield infinities. If infinities arise, it means that one of the directions

involved has infinite curvature which, in turn, means that the component of the normal along

this direction can be arbitrary. In other words, imagine a line contained inside an ellipsoid and

centered at its origin that touches its boundaries. The line can be seen as an ellipse with infinite

curvature along one of the directions. The normal of the line at its tip is arbitrary and therefore

we can’t require the usual condition that the normals of the two curves must coincide. The

solution is to consider the sequence leading to the aforesaid situation.

1.

���𝑢 (𝑘)
ℎ

〉
is renamed to

���𝑢 (𝑘)
ℎ

〉
,

���𝑢 (𝑘)
𝑔

〉
and remains the same.

2. Let 𝜏 = cos\ :=

〈
𝑢
(𝑘)
𝑔 |𝑣 (𝑘)

〉
/
〈
𝑢
(𝑘)
ℎ

|𝑤 (𝑘)
〉
. Let

���𝑡 (𝑘)
ℎ

〉
be an eigenvector of 𝑋

′(𝑘)−1

ℎ
with zero

eigenvalue. Redefine ���𝑢 (𝑘)
ℎ

〉
:= cos\

���𝑢 (𝑘)
ℎ

〉
+ sin\

���𝑡 (𝑘)
ℎ

〉
���𝑡 (𝑘)
ℎ𝑘

〉
= 𝑠

(
− sin\

���𝑢 (𝑘)
ℎ

〉
+ cos\

���𝑡 (𝑘)
ℎ

〉)
,

where the sign 𝑠 ∈ {1,−1} is fixed by requiring

〈
𝑡
(𝑘)
ℎ𝑘

|𝑤 (𝑘)
〉
≥ 0.

3. 𝑂 (𝑘)
and

��𝑣 (𝑘−1) 〉 , ��𝑤 (𝑘−1) 〉
are evaluated as step 1 and 2 of the finite case.

4. Define

𝑋
′(𝑘−1)
ℎ

:= diag{𝑐 (𝑘)
ℎ1

, 𝑐
(𝑘)
ℎ2

, . . . , 𝑐
(𝑘)
ℎ𝑘−1

}

𝑋
′(𝑘−1)
𝑔 := diag{𝑐 (𝑘)𝑔1

, 𝑐
(𝑘)
𝑔2
, . . . , 𝑐

(𝑘)
𝑔𝑘−1

}.

Let [𝜒 ′(𝑘−1) , b ′(𝑘−1)] denote the smallest interval containing

spec[𝑋 ′(𝑘−1)
ℎ

⊕ 𝑋
′(𝑘−1)
𝑔]. Let _′ = −𝜒 ′(𝑘−1) + 1 where instead of 1 any positive number

would also work. Consider 𝑓_′′ on [𝜒 ′(𝑘−1) , b ′(𝑘−1)], and let [= −𝑓_′ (𝜒 ′(𝑘−1)) + 1. Define

𝑋
(𝑘−1)
ℎ

:= 𝑓_′ (𝑋 ′(𝑘−1)
ℎ

) + [and 𝑋
(𝑘−1)
𝑔 := 𝑓_′ (𝑋 ′(𝑘−1)

𝑔) + [.

5. Jump to End.

We start with the case _ = −b (𝑘) . The case with _ = −𝜒 (𝑘) follows analogously. For the

moment we assume [= 0 for simplicity; for [≠ 0 the argument goes through essentially

unchanged. Since ⟨𝑤 | 𝑓−b (𝑋ℎ) |𝑤⟩ − ⟨𝑣 | 𝑓−b (𝑋𝑔) |𝑣⟩ = 0, we conclude that 𝑦
(𝑘)
ℎ𝑖

= b implies

𝑞ℎ𝑖 = 0. After the application of the map 𝑓−b these 𝑦
(𝑘)
ℎ𝑖

s and 𝑦
(𝑘)
𝑔𝑖 s would become infinities

but

〈
𝑡
(𝑘+1)
ℎ𝑖

|𝑤
〉

and

〈
𝑡
(𝑘+1)
𝑔𝑖 |𝑣

〉
would be zero (we suppressed the superscripts for

��𝑣 (𝑘) 〉 and��𝑤 (𝑘) 〉
). Since the eigenvalues are arranged in ascending order in 𝑋

(𝑘)
ℎ

we have 𝑦
(𝑘)
ℎ𝑘

= b

and the corresponding vector is

���𝑡 (𝑘+1)
ℎ𝑘

〉
=: |𝑡ℎ⟩. It is useful to define

��𝑡ℎ𝑖 〉 =
��𝑡ℎ𝑖 〉 for

𝑖 = 1, 2, . . . 𝑗 − 1 and

��𝑡ℎ𝑙 〉 = ��𝑡ℎ𝑖 〉 for 𝑖 = 𝑗, 𝑗 + 1, . . . 𝑘 , 𝑙 = (𝑖 − 𝑗) + 1 where 𝑗 is the smallest 𝑖

for which 𝑥ℎ𝑖 = b (their existence is a straightforward consequence of dimension counting,

𝑘 ≥ 𝑛𝑔 + 𝑛ℎ − 1). We focus on the two-dimensional plane spanned by |𝑤⟩ and |𝑡ℎ⟩.
From Merlin’s point of view, since he has a solution 𝑂 (𝑘)

to the matrix instance

X
(𝑘) = {𝑋 (𝑘)

ℎ
, 𝑋

(𝑘)
𝑔 ,

���𝑤 (𝑘)
〉
,

���𝑣 (𝑘)〉},
his solution is also a solution to the matrix instance

X
(𝑘) (_) :=

{
𝑓_ (𝑋 (𝑘)

ℎ
), 𝑓_ (𝑋 (𝑘)

𝑔),
���𝑤 (𝑘)

〉
,

���𝑣 (𝑘)〉}

83

for _ ≤ −b but close enough to −b such that 𝑓_ (𝑋ℎ), 𝑓_ (𝑋𝑔) > 0. This is a consequence of

𝑓_ being operator monotone. Using Corollary 77 and Lemma 78 we know that since the

ellipsoids corresponding to the matrix instance X(−b) touch along |𝑤⟩ – as we are given

that ⟨𝑤 | 𝑓−b (𝑋ℎ) |𝑤⟩ − ⟨𝑤 |𝑂𝑓−b (𝑋𝑔)𝑂𝑇 |𝑤⟩ = ⟨𝑤 | 𝑓−b (𝑋ℎ) |𝑤⟩ − ⟨𝑣 | 𝑓−b (𝑋𝑔) |𝑣⟩ = 0— there

must also exist some vector |𝑐 (_)⟩ such that

⟨𝑐 (_) | 𝑓_ (𝑋ℎ) |𝑐 (_)⟩ − ⟨𝑐 (_) |𝑂𝑓_ (𝑋𝑔)𝑂𝑇 |𝑐 (_)⟩ = 0; that is the ellipsoids corresponding to

the matrix instance X(_) touch along the said direction. To meet the other conditions of

the lemma it suffices to assume that 𝑋ℎ and 𝑋𝑔 do not have a common eigenvalue which

in turn is guaranteed by the “remove spectral collision” part of the algorithm.

It is easy to convince oneself that lim_→−b |𝑐 (_)⟩ = |𝑤⟩22
. We can write

|𝑤⟩ =
𝑗−1∑︁
𝑖=1

𝑞ℎ𝑖

��𝑡ℎ𝑖 〉 because

〈
𝑡ℎ𝑖 |𝑤

〉
= 0.

There is no such restriction on |𝑐 (_)⟩ which can have the more general form |𝑐 (_)⟩ =∑𝑗−1

𝑖=1
𝑐 (_)𝑖

��𝑡ℎ𝑖 〉 +∑𝑘
𝑖=𝑗 𝑐 (_)𝑖

��𝑡ℎ𝑙 〉 where 𝑙 = (𝑖 − 𝑗) + 1. Restating one of the limit conditions

for 𝑖 = 𝑗, 𝑗 + 1 . . . 𝑘 , we have lim_→−b |𝑐 (_)𝑖⟩ = 0. If 𝑂 is a solution it entails that

�́� (_) :=

(
𝑗−1∑︁
𝑖=1

��𝑡ℎ𝑖 〉 〈
𝑡ℎ𝑖

�� + 𝑘−𝑗+1∑︁
𝑖,𝑚=1

𝑄 (_)𝑖𝑚
��𝑡ℎ𝑖 〉 〈

𝑡ℎ𝑚

��) 𝑂
is also a solution, where𝑄 (_) is an orthogonal matrix in the space spanned by

{��𝑡ℎ𝑖 〉}. This

is a consequence of the fact that {
��𝑡ℎ𝑖 〉} spans an eigenspace—with the same eigenvalue

𝑓_ (b) – of 𝑓_ (𝑋ℎ). We can use this freedom to ensure that the point of contact always has

the form

|𝑐 (_)⟩ =
𝑗−1∑︁
𝑖=1

𝑐 (_)𝑖
��𝑡ℎ𝑖 〉 + 𝑐 (_) |𝑡ℎ⟩

where 𝑐 (_) =

√︃∑𝑘
𝑖=𝑗 𝑐 (_)2

𝑖
which must vanish in the limit _ → −b as its constituents

disappear in the said limit. Similarly,

lim_→−b 𝑐 (_)𝑖 = 𝑞ℎ𝑖 .
Next we evaluate the normals |𝑢ℎ (_)⟩ at |𝑐 (_)⟩ for the ellipsoid represented by 𝑓_ (𝑋ℎ) and

the normal |𝑢ℎ⟩ at |𝑤⟩ for the ellipsoid represented by 𝑓−b (𝑋ℎ) to show that lim_→−b |𝑢ℎ (_)⟩ ≠
|𝑢ℎ⟩ (see Figure 15). The right-most term in

|𝑢ℎ (_)⟩ = N
[∑𝑗−1

𝑖=1
𝑓_ (𝑦ℎ𝑖)𝑐 (_)𝑖

��𝑡ℎ𝑖 〉 + 𝑓_ (b)𝑐 (_) |𝑡ℎ⟩] has 𝑓_ (b) approaching infinity and

𝑐 (_) approaching zero as _ tends to −b . This is why it can have a finite component along

|𝑡ℎ⟩. On the other hand, |𝑢ℎ⟩ = N
[∑𝑗−1

𝑖=1
𝑓−b (𝑦ℎ𝑖)𝑞ℎ𝑖

��𝑡ℎ𝑖 〉] which has no component along

|𝑡ℎ⟩. Since lim_→−b 𝑓_ (𝑦ℎ𝑖) = 𝑓−b (𝑦ℎ𝑖) and lim_→−b 𝑐 (_)𝑖 = 𝑞ℎ𝑖 for 𝑖 ∈ {1, 2 . . . 𝑗 − 1}, we

can write

lim

_→−b
|𝑢ℎ (_)⟩ = cos\ |𝑢ℎ⟩ + sin\ |𝑡ℎ⟩ := |𝑢ℎ⟩ .

We must use |𝑢ℎ⟩ instead of |𝑢ℎ⟩ to be able to use the reasoning of the finite method.

However, we do not know cos\ yet. We proceed as in the finite method with the as-

sumption that |𝑐 (_)⟩ is known and then use a consistency condition to find cos\ in terms

of known quantities. At this point we re-introduce the superscripts as we reduce the

22
Since 𝑓_ (𝑋ℎ) is very close to 𝑓−b (𝑋ℎ), the vectors satisfying the condition should also be very close.

84

Figure 15: A sequence leading to infinite curvature.

dimension of the problem. Let the normal and tangent vectors at 𝑂𝑇 |𝑐 (_)⟩ for 𝑓_ (𝑋𝑔)
be given by

{���𝑢 (𝑘)
𝑔 (_)

〉
,

{
𝑡
(𝑘)
𝑔𝑖 (_)

}}
. Similarly at |𝑐 (_)⟩ for 𝑓_ (𝑋ℎ) the normal and tan-

gent vectors are

{���𝑢 (𝑘)
ℎ

(_)
〉
,

{
𝑡
(𝑘)
ℎ𝑖

(_)
}}

. From the finite method we know that 𝑂 (𝑘) (_) :=(
|𝑢ℎ (_)⟩ ⟨𝑢ℎ (_) | +𝑂 (𝑘−1)) 𝑂 (𝑘)

where 𝑂 (𝑘) =

���𝑢 (𝑘)
ℎ

(_)
〉 〈
𝑢
(𝑘)
𝑔 (_)

��� + ∑
𝑖

���𝑡 (𝑘)
ℎ𝑖

〉 〈
𝑡
(𝑘)
𝑔𝑖

��� can be

used to reduce the problem into a smaller instance of itself. In particular, we must have〈
𝑢
(𝑘)
ℎ

(_) |𝑤
〉
=

〈
𝑢
(𝑘)
ℎ

(_)
���𝑂 (𝑘) (_) |𝑣⟩ =

〈
𝑢
(𝑘)
𝑔 (_) |𝑣

〉
because 𝑂 (𝑘−1)

can influence only the

subspace spanned by

{���𝑡 (𝑘)
ℎ𝑖

〉}
, and the component of the vectors |𝑤⟩ and 𝑂 (𝑘) |𝑣⟩ along���𝑢 (𝑘)

ℎ
(_)

〉
must match for consistency.

We can determine cos\ by taking the limit of the aforesaid condition as ⟨𝑢ℎ |𝑤⟩ =
〈
𝑢𝑔 |𝑣

〉
(we suppressed the superscripts again). Substituting |𝑢ℎ⟩ = cos\ |𝑢ℎ⟩ + sin\ |𝑡ℎ⟩ we obtain

cos\ =
⟨𝑢𝑔 |𝑣⟩
⟨𝑢ℎ |𝑤 ⟩ .

We proceed to find the limit of the reverse Weingarten maps. The reverse Weingarten map

for 𝑓_ (𝑋𝑔) along the normal

��𝑢𝑔 (_)〉 has a well-defined limit as _ → −b . We consider the

case for 𝑓_ (𝑋ℎ) along the normal |𝑢ℎ (_)⟩. The support function as defined in Equation (20)

is finite in the limit _ → −b23
. Let us denote it by ℎ(_). The reverse Weingarten map as

defined in Equation (21) is given by

(𝑊ℎ (_))𝑖𝑚 = − 1

ℎ(_)2

𝑢ℎ𝑖 (_)𝑢ℎ𝑚 (_)
𝑓_ (𝑦ℎ𝑖) 𝑓_ (𝑦ℎ𝑚)

+ 𝛿𝑖𝑚

𝑓_ (𝑥ℎ𝑖)
.

Since lim_→−b |𝑢 (_)⟩ is well-defined, lim_→−b ℎ(_) is finite, and we only need to show

that lim_→−b 1/𝑓_ (𝑦ℎ𝑖) is well-defined. We assumed [is zero so 𝑓−b (𝑦ℎ𝑖) ≠ 0. If [is

not zero we must consider 𝑓−b (𝑦ℎ𝑖) + [everywhere but that changes no argument. For

𝑖 = 1, 2 . . . 𝑗 − 1, 𝑓−b (𝑦ℎ𝑖) is finite but for 𝑖 = 𝑗, 𝑗 + 1 . . . 𝑘 , 𝑓−b (𝑦ℎ𝑖) it is not well-defined.

However 1/𝑓−b (𝑦ℎ𝑖) = 0, and we therefore conclude that

lim

_→−b
(𝑊ℎ (_))𝑖𝑚 =

{
− 1

ℎ2

𝑢ℎ𝑖𝑢ℎ𝑚
𝑓−b (𝑦ℎ𝑖) 𝑓−b (𝑦ℎ𝑚) +

𝛿𝑖𝑚
𝑓−b (𝑦ℎ𝑖)

𝑖,𝑚 ∈ {1, 2 . . . 𝑗 − 1}
0 𝑖,𝑚 ∈ { 𝑗, 𝑗 + 1 . . . 𝑘}

,

23
Use the definition of the normal to get

∑
𝑥−1

𝑖
𝑢2

𝑖
=

∑
𝑥−1

𝑖
𝑥2

𝑖
𝑐2

𝑖
=

∑
𝑥𝑖𝑐

2

𝑖
= ⟨𝑐 |𝑋 |𝑐⟩, plug in |𝑐⟩ = |𝑤⟩, 𝑋 = 𝑓−b (𝑋ℎ) and then

use ⟨𝑤 | 𝑓−b (𝑋ℎ) |𝑤⟩ − ⟨𝑣 | 𝑓−b (𝑋𝑔) |𝑣⟩ = 0 which means both must be finite; not that we already dealt with the troublesome case

of ∞−∞ in the “remove spectral collision” part of the algorithm.

85

which is simply the reverse Weingarten map evaluated for 𝑓−b (𝑋ℎ) along |𝑢ℎ⟩ = cos\ |𝑢ℎ⟩+
sin\ |𝑡ℎ⟩ and cos\ =

〈
𝑢𝑔 |𝑣

〉
/⟨𝑢ℎ |𝑤⟩. It remains to relate𝑊ℎ with the reverse Weingarten

map, �̄�ℎ , evaluated for 𝑓−b (𝑋ℎ) along |𝑢ℎ⟩. It is easy to see that𝑊ℎ = �̄�ℎ because only the

cos\ |𝑢ℎ⟩ part contributes to the non-zero portion of𝑊ℎ and the cos\ factor gets canceled

due to the ℎ2
term. Moreover, the normal vector is an eigenvector of the reverse Wein-

garten map evaluated along it, with eigenvalue zero. This tells us that if there are tangent

vectors with zero radius of curvature then the normal is not uniquely defined. Since both

|𝑢ℎ⟩, |𝑡ℎ⟩ have zero eigenvalues for �̄�ℎ (= 𝑊ℎ) and |𝑢⟩ = cos\ |𝑢ℎ⟩ + sin\ |𝑡ℎ⟩ we define

|𝑡ℎ⟩ := 𝑠 (sin\ |𝑢ℎ⟩ − cos\ |𝑡ℎ⟩) to span the same space so that |𝑢⟩ is the correct normal

vector and |𝑡ℎ⟩ is the correct tangent vector corresponding to the point |𝑤⟩ of 𝑓−b (𝑋ℎ).
The final step is to convert the condition on the reverse Weingarten map into a condition on

the Weingarten map itself. After extracting the tangent vectors appropriately, one simply

needs to add a constant before inverting to obtain the Weingarten map condition. This is

done in the last step and completes the proof of the wiggle-v method for _ = −b .

To see how the same reasoning applies to the _ = −𝜒 case first note that for _ ≥ −𝜒 we

have 𝑓_ (𝑋ℎ), 𝑓_ (𝑋𝑔) < 0 (assuming [= 0 as before). The condition 𝑓_ (𝑋ℎ) ≥ 𝑂𝑓_ (𝑋𝑔)𝑂𝑇
can then be expressed as −𝑓_ (𝑋𝑔) ≥ −𝑂𝑇 𝑓_ (𝑋ℎ)𝑂 with 𝑂𝑇 |𝑤⟩ = |𝑣⟩ which can now be

reasoned analogously to the above analysis.

– End: Restart PHASE 2 with the newly obtained (𝑘 − 1) sized objects.

The dimension after every iteration is 𝑘 − 1 ≥ 𝑛 (𝑘−1)
𝑔 + 𝑛 (𝑘−1)

ℎ
− 1 starting with the assumption

𝑘 ≥ 𝑛
(𝑘)
𝑔 + 𝑛 (𝑘)

ℎ
− 1. The reason is that either 𝑛

(𝑘−1)
𝑔 = 𝑛

(𝑘)
𝑔 − 1 or = 𝑛

(𝑘)
𝑔 . Similarly, either

𝑛
(𝑘−1)
ℎ

= 𝑛
(𝑘)
ℎ

−1 or = 𝑛
(𝑘)
ℎ

. Justification of this is simply that we remove at least one component

from the two vectors (from the 𝑛
(𝑘)
𝑔 for the wiggle-v). To see this, note that in the finite case we

remove one from both as we express the vector in a new basis. This new basis is the space where

the vector has finite support. We then remove one of the components in the sub-problem. In

the infinite case, it is possible that we remove one and add one for 𝑛
(𝑘−1)
ℎ

, assuming it is the

usual wiggle-v, but we necessarily reduce 𝑛
(𝑘−1)
𝑔 as this is similar to the finite case. For the

other wiggle-w, 𝑔 and ℎ get swapped but the counting stays the same.

5.4.3 PHASE 3: RECONSTRUCTION

Let 𝑘0 be the iteration at which the algorithm stops. Using the relation

𝑂 (𝑘) = 𝑂 (𝑘)
𝑔

(���𝑢 (𝑘)
ℎ

〉 〈
𝑢
(𝑘)
ℎ

��� +𝑂 (𝑘−1)
)
𝑂

(𝑘)
ℎ

(or its transpose if 𝑠 (𝑘) = −1), evaluate𝑂 (𝑘1)
from𝑂 (𝑘0)

:= I𝑘0
, then𝑂 (𝑘2)

from𝑂 (𝑘1)
, then𝑂 (𝑘3)

from𝑂 (𝑘2)

and so on until 𝑂 (𝑛)
is obtained. 𝑂 (𝑛)

solves the matrix instance X
(𝑛)

that we started with. In terms of

EBRM matrices, the solution is given by 𝐻 = 𝑋
(𝑛)
ℎ
, 𝐺 = 𝑂 (𝑛)𝑋𝑔𝑂 (𝑛)𝑇

and |𝑤⟩ =
��𝑤 (𝑛) 〉

.

5.5 Preliminary implementation

A preliminary implementation of the algorithm on python [ARW18], which is usable but not automated

enough for an end-user, yielded the following results.

1. 𝑓0−assignments need neither padding nor operator monotones. We have ⟨𝑥ℎ⟩ =
〈
𝑥𝑔

〉
which means that

for the first iteration we do not need to use any operator monotone function. Surprisingly, though,

86

we saw that even for subsequent iterations, we do not need operator monotones; this also explained

why
24

we did not need padding, i.e. the solution had size 𝑛×𝑛 for 𝑛 = 𝑛𝑔 = 𝑛ℎ . In Section 6 we prove

it analytically, and follow this geometric approach to construct a more general solution covering

these assignments as well.

2. Moves in the bias 1/18 protocol do not need padding (no wiggle-v). We already know analytically

that there are specific cases where padding is required. However, when we tried to numerically

implement the moves involved in protocols going as low as 𝜖 = 1/18, as proposed by C. Mochon, we

found that in no case was padding necessary, which means the wiggle-v method was never invoked.

3. Trick to improve the precision of the EMA algorithm. The algorithm tries to find a _ such that ⟨𝑤 | 𝑓_ (𝑋ℎ) |𝑤⟩−
⟨𝑣 | 𝑓_ (𝑋𝑔) |𝑣⟩ = 0. In the finite case, for consistency, we must also have ⟨𝑤 |𝑛ℎ (_)⟩ =

〈
𝑣 |𝑛𝑔 (_)

〉
. This

is because in subsequent steps, the orthogonal space is affected, therefore, if the component of the

honest states along the normals is not mapped correctly, it would not get fixed later; this would mean

there is no solution as we are only imposing necessary conditions. We observed that, numerically,

we get a better precision if we use the latter condition for fine-tuning the result—after applying the

former for obtaining a more course-grained solution. While analytically, the first condition implies

the latter exactly, this ceases to be the case numerically due to the finiteness of precision. We under-

stand this improvement as a consequence of the honest state being explicitly mapped correctly (up

to the computer’s precision) if we use the method involving normals, while in the latter this should

happen implicitly.

We also pinpointed the following limitations of this implementation:

1. Limited wiggle-v. We have not fully implemented the wiggle-v method which means that it would be

cumbersome to apply it to the general merge and split, for instance. However, for them we already

give the explicit Blinkered Unitaries. For the rest, as we already saw, it does not even seem necessary.

2. Other issues. Sometimes due to noise, arising from finiteness of the precision, our global minimizer

gets trapped into local minima and has to be guided manually by looking at the graph. This means

that a refined algorithm should be able to solve this problem. Further, we did not implement the

systematic method defined by the EMA algorithm for finding the spectrum of the matrices, but it

appears that almost any guess works for the assignments used by C. Mochon.

24
To see this, note that the only time we spill over to the extra dimensions, is when we use the wiggle-v method. Otherwise,

we stay inside the first max(𝑛𝑔, 𝑛ℎ) dimensions.

87

6 Approaching bias 𝜖 (𝑘) = 1/(4𝑘 + 2) — a geometric solution

It is natural to ask how the analytic solution from Section 4, which was algebraic in nature, and the nu-

merical solution from Section 5, which was geometric in nature, are related. The goal of this section is to

shed some light on this connection. Here, we again construct analytic solutions to monomial assignments

(see Section 4), but this time, using a geometric approach. To this end, we combine and extend ideas from

both Section 4 and Section 5.
25

We hope that having multiple ways of solving the monomial assignment

aids the construction of a general analytic solution which works for all valid functions.

We begin our discussion by contrasting our approach here with the EMA algorithm (see Section 5) and

the algebraic solution (see Section 4). Recall that the EMA algorithm resorted to numerical algorithms for

two purposes: (1) diagonalizing matrices and (2) solving polynomial equations. Since we seek an analytic

solution here, we must somehow address these issues. Issue (1) is handled using three techniques. First, we

recast the problem using isometries instead of unitaries. Consequently, unlike the EMA algorithm, where

in order to consider sub-instances of the problem one had to determine a basis for the tangent space of

the associated initial ellipsoids, here we always consider matrices of the same dimension, but each sub-

problem is described by matrices of one rank less than its parent problem. That helps, as it allows one to

reduce the rank, using only one vector which, in turn, admits an analytic description. Second, we derive and

use analytic expressions for the various geometric properties. In the EMA algorithm, their computation

relied on the aforementioned basis of the tangent space. Finally, we restrict ourselves to 𝑓 -assignments

(see Definition 32). The reason for the restriction is essentially the same as that for the algebraic solution—

𝑓 -assignments are a sum of monomial assignments which are easier to analyze. This is also related to issue

(2) which arises in the EMA algorithm because, recall, that ellipsoids need to be stretched and aligned so

that the contact point is along the desired direction. This was crucial for reducing the dimension of the

problem, which is what ultimately led to the solution. Monomial assignments, we show, have the special

property that they are automatically always aligned. This may be seen as the geometric manifestation of

the properties of monomial assignments which were used to construct the algebraic solution.

We introduce some notation which partially overlaps with that of Section 4, but diverges as it is built

further. Suppose 𝑆 is a 4-tuple (an ordered list with 4 elements) and we wish to refer to the third element

of 𝑆 . We write this as

(∗, ∗, 𝑝, ∗) := 𝑆. (22)

We represent the concatenation of two tuples as (𝑎, 𝑏, 𝑐) ⊕ (𝑑, 𝑒) = (𝑎, 𝑏, 𝑐, 𝑑, 𝑒). A matrix of rank at most 𝑘

is denoted by𝑀𝑘
. We always use a bar in the superscript to distinguish it from powers. For instance, (𝑀𝑘)2

refers to the square of the rank 𝑘 matrix 𝑀𝑘
. Given a projector Π, we denote the set {Π |𝑣⟩ | |𝑣⟩ ∈ R𝑛} by

ΠR𝑛 . Recall that in Section 4 we introduced the use of the symbol, ⊣, to represent the inverse of a matrix

𝐺 ≥ 0 on its non-zero eigenspace, and we called it the pseudo-inverse of 𝐺 .

We briefly revisit the ellipsoid picture introduced in Section 5, this time adapting the notation to ac-

commodate low rank matrices.

Definition 84 (Ellipsoid and Map). Given an 𝑛 × 𝑛 matrix 𝐺 ≥ 0, let Π be a projector onto the non-zero

eigenvalue eigenspace of 𝐺 . The ellipsoid associated with 𝐺 is given by 𝑆𝐺 := {|𝑠⟩ ∈ ΠR𝑛 | ⟨𝑠 |𝐺 |𝑠⟩ = 1}.
The ellipsoid map, E𝐺 : ΠR𝑛 → ΠR𝑛 , is defined as E𝐺 (|𝑣⟩) = |𝑣⟩ /

√︁
⟨𝑣 |𝐺 |𝑣⟩.

Notice that for𝐺 =
∑
𝑖 𝑔𝑖 |𝑖⟩ ⟨𝑖 | and |𝑠⟩ = ∑

𝑖 𝑠𝑖 |𝑖⟩, the equation ⟨𝑠 |𝐺 |𝑠⟩ = 1 can be written as

∑
𝑖 𝑔𝑖𝑠

2

𝑖 = 1,

which clearly describes an ellipsoid. As motivated in Section 1.1.3, and then extensively used in Section 5,

our interest in the geometry of ellipsoids stems from its connection with matrix inequalities which appear

25
We stumbled upon this solution first, and constructed the algebraic solution later. However, in this presentation, we chose

to flip the order for clarity.

88

in EBRM transitions (see Corollary 144). Let 𝐻 ≥ 0 and 𝐺 ≥ 0. One can rewrite a matrix inequality as

follows:

𝐻 −𝑂𝐺𝑂𝑇 ≥ 0 ⇐⇒ ⟨𝑠 |𝐻 |𝑠⟩ − ⟨𝑠 |𝑂𝐺𝑂𝑇 |𝑠⟩ ≥ 0 ∀ |𝑠⟩
⇐⇒ ⟨𝑠 |𝑂𝐺𝑂𝑇 |𝑠⟩ ≤ 1 ∀ {|𝑠⟩ | ⟨𝑠 |𝐻 |𝑠⟩ = 1} .

From Definition 84 one can interpret the last step as stating that along all directions |𝑠⟩, the ellipsoid

corresponding to 𝐻 is inside the ellipsoid corresponding to 𝑂𝐺𝑂𝑇 . If 𝐻 and 𝐺 are fixed, then finding the

orthogonal matrix 𝑂 can be seen as rotating the 𝐺 ellipsoid in such a way that the 𝐻 ellipsoid always

remains inside.

The curvature of the ellipsoid at a given point may be given by the Weingarten Map, as we saw in

Section 5 and Appendix F. In practice, it is easier to first evaluate the Reverse Weingarten Map, which

we denote by𝑊 , and then take its pseudo-inverse,𝑊 ⊣
, to obtain the Weingarten Map itself. Suppose the

ellipsoid under consideration is associated with 𝐺 ≥ 0. If 𝐺 and 𝐺⊣
are known then one can find analytic

expressions for𝑊 and𝑊 ⊣
(see Appendix F), which are summarized in the following definition.

Definition 85 (Normal Function, Weingarten Map, Reverse Weingarten Map, Orthogonal Component).
Given a matrix 𝐺 ≥ 0, its pseudo-inverse 𝐺⊣

and a vector |𝑣⟩, such that 𝐺 |𝑣⟩ ≠ 0, we define the following

functions. We use

〈
𝐺 𝑗

〉
=

〈
𝑣 |𝐺 𝑗 |𝑣

〉
and N(|𝑣⟩) = |𝑣⟩ /⟨𝑣 |𝑣⟩ to denote normalization.

• The Normal Function from 𝐺, |𝑣⟩ to a vector |𝑢⟩ is defined as

|𝑢 (𝐺, |𝑣⟩)⟩ :=
𝐺 |𝑣⟩
⟨𝐺2⟩ .

• The Weingarten Map from 𝐺, |𝑣⟩ to a matrix𝑊 ⊣
is defined as

𝑊 ⊣ (𝐺, |𝑣⟩) :=

√︄
⟨𝐺⟩〈
𝐺2

〉 (
𝐺 +

〈
𝐺3

〉〈
𝐺2

〉
2
𝐺 |𝑣⟩ ⟨𝑣 |𝐺 − 1〈

𝐺2

〉 (
𝐺 |𝑣⟩ ⟨𝑣 |𝐺2 +𝐺2 |𝑣⟩ ⟨𝑣 |𝐺

))
.

• The Reverse Weingarten Map from 𝐺,𝐺⊣, |𝑣⟩ to𝑊 is defined as

𝑊 (𝐺,𝐺⊣, |𝑣⟩) :=

√︄
⟨𝐺2⟩
⟨𝐺⟩

(
𝐺⊣ − |𝑣⟩ ⟨𝑣 |

⟨𝐺⟩

)
.

• The Orthogonal Component from 𝐺, |𝑣⟩ to |𝑒⟩ is defined as

|𝑒 (𝐺, |𝑣⟩)⟩ := N [|𝑣⟩ − ⟨𝑢 |𝑣⟩ |𝑢⟩] ,

where |𝑢⟩ = |𝑢 (𝐺, |𝑣⟩)⟩.

• The Orthogonal Component from |𝑣 ′⟩ , |𝑣⟩ to |𝑒⟩ is defined as

|𝑒 (|𝑣 ′⟩ , |𝑣⟩)⟩ := N[|𝑣⟩ − ⟨𝑣 ′ |𝑣⟩ |𝑣 ′⟩] .

The following lemma and remark provide properties of the Weingarten map that are relevant for our

analysis. Lemma 86 states that evaluating the Weingarten map at a given point of a rotated ellipsoid is

the same as evaluating it for the non-rotated ellipsoid and then rotating it, and Remark 87 shows that𝑊

necessarily has one less rank compared to 𝐺 .

89

Lemma 86. Let 𝐺 ≥ 0 be an 𝑛 × 𝑛 rank 𝑘 matrix and 𝑄 be an isometry from the non-trivial 𝑘-dimensional
subspace of 𝐺 to an arbitrary 𝑘-dimensional subspace. Then

𝑊 ⊣(𝑄𝐺𝑄𝑇 , 𝑄 |𝑣⟩) = 𝑄𝑊 ⊣(𝐺, |𝑣⟩)𝑄𝑇 .

Remark 87. With reference to Definition 85, let𝑊 =𝑊 (𝐺,𝐺⊣, |𝑣⟩),𝑊 ⊣ =𝑊 ⊣(𝐺, |𝑣⟩) and |𝑢⟩ = |𝑢 (𝐺, |𝑣⟩)⟩.
Then𝑊𝐺 |𝑣⟩ = 𝑊 |𝑢⟩ = 0 and𝑊 ⊣𝐺 |𝑣⟩ = 𝑊 ⊣ |𝑢⟩ = 0. This may be seen by a direct computation or by

inspection of the proofs of Lemma 156 and Lemma 154.

6.1 Solution to the 𝑓0-assignment

Recall that a valid function is the same as an EBRM function (see Corollary 144). Given a valid function

𝑡 =
∑
𝑖 𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ −

∑
𝑖 𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
, it is easy to re-write the matrices that appear in the EBRM description into

a form which satisfies
26 𝐻 ≥ 𝑂𝐺𝑂𝑇 , 𝑂 |𝑣⟩ = |𝑤⟩, where |𝑣⟩ � (√𝑝𝑔1

,
√
𝑝𝑔2

. . .) and |𝑤⟩ � (√𝑝ℎ1
,
√
𝑝ℎ2

. . .)
while 𝐻 = diag(𝑥ℎ1

, 𝑥ℎ2
. . .) and 𝐺 = diag(𝑥𝑔1

, 𝑥𝑔2
. . .). As we saw in Section 4, it suffices to restrict to

monomial assignments (see Definition 32), i.e. assignments of the form

𝑡 =

𝑛∑︁
𝑖=1

−(−𝑥𝑖)𝑘∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

for 0 ≤ 𝑥1 < 𝑥2 · · · < 𝑥𝑛 with 0 ≤ 𝑘 ≤ 𝑛 − 2, to convert Mochon’s games into explicit protocols.

Recall that for 𝑓0-assignments,

〈
𝑥𝑘

〉
= 0 for all 0 ≤ 𝑘 ≤ 𝑛 − 2 and

〈
𝑥𝑛−1

〉
≠ 0 (see Lemma 33). The

ellipsoids𝐻 and𝑂𝐺𝑂𝑇 touch along the vector |𝑤⟩ if ⟨𝑤 |𝐻 |𝑤⟩ = ⟨𝑤 |𝑂𝐺𝑂𝑇 |𝑤⟩ = ⟨𝑣 |𝐺 |𝑣⟩. This is the case

here, since ⟨𝑤 |𝐻 |𝑤⟩ − ⟨𝑣 |𝐺 |𝑣⟩ = ⟨𝑥⟩ = 0. This, in turn, means that the normal along |𝑣⟩ of the𝐺 ellipsoid,

|𝑢 (𝐺, |𝑣⟩)⟩ (see Definition 85) must be mapped to the normal along |𝑤⟩ of the 𝐻 ellipsoid, |𝑢 (𝐻, |𝑤⟩)⟩, i.e.

𝑂 must have the form 𝑂 = |𝑢 (𝐻, |𝑤⟩)⟩ ⟨𝑢 (𝐺, |𝑣⟩) | +𝑄 where 𝑄 represents the action of 𝑂 from the space

orthogonal to |𝑢 (𝐺, |𝑣⟩)⟩ onto the space orthogonal to |𝑢 (𝐻, |𝑤⟩)⟩. Furthermore, since 𝐻 ≥ 𝑂𝐺𝑂𝑇 we

must have (see Definition 85)

𝑊 (𝐻,𝐻 ⊣, |𝑤⟩) ≥ 𝑄𝑊 (𝐺,𝐺⊣, |𝑣⟩)𝑄𝑇 ,

i.e., the curvature of the 𝐻 ellipsoid at |𝑤⟩—which is given by𝑊 (𝐻,𝐻 ⊣, |𝑤⟩)—must be greater than that

of the 𝑂𝐺𝑂𝑇 ellipsoid along |𝑣⟩27
—which is given by 𝑄𝑊 (𝐺,𝐺⊣, |𝑣⟩)𝑄𝑇 . The component of |𝑣⟩ along

|𝑢 (𝐺, |𝑣⟩)⟩ is mapped to |𝑢 (𝐻, |𝑤⟩)⟩ under the action of𝑂 , which, so far, has only been partially specified.

The remaining component is |𝑒 (𝐺, |𝑣⟩)⟩ and analogously for |𝑤⟩, the remaining component is |𝑒 (𝐻, |𝑤⟩)⟩.
Using these𝑊 s and |𝑒⟩s as the new matrices and vectors, it turns out that one can apply this argument

repeatedly (when the number of points, 𝑛, is even) to completely specify 𝑂 . Clearly, though, this notation

rapidly becomes complicated, therefore we introduce the so-called Matrix Instance and the Weingarten It-
eration Map. The former is similar to the one introduced in Section 5 albeit with the difference that here

we use isometries and slightly different nomenclature.

Definition 88 (Matrix Instance and its properties). Let

• 𝑛 ≥ 𝑘 be positive integers,

• H𝑘
and G𝑘 be two 𝑘 dimensional Hilbert spaces,

26
See the discussion after Theorem 31; we suppressed the details about the dimensions and the spectra of matrices.

27
We used the fact that𝑊 (𝐺,𝐺⊣, |𝑣⟩) |𝑢 (𝐺, |𝑣⟩)⟩ = 0

90

• 𝐻 ≥ 0, 𝐺 ≥ 0 be 𝑛 ×𝑛 non-zero matrices of rank at most 𝑘 , such that 𝐻 has support only on H𝑘
and

analogously 𝐺 has support only on G𝑘 ,

• |𝑤⟩ ∈ H𝑘
and |𝑣⟩ ∈ G𝑘 be vectors of equal norm, |𝑢ℎ⟩ ∈ H𝑘

and

��𝑢𝑔〉 ∈ G𝑘 be vectors with unit

norm,

A matrix instance is defined to be the tuple X
𝑘

:= (𝐻,𝐺, |𝑤⟩ , |𝑣⟩) and the set of all matrix instances (of

𝑛 × 𝑛 dimensions) is denoted by X𝑛 .

We define the following properties of a matrix instance.

• Let 𝑄 : G𝑘 → H𝑘
be an isometry, i.e. 𝑄𝑇𝑄 = I𝑔 and 𝑄𝑄𝑇 = Iℎ where Iℎ is the identity in H𝑘

and

similarly I𝑔 is the identity in G𝑘 . We say that 𝑄 solves the matrix instance X
𝑘

if and only if

𝐻 ≥ 𝑄𝐺𝑄𝑇 and 𝑄 |𝑣⟩ = |𝑤⟩ .

• We say that X
𝑘

satisfies the contact condition if and only if ⟨𝑤 |𝐻 |𝑤⟩ = ⟨𝑣 |𝐺 |𝑣⟩.

• We say that X
𝑘

satisfies the component condition if and only if ⟨𝑤 |𝐻 2 |𝑤⟩ = ⟨𝑣 |𝐺2 |𝑣⟩.

Definition 89 (Weingarten Iteration Map). Consider a matrix instance X
𝑘 =:

(
𝐻𝑘 ,𝐺𝑘 ,

���𝑤𝑘〉 , ���𝑣𝑘〉) and let

(see Definition 85) ���𝑣𝑘−1

〉
:=

���𝑒 (
𝐺𝑘 ,

���𝑣𝑘〉)〉 , ���𝑤𝑘−1

〉
:=

���𝑒 (
𝐻𝑘 ,

���𝑤𝑘〉)〉 ,
𝐺𝑘−1

:=𝑊 ⊣
(
𝐺𝑘 ,

���𝑣𝑘〉) , 𝐻𝑘−1
:=𝑊 ⊣

(
𝐻𝑘 ,

���𝑤𝑘〉) .
Then we define the Weingarten Iteration Map W : X𝑛 → X𝑛 by its action

X
𝑘 ↦→

(
𝐻𝑘−1,𝐺𝑘−1,

���𝑤𝑘−1

〉
,

���𝑣𝑘−1

〉)
=: X

𝑘−1.

So far, we only relied on the properties of the 𝑓0-assignment for establishing that the contact condition
holds, i.e. ⟨𝑤 |𝐻 |𝑤⟩ = ⟨𝑣 |𝐺 |𝑣⟩. The rest of the argument about was actually quite general. We state it in

terms of matrix instances and prove it below.

Lemma 90. Consider a matrix instance X𝑘 := (𝐻,𝐺, |𝑤⟩ , |𝑣⟩) which satisfies both the contact and the com-

ponent condition. Let
���𝑢𝑘
ℎ

〉
:= |𝑢 (𝐻, |𝑤⟩)⟩,

���𝑢𝑘𝑔 〉 := |𝑢 (𝐺, |𝑣⟩)⟩ and X𝑘−1
:= W(X𝑘) (see Definition 95). If 𝑄𝑘

solves the matrix instance X𝑘 then

𝑄𝑘 =

���𝑢𝑘ℎ〉 〈
𝑢𝑘𝑔

��� +𝑄𝑘−1, (23)

where 𝑄𝑘−1 solves the matrix instance X𝑘−1.

Proof. Let

(
𝐻𝑘 ,𝐺𝑘 ,

���𝑤𝑘〉 , ���𝑣𝑘〉) := X
𝑘

and

(
𝐻𝑘−1,𝐺𝑘−1,

���𝑤𝑘−1

〉
,

���𝑣𝑘−1

〉)
:= X

𝑘−1
. The matrix inequality

𝐻𝑘 ≥ 𝑄𝑘𝐺𝑘
(
𝑄𝑘

)𝑇
describes the containment of the ellipsoid corresponding to 𝐻𝑘 inside the ellipsoid

corresponding to 𝑄𝑘𝐺𝑘
(
𝑄𝑘

)𝑇
. The two ellipsoids touch along the

���𝑤𝑘〉 direction if and only if〈
𝑤𝑘

���𝐻𝑘 ���𝑤𝑘〉 =

〈
𝑤𝑘

���𝑄𝑘𝐺𝑘 (
𝑄𝑘

)𝑇 ���𝑤𝑘〉 =

〈
𝑣𝑘

���𝐺𝑘 ���𝑣𝑘〉 ,
91

where the last step follows from noting𝑄𝑘
���𝑣𝑘〉 =

���𝑤𝑘〉 and the fact that𝑄𝑘 is an isometry. This is precisely

the contact condition. The component condition ensures that the components of the probability vectors

along their respective normals are the same, viz.

〈
𝑤𝑘 |𝑢𝑘

ℎ

〉
=

〈
𝑣𝑘 |𝑢𝑘𝑔

〉
(see Lemma 153). From this we can

deduce the following three necessary conditions.

First, that Equation (23) holds. Indeed, the normal along

���𝑤𝑘〉 (see Lemma 153) of the ellipsoid 𝐻𝑘 and

that of the ellipsoid 𝑄𝑘𝐺𝑘𝑄𝑘𝑇 must be the same. This in turn means that 𝑄𝑘 must map the normal

���𝑢𝑘𝑔 〉
along

���𝑣𝑘〉 of the ellipsoid𝐺𝑘 to the normal

���𝑢𝑘
ℎ

〉
along |𝑤⟩ of the ellipsoid𝐻𝑘 , viz.

���𝑢𝑘𝑔 〉 :=

���𝑢 (
𝐺𝑘 ,

���𝑣𝑘〉)〉 ↦→���𝑢𝑘
ℎ

〉
:=

���𝑢 (
𝐻𝑘 ,

���𝑤𝑘〉)〉 (see Definition 85). Consequently,

𝑄𝑘 =

���𝑢𝑘ℎ〉 〈
𝑢𝑘𝑔

��� +𝑄𝑘−1, (24)

where 𝑄𝑘−1
: G𝑘−1 → H𝑘−1

is an isometry as the action on the normals is completely determined.

Second, the curvature along

���𝑤𝑘〉 of the ellipsoid𝐻𝑘 must be greater than that of the ellipsoid𝑄𝑘𝐺𝑘
(
𝑄𝑘

)𝑇
along the same direction, viz.

𝐻𝑘−1 =𝑊 ⊣
(
𝐻𝑘 ,

���𝑤𝑘 〉) ≥𝑊 ⊣
(
𝑄𝑘𝐺𝑘

(
𝑄𝑘

)𝑇
, 𝑄𝑘

���𝑣𝑘 〉)
= 𝑄𝑘𝑊 ⊣

(
𝐺𝑘 ,

���𝑣𝑘 〉) (
𝑄𝑘

)𝑇
= 𝑄𝑘−1𝑊 ⊣

(
𝐺𝑘 ,

���𝑣𝑘 〉)︸ ︷︷ ︸
=𝐺𝑘−1

(
𝑄𝑘−1

)𝑇
∵ 𝑊 ⊣

(
𝐺𝑘 ,

���𝑣𝑘 〉) ���𝑢𝑘𝑔 〉 = 0;

= 𝑄𝑘−1𝐺𝑘−1

(
𝑄𝑘−1

)𝑇
. see 𝑅𝑒𝑚𝑎𝑟𝑘 87

Finally, since𝑄𝑘
���𝑣𝑘〉 =

���𝑤𝑘〉 by acting with a projector on both sides, we obtain

(
I𝑘
ℎ
−

���𝑢𝑘
ℎ

〉 〈
𝑢𝑘
ℎ

���) 𝑄𝑘 ���𝑣𝑘〉 =(
I𝑘
ℎ
−

���𝑢𝑘
ℎ

〉 〈
𝑢𝑘
ℎ

���) ���𝑤𝑘〉. Using

(
I𝑘
ℎ
−

���𝑢𝑘
ℎ

〉 〈
𝑢𝑘
ℎ

���) 𝑄𝑘 =

(
I𝑘
ℎ
−

���𝑢𝑘
ℎ

〉 〈
𝑢𝑘
ℎ

���) 𝑄𝑘 (
I𝑘𝑔 −

���𝑢𝑘𝑔 〉 〈
𝑢𝑘𝑔

���) in the LHS (follows

from Equation (24)) and Definition 85 for |𝑒 (., .)⟩, one obtains the equation 𝑄𝑘−1

���𝑣𝑘−1

〉
=

���𝑤𝑘−1

〉
. These

show that 𝑄𝑘−1
indeed solves X

𝑘−1
. □

6.1.1 The balanced case

Proposition 91 (The balanced 𝑓0-solution). Let 𝑡 = ℎ − 𝑔 =
∑

2𝑛
𝑖=1
𝑝𝑖 ⟦𝑥𝑖⟧ be an 𝑓0-assignment over the real

coordinates 0 ≤ 𝑥1 < 𝑥2 · · · < 𝑥2𝑛 . Let ℎ =
∑𝑛
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧, 𝑔 =

∑𝑛
𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
where 𝑝ℎ𝑖 , 𝑝𝑔𝑖 > 0, and {𝑥ℎ𝑖 }

and {𝑥𝑔𝑖 } are all distinct. Consider the matrix instance X:=(𝑋ℎ, 𝑋𝑔, |𝑤⟩ , |𝑣⟩)
where 𝑋ℎ � diag(𝑥ℎ1

, 𝑥ℎ2
. . . 𝑥ℎ𝑛), 𝑋𝑔 � diag(𝑥𝑔1

, 𝑥𝑔2
. . . 𝑥𝑔𝑛),

|𝑤⟩ � (√𝑝ℎ1
,
√
𝑝ℎ2

. . .
√
𝑝ℎ𝑛)𝑇 , |𝑣⟩ �

(√
𝑝𝑔1
,
√
𝑝𝑔2

. . .
√
𝑝𝑔𝑛

)𝑇 . The orthogonal matrix

𝑂 =

𝑛∑︁
𝑘=1

���𝑢𝑘ℎ〉 〈
𝑢𝑘𝑔

���
solves X =: X𝑛 (see Definition 88) where the Weingarten Iteration Map (see Definition 95) is used to evaluate

X𝑘−1 = W(X𝑘). This, in turn, is used to obtain
���𝑢𝑘
ℎ

〉
=

���𝑢 (𝐻𝑘 , ���𝑤𝑘〉)〉 and
���𝑢𝑘𝑔 〉 =

���𝑢 (𝐺𝑘 , ���𝑣𝑘〉)〉 for all 𝑘

starting from 𝑘 = 𝑛, with
(
𝐻𝑘 ,𝐺𝑘 ,

���𝑤𝑘〉 , ���𝑣𝑘〉) := X𝑘 .

92

To prove Proposition 91, we use the following lemma which follows from Lemma 162 and Lemma 166

proved in Appendix I.

Lemma 92 (Up Contact/Component Lemma). Consider the matrix instance
X𝑛 := (𝐻𝑛,𝐺𝑛,

��𝑤𝑛〉 , ��𝑣𝑛〉). Suppose the Weingarten Iteration Map (see Definition 95) is applied 𝑙 times to
obtain

X𝑛−𝑙 :=

(
𝐻𝑛−𝑙 ,𝐺𝑛−𝑙 ,

���𝑤𝑛−𝑙 〉 , ���𝑣𝑛−𝑙 〉) .
Then, 〈

𝑣𝑛−𝑙
��� (𝐺𝑛−𝑙)𝑚 ���𝑣𝑛−𝑙 〉 = 𝑟

(〈
(𝐺𝑛)𝑚−1

〉
,

〈
(𝐺𝑛)𝑚

〉
. . . ,

〈
(𝐺𝑛)2𝑙+𝑚

〉)
,

where 𝑚 ≥ 1 and 𝑟 is a multi-variate function which does not have an implicit dependence on
〈
(𝐺𝑛)𝑖

〉
:=〈

𝑣𝑛
�� (𝐺𝑛)𝑖 ��𝑣𝑛〉 for any 𝑖 . Analogously, for 𝐻 and |𝑤⟩ we have〈

𝑤𝑛−𝑙
��� (𝐻𝑛−𝑙)𝑚 ���𝑤𝑛−𝑙 〉 = 𝑟

(〈
(𝐻𝑛)𝑚−1

〉
,

〈
(𝐻𝑛)𝑚

〉
. . . ,

〈
(𝐻𝑛)2𝑙+𝑚

〉)
.

This lemma relates the contact condition of the 𝑙-th matrix instance, i.e. the one obtained after applying

the Weingarten Iteration Map 𝑙 times, to the expectation values associated with the first matrix instance.

These expectation values, for the 𝑓0-solution, are

〈
𝑥𝑘

〉
=

〈
(𝐻𝑛)𝑘

〉
−

〈
(𝐺𝑛)𝑘

〉
= 0 for all 0 ≤ 𝑘 ≤ 𝑛 − 2,

which means that the contact condition also holds for the 𝑙-th matrix instance, thereby allowing one to

repeatedly use Lemma 90 to determine the solution, 𝑂 .

Proof of Proposition 91. We have already done most of the work by proving Lemma 90 and Lemma 92. To

use the Weingarten iteration once for the matrix instance X =: X
𝑛 =: (𝐻𝑛,𝐺𝑛,

��𝑤𝑛〉 , ��𝑣𝑛〉), we must show

that X
𝑛

satisfies the contact condition (see Definition 93 and Lemma 90), viz.〈
𝑤𝑛

���𝐻𝑛 ���𝑤𝑛〉 − 〈
𝑣𝑛

���𝐺𝑛 ���𝑣𝑛〉 =

〈
𝐻𝑛

〉
−

〈
𝐺𝑛

〉
=

𝑛∑︁
𝑖=1

𝑝ℎ𝑖𝑥ℎ𝑖 −
𝑛∑︁
𝑖=1

𝑝𝑔𝑖𝑥𝑔𝑖 =

𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖 = ⟨𝑥⟩ = 0,

which holds due to Lemma 33. After iterating for 𝑙 steps, suppose the matrix instance one obtains is X
𝑛−𝑙

.

To check if another Weingarten iteration is possible, we must check if the contact condition holds, i.e. if〈
𝑤𝑛−𝑙

���𝐻𝑛−𝑙 ���𝑤𝑛−𝑙 〉 − 〈
𝑣𝑛−𝑙

���𝐺𝑛−𝑙 ���𝑣𝑛−𝑙 〉 =

𝑟

(〈
(𝐻𝑛)1

〉
,

〈
(𝐻𝑛)2

〉
. . . ,

〈
(𝐻𝑛)2𝑙+1

〉)
− 𝑟

(〈
(𝐺𝑛)1

〉
,

〈
(𝐺𝑛)2

〉
. . . ,

〈
(𝐺𝑛)2𝑙+1

〉)
vanishes. We used Lemma 92 with𝑚 = 1 to obtain the RHS. Note that〈

(𝐻𝑛)𝑘
〉
−

〈
(𝐺𝑛)𝑘

〉
=

〈
𝑥𝑘

〉
. (25)

If 2𝑙 + 1 ≤ 2𝑛− 2 then from Lemma 33 it follows that both terms become identical and hence the difference

indeed vanishes.
28

A similar argument can be used to obtain the condition 2𝑙+2 ≤ 2𝑛−2 which corresponds

to the component condition (see Definition 93). Assuming 𝑂 =: 𝑂𝑛 solves X
𝑛
, until 𝑙 = 𝑛 − 2, one can

iterate—using the Weingarten Iteration Map, W, and the Normal Function (see Definition 85)— to obtain��𝑢𝑛
ℎ

〉
,

���𝑢𝑛−1

ℎ

〉
, . . . ,

���𝑢𝑛−𝑙
ℎ

〉
, . . . ,

���𝑢1

ℎ

〉
and

���𝑢𝑛𝑔 〉 , ���𝑢𝑛−1

𝑔

〉
, . . . ,

���𝑢𝑛−𝑙𝑔

〉
, . . . ,

���𝑢1

𝑔

〉
which completely determine 𝑂𝑛 .

It only remains to prove that there exists an 𝑂 which solves the matrix instance X
𝑛
. We outline this

proof in Appendix H. □

93

Figure 16: Power diagram for a balanced 𝑓0-assignment with 2𝑛 = 6 points. Starting upwards from

〈
𝑥0

〉
,

two iterations are completed before encountering the instance where the contact condition does not hold

and the normals do not match.

It helps to represent the main argument succinctly using Figure 16. We start right above

〈
𝑥0

〉
with the

matrix instance X
𝑛
. Set 𝑛 = 3 for concreteness. The contact condition at this step corresponds to

〈
𝑥1

〉
= 0,

which is true as the power is less than or equal to 2𝑛 − 2 (here 2𝑛 − 2 = 4; see Lemma 33). We can thus

apply the Weingarten iteration (see Definition 95) which is indicated by the arrow
29

from

〈
𝑥1

〉
to

〈
𝑥2

〉
.

This yields X
𝑛−1

and we can proceed with checking if

〈
𝑥3

〉
= 0, which is true as the power is ≤ 4, and

therefore we can again iterate to obtain X
𝑛−2

, which in this illustration is X
1
. At this point, we have solved

the problem as we can evaluate

���𝑢3

ℎ

〉
,

���𝑢2

ℎ

〉
,

���𝑢1

ℎ

〉
and

���𝑢3

𝑔

〉
,

���𝑢2

𝑔

〉
,

���𝑢1

𝑔

〉
form X

3,X2,X1
respectively to write

𝑂 =
∑

3

𝑘=1

���𝑢𝑘
ℎ

〉 〈
𝑢𝑘𝑔

���. Note that having an even number of total points, 𝑥1 < 𝑥2 · · · < 𝑥2𝑛 , ensures that there

is a proper alignment in the diagram in the sense that both the contact condition for X
2
,

〈
𝑥3

〉
= 0, and the

component condition,

〈
𝑥4

〉
= 0, hold. As we saw in the proof, the contact condition essentially requires

that the component of

���𝑤𝑘〉 along

���𝑢𝑘
ℎ

〉
is the same as the component of

���𝑣𝑘〉 along

���𝑢𝑘𝑔 〉. If this does not

hold, then we do not have 𝑂 |𝑣⟩ = |𝑤⟩, which not only means that we don’t have a solution, but also that

our approach, which was based on that assumption, fails.

6.1.2 The unbalanced case

In the unbalanced case—where the total number of points is odd—the component condition ceases to hold at

the last step, while the contact condition still holds. This means that we can no longer apply the Weingarten

Iteration Map as the premise for Lemma 90 is not true. We have already encountered this situation in

Section 5 and the wiggle-v method we used there also works here. Let us recall that argument using our

present notation. So far, we reasoned that if one ellipsoid is contained inside another,𝐻 ≥ 𝑄𝐺𝑄𝑇 , and they

touch along a vector, |𝑤⟩, then the normal

��𝑢𝑔〉 of the𝐺 ellipsoid along |𝑣⟩ = 𝑄𝑇 |𝑤⟩ must be mapped to the

normal |𝑢ℎ⟩ of the 𝐻 ellipsoid along |𝑤⟩, by the isometry𝑄 . This analysis requires that the normal is well-

defined which is true if the matrices have finite spectra. However, as we pointed out in Appendix A some

valid functions can not be expressed by matrices (EBM) having a finite spectrum and the merge move was

an example. To visualize this, think of the 𝑄𝐺𝑄𝑇 ellipsoid as a circle, the 𝐻 ellipsoid as a line and the |𝑤⟩
vector pointing along this line (see Figure 17; image on the right). The normal to the 𝐻 ellipsoid along the

point of contact can have an arbitrary component along the vector perpendicular to |𝑤⟩. If the line is seen

as an approximation to a squeezed circle, then it is clear that a very small wiggle in |𝑤⟩ can significantly

affect the normal. As we have already seen this more precisely in Section 5, we content ourselves with

28
The number of points here is 2𝑛; in the Lemma they are denoted by 𝑛.

29
It, strictly speaking, goes from below

〈
𝑥1

〉
to above

〈
𝑥2

〉
; the idea was just to indicate the inclusion of the two terms for the

matrix instance X
3
.

94

Figure 17: The infinite curvature case, where the wiggle-v method is applied.

the observation that there is a freedom in the choice of the normal. We can fix this freedom by requiring

that the component condition is satisfied. Denote the direction of infinite curvature (in our ”circle-line”

example it was the vector perpendicular to |𝑤⟩), by |𝑡ℎ⟩. The freedom in correcting the normal can be

expressed by parametrizing it as ��𝑢 ′
ℎ

〉
:= cos\ |𝑢ℎ⟩ + sin\ |𝑡ℎ⟩ (26)

where |𝑢ℎ⟩ := |𝑢 (𝐻, |𝑤⟩)⟩. Enforcing the component condition, ⟨𝑤 |𝑢ℎ⟩ =
〈
𝑣 |𝑢𝑔

〉
, fixes \ , the parameter

which completely specifies the corrected normal,

��𝑢 ′
ℎ

〉
. One can now apply Lemma 90 with

��𝑢 ′
ℎ

〉
instead

of |𝑢ℎ⟩. To formalize this procedure, we define an object, Extended Matrix Instance, which is designed to

hold certain additional quantities derived from the initial matrix instance, i.e. normals and inverse of the

matrices.

Definition 93 (Extended Matrix Instance and its properties). Let

• 𝑛 ≥ 𝑘 be positive integers,

• H𝑘
and G𝑘 be two 𝑘 dimensional Hilbert spaces,

• 𝑆ℎ be the set of 𝑛 × 𝑛 non-zero matrices of rank at most 𝑘 with support only on H𝑘
, i.e.

𝑆ℎ := {𝑛 × 𝑛 matrices 𝑀 : 𝑀 ≥ 0 has rank at most 𝑘, and support only on H𝑘 }

and analogously,

𝑆𝑔 := {𝑛 × 𝑛 matrices 𝑀 : 𝑀 ≥ 0 has rank at most 𝑘, and support only on G𝑘 }

• 𝐻 ∈ 𝑆ℎ , 𝐺 ∈ 𝑆𝑔, 𝐻inv ∈ 𝑆ℎ ∪ {[.]}, 𝐺inv ∈ 𝑆𝑔 ∪ {[.]}

• |𝑤⟩ ∈ H𝑘
and |𝑣⟩ ∈ G𝑘 be vectors of equal norm,

• |𝑢ℎ⟩ ∈ {|𝑢⟩ ∈ H𝑘
: ⟨𝑢 |𝑢⟩ = 1} ∪ {|.⟩} and

��𝑢𝑔〉 ∈ {|𝑢⟩ ∈ G𝑘 : ⟨𝑢 |𝑢⟩ = 1} ∪ {|.⟩}.

A matrix instance is defined as the tuple X
𝑘 = (𝐻,𝐺, |𝑤⟩ , |𝑣⟩). An extended matrix instance is defined as

the tuple
30

M
𝑘

:= X
𝑘 ⊕

(
𝐻inv,𝐺inv, |𝑢ℎ⟩ ,

��𝑢𝑔〉) for the X
𝑘

matrix instance.

30𝐻inv is supposed to explicitly hold the expression for 𝐻⊣
in terms 𝐻 and its powers. Analogously for 𝐺inv.

95

The extended matrix instance is partially specified if 𝐻inv or 𝐺inv equal [.] or if |𝑢ℎ⟩ or

��𝑢𝑔〉 equal |.⟩.
We say that an extended matrix instance is completely specified if it is not partially specified.

The set of all matrix instances of 𝑛 × 𝑛 dimensions is denoted by X𝑛 and the set of all extended matrix

instances is denoted byM𝑛 . We now define some of their properties.

• Let 𝑄 : G𝑘 → H𝑘
be an isometry, i.e. 𝑄𝑇𝑄 = I𝑔 and 𝑄𝑄𝑇 = Iℎ where Iℎ is the identity in H𝑘

and

similarly I𝑔 is the identity in G𝑘 . We say that 𝑄 solves the matrix instance X
𝑘

if and only if

𝐻 ≥ 𝑄𝐺𝑄𝑇 and 𝑄 |𝑣⟩ = |𝑤⟩ .

Similarly we say that 𝑄 resolves (reverse solves) the matrix instance if and only if

𝐻 ≤ 𝑄𝐺𝑄𝑇 and 𝑄 |𝑣⟩ = |𝑤⟩ .

• We say that X
𝑘

satisfies the contact condition if and only if ⟨𝑤 |𝐻 |𝑤⟩ = ⟨𝑣 |𝐺 |𝑣⟩. Similarly for M
𝑘
.

• We say that X
𝑘

satisfies the component condition if and only if ⟨𝑤 |𝐻 2 |𝑤⟩ = ⟨𝑣 |𝐺2 |𝑣⟩. Similarly for

M
𝑘
.

• We say that X
𝑘

has wiggle-𝑤 room (𝜖) along |𝑡ℎ⟩ if and only if 𝐻 has an eigenvector |𝑡ℎ⟩ with eigen-

value 1/𝜖 which has no overlap with |𝑤⟩, viz. 𝐻 |𝑡ℎ⟩ = 𝜖−1 |𝑡ℎ⟩ and ⟨𝑤 |𝑡ℎ⟩ = 0. Similarly, we say that

X
𝑘

has wiggle-𝑣 room (𝜖) along

��𝑡𝑔〉 if and only if𝐺 has an eigenvector

��𝑡𝑔〉 with eigenvalue 1/𝜖 which

has no overlap with |𝑣⟩, viz. 𝐺
��𝑡𝑔〉 = 𝜖−1

��𝑡𝑔〉 and

〈
𝑣 |𝑡𝑔

〉
= 0. For brevity, we say X

𝑘
has wiggle-𝑤 /𝑣

room.

Below we define the Normal Initialization Map which formalizes the evaluation of the normals to initial-

ize a partially specified extended matrix instance.We also revisit the Weingarten Iteration Map by extending

Definition 89 to include extended matrix instances as well. This map now takes a rank 𝑘 extended matrix

instance and constructs a rank 𝑘 − 1 extended matrix instance, which however is only partially specified,

as the normal vectors are left unspecified. In order to completely specify this 𝑘 − 1 rank extended matrix

instance we need to use the above two maps together.

Definition 94 (Normal Initialization Map). Given a matrix instance X
𝑘 =: (𝐻,𝐺, |𝑤⟩ , |𝑣⟩), 𝐻 ⊣

, and𝐺⊣
the

normal initialization map U : X𝑛 → M𝑛 (see Definition 93) is defined by its action

X
𝑘 ↦→ X

𝑘 ⊕ (𝐻 ⊣,𝐺⊣, |𝑢 (𝐻, |𝑤⟩)⟩ , |𝑢 (𝐺, |𝑣⟩)⟩) .

Given an extended matrix instance M
𝑘
, let

(
∗, · · · ∗, |𝑢ℎ⟩ ,

��𝑢𝑔〉) := M
𝑘

(see Equation (22)). The normal

initialization map U : M𝑛 → M𝑛 leaves all components of M
𝑘

unchanged, except for |𝑢ℎ⟩ and

��𝑢𝑔〉 which

are mapped as (see Definition 85)

|𝑢ℎ⟩ ↦→ |𝑢 (𝐻, |𝑤⟩)⟩ and

��𝑢𝑔〉 ↦→ |𝑢 (𝐺, |𝑣⟩)⟩ .

Definition 95 (Weingarten Iteration Map). Consider a matrix instance X
𝑘 =:

(
𝐻𝑘 ,𝐺𝑘 ,

���𝑤𝑘〉 , ���𝑣𝑘〉) and let

(see Definition 85) ���𝑣𝑘−1

〉
:=

���𝑒 (
𝐺𝑘 ,

���𝑣𝑘〉)〉 , ���𝑤𝑘−1

〉
:=

���𝑒 (
𝐻𝑘 ,

���𝑤𝑘〉)〉 ,
𝐺𝑘−1

:=𝑊 ⊣
(
𝐺𝑘 ,

���𝑣𝑘〉) , 𝐻𝑘−1
:=𝑊 ⊣

(
𝐻𝑘 ,

���𝑤𝑘〉) .

96

We define the Weingarten Iteration Map W : X𝑛 → X𝑛 by its action

X
𝑘 ↦→

(
𝐻𝑘−1,𝐺𝑘−1,

���𝑤𝑘−1

〉
,

���𝑣𝑘−1

〉)
=: X

𝑘−1.

Consider an extended matrix instance M
𝑘 =: X

𝑘 ⊕ 𝑆 and let

(
(𝐻𝑘)⊣, (𝐺𝑘)⊣, ∗, ∗

)
:= 𝑆 (see Equation (22)).

Let (see Definition 85)

(𝐺𝑘−1)⊣ :=𝑊

(
𝐺𝑘 , (𝐺𝑘)⊣,

���𝑣𝑘〉) and (𝐻𝑘−1)⊣ :=𝑊

(
𝐻𝑘 , (𝐻𝑘)⊣,

���𝑤𝑘〉) .
We define the Weingarten Iteration Map W : M𝑛 → M𝑛 by its action

M
𝑘 ↦→ X

𝑘−1 ⊕
(
(𝐻𝑘−1)⊣, (𝐺𝑘−1)⊣, |.⟩ , |.⟩

)
=: M

𝑘−1.

The Weingarten Iteration and the Normal initialization maps fail when applied to cases involving in-

finite curvature, e.g. unbalanced 𝑓0-assignment. To remedy this, we formalize the wiggle-w/v part of

our approach. We start with the Wiggle-w/v Normal Initialization Map and continue with the Wiggle-w/v
Iteration Map.

Definition 96 (Wiggle-w/v Normal Initialization Map). Consider a matrix instance X
𝑘
, let (𝐻,𝐺, |𝑤⟩ , |𝑣⟩) :=

X
𝑘

with wiggle-w room along |𝑡ℎ⟩ (see Definition 93). The Wiggle-w Normal Initialization Map U𝑤 : X𝑛 →
M𝑛 is defined by its action

X
𝑘 ↦→ X

𝑘 ⊕ ([.] , [.] , cos\ |𝑢 (𝐻, |𝑤⟩)⟩ + sin\ |𝑡ℎ⟩ , |𝑢 (𝐺, |𝑣⟩)⟩)

where cos\ := ⟨𝑣 |𝑢 (𝐺, |𝑣⟩)⟩ /⟨𝑤 |𝑢 (𝐻, |𝑤⟩)⟩ (see Definition 94).

Given an extended matrix instance M
𝑘
, let

(
∗, · · · ∗, |𝑢ℎ⟩ ,

��𝑢𝑔〉) := M
𝑘

(see Equation (22)), the Wiggle-w
Normal Initialization Map U𝑤 : M𝑛 → M𝑛 is defined by its action on |𝑢ℎ⟩ and

��𝑢𝑔〉 (see Definition 94) as

|𝑢ℎ⟩ ↦→ cos\ |𝑢 (𝐻, |𝑤⟩)⟩ + sin\ |𝑡ℎ⟩ and

��𝑢𝑔〉 ↦→ |𝑢 (𝐺, |𝑣⟩)⟩ .

Similarly, for a matrix instance (𝐻,𝐺, |𝑤⟩ , |𝑣⟩) := X
𝑘

with wiggle-v room along

��𝑡𝑔〉 (see Definition 93).

The Wiggle-v Normal Initialization Map U𝑣 : X𝑛 → M𝑛 is defined by its action

X
𝑘 ↦→ X

𝑘 ⊕
(
[.] , [.] , |𝑢 (𝐻, |𝑤⟩)⟩ , cos\ |𝑢 (𝐺, |𝑤⟩)⟩ + sin\

��𝑡𝑔〉)
where cos\ := ⟨𝑤 |𝑢 (𝐻, |𝑤⟩)⟩ /⟨𝑣 |𝑢 (𝐺, |𝑣⟩)⟩ (see Definition 94).

Given an extended matrix instance M
𝑘
, let

(
∗, · · · ∗, |𝑢ℎ⟩ ,

��𝑢𝑔〉) := M
𝑘

(see Equation (22)), the Wiggle-v
Normal Initialization Map U𝑣 : M𝑛 → M𝑛 is defined by its action on |𝑢ℎ⟩ and

��𝑢𝑔〉 (see Definition 94) as

|𝑢ℎ⟩ ↦→ |𝑢 (𝐻, |𝑤⟩)⟩ and

��𝑢𝑔〉 ↦→ cos\ |𝑢 (𝐺, |𝑣⟩)⟩ + sin\
��𝑡𝑔〉 .

Definition 97 (Wiggle-w/v Iteration Map). Consider an extended matrix instance M
𝑘

and let(
𝐻𝑘 ,𝐺𝑘 ,

���𝑤𝑘〉 , ���𝑣𝑘〉 , (𝐻𝑘)⊣, (𝐺𝑘)⊣, ���𝑢𝑘ℎ〉 , ���𝑢𝑘𝑔 〉) := M
𝑘 .

97

Further, let
31

(see Definition 94)���𝑣𝑘−1

〉
=

���𝑒 (
𝐺𝑘 ,

���𝑣𝑘〉)〉 , ���𝑤𝑘−1

〉
=

���𝑒 (���𝑢𝑘ℎ〉 , ���𝑤𝑘〉)〉 ,
𝐺𝑘−1 =𝑊 ⊣

(
𝐺𝑘 ,

���𝑣𝑘〉) , 𝐻𝑘−1 =𝑊 ⊣
(
𝐻𝑘 ,N

(
(𝐻𝑘)⊣

���𝑢𝑘ℎ〉)) ,
(𝐺𝑘−1)⊣ =𝑊

(
𝐺𝑘 , (𝐺𝑘)⊣,

���𝑣𝑘〉) , (𝐻𝑘−1)⊣ =𝑊
(
𝐻𝑘 , (𝐻𝑘)⊣,N

(
(𝐻𝑘)⊣

���𝑢𝑘ℎ〉)) .
The Wiggle-w Iteration Map W𝑤 : M𝑛 → M𝑛 is defined by its action

M
𝑘 ↦→

(
𝐻𝑘−1,𝐺𝑘−1,

���𝑤𝑘−1

〉
,

���𝑣𝑘−1

〉
, (𝐻𝑘−1)⊣, (𝐺𝑘−1)⊣, |.⟩ , |.⟩

)
=: M

𝑘−1.

Similarly, consider an extended matrix instance M
𝑘

and let(
𝐻𝑘 ,𝐺𝑘 ,

���𝑤𝑘〉 , ���𝑣𝑘〉 , (𝐻𝑘)⊣, (𝐺𝑘)⊣, ���𝑢𝑘ℎ〉 , ���𝑢𝑘𝑔 〉) := M
𝑘 .

Further, let (see Definition 94)���𝑣𝑘−1

〉
=

���𝑒 (���𝑢𝑘𝑔 〉 , ���𝑣𝑘〉)〉 , ���𝑤𝑘−1

〉
=

���𝑒 (
𝐻𝑘 ,

���𝑤𝑘〉)〉 ,
𝐺𝑘−1 =𝑊 ⊣

(
𝐺𝑘 ,N

(
(𝐺𝑘)⊣

���𝑢𝑘𝑔 〉)) , 𝐻𝑘−1 =𝑊 ⊣
(
𝐻𝑘 ,

���𝑤𝑘〉) ,
(𝐺𝑘−1)⊣ =𝑊

(
𝐺𝑘 , (𝐺𝑘)⊣,N

(
(𝐺𝑘)⊣

���𝑢𝑘𝑔 〉)) , (𝐻𝑘−1)⊣ =𝑊
(
𝐻𝑘 , (𝐻𝑘)⊣,

���𝑤𝑘〉) .
The Wiggle-v Iteration Map W𝑣 : M𝑛 → M𝑛 is defined by its action

M
𝑘 ↦→

(
𝐻𝑘−1,𝐺𝑘−1,

���𝑤𝑘−1

〉
,

���𝑣𝑘−1

〉
, (𝐻𝑘−1)⊣, (𝐺𝑘−1)⊣, |.⟩ , |.⟩

)
=: M

𝑘−1.

Finally, we can state the analogue of Lemma 90 in the case where infinite curvatures arise and the

wiggle-𝑤 /𝑣 method is employed.
32

Lemma 98. Consider an extended matrix instance M𝑘 with wiggle-w room 𝜖 along
���𝑡𝑘
ℎ

〉
(see Definition 93).

Assume it is completely specified (Definition 93), and it satisfies both U𝑤 (M𝑘) = M𝑘 (see Definition 96) and the

contact condition (see Definition 93). Let
(
∗, · · · ∗,

���𝑢𝑘
ℎ

〉
,

���𝑢𝑘𝑔 〉) := M𝑘 and M𝑘−1
:= W𝑤 (M𝑘) (see Definition 97).

We assert that if 𝑄𝑘 solves M𝑘 in the limit of 𝜖 → 0 then

𝑄𝑘 =

���𝑢𝑘ℎ〉 〈
𝑢𝑘𝑔

��� +𝑄𝑘−1, (27)

where 𝑄𝑘−1 solves M𝑘−1.

Similarly, consider an extended matrix instance M𝑘 with wiggle-v room 𝜖 along
���𝑡𝑘
ℎ

〉
(see Definition 93).

Assume it is completely specified (see Definition 93), and it satisfies both U𝑣 (M𝑘) = M𝑘 and the contact

31
Recall from the unbalanced 𝑓0-solution that a very small change in the position vector could lead to a significant change in

the normal and therefore also in the calculation of the curvature. Thus, here we infer the correct position as (
��𝐻⊣〉 |𝑢ℎ⟩) given

the corrected normal |𝑢ℎ⟩.
32

Even though the solution works in the limit of 𝜖 → 0, this is not non-physical, as it corresponds to allowing projections in

the description of the protocol; see Section 5.

98

condition. Let
(
∗, · · · ∗,

���𝑢𝑘
ℎ

〉
,

���𝑢𝑘𝑔 〉) := M𝑘 and M𝑘−1
:= W𝑣 (M𝑘). We assert that if 𝑄𝑘 resolves M𝑘 in the limit

of 𝜖 → 0 then
𝑄𝑘 =

���𝑢𝑘ℎ〉 〈
𝑢𝑘𝑔

��� +𝑄𝑘−1,

where 𝑄𝑘−1 resolves M𝑘−1.

Proof. The basic idea of the proof is that the component of the normal along the

���𝑡𝑘
ℎ

〉
direction can be

taken to be arbitrary in the limit of 𝜖 → 0 (see Section 5.4.2). Let us consider a slightly different sequence

of matrix instances, parametrized by 𝜖 , X
′𝑘 (𝜖) =:

(
𝐻 ′𝑘 (𝜖),𝐺 ′𝑘 (𝜖),

���𝑤 ′𝑘 (𝜖)
〉
,

���𝑣 ′𝑘 (𝜖)〉) , which as 𝜖 → 0

converges to lim𝜖→0 X
𝑘 (𝜖) =:

(
𝐻𝑘 ,𝐺𝑘 ,

���𝑤𝑘〉 , ���𝑣𝑘〉) (see Figure 17). One can use operator monotones to

construct such a sequence explicitly and show that the solution of all these instances is the same as a

function of 𝜖 . While the parameters specifying the matrix instances converge, the normal itself does not

converge accordingly i.e.,

lim

𝜖→0

���𝑢𝑘ℎ (𝜖)〉 ≠

���𝑢 (
𝐻 ′𝑘 ,

���𝑤 ′𝑘
〉)〉

.

This is because a small wiggle in

���𝑤𝑘〉 can significantly affect the normal as the curvature along one of

the directions diverges. Hence, given 𝐻𝑘 evaluating the normal along lim𝜖→0

���𝑤𝑘 (𝜖)〉 is not the same as

evaluating the normal along

���𝑤𝑘〉.

We can iterate X
′𝑘 (𝜖) using Definition 95 and Lemma 90, and because the complete solution doesn’t

depend on 𝜖 , we can use it to iterate X
𝑘
. Since it is along

���𝑡𝑘
ℎ

〉
where the curvature diverges as 𝜖 → 0, the

component of the normal along this direction gets ill-defined. Therefore
33

lim

𝜖→0

���𝑢 ′𝑘ℎ (𝜖)
〉
= cos\

���𝑢 (
𝐻𝑘 ,

���𝑤𝑘〉)〉 + sin\

���𝑡𝑘ℎ 〉 ,
where cos\ remains to be determined. The contact condition,

〈
𝑢 ′𝑘
ℎ
(𝜖) |𝑤 ′𝑘 (𝜖)

〉
=

〈
𝑢 ′𝑘𝑔 (𝜖) |𝑣 ′𝑘 (𝜖)

〉
, in the

limit 𝜖 → 0 becomes cos\

〈
𝑢

(
𝐻𝑘 ,

���𝑤𝑘〉) |𝑤𝑘〉 =

〈
𝑢𝑘𝑔 |𝑣𝑘

〉
, since

〈
𝑤𝑘 |𝑡𝑘

ℎ

〉
= 0, thus fixing cos\ . We define���𝑢𝑘

ℎ

〉
:= lim𝜖→0

���𝑢 ′𝑘
ℎ
(𝜖)

〉
, and using

W(X′𝑘 (𝜖)) =: X
′𝑘−1(𝜖) =:

(
𝐻 ′𝑘−1(𝜖),𝐺 ′𝑘−1(𝜖),

���𝑤 ′𝑘−1(𝜖)
〉
,

���𝑣 ′𝑘−1(𝜖)
〉)

, in the limit 𝜖 → 0, we define

X
𝑘−1 =:

(
𝐻𝑘−1,𝐺𝑘−1,

���𝑤𝑘−1

〉
,

���𝑣𝑘−1

〉)
.

Since the diverging term is in 𝐻 ′𝑘 (𝜖) and not in 𝐺 ′𝑘 (𝜖) it follows that 𝐺𝑘−1
and

���𝑣𝑘−1

〉
can be evaluated

using the usual rule specified by the Weingarten Iteration Map, W on X
𝑘
. The relatively non-trivial part is

to show that𝐻𝑘−1
and

���𝑤𝑘−1

〉
can be analogously defined using the correct normal,

���𝑢𝑘
ℎ

〉
. Given a direction

of contact |𝑤⟩, the normal vector of the ellipsoid represented by𝐻 is along𝐻 |𝑤⟩, or—by running the same

argument backwards— given a normal vector |𝑢⟩, one can obtain the direction of the point of contact as

𝐻 ⊣ |𝑢⟩. Since

���𝑤𝑘〉 can not be reliably used to derive quantities we use

���𝑢𝑘
ℎ

〉
to evaluate the Weingarten

33
Subtleties about degeneracies in

���𝑡𝑘
ℎ

〉
are not hard to handle; see Section 5.4.2.

99

map
34

as in Definition 97. If𝑄 solves X
′𝑘 (𝜖) then from Lemma 90 we have𝑄𝑘 =

���𝑢 ′𝑘
ℎ
(𝜖)

〉 〈
𝑢 ′𝑘𝑔 (𝜖)

���+𝑄𝑘−1(𝜖),

where𝑄𝑘 solves X
′𝑘 (𝜖) but doesn’t depend on 𝜖 . Taking the limit and using the correct normals we obtain

Equation (27). □

We have introduced everything we need in order to present the solution to the unbalanced 𝑓0-assignment:

Proposition 99 (The unbalanced 𝑓0-solution). Let 𝑡 = ℎ − 𝑔 =
∑

2𝑛−1

𝑖=1
𝑝𝑖 ⟦𝑥𝑖⟧ be an 𝑓0-assignment over the

real coordinates 0 ≤ 𝑥1 < 𝑥2 · · · < 𝑥2𝑛−1. Let ℎ =
∑𝑛−1

𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧, 𝑔 =

∑𝑛
𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
where 𝑝ℎ𝑖 , 𝑝𝑔𝑖 > 0, and

{𝑥ℎ𝑖 } and {𝑥𝑔𝑖 } are all distinct. Consider the matrix instance X:=(𝑋ℎ, 𝑋𝑔, |𝑤⟩ , |𝑣⟩),
where 𝑋ℎ � diag(𝑥ℎ1

, 𝑥ℎ2
. . . 𝑥ℎ𝑛−1

, 1/𝜖), 𝑋𝑔 � diag(𝑥𝑔1
, 𝑥𝑔2

. . . 𝑥𝑔𝑛−1
, 𝑥𝑔𝑛), |𝑤⟩ � (√𝑝ℎ1

,
√
𝑝ℎ2

. . .
√
𝑝ℎ𝑛−1

, 0)𝑇 ,
|𝑣⟩ �

(√
𝑝𝑔1
,
√
𝑝𝑔2

. . .
√
𝑝𝑔𝑛−1

,
√
𝑝𝑔𝑛

)𝑇 . In the limit of 𝜖 → 0, the orthogonal matrix

𝑂 =

𝑛∑︁
𝑘=1

���𝑢𝑘ℎ〉 〈
𝑢𝑘𝑔

���
solves X =: X𝑛 (see Definition 93) where the Weingarten Iteration Map (see Definition 95) is used to evaluate
X𝑘−1 = W(X𝑘) until 𝑘 = 2, starting from 𝑘 = 𝑛. The Normal Initialization Map (see Definition 94) is used

until 𝑘 = 3 to obtain
���𝑢𝑘
ℎ

〉
and

���𝑢𝑘𝑔 〉, viz. U(X𝑘) =:

(
∗, · · · ∗,

���𝑢𝑘
ℎ

〉
,

���𝑢𝑘𝑔 〉) . The Wiggle-w Normal Initialization

Map (see Definition 94) is used to evaluate
���𝑢2

ℎ

〉
and

���𝑢2

𝑔

〉
, viz. U𝑤 (X2) =:

(
∗, ∗,

���𝑤2

〉
,

���𝑣2

〉)
⊕

(
∗, ∗,

���𝑢2

ℎ

〉
,

���𝑢2

𝑔

〉)
.

Finally,
���𝑢1

ℎ

〉
:=

���𝑒 (���𝑢2

ℎ

〉
,

���𝑤2

〉)〉
and

���𝑢1

𝑔

〉
:=

���𝑒 (���𝑢2

𝑔

〉
,

���𝑣2

〉)〉
.

Proof. The proof is essentially the same as that for the balanced case until the very last step. After iterating

for 𝑙 steps, suppose the matrix instance one obtains is X
𝑛−𝑙

. To check if another Weingarten iteration is

possible, we must check if〈
𝑤𝑛−𝑙

��� (𝐻𝑛−𝑙)𝑚 ���𝑤𝑛−𝑙 〉 − 〈
𝑣𝑛−𝑙

��� (𝐺𝑛−𝑙)𝑚 ���𝑣𝑛−𝑙 〉 =

𝑟

(〈
(𝐻𝑛)𝑚

〉
,

〈
(𝐻𝑛)𝑚+1

〉
. . . ,

〈
(𝐻𝑛)2𝑙+𝑚

〉)
− 𝑟

(〈
(𝐺𝑛)𝑚

〉
,

〈
(𝐺𝑛)𝑚+1

〉
. . . ,

〈
(𝐺𝑛)2𝑙+𝑚

〉)
(28)

vanishes for both𝑚 = 1 and𝑚 = 2, i.e.,〈
𝑥2𝑙+1

〉
= 0 and

〈
𝑥2𝑙+2

〉
= 0 (29)

and for their lower power analogues (see Equation (25)). The 𝑚 = 1 case is the contact condition and

𝑚 = 2 is the component condition (see Definition 93). If 2𝑙 + 2 ≤ 2𝑛 − 3 then from Lemma 33 (we use

2𝑛 − 1 instead of 𝑛 in the lemma) it follows that both terms in Equation (28) become identical and hence

the difference indeed vanishes. Consequently, until 𝑙 = 𝑛 − 3, one can iterate to obtain X
𝑛,X𝑛−1, . . .X3,X2

which in turn can be used to determine

��𝑢𝑛
ℎ

〉
,

���𝑢𝑛−1

ℎ

〉
, . . . ,

���𝑢3

ℎ

〉
and

���𝑢𝑛𝑔 〉 , ���𝑢𝑛−1

𝑔

〉
, . . . ,

���𝑢3

𝑔

〉
(see Definition 94).

Since

〈
𝑥2𝑛−3=2(𝑛−2)+1

〉
= 0 but

〈
𝑥2𝑛−2=2(𝑛−2)+2

〉
≠ 0, we can use Definition 96 on X

2=𝑛−(𝑛−2)
to determine���𝑢2

ℎ

〉
and

���𝑢2

𝑔

〉
. The vectors

���𝑤1

〉
and

���𝑣1

〉
are fixed by the requirement that𝑂 is orthogonal and𝑂 |𝑣⟩ = |𝑤⟩.

In Appendix H we show that there exists𝑂 solving the matrix instance X
𝑛
, therefore using Lemma 90 and

Lemma 98 we completely determine 𝑂 =
∑𝑛
𝑘=1

���𝑢𝑘
ℎ

〉 〈
𝑢𝑘𝑔

���. □

In Figure 18 we show an example of an 𝑓0-assignment with 5 points.

34
It is not hard to see why 𝐻𝑘−1

does not diverge as 𝜖 goes to zero (granted there was only one diverging eigenvalue in 𝐻𝑘

to start with). The idea is simply to use the reverse Weingarten map; this suppresses the divergence into zero, then one projects

out a rank-one subspace. If there was only one zero eigenvalue and if the subspace includes this eigenspace (spanned by a single

eigenvector), then the resulting matrix would not have any zero eigenvalues. This can then be inverted to obtain the Weingarten

map which is now finite and well-defined.

100

Figure 18: Power diagram representative of an unbalanced 𝑓0-assignment with 5 points (again 𝑛 = 3).

Starting upwards from

〈
𝑥0

〉
, one iteration is completed before encountering the instance where the contact

condition still holds but the normals do not match, thus the wiggle-w method (double-line arrows) is

employed.

6.2 Solution to monomial assignments

For the 𝑓0-assignments every iteration led to an increase in the power of 𝑥 in the expectation value

〈
𝑥𝑘

〉
—

we were moving upwards in the power diagram, see Figure 16 and Figure 18. For monomial assignments,

though, this is not exactly the case, as there are iterations that lead to a decrease in the power of 𝑥—we also

need to move downwards in the power diagram, see Figure 19 and Figure 20. This decrease corresponds to

inverting the coordinates in the 𝑓 −assignment, and in Appendix G we show that this transformation leads

to the transposition of the solution, i.e. if 𝑂 solves an 𝑓 −assignment, 𝑡 , then 𝑂𝑇 solves the 𝑓 −assignment

resulting from the inversion of the coordinates in 𝑡 . In the same vein, a monomial with the highest permis-

sible degree can be seen as an 𝑓0−assignment, when it comes to its solution (see also Example 159 for an

illustration of an alternative solution to this assignment). In this context, to obtain the solutions to general

monomial assignments we need to combine iterations using the matrices and their inverses. The following

Flip Map switches between these two kinds of iterations.

Definition 100 (Flip Map). Consider an extended matrix instance M
𝑛 =:

(
𝐻,𝐺, |𝑤⟩ , |𝑣⟩ , 𝐻 ⊣,𝐺⊣, |𝑢ℎ⟩ ,

��𝑢𝑔〉) .
We define the Flip Map F : M𝑛 → M𝑛 as M

𝑛 ↦→
(
𝐻 ⊣,𝐺⊣, |𝑤⟩ , |𝑣⟩ , 𝐻,𝐺, |𝑢ℎ⟩ ,

��𝑢𝑔〉) =: F (𝑀𝑛).

We also need a way to keep track of the powers in the contact and component conditions of the matrix

instances after a certain number of iterations in both directions. To this end, we state the following lemma

which can be proven by combining Lemma 164, Lemma 165 and Lemma 166 in Appendix I.

Lemma 101 (Up-then-Down Contact/Component Lemma). Consider the extended matrix instance

M′𝑛
:= U(𝐻 ′𝑛,𝐺 ′𝑛,

���𝑤 ′𝑛
〉
,

���𝑣 ′𝑛〉 , (𝐻 ′𝑛)⊣, (𝐺 ′𝑛)⊣, |.⟩ , |.⟩) .

Suppose the Normal Initialization Map and the Weingarten Iteration Map (see Definition 94 and Definition 95)

are applied 𝑘 times to obtain M′𝑛−𝑘 . Let 𝑛 − 𝑘 = 𝑑 and consider M̃
𝑑
= U(F (M′𝑑)). Suppose the Normal

Initialization Map and the Weingarten Iteration map are applied 𝑙 more times to obtain

M̃
𝑑−𝑙

=:

(
�̃�𝑑−𝑙 , �̃�𝑑−𝑙 ,

����̃�𝑑−𝑙 〉 , ���𝑣𝑑−𝑙 〉 , ∗, · · · ∗) . Then,〈
𝑣𝑛−𝑘−𝑙

��� (�̃�𝑛−𝑘−𝑙)` ���𝑣𝑛−𝑘−𝑙 〉 = 𝑟

(〈
(𝐺 ′𝑛)−(2𝑙+`)

〉
, . . . ,

〈
(𝐺 ′𝑛)2𝑘−1+`

〉
,

〈
(𝐺 ′𝑛)2𝑘+`

〉)
where ` ≥ 1 and 𝑟 is a multi-variate function which does not have an implicit dependence on

〈
(𝐺 ′𝑛)𝑖

〉
:=〈

𝑣 ′𝑛
�� (𝐺 ′𝑛)𝑖

��𝑣 ′𝑛〉 for any 𝑖 . The corresponding statement for 𝐻 and |𝑤⟩ also holds.

101

From Definition 32 we know that a monomial problem can either be balanced or unbalanced. We

find the solution in these two cases separately and in both cases we differentiate between aligned and

misaligned assignments (see Definition 32).

Proposition 102 (Solving the Balanced Monomial Problem). Let

𝑡 =

2𝑛∑︁
𝑖=1

− (−𝑥𝑖)𝑚∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧ =

𝑛∑︁
𝑖=1

𝑥𝑚
ℎ𝑖
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ −

𝑛∑︁
𝑖=1

𝑥𝑚𝑔𝑖 𝑝𝑔𝑖
�
𝑥𝑔𝑖

�
be a balanced monomial assignment over the real coordinates 0 < 𝑥1 < 𝑥2 · · · < 𝑥2𝑛−1 < 𝑥2𝑛 (see Definition 32)
where 𝑝ℎ𝑖 , 𝑝𝑔𝑖 > 0 and {𝑥ℎ𝑖 } and {𝑥𝑔𝑖 } are all distinct. For𝑚 = 0 and𝑚 = 2𝑛 − 2 the problem reduces to the
𝑓0-assignment (see Proposition 99) using Corollary 158 in the latter case. For the remaining cases consider the
corresponding matrix instance X[:= (𝑋[

ℎ
, 𝑋

[
𝑔 , (𝑋

[

ℎ
)𝑏 |𝑤⟩ , (𝑋[𝑔)𝑏 |𝑣⟩) where

• if 𝑏 =𝑚/2 is an integer (the aligned case) then [= 𝑛, 𝑗 ′ = 𝑗 = 1,

𝑋𝑛
ℎ
� diag(𝑥ℎ1

, 𝑥ℎ2
. . . 𝑥ℎ𝑛), 𝑋𝑛𝑔 � diag(𝑥𝑔1

, 𝑥𝑔2
. . . 𝑥𝑔𝑛),���𝑤𝑛〉 � (√𝑝ℎ1

,
√
𝑝ℎ2

. . .
√
𝑝ℎ𝑛),

���𝑣𝑛〉 � (
√︁
𝑝𝑔1
,
√︁
𝑝𝑔2

. . .
√︁
𝑝𝑔𝑛).

• else if 𝑏 =𝑚/2 is not an integer (the misaligned case) then [= 𝑛 + 1, 𝑗 ′ = 3, 𝑗 = 4,

𝑋𝑛+1

ℎ
� diag(𝑥ℎ1

, 𝑥ℎ2
. . . 𝑥ℎ𝑛 , 1/𝜖), 𝑋𝑛+1

𝑔 � diag(𝑥𝑔1
, 𝑥𝑔2

. . . 𝑥𝑔𝑛 , 𝜖),���𝑤𝑛+1

〉
� (√𝑝ℎ1

,
√
𝑝ℎ2

. . .
√
𝑝ℎ𝑛 , 0),

���𝑣𝑛+1

〉
� (

√︁
𝑝𝑔1
,
√︁
𝑝𝑔2

. . .
√︁
𝑝𝑔𝑛 , 0).

Let 𝑘 =
⌊

2𝑛−2−𝑚
2

⌋
. In the limit of 𝜖 → 0, the matrix instance is solved by

𝑂 =

[−𝑘+1∑︁
𝑖=[

���𝑢 ′𝑖ℎ 〉 〈
𝑢 ′𝑖𝑔

��� + 𝑗∑︁
𝑖=[−𝑘

����̃�𝑖ℎ〉 〈
�̃�𝑖𝑔

��� + (
1 − 𝛿 𝑗, 𝑗 ′

) 1∑︁
𝑖=𝑗 ′

���𝑢 ′𝑖ℎ 〉 〈
𝑢 ′𝑖𝑔

��� ,
where the terms of the first sum are evaluated in the same way regardless of the alignment. We start with
M′[

:= U
(
X[⊕

(
(𝑋[
ℎ
)−1, (𝑋[𝑔)−1, |.⟩ , |.⟩

))
(see Definition 93, Definition 94 and Definition 95) and define

M′𝑙 =:

(
∗, · · · ∗,

���𝑢 ′𝑙ℎ 〉
,

���𝑢 ′𝑙ℎ 〉)
for [− 𝑘 + 1 ≤ 𝑙 ≤ [

using the relations

M′𝑙−1
:= U(W(M′𝑙)) for [− 𝑘 + 1 ≤ 𝑙 − 1 ≤ [− 1.

The terms of the second sum are also the same in both cases. We start with M̃
[−𝑘

:= U(F (M′[−𝑘)) and using
the relations

M̃
𝑙−1

:= U(W(M̃𝑙)) for 𝑗 ′ ≤ 𝑙 − 1 ≤ [− 𝑘 − 1

we define (
∗, · · · ∗,

����̃� ¯𝑙
ℎ

〉
,

����̃�𝑙𝑔〉) := M̃
𝑙

for 𝑗 ≤ 𝑙 ≤ [− 𝑘.

102

At this point, the aligned problem is solved, and we use the following relations to specify the terms of the third
sum, which solves the misaligned problem:

M̃
3

:= U𝑣 (W(M̃4))

M′2
:= U𝑤 (F (W𝑣 (M̃

3))) =:

(
∗, ∗,

���𝑤 ′2
〉
,

���𝑣 ′2〉 , ∗, ∗, ���𝑢 ′2ℎ 〉
,

���𝑢 ′2𝑔 〉)
���𝑢 ′1ℎ 〉

:=

���𝑒 (���𝑢 ′2ℎ 〉
,

���𝑤 ′2
〉)〉

and
���𝑢 ′1𝑔 〉

:=

���𝑒 (���𝑢 ′2𝑔 〉
,

���𝑣 ′2〉)〉 ,
where we used Definition 100, Definition 96 and Definition 97.

Proof. We first prove that 𝑂 solves X
𝑛

in the aligned case, i.e. when 𝑏 = 𝑚/2 is an integer (see Figure 19

and note that [= 𝑛 in this case). We denote the components of M
′𝑙

by

Figure 19: Power diagram representative of the aligned (left) and misaligned (right) balanced monomial

assignment for 2𝑛 = 10 with𝑚 = 4 (left) and𝑚 = 3 (right).

(
𝐻 ′𝑙 ,𝐺 ′𝑙 ,

���𝑤 ′𝑙
〉
,

���𝑣 ′𝑙 〉 , ∗ . . . , ∗) := M
′𝑙 .

We start by checking if M
′𝑛

satisfies the contact condition, that is

〈
𝑤 ′𝑛 ��𝐻 ′𝑛 ��𝑤 ′𝑛〉 =

〈
𝑣 ′𝑛

��𝐺 ′𝑛 ��𝑣 ′𝑛〉. The

LHS is

〈
𝑤𝑛

�� (𝑋𝑛
ℎ
)2𝑏+1

��𝑤𝑛〉 =
〈
(𝑋𝑛
ℎ
)𝑚+1

〉
and similarly the RHS is

〈
(𝑋𝑛𝑔)𝑚+1

〉
. The contact condition can

then be expressed as

〈
𝑥𝑚+1

〉
= 0, and similarly the component condition as

〈
𝑥𝑚+2

〉
= 0. From Lemma 33,

we know that they hold for𝑚 + 2 ≤ 2𝑛 − 2, i.e. 𝑚 ≤ 2𝑛 − 4 (see Figure 19 with 2𝑛 = 10 which means that

𝑚 can be at most 6 for the contact/component conditions to hold). Assuming 𝑚 ≤ 2𝑛 − 4 we can apply

the Weingarten Iteration Map (Definition 95) and use Lemma 90 along with the Normal Initialization Map

(see Definition 94) to construct part of the solution, viz. use M
′𝑙−1

:= U(W(M′𝑙)). Suppose we iterate ^

times to obtain M
′𝑛−^

. The contact condition now corresponds to〈
𝑤 ′𝑛−^

���𝐻 ′𝑛−^
���𝑤 ′𝑛−^

〉
=

〈
𝑣 ′𝑛−^

���𝐺 ′𝑛−^
���𝑣 ′𝑛−^〉 .

The RHS can be written as

𝑟

(〈
𝑤 ′𝑛

��� (𝐻 ′𝑛)1

���𝑤 ′𝑛
〉
,

〈
𝑤 ′𝑛

��� (𝐻 ′𝑛)2

���𝑤 ′𝑛
〉
. . .

〈
𝑤 ′𝑛

��� (𝐻 ′𝑛)2^+1

���𝑤 ′𝑛
〉)

using Lemma 92. Similarly for the LHS. The contact condition can then be expressed as

〈
𝑥2^+1+𝑚〉

= 0

Similarly, the component condition can be expressed as

〈
𝑥2^+2+𝑚〉

= 0. From Lemma 33, we know that

103

these conditions hold if 2^ + 2 +𝑚 ≤ 2𝑛 − 2 which yields ^ ≤ 𝑛 − 𝑏 − 2 = 𝑘 − 1. Therefore, if 𝑂 solves

the matrix instance then it must have the form 𝑂 =
∑𝑛−𝑘+1

𝑙=1

���𝑢 ′𝑙
ℎ

〉 〈
𝑢 ′𝑙𝑔

��� + 𝑄𝑛−𝑘 , where 𝑄𝑛−𝑘 is an isometry

acting on the orthogonal space which remains to be determined. To proceed, we can apply the Weingarten

Iteration Map to M
′𝑛−𝑘+1

and obtain W(M′𝑛−𝑘+1) =: M
′𝑛−𝑘

, but this instance satisfies neither the contact

nor the component condition (corresponds to M
′3

in Figure 19).

Let (𝐻,𝐺, |𝑤⟩ , |𝑣⟩ , 𝐻 ⊣,𝐺⊣, ∗, ∗) := M
′𝑛−𝑘

. Solving M
′𝑛−𝑘

corresponds to finding a 𝑄 such that 𝑄 |𝑣⟩ =
|𝑤⟩ and 𝐻 ≥ 𝑄𝐺𝑄𝑇 . The matrix inequality can equivalently be written as 𝐻 ⊣ ≤ 𝑄𝐺⊣𝑄𝑇 . Using 𝐻 ⊣

and𝐺⊣

decreases the powers and thereby allows us to proceed. We evaluate

M̃

𝑛−𝑘
= U(F (W(M′𝑛−𝑘+1)),

and let M̃

𝑙
=:

(
�̃� 𝑙 , �̃�𝑙 ,

����̃�𝑙 〉 , ���𝑣𝑙 〉) (this step is indicated by the small triangles next to M
′3

and M̃

3

in Fig-

ure 19). Let the matrix instance one obtains after iterating 𝑙 times using M̃

𝑙−1

:= U(W(M̃𝑙)) starting with

M̃

𝑛−𝑘
be M̃

𝑛−𝑘−𝑙
. The contact condition for M̃

𝑛−𝑘−𝑙
is〈

�̃�𝑛−𝑘−𝑙
��� �̃�𝑛−𝑘−𝑙 ����̃�𝑛−𝑘−𝑙 〉 =

〈
𝑣𝑛−𝑘−𝑙

��� �̃�𝑛−𝑘−𝑙 ���𝑣𝑛−𝑘−𝑙 〉 ,
which effectively becomes

〈
𝑥−(2𝑙+1)+𝑚〉

= 0 using Lemma 101, noting that the lowest power is relevant

here, and that

��𝑤 ′𝑛〉 = (𝑋𝑛
ℎ
)𝑚/2

��𝑤𝑛〉. Similarly for

��𝑣 ′𝑛〉. Analogously, the component condition yields〈
𝑥−(2𝑙+2)+𝑚〉

= 0. From Lemma 33, we know that these conditions hold if 0 ≤ −(2𝑙 + 2) +𝑚 which yields

𝑙 ≤ 𝑏 − 1. This means that the rank, i.e. 𝑛 − 𝑘 − 𝑙 , until which the contact/component condition holds is

���𝑛 − 𝑛 + 1����+𝑏 − 𝑏 + 1 = 2 (included), where we used 𝑘 = 𝑛 −𝑏 − 1. Hence, if𝑄𝑛−𝑘 resolves M̃

𝑛−𝑘
then it must

have the form 𝑄𝑘 =
∑

1

𝑙=𝑛−𝑘

����̃�𝑙
ℎ

〉 〈
�̃�𝑙𝑔

���, due to Lemma 90, which completely specifies 𝑄𝑘 and, together with

the previous argument, proves that 𝑂 solves M
𝑛
.

Let us move to the misaligned case (i.e. when𝑚/2 is not an integer; see Figure 19). We can proceed as

in the aligned case until the contact/component condition is violated. After ^ steps the said condition is〈
𝑥2^+2+𝑚〉

= 0 which holds until 2^ +2+𝑚 ≤ 2𝑛−2 (using Lemma 33). This corresponds to ^ ≤ 2𝑛−2−𝑚
2

−1,

which yields ^ ≤ 𝑘 − 1. Hence M
′[−𝑘+1

is the last instance satisfying the required contact/component

conditions (this corresponds to M
′5

in Figure 19; use (𝑛 + 1) − (𝑘 − 1) with 𝑛 = 5, 𝑘 = 2). Supposing

𝑂 solves X
𝑛+1

we deduce (using Lemma 90 and the arguments from the previous case) that it must have

the form 𝑂 =
∑[−𝑘+1

𝑙=[

���𝑢 ′𝑙
ℎ

〉 〈
𝑢 ′𝑙𝑔

��� + 𝑄[−𝑘 . At the instance M
′[−𝑘 = W(M′[−𝑘+1

) we flip as before to obtain

M̃

[−𝑘
= U(F (M′𝑛−𝑘)) (these are indicated by the triangles next to M

′4
and M̃

4

in Figure 19). We write

the contact/component condition after 𝑙 iterations as

〈
𝑥−(2𝑙+2)+𝑚〉

= 0 which from Lemma 33 holds if

0 ≤ −(2𝑙 + 2) +𝑚. This in turn yields 𝑙 ≤ 𝑚/2 − 1 entailing that the rank, i.e. [− 𝑘 − 𝑙 , until which the

contact/component condition holds is �𝑛+1− (�𝑛−1+ ⌊−𝑚/2⌋) − (⌊𝑚/2⌋ −1) = 4 (this corresponds to M̃

4

in

Figure 19). Continuing with the argument for the form of𝑂 , we can deduce (again, using Lemma 90 and the

previous reasoning) that 𝑄[−𝑘 =
∑

4

𝑙=[−𝑘

����̃�𝑙
ℎ

〉 〈
�̃�𝑙𝑔

��� +𝑄3
. Since M̃

4

satisfies the required contact/component

conditions, we can iterate once more. However, at this point, only the contact condition holds but the

component condition does not (see Figure 19). Consider M̃

3

= U𝑣 (W(M̃4)) and let (�̃� 3, �̃�3, ∗, · · · ∗) := M̃

3

.

We can not apply Lemma 90 on M̃

3

but we can apply Lemma 98 as M̃

3

has wiggle-v room 𝜖 along |𝑛 + 1⟩
(see Definition 93). To see this, note that the probability vectors had no component along |𝑛 + 1⟩ and

that we inverted the matrices using the flip map. This yields 𝑄3 =

����̃�3

ℎ

〉 〈
�̃�3

𝑔

��� + 𝑄2
. The lemma also lets

104

us proceed by the application of the Wiggle-v Iteration map (see Definition 97) M̃

2

= W𝑣 (M̃
3). Since

at this point even the contact condition does not hold, we again apply the flip map and the Wiggle-w

Initialization Map to obtain M
′2 = U𝑤 (F (M̃2)). Instead of decreasing the power of 𝑥 , the contact condition

of this instance corresponds to increasing the power of 𝑥 , i.e. the contact condition for M
′2

corresponds to〈
𝑥2(𝑘−1)+2+𝑚+1

〉
= 0 which in turn holds if 2𝑘+𝑚+1 ≤ 2𝑛−2. Indeed, 0 =��2𝑛��−2+2 ⌊−𝑚/2⌋+𝑚+1 ≤��2𝑛��−2 = 0

(substituting for 𝑛 = 5, 𝑘 = 2,𝑚 = 3 we get 8 = 2 · 2 + 3 + 1 ≤ 2 · 5 − 2 = 8). Since M
′2

has wiggle-w

room 𝜖 along |𝑛 + 1⟩, we were justified at applying the Wiggle-w Initialization Map (see Lemma 98). This

and the orthogonality of 𝑂 , determine the form of 𝑄2 =

���𝑢 ′2
ℎ

〉 〈
𝑢 ′2𝑔

��� + ���𝑢 ′1
ℎ

〉 〈
𝑢 ′1𝑔

���, which in turn completely

determines the solution, 𝑂 . □

For unbalanced monomial assignments, either there is a misalignment at the top or at the bottom. If

the misalignment is at the top, it is easier to start by going downwards. To facilitate the tracking of powers

in this case we need the following lemma—similar to Lemma 101— which can be proved by combining

Lemma 164, Lemma 165 and Lemma 166 in Appendix I.

Lemma 103 (Down-then-Up Contact/Component Lemma). Consider the matrix instance

M̃
𝑛

:= U((𝐻 ′𝑛)⊣, (𝐺 ′𝑛)⊣,
���𝑤 ′𝑛

〉
,

���𝑣 ′𝑛〉 , 𝐻 ′𝑛,𝐺 ′𝑛, |.⟩ , |.⟩) .

Suppose the Normal Initialization Map and the Weingarten Iteration Map (see Definition 94 and Definition 95

) are applied 𝑘 times to obtain M̃
𝑛−𝑘

. Let 𝑛 − 𝑘 = 𝑑 and consider M′𝑑 = U(F (M̃𝑑)). Suppose the Normal
Initialization Map and the Weingarten Iteration map are applied 𝑙 more times to obtain
M′𝑑−𝑙 =:

(
𝐻 ′𝑑−𝑙 ,𝐺 ′𝑑−𝑙 ,

���𝑤 ′𝑑−𝑙
〉
,

���𝑣 ′𝑑−𝑙 〉 , ∗, · · · ∗) . Then,〈
𝑣 ′𝑛−𝑘−𝑙

��� (𝐺 ′𝑛−𝑘−𝑙
)` ���𝑣 ′𝑛−𝑘−𝑙 〉 = 𝑟

(〈
(𝐺 ′𝑛)−(2𝑘+`)

〉
, . . . ,

〈
(𝐺 ′𝑛)2𝑙+`−1

〉
,

〈
(𝐺 ′𝑛)2𝑙+`

〉)
,

where ` ≥ 1 and 𝑟 is a multi-variate function which does not have an implicit dependence on
〈
(𝐺 ′𝑛)𝑖

〉
:=〈

𝑣 ′𝑛
�� (𝐺 ′𝑛)𝑖

��𝑣 ′𝑛〉 for any 𝑖 . The corresponding statement for 𝐻 and |𝑤⟩ also holds.

The solution to the unbalanced monomial problem is as follows.

Proposition 104 (Solving the Unbalanced Monomial Problem). Let

𝑡 =

2𝑛−1∑︁
𝑖=1

− (−𝑥𝑖)𝑚∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧ =

𝑛ℎ∑︁
𝑖=1

𝑥𝑚
ℎ𝑖
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ −

𝑛𝑔∑︁
𝑖=1

𝑥𝑚𝑔𝑖 𝑝𝑔𝑖
�
𝑥𝑔𝑖

�
be an unbalanced monomial assignment over the real coordinates 0 < 𝑥1 < 𝑥2 · · · < 𝑥2𝑛−1 (see Definition 32)
where 𝑝ℎ𝑖 , 𝑝𝑔𝑖 > 0, and {𝑥ℎ𝑖 } and {𝑥𝑔𝑖 } are all distinct. For𝑚 = 0 and𝑚 = 2𝑛 − 3 the problem reduces to the
𝑓0-assignment (see Proposition 99) using Corollary 158 in the latter case. For the remaining cases, consider the
matrix instance X𝑛 := (𝑋𝑛′

ℎ
, 𝑋𝑛

′
𝑔 , (𝑋𝑛

′
ℎ
)𝑏 |𝑤⟩ , (𝑋𝑛′𝑔)𝑏 |𝑣⟩) where

• if 𝑛ℎ = 𝑛 (the wiggle-v case; corresponds to odd𝑚)

𝑋𝑛
ℎ
� diag(𝑥ℎ1

, 𝑥ℎ2
. . . 𝑥ℎ𝑛−1

, 𝑥ℎ𝑛), 𝑋𝑛𝑔 � diag(𝑥𝑔1
, 𝑥𝑔2

. . . 𝑥𝑔𝑛−1
, 𝜖),���𝑤𝑛〉 � (√𝑝ℎ1

,
√
𝑝ℎ2

. . .
√
𝑝ℎ𝑛−1

,
√
𝑝ℎ𝑛),

���𝑣𝑛〉 � (
√︁
𝑝𝑔1
,
√︁
𝑝𝑔2

. . .
√︁
𝑝𝑔𝑛−1

, 0),

• else if 𝑛𝑔 = 𝑛 (the wiggle-w case; corresponds to even𝑚)

𝑋𝑛
ℎ
� diag(𝑥ℎ1

, 𝑥ℎ2
. . . 𝑥ℎ𝑛−1

, 1/𝜖), 𝑋𝑛𝑔 � diag(𝑥𝑔1
, 𝑥𝑔2

. . . 𝑥𝑔𝑛−1
, 𝑥𝑔𝑛),���𝑤𝑛〉 � (√𝑝ℎ1

,
√
𝑝ℎ2

. . .
√
𝑝ℎ𝑛−1

, 0),
���𝑣𝑛〉 � (

√︁
𝑝𝑔1
,
√︁
𝑝𝑔2

. . .
√︁
𝑝𝑔𝑛−1

,
√︁
𝑝𝑔𝑛).

105

Consider the wiggle-v case. Let 𝑘 = 2𝑛−3−𝑚
2

. In the limit of 𝜖 → 0,

𝑂 =

𝑛−𝑘+1∑︁
𝑖=𝑛

���𝑢 ′𝑖ℎ 〉 〈
𝑢 ′𝑖𝑔

��� + 1∑︁
𝑖=𝑛−𝑘

����̃�𝑖ℎ〉 〈
�̃�𝑖𝑔

���
solves the matrix instance X𝑛 where the terms in the sum are defined as follows. We start with M′𝑛

:= U(X𝑛 ⊕(
(𝑋𝑛
ℎ
)−1, (𝑋𝑛𝑔)−1, |.⟩ , |.⟩

)
(see Definition 94 and Definition 95) and using the relation

M′𝑙−1
:= U(W(M′𝑙)) for 𝑛 − 𝑘 + 1 ≤ 𝑙 − 1 ≤ 𝑛 − 1,

we define (
∗, · · · ∗,

���𝑢 ′𝑙ℎ 〉
,

���𝑢 ′𝑙𝑔 〉)
:= M′𝑙 for 𝑛 − 𝑘 + 1 ≤ 𝑙 ≤ 𝑛.

These define the terms of the first sum. For the terms of the second sum we start with M̃
𝑛−𝑘

:= U(F (M′𝑛−𝑘))
and using the relation

M̃
𝑙−1

:= U(W(M̃𝑙)) for 3 ≤ 𝑙 − 1 ≤ 𝑛 − 𝑘 − 1,

we define (
∗, · · · ∗,

����̃� ¯𝑙
ℎ

〉
,

����̃�𝑙𝑔〉) := M̃
𝑙

for 2 ≤ 𝑙 ≤ 𝑛 − 𝑘.

Finally, we define (see Definition 96)

M̃
2

:= U𝑣 (W(M̃3)) =:

(
∗, ∗,

����̃�2

〉
,

���𝑣2

〉
, ∗ · · · ∗

)
,����̃�1

ℎ

〉
:=

���𝑒 (����̃�2

ℎ

〉
,

����̃�2

〉)〉
and

����̃�1

𝑔

〉
:=

���𝑒 (����̃�2

𝑔

〉
,

���𝑣2

〉)〉
.

Consider the wiggle-w case. Let 𝑘 = 𝑚
2

. In the limit of 𝜖 → 0,

𝑂 =

𝑛−𝑘+1∑︁
𝑖=𝑛

����̃�𝑖ℎ〉 〈
�̃�𝑖𝑔

��� + 1∑︁
𝑖=𝑛−𝑘

���𝑢 ′𝑖ℎ 〉 〈
𝑢 ′𝑖𝑔

���
solves the matrix instance X𝑛 where the terms in the sum are defined as follows. We start with

�̃�𝑛
:= U

(
F

(
X𝑛 ⊕

(
(𝑋𝑛
ℎ
)−1, (𝑋𝑛𝑔)−1, |.⟩ , |.⟩

)))
(see Definition 94, Definition 100 and Definition 95) and using the relation

M̃
𝑙−1

:= U(W(M̃𝑙) for 𝑛 − 𝑘 + 1 ≤ 𝑙 − 1 ≤ 𝑛 − 1,

we define (
∗, · · · ∗,

���𝑢 ′𝑙ℎ 〉
,

���𝑢 ′𝑙𝑔 〉)
:= M̃

𝑙
for 𝑛 − 𝑘 + 1 ≤ 𝑙 ≤ 𝑛.

106

These determine the terms of the first sum. For the terms of the second sum we start with M′𝑛−𝑘
:= U(F (M̃𝑛−𝑘))

and using

M′𝑙−1
:= U(W(M′𝑙)) for 3 ≤ 𝑙 − 1 ≤ 𝑛 − 𝑘 − 1,

we define (
∗, · · · ∗,

���𝑢 ′𝑙ℎ 〉
,

���𝑢 ′𝑙𝑔 〉)
:= M′𝑙 for 2 ≤ 𝑙 ≤ 𝑛 − 𝑘.

Finally, we define (see Definition 96)

M′2
:= U𝑤 (W(M′3)) =: (∗, ∗,

���𝑤 ′2
〉
,

���𝑣 ′2〉 , ∗ · · · ∗),���𝑢 ′1
ℎ

〉
:=

���𝑒 (���𝑢 ′2
ℎ

〉
,

���𝑤 ′2
〉)〉

and
���𝑢 ′1𝑔 〉

:=

���𝑒 (���𝑢 ′2𝑔 〉
,

���𝑣 ′2〉)〉.

Proof. From Figure 20 it is clear that the wiggle-v case is essentially the same as the balanced misaligned

monomial until the second to last step (the wiggle-w step after wiggle-v is not needed). Furthermore, the

Figure 20: Power diagram representative of the unbalanced monomial assignment for 𝑛 = 4 (2𝑛 − 1 = 7)

with𝑚 = 3 (left; wiggle-v case) and𝑚 = 4 (right; wiggle-w case).

wiggle-w case is essentially the same as the wiggle-v case except that we must start by going downwards,

i.e. using M̃

𝑛
and then flip to M

′𝑘
to go upwards and end with a wiggle-w iteration. The arguments for the

contact/component conditions go through unchanged using Lemma 103. □

Combining the results together, we can now formally state and prove the following theorem.

Theorem 105. Let 𝑡 be an 𝑓 -assignment (see Definition 32) over strictly positive coordinates (without loss
of generality; see Lemma 36). Suppose 𝑓 has real and strictly positive roots. Decompose the 𝑓 -assignment as
𝑡 =

∑
𝑖 𝛼𝑖𝑡

′
𝑖 , where 𝛼𝑖 are positive and 𝑡 ′𝑖 are monomial assignments (see Definition 32 and Lemma 35). Then,

each 𝑡 ′𝑖 admits a solution (see Definition 34) given by Proposition 102 or Proposition 104 depending on its type;
this is the effective solution (see Definition 34) to the 𝑓 -assignment 𝑡 .

Proof. In Section 4.1 we established that in order to determine the solution to an 𝑓 -assignment, it is suf-

ficient to express it as a sum of monomial assignments and find the solution for each one of them. A

monomial assignment is either balanced—in which case its solution is given by Proposition 102—or it is

unbalanced—in which case its solution is given by Proposition 104. □

107

7 Future work

As we now have a construction for quantum WCF protocols with arbitrarily small biases, one can focus

on the following aspects of the problem.

Optimality Various questions about the optimality of WCF protocols are unanswered.

• C. Mochon’s Games. In Section 4, in order to find the solution to the 𝑓 -assignment, we expressed it

as a sum of monomial assignments; this yields an increase in dimensions, which in turn corresponds

to an increase in the number of qubits required.
35

One approach towards reducing this, could be

to understand the connection between the perturbatively defined unitary from Section 3 and the

exact one in Section 4, corresponding to the 1/10-bias protocols. Another approach could be to

try reducing the dimension using a standard technical lemma from [Moc07], which is stated as

Lemma 146 here. In [Moc07], for converting a TIPG into a TDPG, the catalyst state is used. For

the point game with 𝜖 (1) = 1/6 bias we can, by inspection, obtain a TDPG which only requires

both parties to hold qutrits locally and exchange one qubit at each round. However, if one uses the

catalyst state approach, then the dimension of the space scales with the number rounds, which in

turn diverges as the bias 𝜖 (1) = 1/6 is approached. Can we convert C. Mochon’s TIPG into a TDPG

by harnessing this game structure? There is a notion of time-ordering at play—any TIPG in which

points can be moved about without involving causal loops, can be easily converted into a TDPG. The

challenge is to formalize this procedure and explore whether it can be used to lower bound the bias.

The techniques recently introduced by C. Miller [Mil20] for proving a lower bound on the number

of rounds needed in WCF protocols may be helpful in this respect.

• E. Pelchat-P. Hø yer games. E. Pelchat and P. Høyer [HP13] proposed another family of TIPGs which

achieve arbitrarily low bias as well. It might be interesting to see if an explicit WCF protocol can be

obtained corresponding to these games; hopefully in fewer dimensions. The construction is based

on considering a combination of valid and invalid basic moves which together form valid non-trivial

moves. The challenge is to find a decomposition such that each term stays valid and is still, only

slightly non-trivial. The corresponding unitaries could perhaps be determined perturbatively, if they

involve a constant number of points unlike the terms in the decomposition of the 𝑓 -assignments.

• Framework. Constructing general tools to optimize and test the optimality of a TIPG for the number

of points and rounds in the associated TDPG would be very useful to both constructing better pro-

tocols as well as benchmarking the existing ones. One way of doing this is related to the two general

methods (see [Moc07] and Section 3), which are known for converting a TDPG into an explicit WCF

protocol, granted that certain unitaries are known. Understanding how they compare and if they

are optimal under an appropriately defined notion of optimality is useful. We already know that,

in terms of the time duration for which the message register must be kept coherent, the recently

introduced method of Section 3 is better. Nevertheless, in some cases, it is sub-optimal, as it fails to

produce a 1/6-bias protocol from its TDPG which matches the resource usage of the 1/6 protocol

given by C. Mochon. An obvious starting point could be to adapt the framework to work better in

this particular case.

Relaxing assumptions The assumptions we made to obtain the protocols are not realistic.

• System size. The size of the incoming system containing the message is assumed to be known, how-

ever, this is hard to enforce physically. One way of dropping this assumption could be to adapt the

35
The dimension of the Hilbert space is expected to scale exponentially with the number of points involved in the 𝑓 -assignment.

108

following technique introduced in Ref [Him+17]—imposition of constraints on average energy for

prepare-and-measure-like scenarios. The main challenge in our setting is that the parties do not trust

each other. Nevertheless, the tools developed in [Him+17] should prove to be useful.

• Noise. Adding noise in a WCF protocol can cause a disagreement even when both parties are honest.

It has been shown that in the absence of noise but in the present of losses, WCF can still be performed

with a certain bias [Ber+09]. An interesting question is whether there exist lower bounds to the lossy

but noiseless setting. One way of proceeding could be to generalize the A. Y. Kitaev/C. Mochon

frameworks in order to handle an additional outcome corresponding to aborting the protocol, and

to constraint the unitaries in such a way that the cheating player can control the losses. Even a

preliminary understanding of this procedure should allow us to construct protocols with improved

bias. One hurdle is the number of rounds which, in the loss tolerant protocol, varies depending on

the strategy of the malicious player, while the A. Y. Kitaev/C. Mochon framework is designed for

protocols with a constant number of rounds. Here one should be able to extend the notion of the

“catalyst state”. Quantum computation is realistic due to error correction. This, however, does not

necessarily mean that WCF can be performed in such a setting, as it is not obvious how we can

correct errors in this adversarial scenario without compromising the security. Consider the simplest

error correcting code and the simplest WCF protocol. The honest case should work, but in the case

where a malicious party is involved, the evaluation of the bias involves the communication of the

syndrome, the error decoding and finally its correction by means of a unitary. These steps can be

directly adapted into the A. Y. Kitaev/C. Mochon framework with the seemingly minor alteration

that a malicious party can influence the unitary of the honest player in a way which is consistent with

the noise model. The challenge here would be to make the security claim independent of the noise

model. An appropriate relaxation of the constraints in the dual problem might be the key to this

conundrum. Recently, generic techniques have been proposed to study adversarial cryptographic

settings [GRS18] which might prove to be the right language for describing such a relaxation. One

way of approaching the problem could be to further generalize the technique so that it facilitates

the handling of noise without any error correction. This step itself should be of independent value

as its results would serve as benchmarks against which error correction based schemes must be

compared. A simultaneous but complementary approach could be to construct protocols which are

robust against specific models of noise, such as those appearing in quantum optics. The insights

from the two approaches should quicken the advance towards the final construction.

• Device Dependence. Device-independent WCF protocols have been suggested and involve the ex-

change of quantum boxes [Aha+14a]. Their bias, however, is abysmal and to date, no improvement

has been reported and no lower bound on the bias is known. The first step could be to redefine the

protocol in a generalizable way; perhaps construct successively worse protocols—by, for instance,

using fewer boxes—and subsequently, consider them as belonging to the same family. One could try

to use PR-boxes or non-signaling boxes to understand the behavior better. A complementary ap-

proach could be to construct the analogue of the A. Y. Kitaev/C. Mochon framework where instead

of qubits and unitaries, one studies more abstract objects which simulate the exchange of boxes

and are only constrained by their statistics. Recently, WCF protocols were also considered in the

context of general probabilistic theories [SS19], that are used to extend the impossibility results the-

ories beyond quantum. They used conic duality which is the key point of A. Y. Kitaev/C. Mochon

frameworks and hence, this approach could be a starting point.

A fundamental connection It is known that nearly perfect WCF implies optimal strong coin flipping

[CK09]. Does this work the other way around? This question may be more general than quantum, since

109

the construction in [CK09] is purely classical. One way of proceeding could be to try and construct optimal

strong coin flipping protocols directly by adapting the A. Y. Kitaev/C. Mochon technique and using known,

simpler protocols as a starting point. The insight might not only help answer this question but also yield

another construction for nearly perfect WCF.

110

Acknowledgements

This research was supported by the Belgian Fonds de la Recherche Scientifique - FNRS, under grant no

R.50.05.18.F (QuantAlgo). The QuantAlgo project has received funding from the QuantERA European Re-

search Area Network (ERA-NET) Cofund in Quantum Technologies implemented within the European

Union’s Horizon 2020 program. The most substantial part of the work was done while ASA was at the

Université libre de Bruxelles, Belgium. He acknowledges support from the Belgian Fonds pour la Forma-

tion á la Recherche dans l’Industrie et dans l’Agriculture - FRIA, under grant no 1.E.081.17F. ASA also

acknowledges funding provided by the Institute for Quantum Information and Matter. CV also acknowl-

edges support from the SQIG-Security and Quantum Information Group. This work is funded by the FCT

– Fundação para a Ciência e a Tecnologia through national funds FCT I.P. and, when eligible, by COM-

PETE 2020 FEDER funds, under the Scientific Employment Stimulus - Individual Call (CEEC Individual)

2020.03274.CEECIND/CP1621/CT0003 and Award UIDB/50008/2020. We are thankful to Nicolas Cerf, Tom

Van Himbeeck, Kishor Bharti, Stefano Pironio and Ognyan Oreshkov for various insightful discussions.

References

[Aha+14a] Nati Aharon et al. “Weak Coin Flipping in a Device-Independent Setting.” In: Revised Se-
lected Papers of the 6th Conference on Theory of Quantum Computation, Communication, and
Cryptography - Volume 6745. TQC 2011. Madrid, Spain: Springer-Verlag New York, Inc., 2014,

pp. 1–12. isbn: 978-3-642-54428-6. doi: 10.1007/978- 3- 642- 54429- 3_1. url: http:
//dx.doi.org/10.1007/978-3-642-54429-3_1.

[Aha+14b] Dorit Aharonov et al. “A simpler proof of existence of quantum weak coin flipping with

arbitrarily small bias.” In: SIAM Journal on Computing 45.3 (2014), pp. 633–679. doi: 10.1137/
14096387x. arXiv: 1402.7166.

[Amb04] Andris Ambainis. “A new protocol and lower bounds for quantum coin flipping.” In: Journal
of Computer and System Sciences 68.2 (2004), pp. 398–416. doi: 10.1016/j.jcss.2003.07.
010. arXiv: 0204022 [quant-ph].

[ARW18] Atul Singh Arora, Jérémie Roland, and Stephan Weis. Weak Coin Flipping. 2018. url: https:
//atulsingharora.github.io/WCF.

[AS10] Nati Aharon and Jonathan Silman. “Quantum dice rolling: a multi-outcome generalization of

quantum coin flipping.” In: New Journal of Physics 12.3 (2010), p. 033027. doi: 10.1088/1367-
2630/12/3/033027.

[BB84] Charles H. Bennett and Gilles Brassard. “Public-Key Distribution and Coin Tossing.” In: Int.
Conf. on Computers, Systems and Signal Processing. 1984, pp. 175–179.

[Ber+09] Guido Berlı́n et al. “Fair loss-tolerant quantum coin flipping.” In: Physical Review A 80.6 (2009).

doi: 10.1103/physreva.80.062321.

[Bha13] Rajendra Bhatia. Matrix Analysis. Springer New York, 2013. url: https://www.ebook.de/
de/product/25252147/rajendra_bhatia_matrix_analysis.html.

[Blu83] Manuel Blum. “Coin Flipping by Telephone a Protocol for Solving Impossible Problems.” In:

SIGACT News 15.1 (1983), pp. 23–27. issn: 0163-5700. doi: 10.1145/1008908.1008911. url:

http://doi.acm.org/10.1145/1008908.1008911.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

2004. doi: 10.1017/cbo9780511804441.

111

https://doi.org/10.1007/978-3-642-54429-3_1
http://dx.doi.org/10.1007/978-3-642-54429-3_1
http://dx.doi.org/10.1007/978-3-642-54429-3_1
https://doi.org/10.1137/14096387x
https://doi.org/10.1137/14096387x
https://arxiv.org/abs/1402.7166
https://doi.org/10.1016/j.jcss.2003.07.010
https://doi.org/10.1016/j.jcss.2003.07.010
https://arxiv.org/abs/0204022
https://atulsingharora.github.io/WCF
https://atulsingharora.github.io/WCF
https://doi.org/10.1088/1367-2630/12/3/033027
https://doi.org/10.1088/1367-2630/12/3/033027
https://doi.org/10.1103/physreva.80.062321
https://www.ebook.de/de/product/25252147/rajendra_bhatia_matrix_analysis.html
https://www.ebook.de/de/product/25252147/rajendra_bhatia_matrix_analysis.html
https://doi.org/10.1145/1008908.1008911
http://doi.acm.org/10.1145/1008908.1008911
https://doi.org/10.1017/cbo9780511804441

[CGS13] André Chailloux, Gus Gutoski, and Jamie Sikora. “Optimal bounds for semi-honest quantum

oblivious transfer.” In: Chicago Journal of Theoretical Computer Science, 2016 (2013). arXiv:

1310.3262v2. url: http://arxiv.org/abs/1310.3262v2.

[CK09] André Chailloux and Iordanis Kerenidis. “Optimal Quantum Strong Coin Flipping.” In: 50th
FOCS. 2009, pp. 527–533. doi: 10.1109/FOCS.2009.71. arXiv: 0904.1511.

[CK11] André Chailloux and Iordanis Kerenidis. “Optimal Bounds for Quantum Bit Commitment.”

In: 52nd FOCS. 2011, pp. 354–362. doi: 10.1109/FOCS.2011.42. arXiv: 1102.1678.

[CKS13] André Chailloux, Iordanis Kerenidis, and Jamie Sikora. “Lower bounds for Quantum Oblivious

Transfer.” In: Quantum Information & Computation 13.1-2 (2013), pp. 158–177. arXiv: 1007.
1875.

[Col07] Roger Colbeck. “Impossibility of secure two-party classical computation.” In: Phys. Rev. A 76

(6 2007), p. 062308. doi: 10.1103/PhysRevA.76.062308. url: https://link.aps.org/
doi/10.1103/PhysRevA.76.062308.

[Fri18] Tobias Fritz. Does the set of operator monotone functions become larger if we restrict ourselves
to real symmetric matrices? 2018. url: https://mathoverflow.net/questions/298359/
does - the - set - of - operator - monotone - functions - become - larger - if - we -
restrict-ourselv.

[Gan09] Maor Ganz. “Quantum Leader Election.” In: (2009). arXiv: 0910.4952v2. url: https://
arxiv.org/abs/0910.4952v2.

[GRS18] Gus Gutoski, Ansis Rosmanis, and Jamie Sikora. “Fidelity of quantum strategies with appli-

cations to cryptography.” In: Quantum 2 (2018), p. 89. doi: 10.22331/q-2018-09-03-89.

[Hag89] William W. Hager. “Updating the Inverse of a Matrix.” In: SIAM Review 31.2 (1989), pp. 221–

239. doi: 10.1137/1031049.

[Him+17] Thomas Van Himbeeck et al. “Semi-device-independent framework based on natural physical

assumptions.” In: Quantum 1 (2017), p. 33. doi: 10.22331/q-2017-11-18-33.

[HP13] Peter Høyer and Edouard Pelchat. “Point Games in Quantum Weak Coin Flipping Protocols.”

MA thesis. University of Calgary, 2013. url: http://hdl.handle.net/11023/873.

[Kil88] Joe Kilian. “Founding Crytpography on Oblivious Transfer.” In: Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing. STOC ’88. Chicago, Illinois, USA: Associ-

ation for Computing Machinery, 1988, pp. 20–31. isbn: 0897912640. doi: 10.1145/62212.
62215. url: https://doi.org/10.1145/62212.62215.

[Kit03] Alexei Kitaev. “Quantum coin flipping.” Talk at the 6th workshop on Quantum Information

Processing. 2003.

[KN04] Iordanis Kerenidis and Ashwin Nayak. “Weak coin flipping with small bias.” In: Information
Processing Letters 89.3 (2004), pp. 131–135. doi: 10.1016/j.ipl.2003.07.007.

[Lo97] Hoi-Kwong Lo. “Insecurity of quantum secure computations.” In: Phys. Rev. A 56 (2 1997),

pp. 1154–1162. doi: 10.1103/PhysRevA.56.1154. url: https://link.aps.org/doi/
10.1103/PhysRevA.56.1154.

[Mil20] Carl A. Miller. “The Impossibility of Efficient Quantum Weak Coin Flipping.” In: Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. New York, NY, USA:

Association for Computing Machinery, 2020, pp. 916–929. isbn: 9781450369794. url: https:
//doi.org/10.1145/3357713.3384276.

112

https://arxiv.org/abs/1310.3262v2
http://arxiv.org/abs/1310.3262v2
https://doi.org/10.1109/FOCS.2009.71
https://arxiv.org/abs/0904.1511
https://doi.org/10.1109/FOCS.2011.42
https://arxiv.org/abs/1102.1678
https://arxiv.org/abs/1007.1875
https://arxiv.org/abs/1007.1875
https://doi.org/10.1103/PhysRevA.76.062308
https://link.aps.org/doi/10.1103/PhysRevA.76.062308
https://link.aps.org/doi/10.1103/PhysRevA.76.062308
https://mathoverflow.net/questions/298359/does-the-set-of-operator-monotone-functions-become-larger-if-we-restrict-ourselv
https://mathoverflow.net/questions/298359/does-the-set-of-operator-monotone-functions-become-larger-if-we-restrict-ourselv
https://mathoverflow.net/questions/298359/does-the-set-of-operator-monotone-functions-become-larger-if-we-restrict-ourselv
https://arxiv.org/abs/0910.4952v2
https://arxiv.org/abs/0910.4952v2
https://arxiv.org/abs/0910.4952v2
https://doi.org/10.22331/q-2018-09-03-89
https://doi.org/10.1137/1031049
https://doi.org/10.22331/q-2017-11-18-33
http://hdl.handle.net/11023/873
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215
https://doi.org/10.1016/j.ipl.2003.07.007
https://doi.org/10.1103/PhysRevA.56.1154
https://link.aps.org/doi/10.1103/PhysRevA.56.1154
https://link.aps.org/doi/10.1103/PhysRevA.56.1154
https://doi.org/10.1145/3357713.3384276
https://doi.org/10.1145/3357713.3384276

[Moc05] Carlos Mochon. “Large family of quantum weak coin-flipping protocols.” In: Phys. Rev. A 72

(2005), p. 022341. doi: 10.1103/PhysRevA.72.022341. arXiv: 0502068 [quant-ph].

[Moc07] Carlos Mochon. “Quantum weak coin flipping with arbitrarily small bias.” In: arXiv:0711.4114
(2007). arXiv: 0711.4114.

[NS03] Ashwin Nayak and Peter Shor. “Bit-commitment-based quantum coin flipping.” In: Phys. Rev.
A 67 (1 2003), p. 012304. doi: 10.1103/PhysRevA.67.012304. url: https://link.aps.
org/doi/10.1103/PhysRevA.67.012304.

[NST14] Ashwin Nayak, Jamie Sikora, and Levent Tunçel. “A search for quantum coin-flipping proto-

cols using optimization techniques.” In: Mathematical Programming 156.1-2 (2014), pp. 581–

613. doi: 10.1007/s10107-015-0909-y. arXiv: 1403.0505.

[NST15] Ashwin Nayak, Jamie Sikora, and Levent Tunçel. “Quantum and classical coin-flipping proto-

cols based on bit-commitment and their point games.” In: (2015). arXiv: 1504.04217v1. url:

http://arxiv.org/abs/1504.04217v1.

[Sch09] Rolf Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press,

2009. doi: 10.1017/cbo9781139003858.

[Sho94] Peter W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring.” In:

Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc.

Press, 1994. doi: 10.1109/sfcs.1994.365700.

[SM50] Jack Sherman and Winifred J. Morrison. “Adjustment of an Inverse Matrix Corresponding to

a Change in One Element of a Given Matrix.” In: The Annals of Mathematical Statistics 21.1

(1950), pp. 124–127. doi: 10.1214/aoms/1177729893.

[SR02] Robert W. Spekkens and Terry Rudolph. “Quantum Protocol for Cheat-Sensitive Weak Coin

Flipping.” In: Phys. Rev. Lett. vol 89, 227901 (2002) 89.22 (Feb. 21, 2002).doi: 10.1103/PhysRevLett.
89.227901. arXiv: quant-ph/0202118v2 [quant-ph].

[SS19] Jamie Sikora and John H. Selby. “On the impossibility of coin-flipping in generalized proba-

bilistic theories via discretizations of semi-infinite programs.” In: (2019). arXiv: 1901.04876
[quant-ph].

113

https://doi.org/10.1103/PhysRevA.72.022341
https://arxiv.org/abs/0502068
https://arxiv.org/abs/0711.4114
https://doi.org/10.1103/PhysRevA.67.012304
https://link.aps.org/doi/10.1103/PhysRevA.67.012304
https://link.aps.org/doi/10.1103/PhysRevA.67.012304
https://doi.org/10.1007/s10107-015-0909-y
https://arxiv.org/abs/1403.0505
https://arxiv.org/abs/1504.04217v1
http://arxiv.org/abs/1504.04217v1
https://doi.org/10.1017/cbo9781139003858
https://doi.org/10.1109/sfcs.1994.365700
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1103/PhysRevLett.89.227901
https://doi.org/10.1103/PhysRevLett.89.227901
https://arxiv.org/abs/quant-ph/0202118v2
https://arxiv.org/abs/1901.04876
https://arxiv.org/abs/1901.04876

A Connection with conic duality

In Section 2, we showed the existence of quantum WCF protocols with arbitrarily small biases, however, we

took the characterization of EBM transitions on faith (see Proposition 21). Here, we present the analysis

leading to this alternative characterization of EBM transitions. We see that the set of EBM functions is

a convex cone, and the dual of this cone happens to be the set of operator monotone functions which

have a surprisingly elegant and simple characterization. To harness this, we use the known fact that

for a closed convex cone, the dual of the dual is the original cone itself (also called a bi-dual). So, the

bi-dual of the cone of EBM functions equals the cone of EBM functions (up to closures). The dual of

operator monotone functions has an easy description because operator monotone functions have an easy

description. Combining these, we obtain a more useful characterization of EBM functions. This result

was first presented by C. Mochon and A. Y. Kitaev, but it was proved using matrix perturbation theory

[Moc07]. The argument we just sketched, however, was also outlined therein. In this section, we present

the approach of D. Aharonov, A. Chailloux, M. Ganz, I. Kerenidis and L. Magnin [Aha+14b] who worked

out a simpler proof, along the lines alluded to by C. Mochon and A. Y. Kitaev. The proofs of all the results

we present here (unless referred otherwise) can be found in [Aha+14b].

A.1 Formalizing the equivalence between transitions and functions

Working with functions instead of transitions is rather useful as it will become evident in the course of

this analysis.

Definition 106 (𝐾 , EBM functions). A function 𝑎 : [0,∞) → Rwith finite support is an EBM function if the

line transition 𝑎− → 𝑎+ is EBM (see Definition 15), where 𝑎+ : [0,∞) → [0,∞) and 𝑎− : [0,∞) → [0,∞)
denote, respectively, the positive and the negative part of 𝑎 (i.e. 𝑎 = 𝑎+ −𝑎− with supp(𝑎+) ∩ supp(𝑎−) = 𝜙
and 𝑎± ≥ 0).

We denote by 𝐾 the set of EBM functions.

Definition 107 (𝐾Λ, EBM functions on [0,Λ]). For any finite Λ, a function 𝑎 : [0,Λ) → R with finite

support is an EBM function with support on [0,Λ] if the line transition 𝑎− → 𝑎+ is EBM with its spectrum

in [0,Λ], where 𝑎− : [0,Λ) [0,∞) and 𝑎+ : [0,Λ) → [0,∞) denote, respectively, the positive and the

negative part of 𝑎.

We denote the set of EBM functions with support on [0,Λ] by 𝐾Λ.

If the functions 𝑔, ℎ denoting the transition 𝑔 → ℎ have no common support, then the function de-

scription uniquely captures the said transition. In this section we restrict to such transitions and therefore

use them (i.e. functions and transitions) interchangeably.

It is useful to abstract the different characterizations of EBM functions into a property P that the

function must satisfy, and we can define games that use these P-functions. This facilitates the handling

of subtleties which arise in proving that the set of EBM functions is the same as the set of P-functions for

specific Ps.

Definition 108 (Horizontal and vertical P-functions). A P-function 𝑎 : [0,∞) → R is a function with

finite support that has the property P. A function 𝑡 : [0,∞) × [0,∞) → R is a

• horizontal P-function if for all 𝑦 ≥ 0, 𝑡 (., 𝑦) is a P-function;

• vertical P-function if for all 𝑥 ≥ 0, 𝑡 (𝑥, .) is a P-function.

Suppose P-functions are EBM functions. Consider a TDPG given by the following sequence of valid

transitions

𝑡0 = 𝑝0 =
1

2

(⟦0, 1⟧ + ⟦1, 0⟧) → 𝑝1 → 𝑝2 · · · → 𝑝𝑛 = ⟦𝛽, 𝛼⟧

114

and define 𝑡1 = 𝑝1 − 𝑝0, 𝑡2 = 𝑝2 − 𝑝1, . . . 𝑡𝑖 = 𝑝𝑖 − 𝑝𝑖−1. Clearly, 𝑝1 = 𝑡1 + 𝑡0, 𝑝2 = 𝑡2 + 𝑡1 + 𝑡0︸︷︷︸
𝑝1

, . . . 𝑝 𝑗 =
∑𝑗

𝑖=1
𝑡𝑖 .

This effectively shows how one can construct a TDPG consisting of valid functions, {𝑡𝑖}, instead of valid

transitions, and motivates the following definition:

Definition 109 (point games with P-functions). A point game with P-functions is a set {𝑡1, . . . , 𝑡𝑛} of 𝑛

P-functions alternatively horizontal and vertical such that

•
1

2
⟦0, 1⟧ + 1

2
⟦1, 0⟧ + ∑𝑛

𝑖=1
𝑡𝑖 = ⟦𝛽, 𝛼⟧ ;

• ∀𝑗 ∈ {1, . . . , 𝑛}, 1

2
⟦0, 1⟧ + 1

2
⟦1, 0⟧ + ∑𝑗

𝑖=1
𝑡𝑖 ≥ 0.

We call ⟦𝛽, 𝛼⟧ the final point of the game.

The first condition simply encodes the initial and final frame configurations while the second condition

ensures that the ‘‘𝑝𝑖s’’ are non-negative, i.e. each intermediate frame configuration is sensible.

Lemma 110 ((time-dependent) point game with EBM functions =⇒ (time-dependent) point game with

EBM transitions). Given a TDPG with 𝑛 EBM functions and final point ⟦𝛽, 𝛼⟧ we can construct a TDPG with
𝑛 EBM transitions and final point ⟦𝛽, 𝛼⟧.

A.2 Operator monotone functions and valid functions

Let us start with the definition of a convex cone.

Definition 111 (convex cone). A set 𝐶 in a vector space 𝑉 is a cone if for all 𝑥 ∈ 𝐶 and for all _ > 0,

_𝑥 ∈ 𝐶 . It is convex if for all 𝑥,𝑦 ∈ 𝐶 , 𝑥 + 𝑦 ∈ 𝐶 .

Noting that the state |𝜓 ⟩ in the definition of an EBM function is unnormalized, the set of EBM functions

is easily seen to form a cone. By taking a direct sum we can establish convexity as well.

Let 𝑉 be a set of vectors where the vectors are functions from [0,∞) → [0,∞) with finite support.

• 𝑉 is an infinite dimensional vector space spanned by {⟦𝑥⟧}𝑥 ∈[0,∞) , since we can express each element

of 𝑉 as 𝑣 =
∑
𝑥 𝑣 (𝑥) ⟦𝑥⟧ where the sum is over the finite support

36
of 𝑣 .

• The norm is given as ∥𝑣 ∥ := ∥𝑣 ∥
1
=

∑
𝑥 |𝑣 (𝑥) |.

Lemma 112. 𝐾 is a convex cone. Also, for any Λ ∈ (0,∞), 𝐾Λ is a convex cone.

Definition 113 (dual cone). Let 𝐶 be a cone in a normed vector space 𝑉 . We denote by 𝑉 ′
the space of

continuous linear functionals from 𝑉 to R. The dual cone of a set 𝐶 ⊆ 𝑉 is

𝐶∗ = {Φ ∈ 𝑉 ′ |∀𝑎 ∈ 𝐶,Φ(𝑎) ≥ 0} .

For our purpose, linear functionals can be thought of simply as functions which map objects in the

cone to a non-negative real number with the added property of being linear in its argument. We can now

formally define operator monotone functions.

Definition 114 (operator monotone functions). A function 𝑓 : [0,∞) → R is operator monotone if for all

0 ≤ 𝑋 ≤ 𝑌 we have 𝑓 (𝑋) ≤ 𝑓 (𝑌).
36

If instead of a sum, we had used an integral, we would have had to use a Dirac delta function/distribution. However, restricting

to finitely supported functions suffices for our purpose.

115

Definition 115 (operator monotone functions on [0,Λ]). A function 𝑓 : [0,Λ] → R is operator monotone

on [0,Λ] if for all 0 ≤ 𝑋 ≤ 𝑌 with spectrum in [0,Λ] we have 𝑓 (𝑋) ≤ 𝑓 (𝑌).
The pivotal result here is the equivalence between the cone of operator monotone functions and the

dual cone of EBM functions. To state this formally, we consider the following isomorphism. There is a

bijective mapping between Φ ∈ 𝑉 ′
(the space of linear functionals; see Definition 113) and 𝑓Φ which is de-

fined as 𝑓Φ(𝑥) = Φ(⟦𝑥⟧). By linearity, for any ℎ =
∑
𝑥 ℎ(𝑥) ⟦𝑥⟧ we have Φ(∑𝑥 ℎ(𝑥) ⟦𝑥⟧) =

∑
𝑥 ℎ(𝑥) 𝑓Φ(𝑥).

We can therefore see elements of the dual cone as functions on real numbers.

Lemma 116. Φ ∈ 𝐾∗, the dual to the set of EBM functions, if and only if 𝑓Φ is operator monotone in [0,∞].
Also, for any Λ ∈ (0,∞), Φ ∈ 𝐾∗

Λ if and only if 𝑓Φ is operator monotone on [0,Λ].
Lemma 117 (Characterization of operator monotone functions [Bha13]). Any operator monotone function
𝑓 : [0,∞) → R can be written as

𝑓 (𝑥) = 𝑐0 + 𝑐1𝑥 +
∫ ∞

0

_𝑥

_ + 𝑥 𝑑𝜔 (_),

for a measure 𝜔 satisfying
∫ ∞

0

_
1+_𝑑𝜔 (_) < ∞.

Lemma 118 (characterization of operator monotone functions on [0,Λ] [Bha13]). Any operator monotone
function 𝑓 : [0,Λ] → R can be written as

𝑓 (𝑥) = 𝑐0 + 𝑐1𝑥 +
∫

_𝑥

_ + 𝑥 𝑑𝜔 (_)

with the integral ranging over _ ∈ (−∞,−Λ) ∪ (0,∞) satisfying
∫

_
1+_𝑑𝜔 (_) < ∞ where 𝜔 is a measure.

As will become clear when we discuss the dual of the cone of operator monotones, it suffices to consider

the extremal rays of the cone, i.e. operator monotones of the form _𝑥/(_ + 𝑥) (together with 1 and 𝑥).

It is known that the bi-dual of a cone is the closure of the cone itself (see [BV04] for details and the

proof):

Fact 119. Let 𝐶 ⊆ 𝑉 be a convex cone, then 𝐶∗∗ = cl(𝐶) where 𝐶∗ is the dual cone of 𝐶 .

Essentially, we define from hindsight the bi-dual of EBM functions to be the cone of valid functions.

Since the dual of EBM functions has an easy characterization, the bi-dual also has an easy characterization

which is why we are interested in it.

Definition 120 (Λ-valid functions). A function 𝑎 : [0,Λ] → R with finite support on [0,Λ] is Λ-valid if

𝑎 ∈ 𝐾∗∗
Λ .

To be able to use the aforementioned fact we note that the cone of interest, the cone of EBM functions,

is closed when the matrices involved have a bounded spectrum. In this case, it means that the cone of valid

functions is the same as the cone of EBM functions. We state this precisely below.

Lemma 121. For Λ ∈ (0,∞), 𝐾Λ is closed (which implies 𝐾∗∗
Λ = 𝐾Λ).

Corollary 122. For Λ ∈ (0,∞), 𝐾Λ = {𝑎 ∈ 𝑉 |∀Φ ∈ 𝐾∗
Λ,Φ(𝑎) ≥ 0}. Further, 𝑎 ∈ 𝐾Λ if and only if∑

𝑥 𝑎(𝑥) = 0,
∑
𝑥 𝑥𝑎(𝑥) ≥ 0 and ∀_ ∈ (−∞,−Λ] ∪ (0,∞), ∑𝑥

_𝑥
_+𝑥𝑎(𝑥) ≥ 0.

A seemingly cumbersome but useful restatement of this result is the following:

Corollary 123 (EBM on [0,Λ] is equivalent to Λ valid). A function 𝑎 : [0,Λ] → R with finite support
on [0,Λ] is EBM on [0,Λ] if and only if 𝑎 is Λ-valid, i.e., it satisfies

∑
𝑥 𝑎(𝑥) = 0,

∑
𝑥 𝑥𝑎(𝑥) ≥ 0 and ∀_ ∈

(−∞,−Λ] ∪ (0,∞), ∑𝑥
_𝑥
_+𝑥𝑎(𝑥) ≥ 0.

All the statements made here assume that the matrices used in EBM functions have a finite spectrum.

Our EMA algorithm (see Section 5) heavily relies on this part of the analysis of [Aha+14b].

116

A.3 Strictly valid functions are EBM functions

To be able to simplify the conditions one needs to check, it is useful to remove the condition on the spectrum

of the positive semi-definite matrices involved. This is evident from the range of _ one needs to use in the

characterization of operator monotone functions (compare Lemma 118 and Lemma 117).

It is easy to describe the interior of the dual of a cone. It is also possible to relate the interior with the

closure of the cone in finite dimensions
37

(see [BV04] for details and proofs).

Fact 124. Let 𝐶 be a convex set, then int(𝐶) = int(cl(𝐶)).

Fact 125. Let 𝐶 be a cone in the finite-dimensional vector space 𝑉 .
Then int(𝐶∗) = {Φ ∈ 𝑉 ′ |∀𝑎 ∈ 𝐶\{0},Φ(𝑎) > 0}.

It turns out that𝐾 is not closed
38

, and recall that𝐾∗
is the set of operator monotone functions on [0,∞).

Recall also that 𝐾∗∗ = cl(𝐾). Using Fact 124 we conclude that int(𝐾∗∗) = int(𝐾). In finite dimensions,

restricting to the interior of 𝐾∗∗
is easy, as stated in Fact 125. We could then simply consider points in

the interior of 𝐾∗
which in turn would guarantee membership in 𝐾 . For infinite dimensions this result

continues to hold. To see this, we define valid and strictly valid functions.

Definition 126 (valid function). A function 𝑎 : [0,∞) → Rwith finite support is valid if for every operator

monotone function 𝑓 : [0,∞) → R we have

∑
𝑥 ∈supp(ℎ) 𝑓 (𝑥)𝑎(𝑥) ≥ 0.

Definition 127 (strictly valid function). A function 𝑎 : [0,∞) → R with finite support is strictly valid if

for every non-constant operator monotone function 𝑓 : [0,∞) → R we have

∑
𝑥 ∈supp(𝑎) 𝑓 (𝑥)𝑎(𝑥) > 0.

One can use the characterization of operator monotone functions to explicitly characterize the set of

valid and strictly valid functions (just as we did for Λ-valid functions; see Corollary 122).

Lemma 128. Let 𝑎 : [0,∞) → R be a function with finite support such that
∑
𝑥 𝑎(𝑥) = 0. The function a is

a strictly valid function if and only if for all _ > 0,
∑
𝑥

−𝑎 (𝑥)
_+𝑥 > 0 and

∑
𝑥 𝑥 .𝑎(𝑥) > 0.

The function 𝑎 is valid if and only if for all _ > 0,
∑
𝑥

−𝑎 (𝑥)
_+𝑥 ≥ 0 and

∑
𝑥 𝑥 .𝑎(𝑥) ≥ 0.

The set of strictly valid functions can be also shown to be Λ-valid for some finite Λ. This means that

it would also be EBM on [0,Λ] which in turn means it would be an EBM function. We hence have the

following.

Lemma 129. Any strictly valid function is an EBM function.

Similarly we define valid and strictly valid transitions.

Definition 130 (Valid and strictly valid line transitions). Let 𝑔, ℎ : [0,∞) → R be two functions with

finite support. The transition 𝑔 → ℎ is valid (resp., strictly valid) if the function ℎ−𝑔 is valid (resp., strictly

valid).

37
This reasoning fails for infinite dimensions.

38
One example is the merge function. Let 𝑝𝑔1

+ 𝑝𝑔2
= 1, 𝑥𝑔2

> 𝑥𝑔1
> 0. Consider the sequence 𝑡1, 𝑡2 . . . 𝑡𝑘 where 𝑡𝑘 :=�〈

𝑥𝑔
〉
+ 1

𝑘

�
− 𝑝𝑔1

�
𝑥𝑔1

�
− 𝑝𝑔2

�
𝑥𝑔2

�
. This sequence, in the limit 𝑘 → ∞ is just a merge. One can show that for any finite 𝑘 , 𝑡𝑘 can

be shown to be EBM using matrices with a finite spectrum (this is because for a 2 → 1 transition, it suffices to restrict to 2 × 2

matrices (see Lemma 146) and then one can consider the most general unitary to reach the conclusion). However, as 𝑘 → ∞, the

spectra of the matrices involved diverges. Thus, while the elements of the sequence 𝑡1, 𝑡2 . . . 𝑡𝑘 . . . are contained in 𝐾 , its limit is

not. This argument does not apply to 𝐾Λ (confirming the fact that 𝐾Λ is closed) because after some finite 𝑘 , 𝑡𝑘 ceases to be in 𝐾Λ.

117

A.4 From point games with valid functions to point games with EBM functions

If we construct a point game with valid functions we can convert it into a game with EBM functions with

an arbitrarily small overhead on the bias. The trick is to raise the coordinates of all the final points (ones

with positive weight) a little at each step, to convert a valid function into a strictly valid function.

Theorem 131 (valid to EBM). Given a point game with 2𝑚 valid functions and final point ⟦𝛽, 𝛼⟧ and any
𝜖 > 0, we can construct a point game with 2𝑚 EBM functions and final point ⟦𝛽 + 𝜖, 𝛼 + 𝜖⟧.

Lemma 132. Fix 𝜖 > 0. Given a point game with 2𝑚 valid functions and final point ⟦𝛽, 𝛼⟧ we can construct
a point game with 2𝑚 strictly valid functions and final point ⟦𝛽 + 𝜖, 𝛼 + 𝜖⟧.

B TEF functions = valid functions = closure of EBM functions

Let the set of TEF functions be the set of finitely supported functions 𝑡 = ℎ−𝑔, such that for the associated

transition ℎ → 𝑔, the conditions in Theorem 31 can be satisfied for some unitary 𝑈 . An equivalent defi-

nition would be to require the transition to admit a legal CPF (see Definition 44 in Section 5). We assume

that ℎ and 𝑔 are non-negative functions without common support. Then, the following lemma holds:

Lemma 133 (TEF = closure of EBM = valid). The set of the TEF functions, the set of valid functions (see
Definition 126) and the closure of the set of the EBM functions (see Definition 106) are the same.

Proof sketch. We start by recalling that the set of EBM functions is an open set. From Definition 106 we

can see that the matrix 𝐻 may have eigenvectors which have no support on |𝜓 ⟩. Consequently, one can

consider a sequence of EBM functions 𝑡𝑖 such that the lim𝑖→∞ 𝑡𝑖 = 𝑡 is well-defined, while the associated

matrix lim𝑖→∞𝐻𝑖 has a diverging eigenvalue. Such a case arises, for instance, when we have a merge

move in the point game. For concreteness, let 𝑥𝑔1
, 𝑥𝑔2

be the coordinates of two points that are going to

be merged into a single point with coordinate 𝑥ℎ = 𝑝𝑔1
𝑥𝑔1

+ 𝑝𝑔2
𝑥𝑔2

, and let 𝑝𝑔1
, 𝑝𝑔2

be their respective

probability weights, with 𝑝𝑔1
+ 𝑝𝑔2

= 1. Furthermore, let 𝑡𝑖 = ⟦𝑥ℎ + 1/𝑖⟧ − 𝑝𝑔1
⟦𝑥𝑔1

⟧ − 𝑝𝑔2
⟦𝑥𝑔2

⟧. One can

verify that for all finite values of 𝑖 , 𝑡𝑖 is EBM, but its limit 𝑡 = ⟦𝑥ℎ⟧ − 𝑝𝑔1
⟦𝑥𝑔1

⟧ − 𝑝𝑔2
⟦𝑥𝑔2

⟧ is not EBM (we

omit the details for the sake of brevity), thus concluding that the set of EBM functions is open.

To show that the closure of this set is the same as the set of the TEF functions, we need to establish that

the limit of any such sequence belongs to the set of TEF functions. This requires a combination of certain

results from Section 5. In particular, the relationship between the COF and the CPF permits one to trade

the divergence of such a matrix𝐻 for appropriate projectors. This is exactly the origin of the projectors 𝐸ℎ
that appear in our analysis. The matrices 𝐻 ≥ 𝐺 and the vector |𝜓 ⟩ corresponding to an EBM transition,

can be expressed in the COF,
39 𝑋ℎ ≥ 𝑂𝑋𝑔𝑂

𝑇
. Essentially, the same orthogonal matrix 𝑂 also satisfies the

TEF inequality Equation (3)
40

. The TEF inequality may, in fact, be seen as the limit where 𝐻 ’s eigenvalues

diverge to infinity. Thus, the limit 𝑡 of the sequence 𝑡𝑖 indeed belongs to the set of TEF functions and this

argument readily extends to all relevant sequences.

Finally, in Appendix A we described how the authors of [Aha+14b] prove that the set of valid functions

is the same as the closure of the set of EBM functions. In particular, they start by observing that the set

of EBM functions is a convex cone 𝐾 , and its dual cone 𝐾∗
is the set of operator monotone functions. The

bi-dual 𝐾∗∗
is the set of valid functions, and the fact that 𝐾∗∗ = cl(𝐾) completes the proof. Since we just

showed that the closure of the set of EBM functions is the same as the set of TEF functions, we can also

conclude that the set of valid functions is the same as the set of TEF functions. □

39
Recall that 𝑋ℎ and 𝑋𝑔 are diagonal matrices containing the eigenvalues of 𝐻 and 𝐺 , respectively (in addition to 𝑋ℎ possibly

having a large eigenvalue with multiplicities and 𝑋ℎ possibly having zero eigenvalues)

40
Observe that the TEF inequality is closely related to the CPF.

118

C Blink𝑚 → 𝑛 transition

C.1 Completing an orthonormal basis

Consider an orthonormal complete set of basis vectors {|𝑔𝑖⟩} and a vector |𝑣⟩ =
∑

𝑖

√
𝑝𝑖 |𝑔𝑖 ⟩√∑
𝑖 𝑝𝑖

. We describe a

scheme for constructing vectors |𝑣𝑖⟩ such that {|𝑣⟩ , {|𝑣𝑖⟩}} is a complete orthonormal set of basis vectors.

We can do it inductively, but here instead we choose to do it by examples, as we believe it helps gain some

intuition and demonstrates the generalizable argument right away. We define the first vector to be

|𝑣1⟩ =
√
𝑝1 |𝑔1⟩ − 𝑝1√

𝑝2

|𝑔2⟩√︂
𝑝1 +

𝑝2

1

𝑝2

=

√
𝑝1 |𝑔1⟩ −

√
𝑝2 |𝑔2⟩√

𝑝1 + 𝑝2

,

which is normalized and orthogonal to |𝑣⟩. The next vector is

|𝑣2⟩ =
√
𝑝1 |𝑔1⟩ +

√
𝑝2 |𝑔2⟩ − (𝑝1+𝑝2)√

𝑝3

|𝑔3⟩√︃
𝑝1 + 𝑝2 + (𝑝1+𝑝2)2

𝑝3

which is again normalized and orthogonal to |𝑣1⟩.
Similarly we can construct the (𝑘 + 1)th

basis vector as

|𝑣𝑘⟩ =
∑𝑘
𝑖=1

√
𝑝𝑘 |𝑔𝑘⟩ −

∑𝑘
𝑖=1
𝑝𝑘√

𝑝𝑘+1

|𝑔𝑘+1⟩
𝑁𝑘

,

where 𝑁𝑘 =

√︂∑𝑘
𝑖=1
𝑝𝑘 +

(∑𝑘
𝑖=1
𝑝𝑘)2

𝑝𝑘+1

and, thus, obtain the full set.

C.2 Analysis of the 3 → 2 transition

Recall that the constraint equation is∑︁
𝑥ℎ𝑖 |ℎ𝑖𝑖⟩ ⟨ℎ𝑖𝑖 |︸ ︷︷ ︸

I

+𝑥I{𝑔𝑖𝑖 }︸︷︷︸
II

≥
∑︁

𝑥𝑔𝑖𝑈 |𝑔𝑖𝑖⟩ ⟨𝑔𝑖𝑖 |𝑈 †︸ ︷︷ ︸
III

,

where we have introduced the notation |ℎ𝑖𝑖⟩ = |ℎ𝑖ℎ𝑖⟩. The 𝑔1, 𝑔2, 𝑔3 → ℎ1, ℎ2 transition requires us to know

𝑈 = |𝑣⟩ ⟨𝑤 | + |𝑤⟩ ⟨𝑣 | + |𝑣1⟩ ⟨𝑣1 | + |𝑣2⟩ ⟨𝑣2 | + |𝑤1⟩ ⟨𝑤1 | .

Using the procedure above we can evaluate the vectors of interest as

|𝑣⟩ =
√
𝑝𝑔1

|𝑔11⟩ +
√
𝑝𝑔2

|𝑔22⟩ +
√
𝑝𝑔3

|𝑔33⟩
𝑁𝑔

, |𝑣1⟩ =
√
𝑝𝑔1

|𝑔11⟩ −
𝑝𝑔

1√
𝑝𝑔

2

|𝑔22⟩
𝑁𝑔1

,

|𝑣2⟩ =
√
𝑝𝑔1

|𝑔11⟩ +
√
𝑝𝑔2

|𝑔22⟩ − (𝑝𝑔
1
+𝑝𝑔

2
)√

𝑝𝑔
3

|𝑔33⟩
𝑁𝑔2

,

|𝑤⟩ =
√
𝑝ℎ1

|ℎ11⟩ +
√
𝑝ℎ2

|ℎ22⟩
𝑁ℎ

and |𝑤1⟩ =
√
𝑝ℎ2

|ℎ11⟩ −
√
𝑝ℎ1

|ℎ22⟩
𝑁ℎ

,

119

where 𝑁𝑔, 𝑁𝑔1
, 𝑁𝑔2

, 𝑁ℎ are normalization factors. In fact we want to express the constraints in this basis,

and to evaluate the first term of the LHS in the constraint equation we use the above to find

|ℎ11⟩ =
√
𝑝ℎ1

|𝑤⟩ + √
𝑝ℎ2

|𝑤1⟩
𝑁ℎ

and |ℎ22⟩ =
√
𝑝ℎ2

|𝑤⟩ − √
𝑝ℎ1

|𝑤1⟩
𝑁ℎ

,

which leads to

I = 𝑥ℎ1
|ℎ11⟩ ⟨ℎ11 | + 𝑥ℎ2

|ℎ22⟩ ⟨ℎ22 |

=
1

𝑁 2

ℎ

⟨𝑤 | ⟨𝑤1 |

|𝑤⟩ 𝑝ℎ1
𝑥ℎ1

+ 𝑝ℎ2
𝑥ℎ2

√
𝑝ℎ1
𝑝ℎ2

(𝑥ℎ1
− 𝑥ℎ2

)
|𝑤1⟩

√
𝑝ℎ1
𝑝ℎ2

(𝑥ℎ1
− 𝑥ℎ2

) 𝑝ℎ2
𝑥ℎ1

+ 𝑝ℎ1
𝑥ℎ2

 .
Evaluation of II is nearly trivial after expressing the identity in this basis

II = 𝑥 (|𝑣⟩ ⟨𝑣 | + |𝑣1⟩ ⟨𝑣1 | + |𝑣2⟩ ⟨𝑣2 |) =

⟨𝑣 | ⟨𝑣1 | ⟨𝑣2 |

|𝑣⟩ 𝑥

|𝑣1⟩ 𝑥

|𝑣2⟩ 𝑥

 .
For the last term III = 𝑥𝑔1

𝑈 |𝑔11⟩ ⟨𝑔11 |𝑈 †︸ ︷︷ ︸
(i)

+𝑥𝑔2
𝑈 |𝑔22⟩ ⟨𝑔22 |𝑈 †︸ ︷︷ ︸

(ii)

+𝑥𝑔3
𝑈 |𝑔33⟩ ⟨𝑔33 |𝑈 †︸ ︷︷ ︸

(iii)

, we evaluate

𝑈 |𝑔11⟩ =
√
𝑝𝑔1

𝑁𝑔
|𝑤⟩ +

√
𝑝𝑔1

𝑁𝑔1

|𝑣1⟩ +
√
𝑝𝑔1

𝑁𝑔2

|𝑣2⟩ ,

𝑈 |𝑔22⟩ =
√
𝑝𝑔2

𝑁𝑔
|𝑤⟩ +

(
− 𝑝𝑔

1√
𝑝𝑔

2

)
𝑁𝑔1

|𝑣1⟩ +
√
𝑝𝑔2

𝑁𝑔2

|𝑣2⟩ and

𝑈 |𝑔33⟩ =
√
𝑝𝑔3

𝑁𝑔
|𝑤⟩ + 0 |𝑣1⟩ +

(
−𝑝𝑔1

+𝑔𝑔
2√

𝑝𝑔
3

)
𝑁𝑔2

|𝑣2⟩ .

For the first term we have (i) = 𝑥𝑔1
𝑝𝑔1

⟨𝑣1 | ⟨𝑣2 | ⟨𝑤 |

|𝑣1⟩ 1

𝑁 2

𝑔
1

1

𝑁𝑔
1
𝑁𝑔

2

1

𝑁𝑔
1
𝑁𝑔

|𝑣2⟩ 1

𝑁𝑔
2
𝑁𝑔

1

1

𝑁 2

𝑔
2

1

𝑁𝑔
2
𝑁𝑔

|𝑤⟩ 1

𝑁𝑔𝑁𝑔
1

1

𝑁𝑔𝑁𝑔
2

1

𝑁 2

𝑔

.

For the second term, we re-write𝑈 |𝑔22⟩ =
√
𝑝𝑔2

(
1

𝑁𝑔
|𝑤⟩ − 1

𝑁 ′
𝑔

1

|𝑣1⟩ + 1

𝑁𝑔
2

|𝑣2⟩
)

with 𝑁 ′
𝑔1

=
𝑝𝑔

2

𝑝𝑔
1

𝑁𝑔1
,

to obtain (ii) = 𝑥𝑔2
𝑝𝑔2

⟨𝑣1 | ⟨𝑣2 | ⟨𝑤 |

|𝑣1⟩ 1

𝑁 ′2
𝑔

1

− 1

𝑁 ′
𝑔

1
𝑁𝑔

2

− 1

𝑁 ′
𝑔

1
𝑁𝑔

|𝑣2⟩ − 1

𝑁𝑔
2
𝑁 ′
𝑔

1

1

𝑁 2

𝑔
2

1

𝑁𝑔
2
𝑁𝑔

|𝑤⟩ − 1

𝑁𝑔𝑁
′
𝑔

1

1

𝑁𝑔𝑁𝑔
2

1

𝑁 2

𝑔

,

and finally𝑈 |𝑔33⟩ =
√
𝑝𝑔3

(
1

𝑁𝑔
|𝑤⟩ + 0 |𝑣1⟩ − 1

𝑁 ′
𝑔

2

|𝑣2⟩
)

with 𝑁 ′
𝑔2

=
𝑝𝑔

3

𝑝𝑔
1
+𝑝𝑔

2

,

to get (iii) = 𝑥𝑔3
𝑝𝑔3

⟨𝑣1 | ⟨𝑣2 | ⟨𝑤 |

|𝑣1⟩
|𝑣2⟩ 1

𝑁 ′2
𝑔

2

− 1

𝑁 ′
𝑔

2
𝑁𝑔

|𝑤⟩ − 1

𝑁𝑔𝑁
′
𝑔

2

1

𝑁 2

𝑔

.

120

Now we can combine all of these into a single matrix and try to obtain some simpler constraints.

𝑀
def

=

⟨𝑣 | ⟨𝑣1 | ⟨𝑣2 | ⟨𝑤 | ⟨𝑤1 |
|𝑣⟩ 𝑥

|𝑣1 ⟩ 𝑥 − 𝑥𝑔
1
𝑝𝑔

1

𝑁 2

8
1

− 𝑥𝑔
2
𝑝𝑔

2

𝑁 ′2
𝑔

1

− 𝑥𝑔
1
𝑝𝑔

1

𝑁𝑔
1
𝑁𝑔

2

+ 𝑥𝑔
2
𝑝𝑔

2

𝑁 ′
𝑔

1
𝑁𝑔

2

− 𝑥𝑔
1
𝑝𝑔

1

𝑁𝑔
1
𝑁𝑔

+ 𝑥𝑔
2
𝑝𝑔

2

𝑁 ′
𝑔

1
𝑁𝑔

|𝑣2 ⟩ − 𝑥𝑔
1
𝑝𝑔

1

𝑁𝑔
2
𝑁𝑔

1

+ 𝑥𝑔
2
𝑝𝑔

2

𝑁𝑔
2
𝑁 ′
𝑔

1

𝑥 − 𝑥𝑔
1
𝑝𝑔

1

𝑁 2

𝑔
2

− 𝑥𝑔
2
𝑝𝑔

2

𝑁 2

𝑔
2

− 𝑥𝑔
3
𝑝𝑔

3

𝑁 ′2
𝑔

2

− 𝑥𝑔
1
𝑝𝑔

1

𝑁𝑔
2
𝑁𝑔

− 𝑥𝑔
2
𝑝𝑔

2

𝑁𝑔
2
𝑁𝑔

+ 𝑥𝑔
3
𝑝𝑔

3

𝑁 ′
𝑔

2
𝑁𝑔

|𝑤 ⟩ − 𝑥𝑔
1
𝑝𝑔

1

𝑁𝑔𝑁𝑔
1

+ 𝑥𝑔
2
𝑝𝑔

2

𝑁𝑔𝑁
′
𝑔

1

− 𝑥𝑔
1
𝑝𝑔

1

𝑁𝑔𝑁𝑔
2

− 𝑥𝑔
2
𝑝𝑔

2

𝑁𝑔𝑁𝑔
2

+ 𝑥𝑔
3
𝑝𝑔

3

𝑁𝑔𝑁
′
𝑔

2

𝑝ℎ
1

𝑥ℎ
1

+𝑝ℎ
2

𝑥ℎ
2

𝑁 2

ℎ

− 1

𝑁 2

𝑔

∑
𝑖 𝑥𝑔𝑖 𝑝𝑔𝑖

√︃
𝑝ℎ

1

𝑝ℎ
2

𝑁 2

ℎ

(𝑥ℎ
1
− 𝑥ℎ

2
)

|𝑤1 ⟩

√︃
𝑝ℎ

1

𝑝ℎ
2

𝑁 2

ℎ

(𝑥ℎ
1
− 𝑥ℎ

2
)

𝑝ℎ
2

𝑥ℎ
1

+𝑝ℎ
1

𝑥ℎ
2

𝑁 2

ℎ

≥ 0.

Despite this appearing to be a complicated expression, we can conclude that it is always so that the

larger 𝑥 is the looser is the constraint. To show this and simplify the calculation, note that 𝑀 can be split

into a scalar condition, 𝑥 ≥ 0 – from the |𝑣⟩ ⟨𝑣 | part – and a sub-matrix which we choose to write as

⟨𝑣1 | ⟨𝑣2 | ⟨𝑤 | ⟨𝑤1 |
|𝑣1⟩
|𝑣2⟩

𝐶 𝐵𝑇

|𝑤⟩
|𝑤1⟩

𝐵 𝐴

≥ 0.

We

[
𝐶 𝐵𝑇

𝐵 𝐴

]
≥ 0 ⇐⇒

[
𝐴 𝐵

𝐵𝑇 𝐶

]
≥ 0 ⇐⇒ 𝐶 ≥ 0, 𝐴 − 𝐵𝐶−1𝐵𝑇 ≥ 0, (I −𝐶𝐶−1)𝐵𝑇 = 0, using Shur’s

Complement condition for positivity where𝐶−1
is the generalized inverse. We can take 𝑥 to be sufficiently

large so that 𝐶 > 0 and thereby make sure that I −𝐶𝐶−1 = 0. Then, the only condition of interest is

𝐴 − 𝐵𝐶−1𝐵𝑇 ≥ 0.

Actually, we can do even better than this. Note that if 𝐶 > 0 then 𝐶−1 > 0 and that the second term is of

the form [
𝑎 𝑏

0 0

]
︸ ︷︷ ︸

𝐵

[
𝛼 𝛾

𝛾 𝛽

]
︸ ︷︷ ︸

𝐶−1

[
𝑎 0

𝑏 0

]
︸ ︷︷ ︸

𝐵𝑇

=

[
𝑎 𝑏

] [
𝛼 𝛾

𝛾 𝛽

] [
𝑎

𝑏

]
0

0 0

 ≥ 0,

because 𝐶−1 > 0. We can therefore write the constraint equation as 𝐴 ≥ 𝐵𝐶−1𝐵𝑇 ≥ 0 and note that 𝐴 ≥ 0

is a necessary condition. This also becomes a sufficient condition in the limit that 𝑥 → ∞ because𝐶−1 → 0

in that case. Thus, we have reduced the analysis to simply checking if
𝑝ℎ

1
𝑥ℎ

1
+𝑝ℎ

2
𝑥ℎ

2

𝑁 2

ℎ

− 1

𝑁 2

𝑔

∑
𝑖 𝑥𝑔𝑖𝑝𝑔𝑖

√
𝑝ℎ

1
𝑝ℎ

2

𝑁 2

ℎ

(𝑥ℎ1
− 𝑥ℎ2

)
√
𝑝ℎ

1
𝑝ℎ

2

𝑁 2

ℎ

(𝑥ℎ1
− 𝑥ℎ2

) 𝑝ℎ
2
𝑥ℎ

1
+𝑝ℎ

1
𝑥ℎ

2

𝑁 2

ℎ

 ≥ 0.

This is a 2 × 2 matrix and can be checked for positivity using the trace and determinant method or we can

use again Schur’s Complement conditions. Here, however, we intend to use a more general technique. Let

us introduce 〈
𝑥𝑔

〉
def

=
1

𝑁 2

𝑔

∑︁
𝑖

𝑥𝑔𝑖𝑝𝑔𝑖 ,

〈
1

𝑥ℎ

〉
def

=
1

𝑁 2

ℎ

∑︁
𝑖

𝑝ℎ𝑖

𝑥ℎ𝑖
.

Term (I) and one element from term (III) constitute a matrix 𝐴 which can be written as

𝐴 = 𝑥ℎ1
|ℎ11⟩ ⟨ℎ11 | + 𝑥ℎ2

|ℎ22⟩ ⟨ℎ22 | −
〈
𝑥𝑔

〉
|𝑤⟩ ⟨𝑤 | =

⟨ℎ11 | ⟨ℎ22 |
|ℎ11⟩ 𝑥ℎ1

|ℎ22⟩ 𝑥ℎ2

−
〈
𝑥𝑔

〉
|𝑤⟩ ⟨𝑤 | .

121

We use 𝐹 − 𝑀 ≥ 0 ⇐⇒ I −
√
𝐹
−1

𝑀
√
𝐹
−1 ≥ 0 for 𝐹 > 0, to obtain I ≥

〈
𝑥𝑔

〉
|𝑤 ′′⟩ ⟨𝑤 ′′ |, where

|𝑤 ′′⟩ =

√︂
𝑝ℎ

1

𝑥ℎ
1

|ℎ11 ⟩+
√︂

𝑝ℎ
2

𝑥ℎ
2

|ℎ22 ⟩

𝑁ℎ
. Normalizing this we get |𝑤 ′⟩ =

|𝑤′′⟩√︂〈
1

𝑥ℎ

〉 which entails I ≥
〈
𝑥𝑔

〉 〈
1

𝑥ℎ

〉
|𝑤 ′⟩ ⟨𝑤 ′ |

and that leads us to the final condition
1

⟨𝑥𝑔⟩ ≥
〈

1

𝑥ℎ

〉
.

In fact all the techniques used in reaching this result can be extended to the𝑚 → 𝑛 transition case as

well and so the aforesaid result holds in general.

D Approaching bias 𝜖 (𝑘) = 1/(4𝑘 + 2)
Lemma 134. Consider an 𝑛-dimensional vector space. Given a diagonal matrix𝑋 = diag(𝑥1, 𝑥2 . . . 𝑥𝑛) and a
vector |𝑐⟩ = (𝑐1, 𝑐2 . . . , 𝑐𝑛) where all the𝑥𝑖s are distinct and all the 𝑐𝑖 are non-zero, the vectors |𝑐⟩ , 𝑋 |𝑐⟩ , . . . 𝑋𝑛−1 |𝑐⟩
span the vector space.

Proof. We write the vectors as

|�̃�𝑖⟩ = 𝑋 𝑖−1 |𝑐⟩ =

𝑥𝑖−1

1
𝑐1

𝑥𝑖−1

2
𝑐2

...

𝑥𝑖−1

𝑛 𝑐𝑛

.

We show that the set of vectors are linearly independent, which is equivalent to showing that the deter-

minant of the matrix containing the vectors as rows (or equivalently as columns) is non-zero, i.e.

det

©«

1 1 . . . 1

𝑥1 𝑥2 𝑥𝑛
𝑥2

1
𝑥2

2
𝑥2

𝑛
...

. . .

𝑥𝑛−1

1
𝑥𝑛−1

2
. . . 𝑥𝑛−1

𝑛

︸ ︷︷ ︸
:=�̃�

𝑐1

𝑐2

. . .

𝑐𝑛

ª®®®®®®®®®®®®®¬
= 𝑐1 · 𝑐2 · . . . 𝑐𝑛 · det �̃�

is non-zero. Notice that �̃� is the so-called Vandermonde matrix (restricted to being a square matrix) and

its determinant, known as the Vandermonde determinant, is det(�̃�) =
∏

1≤𝑖≤ 𝑗≤𝑛 (𝑥 𝑗 − 𝑥𝑖) ≠ 0 as 𝑥𝑖s are

distinct. As 𝑐𝑖s are all non-negative our proof is complete. □

D.1 Proof of Lemma 33

In our proof we will need the following Lemma 135, which gives a property of the 𝑓 −assignments.

Lemma 135.
∑𝑛
𝑖=1

𝑓 (𝑥𝑖)∏
𝑗≠𝑖 (𝑥 𝑗−𝑥𝑖) = 0 where 𝑓 (𝑥𝑖) is a polynomial of order 𝑘 ≤ 𝑛 − 2 where 𝑥𝑖 ∈ R are distinct.

The proof can be found in [Moc07; Aha+14b].

Proof of Lemma 33. The equality

〈
𝑥𝑘

〉
= 0 for 𝑘 ≤ 𝑛 − 2 is a direct consequence of Lemma 135, and we

proceed to prove the inequality

〈
𝑥𝑛−1

〉
> 0. Suppose for now that (we prove it in the end)

𝑛∑︁
𝑖=1

𝑥𝑛−1

𝑖∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

= (−1)𝑛−1. (30)

122

Define 𝑝 (𝑥𝑖) = −(−𝑥𝑖)𝑚∏
𝑗≠𝑖 (𝑥 𝑗−𝑥𝑖) so that 𝑡 =

∑
𝑖 𝑝 (𝑥𝑖) ⟦𝑥𝑖⟧. Observe that〈

𝑥𝑛−1
〉
=

∑︁
𝑖

𝑥𝑛−𝑚−1

𝑖 𝑝 (𝑥𝑖)

=
∑︁
𝑖

(−1)𝑚𝑥𝑛−1

𝑖

−1∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

= (−1)𝑚 (−1)
∑︁
𝑖

𝑥𝑛−1

𝑖∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

= (−1)𝑚 (−1) (−1)𝑛−1 = (−1)𝑚+𝑛

where we used Equation Equation (30).

It remains to prove Equation Equation (30). We show that 𝑑 (𝑛) =
∑𝑛
𝑖=1

𝑥𝑛−1

𝑖∏
𝑗≠𝑖 (𝑥 𝑗−𝑥𝑖) = (−1)𝑛−1

by

induction. The base of the induction gives us 𝑑 (2) = 𝑥1

𝑥2−𝑥1

+ 𝑥2

𝑥1−𝑥2

= −1. We continue by assuming that it

holds for 𝑑 (𝑛) and take

𝑑 (𝑛 + 1) =
𝑛+1∑︁
𝑖=1

𝑥𝑛𝑖∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

=

𝑛+1∑︁
𝑖=1

−(𝑥𝑛+1 − 𝑥𝑖)𝑥𝑛−1

𝑖 + 𝑥𝑛+1𝑥
𝑛−1

𝑖∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

= −
𝑛+1∑︁
𝑖=1

(𝑥𝑛+1 − 𝑥𝑖)
𝑥𝑛−1

𝑖∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

+ 𝑥𝑛+1

𝑛+1∑︁
𝑖=1

𝑥𝑛−1

𝑖∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)︸ ︷︷ ︸

= 0, from Lemma 135

= −
𝑛∑︁
𝑖=1

𝑥𝑛+1 − 𝑥𝑖
𝑥𝑛+1 − 𝑥𝑖

𝑥𝑛−1

𝑖∏
𝑗≠𝑖,𝑛+1

(𝑥 𝑗 − 𝑥𝑖)
+ (𝑥𝑛+1 − 𝑥𝑛+1)

𝑥𝑛−1

𝑛+1∏
𝑗≠𝑛+1

(𝑥 𝑗 − 𝑥𝑛+1)
= −𝑑 (𝑛) .

This completes the proof. □

D.2 Restricted decomposition into 𝑓0-assignments

The monomial decomposition we presented in Section 4.1 is not unique. Here, we give another useful

decomposition that, however, only works in a restricted case; that is when the roots of 𝑓 are right roots,

as described below.

Lemma 136 (𝑓 with right roots to 𝑓0). Consider a set of real coordinates satisfying 0 < 𝑥1 < 𝑥2 · · · < 𝑥𝑛 and
let 𝑓 (𝑥) = (𝑟1 − 𝑥) (𝑟2 − 𝑥) . . . (𝑟𝑘 − 𝑥) where 𝑘 ≤ 𝑛 − 2 and the roots {𝑟𝑖}𝑘𝑖=1

of 𝑓 are right roots, i.e. they are
such that for every root 𝑟𝑖 there exists a distinct coordinate 𝑥 𝑗 < 𝑟𝑖 . Let 𝑡 =

∑𝑛
𝑖=1
𝑝𝑖 ⟦𝑥𝑖⟧ be the corresponding

𝑓 -assignment. Then, there exist 𝑓0-assignments, {𝑡0;𝑗 }, on a subset of (𝑥1, 𝑥2 . . . 𝑥𝑛), such that 𝑡 =
∑𝑚
𝑖=1
𝛼𝑖𝑡0;𝑖

where 𝛼𝑖 > 0 is a real number and𝑚 > 0 is an integer.

Proof. For simplicity, assume that 𝑥𝑖 < 𝑟𝑖 , ∀𝑖 , but the argument works in general. We can, then, write

𝑡 =

𝑛∑︁
𝑖=1

−𝑓 (𝑥𝑖)∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧

=

𝑛∑︁
𝑖=1

(
−(𝑟1 − 𝑥1) (𝑟2 − 𝑥𝑖) . . . (𝑟𝑘 − 𝑥𝑖)∏

𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)
+ −(𝑥1 − 𝑥𝑖) (𝑟2 − 𝑥𝑖) . . . (𝑟𝑘 − 𝑥𝑖)∏

𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

)
⟦𝑥𝑖⟧

= (𝑟1 − 𝑥1)
𝑛∑︁
𝑖=1

−(𝑟2 − 𝑥𝑖) . . . (𝑟𝑘 − 𝑥𝑖)∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧ +
𝑛∑︁
𝑖=2

−(𝑟2 − 𝑥𝑖) . . . (𝑟𝑘 − 𝑥𝑖)∏
𝑗≠𝑖,1(𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧ ,

123

where the first term has the same form that we started with (except for a positive constant which is irrel-

evant for the validity condition; see Definition 126) but with the polynomial having one less degree. The

second term also has the same form, except that the number of points involved has been reduced. Note

how this process relies crucially on the fact that 𝑟1 −𝑥1 > 0; otherwise the term on the left would, by itself,

not correspond to a valid move. This process can be repeated until we obtain a sum of 𝑓0-assignments on

various subsets of (𝑥1, 𝑥2 . . . 𝑥𝑛). □

The advantage of this decomposition is that we can immediately apply it to the 𝑓 -assignment of the

bias-1/10 game. This is relevant because constructing solutions to 𝑓0-assignments is relatively easy and so

they, together with this result, allow us to derive the 1/10 bias protocol circumventing the perturbative

approach that we used in Section 3.

Figure 21: The main 1/10 move involves 𝑛 = 5 points. 𝑓 has 𝑘 = 3 roots, all of which are right roots.

Example 137 (The main 1/10 move.). The key move in the 1/10-bias point game has its coordinates given

by 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4 and roots given by 𝑙1, 𝑟1, 𝑟2 which satisfy 𝑥0 < 𝑙1 < 𝑥1 < 𝑥2 < 𝑥3 < 𝑥4 < 𝑟1 < 𝑟2. Each

root is a right root here because 𝑥0 < 𝑙1, 𝑥3 < 𝑟1, 𝑥4 < 𝑟2. Hence, from Lemma 136, this assignment can

be expressed as a combination of 𝑓0-assignments defined over subsets of the initial set of coordinates and

each 𝑓0-assignment admits a simple solution given by Proposition 37 and Proposition 38 .

Another simple example is the class of 𝑓 -assignments describing merge moves (see Example 23). We

place the roots of 𝑓 in such a way that all points, except one, have negative weights.

Figure 22: Merge involving 𝑛 = 7 points. 𝑓 has in total 𝑘 = 𝑛 − 3 = 4 right roots.

Example 138 (Merge). For merges (see Figure 22) we only get right-roots and hence, we can write them

as sums of 𝑓0-assignments and obtain the solution using Proposition 37 and Proposition 38. For 𝑛 points,

the polynomial has degree 𝑛 − 3 and so ⟨𝑥⟩ = 0, just as expected for a merge.

124

This scheme fails for moves corresponding to lower bias games. For instance, the main move of the bias

1/14 game has its coordinates given by 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 and the roots of 𝑓 are 𝑙1, 𝑙2, 𝑟1, 𝑟2, 𝑟3 satisfying

𝑥0 < 𝑙1 < 𝑙2 < 𝑥1 < 𝑥2 · · · < 𝑥6 < 𝑟1 < 𝑟2 < 𝑟3. Here, we can either consider 𝑙1 to be a right root, in which

case 𝑙2 is a left root (i.e. a root which is not a right root). Or we can consider 𝑙2 to be a right root in which

case 𝑙1 becomes a left root. Thus for games with bias 1/14 and less, we must revert to Lemma 35, which

means we can not – at least by this scheme – avoid finding the solution to all the monomial assignments.

Since we mentioned the merge move, for completeness let us consider also the split move (see Exam-

ple 24). The situation (see Figure 23) is similar to that of merge but with one key distinction: the polynomial

has degree 𝑛 − 2; it has 𝑛 − 3 right roots and one left root. Thus, it can not be expressed as a sum of 𝑓0-

assignments using Lemma 136. Of course, merges and splits by themselves are not of much interest in this

discussion because we already know that the Blinkered Unitary solves them both (see Section 3.1.1).

Figure 23: Split involving 7 points. 𝑓 has 𝑘 = 𝑛 − 2 = 5 roots; 4 right and one left.

Notice that using the method in Appendix G we can convert left to right roots and combine the different

monomial assignment solutions to obtain the full solution.

E From EBM to EBRM to COF

In Appendix A we saw how D. Aharonov et al. prove that valid functions are equivalent to EBM functions

following their work [Aha+14b]. Here, we show that we can, in fact, do even better. Instead of EBM func-

tions, we consider Expressible-By-Real-Matrices (EBRM) functions, where the matrices are additionally

restricted to be real. Let this set be given by 𝐾 ′
. It turns out that its dual 𝐾 ′∗

is also the set of operator

monotone functions [Fri18] viz. 𝐾 ′∗ = 𝐾∗
. The proof for 𝐾 = 𝐾∗∗

from [Aha+14b], can be applied to

the real case as it is to get 𝐾 ′ = 𝐾∗∗
. Since C. Mochon’s point games use valid functions, the aforesaid

simplification justifies why it suffices to restrict to real matrices.

E.1 Equivalence of EBM and EBRM

First we define EBRM transitions and functions similar to their EBM analogues except with the further

restriction that the matrices and vectors involved are real.

Definition 139 (EBRM transitions). Let 𝑔, ℎ : [0,∞) → [0,∞) be two functions with finite supports. The

transition 𝑔 → ℎ is EBRM if there exist two real matrices 0 ≤ 𝐺 ≤ 𝐻 and a vector |𝜓 ⟩, not necessarily

normalized, such that 𝑔 = prob[𝐺,𝜓] and ℎ = prob[𝐻,𝜓].

Definition 140 (𝐾 ′
, EBRM functions; 𝐾 ′

Λ, EBRM functions on [0,Λ]). A function 𝑎 : [0,∞) → R with

finite support is an EBRM function if the transition 𝑎− → 𝑎+ is EBRM, where 𝑎+ : [0,∞) → [0,∞) and

𝑎− : [0,∞) → [0,∞) denote, respectively, the positive and the negative part of 𝑎, i.e. 𝑎 = 𝑎+ − 𝑎−. We

denote by 𝐾 ′
the set of EBRM functions.

125

For any finite Λ ∈ (0,∞), a function 𝑎 : [0,Λ) → R with finite support is an EBRM function with

support on [0,Λ] if the transition 𝑎− → 𝑎+ is EBRM with its spectrum in [0,Λ], where 𝑎+ and 𝑎− denote,

respectively, the positive and the negative part of 𝑎. We denote by 𝐾 ′
Λ the set of EBRM functions with

support on [0,Λ].

Definition 141 (Real operator monotone functions). A function 𝑓 : (0,∞) → R is a real operator mono-

tone if for all real matrices 0 ≤ 𝐴 ≤ 𝐵 we have 𝑓 (𝐴) ≤ 𝑓 (𝐵).
A function 𝑓 : (0,Λ) → R is a real operator monotone on [0,Λ] if for all real matrices 0 ≤ 𝐴 ≤ 𝐵 with

spectrum in [0,Λ] we have 𝑓 (𝐴) ≤ 𝑓 (𝐵).

Lemma 142. 𝐾 ′∗
Λ is the set of real operator monotones on [0,Λ].

Proof sketch. In [Aha+14b] the authors showed that the dual of the set of EBM functions on [0,Λ], denoted

as 𝐾∗
Λ, is the set of operator monotone functions on [0,Λ]. Their proof can be adapted here by restricting

to real matrices to show that 𝐾 ′∗
Λ is the set of real operator monotone functions on [0,Λ]. □

Lemma 143. 𝐾∗
Λ = 𝐾 ′∗

Λ and 𝐾∗ = 𝐾 ′∗, i.e. the set of operator monotones on [0,Λ] equals the set of real
operator monotones on [0,Λ] and the set of operator monotones equals the set of real operator monotones.

Corollary 144. 𝐾 ′
Λ = 𝐾 ′∗∗

Λ = 𝐾∗∗
Λ = 𝐾Λ, i.e. the set of EBRM functions on [0,Λ] = the set of Λ-valid functions

as the dual of EBRM functions = the set of Λ-valid functions as the dual of EBM functions = the set of EBM
functions on [0,Λ].

Corollary 145. Any strictly valid function is EBRM.

Let us sketch the proof of Lemma 143. The set of real operator monotones must contain the set of

operator monotones, since the latter are – by definition – required to work in the real case as well. The set

of real operator monotones might be bigger, but that is not the case, as we can encode an 𝑛 × 𝑛 Hermitian

matrix into a 2𝑛 × 2𝑛 real symmetric matrix. This is achieved by replacing each complex number 𝛼 + 𝑖𝛽
with the matrix

𝛼

[
1

1

]
+ 𝛽

[
−1

1

]
.

This corresponds to writing a complex matrix𝑊 =𝑊ℜ + 𝑖𝑊ℑ as a real symmetric matrix

𝑊 ′ =

[
𝑊ℜ −𝑊ℑ
𝑊ℑ 𝑊ℜ

]
,

where𝑊ℜ and𝑊ℑ are real. For a Hermitian𝑊 † = 𝑊 we must have𝑊ℜ = 𝑊𝑇
ℜ and𝑊ℑ = −𝑊𝑇

ℑ which

makes𝑊 ′ =𝑊 ′𝑇
a symmetric matrix. The spectra of𝑊 and𝑊 ′

are the same. This is established by looking

at the diagonal decomposition,𝑊 = 𝑈𝑆𝑈 †
, which would get transformed to𝑊 ′ = 𝑈 ′𝑆 ′𝑈 ′†

. Since 𝑆 is real

𝑆 ′ is also real with doubly degenerate eigenvalues (except for the degeneracy already present in 𝑆). Thus

if we have 0 ≤ 𝐴 ≤ 𝐵 then we would also have 0 ≤ 𝐴′ ≤ 𝐵′
as 𝐴 − 𝐵 and 𝐴′ − 𝐵′

would have the same

spectrum; we used 𝐴′
and 𝐵′

to represent real symmetric analogues of the Hermitian matrices 𝐴 and 𝐵.

The other direction is trivial. Hence we have an equivalence which means that requiring a function to

be operator monotone on complex matrices is the same as requiring it to be operator monotone on real

symmetric matrices of at most twice the size. This establishes that the set of real operator monotones is

the same as the set of operator monotones.

126

E.2 EBRM to COF

Having reduced our problem from the set of EBM transitions to the set of EBRM transitions, we now show

that each EBRM transition can be written in the COF, see Section 5.1, thus showing that Λ−valid functions

admit matrices of the COF. The result is actually due to C. Mochon and A. Y. Kitaev [Moc07], but we present

the proof here, as there was a minor mistake in one of the arguments that we corrected. The interesting

part is showing that we can always restrict to matrices of a certain size that depends on the number of

points in the transition.

Lemma 146. For every EBRM transition 𝑔 → ℎ with spectrum in [𝑎, 𝑏] there exists an orthogonal matrix𝑂 ,
diagonal matrices 𝑋ℎ , 𝑋𝑔 (with no multiplicities except possibly those of 𝑎 and 𝑏) of size at most 𝑛𝑔 + 𝑛ℎ − 1

such that

𝑂

𝑥𝑔1

. . .

𝑥𝑔𝑛𝑔
𝑎

. . .

︸ ︷︷ ︸
:=𝑋𝑔

𝑂𝑇 ≤

𝑥ℎ1

. . .

𝑥ℎ𝑛ℎ
𝑏

. . .

= 𝑋ℎ,

and the vector |𝜓 ⟩ :=
∑𝑛ℎ
𝑖=1

√
𝑝ℎ𝑖 |𝑖⟩ =

∑𝑛𝑔

𝑖=1

√
𝑝𝑔𝑖𝑂 |𝑖⟩.

Proof. An EBRM entails that we are given 𝐺 ≤ 𝐻 with their spectrum in [𝑎, 𝑏] and a |𝜓 ⟩ such that

𝑔 = Prob[𝐺, |𝜓 ⟩] =
𝑛𝑔∑︁
𝑖=1

𝑝𝑔𝑖 [𝑥𝑔𝑖] and ℎ = Prob[𝐻, |𝜓 ⟩] =
𝑛ℎ∑︁
𝑖=1

𝑝ℎ𝑖 [𝑥ℎ𝑖],

with 𝑝𝑔𝑖 , 𝑝ℎ𝑖 > 0 and 𝑥𝑔𝑖 ≠ 𝑥𝑔𝑗 , 𝑥ℎ𝑖 ≠ 𝑥ℎ 𝑗
for 𝑖 ≠ 𝑗 , but the dimension and multiplicities can be arbitrary.

First we show that one can always choose the eigenvectors |𝑔𝑖⟩ of 𝐺 with eigenvalue 𝑥𝑔𝑖 such that |𝜓 ⟩ =∑𝑛𝑔

𝑖=1

√
𝑝𝑔𝑖 |𝑔𝑖⟩. Consider 𝑃𝑔𝑖 to be the projector on the eigenspace with eigenvalue 𝑥𝑔𝑖 . Note that |𝑔𝑖⟩ :=

𝑃𝑔𝑖 |𝜓 ⟩√
⟨𝜓 |𝑃𝑔𝑖 |𝜓 ⟩

fits the bill. Similarly, we choose |ℎ𝑖⟩ such that |𝜓 ⟩ = ∑𝑛ℎ
𝑖=1

√
𝑝ℎ𝑖 |ℎ𝑖⟩. Consider now the projector

onto the {|𝑔𝑖⟩} space Π𝑔 =
∑𝑛𝑔

𝑖=1
|𝑔𝑖⟩ ⟨𝑔𝑖 |. Note that this does not have all eigenvectors with eigenvalues

∈ {𝑥𝑔𝑖 }. Similarly, we define Πℎ =
∑𝑛ℎ
𝑖=1

|ℎ𝑖⟩ ⟨ℎ𝑖 |. We further define 𝐺 ′
:= Π𝑔𝐺Π𝑔 + 𝑎(I − Π𝑔) and 𝐻 ′

:=

Πℎ𝐻Πℎ+𝑏 (I−Πℎ). These definitions are useful as we can show𝐺 ′ ≤ 𝐻 ′
. From𝐺 = Π𝑔𝐺Π𝑔+(I−Π𝑔)𝐺 (I−Π𝑔)

we can conclude that Π𝑔𝐺Π𝑔 + 𝑎(I − Π𝑔) ≤ 𝐺 . This entails𝐺 ′ ≤ 𝐺 . Using a similar argument one can also

establish that 𝐻 ≤ 𝐻 ′
. Combining these we get 𝐺 ′ ≤ 𝐻 ′

.

Consider the projector Π := projector on span{{|𝑔𝑖⟩}
𝑛𝑔

𝑖=1
, {|ℎ𝑖⟩}𝑛ℎ𝑖=1

}, and note that it has dimension at

most 𝑛𝑔 + 𝑛ℎ − 1, because |𝜓 ⟩ is in the span of {|𝑔𝑖⟩} and in the span of {|ℎ𝑖⟩}, therefore at least one of the

basis vectors is not independent. We have𝐺 ′′
:= Π𝐺 ′Π ≤ Π𝐻 ′Π =: 𝐻 ′′

, since we can always conjugate an

inequality by a positive semi-definite matrix on both sides. Note also that Π |𝜓 ⟩ = |𝜓 ⟩ which means that

the matrices and the vectors have the claimed dimension. We now establish that Prob[𝐻 ′′, |𝜓 ⟩] = ℎ and

Prob[𝐺 ′′, |𝜓 ⟩] = 𝑔. We first write the projector tailored to the 𝑔 basis as Π = Π𝑔 +Π𝑔⊥ , where Π𝑔⊥ is meant

to enlarge the space to the span{ℎ𝑖}𝑛ℎ𝑖=1
. With this we evaluate

𝐺 ′′ =
(
Π𝑔 + Π𝑔⊥

) [
Π𝑔𝐺Π𝑔 + 𝑎(I − Π𝑔)

] (
Π𝑔 + Π𝑔⊥

)
= Π𝑔𝐺Π𝑔 + 𝑎Π𝑔⊥ .

Then Prob[𝐺 ′′, |𝜓 ⟩] = 𝑔. By a similar argument one can establish the same claim for ℎ. Since 𝐺 ′′
and 𝐻 ′′

have no multiplicities except possibly in 𝑎 and 𝑏, respectively, we conclude that we can always restrict to

the claimed dimension and form. □

Corollary 147. For every EBRM transition the corresponding COF is legal.

127

F TheWeingarten map

Consider a curve in the plane specified by a function 𝑓 . Its curvature is related to the rate of change of

the tangents of 𝑓 , i.e. the second derivative of 𝑓 . For a surface in arbitrary dimensions specified by 𝑓 , the

corresponding quantity becomes a matrix 𝜕𝑖𝜕𝑗 𝑓 . The eigenvalues of this matrix give us the curvature along

the corresponding eigenvector, however in practice it is a rather cumbersome calculation. We can use a

more general method to easily obtain an analytic solution to this problem for ellipsoids; this method is

based on the so-called Weingarten map. Intuitively, it is defined as the differential of the normal at a given

point on the manifold, and it turns out to be effectively the same as finding the aforementioned matrix of

second derivatives.

Definition 148 (Weingarten Map (Informal
41

, from [Sch09]
42

)). Let𝐾 be a manifold specified by the heads

of vectors in R𝑛 . Denote the tangent space of𝐾 at |𝑥⟩ ∈ 𝐾 by𝑇 |𝑥 ⟩𝐾 . Let |𝑢𝐾 (|𝑥⟩)⟩ be the outer unit normal

vector of 𝐾 at |𝑥⟩. The map |𝑢𝑘 (|𝑥⟩)⟩ : 𝐾 → S𝑛−1 ⊂ R𝑛 as defined is called the spherical image map, or

the Gauss map, of the interior of the manifold 𝐾 . Its differential at |𝑥⟩, 𝑑 (|𝑢𝐾 ⟩)𝑘 =:𝑊𝑥 maps𝑇 |𝑥 ⟩𝐾 to itself.

The linear map𝑊𝑥 : 𝑇 |𝑥 ⟩𝐾 → 𝑇 |𝑥 ⟩𝐾 is called the Weingarten map.

The so-called Reverse Weingarten map is easier to calculate, and useful due to the following result.

Theorem 149 (Informal). [Sch09] The inverse of the Weingarten map equals the reverse Weingarten map, for
well-behaved surfaces.

We omit the exact statement of the theorem and the definition of the Reverse Weingarten map as they

are not directly relevant for us. We simply work with a formula for the Weingarten map as follows.

Definition 150 (Support Function [Sch09]). Given a manifold specified by a set 𝑆 of vectors and a nor-

malized vector |𝑢⟩, the support function is defined as

ℎ𝑆 (|𝑢⟩) := sup

|𝑠 ⟩∈𝑆
⟨𝑠 |𝑢⟩ .

Theorem 151 (Formula for evaluating the Reverse Weingarten Map (Informal
43

from [Sch09])). Consider
a convex surface specified by a set 𝑆 of vectors. Given a normalized vector |𝑢⟩, the Reverse Weingarten map,
𝑊 , evaluated along the normal specified by |𝑢⟩ is given by

(𝑊)𝑖 𝑗 =
𝜕2ℎ𝑆 (|𝑢 ′⟩)
𝜕𝑢 ′
𝑖
𝜕𝑢 ′

𝑗

�����
𝑢

, where ℎ𝑆 (|𝑢 ′⟩) is the support function.

Assuming that we can invert a matrix, using Theorem 151 and Theorem 149 we can obtain the Wein-

garten map. For ellipsoids we have:

Lemma 152. Given an 𝑛 × 𝑛 matrix 𝐺 ≥ 0, the support function corresponding to the ellipsoid 𝑆𝐺 along a
normal |𝑢⟩ of the manifold is given by

ℎ𝑆𝐺 (|𝑢⟩) =
√︁
⟨𝑢 |𝐺⊣ |𝑢⟩.

41
There are qualifying conditions on 𝐾 which we suppressed.

42
The convention therein for 𝑇 and 𝐾 is slightly different.

43
The qualifying conditions on the surface and certain technicalities have been omitted.

128

In our analysis, we typically know the point at which we wish to evaluate the curvature. The calculation

of the support function requires the normal at that point, which can be evaluated as follows:

Lemma 153 (Normal). Given an 𝑛 × 𝑛 matrix 𝐺 ≥ 0, consider the manifold 𝑆𝐺 associated with it. Let
|𝑣⟩ ∈ ΠR𝑛 be a vector such that E𝐺 (|𝑣⟩) is well-defined (⟨𝑣 |𝐺 |𝑣⟩ ≠ 0) where Π is as defined in Definition 84.
The normal at E𝐺 (|𝑣⟩) – which we also refer to as the normal along |𝑣⟩ – is given by |𝑢⟩ = 𝐺 |𝑣⟩ /

√︁
⟨𝑣 |𝐺2 |𝑣⟩.

Proof. Consider 𝐺 = diag(𝑥𝑔1
, 𝑥𝑔2

. . . 𝑥𝑔𝑛) and let |𝑣⟩ = (𝑣1, 𝑣2 . . . 𝑣𝑛). The surface 𝑆𝐺 is determined by the

constraint ⟨𝑣 |𝐺 |𝑣⟩ = 1 which is equivalent to

∑𝑛
𝑖=1
𝑥𝑔𝑖𝑣

2

𝑖 = 1. Changing the constant 1 can be thought of as

scaling the surface. Treating

∑𝑛
𝑖=1
𝑥𝑔𝑖𝑣

2

𝑖 as a scalar function, its gradient points along the outward normal:

|𝑢⟩ ∝ ∑𝑛
𝑗=1

𝜕
𝜕𝑣𝑗

∑𝑛
𝑖=1
𝑥𝑔𝑖𝑣

2

𝑖 | 𝑗⟩ ∝
∑𝑛
𝑗=1
𝑥𝑔𝑗 𝑣 𝑗 | 𝑗⟩ ∝ 𝐺 |𝑣⟩. □

With these ingredients we can now evaluate the Reverse Weingarten Map.

Lemma 154 (Reverse Weingarten Map). Given an 𝑛 × 𝑛 matrix 𝐺 ≥ 0, and a vector |𝑣⟩ ∈ ΠR𝑛 where Π is
as defined in Definition 84, the Reverse Weingarten Map associated with the surface 𝑆𝐺 , evaluated at the point
E𝐺 (|𝑣⟩) is given by

𝑊𝐺 :=

√︄
⟨𝐺2⟩
⟨𝐺⟩

(
𝐺⊣ − |𝑣⟩ ⟨𝑣 |

⟨𝐺⟩

)
, where

〈
𝐺 𝑗

〉
:= ⟨𝑣 |𝐺 𝑗 |𝑣⟩ .

Proof. We prove this for 𝐺 > 0 (for 𝐺 ≥ 0 but 𝐺 ≯ 0, it follows analogously by restricting to the non-zero

eigenspace). Let the spectral decomposition of𝐺 be given by𝐺 =
∑𝑛
𝑖=1
𝑥𝑔𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖 |, and let |𝑣⟩ = ∑𝑛

𝑖=1
𝑐𝑖 |𝑔𝑖⟩.

From Lemma 153 the normal along |𝑣⟩ is given by |𝑢⟩ = 𝐺 |𝑣⟩ /
√︁
⟨𝑣 |𝐺2 |𝑣⟩. Writing |𝑢⟩ = ∑𝑛

𝑖=1
𝑢𝑖 |𝑔𝑖⟩, the

𝑢𝑖s are fixed. Then, the support function evaluated along the normal |𝑢⟩ is given by (we denote ℎ𝑆𝐺 (|𝑢⟩)
by ℎ)

ℎ =
√︁
⟨𝑢 |𝐺⊣ |𝑢⟩ =

√︃∑𝑛
𝑖=1
𝑥−1

𝑔𝑖 𝑢
2

𝑖
from Lemma 152

=⇒ (𝑊𝐺)𝑖 𝑗 =
𝜕2ℎ

𝜕𝑢𝑖𝜕𝑢 𝑗
= − 1

ℎ3
𝑥−1

𝑔𝑗
𝑥−1

𝑔𝑖
𝑢 𝑗𝑢𝑖 +

𝑥−1

𝑔𝑖

ℎ
𝛿𝑖 𝑗 from Theorem 151

=⇒ 𝑊𝐺 = − 1

ℎ3
𝐺⊣ |𝑢⟩ ⟨𝑢 |𝐺⊣ + 𝐺⊣

ℎ
,

where we used the more general notation 𝐺⊣ = 𝐺−1
. Substituting |𝑢⟩ in the expression for ℎ and𝑊𝐺 we

obtain ℎ =

√︃
⟨𝐺 ⟩
⟨𝐺2 ⟩ and

𝑊𝐺 =
1

ℎ
𝐺⊣ − 1

ℎ3

|𝑣⟩ ⟨𝑣 |
⟨𝐺2⟩ =

√︄
⟨𝐺2⟩
⟨𝐺⟩

(
𝐺⊣ − |𝑣⟩ ⟨𝑣 |

⟨𝐺⟩

)
.

When 𝐺 ≥ 0 and has zero eigenvalues, the spectral decomposition has 𝑚 elements with 𝑚 < 𝑛, i.e.

𝐺 =
∑𝑚
𝑖=1
𝑥𝑔𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖 |. The sum

∑𝑚
𝑖=1
𝑥−1

𝑔𝑖
𝑢2

𝑖 would then correspond to ⟨𝑢 |𝐺⊣ |𝑢⟩. Similar replacements can

be made to generalize the proof for 𝐺 ≥ 0. □

Inverting the Reverse Weingarten Map is not too hard due to the following result.

Theorem 155 (Sherman-Morrison formula [SM50; Hag89]). Let𝐴 be an 𝑛 ×𝑛 invertible matrix and let |𝑎⟩,
|𝑏⟩ be 𝑛-dimensional vectors. Then, 𝐴 + |𝑎⟩ ⟨𝑏 | is invertible if and only if 1 + ⟨𝑏 |𝐴−1 |𝑎⟩ ≠ 0. Furthermore, if
this is the case, then

(𝐴 + |𝑎⟩ ⟨𝑏 |)−1 = 𝐴−1 − 𝐴−1 |𝑎⟩ ⟨𝑏 |𝐴−1

1 + ⟨𝑏 |𝐴−1 |𝑎⟩ .

129

Combining the above we can also evaluate the Weingarten map.

Lemma 156 (Weingarten Map). Given an 𝑛 × 𝑛 matrix 𝐺 ≥ 0, the Weingarten Map associated with the
surface 𝑆𝐺 , evaluated at the point E𝐺 (|𝑣⟩) is given by

𝑊 ⊣
𝐺 =

√︄
⟨𝐺⟩
⟨𝐺2⟩

(
𝐺 +

〈
𝐺3

〉
⟨𝐺2⟩2

𝐺 |𝑣⟩ ⟨𝑣 |𝐺 − 1

⟨𝐺2⟩
(
𝐺 |𝑣⟩ ⟨𝑣 |𝐺2 +𝐺2 |𝑣⟩ ⟨𝑣 |𝐺

))
where ⟨𝐺⟩ := ⟨𝑣 |𝐺 |𝑣⟩.

Proof. We prove for𝐺 > 0 and the proof for 𝐺 ≥ 0 follows analogously. By a direct computation we have

𝑊𝐺𝐺 |𝑣⟩ = 0 (see Lemma 154), and applying Theorem 155 we obtain

𝑊 −1 =

√︄
⟨𝐺⟩
⟨𝐺2⟩

(
𝐺 + 𝐺 |𝑣⟩ ⟨𝑣 |𝐺

⟨𝐺⟩ · 0

)
, (31)

where we set𝐴 = 𝐺⊣ = 𝐺−1
and |𝑎⟩ = |𝑏⟩ = 𝐺 |𝑣⟩ /

√︁
⟨𝐺⟩ (after pulling out the 1/

√︁
⟨𝐺2⟩ /⟨𝐺⟩ factor). Using

appropriate interpolations (for instance |𝑎⟩ = − |𝑏⟩ = (1 − 𝜖)𝐺 |𝑣⟩ /
√︁
⟨𝐺⟩ instead of 𝐺 |𝑣⟩ /

√︁
⟨𝐺⟩), we can

make the second term well-defined and have it diverge only as some parameter 𝜖 vanishes. The quantity

we are interested in is 𝑊 ⊣ = Π⊥
𝑢𝑊Π⊥

𝑢 , where Π⊥
𝑢 = I − |𝑢⟩ ⟨𝑢 | and |𝑢⟩ = 𝐺 |𝑣⟩ /

√︁
⟨𝐺⟩. If the positive

inverse is to be well-defined, the second term in Equation (31) should disappear after the projection, i.e.

Π⊥
𝑢𝐺 |𝑣⟩ ⟨𝑣 |𝐺Π⊥

𝑢 = 0. Indeed, it does because𝐺 |𝑣⟩ ∝ |𝑢⟩. The non-vanishing contribution must then come

from the first term in Equation (31), Π⊥
𝑢𝐺Π

⊥
𝑢 = (I − |𝑢⟩ ⟨𝑢 |)𝐺 (I − |𝑢⟩ ⟨𝑢 |), which entails

𝑊 ⊣ =

√︄
⟨𝐺⟩
⟨𝐺2⟩Π

⊥
𝑢𝐺Π

⊥
𝑢 =

√︄
⟨𝐺⟩
⟨𝐺2⟩

(
𝐺 − 𝐺2 |𝑣⟩ ⟨𝑣 |𝐺

⟨𝐺2⟩ − 𝐺 |𝑣⟩ ⟨𝑣 |𝐺2

⟨𝐺2⟩ +
〈
𝐺3

〉
⟨𝐺2⟩

𝐺 |𝑣⟩ ⟨𝑣 |𝐺
⟨𝐺2⟩

)
.

The case for𝐺 ≥ 0 where𝐺 has zero eigenvalues carries through. This can be seen by viewing the Sherman

Morrison formula as a “correction” to an inverse when one entry of the matrix is changed. The inverse of

𝐺 we are interested in is the positive inverse𝐺⊣
. The entry of the matrix that we change is in this positive

subspace. Restricting the analysis to this subspace, the matrix 𝐺 can be viewed as positive, yielding the

required generalization. □

G The −1/𝑥 transformation

In Section 6.2 we claimed that the 𝑓 −assignments transform in a useful way under 𝑥𝑖 ↦→ 1/𝑥𝑖 , and if 𝑂

is the solution to an 𝑓 −assignment, 𝑡 , then 𝑂𝑇 is the solution to the assignment that is derived from 𝑡

under the aforementioned transformation. Here, we prove this claim. Recall Lemma 69 which tells us that

a function is EBRM in [𝜒, b] if and only if it is [𝜒, b]−valid. For the operator monotone 𝑓_ (𝑥) = −1

_+𝑥 , this

corresponds to requiring

∑
𝑖 𝑝𝑖 𝑓_ (𝑥𝑖) ≥ 0 for all _ ∈ (−∞,∞)\[−b,−𝜒], permitting us to replace ⟦𝑥𝑖⟧ with

⟦1/𝑥𝑖⟧ at the cost of a minus sign. Notice that we can also use this transformation to convert left to right

roots (see Appendix D.2).

Lemma 157. Let 𝜒, b > 0. A function 𝑡 =
∑
𝑖 𝑝𝑖⟦𝑥𝑖⟧ is EBRM in [𝜒, b] if and only if the function 𝑡 ′ =∑

𝑖 −𝑝𝑖⟦1/𝑥𝑖⟧ is EBRM in [1/b, 1/𝜒]. Further, if𝑂 solves the matrix instance corresponding to 𝑡 with spectrum
in [𝜒, b], then 𝑂𝑇 solves the matrix instance corresponding to 𝑡 ′ with spectrum in [1/b, 1/𝜒].

Proof. We start with the only if part (⇒). We are given 𝐻,𝐺 with spectrum in [𝜒, b] and a vector |𝑤⟩
such that 𝑡 = Prob[𝐻, |𝑤⟩] − Prob[𝐺, |𝑤⟩] and 𝐻 ≥ 𝐺 . Further, 𝐻 ≥ 𝐺 ⇔ 𝐻−1 ≤ 𝐺−1

. Using the

spectral decomposition we have 𝑡 ′ = Prob[𝐺−1, |𝑤⟩] − Prob[𝐻−1, |𝑤⟩]. Defining 𝐻 ′
:= 𝐺−1,𝐺 ′

:= 𝐻−1
and

130

|𝑤 ′⟩ = |𝑤⟩, we have 𝑡 ′ = Prob[𝐻 ′, |𝑤 ′⟩] − Prob[𝐺 ′, |𝑤 ′⟩] and 𝐻 ′ ≥ 𝐺 ′
, where 𝐻 ′

and𝐺 ′
have their spectra

in [1/b, 1/𝜒]. The other direction (⇐) follows similarly by using a basis in which 𝐻 = 𝑋ℎ is diagonal,

writing 𝐺 = 𝑂𝑋𝑔𝑂
𝑇

and noting that 𝑂−1 = 𝑂𝑇 . □

Corollary 158. Let 0 < 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 . Then, 𝑂𝑇 solves a matrix instance corresponding to

𝑡 =

𝑛∑︁
𝑖=1

(
− 1

𝑥𝑖

)𝑘
∏
𝑖≠𝑗

(
1

𝑥 𝑗
− 1

𝑥𝑖

) ⟦𝑥𝑖⟧,
if and only if 𝑂 solves the corresponding matrix instance associated with the monomial assignment

𝑡 ′ =
𝑛∑︁
𝑖=1

−
(
− 1

𝑥𝑖

)𝑘
∏
𝑖≠𝑗

(
1

𝑥 𝑗
− 1

𝑥𝑖

) ⟦1/𝑥𝑖⟧ =

𝑛∑︁
𝑖=1

−(−𝜔𝑖)𝑘∏
𝑖≠𝑗 (𝜔 𝑗 − 𝜔𝑖)

⟦𝜔𝑖⟧,

where 𝜔𝑖 = 1/𝑥𝑖 .

Example 159 (Solving the simplest monomial assignment). Suppose the assignment we wish to solve is

𝑡 =

2𝑛∑︁
𝑖=1

− (−𝑥𝑖)2𝑛−2∏
𝑗≠𝑖 (𝑥 𝑗 − 𝑥𝑖)

⟦𝑥𝑖⟧ =

2𝑛∑︁
𝑖=1

𝑝𝑖 ⟦𝑥𝑖⟧ ,

where 0 < 𝑥1 < 𝑥2 · · · < 𝑥𝑛 . This can be solved using the 𝑓0−solution (see Proposition 91) by writing 𝑡 =∑
2𝑛
𝑖=1

1∏
𝑗≠𝑖 (𝜔 𝑗−𝜔𝑖) ⟦𝑥𝑖⟧, where 𝜔𝑖 = 1/𝑥𝑖 , which is in turn equivalent to solving 𝑡 ′ =

∑
2𝑛
𝑖=1

− 1∏
𝑗≠𝑖 (𝜔 𝑗−𝜔𝑖) ⟦𝜔𝑖⟧

(see Corollary 158 with 𝑘 = 0). Instead, we solve this problem using another method; we use 𝑋 ⊣
instead of

𝑋 as in the usual 𝑓0−solution and the fact that

∑
𝑖 𝑝𝑖𝑥

−𝑘
𝑖 = 0 for 𝑘 ≤ 2𝑛 − 2 (see Lemma 33). Let us write 𝑡

as

𝑡 =

𝑛∑︁
𝑖=1

𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ −
𝑛∑︁
𝑖=1

𝑝𝑔𝑖
�
𝑥𝑔𝑖

�
=

𝑛∑︁
𝑖=1

𝑥2𝑛−2

ℎ𝑖
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ −

𝑛∑︁
𝑖=1

𝑥2𝑛−2

𝑔𝑖
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
.

Let the matrix instance corresponding to 𝑡 be given by X
𝑛

:=

(
𝑋𝑛
ℎ
, 𝑋𝑛𝑔 , (𝑋𝑛ℎ)

𝑛−1

��𝑤𝑛〉 , (𝑋𝑛𝑔)𝑛−1

��𝑣𝑛〉) , where

𝑋𝑛
ℎ
� diag(𝑥ℎ1

, 𝑥ℎ2
. . . 𝑥ℎ𝑛), 𝑋𝑛𝑔 � diag(𝑥𝑔1

, 𝑥𝑔2
. . . 𝑥𝑔𝑛),���𝑤𝑛〉 � (√𝑝ℎ1

,
√
𝑝ℎ2

. . .
√
𝑝ℎ𝑛),

���𝑣𝑛〉 � (
√︁
𝑝𝑔1
,
√︁
𝑝𝑔2

. . .
√︁
𝑝𝑔𝑛).

Solving the matrix instance X
𝑛

requires us to find an orthogonal matrix 𝑂 such that 𝑋𝑛
ℎ

≥ 𝑂𝑋𝑛𝑔𝑂
𝑇

and

𝑂 (𝑋𝑛𝑔)𝑛−1

��𝑣𝑛〉 = (𝑋𝑛
ℎ
)𝑛−1

��𝑤𝑛〉. The matrix inequality can be equivalently written as �̃�𝑛
ℎ
≤ 𝑂�̃�𝑛𝑔𝑂𝑇 , where

�̃�𝑛
ℎ

= (𝑋𝑛
ℎ
)−1

and �̃�𝑛𝑔 = (𝑋𝑛𝑔)−1
. Note that under a change of the direction of the matrix inequality the

arguments used in the proof of Lemma 90 go through unchanged. We can therefore consider the matrix

instance X̃

𝑛
:=

(
�̃�𝑛
ℎ
, �̃�𝑛𝑔 ,

���̃�𝑛〉 , ��𝑣𝑛〉) , where

���̃�𝑛〉 := (𝑋𝑛
ℎ
)𝑛−1

��𝑤𝑛〉 and

��𝑣𝑛〉 := (𝑋𝑛𝑔)𝑛−1

��𝑣𝑛〉. After iterating

for 𝑙 steps, suppose the matrix instance one obtains is �̃�
𝑛−𝑙

. To check if another isometric iteration is

131

possible, we must check if the contact condition (see Definition 93) holds, i.e. if〈
�̃�𝑛−𝑙

��� �̃�𝑛−𝑙 ����̃�𝑛−𝑙 〉 − 〈
𝑣𝑛−𝑙

��� �̃�𝑛−𝑙 ���𝑣𝑛−𝑙 〉
= 𝑟

(〈
�̃�𝑛

��� (�̃�𝑛ℎ)1

����̃�𝑛〉 , 〈�̃�𝑛 ��� (�̃�𝑛ℎ)2

����̃�𝑛〉 . . . , 〈�̃�𝑛 ��� (�̃�𝑛ℎ)2𝑙+1

����̃�𝑛〉)
− 𝑟

(〈
𝑣𝑛

��� (�̃�𝑛𝑔)1

���𝑣𝑛〉 , 〈𝑣𝑛 ��� (�̃�𝑛𝑔)2

���𝑣𝑛〉 . . . , 〈𝑣𝑛 ��� (�̃�𝑛𝑔)2𝑙+1

���𝑣𝑛〉)
= 𝑟

(〈
(𝑋𝑛
ℎ
)2𝑛−3

〉
,

〈
(𝑋𝑛
ℎ
)2𝑛−4

〉
. . . ,

〈
(𝑋𝑛
ℎ
)2𝑛−2𝑙−3

〉)
− 𝑟

(〈
(𝑋𝑛𝑔)2𝑛−3

〉
,

〈
(𝑋𝑛𝑔)2𝑛−4

〉
. . . ,

〈
(𝑋𝑛𝑔)2𝑛−2𝑙−3

〉)
vanishes. We used Lemma 92 (with𝑚 = 1) to obtain the RHS, and we continue using the convention that〈
(𝑋𝑛
ℎ
)𝑘

〉
=

〈
𝑤𝑛

�� (𝑋𝑛
ℎ
)𝑘

��𝑤𝑛〉 and similarly

〈
(𝑋𝑛𝑔)𝑘

〉
=

〈
𝑣𝑛

�� (𝑋𝑛𝑔)𝑘 ��𝑣𝑛〉. Recall that from Equation (25)〈
(𝐻𝑛)𝑘

〉
−

〈
(𝐺𝑛)𝑘

〉
=

〈
𝑥𝑘

〉
. (32)

If 0 ≤ 2𝑛 − 2𝑙 − 3 ≤ 2𝑛 − 2, then from Lemma 33 it follows that both terms become identical and hence

the difference indeed vanishes (one can similarly verify the component condition). Therefore, until 𝑙 =

𝑛 − 2 (included), one can apply the Weingarten Iteration to obtain

���̃�𝑛
ℎ

〉
,

����̃�𝑛−1

ℎ

〉
, . . . ,

����̃�𝑛−𝑙
ℎ

〉
, . . . ,

����̃�1

ℎ

〉
and����̃�𝑛𝑔 〉 , ����̃�𝑛−1

𝑔

〉
, . . . ,

����̃�𝑛−𝑙𝑔

〉
, . . . ,

����̃�1

𝑔

〉
, which completely determine 𝑂 =

∑𝑛
𝑖=1

����̃�𝑖
ℎ

〉 〈
�̃�𝑖𝑔

���. The argument can, as

before, be concisely represented using a diagram (see Figure 24).

Figure 24: Power diagram representative of the simplest monomial assignment for 2𝑛 = 6 points.

H Existence of solutions to matrix instances and their dimensions

Our goal here is to show that certain matrix instances can be solved with low-dimensional matrices.

From Lemma 160 and Lemma 161 below, we know that a solution to a matrix instance corresponding

to a [𝜒, b]-valid function always exists, granted that we pad the matrices with 𝜒 and b to have their size

equal to 𝑛 × 𝑛 with 𝑛 = 𝑛𝑔 + 𝑛ℎ − 1. We can, however, do even better. Consider the matrix instance X
𝑘

in

the notation introduced in Lemma 161. The eigenspace of 𝐻 on which |𝑤⟩ has a component is of size 𝑛ℎ
(similarly for𝐺 , |𝑣⟩ and 𝑛𝑔). Every time we iterate using the Weingarten map, we remove one component

from both𝐻 and |𝑤⟩ from within this eigenspace (similarly for𝐺 and |𝑣⟩). Consequently, in the subsequent

step, the eigenspace of 𝐻𝑘−1
on which

���𝑤𝑘−1

〉
has a component, is of size 𝑛ℎ − 1 (similarly for𝐺𝑘−1

,

���𝑣𝑘−1

〉
the size becomes 𝑛𝑔 − 1) where the matrix instance after the Weingarten Iteration map was taken to be

X
𝑘−1 =: (𝐻𝑘−1,𝐺𝑘−1,

���𝑤𝑘−1

〉
,

���𝑣𝑘−1

〉
). For the balanced 𝑓0-assignment, we end up with a matrix instance

132

X
𝑙 =: (𝐻 𝑙 ,𝐺𝑙 , 0, 0) where the vectors disappear. The matrices 𝐻 𝑙 and 𝐺𝑙 only have b and 𝜒 , respectively,

as their eigenvalues and then, we trivially have 𝐻 𝑙 > 𝐺𝑙 . In fact, this part of the matrix plays no role and

can be removed. This justifies why we could assume that even without padding with 𝜒s and bs, the matrix

instance corresponding to the 𝑓0-assignment had a solution.

The padding becomes important, however, when we use the wiggle-w (or wiggle-v) map to iterate.

Consider again the matrix instance X
𝑘

in the notation introduced in Lemma 161 and note that b → ∞
in these cases. The eigenspace of 𝐻 on which |𝑤⟩ has a component is of size 𝑛ℎ . Whenever we iterate

using the wiggle-w map, we do not remove any component from 𝐻 and |𝑤⟩ from within this eigenspace.

This is because we introduce an extra dimension, and then project out one dimension, leaving the overall

dimension of the space unchanged. The dimension for the𝐺 and |𝑣⟩ case, however, drops as before. Again,

when we reach a matrix instance X
𝑙
, where the vectors disappear we can use the reasoning above to justify

that matrices with fewer padded dimensions also have a solution.

Lemma 160. (Restatement of Lemma 146) Let 𝑡 = ℎ − 𝑔 =
∑𝑚
𝑖=1
𝑝𝑖 ⟦𝑥𝑖⟧ be a [𝜒, b]-valid function where

ℎ =:

∑𝑛ℎ
𝑖=1
𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ and 𝑔 =:

∑𝑛𝑔

𝑖=1
𝑝𝑔𝑖

�
𝑥𝑔𝑖

�
have disjoint support and 𝑝ℎ𝑖 , 𝑝𝑔𝑖 > 0 for 𝑖 ∈ {1, 2 . . . 𝑛ℎ} and{

1, 2 . . . 𝑛𝑔
}
, respectively. Let 𝑋ℎ and 𝑋𝑔 be 𝑛 × 𝑛 diagonal matrices, where 𝑛 = 𝑛ℎ + 𝑛𝑔 − 1, given by

𝑋ℎ = diag(𝑥ℎ1
, 𝑥ℎ2

, . . . 𝑥ℎ𝑛ℎ
, b, b . . . b) and 𝑋𝑔 = diag(𝑥𝑔1

, 𝑥𝑔2
, . . . 𝑥𝑔𝑛𝑔 , 𝜒, 𝜒 . . . 𝜒) .

Then, there exists an orthogonal matrix 𝑂 which solves the matrix instance X𝑛 := (𝑋ℎ, 𝑋𝑔, |𝑤⟩ , |𝑣⟩).

Lemma 161. Let 𝑘 , 𝑛ℎ and 𝑛𝑔 be strictly positive integers such that 𝑘 ≥ 𝑛ℎ and 𝑘 ≥ 𝑛𝑔. Consider a matrix
instance X𝑘 =: (𝐻,𝐺, |𝑤⟩ , |𝑣⟩) where

𝐻 =

𝑛ℎ∑︁
𝑖=1

𝑥ℎ𝑖 |ℎ𝑖⟩ ⟨ℎ𝑖 | +
𝑘∑︁

𝑖=𝑛ℎ+1

b |ℎ𝑖⟩ ⟨ℎ𝑖 | , |𝑤⟩ =
𝑛ℎ∑︁
𝑖=1

√
𝑝ℎ𝑖 |ℎ𝑖⟩

and 𝐺 =

𝑛𝑔∑︁
𝑖=1

𝑥𝑔𝑖 |𝑔𝑖⟩ ⟨𝑔𝑖 | +
𝑘∑︁

𝑖=𝑛𝑔+1

𝜒 |𝑔𝑖⟩ ⟨𝑔𝑖 | , |𝑣⟩ =
𝑛𝑔∑︁
𝑖=1

√︁
𝑝𝑔𝑖 |𝑔𝑖⟩

such that 𝑥ℎ𝑖 ≠ 𝑥𝑔𝑗 , 𝑝ℎ𝑖 , 𝑝𝑔𝑗 > 0 hold for all 𝑖 ∈ {1, 2 . . . 𝑛ℎ}, 𝑗 ∈ {1, 2 . . . 𝑛𝑔}, and H𝑘 = span{|ℎ𝑖⟩},
G𝑘 = span{|𝑔𝑖⟩} (see Definition 93). If the isometry 𝑄 : H𝑘 → G𝑘 solves the matrix instance X𝑘 , then the
function

𝑡 =

𝑛ℎ∑︁
𝑖=1

𝑝ℎ𝑖 ⟦𝑥ℎ𝑖⟧ −
𝑛𝑔∑︁
𝑖=1

𝑝𝑔𝑖
�
𝑥𝑔𝑖

�
is [𝜒, b]-valid; which is equivalent to being [𝜒, b]-EBRM.

I Lemmas for the contact and component conditions

Lemma 162. Consider the matrix instance X𝑛 := (𝐻𝑛,𝐺𝑛,
��𝑤𝑛〉 , ��𝑣𝑛〉). Suppose that the Weingarten Iteration

Map (see Definition 95) is applied 𝑙 times to obtain X𝑛−𝑙 :=

(
𝐻𝑛−𝑙 ,𝐺𝑛−𝑙 ,

���𝑤𝑛−𝑙 〉 , ���𝑣𝑛−𝑙 〉) . Then, for any 𝑙 , the

expectation value
〈
𝑣𝑛−𝑙

���𝐺𝑛−𝑙 ���𝑣𝑛−𝑙 〉 is a function of the expectation values
〈
𝑣𝑛

�� (𝐺𝑛)𝑝 ��𝑤𝑛〉 = ⟨(𝐺𝑛)𝑝⟩, where
the powers 𝑝 range from 0 to 2𝑙 + 1 at most. The corresponding statement for 𝐻 and |𝑤⟩ also holds.

133

Proof. Using once the Weingarten Iteration Map we obtain:���𝑣𝑛−1

〉
=

���𝑣𝑛〉 − ⟨𝐺𝑛⟩
⟨(𝐺𝑛)2⟩

𝐺𝑛
���𝑣𝑛〉 (33)

𝐺𝑛−1 = 𝐺𝑛 + ⟨(𝐺𝑛)3⟩
⟨(𝐺𝑛)2⟩2

𝐺𝑛
���𝑣𝑛〉 〈

𝑣𝑛
���𝐺𝑛 − 1

⟨(𝐺𝑛)2⟩

(
𝐺𝑛

���𝑣𝑛〉 〈
𝑣𝑛

��� (𝐺𝑛)2 + (𝐺𝑛)2

���𝑣𝑛〉 〈
𝑣𝑛

���𝐺𝑛) . (34)

If we continue to iterate accordingly and express everything in terms of

��𝑣𝑛〉 and 𝐺𝑛 , which are known,

after 𝑙 steps we obtain: ���𝑣𝑛−𝑙 〉 =

𝑙∑︁
𝑖=0

𝛼𝑖 (𝐺𝑛)𝑖
���𝑣𝑛〉 (35)

𝐺𝑛−𝑙 = 𝐺𝑛 +
𝑙+1∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)𝑖
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗 , (36)

where the multiplicative factors 𝑎𝑖 and 𝑎𝑖, 𝑗 also contain terms of the form ⟨(𝐺𝑛)𝑝⟩, in which 𝑝 ranges

between the minimum and maximum powers appearing in the sum; see Remark 163.

Indeed, we can use induction to prove that Equation (35) and Equation (36) hold for all 𝑙 .
The base of the induction 𝑙 = 1 immediately gives us Equation (33) and Equation (34), , and for 𝑙 + 1 the

Weingarten Iteration Map gives ���𝑣𝑛−𝑙−1

〉
=

���𝑣𝑛−𝑙 〉 − ⟨𝐺𝑛−𝑙 ⟩
⟨(𝐺𝑛−𝑙)2 ⟩

(𝐺𝑛−𝑙)
���𝑣𝑛−𝑙 〉

𝐺𝑛−𝑙−1 = 𝐺𝑛 + ⟨(𝐺𝑛−𝑙)3 ⟩
⟨(𝐺𝑛−𝑙)2 ⟩2

𝐺𝑛−𝑙
���𝑣𝑛−𝑙 〉 〈

𝑣𝑛−𝑙
���𝐺𝑛−𝑙 − 1

⟨(𝐺𝑛−𝑙)2 ⟩

(
𝐺𝑛−𝑙

���𝑣𝑛−𝑙 〉 〈
𝑣𝑛−𝑙

��� (𝐺𝑛−𝑙)2 + (𝐺𝑛−𝑙)2

���𝑣𝑛−𝑙 〉 〈
𝑣𝑛−𝑙

���𝐺𝑛−𝑙) .
Replacing

���𝑣𝑛−𝑙 〉 and 𝐺𝑛−𝑙 from Equation (35) and Equation (36) we get

���𝑣𝑛−𝑙−1

〉
=

𝑙+1∑︁
𝑖=0

𝛼𝑖 (𝐺𝑛)𝑖
���𝑣𝑛〉 (37)

𝐺𝑛−𝑙−1 = 𝐺𝑛 +
𝑙+2∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)𝑖
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗 , (38)

which proves that Equation (35) and Equation (36) are valid for all 𝑙 .

We can now complete our proof by expressing

〈
𝑣𝑛−𝑙

���𝐺𝑛−𝑙 ���𝑣𝑛−𝑙 〉 in terms of ⟨𝐺𝑛⟩. Substituting from Equa-

tion (35) and Equation (36), we get:〈
𝑣𝑛−𝑙

���𝐺𝑛−𝑙 ���𝑣𝑛−𝑙 〉 =

𝑙∑︁
𝑖=0

𝛼𝑖

〈
𝑣𝑛

��� (𝐺𝑛)𝑖+1

𝑙∑︁
𝑗=0

𝛼 𝑗 (𝐺𝑛) 𝑗
���𝑣𝑛〉 (39)

+
𝑙∑︁
𝑖=0

𝛼𝑖

〈
𝑣𝑛

��� (𝐺𝑛)𝑖 𝑙+1∑︁
𝑖′, 𝑗 ′=0

𝛼𝑖′, 𝑗 ′ (𝐺𝑛)𝑖
′
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗 ′ 𝑙∑︁

𝑗=0

𝛼 𝑗 (𝐺𝑛) 𝑗
���𝑣𝑛〉 .

In Equation (39), we see that the minimum expectation value is ⟨(𝐺𝑛)0⟩, while the maximum is ⟨(𝐺𝑛)2𝑙+1⟩,
which concludes the proof. □

Remark 163. Notice that we left 𝑎𝑖 and 𝑎𝑖, 𝑗 undetermined and we even used the same notation for them;

obviously 𝑎𝑖 and 𝑎𝑖, 𝑗 are different in Equation (35), Equation (36), Equation (37),Equation (38) and Equa-

tion (39). For our proof their specific form is not relevant, but what is rather important are the minimum

and maximum powers, 𝑝 , in ⟨(𝐺𝑛)𝑝⟩ that might appear in

〈
𝑣𝑛−𝑙

���𝐺𝑛−𝑙 ���𝑣𝑛−𝑙 〉. To estimate them, it suffices

134

to observe that the minimum power in

���𝑣𝑛−𝑙 〉 comes from the first term

��𝑣𝑛〉 and is 0, while the maximum

power that appears in

���𝑣𝑛−𝑙 〉 comes from ⟨(𝐺𝑛−𝑙+1)2⟩ (see Definition 95) and is equal to 2𝑙 . In 𝐺𝑛−𝑙 , how-

ever, we can find an even higher power appearing in the 𝑎𝑖, 𝑗 ’s coming from ⟨(𝐺𝑛−𝑙+1)3⟩ (see Definition 95)

and is equal to 2𝑙 + 1. In total these powers are always between the minimum and maximum powers on

Equation (39), thus the factors 𝑎𝑖 and 𝑎𝑖, 𝑗 do not need to be specified.

Lemma 164. Consider the extended matrix instance
M𝑛

:= 𝒰(𝐻𝑛,𝐺𝑛,
��𝑤𝑛〉 , ��𝑣𝑛〉 , (𝐻𝑛)⊣, (𝐺𝑛)⊣, |.⟩ , |.⟩). Suppose the Normal Initialization Map and the Wein-

garten Iteration Map (see Definition 94 and Definition 95) are applied 𝑙 times to obtain M𝑛−𝑙 , viz. applying

M𝑖−1 = 𝒰(𝒲(M𝑖)) 𝑙 times. Then, for any 𝑙 , the expectation value
〈
𝑣𝑛−𝑙

��� (𝐺𝑛−𝑙)⊣ ���𝑣𝑛−𝑙 〉 is a function of the

expectation values
〈
𝑣𝑛

�� (𝐺𝑛)𝑝 ��𝑤𝑛〉 = ⟨(𝐺𝑛)𝑝⟩, where the powers 𝑝 range from 0 to 2𝑙 + 1 at most. The corre-
sponding statement for 𝐻 and |𝑤⟩ also holds.

Proof. First, we need to specify the form of (𝐺𝑛−𝑙)⊣ as a function of 𝐺𝑛 and

��𝑣𝑛〉. The first iteration gives���𝑣𝑛−1

〉
=

���𝑣𝑛〉 − ⟨𝐺𝑛⟩
⟨(𝐺𝑛)2⟩

𝐺𝑛
���𝑣𝑛〉 (40)

(𝐺𝑛−1)⊣ = (𝐺𝑛)⊣ −
��𝑣𝑛〉 〈

𝑣𝑛
��

⟨𝐺𝑛⟩
. (41)

Continuing the iterations to 𝑙 and using Lemma 162 we obtain:���𝑣𝑛−𝑙 〉 =

𝑙∑︁
𝑖=0

𝛼𝑖 (𝐺𝑛)𝑖
���𝑣𝑛〉 (42)

(𝐺𝑛−𝑙)⊣ = (𝐺𝑛)⊣ +
𝑙−1∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)𝑖
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗 . (43)

Indeed, by induction we can prove that Equation (42) and Equation (43) hold for all 𝑙 .

The base of the induction 𝑙 = 1 immediately gives us Equation (40) and Equation (41), which hold.

For the 𝑙 + 1 instance, the Weingarten Iteration Map gives us:���𝑣𝑛−𝑙−1

〉
=

���𝑣𝑛−𝑙 〉 − ⟨𝐺𝑛−𝑙 ⟩
⟨(𝐺𝑛−𝑙)2⟩

(𝐺𝑛−𝑙)
���𝑣𝑛−𝑙 〉 (44)

(𝐺𝑛−𝑙−1)⊣ = (𝐺𝑛−𝑙)⊣ −

���𝑣𝑛−𝑙 〉 〈
𝑣𝑛−𝑙

���
⟨𝐺𝑛−𝑙 ⟩

(45)

Replacing

���𝑣𝑛−𝑙 〉 and (𝐺𝑛−𝑙)⊣ from Equation (42) and Equation (43), we get

���𝑣𝑛−𝑙−1

〉
=

𝑙+1∑︁
𝑖=0

𝛼𝑖 (𝐺𝑛)𝑖
���𝑣𝑛〉 (46)

(𝐺𝑛−𝑙−1)⊣ = (𝐺𝑛) +
𝑙∑︁

𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗 , (47)

which concludes our inductive proof.

135

Now that we proved that Equation (42) and Equation (43) hold for any 𝑙 , we can proceed to the calcu-

lation of the corresponding expectation value:

⟨(𝐺𝑛−𝑙)⊣⟩ =

〈
𝑣𝑛−𝑙

��� (𝐺𝑛−𝑙) ���𝑣𝑛−𝑙 〉 =

𝑙∑︁
𝑖, 𝑗=0

𝛼𝑖𝛼 𝑗

〈
𝑣𝑛

��� (𝐺𝑛)𝑖+𝑗−1

���𝑣𝑛〉
+

𝑙∑︁
𝑖=0

〈
𝑣𝑛

��� (𝐺𝑛)𝑖 𝑙−1∑︁
𝑖′, 𝑗 ′=0

𝛼𝑖′, 𝑗 ′ (𝐺𝑛)𝑖
′
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗 ′ 𝑙∑︁

𝑗=0

𝛼 𝑗 (𝐺𝑛) 𝑗
���𝑣𝑛〉 , (48)

where we have used (𝐺𝑛)⊣ = (𝐺𝑛)−1
, since 𝐺𝑛 is full rank.

Observe that the minimum power in the expectation value is ⟨𝐺𝑛⟩, while the maximum is ⟨(𝐺𝑛)2𝑙−1⟩.
Recall though that in the multiplicative factors 𝛼𝑖 and 𝛼𝑖, 𝑗 there are higher powers in the expectation values

⟨(𝐺𝑛)2𝑙+1⟩, which from now on are the highest. Since we are iterating with respect to 𝐺⊣
the powers are

not growing any more, but they rather decrease and we are interested on the minimum powers that are

reduced with each iteration. □

Lemma 165. Consider the extended matrix instance
M̃
𝑛

:= 𝒰((𝐻𝑛)⊣, (𝐺𝑛)⊣,
���̃�𝑛〉 , ��𝑣𝑛〉 , 𝐻𝑛,𝐺𝑛, |.⟩ , |.⟩). Suppose the Normal Initialization Map and the Wein-

garten Iteration Map (see Definition 94 and Definition 95) are applied 𝑘 times to obtain M̃
𝑛−𝑘

, viz. applying

M̃
𝑖−1

= 𝒰(𝒲(M̃𝑖)) 𝑘 times. Then, for any 𝑘 , the expectation value
〈
𝑣𝑑−𝑘

��� �̃�𝑑−𝑘 ���𝑣𝑑−𝑘〉 is a function of the

expectation values
〈
𝑣𝑛

�� (𝐺𝑛)𝑝 ��𝑤𝑛〉 = ⟨(𝐺𝑛)𝑝⟩, where the minimum power 𝑝 that might appear is −(2𝑘 + 1).
The corresponding statement for 𝐻 and |𝑤⟩ also holds.

Proof. The first iteration gives:���𝑣𝑑−1

〉
=

���𝑣𝑑 〉 − ⟨�̃�𝑑 ⟩
⟨(�̃�𝑑)2⟩

�̃�𝑑
���𝑣𝑑 〉 (49)

�̃�𝑑−1 = �̃�𝑑 + ⟨(�̃�𝑑)3⟩
⟨(�̃�𝑑)2⟩2

�̃�𝑑
���𝑣𝑑 〉 〈

𝑣𝑑
��� �̃�𝑑 − 1

⟨(�̃�𝑑)2⟩

(
�̃�𝑑

���𝑣𝑑 〉 〈
𝑣𝑑

��� (�̃�𝑑)2 + (�̃�𝑑)2

���𝑣𝑑 〉 〈
𝑣𝑑

��� �̃�𝑑) . (50)

Continuing for 𝑘 iterations, we can prove by induction that:���𝑣𝑑−𝑘〉 =

𝑘∑︁
𝑖=0

𝛼𝑖 (𝐺𝑛)𝑖−𝑘
���𝑣𝑛〉 (51)

�̃�𝑑−𝑘 = (𝐺𝑛)⊣ +
𝑘∑︁

𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)𝑖−(𝑘+1)
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗−(𝑘+1) . (52)

The base of the induction 𝑘 = 1 gives us Equation (49) and Equation (50), which hold, while for 𝑘 + 1,

we obtain:

���𝑣𝑑−𝑘−1

〉
=

���𝑣𝑑−𝑘〉 − ⟨�̃�𝑑−𝑘⟩
⟨(�̃�𝑑−𝑘)2⟩

�̃�𝑑−𝑘
���𝑣𝑑−𝑘〉

�̃�𝑑−𝑘−1 = �̃�𝑑−𝑘 + ⟨(�̃�𝑑−𝑘)3⟩
⟨(�̃�𝑑−𝑘)2⟩2

�̃�𝑑−𝑘
���𝑣𝑑−𝑘〉 〈

𝑣𝑑−𝑘
��� �̃�𝑑−𝑘

− 1

⟨(�̃�𝑑−𝑘)2⟩

(
�̃�𝑑−𝑘

���𝑣𝑑−𝑘〉 〈
𝑣𝑑−𝑘

��� (�̃�𝑑−𝑘)2 + (�̃�𝑑−𝑘)2

���𝑣𝑑−𝑘〉 〈
𝑣𝑑−𝑘

��� �̃�𝑑−𝑘) .

136

Substituting

���𝑣𝑑−𝑘〉 and �̃�𝑑−𝑘 from Equation (51) and Equation (52), we get:

���𝑣𝑑−𝑘−1

〉
=

𝑘+1∑︁
𝑖=0

𝛼𝑖 (𝐺𝑛)𝑖−𝑘−1

���𝑣𝑛〉
�̃�𝑑−𝑘−1 = (𝐺𝑛)⊣ +

𝑘+1∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)𝑖−𝑘−2

���𝑣𝑛〉 〈
𝑣𝑛

��� (𝐺𝑛) 𝑗−𝑘−2,

confirming that Equation (51) and Equation (52) hold for all 𝑘 . Thus, for any 𝑘 the corresponding expecta-

tion value can be written as:〈
𝑣𝑑−𝑘

��� �̃�𝑑−𝑘 ���𝑣𝑑−𝑘 〉 =

𝑘∑︁
𝑖=0

𝛼𝑖

〈
𝑣𝑛

��� (𝐺𝑛)𝑖−𝑘 (𝐺𝑛)−1

𝑘∑︁
𝑗=0

𝛼 𝑗 (𝐺𝑛) 𝑗−𝑘
���𝑣𝑛〉

+
𝑙+𝑘∑︁
𝑖=0

𝛼𝑖

〈
𝑣𝑛

��� (𝐺𝑛)𝑖−𝑘 𝑘∑︁
𝑖′, 𝑗 ′=0

𝛼𝑖′, 𝑗 ′ (𝐺𝑛)𝑖
′−(𝑘+1)

���𝑣𝑛〉 〈
𝑣𝑛

��� (𝐺𝑛) 𝑗 ′−(𝑘+1)
𝑘∑︁
𝑗=0

𝛼 𝑗 (𝐺𝑛) 𝑗−𝑘
���𝑣𝑛〉 .

We observe that the minimum power that can appear in the expectation values is −(2𝑘+1),∀𝑘 . The factors

𝛼𝑖 and 𝛼𝑖, 𝑗 , also contain terms of the form ⟨(𝐺𝑛)𝑝⟩, which behave as explained previously. □

Lemma 166. Consider the matrix instance X𝑛 := (𝐻𝑛,𝐺𝑛,
��𝑤𝑛〉 , ��𝑣𝑛〉). Using the Weingarten Iteration Map

(see Definition 95) once, we obtain:���𝑣𝑛−1

〉
=

���𝑣𝑛〉 − ⟨𝐺𝑛⟩
⟨(𝐺𝑛)2⟩

𝐺𝑛
���𝑣𝑛〉 (53)

𝐺𝑛−1 = 𝐺𝑛 + ⟨(𝐺𝑛)3⟩
⟨(𝐺𝑛)2⟩2

𝐺𝑛
���𝑣𝑛〉 〈

𝑣𝑛
���𝐺𝑛

− 1

⟨(𝐺𝑛)2⟩

(
𝐺𝑛

���𝑣𝑛〉 〈
𝑣𝑛

��� (𝐺𝑛)2 + (𝐺𝑛)2

���𝑣𝑛〉 〈
𝑣𝑛

���𝐺𝑛) . (54)

Then, for any power 𝑚, the expectation value
〈
𝑣𝑛−1

��� (𝐺𝑛−1)𝑚
���𝑣𝑛−1

〉
can be expressed in terms of the ex-

pectation values
〈
𝑣𝑛

�� (𝐺𝑛)𝑝 ��𝑣𝑛〉 = ⟨(𝐺𝑛)𝑝⟩ with 𝑝 being at most 𝑚 + 2. The corresponding statement for 𝐻
and |𝑤⟩ also holds.

Proof. The first step is to prove that for any power𝑚:

(𝐺𝑛−1)𝑚 = (𝐺𝑛)𝑚 +
𝑚+1∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)𝑖
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗 (55)

Note that some of the 𝛼𝑖, 𝑗 can be zero. Indeed, we can use induction to prove Equation (55).

The base of the induction𝑚 = 1 gives us Equation (53) and Equation (54), which hold, while for𝑚 + 1 we

have

(𝐺𝑛−1)𝑚+1 = (𝐺𝑛−1)𝑚 ·𝐺𝑛−1, (56)

and substituting from Equation (53), Equation (54) and Equation (55), we get

(𝐺𝑛−1)𝑚+1 =

(𝐺𝑛)𝑚 +
𝑚+1∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)𝑖
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗

·
[
𝐺𝑛 + ⟨(𝐺𝑛)3⟩

⟨(𝐺𝑛)2⟩2

𝐺𝑛
���𝑣𝑛〉 〈

𝑣𝑛
���𝐺𝑛 − 1

⟨(𝐺𝑛)2⟩

(
𝐺𝑛

���𝑣𝑛〉 〈
𝑣𝑛

��� (𝐺𝑛)2 + (𝐺𝑛)2

���𝑣𝑛〉 〈
𝑣𝑛

���𝐺𝑛)]
= (𝐺𝑛)𝑚+1 +

𝑚+2∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛𝑛)𝑖
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗 ,

137

proving that Equation (55) holds for all 𝑚. With this in place, we can proceed to prove our main claim

about the corresponding expectation value:〈
𝑣𝑛−1

��� (𝐺𝑛−1)𝑚
���𝑣𝑛−1

〉
=

(〈
𝑣𝑛

��� − ⟨𝐺𝑛⟩
⟨(𝐺𝑛𝑛)2⟩

〈
𝑣𝑛

���𝐺𝑛) (
(𝐺𝑛)𝑚 +

𝑚+1∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 (𝐺𝑛)𝑖
���𝑣𝑛〉 〈

𝑣𝑛
��� (𝐺𝑛) 𝑗) (���𝑣𝑛〉 − ⟨𝐺𝑛⟩

⟨(𝐺𝑛)2⟩
𝐺𝑛

���𝑣𝑛〉)
= ⟨(𝐺𝑛)𝑚⟩ + 𝑎⟨(𝐺𝑛)𝑚+1⟩ + 𝑏⟨(𝐺𝑛)𝑚+2⟩ +

𝑚+2∑︁
𝑖, 𝑗=0

𝛼𝑖, 𝑗 ⟨(𝐺𝑛)𝑖⟩⟨(𝐺𝑛) 𝑗 ⟩

=

𝑚+2∑︁
𝑖, 𝑗=0

𝛼 ′
𝑖, 𝑗 ⟨(𝐺𝑛)𝑖⟩⟨(𝐺𝑛) 𝑗 ⟩,

which completes our proof that the highest power is 𝑚 + 2 for any 𝑚. Notice that we did not fully

specified the scalar factors 𝑎, 𝑏, 𝛼𝑖, 𝑗 , 𝛼
′
𝑖, 𝑗 , as it is easy to verify, as previously, that they do not contain any

higher powers. □

138

	Introduction
	Contributions
	TDPG-to-Explicit-protocol Framework (TEF) and a protocol approaching bias 1/10
	Exact Unitaries for C. Mochon's assignments—an algebraic solution
	Elliptic Monotone Align (EMA) algorithm
	Exact unitaries for C. Mochon's assignments—a geometric solution

	Existence of almost perfect quantum WCF protocols
	WCF protocol as an SDP and its dual
	TDPGs with EBM transitions/functions
	TDPGs with valid functions
	Time-Independent Point Games (TIPGs)
	C. Mochon's TIPG achieving bias (k)=1/(4k+2)

	TDPG-to-Explicit-protocol Framework (TEF) and bias 1/10 game and protocol
	The framework
	Special case: the blinkered unitary

	Bias 1/10 game and protocol
	The 32 move and its validity
	The 22 move and its validity

	Approaching bias (k)=1/(4k+2) : an algebraic solution
	The f-assignments
	Solution to the f0-assignment
	The balanced case
	The unbalanced case

	Solution to monomial assignments
	The balanced case
	The unbalanced case

	Main result
	Example: a bias-1/14 protocol

	Elliptic Monotone Align (EMA) algorithm
	The Canonical Projective Form (CPF) and the Canonical Orthogonal Form (COF)
	The inequality as containment of ellipsoids and Convex Geometry tools
	Definitions and lemmas for the EMA algorithm
	Generalizations
	For the finite part
	For the infinite part; wiggle-v

	The algorithm
	PHASE 1: INITIALIZATION
	PHASE 2: ITERATION
	PHASE 3: RECONSTRUCTION

	Preliminary implementation

	Approaching bias (k)=1/(4k+2) | a geometric solution
	Solution to the f0-assignment
	The balanced case
	The unbalanced case

	Solution to monomial assignments

	Future work
	Connection with conic duality
	Formalizing the equivalence between transitions and functions
	Operator monotone functions and valid functions
	Strictly valid functions are EBM functions
	From point games with valid functions to point games with EBM functions

	TEF functions = valid functions = closure of EBM functions
	Blink mn transition
	Completing an orthonormal basis
	Analysis of the 32 transition

	Approaching bias (k)=1/(4k+2)
	Proof of expectationLemma
	Restricted decomposition into f0-assignments

	From EBM to EBRM to COF
	Equivalence of EBM and EBRM
	EBRM to COF

	The Weingarten map
	The -1/x transformation
	Existence of solutions to matrix instances and their dimensions
	Lemmas for the contact and component conditions

