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Abstract. Topology-hiding computation (THC) enables n parties to perform a secure multi-
party computation (MPC) protocol in an incomplete communication graph while keeping the
communication graph hidden. The work of Akavia et al. (CRYPTO 2017 and JoC 2020) shown
that THC is feasible for any graph. In this work, we focus on the efficiency of THC and give
improvements for various tasks including broadcast, sum and general computation. We mainly
consider THC on undirected cycles, but we also give two results for THC on general graphs.
All of our results are derived in the presence of a passive adversary statically corrupting any
number of parties.
In the undirected cycles, the state-of-the-art topology-hiding broadcast (THB) protocol is the
Akavia-Moran (AM) protocol of Akavia et al. (EUROCRYPT 2017). We give an optimization
for the AM protocol such that the communication cost of broadcasting O(κ) bits is reduced from
O(n2κ2) bits to O(n2κ) bits. We also consider the sum and general computation functionali-
ties. Previous to our work, the only THC protocols realizing the sum and general computation
functionalities are constructed by using THB to simulate point-to-point channels in an MPC
protocol realizing the sum and general computation functionalities, respectively. By allowing
the parties to know the exact value of the number of the parties (the AM protocol and our op-
timization only assume the parties know an upper bound of the number of the parties), we can
derive more efficient THC protocols realizing these two functionalities. As a result, comparing
with previous works, we reduce the communication cost by a factor of O(nκ) for both the sum
and general computation functionalities.
As we have mentioned, we also get two results for THC on general graphs. The state-of-the-art
THB protocol for general graphs is the Akavia-LaVigne-Moran (ALM) protocol of Akavia et
al. (CRYPTO 2017 and JoC 2020). Our result is that our optimization for the AM protocol
also applies to the ALM protocol and can reduce its communication cost by a factor of O(κ).
Moreover, we optimize the fully-homomorphic encryption (FHE) based GTHC protocol of LaV-
igne et al. (TCC 2018) and reduce its communication cost from O(n8κ2) FHE ciphertexts and
O(n5κ) FHE public keys to O(n6κ) FHE ciphertexts and O(n5κ) FHE public keys.

1 Introduction

The theory of secure multiparty computation (MPC) has drawn a great deal of attention since intro-
duced by Yao [28] in 1982. In MPC, n parties P1, . . . , Pn seek to compute some public function on their
private inputs while keeping their inputs secret. There have been a great body of works to make MPC
more and more general and efficient. However, most of these works assume that the communication
graph is complete, meaning that every two parties can communicate directly, which is not always the
case in real-world situations. For example, two parties may can not directly communicate with each
other due to their long physical distance or other confidentiality reasons. For this reason, a line of
works [20,8,18,19,9] considered designing MPC protocols over incomplete communication graph.

Moran et al. [25] considered a more complicated situation, where the communication graph is
not only incomplete but also sensitive. They formalized the concept of topology-hiding computation
(THC), which aims to design MPC protocols while keeping the graph topology hidden. There are
many scenes, such as social networks, ISP networks, vehicle-to-vehicle communications, and other
Internet of Things networks, where keeping the graph topology hidden is of great importance.

Motivated by building more efficient THC protocols, we consider the setting where the adversary
may statically, passively corrupt up to at most n− 1 parties (only computational security is possible
⋆ This is the full version of an article that will appear in ASIACRYPT 2022.



in such a setting). A series of works have resolved the feasibility question of THC in this setting.
More concretely, the works of [25,22] built THC for graphs with logarithmic diameter1. Later, based
on a special public-key encryption (PKE) scheme (aka PKCR encryption), the work of [3] built THC
for several special graph classes that may have super-logarithmic diameter such as cycles, trees, and
graphs with logarithmic circumference2. The feasibility of THC on any graph is established in the
work of [1], which presented a construction of THC for all graphs by combining PKCR encryption
and another novel technique called correlated random walks.

In this work, we focus on the efficiency of THC. In the undirected cycles, we follow the work
of [3] and derive more efficient THC protocols for various tasks such as broadcast, sum and general
computation (computing any circuit consists of addition and multiplication gates). We also extend
some of our results and give several improvements for existing THC protocols on general graphs,
including the topology-hiding broadcast (THB) protocol of [1] and the fully-homomorphic encryption
(FHE) based general topology-hiding computation (GTHC) protocol of [23].

Other related works. There are also several works studying the feasibility of (computationally
secure) THC in the fail-stop setting, where the adversary may instruct the corrupt parties to abort
the protocol. The works of [6,23] showed how to construct THC protocols with small leakage. Some
works studied the possibility of information-theoretic THC. [21] showed that information-theoretically
secure MPC inherently leaks information about the graph topology to the adversary, which implies that
information-theoretic THC on general graphs is impossible. A natural question is whether information-
theoretic THC is possible for some subclasses of graphs, which is the main topic of [5]. Moreover, the
work of [4] studied the feasibility of THC in different cryptographic setting: information-theoretic,
given other cryptographic primitives such as key agreement and oblivious transfer. Finally, the work
of [24] studied the feasibility of THC when assuming the network delay is not known (all other THC
works assume the network delay has a known upper bound).

1.1 Our Contribution

As our first result, we give an optimization for the Akavia-Moran (AM) protocol (the state-of-the-art
THB protocol for undirected cycles3) proposed by [3] and reduce its communication cost by a factor of
O(κ) in the amortized sense. Concretely, if one party wants to broadcast O(κ) bits, the communication
cost will be O(n2κ2) bits using the AM protocol. Our optimization for the AM protocol can reduce
the communication cost to O(n2κ) bits.

We then consider the sum and general computation functionalities. Before showing our results4,
we first clarify the state-of-the-art asymptotic communication complexity required for realizing these
two functionalities, respectively. As noted in [25,22,3], given THB for some graph class and a PKE
scheme, any functionality F can be topology-hidingly realized for the same graph class by using THB
and PKE to simulate point-to-point channels in an MPC protocol realizing F . Concretely, point-to-
point channels are simulated as follows.

1. Each party uses THB to broadcast its public key in a setup phase.
2. To send a message x to Pj , Pi encrypts x using the public key of Pj and then uses THB to

broadcast the resulting ciphertext.
3. Upon receiving the ciphertext, Pj can decrypt it to get x. Other parties know nothing about x

because they do not know the decrypt key.

If the underlying PKE scheme satisfies that the ciphertext length is of the same order as the plaintext
length (i.e., the ciphertext length is at most a positive constant multiple of the plaintext length)5

1 The diameter of a graph is the greatest distance between two nodes in the graph.
2 The circumference of a graph is the maximum length of a cycle in the graph.
3 The original AM protocol is designed for directed cycles, and in particular, it assumes that all parties only

know an upper-bound on n rather than the exact value of n. In this work, we extend this protocol to
undirected cycles (which is direct) and moreover, we assume that all parties know the exact value of n. We
remark that our optimization also works for the original AM protocol.

4 Unlike the AM protocol and our optimization for the AM protocol, our THC protocols realizing sum and
general computation functionalities rely on that the parties know the exact value of n.

5 In fact, there are many PKE schemes, including the ElGamal [17] scheme and the Paillier [26] scheme,
satisfy this property.
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and the underlying THB protocol is instantiated with the AM protocol, we can conclude that the
state-of-the-art asymptotic communication complexity of topology-hidingly sending O(κ) bits on a
cycle is O(n2κ2) bits (we do not count in the communication cost of step 1 because it can be executed
once for all).

As we have said, the only topology-hiding protocols realizing the sum and general computation
functionalities are constructed by using THB to simulate point-to-point channels in an MPC protocol
realizing these two functionalities. We have clarified the state-of-the-art asymptotic communication
complexity of simulating point-to-point channels, hence the left problem is to clarify the state-of-the-
art asymptotic communication complexity6 of realizing these two functionalities (without hiding the
topology).

For the sum functionality, to the best of our knowledge, the state-of-the-art asymptotic communi-
cation complexity is O(nκ) bits, which can be constructed from additively homomorphic encryption
(which can be instantiated with the Paillier scheme [26]) as follows.

1. In the setup phase, each party samples a public key and broadcasts it. Let pk be the product of
all the public keys.

2. P1 encrypts its input x1 with pk and sends the resulting ciphertext c1 to P2.
3. For t = 2 to n− 1, upon receiving the ciphertext ct−1, Pt computes an encryption ct of

∑t
j=1 xj

by homomorphically adding xt to ct−1 using the additive homomorphism. Pt sends ct to Pt+1.
4. Upon receiving the ciphertext cn−1 from Pn−1, Pn computes an encryption cn of

∑n
j=1 xj by

homomorphically adding xn to cn−1 using the additive homomorphism.
5. Finally, the parties execute a distributed decryption protocol to securely decrypt cn.

The security of the above scheme is guaranteed by the semantic security of the underlying encryp-
tion scheme. If instantiating the additively homomorphic encryption scheme with the Paillier scheme,
we argue that the communication cost of the above protocol will be O(nκ) bits (we do not count in
the communication cost of step 1 because it can be executed once for all), which can be derived from
the following two points. Firstly, the ciphertext length of the Paillier scheme is of the same order as its
plaintext length, which implies that the communication cost of step 2-4 is O(nκ) bits. Secondly, we can
find a distributed decryption protocol in [7] for Paillier ciphertexts with communication complexity
O(nκ) bits, which implies that the communication cost of step 5 can be O(nκ) bits. Therefore, we
conclude that the total communication cost is O(nκ) bits.

Note that the state-of-the-art asymptotic communication complexity of sending or broadcast-
ing O(κ) bits is O(n2κ2) bits, hence the state-of-the-art asymptotic communication complexity of
topology-hidingly realizing the sum functionality is O(n3κ2) bits. Our optimization for the AM pro-
tocol can reduce the communication cost to O(n3κ) bits. In this work, we give a new topology-hiding
sum (THS) protocol which further reduces the communication cost to O(n2κ) bits.

Now we consider the general computation functionality which computes any circuit consisting of
addition and multiplication gates. A THC protocol realizing the general computation functionality is
called a GTHC protocol. To the best of our knowledge, in the presence of a passive adversary statically
corrupting any number of parties, the state-of-the-art asymptotic communication complexity of MPC
realizing the general computation functionality is O((m+ c)nκ) bits7 where m and c are the number
of inputs and multiplication gates in the circuit, which implies that the state-of-the-art asymptotic
communication complexity of GTHC is O((m + c)n3κ2) bits. Our optimization for the AM protocol
can reduce the communication cost to O((m+c)n3κ) bits. In this work, we give a new GTHC protocol
with communication complexity O((m+ c)n2κ) bits.

Finally, we note that our optimization for the AM protocol also applies to the Akavia-LaVigne-
Moran (ALM) protocol (the state-of-the-art THB protocol for general graphs) proposed by [1] and
reduces its communication cost from O(n5κ3) bits to O(n5κ2) when the broadcast value is of length
O(κ) bits. Moreover, we consider the FHE-based GTHC protocol proposed by [23], which require the
parties to communicate O(n8κ2) FHE ciphertexts and O(n5κ) FHE public keys. We optimize this
protocol such that the communication cost is reduced to O(n6κ) FHE ciphertexts and O(n5κ) FHE
public keys.
6 Because the communication cost of sending a bitstring m is of the same order as that of broadcasting m,

we refer to the communication complexity as the number of bits that are sent or broadcast.
7 Both the arithmetic version of the protocol from [16] and the passive version of the protocol from [15] has

communication complexity O((m+ c)nκ) bits.
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We summarize our results by the following theorem.

Theorem 1. There exist the following THC protocols in the presence of a passive adversary statically
corrupting any number of parties:

– A THB protocol for undirected cycles with communication cost O(n2κ) bits while the broadcast
value is of length O(κ) bits.

– A THS protocol for undirected cycles with communication cost O(n2κ) bits while each input is of
length O(κ) bits.

– A GTHC protocol for undirected cycles with communication cost O((m + c)n2κ) bits while the
underlying ring is of size 2O(κ).

– A THB protocol for general graphs with communication cost O(n5κ2) bits while the broadcast value
is of length O(κ) bits.

– A GTHC protocol for general graphs with communication cost O(n6κ) FHE ciphertexts and O(n5κ)
FHE public keys.

A comparison of our results to previous works is presented in Table 1.

Topology-hiding protocols Communication complexity References

THB for cycles O(n2κ2) bits [3]
O(n2κ) bits Sect. 3

THS for cycles O(n3κ2) bits [3]
O(n2κ) bits Sect. 4

GTHC for cycles O((m+ c)n3κ2) bits [3]
O((m+ c)n2κ) bits Sect. 5

THB for general graphs O(n5κ3) bits [1]
O(n5κ2) bits Sect. 6

FHE-based GTHC for
general graphs

O(n8κ2) hcts+O(n5κ) hpks [23]
O(n6κ) hcts+O(n5κ) hpks Sect. 6

Table 1. For all the THC protocols on undirected cycles and the THB protocol for general graphs, we always
assume the input size is O(κ) bits. The communication costs of the work of [3] for realizing the sum and
general computation functionalities are computed as the communication costs of the constructions of THS
and GTHC compiled black-box from the AM protocol (assume the parties know the exact value of n in the
AM protocol). Additionally, we abbreviate ‘FHE ciphertexts’ by ‘hcts’ and ‘FHE public keys’ by ‘hpks’.

1.2 Technical Overview

Before showing how to derive our protocols, we first revisit the AM and ALM protocols. Both of these
two THB protocols are only for broadcasting a bit (a bitstring can be broadcast bit-by-bit) and built
by first presenting a topology-hiding OR protocol and then letting the broadcaster take the broadcast
bit as input and each other party take 0 as input. We present them in the same framework, but with
different parameters. The framework consists of two phases: an aggregate phase and a decrypt phase.

At the beginning of the aggregate phase, for each party Pi and each of its neighbor d, Pi samples
a fresh public key and encrypts its input bit under this key, and sends the resulting ciphertext (to-
gether with the public key) to its neighbor d. At each following round, for each i ∈ [n], Pi chooses a
permutation σ of the set of its neighbors8 and then for each of its neighbor d, Pi, upon receiving a
ciphertext (together with a public key) from its neighbor d at the previous round, homomorphically
OR’s its own bit and adds a new public key layer to this ciphertext, and then sends the resulting
8 The AM protocol uses the only non-identity permutation (i.e., each neighbor is mapped to the other neigh-

bor). The ALM protocol uses a fresh random permutation.
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ciphertext to its neighbor σ(d). After T rounds9, the parties execute the decrypt phase to decrypt the
final ciphertexts. Concretely, each ciphertext is sent back through the same walk it traversed during
the aggregate phase, and each party deletes its own public key layer in the reversed walk. Finally,
each party derives a bit from each walk starting from itself and outputs the OR of these bits.

We can conclude that the communication cost is 4n(n− 1) = O(n2) ciphertexts and 2n(n− 1) =
O(n2) public keys in the AM protocol and 4|E|·8n3κ = O(n5κ)10 ciphertexts and 2|E|·8n3κ = O(n5κ)
public keys in the ALM protocol. The results of [3,1,23] showed that the underlying encryption scheme
can be instantiated with the ElGamal scheme [17], the Cock scheme [14] or the Regev scheme [27].
The ciphertext length will be at least O(κ) bits if using the ElGamal or Cock scheme and O(κ log κ)
bits if using the Regev scheme. Moreover, the public key length will be at least O(κ) bits if using the
ElGamal or Cock scheme and O(κ log2 κ) bits if using the Regev scheme. Therefore, we know that the
state-of-the-art communication complexity of the AM and ALM protocols are O(n2κ) and O(n5κ2)
bits, respectively. Note that both of these two protocols can only be used to broadcast a bit, and if
we want to broadcast O(κ) bits, then the communication cost of the AM and ALM protocols will be
O(n2κ2) and O(n5κ3) bits, respectively.
THB for undirected cycles and general graphs. The original AM protocol [3] and ALM protocol
[1] require the underlying PKE scheme to be OR-homomorphic. In the work of [2], the journal version
of [1], the authors observe that designing topology-hiding OR protocol in fact does not require any
homomorphic property of the underlying encryption scheme. We restate this observation:

To compute OR, upon receiving an encryption of a bit c, the computing party holding a bit b
outputs an encryption of c if b = 0 and an encryption of 1 otherwise.

In this observation, whether the computing party changes the encrypted bit depends on what its input
is. Our novel idea is that if we only consider broadcast (instead of OR), then we can further extend
this observation as follows:

To design broadcast, upon receiving an encryption of a bit c, the computing party holding a bit b
outputs an encryption of c if the computing party is not the broadcaster (which guarantees that
the bit encrypted will not be changed if it has been the broadcast bit) and an encryption of b
otherwise (which guarantees that the bit encrypted will be the broadcast bit if it is not yet the
broadcast bit).
The main difference between our observation and the original observation is that in our observation,

whether the computing party changes the encrypted bit depends on whether it is the broadcaster rather
than what its input is. If the parties act as in our observation, then it is obvious that they can also
get the broadcast value even if the broadcast value is not a bit value.

Let us explain how to drive our optimization for the AM and ALM protocols from our observation.
In the original AM and ALM protocols, the underlying encryption scheme can be instantiated with
the ElGamal scheme. However, to encrypt bits, the actual ElGamal plaintext space is mapped to the
set {0, 1} while the ciphertext length is still O(κ) bits. Note that the ciphertext length of the ElGamal
scheme is of the same order as its plaintext length (more precisely, an ElGamal ciphertext is twice
the length of the corresponding plaintext), and with our novel observation, any value in the ElGamal
plaintext space (instead of {0, 1} in the original AM and ALM protocols) can be the broadcast value,
which can reduce the communication cost of the AM and ALM protocols by a factor of O(κ) in the
amortized sense.
THS for undirected cycles. Our THS protocol is based on a simple observation that each walk
in the AM protocol passes through each party exactly once during the aggregate phase (which is not
right in the original AM protocol where the parties only know an upper bound of n). If we let each
party homomorphically add its input to each received ciphertext (assume the underlying encryption
is additively homomorphic), then the final ciphertext of each walk is indeed an encryption of the
sum of all the inputs. Because the standard ElGamal scheme does not have additive homomorphism,
we instantiate the underlying encryption scheme with the scheme from [10] or [13]. Moreover, the
ciphertext and public key lengths of both of these two schemes can be O(κ) bits when the plaintext
length is O(κ) bits. Notice that the parties communicate O(n2) ciphertexts and O(n2) public keys as
in the AM protocol, which leads to the claimed communication cost, i.e., O(n2κ) bits.
9 T equals n− 1 in the AM protocol and 8n3κ in the ALM protocol.

10 |E| is the number of edges in the communication graph, which is no more than C2
n = n(n− 1)/2.
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GTHC for undirected cycles. Our GTHC protocol also requires that the parties know the exact
value of n. Concretely, we consider designing a GTHC protocol within the popular framework based on
additive secret sharing. This framework consists of three phases: the input sharing phase, the circuit
evaluation phase and the output recovery phase. In the input sharing phase, the parties generate
additive sharings for the inputs. In the circuit evaluation phase, the parties perform a protocol to
compute an additive sharing of the value of the computed function f (which is represented by an
arithmetic circuit consisting of addition and multiplication gates) at the inputs. Finally, in the output
recovery phase, the parties recover the output to the parties who are supposed to obtain the output.
Because additive secret sharing is linearly homomorphic, the addition gates can be computed locally.
Therefore, the key point for designing a GTHC protocol is how to compute a multiplication gate, i.e.
how to securely compute an additive sharing of xy with x, y additively shared among the parties. Our
starting point is that an additive sharing of xy can be computed by locally adding a public value xy−r
to an additive sharing of r where r is a random value. The additive sharing of r can be generated by
letting each party Pi locally sample a random value ri (set r =

∑
i∈[n] ri). Now the goal is to publish

the value xy − r. We present a topology-hiding protocol to achieve this goal in Sect. 5. We remark
that the communication cost of this protocol is O(n2κ) bits, which implies the communication cost
of computing a multiplication gate is O(n2κ) bits. Moreover, we use our THS protocol to execute the
input sharing and output recovery phases such that the communication cost of sharing an input or
recovering the output is O(n2κ) bits. Assume f has m inputs and c multiplication gates, then the
total communication cost is O((m+ c)n2κ) bits.

FHE-based GTHC for general graphs. The work of [23] gave a GTHC protocol based on FHE. We
call this protocol the LZM3T protocol. The main advantage of the LZM3T protocol is its low round
complexity, which amounts to the round complexity of the ALM protocol. However, if designing a
GTHC protocol by compiling an MPC protocol π which realizes the general computation functionality
from THB, then the round complexity of the resulting protocol will be k times that of the ALM protocol
where k is the round complexity of π.

The LZM3T protocol11 is constructed by modifying the aggregate phase of the ALM protocol as
follows. In the aggregate phase of the LZM3T protocol, each party Pi appends the ciphertexts of its
input xi and its ID idi to each received ciphertext. In such a way, at the end of the aggregate phase, each
party Pi will receive T = 8n3κ pairs of ciphertexts {ct,b}t∈[T ],b∈{0,1} (together with the corresponding
public key). Let mt,b be the decryption of ct,b, then for each t ∈ [T ], there exists it ∈ [n] such that
(mt,0,mt,1) = (xit , idit). To compute a given function f , Pi compute an encryption of f ◦ parse on
({mt,b}t∈[T ],b∈{0,1}), where parse({mt,b}t∈[T ],b∈{0,1}) = (x1, . . . , xn)

12, using the full homomorphism
of the underlying encryption. Finally, the parties execute the decrypt phase to decrypt the resulting
ciphertexts. The LZM3T has high communication cost because each party sends a ciphertext vector
of length O(t) at round t and the total rounds is T = O(n3κ), which yields at least O((1 + 2 + · · ·+
T ) · |E|) = O(T 2n2) = O(n8κ2) ciphertexts communication during the aggregate phase. We optimize
the aggregate phase such that O(n6κ) ciphertexts are sufficient13.

Our idea is that in the aggregate phase, instead of appending an encryption of the input (together
with an encryption of the ID) to each received ciphertext vector at each round, each party sends
ciphertext vectors of length n at each round and for the i-th entry of the ciphertext vectors, the
parties act exactly as in the optimized ALM protocol with Pi being the broadcaster and the input
xi of Pi being the broadcast value. This way, at the end of the aggregate phase, the last party in
each walk will get a ciphertext vector of length n where the i-th entry is exactly an encryption of
xi. In particular, the ciphertexts in the same ciphertext vector are under the same public key, which
allows the last party in each walk to compute an encryption of the given function using the full
11 The original protocol works in the fail-stop model where the adversary may instruct any party to abort the

execution at any time, but we consider the passive version of this protocol.
12 The function parse may be derived as follows. For each i ∈ [n], define the piecewise func-

tion hi such that hi(a, b) = a if b = idi and hi(a, b) = 0 if b ̸= idi. Then we set yi =
(
∑

t∈[T ] hi(mt,0,mt,1))(
∑

t∈[T ] m
−1
t,0hi(mt,0,mt,1))

−1 and parse = (y1, . . . , yn). Assume (xi, idi) appears
in the multiset {(mt,0,mt,1)}t∈[T ] k times (the protocol guarantees that k ≥ 1 with overwhelming probabil-
ity), then yi = kxi · k−1 = xi. Therefore, parse({mt,b}t∈[T ],b∈{0,1}) equals (x1, . . . , xn) with overwhelming
probability.

13 More precisely, we reduce the communication cost from O(n8κ2) ciphertexts and O(n5κ) public keys to
O(n6κ) ciphertexts and O(n5κ) public keys.
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homomorphism of the underlying encryption. Finally, the decrypt phase is executed. It is obvious that
our optimized aggregate phase only requires the parties to send O(nT · |E|) = O(n6κ) ciphertexts.

2 Preliminaries

Notations. Let κ be the security parameter. For any positive integerm, [m] denotes the set {1, · · · ,m}.
We say a function ε(κ) is negligible, denoted ε(κ) = neg(κ), if ε(κ) = κ−ω(1). We say a function η(κ)
is overwhelming if 1− η(κ) is negligible.

For any set A, let |A| be the cardinality of A and U(A) the uniform distribution over A. For a
distribution D, let x← D denote the process of sampling x from D. For any two distributions X,Y ,
denote SD(X,Y ) the statistical distance of X and Y . We say X and Y are identical, denoted X ≡ Y ,
if SD(X,Y ) = 0. We say X and Y are statistically indistinguishable, denoted X ≈s Y , if SD(X,Y )
is negligible. Finally, we say X and Y are computationally indistinguishable, denoted X ≈c Y , if no
efficient algorithm can distinguish them.

For any plaintext x and a public key pk, we denote JxKpk an encryption of x under pk. If the public
key is clear from the context, we will omit the public key and use JxK to represent an encryption of x
under some public key.

2.1 Security Model

For all of our protocols, there are n parties P1, . . . , Pn and the communication graph is modelled as an
undirected graph G = (V,E) where V = [n] and (i, j) ∈ E if and only if Pi and Pj can communicate
with each other directly (we assume (i, i) ̸∈ E for every i ∈ V ). We do not distinguish (i, j) and (j, i)
because G is undirected. For any i ∈ V , the set Ni = {j|(i, j) ∈ E} represents the neighbors of Pi.

Adversarial model. The adversary we consider in this work can statically corrupt any number of
parties and moreover, it is passive and computationally bounded (PPT).

Communication model. The concept of THC is formalized by [25], which gave the first (simulation-
based) definition for topology hiding in the UC framework [11]. In the work of [1], a stronger variant
of this definition is considered. In this work, we adopt this variant in our protocols.

In traditional UC model for MPC, the communication graph is assumed to be complete, i.e. each
party can communicate directly with other parties. However, in the setting of THC, the communication
graph is incomplete and private. To capture this, an ideal functionality Fgraph is defined to describe
what the parties can do in the communication graph and a special party Pgraph is assumed to hold
the communication graph. Concretely, Fgraph consists of an initialization phase and a communication
phase. In the initialization phase, Fgraph receives the communication graph G = (V,E) from Pgraph

and samples a label for each edge e ∈ E, and then send the labels of the edges in Ni to Pi for each
i ∈ [n]14. We note that in such a way, any two parties can tell whether they share an edge, but can not
tell whether they share a neighbor. The communication phase provides secure communication between
any party and its neighbors, which receives a message and an edge label from some party and sends
the message to the other party holding this edge label. The formal description of Fgraph is shown in
Fig. 1.

Note that in the ideal world, the adversary has the information that Pgraph sent the corrupted
parties because the initialization phase is executed whenever a functionality F is realized. To capture
this, the functionality Fneigh containing only the initialization phase of Fgraph is defined. For any
functionality F , we use Fneigh||F to represent composing F with Fneigh. Now we give the security
definition of THC in the UC model.

Definition 2. We say that a protocol topology-hidingly realizes a functionality F if it UC-realizes
Fneigh||F in the Fgraph-hybrid model.

14 In the definition of [25], Fgraph gives Ni to Pi, which gives any two parties the ability to tell whether they
share a neighbor.
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Functionality Fgraph

The functionality involves P1, . . . , Pn and a special party Pgraph who takes an undirected graph
G = (V,E) as input.

Initialization Phase.
1. Receive the graph G = (V,E) from the party Pgraph.
2. Choose a random injective function ψ : E → [n2] to label each edge with a random element

from [n2].
3. Send Li = {ψ(i, j) : j ∈ Ni} to Pi for each i ∈ [n].
Communication Phase.
1. Receive from a party Pi a triple (i, h,m) which indicates Pi wants to send a message m to

the neighbor on the edge labeled with h.
2. Find j such that h = ψ(i, j). Send (h,m) to Pj where h tells Pj that m is sent by its neighbor

on the edge labeled with h.

Fig. 1. The graph functionality Fgraph

2.2 Privately Key-Commutative and Rerandomizable Encryption

The concept of privately key-commutative and rerandomizable (PKCR) encryption is introduced by
[3]. Concretely, a PKCR encryption is a semantically secure PKE scheme (Keygen, Enc, Dec) with
several additional properties. Denote M the plaintext space, C the ciphertext space, PK the public
key space which forms an abelian group under the operation � and SK the secret key space. PKCR
encryption requires the following properties.

– Public-key rerandomizable: For any k ∈ PK, it holds that

{k � pk|(pk, sk)← Keygen(1κ)} ≈s {pk|(pk, sk)← Keygen(1κ)}.

– Ciphertext rerandomizable: There exists an efficient algorithm Rand : C ×PK → C such that for
any key pair (pk, sk) and any ciphertext c = JxKpk, it holds that

(x, pk, c, Rand(c, pk)) ≈s (x, pk, c, Enc(x, pk))

and
Dec(Rand(c, pk), sk) = x.

– Privately key-commutative: There exist two efficient algorithms AddLayer : C × PK × SK → C
and DelLayer : C × PK × SK → C such that for any two key pairs (pk1, sk1), (pk2, sk2) and any
ciphertext c = JxKpk1

, it holds that

AddLayer(c, pk1, sk2) ≈s Enc(x, pk1 � pk2)

and
DelLayer(c, pk1, sk2) ≈s Enc(x, pk1 � pk−12 ).

For the special case that (pk, sk) is a pair of keys, we let DelLayer(c, pk, sk) output Dec(c, sk)
instead of Enc(x, 1).

In this work, some of our protocols require the PKCR to be homomorphic, hence we introduce the
following additional properties for PKCR.

Equipping PKCR with homomorphism. Our THS protocol requires a PKCR with two additional
properties.
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– Plaintext space forms a ring: The plaintext space M is a ring Mr with the operations +
(addition) and · (multiplication).

– Additively homomorphic: There exists an efficient algorithm Add :Mr × C × PK → C such that
for any plaintext y ∈Mr and any ciphertext c = JxKpk, it holds that

Add(y, c, pk) ≈s Enc(x+ y, pk).

We call PKCR encryption with the above two properties additively homomorphic PKCR (ahPKCR)
encryption.

Our GTHC protocol (for cycles) requires a stronger variant of ahPKCR, and we call this variant
linearly homomorphic PKCR (lhPKCR) encryption. Concretely, lhPKCR requires a linear homomor-
phism described as follows.

– Linearly homomorphic: There exists an efficient algorithm Linear : Mr × C2 × PK → C such
that for any plaintext a ∈Mr and any two ciphertexts c1 = JxKpk, c2 = JyKpk, it holds that

Linear(a, c1, c2, pk) ≈s Enc(ax+ y, pk).

Remark. The work of [3] has proved that the standard ElGamal scheme is a PKCR encryption. In
Appendix A we prove that both schemes from [10] and [13] are lhPKCR encryption. In this work,
we also instantiate ahPKCR with one of these two schemes (lhPKCR encryption is also ahPKCR
encryption).

3 Topology-Hiding Broadcast for Undirected Cycles

The AM protocol [3] is designed for broadcasting a bit, which we abbreviate by bit-THB. We seek
to design a THB protocol which directly broadcasts a bitstring instead of a bit, we abbreviate this
by string-THB. Notice that string-THB protocol can be simply constructed by just calling the AM
protocol bit-by-bit. However, we seek to derive more efficient constructions than this naive way.

In this section, our main result is an optimization for the AM protocol, which will reduce its
communication complexity by a factor of O(κ) in the amortized sense. Throughout this section, we
use the following public parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer) is a PKCR encryption scheme.
– M is the plaintext space and α ∈M is a dummy value known by all parties (e.g., α is the identity

element if M is a group).

We aim to design a topology-hiding protocol that can be used to broadcast any element in M.
Concretely, we seek to realize the functionality Fbc described in Fig. 4.

3.1 The Protocol

Similar to the AM protocol, our protocol πbc consists of an aggregate phase and a decrypt phase. In
our protocol, each party names its two neighbors 0 and 1. At the beginning of the aggregate phase, for
each party Pi and each of its neighbor b, Pi samples a fresh public key and encrypts α with this key,
and sends the resulting ciphertext (together with the public key) to its neighbor b. At each following
round, for each i ∈ [n] and b ∈ {0, 1}, upon receiving a ciphertext (together with a public key k) from
the neighbor b at the previous round, Pi samples a fresh public key pk and then encrypts the broadcast
value with the key k � pk if it is the broadcaster and adds the public key layer pk to the received
ciphertext otherwise. Let c be the resulting ciphertext, then Pi sends c and k � pk to its neighbor
b̄ = 1 − b. After n − 1 rounds, the parties execute a decrypt phase to decrypt the final ciphertexts
(the decrypt phase is the same as in the AM protocol). Finally, the broadcaster outputs the broadcast
value x and each other party outputs one of the decrypted values.
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Protocol πbc

Input: The broadcaster takes x as input. α is a dummy value known by all parties.
Output: All parties get x as output.

For each i ∈ [n], Pi does the following.
1: Sample (pk

(t)
i→b, sk

(t)
i→b)← Keygen(1κ) for each t ∈ [n− 1], b ∈ {0, 1}.

2: % Aggregate Phase
3: Compute c

(1)
i→b ← Enc(α, pk

(1)
i→b) and set k

(1)
i→b = pk

(1)
i→b for each b ∈ {0, 1}.

4: Send c
(1)
i→b and k

(1)
i→b to neighbor b for each b ∈ {0, 1}.

5: for t = 1 to n− 2 do
6: For each b ∈ {0, 1}, let c

(t)
i←b and k

(t)
i←b be the ciphertext and public key received from neighbor b at the previous

round.
7: Compute k

(t+1)
i→b = k

(t)

i←b̄
� pk

(t+1)
i→b for each b ∈ {0, 1}.

8: if Pi is the broadcaster then
9: Compute c

(t+1)
i→b ← Enc(x, k

(t+1)
i→b ) for each b ∈ {0, 1}.

10: else
11: Compute c

(t+1)
i→b ← AddLayer(c

(t)

i←b̄
, k

(t)

i←b̄
, sk

(t+1)
i→b ) for each b ∈ {0, 1}.

12: end if
13: Send c

(t+1)
i→b , k

(t+1)
i→b to neighbor b for each b ∈ {0, 1}.

14: end for
15: For each b ∈ {0, 1}, let c

(n−1)
i←b and k

(n−1)
i←b be the ciphertext and public key received from neighbor b at the

previous round.
16: if Pi is the broadcaster then
17: Compute e

(n−1)
i→b ← Enc(x, k

(n−1)
i←b ) for each b ∈ {0, 1}.

18: else
19: Compute e

(n−1)
i→b ← Rand(c

(n−1)
i←b , k

(n−1)
i←b ) for each b ∈ {0, 1}.

20: end if
21: % Decrypt Phase
22: for t = n− 1 to 1 do
23: Send e

(t)
i→b to neighbor b for each b ∈ {0, 1}.

24: for b = 0 to 1 do
25: Let e

(t)
i←b be the ciphertext received from neighbor b at the previous round.

26: Compute e
(t−1)

i→b̄
← DelLayer(e

(t)
i←b, k

(t)
i→b, sk

(t)
i→b).

27: end for
28: end for
29: if Pi is the broadcaster then
30: return x.
31: else
32: return e

(0)
i→0.

33: end if

Remark. We discuss a naive idea to halve the round complexity of πbc, which evidences that hiding
the topology is a non-trivial cryptographic task. In the protocol πbc, there are two walks starting
from each party Pi and Pi derives one value from each of these two walks at the end of the protocol.
An observation is that to get the broadcast value, it is sufficient for each party Pi that one of the
two walks starting from Pi passes the broadcaster: Pi just outputs the value that does not equal the
dummy value α. To guarantee that at least one walk passes the broadcaster, it is sufficient that the
aggregate phase takes ⌊n/2⌋ rounds instead of n − 1 rounds. However, this idea is insecure. In fact,
as long as the aggregate phase takes less than n− 1 (and no less than ⌊n/2⌋) rounds, the protocol is
not topology-hiding.

– If the aggregate phase takes T = n − 2 rounds and the adversary A corrupts two parties Pi, Pj

such that Pi and Pj are not neighbors and each of Pi and Pj derives different values from its two
walks15, then A will know that the distance between Pi and Pj is 2, leaking topology information
when n > 4 (if n ≤ 4, any two parties inherently know their distance anyhow). A figure illustration
of the attack can be seen in Fig. 2 with parameters n = 12 and T = 10.

– If the aggregate phase takes T ∈ [⌊n/2⌋, n−2) rounds and the adversaryA corrupts the broadcaster
Pb and two parties Pi, Pj such that any two of Pi, Pj and Pb are not neighbors and moreover, Pi

derives different values from its two walks and Pj derives the same value from its two walks16,
then A will know that the distance between Pi and Pb is less than the distance between Pj and
Pb. A figure illustration of the attack can be seen in Fig. 3 with parameters n = 12 and T = 6.

15 Such i, j exist if n ≥ 4.
16 Such i, j exist if n ≥ 8 and n is even.
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Pj

Pb

Pi

Fig. 2. For n = 12 and T = 10, Pi and Pj are the
only two parties who derive two different values (the
broadcast value x and the dummy value α) from the
two walks.

Pi

Pb Pj

Fig. 3. For n = 12 and T = 6, Pj is the only party
who derives the same value (the broadcast value x)
from the two walks.

3.2 Complexity Analysis

Claim 3. If the underlying PKCR encryption scheme is instantiated with the ElGamal scheme [17],
then the communication cost of πbc is O(n2κ) bits while the broadcast value is of length O(κ) bits.

Proof. In the protocol πbc, each party sends each of its two neighbors a single ciphertext and a public
key at each round of the aggregate phase and a single ciphertext at each round of the decrypt phase.
Let l1 be the plaintext length of the underlying encryption scheme, l2 the ciphertext length and l3
the public key length. Because both the aggregate phase and the decrypt phase takes n − 1 rounds,
the communication complexity of πbc is 2n(n− 1)(2l2+ l3) bits. If instantiating the underlying PKCR
encryption scheme with the ElGamal scheme [17] and setting l1 = O(κ), then we have l2 = 2l1 =
O(κ), l3 = l1 = O(κ). Namely, the communication cost of πbc is O(n2κ) bits. ⊓⊔

3.3 Security Proof

Theorem 4. If the underlying PKCR encryption scheme is semantically secure, then πbc topology-
hidingly realizes the functionality Fbc with passive security against any static adversary corrupting any
number of parties.

We defer the proof to Appendix D.1.

4 Topology-Hiding Sum for Undirected Cycles

In this section, we consider the sum functionality. As we have said, previous to this work, the only
topology-hiding protocol realizing the sum functionality is constructed by using the AM protocol to
simulate the pairwise channels in an MPC protocol realizing the sum functionality, which yields the
state-of-the-art asymptotic communication complexity O(n3κ2) bits. Our optimization for the AM
protocol can reduce this communication cost to O(n3κ) bits. We give a new THS protocol which
further reduces the communication cost to O(n2κ) bits.

Our starting point is to design THS without compiling black-box from THB, for which we need
a PKCR encryption scheme with an additive homomorphism, i.e., an ahPKCR encryption scheme
introduced in Sect. 2.2 (such a scheme can be instantiated with the scheme from [10] or [13] as showed
in Appendix A). Throughout this section, we use the following parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer, Add) is an ahPKCR encryption scheme.
– Mr is the plaintext space, which is a ring17.

We aim to design a topology-hiding protocol to realize the sum functionality Fsum described in
Fig. 5.
17 Mr is ZN for an RSA modulus N if using the scheme from [10] or Zp for a large prime p if using the scheme

from [13].
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4.1 The Protocol

Our protocol πsum consists of an aggregate phase and a decrypt phase. In our protocol, each party
names its two neighbors 0 and 1. At the beginning of the aggregate phase, for each party Pi and each
of its neighbor b, Pi samples a fresh public key and encrypts its input xi with this key, and sends the
resulting ciphertext (together with the public key) to its neighbor b. At each following round, for each
i ∈ [n] and b ∈ {0, 1}, upon receiving a ciphertext (together with a public key k) from its neighbor b at
the previous round, Pi homomorphically adds its input to the received ciphertext using the additive
homomorphism of ahPKCR. Let c be the resulting ciphertext, then Pi adds a fresh public key layer
pk to c and sends the resulting (layered) ciphertext and k � pk to its neighbor b̄ = 1− b. After n− 1
rounds, the parties execute the decrypt phase to decrypt the final ciphertexts. Finally, each party
outputs one of the decrypted values.

Protocol πsum

Input: Each party Pi takes xi ∈ Mr as input.
Output: All parties get x =

∑
i∈[n] xi.

For each i ∈ [n], Pi does the following.
1: Sample (pk

(t)
i→b, sk

(t)
i→b)← Keygen(1κ) for each t ∈ [n− 1], b ∈ {0, 1}.

2: % Aggregate Phase
3: Compute c

(1)
i→b ← Enc(xi, pk

(1)
i→b) and set k

(1)
i→b = pk

(1)
i→b for each b ∈ {0, 1}.

4: Send c
(1)
i→b and k

(1)
i→b to neighbor b for each b ∈ {0, 1}.

5: for t = 1 to n− 2 do
6: For each b ∈ {0, 1}, let c

(t)
i←b and k

(t)
i←b be the ciphertext and public key received from neighbor b at the previous

round.
7: Compute k

(t+1)
i→b = k

(t)

i←b̄
� pk

(t+1)
i→b for each b ∈ {0, 1}.

8: Compute cb ← AddLayer(c
(t)

i←b̄
, k

(t)

i←b̄
, sk

(t+1)
i→b ) for each b ∈ {0, 1}.

9: Compute c
(t+1)
i→b ← Add(xi, cb, k

(t+1)
i→b ) for each b ∈ {0, 1}.

10: Send c
(t+1)
i→b , k

(t+1)
i→b to neighbor b for each b ∈ {0, 1}.

11: end for
12: For each b ∈ {0, 1}, let c

(n−1)
i←b and k

(n−1)
i←b be the ciphertext and public key received from neighbor b at the

previous round.
13: Compute e

(n−1)
i→b ← Add(xi, c

(n−1)
i←b , k

(n−1)
i←b ) for each b ∈ {0, 1}.

14: % Decrypt Phase
15: for t = n− 1 to 1 do
16: Send e

(t)
i→b to neighbor b for each b ∈ {0, 1}.

17: for b = 0 to 1 do
18: Let e

(t)
i←b be the ciphertext received from neighbor b at the previous round.

19: Compute e
(t−1)

i→b̄
← DelLayer(e

(t)
i←b, k

(t)
i→b, sk

(t)
i→b).

20: end for
21: end for
22: return e

(0)
i→0.

4.2 Complexity Analysis

Claim 5. If the underlying ahPKCR encryption scheme is instantiated with the scheme from [10] or
[13], then the communication cost of πsum is O(n2κ) bits while each input is of length O(κ) bits.

Proof. In the protocol πsum, each party sends each of its two neighbors a single ciphertext and a public
key at each round of the aggregate phase and a single ciphertext at each round of the decrypt phase.
Let l1 be the plaintext length of the underlying encryption scheme, l2 the ciphertext length and l3 the
public key length. Because both the aggregate phase and the decrypt phase takes n − 1 rounds, the
communication complexity of πsum is 2n(n− 1)(2l2 + l3) bits. If the underlying ahPKCR encryption
scheme is instantiated with the scheme from [10] or [13], then we can set l1 = O(κ), l2 = O(κ) and
l3 = O(κ). Namely, the communication cost of πsum is O(n2κ) bits while each input is of length O(κ)
bits. ⊓⊔
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4.3 Security Proof

Theorem 6. If the underlying ahPKCR encryption scheme is semantically secure, then πsum topology-
hidingly realizes the functionality Fsum with passive security against any static adversary corrupting
any number of parties.

We defer the proof to Appendix D.2.

5 General Topology-Hiding Computation for Undirected Cycles

In this section, we consider the general computation functionality which can compute any arithmetic
circuit18 consisting of addition and multiplication gates. As we have said, previous to this work,
the only topology-hiding protocol realizing the general computation functionality is constructed by
simulating the pairwise channels in an MPC protocol realizing the general computation functionality,
which yields the state-of-the-art asymptotic communication complexity O((m+ c)n3κ2) bits where m
and c are the number of inputs and multiplication gates in the circuit, respectively. Our optimization
for the AM protocol can reduce the communication cost to O((m + c)n3κ) bits. We present a new
GTHC protocol which further reduces the communication cost to O((m + c)n2κ) bits. Our GTHC
protocol is designed in the popular MPC framework based on additive secret sharing. There are three
phases in this framework: the input sharing phase, the circuit evaluation phase and the output recovery
phase.

In the input sharing phase, the parties generate additive sharings for the inputs. In the circuit
evaluation phase, the parties evaluate the circuit gate-by-gate. Throughout this phase, the parties
maintain the invariant that for every gate, the parties hold additive sharings of the values on the two
input wires and get an additive sharing of the value on the output wire. Finally, in the output recovery
phase, the parties recover the value on the output wire of the final gate.

We show how to use our THS protocol to deal with the input sharing and output recovery phases
in Sect. 5.2. For the circuit evaluation phase, we know that addition gates can be done locally, so the
only left problem is how to topology-hidingly (and efficiently) compute the multiplication gates. In
Sect. 5.1, we give an efficient topology-hiding protocol to securely compute the multiplication gates.

Throughout this section, we need a lhPKCR19 encryption scheme introduced in Sect. 2.2 and use
the following notations.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer, Linear) is a lhPKCR encryption scheme.
– Mr is the plaintext space of the lhPKCR scheme.
– For any plaintext y ∈Mr and any ciphertext c = JxKpk, we define the function Add(y, c, pk) which

outputs Linear(1, c, JyKpk, pk).
Additive secret sharing. An additive sharing of a secret value x is a vector ⟨x⟩ = (x1, . . . , xn)
where each party Pi holds a share xi satisfying that any n− 1 shares leak nothing about x. Additive
secret sharing is linearly homomorphic, which means that for any public value c and any two additive
sharings ⟨x⟩ = (x1, . . . , xn), ⟨y⟩ = (y1, . . . , yn), we have

⟨x⟩+ ⟨y⟩ = ⟨x+ y⟩, c⟨x⟩ = ⟨cx⟩, c+ ⟨x⟩ = ⟨c+ x⟩

where c+ ⟨x⟩ = (c+ x1, x2, . . . , xn).

5.1 Computing Multiplication Gates

In this section, we give a topology-hiding protocol to securely compute the multiplication gates.
Concretely, we realize the functionality Fmult which receives additive sharings of x and y from the
parties and sends an additive sharing of xy to the parties. The detailed description of Fmult can be
seen in Fig. 6.

Our starting point is that an additive sharing of xy can be computed as follows.
18 In this work, we consider circuits over a ring of size 2O(κ).
19 Recall that such a scheme can be instantiated with the scheme from [10] or [13] as shown in Appendix A.
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1. The parties generate an additive sharing ⟨r⟩ for a random value r where the share of Pi is ri.
2. The parties execute a protocol to let all parties securely get the value xy − r.
3. The parties locally compute ⟨xy⟩ = xy − r + ⟨r⟩.

It is easy to see that the above construction generates an additive sharing of xy. Notice that the
generation of ⟨r⟩ can be done locally by letting each party sample a random value ri and setting
r =

∑
i∈[n] ri. The left problem is how to securely publish the value xy − r. To solve this, we define

and realize the mask functionality Fmask described in Fig. 7.

5.1.1 The protocol

Now we give a topology-hiding protocol πmask which realizes the functionality Fmask. This protocol
consists of an aggregate phase and a decrypt phase. The aggregate phase can be viewed as two
subphases and each takes n−1 rounds. In the first subphase, the parties act exactly as in the aggregate
phase of our THS protocol: each party homomorphically adds its share of x to each received ciphertext
using the homomorphism of lhPKCR. At the end of the first subphase, every party will get JxK, an
encryption of x, from each walk. Then the parties can execute the second subphase to compute
encryptions of xy − r, which is based on two observations. The first observation is that xy − r =∑

i∈[n](yix− ri), which means that Jxy − rK can be computed from Jy1x− r1K, . . . , Jynx− rnK (under
the same key) using the homomorphism of lhPKCR. The second observation is that every party Pi

can compute Jyix− riK from JxK using the homomorphism of lhPKCR.
We note that throughout the aggregate phase, each party adds a fresh public key layer to each

received ciphertext at each round, which implies that each final ciphertext includes 2n− 2 public key
layers (because the aggregate phase takes 2n− 2 rounds). Therefore, the parties execute the decrypt
phase, which takes 2n− 2 rounds, to decrypt the final ciphertexts. The formal description of πmask is
deferred to the Appendix B.1.

Now we can present our protocol πmult which realizes the functionality Fmult in the Fmask-hybrid
model.

Protocol πmult

Input: The parties hold additive sharings ⟨x⟩, ⟨y⟩.
Output: The parties output ⟨xy⟩.

1. Each party Pi samples a random value ri ← U(Mr).
2. The parties invoke the functionality Fmask where each party Pi takes xi, yi and ri as inputs.

Let z be the output.
3. P1 outputs z + r1 and each other party Pi outputs ri.

5.1.2 Complexity Analysis

Claim 7. If the underlying lhPKCR encryption scheme is instantiated with the scheme from [10] or
[13] and the functionality Fmask is realized by the protocol πmask, then the communication cost of
πmult is O(n2κ) bits while each input is of length O(κ) bits.

Proof. It is obvious that the communication complexity of πmult is the same as that of πmask. In the
protocol πmask, the aggregate phase takes 2n− 2 rounds, and where each party sends each of its two
neighbors a ciphertext and a public key at each round of the first n − 1 rounds and two ciphertexts
and a public key at each round of the last n − 1 rounds. The decrypt phase takes 2n − 2 rounds,
and where each party sends each of its two neighbors a single ciphertext at each round. Let l1 be the
plaintext length of the underlying encryption scheme, l2 the ciphertext length and l3 the public key
length, then the communication complexity is 2n(n−1)(5l2+2l3) bits. If instantiating the underlying
lhPKCR encryption with the scheme from [10] or [13], we can set l1 = O(κ), l2 = O(κ), l3 = O(κ).
Namely, the protocol πmult has communication complexity O(n2κ) bits while each input is of length
O(κ) bits. ⊓⊔
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5.1.3 Security Proof

In this section, we first show that πmult securely realizes the functionality Fmult in the Fmask-hybrid
model and then we show that πmask securely realizes the functionality Fmask.

Theorem 8. Protocol πmult topology-hidingly realizes the functionality Fmult in the Fmask-hybrid
model with passive security against any static adversary corrupting any number of parties.

Proof. Correctness. The correctness of πmult is guaranteed by the functionality Fmask. Let r =∑
i∈[n] ri. The functionality Fmask guarantees that z = xy − r. At the end of πmult, P1 outputs

z1 = z + r1 and each other party Pi outputs zi = ri. It holds that∑
i∈[n]

zi = z + r1 + (r2 + · · ·+ rn) = xy − r + r = xy.

Moreover, all ris are random values, hence {zi}i∈[n] is an additive sharing of xy.
Security. The security is obvious because the parties do not communicate with each other outside
the invoking of Fmask. ⊓⊔

Theorem 9. If the underlying lhPKCR encryption scheme is semantically secure, then πmask topology-
hidingly realizes the functionality Fmask with passive security against any static adversary corrupting
any number of parties.

We defer the proof to Appendix D.3.

5.2 General Topology-Hiding Computation

In this section, we present our GTHC protocol πmpc, which consists of three phases: the input sharing
phase, the circuit evaluation phase and the output recovery phase.
Input sharing. The goal of input sharing is to generate additive sharings for the inputs. A subtle
point is that we require that for any sharing ⟨x⟩ (assume x is the input of Pi), the adversary cannot
know anything about the share of some party Pj if Pi and Pj are honest20. Now we consider a naive
way with low communication cost to share an input x: the input holder Pi shares x among its closed
neighborhood (including itself and its two neighbors) and each other party shares 0 among its closed
neighborhood, and then each party takes the sum of the share it kept and the shares received from
each of their neighbors as its final share. In this process, for any party Pj who is not in the closed
neighborhood of the input holder Pi (i.e., Pj is neither Pi nor a neighbor of Pi), if the adversary
corrupts the two neighbors of Pj , then the adversary knows the share of Pj

21.
A simple way to share an input x is that the holder of x samples an additive sharing of x and then

sends the shares to the parties by using THB to simulate the point-to-point communication, which
yields O(mn3κ) bits communication because there are O(mn) shares (n − 1 shares should be sent
for each input) and sending a share (of length κ bits) costs O(n2κ) bits communication. We adopt a
more efficient way to share an input. Assume Pi wants to additively share its input x, then if we let
each party Pj sample a share xj , then the share of Pi is xi = x −

∑
j ̸=i xj . Our goal is to let Pi get

the value xi while other parties know nothing about xi. To do this, we let Pi sample a random value
r and the parties execute the protocol πsum where Pi takes x + r as input and each other party Pj

takes −xj as input. At the end of the protocol, the parties will get y = x+ r−
∑

j ̸=i xj = xi + r. It is
obvious that the parties know nothing about xi because r is uniformly random. On the other hand,
Pi can compute xi = y− r. Moreover, the communication cost equals exactly the communication cost
of πsum, i.e., O(n2κ) bits. Therefore, the communication cost of sharing m inputs will be O(mn2κ)
bits.
20 If Pi is corrupt, we allow the adversary to know all the shares.
21 The share of Pj is of the form xj = a + b + c where a, b are two shares received from its two (corrupted)

neighbors (hence the adversary knows a, b) and c is the share it kept. Note that Pj share 0 among its closed
neighborhood, which means that the sum of the two shares it sent its two neighbors is −c, and hence the
adversary knows the value of c. Finally, the adversary can get the share of Pj by computing a+ b+ c.
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Circuit evaluation. Let f :Mm
r →Mr be the circuit to be computed and s1, . . . , sm are the inputs.

The parties compute the circuit in a precomputed topological order. After the input sharing phase,
the parties have gotten the additive sharings of the inputs. For each gate g with inputs x and y,
the parties have additive sharings ⟨x⟩ and ⟨y⟩. If g is an addition gate, the parties locally compute
⟨x + y⟩ = ⟨x⟩ + ⟨y⟩. If g is a multiplication gate, the parties execute the protocol πmult and our
protocol guarantees that the outputs of the parties form an additive sharing of ⟨xy⟩. At the end of
the computation, the parties output ⟨f(s1, . . . , sm)⟩, an additive sharing of f(s1, . . . , sm). Because the
communication cost of computing a multiplication gate is O(n2κ) bits, the total communication cost
of this phase is O(cn2κ) bits where c is the number of the multiplication gates.

Output recovery. Let fi be the final share of Pi. Our protocol guarantees that f(s1, . . . , sm) =∑
i∈[n] fi. If all parties want to get the value f(s1, . . . , sm), then a simple but inefficient way is that

each party Pi uses our THB protocol to broadcast fi, which will yield O(n3κ) bits communication. A
more efficient way is that the parties execute our sum protocol πsum where each party Pi takes fi as
input and the communication cost of this way is O(n2κ) bits.

If we only want one party Pj to get the output, then it can be realized by letting Pj add a random
value r to its input and then subtract r from its output after the execution of the protocol πsum.

The formal description of our GTHC protocol πmpc is in the following.

Protocol πmpc

Public parameters: f : Mm
r → Mr is a poly-size circuit over Mr.

Input: The parties hold inputs s1, . . . , sm.
Output: The parties output f(s1, . . . , sm).

Input sharing. For each input si, the parties do the followings.
1. Let Pj be the input holder of si. To share si, Pj samples a random value r ∈ Mr and each other

party Pk samples a random value si,k ∈ Mr.
2. The parties execute πsum where Pj takes si + r as input and each other party Pk takes −si,k as

input. Let y be the output.
3. Pj computes si,j = y − r. The sharing of si is ⟨si⟩ = (si,1, . . . , si,n).
Circuit evaluation. For each gate g, the parties do the followings.
1. Let ⟨a⟩ = (a1, . . . , an), ⟨b⟩ = (b1, . . . , bn) be the two sharings on the input wires of g.
2. If g is an addition gate, the parties locally compute ⟨a+ b⟩ = ⟨a⟩+ ⟨b⟩.
3. If g is a multiplication gate, the parties execute the protocol πmult where each party Pi takes ai, bi

as inputs. Let ci be the output of Pi. The result is ⟨ab⟩ = (c1, . . . , cn), an additive sharing of ab.
Output recovery. The parties do the followings.
1. Let ⟨f(s1, . . . , sm)⟩ = (f1, . . . , fn) be the final sharing.
2. If all parties wants to get the value f(s1, . . . , sm), the parties execute πsum where each party Pi

takes fi as input.
3. If only one party Pj wants to get the output, then Pj samples a random value r ∈ Mr. The parties

execute πsum where Pj takes fj + r as input and each other party Pi takes fi as input. Let y be
the output. Pj outputs f = y − r.

Complexity analysis. We state the comunication cost of πmpc by the following claim.

Claim 10. The communication complexity of πmpc is O((m+ c)n2κ) bits.

Proof. Note that the communcation costs of the input sharing, circuit evaluation and output recovery
phases are O(mn2κ), O(cn2κ) and O(n2κ) bits, respectively. Therefore, the total communcation cost
of πmpc is O((m+ c)n2κ) bits. ⊓⊔

Security proof. The security of πmpc is guaranteed by the security of πsum and πmult and we omit
the details.
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6 Topology-Hiding Computation on General Graphs

In this section, we give optimizations for two existing topology-hiding protocols on general graphs.
Both of these two protocols rely on the random walk approach [1]. This approach relies on the following
lemma [1], which states that in an undirected connected graph G, the probability that a random walk
of length 8|V |3τ covers G is at least 1− 2−τ .

Lemma 11 ([1]). Let G = (V,E) be an undirected connected graph. Furthermore, let W(u, τ) be a
random variable whose value is the set of vertices covered by a random walk starting from u and taking
8|V |3τ steps. It holds that

PrW [W(u, τ) = V ] ≥ 1− 2−τ .

6.1 Topology-Hiding Broadcast for General Graphs

As we have said, our optimization for the AM protocol also applies to the ALM protocol [1]. We
know the ALM protocol is the state-of-the-art THB protocol for general graphs. Our optimization
reduces the communication cost of the ALM protocol by a factor of O(κ) in the amortized sense. If
the broadcast value is of length O(κ) bits, then the communication cost of the ALM protocol will
be O(n5κ3) bits. With our optimization, the communication cost can be reduced to O(n5κ2) bits.
Throughout this section, we use the following public parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer) is a PKCR encryption scheme.
– M is the plaintext space and α ∈M is a dummy value known by all parties (e.g., α is the identity

element if M is a group).

The protocol. Our protocol πggbc consists of an aggregate phase and a decrypt phase. At the begin-
ning of the aggregate phase, for each party Pi and each of its neighbor d, Pi samples a fresh public key
and encrypts α under this key, and then sends the resulting ciphertext (together with the public key)
to neighbor d. At each following round, for each i ∈ [n] and each of its neighbor d, Pi, upon receiving
a ciphertext c (together with a public key k) from its neighbor d at the previous round, samples a
fresh public key pk and encrypts the broadcast value with the key k � pk if it is the broadcaster
and adds the public key layer pk to the received ciphertext c otherwise, and then sends the resulting
ciphertext to its neighbor σ(d) (σ is a fresh random permutation of the set of the neighbors of Pi).
After T = 8n3κ rounds, the parties execute a decrypt phase as in the ALM protocol to decrypt the
final ciphertexts. Finally, the broadcaster outputs the broadcast value x and each other party outputs
one of the decrypted values. The detailed description of our protocol πggbc is deferred to Appendix
B.2.

Complexity analysis. The following lemma states the communication cost of our protocol πggbc.

Claim 12. If the underlying PKCR encryption scheme is instantiated with the ElGamal scheme, then
the communication cost of πggbc is O(n5κ2) bits while the broadcast value is of length O(κ) bits.

Proof. In the protocol πggbc, each party sends each of its neighbors a single ciphertext and a public
key at each round of the aggregate phase and a single ciphertext at each round of the decrypt phase.
Let l1 be the plaintext length of the underlying encryption scheme, l2 the ciphertext length and l3 the
public key length. Because both the aggregate phase and the decrypt phase takes T = 8n3κ rounds,
the communication cost of πggbc is T ·2|E| ·(l2+ l3)+T ·2|E| · l2 = O(n5κ ·(l2+ l3)) bits. If instantiating
the underlying PKCR encryption scheme with the ElGamal scheme and setting l1 = O(κ), then we
have l2 = 2l1 = O(κ), l3 = l1 = O(κ). Namely, the communication cost of πggbc is O(n5κ2) bits while
the broadcast value is of length O(κ) bits. ⊓⊔

Security proof. We state the security of πggbc by the following theorem and defer the proof to
Appendix D.4.

Theorem 13. If the underlying PKCR encryption scheme is semantically secure, then πggbc topology-
hidingly realizes the functionality Fbc with passive security against any static adversary corrupting any
number of parties.

17



6.2 General Topology-Hiding Computation for General Graphs

In [23], a GTHC protocol (we call it the LZM3T protocol) based on FHE is presented. The main
advantage of the LZM3T protocol is its low round complexity, which amounts to the round complexity
of the ALM protocol. However, if designing a GTHC protocol by compiling an MPC protocol π, which
realizes the general computation functionality, from THB, then the round complexity of the resulting
protocol will be k times that of the ALM protocol where k is the round complexity of π.

We first recall the LZM3T protocol, which consists of an aggregate phase and a decrypt phase.
At each round of the aggregate phase, each party appends encryptions of its input and ID to each of
the received ciphertext vectors (hence each ciphertext vector in round t is of length O(t)) and sends
each neighbor one of the resulting ciphertext vector (together with the corresponding public key). At
the end of the aggregate phase, each party receives ciphertext vectors containing encryptions of the
inputs and then computes encryptions of the given function f . Finally, the party execute the decrypt
phase, where each party sends each of its neighbors a single ciphertext, to decrypt the ciphertexts.
We remark that the original LZM3T protocol is designed in the fail-stop model where the adversary
may abort the protocol, but we consider its passive version in this work.

To clarify the communication cost of the LZM3T protocol, we note that the underlying encryption
scheme of the LZM3T protocol is a so-called deeply fully-homomorphic public-key encryption (DFH-
PKE) scheme (which can be viewed as an analogue of PKCR but offers full homomorphism). In
the LZM3T protocol, DFH-PKE is instantiated with an FHE scheme and the public keys in different
rounds of the LZM3T protocol are of different forms. Concretely, let C and PK be the ciphertext space
and public key space of the FHE scheme, respectively, then during the aggregate phase of the LZM3T
protocol, the public keys sent at the first round are in PK and the public keys sent at each following
round are in PK×C (the ciphertext space of DFH-PKE is always C)22. Therefore, the communication
cost of the LZM3T protocol is O(|E| +

∑T
t=2(O(t) + 1)|E| + T |E|) = O(T 2|E|) = O(n8κ2) FHE

ciphertexts and T |E| = O(n5κ) FHE public keys.
In this section, we give an optimization for the LZM3T protocol such that the communication cost

is reduced to O(n6κ) FHE ciphertexts and O(n5κ) FHE public keys. The goal of the aggregate phase
of the LZM3T protocol is to collect encryptions of all the inputs. We give an optimized aggregate phase
to achieve this goal. Concretely, instead of appending an encryption of the input (together with the
ID) to each received ciphertext vector at each round, each party send ciphertext vectors of length n at
each round and for the i-th entry of the ciphertext vectors, the parties act exactly as in our optimized
THB protocol πggbc with Pi being the broadcaster and the input xi of Pi being the broadcast value.

Complexity analysis. Each party sends each of its neighbors n ciphertexts and a public key at each
round of the aggregate phase, and a single ciphertext at each round of the decrypt phase. Recall that
the public keys sent at the first round belong to PK and the public keys sent at each following round
belong to PK × C. Therefore, the total communication cost is n|E| + (T − 1)(n + 1)|E| + T |E| =
O(nT |E|) = O(n6κ) FHE ciphertexts and T |E| = O(n5κ) FHE public keys.

Security proof. The correctness of πggbc guarantees that the probability p0 that the i-th entry of a
final ciphertext vector at the end of the aggregate phase is an encryption of xi is overwhelming. Hence,
the probability p that for each i ∈ [n], the i-th entry of a final ciphertext vector is an encryption of xi
satisfies that

p = pn0 = (1− neg(κ))n ≥ 1− n · neg(κ),
which is overwhelming because n = poly(κ). Furthermore, the full homomorphism of the underlying
DFH-PKE scheme guarantees each ciphertext at the beginning of the decrypt phase is an encryption
of f(x1, . . . , xn) with overwhelming probability. Therefore, at the end of the decrypt phase, each party
get the value f(x1, . . . , xn) with overwhelming probability.

As for the security, the simulator just sends encryptions of 0 during the aggregate phase and
encryptions of f(x1, . . . , xn) during the decrypt phase (the public keys are simulated with fresh public
keys). The semantic security of the underlying DFH-PKE scheme guarantees that the ciphertexts and
public keys in the real world are indistinguishable from the simulated ciphertexts and public keys,
respectively.

We omit the details of the security proof because the proof will be much like the proof of Theorem
13 (DFH-PKE provides the required properties for the security proof similar to PKCR).
22 We refer to [23, Appendix C] for more details about DFH-PKE and its instantiation.
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Remark. Another advantage of our optimized protocol is that we only require the underlying scheme
to homomorphically compute the given function, which means that if the given function contains only
linear gates (addition, addition-by-constant and multiply-by-constant gates), then we only require the
underlying scheme has linear homomorphism, i.e. a lhPKCR scheme is sufficient. However, the LZM3T
protocol requires the underlying scheme to homomorphically compute a much more complicated func-
tion than the given function (as we explained in Sect. 1.2), which makes it impossible to just use a
lhPKCR scheme even the given function contains only linear gates.

7 Optimizations

In this section, we give several optimizations to obtain better concrete efficiency.

Improving the concrete efficiency using multi-ElGamal. All of our protocols use ElGamal-like
schemes as the underlying PKCR schemes (the ciphertexts are of form (gr, xhr) or (gr, fxhr)). We
can extend the plaintext space of ElGamal-like schemes as follows to obtain better concrete efficiency.
Concretely, to encrypt l messages x1, . . . , xl, one samples l key pairs (sk1, pk1), . . . , (skl, pkl) and a
random value r, and then compute the ciphertext as (gr, x1pkr1, . . . , xlpkrl ) or (gr, fx1pkr1, . . . , f

xlpkrl ).
The ciphertext length of l messages is l + 1 group elements. However, if encrypting the l messages
independently, then the total length of the resulting ciphertext is 2l group elements. The semantic
security of such a multi-ElGamal scheme is also based on the DDH assumption in the underlying
group.

Better topology-hiding communication on cycles. We give a more efficient topology-hiding
realization for point-to-point communication on undirected cycles with knowing n. As we have said,
point-to-point communication can be realized by compiling black-box from THB as follows.
1. Each party uses THB to broadcast its public key in a setup phase.
2. To send a message m to Pj , Pi encrypts m with the public key of Pj and then uses THB to

broadcast the resulting ciphertext.
3. Upon receiving the ciphertext, Pj can decrypt it to get m. Other parties know nothing about m

because they do not know the decrypt key.
If simulating point-to-point communication as above, then the communication cost of topology-

hidingly sending a message m will equal the communication cost of topology-hidingly broadcasting
a public key and a ciphertext of m (under some PKE scheme). Now we present a better way to
realize point-to-point communication such that the communication cost of topology-hidingly sending
a message m equals the communication cost of using our optimized THB protocol to broadcast m
(rather than a public key and a ciphertext of m), which achieves better concrete efficiency.

Recall that our optimized THB protocol instantiates the underlying PKCR scheme with the El-
Gamal scheme. The plaintext space of the ElGamal scheme is a group and the ElGamal scheme is
homomorphic under the group operation (the group operation is called multiplication), i.e., for any
group elements x and y, JxyKpk can be efficiently computed given JxKpk, y and pk. Now we modify
our THS protocol as follows. The underlying scheme is replaced with the ElGamal scheme (instead
of the scheme from [10] or [13]); each party homomorphically multiplies (instead of adds) its input
to each received ciphertext using the homomorphism of ElGamal. It can be easily seen that at the
end of the resulting protocol (we call the resulting protocol the product protocol), all parties get the
product of all the inputs, and moreover, the communication cost of this resulting protocol equals the
communication cost of our optimized THB protocol because both of these two protocols instantiate
the underlying encryption scheme with the ElGamal scheme.

Now we show how to use the product protocol to realize point-to-point communication without
additional communication cost.
1. To send a message x to Pj , the parties execute this product protocol, and where Pi takes x as

input and Pj takes a random group element r as input, and each other party takes the identity
group element as input.

2. At the end of the protocol, all parties get the value y = xr. Pj computes yr−1 as output.
The above execution is a secure realization for point-to-point communication because no parties

know the value of x except Pi and Pj , which is guaranteed by the fact that only Pi and Pj know r
and other parties know nothing about r (Pi can infer r from x and y).
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8 Conclusion and Open Problem

In this work, we give efficient topology-hiding protocols realizing various functionalities, including the
broadcast, sum and general computation functionalities. Our results show that when realizing these
functionalities in undirected cycles, hiding the topology introduces at most multiplicative overhead
of O(n) in the asymptotic communication complexity. An open problem is that whether O(n) is the
optimal overhead.

Another direction is to extend our results to the fail-stop setting where the adversary may instruct
the corrupted parties to abort the protocol. One of our results is an optimization for the ALM protocol.
The work of [23] extended the ALM protocol to the fail-stop setting. A natural question is whether
their method also applies to our optimized ALM protocol.
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scheme with the setup described by the function Setup⋆, we use the scheme from [10]. If instantiating
the scheme with the setup described by the function Setup⋄, we use the scheme from [13].

Setup⋆(1κ)
Choose p, q, p′, q′ to be distinct odd primes with p = 2p′ + 1 and q = 2q′ + 1, and where p′ and
q′ are both κ bits in length. Let N = pq and N ′ = p′q′. Define G = QRN2 to be the cyclic group
of quadratic residues modulo N2 with a generator g. The order of g is e = NN ′. Let F be the
subgroup of G generated by f = 1+N . The order of f is N . For any X ∈ F , we can find the discrete
logarithm of X with respect to 1 +N by computing x = (X mod N2 − 1)/N . Set Mr = ZN , C =
G2,PK = G,SK = ZN3 ,R = ZN3

24, and define the algorithm Solve(X) = (X mod N2 − 1)/N .

Setup⋄(1κ)
Pick p a random (κ− 2)-bits prime and q a random (κ+ 2)-bits prime such that pq ≡ 3 (mod 4)
and (p/q) = −125. Set ∆K = −pq and ∆p = p2∆K . Set f ← [(p2, p)] in C(∆p) and F = ⟨f⟩. Let
r be a small prime such that r ̸= p and (∆K/r) = 1. Let r be a prime ideal of O∆K

lying above r.
Sample k ← U(Z∗p) and set g = [φ−1p (r2)]pfk in C(∆p). Let G = ⟨g⟩. Set B = ⌈|∆K |3/4⌉. For any
X ∈ F , the algorithm to find the discrete logarithm of X to the base f , denoted by Solve(X), parses
Red(X) as (p2, x̃p) and returns x = x̃−1(mod p)26. Set Mr = Zp, C = G2,PK = G,SK = ZBp and
R = ZBp.

Keygen(1κ)
Sample sk ← U(SK) and compute pk = gsk. Return (pk, sk).

Enc(x, pk)
To encrypt a message x ∈ Mr, sample r ← U(R) and compute c0 = gr, c1 = fx · pkr. Finally,
return c = (c0, c1).

Dec(c = (c0, c1), sk)
Return x = Solve(c1 · (c0)−sk).

Rand(c = (c0, c1), pk)
Sample r ← U(R) and return (c0 · gr, c1 · pkr).

AddLayer(c = (c0, c1), pk1, sk2)
Return Rand((c0, c1 · (c0)sk2), pk1 · gsk2).

DelLayer(c = (c0, c1), pk1, sk2)
Return Rand((c0, c1 · (c0)−sk2), pk1 · g−sk2).

Linear(a, c1 = (c01, c
1
1), c2 = (c02, c

1
2), pk)

Return Rand(((c01)
a · c02, (c11)a · c12), pk).

We first prove the following claim for both schemes from [10] and [13].

Claim 14. For any r0 ∈ Z, it holds that

{gr+r0 |r ← U(R)} ≈s {gr|r ← U(R)}.

Proof. We give proofs for these two schemes, respectively.

24 The original scheme from [10] sets SK = Zn and R = ZN2 . However, we set SK = R = ZN3 to make the
scheme a lhPKCR encryption scheme. We note that this modification does not influence the concrete effi-
ciency if instantiating the underlying scheme with the BCP scheme because in our protocol, only ciphertexts
and public keys are sent (the ciphertext space and the public key space remain the same).

25 In the original scheme from [13], p is a random µ-bits prime and q is a random (2κ−µ)-bits prime satisfying
µ ≤ κ− 2. In this work, we set µ = κ− 2 for simplicity.

26 Red(X) outputs the two-integer representation of the unique reduced ideal equivalent to X. As noted in [13,
Appendix B], existing results show that Red(X) can be efficiently computed given X. On the other hand,
by the [13, Proposion 1], the output of Red(X) equals (p2, L(y)p) where y is the discrete logarithm of X to
the base f and L(y) is the odd integer in [−p, p] such that L(y) = y−1 mod p.
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Proof for the scheme from [10]. The order of g is e = NN ′. Let u = ⌊N3/e⌋ and v = N3 mod e. Let X
be the distribution {gr+r0 |r ← U(ZN3)} and Y the distribution {gr|r ← U(ZN3)}, then it holds that

2 · SD(X,Y )

=
∑
t∈Ze

|Prr←U(ZN3 )[g
r+r0 ≡ gt mod N2]− Prr←U(ZN3 )[g

r ≡ gt mod N2]|

=
∑
t∈Ze

|Prr←U(ZN3 )[r + r0 ≡ t mod e]− Prr←U(ZN3 )[r ≡ t mod e]|.

Notice that if (t mod e) < v, then Prr←U(ZN3 )[r ≡ t mod e] = (u + 1)/N3. If (t mod e) ≥ v, then
Prr←U(ZN3 )[r ≡ t mod e] = u/N3. Therefore, if we define the function I : Ze → {0, 1} as

I(x) =

{
1, if x < v

0, if x ≥ v

then we have Prr←U(ZN3 )[r ≡ t mod e] = (u+ I(t mod e))/N3. Thus, it holds that

2 · SD(X,Y )

=
∑
t∈Ze

|(u+ I((t− r0) mod e))/N3 − (u+ I(t mod e))/N3|

=
∑
t∈Ze

|I((t− r0) mod e)− I(t mod e)|/N3

≤e/N3.

It follows from e = NN ′ < N2 that e/N3 < 1/N , hence SD(X,Y ) is negligible in κ. Therefore, X and
Y are statistically indistinguishable.

Proof for the scheme from [13]. The following result has been shown in [13, Section 3.1],

{gr|r ← U(R)} ≈s {y|y ← U(G)} (1)

Because G is a group, we have

{y|y ← U(G)} ≡ {y · gr0 |y ← U(G)} (2)

Combine (1) and (2) we have

{gr+r0 |r ← U(R)} ≈s {gr|r ← U(R)}.

This completes the proof. ⊓⊔

To prove that both schemes from [10] and [13] are lhPKCR encryption, we need to prove the
following lemmas.

Lemma 15. For any k ∈ PK, it holds that

{k · pk|(pk, sk)← Keygen(1κ)} ≈s {pk|(pk, sk)← Keygen(1κ)}.

Proof. For both these two schemes, we know that

{pk|(pk, sk)← Keygen(1κ)} ≡ {gsk|sk ← U(SK)}.

Notice that in both of these two schemes, we have SK = R. Therefore, by Claim 14, it holds that

{k · gsk|sk ← U(SK)} ≈s {gsk|sk ← U(SK)},

which implies that

{k · pk|(pk, sk)← Keygen(1κ)} ≈s {pk|(pk, sk)← Keygen(1κ)}.

This completes the proof. ⊓⊔
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Lemma 16. For any key pair (pk, sk) and any ciphertext c = JxKpk, it holds that

(x, pk, c, Rand(c, pk)) ≈s (x, pk, c, Enc(x, pk))

and
Dec(Rand(c, pk), sk) = x.

Proof. There exists r0 such that c = (c0, c1) = (gr0 , fx · pkr0), then by the definition of Rand, we have
(x, pk, c, Rand(c, pk))

≡{(x, pk, (gr0 , fx · pkr0), (gr0 · gr, fx · pkr0 · pkr))|r ← U(R)}
≡{(x, pk, (gr0 , fx · pkr0), (gr0+r, fx · pkr0+r))|r ← U(R)}.

By Claim 14, we have

{(gr0+r, fx · pkr0+r)|r ← U(R)} ≈s {(gr, fx · pkr)|r ← U(R)} ≡ Enc(x, pk).

Therefore, it holds that
(x, pk, c, Rand(c, pk)) ≡ (x, pk, c, Enc(x, pk)).

In addition, let c0 be any output of Rand(c, pk). By the definition of the function Rand, there exist
r0 such that c0 = (c00, c

1
0) = (c0 · gr0 , c1 · pkr0), then we have

Dec(c0, sk) = Solve(c10 · (c00)−sk) = Solve(c1 · (c0)−sk) = x.

This completes the proof. ⊓⊔
Lemma 17. For any two key pairs (pk1, sk1), (pk2, sk2) and any ciphertext c = JxKpk1

, it holds that

AddLayer(c, pk1, sk2) ≈s Enc(x, pk1 · pk2)

and
DelLayer(c, pk1, sk2) ≈s Enc(x, pk1 · pk−12 ).

Proof. By the difinitions of AddLayer and DelLayer, we know

AddLayer(c = (c0, c1), pk1, sk2) ≡ Rand((c0, c1 · (c0)sk2), pk1 · gsk2)

DelLayer(c = (c0, c1), pk1, sk2) ≡ Rand((c0, c1 · (c0)−sk2), pk1 · g−sk2).

We argue that (c0, c1 · (c0)sk2) is an encryption of x under pk1 ·pk2 and (c0, c1 · (c0)−sk2) an encryption
of x under pk1 · pk−12 , which is implied by

c1 · (c0)sk2 · (c0)−(sk1+sk2) = c1 · (c0)−sk1 = fx

c1 · (c0)−sk2 · (c0)−(sk1−sk2) = c1 · (c0)−sk1 = fx.

Therefore, by Lemma 16, we have
Rand((c0, c1 · (c0)sk2), pk1 · pk2) ≈s Enc(x, pk1 · pk2)

Rand((c0, c1 · (c0)−sk2), pk1 · pk−12 ) ≈s Enc(x, pk1 · pk−12 ).

The proof is completed. ⊓⊔
Lemma 18. For any message a ∈Mr and any two ciphertexts c1 = JxKpk, c2 = JyKpk, it holds that

Linear(a, c1, c2, pk) ≈s Enc(ax+ y, pk).

Proof. By the difinitions of Linear, we know

Linear(a, c1 = (c01, c
1
1), c2 = (c02, c

1
2), pk) ≡ Rand(((c01)

a · c02, (c11)a · c12), pk).
We argue that the ciphertext ((c01)a ·c02, (c11)a ·c12) is an encryption of ax+y under pk, which is implied
by

(c11)
a · c12 · ((c01)a · c02)−sk = (c11(c

0
1)
−sk)a(c12(c

0
2)
−sk) = fax · fy = fax+y.

Therefore, by Lemma 16, we have

Rand(((c01)
a · c02, (c11)a · c12), pk) ≈s Enc(ax+ y, pk).

This completes the proof. ⊓⊔
Combine Lemma 15, 16, 17 and 18 we know that both schemes from [10] and [13] are lhPKCR

encryption.
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B Topology-Hiding Protocols

B.1 Detailed Description of πmask

Protocol πmask

Input: Each party Pi has inputs xi, yi and ri.
Output: All parties output xy − r where x =

∑
i∈[n] xi, y =

∑
i∈[n] yi and r =

∑
i∈[n] ri.

For each i ∈ [n], Pi does the following.
1: Sample (pk

(t)
i→b, sk

(t)
i→b)← Keygen(1κ) for each t ∈ [2n− 2], b ∈ {0, 1}.

2: % Aggregate Phase
3: Compute c

(1)
i→b ← Enc(xi, pk

(1)
i→b) and set k

(1)
i→b = pk

(1)
i→b for each b ∈ {0, 1}.

4: Send c
(1)
i→b and k

(1)
i→b to neighbor b for each b ∈ {0, 1}.

5: for t = 1 to n− 2 do
6: for b = 0 to 1 do
7: Let c

(t)
i←b and k

(t)
i←b be the ciphertext and public key received from neighbor b at the previous round.

8: Compute k
(t+1)

i→b̄
= k

(t)
i←b � pk

(t+1)

i→b̄
.

9: Compute c← AddLayer(c
(t)
i←b, k

(t)
i←b, sk

(t+1)

i→b̄
).

10: Compute c
(t+1)

i→b̄
← Add(xi, c, k

(t+1)

i→b̄
).

11: Send c
(t+1)

i→b̄
, k

(t+1)

i→b̄
to neighbor b̄.

12: end for
13: end for
14: for b = 0 to 1 do
15: Let c

(n−1)
i←b and k

(n−1)
i←b be the ciphertext and public key received from neighbor b at the previous round.

16: Compute k
(n)

i→b̄
= k

(n−1)
i←b � pk

(n)

i→b̄
.

17: Compute c← AddLayer(c
(n−1)
i←b , k

(n−1)
i←b , sk

(n)

i→b̄
).

18: Compute c
(n,0)

i→b̄
← Add(xi, c, k

(n)

i→b̄
).

19: Compute cr ← Enc(−ri, k(n)

i→b̄
).

20: Compute c
(n,1)

i→b̄
← Linear(yi, c

(n,0)

i→b̄
, cr, k

(n)

i→b̄
).

21: Send c
(n,0)

i→b̄
, c

(n,1)

i→b̄
and k

(n)

i→b̄
to neighbor b̄.

22: end for
23: for t = n to 2n− 3 do
24: for b = 0 to 1 do
25: Let c

(t,0)
i←b , c

(t,1)
i←b and k

(t)
i←b be the ciphertexts and public key received from neighbor b at the previous round.

26: Compute k
(t+1)

i→b̄
= k

(t)
i←b � pk

(t+1)

i→b̄
.

27: Compute c
(t+1,0)

i→b̄
← AddLayer(c

(t,0)
i←b , k

(t)
i←b, sk

(t+1)

i→b̄
).

28: Compute c1 ← AddLayer(c
(t,1)
i←b , k

(t)
i←b, sk

(t+1)

i→b̄
).

29: Compute c2 ← Add(−ri, c1, k(t+1)

i→b̄
).

30: Compute c
(t+1,1)

i→b̄
← Linear(yi, c

(t+1,0)

i→b̄
, c2, k

(t+1)

i→b̄
).

31: Send c
(t+1,0)

i→b̄
, c

(t+1,1)

i→b̄
and k

(t+1)

i→b̄
to neighbor b̄.

32: end for
33: end for
34: for b = 0 to 1 do
35: Let c

(2n−2,0)
i←b , c

(2n−2,1)
i←b and k

(2n−2)
i←b be the ciphertexts and public key received from neighbor b at the previous

round.
36: Compute c← Add(−ri, c(2n−2,1)

i←b , k
(2n−2)
i←b ).

37: Compute e
(2n−2)
i→b ← Linear(yi, c

(2n−2,0)
i←b , c, k

(2n−2)
i←b ).

38: end for
39: % Decrypt Phase
40: for t = 2n− 3 to 0 do
41: Send e

(t+1)
i→b to neighbor b for each b ∈ {0, 1}.

42: for b = 0 to 1 do
43: Let e

(t+1)
i←b be the ciphertext received from neighbor b at the previous round.

44: Compute e
(t)

i→b̄
← DelLayer(e

(t+1)
i←b , k

(t+1)
i→b , sk

(t+1)
i→b ).

45: end for
46: end for
47: return e

(0)
i→0.
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B.2 Detailed Description of πggbc

Protocol πggbc

Input: The broadcaster takes x as input. Let di be the number of the neighbors of Pi.
Output: All parties output x.

For each i ∈ [n], Pi does the following.
1: Set T = 8κn3.
2: Generate Tdi key pairs: sample (pk

(t)
i→d, sk

(t)
i→d)← Keygen(1κ) for each t ∈ [T ], d ∈ [di].

3: Generate T − 1 random permutations on [di]: σ1, . . . , σT−1. Let σ0 be the identity permutation.
4: % Aggregate Phase
5: Compute c

(1)
i→d ← Enc(α, pk

(1)
i→d) and set k

(1)
i→d = pk

(1)
i→d for each d ∈ [di].

6: Send c
(1)
i→d and k

(1)
i→d to neighbor d for each d ∈ [di].

7: for t = 1 to T − 1 do
8: for each d ∈ [di] do
9: Let c

(t)
i←d and k

(t)
i←d be the ciphertext and public key received from neighbor d at the previous round.

10: Set d′ = σt(d).
11: Compute k

(t+1)

i→d′ = k
(t)
i←d � pk

(t+1)

i→d′ .
12: if Pi is the broadcaster then
13: Compute c

(t+1)

i→d′ ← Enc(x, k
(t+1)

i→d′ ).
14: else
15: Compute c

(t+1)

i→d′ ← AddLayer(c
(t)
i←d, k

(t)
i←d, sk

(t+1)

i→d′ ).
16: end if
17: Send c

(t+1)

i→d′ and k
(t+1)

i→d′ to neighbor d′.
18: end for
19: end for
20: for each d ∈ [di] do
21: Let c

(T )
i←d and k

(T )
i←d be the ciphertext and public key received from neighbor d at the previous round.

22: if Pi is the broadcaster then
23: Compute e

(T )
i→d ← Enc(x, k

(T )
i←d).

24: else
25: Compute e

(T )
i→d ← Rand(c

(T )
i←d, k

(T )
i←d).

26: end if
27: end for
28: % Decrypt Phase
29: for t = T − 1 to 0 do
30: Send e

(t+1)
i→d to neighbor d for each d ∈ [di].

31: for each d ∈ [di] do
32: Let e

(t+1)
i←d be the ciphertext received from neighbor d at the previous round.

33: Set d′ = σ−1
t (d).

34: Compute e
(t)

i→d′ ← DelLayer(e
(t+1)
i←d , k

(t+1)
i→d , sk

(t+1)
i→d ).

35: end for
36: end for
37: if Pi is the broadcaster then
38: return x.
39: else
40: return e

(0)
i→1.

41: end if

C Involved Functionalities

Some important functionalities are presented in this section.

Functionality Fbc

1. Receive a message x ∈M from the broadcaster.
2. Send x to all parties P1, . . . , Pn.

Fig. 4. The broadcast functionality Fbc
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Functionality Fsum

1. Receive a message xi ∈Mr from each party Pi.
2. Send

∑
i∈[n] xi to all parties P1, . . . , Pn.

Fig. 5. The sum functionality Fsum

Functionality Fmult

1. Receive the sharings ⟨x⟩ and ⟨y⟩ from the parties.
2. Recover x and y. Sample an additive sharing ⟨xy⟩ = (z1, . . . , zn).
3. Send zi to Pi for each i ∈ [n].

Fig. 6. The multiplication functionality Fmult

Functionality Fmask

1. Receive xi, yi and ri from each party Pi.
2. Compute z =

∑
i∈[n] xi

∑
i∈[n] yi −

∑
i∈[n] ri.

3. Send z to all parties.

Fig. 7. The mask functionality Fmask

D Missing Security Proofs

All of our proofs will borrow the skeleton of the security proof from [1] for the ALM protocol. Through-
out this section, we use the following symbols.

Notations. Let C ⊊ [n] be the set of corrupted parties. Define Q = {v ∈ C : Nv ̸⊂ C}. For each v ∈ Q,
define Hv = {u ∈ Nv : u ̸∈ C} to represent the honest neighbors of Pv.

D.1 Security Proof of Theorem 4

Proof. Correctness. We prove that each party Pi will output the broadcast value x at the end of
πbc. Note that the broadcaster outputs the broadcast value anyhow, so we only show that each party
Pi who is not the broadcaster will output the broadcast value x. Let w = (Pi1 = Pi, Pi2 , . . . , Pin) be
one walk starting from Pi such that Pi2 is the neighbor 0 of Pi (recall that Pi outputs the decryption
of the ciphertext received from its neighbor 0). From the view of the walk w, our protocol proceeds
as follows.

1. At the beginning of the aggregate phase, Pi samples a key pair (pk1, sk1) and encrypts the dummy
value α with k1 = pk1 into c1. Then, Pi sends c1, k1 to Pi2 .

2. For t = 2 to n − 1, upon receiving ct−1, kt−1 from Pit−1
, Pit samples a key pair (pkt, skt) and

computes kt = kt−1 � pkt. Then, Pit computes ct ← Enc(x, kt) if it is the broadcaster and
ct ← AddLayer(ct−1, kt−1, skt) otherwise. Finally, Pit sends ct, kt to Pit+1

.
3. Upon receiving cn−1, kn−1 from Pin−1

, Pin computes en−1 ← Enc(x, kn−1) if Pin is the broadcaster
and en−1 ← Rand(cn−1, kn−1) otherwise. Finally, Pin sends en−1 back to Pin−1

.
4. For t = n − 1 to 2, upon receiving et from Pit+1 , Pit computes et−1 ← DelLayer(et, kt, skt) and

then sends et−1 to Pit−1
.

5. Upon receiving the ciphertext e1 from Pi2 , Pi deletes its layer. In fact, Pi decrypts e0 ← Dec(e1, sk1)
because k1 = pk1. Finally, Pi outputs e0.
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Now we prove that e0 must be the broadcast value. Because the communication graph is a cycle,
the walk w contains all parties and particularly, w passes through each party only once. Assume Pis is
the broadcaster, then by our protocol, cs is an encryption of the broadcast value. On the other hand,
each of Pis+1

, . . . , Pin just adds a layer to the received ciphertext without changing the underlying
plaintext, hence the final ciphertext en−1 is still an encryption of the broadcast value. Because e0 is
the decryption of en−1, e0 must be the broadcast value.

Security. The simulator Sbc simulates the view of all parties in C. In fact, Sbc only simulates the
view of parties in Q because the parties in C\Q do not interact with honest parties. Recall that α is
a dummy value known by all parties. The simulator Sbc needs to play Pu to interact with Pv for each
v ∈ Q and u ∈ Hv. Sbc sends the inputs of the parties in C to Fbc and receives the broadcast value x.
Sbc simulates the messages sent by Pu as follows.

Simulator Sbc

Simulating the aggregate phase. At each round t (from 1 to n− 1) of the aggregate phase,
Sbc first samples (pkt, skt)← Keygen(1κ) and then computes ct ← Enc(α, pkt). Sbc sends ct
and pkt to Pv. In this round, Sbc receives a public key kt from Pv.

Simulating the decrypt phase. At each round t (from n− 1 to 1) of the decrypt phase, Sbc
computes et ← Enc(x, kt) and sends et to Pv.

To prove that our protocol is UC secure, we will show that no environment can distinguish whether
it is interacting with the simulator Sbc in the ideal world or with the adversary A in the real world
with non-negligible probability. We define the following hybrids (in the Fgraph-hybrid model).

Hybrid 0. S0 acts as in the real execution.
Hybrid 1. S1 acts as S0 except that during the aggregate phase, the actual (layered) keys Pu sent

Pv are replaced with freshly generated keys.
Hybrid 2. S2 acts the same as S1 except that during the aggregate phase, each ciphertext Pu sent

Pv is an encryption of α instead of the actual value under the same public key.
Hybrid 3. S3 acts the same as S2 except that during the decrypt phase, each ciphertext Pu sent Pv

is a fresh encryption under the same key (Pv has sent this key to Pu during the aggregate phase)
instead of the actual unlayered encryption. Indeed, S3 acts exactly as Sbc.

Now we will show that no environment can distinguish two consecutive hybrids with noticeable
probability.

Hybrid 0 and Hybrid 1 are indistinguishable. The two hybrids differ only in the public keys.
In Hybrid 0, each public key Pu sent Pv is a product key of form k � pk where k is a public key
Pu received from its the other neighbor and pk is a fresh public key sampled by Pu. Because the
underlying lhPKCR encryption scheme is public-key rerandomizable, the distribution of k � pk is
statistically indistinguishable from that of a freshly sampled public key. This implies the distribution
of all the public keys in Hybrid 0 is statistically indistinguishable from that in Hybrid 1. Therefore,
Hybrid 0 and Hybrid 1 are statistically indistinguishable.

Hybrid 1 and Hybrid 2 are indistinguishable. The two hybrids differ only in the encrypted
messages sent during the aggregate phase. In Hybrid 2, each ciphertext Pu sent Pv is replaced with an
encryption of α. Since each ciphertext sent by Pu is an encryption under a fresh public key sampled
by Pu, the key is unknown to the adversary (because Pu is honest). Therefore, the semantic security
of the underlying lhPKCR scheme guarantees that the ciphertexts Pu sent Pv during the aggregate
phase in Hybrid 1 and Hybrid 2 are computationally indistinguishable, which implies that Hybrid 1
and Hybrid 2 are computationally indistinguishable.

Hybrid 2 and Hybrid 3 are indistinguishable. The two hybrids differ only in how the ciphertexts
are derived in the decrypt phase. In Hybrid 3, each ciphertext Pu sent Pv is derived by deleting the
public key layer of Pu from some ciphertext. In Hybrid 3, each ciphertext Pu sent Pv is a fresh
encryption (of the same value under the same public key as in Hybrid 2). Because the lhPKCR
encryption is privately key-commutative, the distribution of a ciphertext computed by deleting a public
key layer is statistically indistinguishable from that of a fresh encryption under the resulting public
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key. This implies that the ciphertexts Pu sent Pv during the decrypt phase in Hybrid 2 and Hybrid 3
are statistically indistinguishable. Therefore, Hybrid 2 and Hybrid 3 are statistically indistinguishable.

⊓⊔

D.2 Security Proof of Theorem 6

Proof. Correctness. We prove that each party Pi will output the sum of all the inputs, i.e., the value
x =

∑
j∈[n] xj , at the end of πsum. Let w = (Pi1 = Pi, Pi2 , . . . , Pin) be one walk starting from Pi such

that Pi2 is the neighbor 0 of Pi. From the view of the walk w, our protocol proceeds as follows.

1. At the beginning of the aggregate phase, Pi samples a key pair (pk1, sk1) and encrypts its input
xi with k1 = pk1 into c1. Finally, Pi sends c1, k1 to Pi1 .

2. For t = 2 to n−1, upon receiving ct−1, kt−1 from Pit−1
, Pit samples a key pair (pkt, skt) and com-

putes kt = kt−1 � pkt. Then, Pit computes c← AddLayer(ct−1, kt−1, skt) and ct ← Add(xit , c, kt).
Finally, Pit sends ct, kt to Pit+1 .

3. Upon receiving cn−1, kn−1, Pin computes en−1 ← Add(xin , cn−1, kn−1). Finally, Pin sends en−1
back to Pin−1

.
4. For t = n − 1 to 2, upon receiving et from Pit+1

, Pit deletes its layer by computing et−1 ←
DelLayer(et, kt, skt) and then sends et−1 to Pit−1

.
5. Upon receiving the ciphertext e1 from Pi2 , Pi deletes its layer. In fact, Pi decrypts e0 ← Dec(e1, sk1)

because k1 = pk1. Finally, Pi outputs e0.

Now we prove that e0 must be the sum of all the inputs. Because the communication graph is a
cycle, the walk w contains all parties and particularly, w passes through each party only once. Note
that each party Pit homomorphically adds its input xit to the received ciphertext, hence the final
ciphertext en−1 is an encryption of

∑
t∈[n] xit =

∑
j∈[n] xj . Because e0 is the decryption of en−1, we

have e0 =
∑

j∈[n] xj .

Security. The proof is almost the same as the security proof of Theorem 4 and we only show how
does the simulator Ssum work. Ssum sends the inputs of the parties in C to Fsum and receives the sum
x. The simulator Ssum plays Pu to interact with Pv for each v ∈ Q and u ∈ Hv. Concretely, Ssum
simulates the messages sent by Pu as follows.

Simulator Ssum

Simulating the aggregate phase. At each round t (from 1 to n− 1) of the aggregate phase,
Ssum first samples (pkt, skt) ← Keygen and then computes ct ← Enc(0, pkt). Ssum sends
ct, pkt to Pv. In this round, Ssum receives a public key kt from Pv.

Simulating the decrypt phase. At each round t (from n − 1 to 1) of the decrypt phase,
Ssum computes et ← Enc(x, kt) and sends et to Pv.

The proof that no environment can distinguish whether it is interacting with the simulator Ssum
in the ideal world or with the adversary A in the real world with non-negligible probability is the
same as the security proof of Theorem 4 and we omit the details. ⊓⊔

D.3 Security Proof of Theorem 9

Proof. Correctness. We will show that each party Pi will output the value xy−r at the end of πmask.
Let w = (Pi1 = Pi, . . . , Pin , Pi, . . . , Pin−1) be one walk starting from Pi such that Pi2 is the neighbor
0 of Pi. From the view of the walk w, our protocol proceeds as follows. Note that if n < t < 2n,
it = it−n.

1. At the beginning of the aggregate phase, Pi samples a key pair (pk1, sk1) and encrypts its input
xi with k1 = pk1 into c1. Finally, Pi sends c1, k1 to Pi1 .

2. For t = 2 to n−1, upon receiving ct−1, kt−1 from Pit−1 , Pit samples a key pair (pkt, skt) and com-
putes kt = kt−1 � pkt. Then, Pit computes c← AddLayer(ct−1, kt−1, skt) and ct ← Add(xit , c, kt).
Finally, Pit sends ct, kt to Pit+1

.
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3. Upon receiving cn−1, kn−1 from Pin−1 , Pin samples a key pair (pkn, skn). Then, Pin computes
kn = kn−1 � pkn, c ← AddLayer(cn−1, kn−1, skn) and c0n ← Add(xin , c, kn). Now Pin computes
cr ← Enc(−rin , kn) and c1n ← Linear(yin , c

0
n, cr, kn). Finally, Pin sends c0n, c1n and kn to Pi.

4. For t = n + 1 to 2n − 2, upon receiving c0t−1, c
1
t−1 and kt−1 from Pit−1 , Pit samples a key

pair (pkt, skt). Then, Pit computes kt = kt−1 � pkt, c0t ← AddLayer(c0t−1, kt−1, skt) and c1 ←
AddLayer(c1t−1, kt−1, skt). Now Pit computes c2 ← Add(−rit , c1, kt) and c1t ← Linear(yit , c

0
t , c2, kt).

Finally, Pit send c0t , c
1
t and kt to its neighbor Pit+1

.
5. Upon receiving c02n−2, c12n−2 and k2n−2 from Pi2n−2 , Pi2n−1 computes c← Add(−ri2n−1 , c

1
2n−2, k2n−2)

and e2n−2 ← Linear(yi2n−1
, c02n−2, c, k2n−2). Finally, Pi2n−1

sends e2n−2 back to Pi2n−2
.

6. For t = 2n − 2 to 2, upon receiving et from Pit+1 , Pit deletes its layer by computing et−1 ←
DelLayer(et, kt, skt) and then sends et−1 to Pit−1

.
7. Upon receiving the ciphertext e1 from Pi2 , Pi deletes its layer. In fact, Pi decrypts e0 ← Dec(e1, sk1)

because k1 = pk1. Finally, Pi outputs e0.

Now we show that e0 must be the value xy− r. During Step 1-3, each party adds its share of x to
the received ciphertext, hence the ciphertext c0n is an encryption of x. In fact, each c0t for t ≥ n is an
encryption of x. Moreover, c1n is an encryption of yinx− rin by the property of the function Linear.
During Step 4-5, each party Pit homomorphically adds yitx − rit to c1t−1, hence the final ciphertext
e2n−2 at the end of Step 5 is an encryption of

∑2n−1
t=n yitx− rit =

∑n
t=1 yitx− rit = xy− r. Note that

e0 is the decryption of e2n−2, hence we have e0 = xy − r.

Security. The simulator Smask sends the inputs of the parties in C to Fmask and receives the output
z = xy− r. The simulator Smask plays Pu to interact with Pv for each v ∈ Q and u ∈ Hv. Concretely,
Smask simulates the messages sent by Pu as follows.

Simulator Smask

Simulating the first n − 1 rounds of the aggregate phase. At each round t (from 1 to
n− 1) of the aggregate phase, Smask first samples (pkt, skt) ← Keygen and then computes
ct ← Enc(0, pkt). Smask sends ct, pkt to Pv. In this round, Smask receives a public key kt
from Pv.

Simulating the last n − 1 rounds of the aggregate phase. At each round t (from n to
2n− 2) of the aggregate phase, Smask first samples (pkt, skt)← Keygen and then computes
c0t ← Enc(0, pkt) and c1t ← Enc(0, pkt). Smask sends c0t , c1t , pkt to Pv. In this round, Smask

receives a public key kt from Pv.
Simulating the decrypt phase. At each round t (from 2n − 2 to 1) of the decrypt Stage,
Smask computes et ← Enc(z, kt) and sends et to Pv.

The proof that no environment can distinguish whether it is interacting with the simulator Smask

in the ideal world or with the adversary A in the real world with non-negligible probability is similar
to the security proof of Theorem 4. ⊓⊔

D.4 Security Proof of Theorem 13

Proof. Correctness. Note that the broadcaster outputs the broadcast value anyhow, so we only show
that each party Pi who is not the broadcaster will output the broadcast value x at the end of πggbc.
Let w = (Pi0 = Pi, Pi1 , . . . , PiT ) be one walk starting from Pi such that Pi1 is the neighbor 1 of Pi

(recall that Pi outputs the decryption of the ciphertext received from its neighbor 1). From the view
of this walk, our protocol proceeds as follows.

1. At the beginning of the aggregate phase, Pi samples a key pair (pk1, sk1) and encrypts the dummy
value α with k1 = pk1 into c1. Finally, Pi sends c1, k1 to Pi1 .

2. For t = 1 to T − 1, upon receiving ct, kt from Pit−1 , Pit samples a key pair (pkt+1, skt+1) and
computes kt+1 = kt �pkt+1. Then, Pit computes ct+1 ← Enc(x, kt+1) if Pit is the broadcaster and
ct+1 ← AddLayer(ct, kt, skt+1) otherwise. Finally, Pit sends ct+1, kt+1 to Pit+1

.
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3. PiT , upon receiving cT , kT , computes a ciphertext without adding a public key layer. Concretely,
PiT computes eT ← Enc(x, kT ) if PiT is the broadcaster and eT ← Rand(cT , kT ) otherwise. Finally,
PiT sends eT back to PiT−1

.
4. For t = T − 1 to 1, upon receiving et+1 from Pit+1

, Pit deletes its layer by computing et ←
DelLayer(et+1, kt+1, skt+1) and then sends et to Pit−1

.
5. Upon receiving the ciphertext e1 from Pi1 , Pi deletes its layer. In fact, Pi decrypts e0 = Dec(e1, sk1)

because k1 = pk1. Finally, Pi outputs e0.

Now we prove that if the walk w includes the broadcaster, then e0 must be the broadcast value.
Let s ∈ {0, 1, · · · , T} be the largest number such that Pis is the broadcaster, then by our protocol,
cs+1 is an encryption of the broadcast value. On the other hand, all of Pis+1

, . . . , PiT just add a layer
to the received ciphertext without changing the underlying plaintext, hence the final ciphertext eT
is still an encryption of the broadcast value. Note that e0 is the decryption of eT , hence e0 is the
broadcast value.

We now prove that the probability of the event A that the walk wi starting from Pi and neighbor
1 of Pi covers the graph for each i ∈ [n] is overwhelming, which implies that all parties output the
broadcast value with overwhelming probability. Let Ai be the event that wi does not cover the graph
(by Lemma 11, Ai happens with negligible probability), then it holds that

Pr(A) = Pr(∩i∈[n]Āi) = 1− Pr(∪i∈[n]Ai) ≥ 1−
∑
i∈[n]

Pr(Ai) = 1− n · neg(κ),

which is overwhelming because n = poly(κ).

Security. The simulator Sggbc needs to play Pu to interact with Pv for each v ∈ Q and u ∈ Hv.
Sggbc sends the inputs of the parties in C to Fbc and receives the broadcast value x. Recall that α is
a dummy value known by all parties. Sggbc simulates the messages sent by Pu as follows.

Simulator Sggbc

Simulating the aggregate phase. At each round t (from 1 to T ) of the aggregate phase,
Sggbc first samples (pkt, skt)← Keygen(1κ) and then computes ct ← Enc(α, pkt). Sggbc sends
ct and pkt to Pv. In this round, Sggbc receives a public key kt from Pv.

Simulating the decrypt phase. At each round t (from T to 1) of the decrypt phase, Sggbc
computes et ← Enc(x, kt) and sends et to Pv.

To prove that our protocol is UC secure, we will show that no environment can distinguish whether
it is interacting with the simulator S in the ideal world or with the adversary A in the real world with
non-negligible probability. We define the following hybrids.

Hybrid 0. S0 acts as in the real execution.
Hybrid 1. S1 acts as S0 except that during the aggregate phase, the actual (layered) keys Pu sent

Pv are replaced with freshly generated keys.
Hybrid 2. S2 acts the same as S1 except that during the aggregate phase, each ciphertext Pu sent

Pv is an encryption of 0 instead of the actual value under the same public key.
Hybrid 3. S3 acts the same as S2 except that during the decrypt phase, each ciphertext Pu sent Pv is

a fresh encryption under the same key (Pv sent this key to Pu during the aggregate phase) instead
of the actual unlayered encryption.

Hybrid 4. S4 acts the same as S3 except that during the decrypt phase, the ciphertexts Pu sent Pv

are replaced with encryptions of x instead of the actual values. Note that S4 acts exactly as Sggbc.

The proof that Hybrid 0, Hybrid 1, Hybrid 2 and Hybrid 3 are indistinguishable is the same as
in the security proof of Theorem 4. Now we only show that no environment can distinguish Hybrid 3
and Hybrid 4.

Hybrid 3 and Hybrid 4 are indistinguishable. The two hybrids differ only on condition that the
ciphertexts Pu sent Pv are not encryptions of x, i.e., there exists one walk which does not cover the
graph. We want to argue that the probability of such an event is negligible, which implies that Hybrid
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3 and Hybrid 4 are indistinguishable. Note that there are total a ≤ n(n− 1) walks w1, . . . , wa. Let Ai

be the event that wi does not cover the graph (by Lemma 11, Ai happens with negligible probability),
then the probability p that there exists some walk which does not cover the graph satisfies that

p = Pr(∪i∈[a]Ai) ≤
∑
i∈[a]

Pr(Ai) = a · neg(κ) ≤ n(n− 1) · neg(κ),

which is negligible because n(n− 1) = poly(κ). ⊓⊔
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