
Speeding-Up Parallel Computation of
Large Smooth-Degree Isogeny using
Precedence-Constrained Scheduling

Kittiphon Phalakarn1, Vorapong Suppakitpaisarn2, and M. Anwar Hasan1

1 University of Waterloo, Ontario, Canada {kphalakarn,ahasan}@uwaterloo.ca
2 The University of Tokyo, Tokyo, Japan vorapong@is.s.u-tokyo.ac.jp

Abstract. Although the supersingular isogeny Diffie-Hellman (SIDH)
protocol is one of the most promising post-quantum cryptosystems, it
is significantly slower than its main counterparts due to the underly-
ing large smooth-degree isogeny computation. In this work, we address
the problem of evaluating and constructing a strategy for computing the
large smooth-degree isogeny in the multi-processor setting by formulat-
ing them as scheduling problems with dependencies. The contribution of
this work is two-fold. For the strategy evaluation, we transform strategies
into task dependency graphs and apply precedence-constrained schedul-
ing algorithms to them in order to find their costs. For the strategy con-
struction, we construct strategies from smaller parts that are optimal
solutions of integer programming representing the problem. We show via
experiments that the proposed two techniques together offer more than
13% reduction in the strategy costs compared to the best current results
by Hutchinson and Karabina presented at Indocrypt 2018.

Keywords: SIDH · Isogeny-based cryptography · Parallel computing ·
Precedence-constrained scheduling.

1 Introduction

The supersingular isogeny Diffie-Hellman (SIDH) protocol is a post-quantum key
exchange protocol introduced by De Feo, Jao, and Plût in 2011 [13], where its
security is based on the hardness of supersingular isogeny problems. SIDH was
parameterized as the supersingular isogeny key encapsulation (SIKE) protocol
[5] and was submitted to the NIST post-quantum cryptography standardization
project in 2017 [2]. As announced in 2020, SIKE was selected as one of the
alternate candidates [1].

SIDH requires relatively smaller public keys but takes more computation
time compared to other schemes [4]. This is because SIDH requires both parties
to perform large smooth-degree (i.e., all factors of the degree are small primes)
isogeny computations, which are the bottleneck of the protocol. To reduce the
computation time of SIDH, an abstraction of large smooth-degree isogeny com-
putation called strategy was proposed in [13]. In that paper, the authors gave

2 K. Phalakarn et al.

a method to compute the cost of a strategy, an abstraction for the computa-
tion time. Intuitively, a low-cost strategy will lead to a fast implementation of
SIDH. The paper also presented how to construct an optimal strategy, a strategy
giving the lowest cost among all possible strategies. These optimal strategies
are then utilized to implement SIDH and SIKE in order to reduce computation
time. Apart from this, several other works were proposed towards lowering the
computation time of SIDH [12, 14, 22, 25].

The aforementioned techniques, however, do not consider parallelism and are
targeted towards the single-processor setting. When we can utilize more than one
core or processor, which is the case in many situations these days, we have multi-
processor setting. Since multiple operations can be performed simultaneously
in this setting, we can finish the computation faster. For example, under the
multi-processor setting, the SIDH hardware architecture in [21] performed up to
42% faster than previous works. Recently, another fast parallel architecture was
introduced in [20].

Apart from strategy construction, another important aspects of the isogeny
computation in the multi-processor setting is strategy evaluation: the cost of
a strategy now depends on how it is evaluated. And to achieve the least cost,
both strategy construction and evaluation have to be designed specifically for
the number of processors provided. In the works of [20] and [21] mentioned ear-
lier, both implementations evaluate strategies designed for the single-processor
setting. Hence, those computation times are not necessarily optimal for the multi-
processor setting.

To the best of our knowledge, the only works that construct and evaluate
strategies specifically for the multi-processor setting are the work of Hutchinson
and Karabina [18], and that of Cervantes-Vázquez et al. [9], where the latter is
a software implementation of the former. The two evaluation techniques for the
multi-processor setting proposed in [18] are per-curve parallel (PCP) and con-
secutive curve parallel (CCP) (see Subsection 2.4). The results of [18] show that,
in the multi-processor setting, strategies constructed specifically for the multi-
processor setting lead to lower costs than strategies constructed for the single-
processor setting. Moreover, under SIKEp751 parameters with eight processors,
their multi-processor setting based approach can achieve more than 50% reduc-
tion in the strategy cost compared to the single-processor setting. For two, three,
and four processors, the reductions in strategy costs are 30%, 40%, and 46%,
respectively. And, the maximum cost reduction achieved when we have arbitrary-
many processors is 74%. When utilizing strategies and evaluations from [18] in
the implementation of SIKEp751 with three processors, together with other op-
timizations, [9] could achieve more than 30% speedups in the computation time
compared to the single-processor setting.

Nonetheless, the strategy costs reported in [18] are not the least we can
achieve as their evaluations do not fully utilize available processors. (We will dis-
cuss this in Section 3.) In this work, we follow a different approach and formulate
this problem as precedence-constrained scheduling problems. To our knowledge,
our work is the first for this approach to be applied in reducing the strategy

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 3

cost for the computation of large smooth-degree isogenies. Our contribution is
two-fold and consists of a novel strategy evaluation and construction techniques
leading to lower strategy costs:

1. For the strategy evaluation (Section 3), we transform strategies into task
dependency graphs and then apply two precedence-constrained scheduling
algorithms, Hu’s [17] and Coffman-Graham’s [10] algorithms, to them in
order to calculate the cost of strategies.

2. For the strategy construction (Section 4), we formalize the problem as an
integer linear program (ILP) and then construct efficient strategies as a
combination of optimal solutions to the ILP by structures of PCP.

We list techniques for strategy evaluation and construction of related works in
Table 1. Our experimental results show that the application of our proposed
techniques leads to more than 13% reduction in strategy cost compared to those
reported by [18] under the same parameter sets.

Table 1. Strategy evaluation and construction techniques used in various works.

Works Strategy Evaluation Strategy Construction

[13] Single operation at a time Optimal for single-processor setting

[20, 21] PCP Optimal for single-processor setting

[9, 18] PCP and CCP Optimal under PCP (multi-processor)

Ours Precedence-constrained scheduling Using ILP and PCP

2 Preliminaries

In this section, we review some preliminaries on SIDH, strategies for comput-
ing large smooth-degree isogeny, how strategies can be evaluated in the single-
processor and multi-processor settings, and precedence-constrained scheduling
algorithms.

2.1 SIDH

Let E and E′ be elliptic curves over a field F where their identity elements are
∞ and ∞′, respectively. An isogeny from E to E′ is a morphism ϕ : E → E′

satisfying ϕ(∞) = ∞′. When specifying an elliptic curve E and a point R ∈
E(F), one can compute the unique isogeny ϕ : E → E′ = E/⟨R⟩ satisfying
kerϕ = ⟨R⟩ using Vélu’s [27] or

√
élu’s [6] formulas. The degree of ϕ is equal to

the order of R. Using these notations, SIDH can be described as follows.

Setup: Alice and Bob agree on the following set of public parameters:

– a prime p of the form ℓeAA ℓeBB · f ± 1 where ℓA, ℓB are small primes, eA, eB
are exponents giving ℓeAA ≈ ℓeBB , and f is a positive integer,

– a supersingular elliptic curve E0 over Fp2 with #E0(Fp2) = (ℓeAA ℓeBB · f)2,
– bases {PA, QA} of E0[ℓ

eA
A] and {PB , QB} of E0[ℓ

eB
B].

4 K. Phalakarn et al.

Key Exchange:

1. Alice randomly chooses mA ∈ Zℓ
eA
A

. She computes an isogeny ϕA : E0 → EA

with kernel ⟨RA⟩ where RA = PA + [mA]QA, and then sends EA, ϕA(PB),
ϕA(QB) to Bob.

2. Similarly, Bob randomly chooses mB ∈ Zℓ
eB
B

. He computes ϕB : E0 → EB

with kernel ⟨RB⟩ where RB = PB+[mB]QB , and sends EB , ϕB(PA), ϕB(QA)
to Alice.

3. Upon receiving EB , ϕB(PA), ϕB(QA) from Bob, Alice computes an isogeny
ϕ′
A : EB → EAB with kernel ⟨R′

A⟩ where R′
A = ϕB(PA) + [mA]ϕB(QA).

4. Similarly, upon receiving EA, ϕA(PB), ϕA(QB) from Alice, Bob computes
ϕ′
B : EA → EBA with kernel ⟨R′

B⟩ where R′
B = ϕA(PB) + [mB]ϕA(QB).

5. The shared secret is the j-invariant of the resulting elliptic curves: j(EAB) =

j(EBA), where j(E) = 1728 4a3

4a3+27b2 for E : y2 = x3 + ax+ b.

2.2 Large Smooth-Degree Isogeny Computation and Strategies

SIDH requires several computations of isogenies of the form ϕ : E → E′ with
kernel ⟨R⟩ and degree ℓe. Theoretically, the degree of isogenies in SIDH can be
any sufficiently large integer, but we have not found an efficient way to compute
them using Vélu’s or

√
élu’s formulas. For large smooth-degree (e.g., degree-ℓe

for small ℓ and large e) isogenies, an efficient way exists, which is to decompose
ϕ as a chain of degree-ℓ isogenies [13]:

ϕ : E = E0
ϕ0−−−→ E1

ϕ1−−−→ E2
ϕ2−−−→ · · · ϕe−2−−−→ Ee−1

ϕe−1−−−→ Ee = E/⟨R⟩

where, for 0 ≤ i < e, Ei+1 = Ei/⟨[ℓe−i−1]Ri⟩, Ri+1 = ϕi(Ri), and R0 = R. We
note that R′

i = [ℓe−i−1]Ri is required in order to compute ϕi and Ei+1. This sug-
gests the following procedure given in Algorithm 1 for computing ϕ0, . . . , ϕe−1.

We can describe Algorithm 1 using a graph with e(e+1)
2 vertices arranged in

e columns and e rows as shown in Figure 1(a). Each vertex represents a point
where points in each column are on the same elliptic curve. The vertex at the
upper left corner represents the point R0 and the leftmost column are points on
E0. The top-to-bottom arrows depict point multiplications by [ℓ] in Line 4 of
the algorithm and the left-to-right arrows depict isogeny evaluations in Line 6.
Here, ϕe−1, Ee, and Re are omitted as they are not relevant for analysis.

In Figure 1(a), one might notice that R′
1 can also be computed by R′

1 =
ϕ0([ℓ

e−2]R0). This gives other possible ways of computing large smooth-degree
isogenies. By considering how each point in the graph can be computed from
other points, we define the graph Te following [13] which shows all possible point
multiplications by [ℓ] and isogeny evaluations among all vertices. For simplicity,
vertices are referred to by pairs of their column and row numbers, i.e., vertex
(i, j) refers to the point [ℓj]Ri in column i and row j. Vertices representing R′

i,
i.e., vertices (i, e− i− 1) for 0 ≤ i < e, are called leaves.

Definition 1. The graph showing all possible operations for computing degree-ℓe

isogeny is defined as a directed graph Te = (Ve, Ee) where

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 5

Algorithm 1: An algorithm for computing degree-ℓe isogeny.

Input : A supersingular elliptic curve E and a point R of order ℓe

Output: ϕ0, . . . , ϕe−1 and E/⟨R⟩
1 E0 ← E, R0 ← R
2 for i = 0 to e− 1 do
3 R′

i ← Ri

4 for j = 1 to e− i− 1 do R′
i ← [ℓ]R′

i

5 Use Vélu’s or
√
élu’s formulas to compute ϕi and Ei+1 from Ei and ⟨R′

i⟩
6 Ri+1 ← ϕi(Ri)

7 return ϕ0, . . . , ϕe−1, Ee

(a) (b)

Fig. 1. (a) The graph representing Algorithm 1 and (b) the graph Te when e = 6.

– the set of vertices Ve = {(i, j) : 0 ≤ i, j < e; i+ j < e},
– the set of directed edges Ee = ↓e ∪→e,

– the set of point multiplication edges ↓e = {⟨(i, j), (i, j + 1)⟩ : i+ j < e− 1},
– the set of isogeny evaluation edges →e = {⟨(i, j), (i+ 1, j)⟩ : i+ j < e− 1}.

Next, we define a strategy for computing degree-ℓe isogeny as follows.

Definition 2. A strategy S for computing degree-ℓe isogeny is a subgraph of Te

containing the vertex (0, 0) and all leaves where there are paths from the vertex
(0, 0) to each leaf. A strategy S is well-formed if removing any edge from S
results in a graph that is not a strategy.

An example of a strategy is the graph in Figure 1(a). By the definition, one
can use a strategy to compute a degree-ℓe isogeny by first performing operations
along a path from (0, 0) to R′

0, then a path from (0, 0) to R′
1, and so on. Since

strategies that are not well-formed have some unnecessary edges, we will consider
only well-formed strategies in order to find an efficient strategy.

6 K. Phalakarn et al.

Now we look at how a strategy can be evaluated which defines the cost of a
strategy. We will define the strategy cost using the cost of a single point multi-
plication by [ℓ]: Q ← [ℓ]P , and the cost of a single degree-ℓ isogeny evaluation:
Q← ϕ(P). We denote their costs as c↓ and c→, respectively.

2.3 Single-Processor Setting

When only a single processor is provided, we have to perform all operations
sequentially. Formally, given a strategy S, one can compute a degree-ℓe isogeny
using Algorithm 2.

Algorithm 2: Strategy evaluation in the single-processor setting.

Input : A strategy S = (VS , ES), a curve E, and a point R
Output: ϕ0, . . . , ϕe−1 and E/⟨R⟩

1 E0 ← E, R(0,0) ← R
2 for i = 0 to e− 1 do
3 for j = 0 to e− i− 2 do
4 if ⟨(i, j), (i, j + 1)⟩ ∈ ES then R(i,j+1) ← [ℓ]R(i,j)

5 R′ ← R(i,e−i−1)

6 Use Vélu’s or
√
élu’s formulas to compute ϕi and Ei+1 from Ei and ⟨R′⟩

7 for j = 0 to e− i− 2 do
8 if ⟨(i, j), (i+ 1, j)⟩ ∈ ES then R(i+1,j) ← ϕi(R(i,j))

9 return ϕ0, . . . , ϕe−1, Ee

From the above algorithm, we can define the cost of a strategy in the single-
processor setting. For a strategy S, let #↓S denote the number of point multi-
plication edges in S and #→S denote the number of isogeny evaluation edges.
Then, the cost of a strategy S in the single-processor setting, denoted by C1(S),
is computed by

C1(S) = #↓S · c↓ +#→S · c→.

We emphasize that the strategy cost is only an abstraction for the SIDH com-
putation time since we do not account for the cost of Vélu’s or

√
élu’s formulas

(Line 6 of Algorithm 2) nor other operations required in SIDH (e.g., the cost of
Alice computing RA ← PA + [mA]QA, etc.). Nevertheless, the strategy cost is a
useful measure in order to reduce the computation time of an implementation.

The problem of constructing a least-cost strategy given e, c↓, and c→ has been
extensively studied in [13]. That work analyzed a particular type of strategies
called canonical strategies and proved that a least-cost strategy in the single-
processor setting must be in this form. A canonical strategy is defined below.

Definition 3. A canonical strategy for computing degree-ℓe isogeny is defined
recursively as follows:

– If e = 1, then T1 is canonical.

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 7

– Otherwise, let Sn, where 1 ≤ n < e, be a canonical strategy for computing
degree-ℓn isogeny. If S = (VS , ES) is constructed from Sn = (VSn

, ESn
) and

Se−n = (VSe−n , ESe−n) by the following steps, then S is canonical.

1. Rename all vertices (i, j) in Sn to (i, j + (e− n)).
2. Rename all vertices (i, j) in Se−n to (i+ n, j).
3. Construct VS = VSn

∪VSe−n
∪{(0, j) : 0 ≤ j < e−n}∪{(i, 0) : 0 ≤ i < n}

and ES = ESn
∪ESe−n

∪{⟨(0, j), (0, j+1)⟩ : 0 ≤ j < e−n}∪{⟨(i, 0), (i+
1, 0)⟩ : 0 ≤ i < n}.

In brief, a canonical strategy with e leaves can be split into two canonical
strategies with n leaves and e− n leaves. Figure 2 depicts the process explained
in Definition 3.

Fig. 2. A canonical strategy.

By exploiting the optimal substructure of the problem, the cost of a least-cost
strategy for computing degree-ℓe isogeny in the single-processor setting can be
calculated by the following recurrence [13]. We abuse the notation C1 by defining
C1(e) as the cost of a least-cost strategy with e leaves.

C1(e) = min
1≤n<e

{C1(n) + C1(e− n) + (e− n) · c↓ + n · c→}, C1(1) = 0.

2.4 Multi-Processor Setting

In this setting, we are provided with K ≥ 2 processors. At first, a K-time
improvement from the single-processor setting might be expected. However, since
we need to compute R′

i in order to continue to the next column, the computation
is quite restricted and we are not able to fully utilize all processors at all times
during the computation. Nevertheless, having multiple processors helps us reduce
the cost as discussed next.

Before getting into the strategy cost, we review the implicit restrictions of
the degree-ℓe isogeny computation. Unlike the single-processor setting, timing
plays a crucial role here. Because now we can perform more than one operations

8 K. Phalakarn et al.

at the same time, we have to be careful of which operations are performed first
and when they are finished, as they depend closely on each other. This is very
important for achieving the least cost in this setting. In this work, we consider
two restrictions of how a strategy is evaluated in parallel:

1. To perform a point multiplication by [ℓ] corresponding to a directed edge
⟨(i, j), (i, j + 1)⟩, the vertex (i, j) corresponding to the point [ℓj]Ri must
have been computed.

2. To perform an isogeny evaluation corresponding to a directed edge ⟨(i, j), (i+
1, j)⟩, two vertices (i, j) and (i, e − i − 1) corresponding to the point [ℓj]Ri

and R′
i, respectively, must have been computed. Here, the latter vertex R′

i

is required to construct ϕi.

Even though the computation is restricted, there are still several ways of
evaluating a strategy in parallel. To have a clearer picture of the problem, we
consider the following example of how a strategy is evaluated. In order to specify
which operations are performed at which time, each edge is labeled with its finish
time. The cost of evaluating a strategy is then labeled on the edge ⟨(e−2, 0), (e−
1, 0)⟩, which must be performed as the last operation.

Example 1. Suppose K = 2 and c↓ = c→ = 1. At time 0, although we have two
processors, the only operation we are able to perform is the edge ⟨(0, 0), (0, 1)⟩.
Again, at time 1, we can only take the edge ⟨(0, 1), (0, 2)⟩. We continue until the
edge ⟨(0, 3), (0, 4)⟩ is done at time 4. This part is illustrated in Figure 3(a).

(a) (b) (c)

Fig. 3. Examples of parallel evaluations of a strategy with K = 2.

At time 5, we now have three options: ⟨(0, 0), (1, 0)⟩, ⟨(0, 2), (1, 2)⟩, and
⟨(0, 3), (1, 3)⟩. Because we have two processors, we can choose up to two op-
erations. Figure 3(b) chooses the last two. After performing the remaining oper-
ations, the last operation is done at time 10. Thus, the cost of the evaluation in
Figure 3(b) is 10. On the other hand, Figure 3(c) chooses operations ⟨(0, 0), (1, 0)⟩
and ⟨(0, 3), (1, 3)⟩. By this evaluation, its cost is only 9. We point out that this
is the least possible cost from any strategy we can achieve when e = 5, K = 2,

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 9

c↓ = c→ = 1. (Thus, a strategy giving the least cost in the multi-processor
setting does not have to be canonical.)

From the above example, the multi-processor setting is much more compli-
cated compared to the single-processor setting. In the rest of this subsection,
we present the result of Hutchinson and Karabina [18] on constructing low-cost
strategies and evaluations under some constraints called per-curve parallel (PCP)
and consecutive-curve parallel (CCP).

Per-Curve Parallel Hutchinson and Karabina started with a simple evaluation
of a strategy called per-curve parallel (PCP). Under PCP, two rules apply:

1. only operations of the form ⟨(i, j), (i + 1, j)⟩ and ⟨(i, j′), (i + 1, j′)⟩ (i.e.,
isogeny evaluations from the same elliptic curve Ei) can be performed in
parallel, and

2. point multiplications cannot be done in parallel. In other words, if one pro-
cessor performs the edge ⟨(i, j), (i, j+1)⟩, other processors must be left idle.

The algorithm representing the strategy evaluation under PCP is similar
to Algorithm 2, except that we can simultaneously perform up to K isogeny
evaluations in Lines 7-8, i.e., when there are n isogeny evaluations from Ei, the
cost of performing these isogeny evaluations is ⌈ nK ⌉ · c→. Let #→S,i denote the
number of isogeny evaluation edges from Ei in a strategy S, the cost of evaluating
S under PCP having K processors is

CPCP
K (S) = #↓S · c↓ +

e−2∑
i=0

⌈
#→S,i

K

⌉
· c→.

Even though the evaluation under PCP does not provide the least cost in the
multi-processor setting, it allows an extensive analysis to construct a strategy
with smallest CPCP

K (S). While not stated in [18], the lemma below can be proved.

Lemma 1. There exists a canonical strategy providing the least cost under PCP.

Proof (sketch). Suppose we have a least-cost strategy under PCP that is not
canonical, we can modify it to have a least-cost canonical strategy. First, we con-
sider the leftmost leaf (i′, e−i′−1) connecting to (0, 0) via the edge ⟨(0, 0), (1, 0)⟩.
If it is not connected to (0, 0) via the vertex (i′, 0), we can remove the existing
path and change it to the path (0, 0) → (i′, 0) → (i′, e − i′ − 1). By this mod-
ification, #↓S and #→S,i for 0 ≤ i < i′ do not increase. We perform similar
actions with the rightmost leaf connecting to (0, 0) via the edge ⟨(0, 0), (0, 1)⟩.
The modified strategy now has the same structure as a canonical strategy (Fig-
ure 2) except that two smaller strategies might not be canonical. We can apply
the same technique recursively to those smaller strategies to convert them into
canonical strategies without increasing the cost. Therefore, we have a least-cost
canonical strategy under PCP.

10 K. Phalakarn et al.

By the above lemma, we can construct a least-cost strategy under PCP by
finding a least-cost canonical strategy. The optimal substructure of the problem
allowed [18] to present a recurrence describing the least cost under PCP. Let
CPCP

K (e, k) denote the least cost of a strategy with e leaves where, in the first
iteration of executing Lines 7–8 of Algorithm 2 in parallel for each curve, we can
perform isogeny evaluations of only up to k points (instead of K points). Also,
let n′ = e− n. The recurrence for CPCP

K (e, k) can be described as

CPCP
K (e, k) =
0 if e = 1,

CPCP
K (e,K) + (e− 1) · c→ if e > 1 and k = 0,

min
1≤n<e

{CPCP
K (n, k − 1) + CPCP

K (n′, k) + n′ · c↓ + c→} otherwise.

The following theorem describes the least possible cost of a strategy under PCP.

Theorem 1 ([18]). Let K, c↓, and c→ be fixed. The least cost of a strategy
under PCP for computing degree-ℓe isogeny with K processors is CPCP

K (e,K)
(i.e., evaluating the above recurrence at k = K).

We refer the interested readers to [18] for the detailed proof and explanation
of the theorem.

Consecutive-Curve Parallel Under PCP, we cannot perform any operation in
different columns, even though it is allowed to do so and some processors are idle.
By this observation, [18] considered another constraint called consecutive-curve
parallel (CCP). Let ↓S,i denote the set of point multiplication by [ℓ] edges for
points in Ei in a strategy S and →S,i denote that of isogeny evaluation edges.
Under CCP, while performing operations in →S,i, we are allowed to perform
operations in →S,i+1 and ↓S,i+1 if they are ready to be done.

Because it is more flexible to perform operations in parallel under CCP, it
is thus harder to analyze a strategy under this constraint. For this reason, [18]
decided to consider only canonical strategies under CCP. As discussed before,
operations in →S,i+1 can be performed after R′

i+1 is computed. In the case that
R′

i+1 is computed by point multiplication edges in ↓S,i+1, all operations in ↓S,i+1

must be done first to obtain R′
i+1. By this, CCP uses a greedy heuristic to choose

which operations will be performed as described in the following rules:

1. Operations in →S,i are performed from bottom to top.
2. If an operation in ↓S,i+1 is available, then perform one operation in ↓S,i+1

and K − 1 operations in →S,i.
3. If operations in ↓S,i+1 are all done or there is no operation in ↓S,i+1, start

performing operations in →S,i+1 as soon as all in →S,i is finished.
4. If operations in →S,i are all done before ↓S,i+1 is exhausted, then perform

the remaining operations in ↓S,i+1 before starting →S,i+1.

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 11

The algorithm for computing the cost under CCP of a canonical strategy S,
denoted by CCCP

K (S), is given in [18, Algorithm 1]. Nonetheless, Hutchinson and
Karabina stated that, under CCP, they could find no algorithm for constructing
least-cost strategies and no formula for the cost of a least-cost strategy.

We must note that, although performing operations in consecutive columns
are allowed, performing operations in other columns are not. Thus, this heuristic
could make the cost under CCP larger than the least possible.

2.5 Precedence-Constrained Scheduling Algorithms

The problem of scheduling a set of tasks to processors has been studied for a long
time and has many applications in various fields. For a given set of tasks, we need
to specify which processor performs which task and the goal is to minimize the
time that the last task is finished. In this work, we are interested in the problem
of precedence-constrained scheduling: we are given, for each task, a list of tasks
need to be completed in order to start that task. Thus, we also have to specify the
order in which tasks are performed by each processor. The dependency between
tasks for this problem is usually specified using a task dependency graph defined
as follows.

Definition 4. Given a set of tasks T = {t1, ..., tn}, the task dependency graph
for T is a directed acyclic graph (DAG) DT = (VDT

, EDT
) where VDT

= T and
⟨ti, tj⟩ ∈ EDT

if ti must be performed and finished before tj can begin.

There are several variants of this problem, but we restrict ourselves to the case
of the graphs DT with all tasks are of unit-length (i.e., all tasks take the same
amount of time to be performed), the number of processors is constant through-
out the scheduling, all processors are identical (i.e., no processor performs tasks
faster or slower than others) and preemption is not allowed (i.e., tasks cannot be
paused and then resumed later). We formally give the definitions of a schedule
and the precedence-constrained scheduling problem as follows.

Definition 5. Let DT = (VDT
, EDT

) be a task dependency graph, and let K be
a positive integer. Suppose that all tasks require one unit of time to complete.
A scheduling of DT using K processors is a sequence S = ⟨s1, . . . , sn⟩ of non-
empty sets of tasks where si is a set of tasks executed at time i such that (i)
s1, . . . , sn form a partition of VDT

, (ii) |si| ≤ K, and (iii) for all ⟨t, t′⟩ ∈ EDT
,

if t ∈ si and t′ ∈ sj then i < j. The finished time of S is n, the size of S, and
is denoted by t(S).

A scheduling S is optimal if t(S) ≤ t(S ′) for any possible scheduling S ′ of
DT using K processors. The (precedence-constrained) scheduling problem is to
find an optimal scheduling for given DT and K.

For general DAGs, Ullman [26] proved that the problem is NP-complete,
and Garey and Johnson [16] mentioned that complexity remains open when the
number of processors K ≥ 3 is fixed.

12 K. Phalakarn et al.

In the rest of this subsection, we look at two algorithms. The first algorithm
by Hu [17] outputs an optimal scheduling for K ≥ 1 when the task dependency
graph is tree-like. The second algorithm by Coffman and Graham [10] produces
an optimal scheduling when K = 2. When K ≥ 3, no efficient algorithm has
been proposed. Nonetheless, there are many approximation algorithms solving
this problem with various approximation ratios [15, 24].

Hu’s Algorithm The first algorithm applies with a task dependency graph
which is tree-like, i.e., all vertices has out-degrees of at most one. For u ∈ VDT

,
let ℓ(u) denote the length of a longest path started at u. In a tree-like graph,
the longest path started from each vertex is unique since all vertices has at most
one out-going edge.

Hu’s algorithm can be described as Algorithm 3. In short, the algorithm
chooses up to K available tasks with largest ℓ(·) in each iteration until all tasks
are performed. The chosen tasks and their edges are then removed from the
graph in order to show new available tasks.

Algorithm 3: Hu’s algorithm [17].

Input : A tree-like task dependency graph DT = (VDT , EDT) and the
number of provided processors K

Output: An optimal scheduling S = ⟨s1, . . . , st⟩
1 Compute ℓ(u) for all u ∈ VDT

2 t← 0
3 while VDT ̸= ∅ do
4 t← t+ 1
5 V ′ ← {u ∈ VDT : in-degree of u = 0}
6 Sort V ′ by ℓ(u) in an decreasing order, break ties arbitrarily
7 if |V ′| ≤ K then st ← V ′

8 else st ← {the first K vertices in V ′}
9 Remove all vertices in st and their associated edges from DT

10 return S = ⟨s1, . . . , st⟩

Coffman-Graham’s Algorithm Instead of using ℓ(·), Coffman and Graham
[10] presented another way to label vertices for DAGs of any structure with-
out transitive edges defined as follows. After all vertices are labeled, the same
technique as in Hu’s algorithm is then applied, starting at Line 2.

Definition 6. Given a directed graph G = (V,E), an edge e = ⟨u, v⟩ ∈ E is
transitive if there exists a vertex w ̸∈ {u, v} in V such that u reaches w and w
reaches v.

The labeling process of Coffman and Graham is described as Algorithm 4.
We give an example of the function c(·) in Lines 7–8 as follows: Suppose u has

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 13

three children v1, v2, v3 and all are labeled with ℓCG(v1) = 4, ℓCG(v2) = 3, and
ℓCG(v3) = 8. Then, c(u) is the list [8, 4, 3] as it is sorted in decreasing order.
In Line 8, lists are compared lexicographically, e.g., [4, 2, 1] < [4, 3], [5, 4, 2] <
[5, 4, 2, 1], and [] < [3, 2].

At first, one vertex with no out-going edge is assigned a label of 1. In each
iteration, one vertex is labeled. V ′′ in Line 5 is the set of unlabeled vertices with
all children labeled. By the definition of V ′′, c(·) is well-defined for all vertices
in V ′′. The next vertex to be assigned a label is u ∈ V ′′ with smallest c(u). The
label is assigned from 1 up to |VDT

|.
Coffman and Graham proved that, by using ℓCG(u) instead of ℓ(u) in Algo-

rithm 3, the output scheduling is optimal when K = 2 for a task dependency
graph of any structure. Few years later, Lam and Sethi [23] showed that, when
applying Coffman-Graham’s algorithm with K ≥ 2, the algorithm is (2 − 2

K)-
approximation. When K is small, the approximation ratio is close to 1.

Algorithm 4: Coffman-Graham’s labeling algorithm [10].

Input : A task dependency graph DT = (VDT , EDT)
Output: Coffman-Graham’s label ℓCG(u) for all u ∈ VDT

1 Choose any vertex u with out-degree of 0 and assign ℓCG(u)← 1
2 idx← 1
3 while there is a vertex without a label do
4 idx← idx+ 1
5 V ′′ ← {u ∈ VDT : u is not labeled and all its children are labeled}
6 for u ∈ V ′′ do
7 c(u)← the list of all labels of u’s children, sorted in decreasing order
8 Choose u ∈ V ′′ with smallest c(u) in lexicographical order, break ties

arbitrarily
9 ℓCG(u)← idx

3 Proposed Strategy Evaluation Technique

To the best of our knowledge, the evaluation of a canonical strategy under CCP
gives the least cost among all existing techniques. In this section, we take a
closer look at the problem and propose a new approach to evaluate strategies
that gives lower costs. To this end, first we give an example showing that the
cost under CCP of a canonical strategy is not the least cost we can achieve.

Example 2. Let e = 9, K = 3, and c↓ = c→ = 1. Below shows a canonical
strategy which gives the least cost under PCP. When calculating its cost using
[18, Algorithm 1], the cost under CCP is 20. The times at which each operation
is finished are shown on the corresponding edges as in Figure 4(a).

Consider another way of evaluating this strategy in Figure 4(b). Here, the
computation is not restricted by CCP. For instance, three isogeny evaluations

14 K. Phalakarn et al.

(a) (b)

Fig. 4. A strategy giving a cost of 20 under CCP and 19 under another evaluation.

ϕ0, ϕ1, and ϕ2 are performed in parallel at time 11. As another example, during
time 14, two isogeny evaluations ϕ2, ϕ3, and a point multiplication on E4 are
done at the same time. These are not permitted under CCP or PCP. As a result,
we achieve a lower cost of 19 for this strategy and evaluation.

It is important to note that, unlike the single-processor setting, a strategy in
the multi-processor setting does not uniquely correspond to how it is evaluated.
This does mean that, in order to obtain the least cost possible, we need to search
for a strategy and its evaluation that give the least cost as a pair. Evaluating a
good strategy in a wrong way might not give us a low cost. On the other hand,
starting with a bad strategy will not give us a low cost under any evaluation.
This makes it a challenging problem. Moreover, since it is possible that the least-
cost strategy may not be canonical, we might not be able to utilize the recursive
structure of canonical strategies to solve the problem.

In this section, we propose a new technique to evaluate strategies. The first
part of the technique is to construct the task dependency graph of a strategy,
and the second part is to evaluate a strategy by using its task dependency graph
and precedence-constrained scheduling algorithms. We tackle the problem of
constructing efficient strategies in Section 4.

3.1 Task Dependency Graphs of Strategies

Without loss of generality, we assume that for a given strategy S = (VS , ES), all
vertices in VS that are unreachable from (0, 0) are removed since they are not
related to the cost computation. For any well-formed strategy, there is a unique
path from (0, 0) to any vertices in a strategy. This implies that every vertex in a
well-formed strategy that can be reached from (0, 0), except for (0, 0), must have
only one incoming edge. Thus, for a point (i, j) to be available, the operation
representing the incoming edge to the point (i, j) must be completed. Therefore,

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 15

in a strategy, a point and its incoming edge represent the same thing. This
concept is important in constructing the task dependency graphs of a strategy.

The task dependency graph of a strategy is defined as follows.

Definition 7. The task dependency graph of a strategy S = (VS , ES = ↓S∪→S)
is a directed acyclic graph DS = (VDS

, EDS
) where VDS

= VS \ {(0, 0)} and

EDS
= (ES ∪ {⟨(i, e− i− 1), (i+ 1, j)⟩ : ⟨(i, j), (i+ 1, j)⟩ ∈ →S})

\ {⟨(0, 0), (0, 1)⟩, ⟨(0, 0), (1, 0)⟩}.

A vertex (i, j) ∈ VDS
should be thought as a “task” of computing the point

(i, j), but it can be thought as the point as well following our discussion earlier.
For each isogeny evaluation edge ⟨(i, j), (i+ 1, j)⟩ in S, we add an edge ⟨(i, e−
i − 1), (i + 1, j)⟩ to DS to explicitly specify the dependency that we need to
have R′

i before we can evaluate ϕi. We also remove (0, 0), since (0, 0) is available
from the start and we do not have to perform any task to produce it. The next
example depicts this process.

Example 3. Consider a strategy from Example 1 as in Figure 5(a). The first
step of constructing the task dependency graph of a strategy is to add a diagonal
directed edge for each isogeny evaluation edge to show the dependency described
above. The result of the first step is in Figure 5(b). The second step is to remove
the point (0, 0) and two edges from it. The task dependency graph DS is shown
in Figure 5(c).

(a) (b) (c) (d)

Fig. 5. Constructing the task dependency graph of a strategy.

3.2 Efficient Algorithm for Removing Transitive Edges

In the second part of the technique, we require that task dependency graphs
must not have any transitive edge (Definition 6). We give an example below
describing transitive edges in the task dependency graph of a strategy.

Example 4. In Figure 5(c), the edge ⟨(0, 2), (1, 2)⟩ is transitive as (0, 2) reaches
(0, 4) and (0, 4) reaches (1, 2). The edge ⟨(0, 3), (1, 3)⟩ is also transitive. These
two edges are the only transitive edges in the graph. Figure 5(d) shows the graph
with all transitive edges removed.

16 K. Phalakarn et al.

Aho, Garey, and Ullman [3] presented that, for a general directed graph, the
task of removing all transitive edges from a graph, called transitive reduction,
can be done in O(|V |log2 7) steps. For DS , it can be done in a more efficient way
using the following lemma.

Lemma 2. All transitive edges in a graph DS must be of the form ⟨(i, j), (i +
1, j)⟩. Also, the edge ⟨(i, j), (i + 1, j)⟩ is transitive if and only if (i, j) reaches
(i, e− i− 1).

Proof. For an edge ⟨u, v⟩ to be transitive in a directed acyclic graph, the out-
degree of u and the in-degree of v must be more than 1. Therefore, all point
multiplication edges of the form ⟨(i, j), (i, j + 1)⟩ cannot be transitive.

Next, consider a diagonal edge of the form ⟨(i, e− i− 1), (i+ 1, j)⟩. If there
exists another diagonal edge coming out of (i, e − i − 1), its end point must be
(i+ 1, j′) with j′ ̸= j. If j′ > j, it is impossible that (i+ 1, j′) reaches (i+ 1, j).
If j′ < j, (i + 1, j′) can reach (i + 1, j) by going through a sequence of point
multiplication edges. However, (i + 1, j) is the end point of the diagonal edge
implies that it is the end point of the isogeny evaluation edge ⟨(i, j), (i+ 1, j)⟩.
Thus, there is no point multiplication edges coming to (i+ 1, j). By both cases,
all diagonal edges cannot be transitive.

By Definition 7, for an isogeny evaluation edge of the form ⟨(i, j), (i+ 1, j)⟩,
there must exist the diagonal edge ⟨(i, e−i−1), (i+1, j)⟩. These are only incoming
edges to (i + 1, j). Therefore, if this isogeny evaluation edge is transitive, (i, j)
must reach (i, e− i− 1). This concludes the proof.

In order to remove all transitive edges from DS , Lemma 2 suggests that we
can only go through all isogeny evaluation edges once and remove ⟨(i, j), (i+1, j)⟩
if (i, j) reaches (i, e−i−1). Verifying that there is a path from (i, j) to (i, e−i−1)
can be simply done by checking if all edges ⟨(i, j), (i, j + 1)⟩, ⟨(i, j + 1), (i, j +
2)⟩, . . . , ⟨(i, e − i − 2), (i, e − i − 1)⟩ exist, since both points are in the same
column. When implemented as in Algorithm 5, the transitive reduction of DS

can be performed in O(|V |) steps since each vertex (i, j) is visited at most once.

Algorithm 5: Transitive reduction algorithm for DS .

Input : The task dependency graph DS = (VDS , EDS) of a strategy S
Output: DS with all transitive edges removed

1 for i = 0 to e− 2 do
2 for j = e− i− 2 down to 0 do
3 if ⟨(i, j), (i, j + 1)⟩ ̸∈ EDS then break
4 if ⟨(i, j), (i+ 1, j)⟩ ∈ EDS then EDS ← EDS \ {⟨(i, j), (i+ 1, j)⟩}
5 return DS

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 17

3.3 Proposed Strategy Evaluation Technique

After we construct the task dependency graph from a strategy and remove
all transitive edges, precedence-constrained scheduling algorithms (Hu’s and
Coffman-Graham’s algorithms) described in Subsection 2.5 can be applied to
obtain a scheduling. Although both algorithms assume that all tasks are of unit-
length when scheduling, which is not the case for SIDH since c↓ ̸= c→, they can
be used as an approximation algorithm in our settings. And even though our task
dependency graphs DS are not tree-like, we get interesting results when evalu-
ating (or scheduling) a strategy using Hu’s algorithm, where in our technique
ℓ(u) is the length of a longest path starting at u. We describe our experiments
in Section 5.

Because both scheduling algorithms are designed for unit-length tasks, we
calculate the cost of a strategy evaluation from a scheduling as shown in Algo-
rithm 6: for each 1 ≤ i ≤ t(S), if all tasks in si are point multiplications, the cost
of si is c↓. If all tasks in si are isogeny evaluations, its cost is c→. Otherwise, its
cost is max{c↓, c→}. The costs of a strategy S when using Hu’s and Coffman-
Graham’s algorithms with K processors are denoted by CHu

K (S) and CCG
K (S),

respectively.

Algorithm 6: Computing CHu
K (S) and CCG

K (S) of a strategy S.

Input : A strategy S = (VS , ES) for computing degree-ℓe isogeny and the
number of provided processors K

Output: The cost CHu
K (S) or CCG

K (S)

1 Construct DS from S following Definition 7
2 Remove all transitive edges from DS following Algorithm 5
3 Label all vertices with ℓ(·) or ℓCG(·) (Algorithm 4)
4 Construct a scheduling S from (DS ,K) using Algorithm 3
5 cost← 0
6 for k = 1 to t(S) do
7 costk ← 0
8 for (i, j) ∈ sk do
9 if ⟨(i, j − 1), (i, j)⟩ ∈ ES then costk ← max{costk, c↓}

10 else costk ← max{costk, c→}
11 cost← cost+ costk
12 return cost

Example 5. We explain how CHu
K (S) and CCG

K (S) are computed for the strat-
egy shown in Figure 5(a). First, its DS with all transitive edges removed is as
Figure 5(d). Next, vertices in DS are labeled. The values of ℓ(·) and ℓCG(·)
are provided in Figures 6(a) and 6(b), respectively. Let K = 2, both Hu’s and
Coffman-Graham’s algorithms give the same scheduling S = ⟨s1, . . . , s9⟩ where
s1 = {(0, 1)}, . . . , s4 = {(0, 4)}, s5 = {(1, 3), (1, 0)}, s6 = {(1, 2), (2, 0)}, s7 =

18 K. Phalakarn et al.

{(2, 2), (2, 1)}, s8 = {(3, 1), (3, 0)}, and s9 = {(4, 0)}. In s5, (1, 3) and (1, 0) are
computed by isogeny evaluations, thus cost5 = c→. In s7, (2, 2) is computed by
isogeny evaluation and (2, 1) is computed by point multiplication, hence cost7 =
max{c↓, c→}. The cost CHu

K (S) and CCG
K (S) is thus 4c↓ + 4c→ + max{c↓, c→}.

The evaluation when c↓ = c→ = 1 is shown in Figure 6(c).

(a) (b) (c)

Fig. 6. The process of computing CHu
K (S) and CCG

K (S) of a strategy S: (a) the values
of ℓ(·), (b) the values of ℓCG(·), and (c) the evaluation when K = 2 and c↓ = c→ = 1.

4 Proposed Strategy Construction Technique

In addition to an evaluation technique that gives us a low cost from a strategy, we
also need efficient strategies that would provide low costs. As discussed earlier, a
strategy for the multi-processor setting have to be carefully constructed specifi-
cally for the parameter set (e, c↓, c→,K). To construct those efficient strategies,
we first formalize the problem mathematically as an integer linear program (ILP)
and then use optimal solutions of the ILP to generate strategies.

4.1 Optimal Strategies and Evaluations

The problem of constructing a strategy and its evaluation is clearly an optimiza-
tion problem. We call a pair of a strategy and its evaluation that provides the
least cost as optimal. In this subsection, we will construct an optimal strategy
and evaluation in the simplest case of c↓ = c→ = 1, which can be generalized to
the case that c↓ = c→.

Let xi,j,t ∈ {0, 1} be a decision variable such that xi,j,t = 1 if the point
represented by the vertex (i, j) is computed and is available no later than time t
and 0 otherwise. A discrete optimization problem of finding an optimal strategy

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 19

and its evaluation can be formalized as an ILP as follows:

minimize
xi,j,t

T + 1−
T∑

t′=0

xe−1,0,t′

subject to x0,0,0 = 1

xi,j,0 = 0 (i, j) ̸= (0, 0)

xi,j,t ≥ xi,j,t−1

xi,j,t ≤ xi,j−1,t−c↓ +
xi−1,j,t−c→ + xi−1,e−i,t−c→

2∑
i,j

(xi,j,t+1 − xi,j,t) ≤ K

xi,j,t ∈ {0, 1}

The initial conditions for xi,j,0 are x0,0,0 = 1, since it is available at the
start of the isogeny computation, and xi,j,0 = 0 for (i, j) ̸= (0, 0). If (i, j) is
available no later than time t− 1, then it is also available no later than time t.
Hence, we have the constraint xi,j,t ≥ xi,j,t−1. Our objective is thus to minimize
t′ such that xe−1,0,t′ = 1, the time that (e − 1, 0) is finished. However, we
cannot straightforwardly use this as an objective function because t′ is not a
decision variable. We instead consider the sum of xe−1,0,t′ for 0 ≤ t′ ≤ T for
some sufficiently large T . The earliest time t′ at which xe−1,0,t′ = 1 can now be
expressed by T + 1−

∑
0≤t′≤T xe−1,0,t′ , which is our objective function.

The fourth constraint comes from two restrictions of the isogeny computation
discussed in Subsection 2.4: xi,j,t can become 1 by one of these two cases: (i)
(i, j− 1) is ready at time t− c↓ and (i, j) is computed by a point multiplication,
or (ii) (i−1, j) and (i−1, e−i) are available at time t−c→ and (i, j) is computed
by an isogeny evaluation. The first case is possible only if xi,j−1,t−c↓ = 1. For
the second case, both xi−1,j,t−c→ and xi−1,e−i,t−c→ must be 1. Hence, we can
perform the second case only if 1

2 (xi−1,j,t−c→ +xi−1,e−i,t−c→) = 1. Because xi,j,t

can become 1 by either of the two cases, the value of xi,j,t is restricted to

xi,j,t ≤ xi,j−1,t−c↓ +
xi−1,j,t−c→ + xi−1,e−i,t−c→

2
.

The fifth constraint is the number of processors given. Since we are interested
in the case that c↓ = c→ = 1, there can be up to K decision variables that
change from 0 to 1 at each time, those represent points computed at that time.
Therefore, we have

∑
i,j(xi,j,t+1 − xi,j,t) ≤ K.

Given the integer linear program of the problem, we can use a solver to
find an optimal strategy and its evaluation. However, even in the case of small
e < 15, the solver can take more than 30 minutes to produce a solution. This is
expected due to the nature of integer linear programming which is NP-complete
[19]. Although it is not practical to construct optimal strategies and evaluations
for large e directly using ILP, we will use solutions for small e to construct a
low-cost strategy for large e in the next subsection.

20 K. Phalakarn et al.

4.2 Proposed Strategy Construction Technique

In Subsection 2.4, we state Theorem 1 from [18] for computing the cost of a least-
cost (canonical) strategy under PCP. The theorem implicitly describes how this
least-cost canonical strategy is constructed: a strategy with e leaves is divided
into two smaller strategies with n and e−n leaves, and the construction performs
recursively until the base case e = 1 is reached. With the ILP we obtain in the
previous subsection, we propose a new way of constructing a strategy which is
by precomputing optimal strategies and evaluations for some e and then using
them as base cases. We need to slightly modify the ILP in order to find optimal
strategies and evaluations corresponding to CPCP

K (e, k), but the main idea is the
same. Strategies constructed by our proposed technique can then be viewed as
a mixture of a canonical part when e is larger than the base case and a possibly
non-canonical part when e is one of the base cases.

Similar to the proposed strategy evaluation technique in the previous section,
we assume that c↓ = c→ when we formulate the ILP, which is not the case for
SIDH. Also, we only solve the ILP for up to some value of e and combine them for
large e. Hence, strategies resulted from our construction technique are considered
as approximations of a least-cost strategy.

5 Experiments and Results

For each parameter set (e, c↓, c→,K), we conduct two experiments using our
proposed strategy evaluation (Section 3) and construction (Section 4) techniques
as follows:

– Experiment A: We use Theorem 1 to construct least-cost canonical strategies
under PCP. Since there are many such strategies, we randomly sampled
100,000 of them for evaluation. The cost of strategy S is then computed as
min{CHu

K (S), CCG
K (S)}.

– Experiment B: We randomly constructed 100,000 strategies using our pro-
posed strategy construction technique described in Section 4, where we pre-
computed solutions for ILP for all e ≤ 14. The cost of strategy S is also
computed as min{CHu

K (S), CCG
K (S)}.

We conduct experiments under two sets of parameters from [21], which
are also used by [18], for the purpose of comparison. Table 2 compares costs
obtained by [18] and our experiments under the parameter set (e, c↓, c→) =
(186, 25.8, 22.8). Rows 3 and 5 show the smallest min{CHu

K (S), CCG
K (S)} among

all randomly sampled strategies in Experiment A and B, respectively. Table 3
reports the results under the parameter set (e, c↓, c→) = (239, 27.8, 17). The cost
reductions in both tables are compared to the costs under CCP.

The experimental results show the reductions of more than 10% in several
cases, which is significant due to the fact that CCP has already improved the cost
of PCP and the single-processor setting. Our strategy construction technique
(Experiment B) works very well when c↓ ≈ c→ as seen in Table 2. We expect
greater reductions when we precompute solutions of ILP for more values of e.

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 21

Table 2. The cost of best strategies under PCP, CCP, and in our experiments under
the parameter set (e, c↓, c→) = (186, 25.8, 22.8). The cost C1(e) for K = 1 is 34256.4.

K 2 3 4 5 6 7 8

PCP Cost 25942.2 22521.6 20373.0 19197.0 17941.2 16978.8 16617.0

CCP Cost 23890.2 20515.2 18252.6 17555.4 16482.0 16021.2 15294.6

Exp. Cost 22203.0 18622.8 16337.4 15708.6 15091.2 14949.6 14063.4
A % reduction 7.06 9.22 10.49 10.52 8.44 6.69 8.05

Exp. Cost 22081.2 18340.2 16400.4 15269.4 14973.6 14999.4 14184.0
B % reduction 7.57 10.60 10.15 13.02 9.15 6.38 7.26

Table 3. The cost of best strategies under PCP, CCP, and in our experiments under
the parameter set (e, c↓, c→) = (239, 27.8, 17). The cost C1(e) for K = 1 is 41653.8.

K 2 3 4 7 8

PCP Cost 31886.0 27858.0 25328.8 21572.6 20851.2

CCP Cost 29931.0 25835.0 23390.8 20399.6 19814.2

Exp. Cost 28265.0 23625.0 21282.8 19073.6 18641.2
A % reduction 5.57 8.55 9.01 6.50 5.92

Exp. Cost 28574.6 23731.0 21337.8 19319.0 18900.4
B % reduction 4.53 8.14 8.78 5.30 4.61

In addition, we point out that CHu
K (S) and CCG

K (S) of the same strategy S
are equal for all (canonical) strategies sampled in Experiment A, but these costs
can be slightly different for some (possibly non-canonical) strategies sampled in
Experiment B. When both costs are not equal, CHu

K (S) are smaller for some K
and strategies, while CCG

K (S) are smaller for some others. This shows that none
of the algorithms provides the least cost for strategy evaluation.

6 Conclusion

We have studied the problem of constructing a strategy for computing degree-ℓe

isogeny and evaluating it to achieve the least cost possible in the multi-processor
setting. The proposed strategy evaluation technique transforms a strategy into
a task dependency graph, where we apply precedence-constrained scheduling
algorithms to it. Moreover, we have proposed a strategy construction technique
which utilizes solutions of ILP for small e. Via experimental results, we have been
able to obtain costs that are lower than those under PCP and CCP [18], which
already improve the cost of an optimal strategy under the single-processor setting
[13]. The improvements can get up to 13.02% under some specific parameter sets.

Although our results outperform those that currently exist in the literature,
we note that the proposed strategy evaluation and construction techniques are
yet to produce optimal strategy and evaluation. This is because there are several
layers of approximation in our techniques: (i) the ILP is formulated only for
c↓ = c→, (ii) we combine optimal solutions of small e to have strategies for large

22 K. Phalakarn et al.

e, and (iii) the scheduling algorithms also assume c↓ = c→. One may need to
remove these approximation layers to further reduce the cost.

It is also interesting to apply our techniques to other isogeny-based cryptosys-
tems such as B-SIDH [11], CSIDH [7], and eSIDH [8]. We expect our techniques
to be applicable to all schemes but with different degrees of reduction in costs:
the techniques may work well with eSIDH as the isogeny degree is quite smooth,
but might not work well with B-SIDH and CSIDH as the isogeny degrees are less
smooth and they involve several primes with different costs of point multiplica-
tions and isogeny evaluations. Moreover, we are yet to implement or benchmark
our techniques in hardware or software. These are parts of our future work.

Acknowledgement. The authors would like to thank Jason LeGrow and the
reviewers for their constructive comments on improving the manuscript. The
first author would like to thank Francisco Rodŕıguez-Henŕıquez and Kittiphop
Phalakarn for their valuable feedback. The first author is supported by the Rip-
ple Impact Fund through a Ripple Graduate Fellowship. The second author is
supported by JSPS Grant-in-Aid for Transformative Research Areas A grant
number JP21H05845.

References

1. NIST PQC standardization process: Third round candidate announcement.
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement, Last
accessed 2 Feb 2022

2. NIST PQC standardization project. https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization, Last accessed 2 Feb
2022

3. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM Journal on Computing 1(2), 131–137 (1972)

4. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., Liu,
Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status report on the second round
of the NIST post-quantum cryptography standardization process. US Department
of Commerce, NIST (2020)

5. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., et al.: Supersingular isogeny key
encapsulation. Submission to the NIST Post-Quantum Standardization project
152, 154–155 (2017)

6. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Series 4(1), 39–55 (2020)

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: International Conference on the The-
ory and Application of Cryptology and Information Security. pp. 395–427. Springer
(2018)

8. Cervantes-Vázquez, D., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: Extended
supersingular isogeny Diffie-Hellman key exchange protocol: Revenge of the SIDH.
IET Information Security (2021)

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 23

9. Cervantes-Vazquez, D., Ochoa-Jimenez, E., Rodriguez-Henriquez, F.: Parallel
strategies for SIDH: Towards computing SIDH twice as fast. IEEE Transactions
on Computers (2021)

10. Coffman, E.G., Graham, R.L.: Optimal scheduling for two-processor systems. Acta
informatica 1(3), 200–213 (1972)

11. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 440–463. Springer (2020)

12. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Annual International Cryptology Conference. pp. 572–601.
Springer (2016)

13. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3), 209–247
(2014)

14. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: A
faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Transactions on Computers 67(11), 1622–1636 (2017)

15. Gangal, D., Ranade, A.: Precedence constrained scheduling in (2− 7
3p+1

)-optimal.
Journal of Computer and System Sciences 74(7), 1139–1146 (2008)

16. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. Freeman San
Francisco (1979)

17. Hu, T.C.: Parallel sequencing and assembly line problems. Operations research
9(6), 841–848 (1961)

18. Hutchinson, A., Karabina, K.: Constructing canonical strategies for parallel imple-
mentation of isogeny based cryptography. In: International Conference on Cryp-
tology in India. pp. 169–189. Springer (2018)

19. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of com-
puter computations, pp. 85–103. Springer (1972)

20. Koziel, B., Ackie, A.B., Khatib, R.E., Azarderakhsh, R., Kermani, M.M.: SIKE’d
up: Fast hardware architectures for supersingular isogeny key encapsulation. IEEE
Transactions on Circuits and Systems I: Regular Papers 67(12), 4842–4854 (2020).
https://doi.org/10.1109/TCSI.2020.2992747

21. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: Fast hardware architectures
for supersingular isogeny Diffie-Hellman key exchange on FPGA. In: International
Conference on Cryptology in India. pp. 191–206. Springer (2016)

22. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-
SIDH: Efficient implementation of supersingular isogeny Diffie-Hellman key ex-
change protocol on ARM. In: International Conference on Cryptology and Network
Security. pp. 88–103. Springer (2016)

23. Lam, S., Sethi, R.: Worst case analysis of two scheduling algorithms. SIAM Journal
on Computing 6(3), 518–536 (1977)

24. Levey, E., Rothvoss, T.: A (1 + ϵ)-approximation for makespan scheduling with
precedence constraints using LP hierarchies. SIAM Journal on Computing 50(3),
201–217 (2019)

25. Seo, H., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange. IACR Transactions
on Cryptographic Hardware and Embedded Systems pp. 1–20 (2018)

26. Ullman, J.D.: NP-complete scheduling problems. Journal of Computer and System
sciences 10(3), 384–393 (1975)

27. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB
273(A238-A241), 5 (1971)

