
Breaking Panther

Christina Boura1, Rachelle Heim Boissier1, Yann Rotella1

Université Paris-Saclay, UVSQ, CNRS,
Laboratoire de mathématiques de Versailles, 78000,Versailles, France

christina.boura@uvsq.fr, rachelle.heim@uvsq.fr, yann.rotella@uvsq.fr

Abstract. Panther is a sponge-based lightweight authenticated en-
cryption scheme published at Indocrypt 2021. Its round function is based
on four Nonlinear Feedback Shift Registers (NFSRs). We show here that
it is possible to fully recover the secret key of the construction by using a
single known plaintext-ciphertext pair and with minimal computational
ressources. Furthermore, we show that in a known ciphertext setting an
attacker is able with the knowledge of a single ciphertext to decrypt all
plaintext blocks expect for the very first ones and can forge the tag with
only one call and probability one. As we demonstrate, the problem of
the design comes mainly from the low number of iterations of the round
function during the absorption phase. All of our attacks have been im-
plemented and validated.

1 Introduction

Panther is a sponge-based lightweight AEAD scheme designed by Bhar-
gavi, Srinivasan and Lakshmy [3] and published at Indocrypt 2021. This
construction works on a 328-bit state, divided as an outer part of rate
r = 64 bits and an inner part of capacity c = 264 bits. The state is up-
dated by iterating a function F that is composed of four interconnected
NFSRs of sizes 19, 20, 21 and 22 nibbles respectively. This function is
iterated 92 times for the initialization and the finalization part and only
4 times after the absorption of associated data (AD) or plaintext blocs
or after the extraction of a block of the tag. The authors present their
construction as lightweight, even if no concrete performance comparison
is given with similar AEAD schemes.

A preliminary security analysis of Panther against various attacks is
given in the document and the authors conclude that their construction is
immune against all of the explored cryptanalysis techniques. They claim
thus a security of 2c/2 = 2132. However, we show in this article that Pan-
ther has an important flaw that permits devastating attacks against it.
More precisely, we demonstrate that due to the low number of iterations
of the function F in all the middle computations, some public information

goes directly into the inner state. This fact has several consequences. In
the known plaintext model, the attacker is for example able to inverse the
state and to recover the secret key. In the known ciphertext (only) mode,
it is possible to recover all plaintext blocks but the first six ones and also
to forge the tag. A particularity of all our attacks is that they only need
a single plaintext/ciphertext or a single ciphertext and the computation
time is equivalent (or sometimes even smaller) to one encryption with
Panther. As we will show, the main conclusion of this paper is that
when using shift registers to build permutation-based constructions, one
should at least take as many rounds as the size of the registers.

The rest of the paper is organized as follows. In Section 2 we provide
the specifications of Panther and introduce some notations. Next, in
Section 3 we describe our central observation on the diffusion of the cipher.
Section 4 is dedicated to our attacks and finally we briefly describe in
Section 5 their implementation.

2 Specification of Panther

The design of Panther is based on the sponge construction [1, 2]. Its
central component is a function called F that applies to a 328-bit state.
The state S is divided into a r-bit outer part S and a c-bit inner part Ŝ,
where r = 64 is called the rate and c = 264 the capacity. The encryption
works as follows.

Initialization phase. First, in the initialization phase, the 128-bit key
and the 128-bit initial value (IV) are loaded to the state. More precisely,
if we denote by ki, 0 ≤ i < 128 the 128 bits of the secret key K, by ivi,
0 ≤ i < 128 the 128 bits of the IV and by x the Boolean complement of
the binary value x, the initial state is loaded with the following vector:

(k0, . . . , k127, iv0, . . . , iv127, k0, . . . , k63, 1, 1, 1, 1, 1, 1, 1, 0).

The state is then updated 92 times by the function F .

Absorption phase. Both associated data and plaintexts are then pro-
cessed in the absorption phase. First, associated data (AD) are incor-
porated to the state. This part processes data that only need to be au-
thenticated and not necessarily encrypted. This is done by dividing the
data into k blocks ADi of 64 bits each, XORing each block to the outer
part of the state and by applying next the permutation F four times.

This is repeated until all the AD blocks have been absorbed. This part
can of course be omitted if there is no associated data to authenticate.
Next, plaintext blocks are processed and ciphertext blocks are generated.
For this, the plaintext is divided into n blocks of 64 bits and each block
is absorbed by the outer part of the state. Once a plaintext block Pi is
absorbed, a 64-bit ciphertext block Ci is immediately generated by out-
putting the outer part of the state. Four iterations of the permutation F
are next applied for all blocks except for the last one.

Finalization phase. Once all plaintext blocks have been processed, the
finalization mode is activated, during which the tag is generated. For this,
92 rounds of the permutation F are first applied to the state. Then, the
outer part of the state is outputted as a first block of the tag and four
rounds of the permutation F are next applied. The other blocks of the
tag are generated in the same manner until a tag of the desired length is
obtained. This procedure can be visualized in Figure 1.

Fig. 1. Panther’s global structure

2.1 State update function F

The cipher’s function F applies to the 328-bit state. This state can be
seen as 82 nibbles split into four unequally-sized registers P , Q, R and S.
The register P contains the 19 nibbles P18, . . . , P0, the register Q the 20
nibbles Q19, . . . , Q0, the register R the 21 nibbles R20, . . . , R0 and finally
the register S the 22 nibbles S21, . . . , S0. The outer part S is composed
by the last four nibbles of each register :

S = (P15, P16, P17, P18, Q16, Q17, Q18, Q19, R17, R18, R19, R20,

S18, S19, S20, S21).

We use the following notation to denote an arbitrary state of Pan-

ther, where everything left to the symbol‖is the outer state.

P18||P17||P16||P15‖P14||...||P0

Q19||Q18||Q17||Q16‖Q15||Q14||...||Q0

R20||R19||R18||R17‖R16||R15||R14...||R0

S21||S20||S19||S18‖S17||S16||S15||S14||...||S0

This state is then loaded into four interconnected NFSRs, each NFSR
containing the values of the registers P , Q, R and S respectively, as can
be seen in Figure 2. We provide here the full specification of the round
function, even if most of these details are not needed to understand our
attack nor have any effect on it.

The function F can be described as follows. First the 4-bit values fp,
fq, fr and fs, each one corresponding to the feedback polynomial of the
corresponding NFSR are computed:

fp = P0 ⊕ P7 ⊕ P10 ⊕ P6 ⊗ P18

fq = Q0 ⊕Q4 ⊕Q6 ⊕Q7 ⊕Q15 ⊕Q3 ⊗Q7

fr = R0 ⊕R1 ⊕R15 ⊕R17 ⊕R19 ⊕R13 ⊗R15

fs = S0 ⊕ S1 ⊕ S4 ⊗ S10 ⊕ S11 ⊗ S18

Here, the symbol ⊗ corresponds to the multiplication in the field
GF (24), where the field is constructed by using the polynomial x4+x3+1.

Next, four interconnection polynomials, gp, gq, gr and gs, mixing nibbles
from different registers are computed:

gp = Q9 ⊕R10 ⊕ S12

gq = P4 ⊕R2 ⊕ S5

gr = P12 ⊕Q11 ⊕ S16

gs = P16 ⊕Q17 ⊕R2

Next one computes the 4-bit values `1, `2, `3 and `4, each one corre-
sponding to the XOR of the values f∗ and g∗ together with a constant
rci:

`1 = fp ⊕ gp ⊕ rc1

`2 = fq ⊕ gq ⊕ rc2

`3 = fr ⊕ gr ⊕ rc3

`4 = fs ⊕ gs ⊕ rc4,

where the constant values are rc1 = 7, rc2 = 9, rc3 = b, rc4 = d given in
hexadecimal notation. After this, the vector [`1, `2, `3, `4]

T is multiplied
by a Toeplitz MDS matrix Tp to create the 16-bit vector [d1, d2, d3, d4]

T =
Tp × [`1, `2, `3, `4]

T . An 4-bit S-box Sb is then applied to each one of the
nibbles d1, d2, d3 and d4 and the resulting 16-bit vector is then multiplied
again by the matrix Tp:

[t1, t2, t3, t4]
T = Tp × [Sb[d1), Sb(d2), Sb(d3), Sb(d4)]

T .

As the specification of the matrix Tp is not relevant to our attack, we
omit its description here. Finally, the registers P,Q,R and S are shifted
by one nibble to the right and the most-significant nibbles of each NFSR
are updated by the values t1, t2, t3 and t4:

P � 1, Q� 1, R� 1, S � 1

P18, Q19, R20, S21 = t1, t2, t3, t4

F is applied successively a certain number of times nr, where the value
of nr depends on the phase considered. In the initialization phase and
before the first block of tag is outputted, nr equals 92, while for all other
applications of F , nr equals 4.

Fig. 2. Function F

3 Main observation on Panther

In this section, we make an observation on Panther that is at the core
of all the attacks provided next. The property that we exhibit is, as we
will show, caused by the low number of applications of the state update
function F in the plaintext absorption and ciphertext generation phase
and has as a consequence to greatly alter the security of the cipher.

3.1 An observation on F 4

As stated above, our main observation stems from the very low number
nr = 4 of times F is applied between each ciphertext output. We thus
exhibit a very simple observation on F 4.

We begin by studying one application of F . Let us denote the input
nibbles to F by

P18||P17||P16||P15‖P14|| · · · ||P0 (1)

Q19||Q18||Q17||Q16‖Q15||Q14|| · · · ||Q0

R20||R19||R18||R17‖R16||R15||R14 · · · ||R0

S21||S20||S19||S18‖S17||S16||S15||S14|| · · · ||S0

As can be observed in Figure 2, because of the action of the four NFSRs
to the state, the output of F is of the form

X0||P18||P17||P16‖P15|| · · · ||P1 (2)

Y0||Q19||Q18||Q17‖Q16||Q15|| · · · ||Q1

Z0||R20||R19||R18‖R17||R16||R15|| · · · ||R1

T0||S21||S20||S19‖S18||S17||S16||S15|| · · · ||S1

where X0, Y0, Z0, T0 are 4-bit values depending on the input nibbles. As
the exact expression of these values has no impact on our attacks we do
not provide their details here, but those can be found in Section 2.1.

Thus, note that each time the state is updated, only one nibble per
register is modified. The values of the other nibbles remain unchanged,
they are simply shifted. As a consequence, after four state updates, only
four nibbles per register have been properly modified whilst all the others
remain unchanged and are simply shifted to the right. By repeating the
same analysis for the following rounds, we can see that the output of F 4

is of the form

X3||X2||X1||X0‖P18|| · · · ||P4 (3)

Y3||Y2||Y1||Y0‖Q19||Q18|| · · · ||Q4

Z3||Z2||Z1||Z0‖R20||R19||R18|| · · · ||R4

T3||T2||T1||T0‖S21||S20||S19||S18|| · · · ||S4

where the Xi, Yi, Zi, Ti for 0 ≤ i ≤ 3 depend on the nibbles of the input
state (again, their actual expression is not of interest, for more details see
the specification of F in Section 2.1).

In particular, note that the outer part nibbles of the initial state are
among those nibbles that have not been modified, but simply shifted into
the inner part. For a more visual representation, we colour in red the
nibbles of the outer part of the input that have been moved to the inner
part of the output of F 4 :

X3||X2||X1||X0‖P18||P17||P16||P15|| · · · ||P4 (4)

Y3||Y2||Y1||Y0‖Q19||Q18||Q17||Q16||Q15|| · · · ||Q4

Z3||Z2||Z1||Z0‖R20||R19||R18||R17||R16||R15|| · · · ||R4

T3||T2||T1||T0‖S21||S18||S17||S16||S17||S16||S15|| · · · ||S4

3.2 Consequences in a known ciphertext only setting

At the end of the initialisation phase, the state is a priori unknown since
the key has been mixed in with the IV by the application of F 92. The
absorption of the associated data which follows does not reveal anything
about the state at the beginning of the plaintext absorption/ciphertext
generation phase either. However, as soon as ciphertext blocks start to
be outputted, an attacker has knowledge of the outer part of the input
state to each application of F 4.

If we recall the observations on F 4 made above, the outer part of the
input state to F 4 is not modified but simply shifted into the inner state.
Let C = C0|| · · · ||Cn−1 be the known ciphertext of an unknown padded
plaintext M = M0|| · · · ||Mn−1 where |Ci| = |Mi| = 64 for 0 ≤ i < n. An
output of one ciphertext block Ci−1 thus not only leaks information on
the outer part of the state at the entry of F 4, but also on the inner part
of the output of F 4. As the next message block Mi is then XORed only
to the outer part of the output state, when the next ciphertext block Ci

is outputted, the attacker knows not only the outer part of the state but
also 64 bits of the inner state. As more ciphertext blocks are outputted,
more information on the inner state is given to the attacker. Once 6
consecutive ciphtertext blocks Ci−1, . . . , Ci+4 have been outputted, the
attacker knows the whole inner state and the whole outer state. The
property is illustrated in Figure 3 with C0, . . . , C5.

We show this property in a more formal way for the first ciphertext
outputs C0, . . . , C5. We consider the state at the beginning of the plaintext
absorption and ciphertext generation. In the following, we use the color
blue to put forward what the attacker knows (which corresponds to the
ciphertext blocks). Once the first ciphertext is outputted, the entry to F 4

is as follows :

C0
3 ||C0

2 ||C0
1 ||C0

0‖P14|| · · · ||P0

C0
7 ||C0

6 ||C0
5 ||C0

4‖Q15||Q14|| · · · ||Q0

C0
11||C0

10||C0
9 ||C0

8‖R16||R15||R14|| · · · ||R0

C0
15||C0

14||C0
13||C0

12‖S17||S16||S15||S14|| · · · ||S0

After the application of F 4, the state is of the following form :

X3||X2||X1||X0‖C0
3 ||C0

2 ||C0
1 ||C0

0 ||P14|| · · · ||P4

Y3||Y2||Y1||Y0‖C0
7 ||C0

6 ||C0
5 ||C0

4 ||Q15||Q14|| · · · ||Q4

Z3||Z2||Z1||Z0‖C0
11||C0

10||C0
9 ||C0

8 ||R16||R15||R14|| · · · ||R4

T3||T2||T1||T0‖C0
15||C0

14||C0
13||C0

12||S17||S16||S15||S14|| · · · ||S4

The message is then XORed to the nibbles in blue, and the outer part
thus takes the value of the outputted C1. Therefore, the state has the
following form just before the next application of F 4:

C1
3 ||C1

2 ||C1
1 ||C1

0‖C0
3 ||C0

2 ||C0
1 ||C0

0 ||P14|| · · · ||P4

C1
7 ||C1

6 ||C1
5 ||C1

4‖C0
7 ||C0

6 ||C0
5 ||C0

4 ||Q15||Q14|| · · · ||Q4

C1
11||C1

10||C1
9 ||C1

8‖C0
11||C0

10||C0
9 ||C0

8 ||R16||R15||R14|| · · · ||R4

C1
15||C1

14||C1
13||C1

12‖C0
15||C0

14||C0
13||C0

12||S17||S16||S15||S14|| · · · ||S4

As C2 is outputted, the attacker knows 128 bits of the inner state as well
as the whole outer state. This phenomenon goes on iteratively: as more
consecutive ciphertexts get known, more information is given to the at-
tacker. Once the attacker knows the 6 first ciphertext blocks C0, . . . , C5,
the attacker knows the whole inner state and the whole outer state. For
a visual representation of the property, see Figure 3. In general, leaks on
the value of the inner state of a sponge-based cipher have a devastating
effect on the security of this cipher. In the case of Panther, the attacker
recovers the value of the whole inner state and, depending on the attack
settings, controls or knows the outer state. Unsurprisingly, this weak-
ness will allow an attacker to mount extremely powerful key-recovery,
plaintext-recovery and forging attacks as described in the next section.

4 Cryptanalysis of Panther

In this section, we show how the observation of Section 3 allows us to
mount three attacks including a known plaintext key recovery attack, a
known ciphertext-only attack and a chosen ciphertext-only forge. Note
that each of these three attacks is extremely powerful, as they simply
require the knowledge of either one plaintext/ciphertext pair or of a single
ciphertext.

Fig. 3. Attack on Panther. The blue nibbles correspond to the nibbles known to the
attacker, while the grey nibbles are values that are a priori unknown.

4.1 Key-recovery attack with one plaintext/ciphertext pair

We start by describing the most powerful of our attacks, namely a known
plaintext attack which recovers the full key with a single plaintext/cipher-
text pair. This attack, as also all the following ones, is memoryless and its
time complexity is equivalent to a single encryption or decryption with
Panther. This attack is a direct consequence of our observation from
Section 3.

The only constraint on the pair is that the padded message M must
contain at least six 64-bit blocks. As shown in Section 3, the attacker
recovers the full state as soon as she knows six consecutive ciphertext
blocks. Once the full state is known, one can recover the full key as F is a
permutation and its inverse can be very easily computed. As the attacker
can invert F and knows all the message blocks Mi (and the optional
associated data blocks), she can recover the initial state and thus the
key. The fact that F is a permutation is not explicitly mentioned by the
authors. Thus, we provide a short proof at the end of this section. From
this proof one can easily deduce how to invert F .

We’ve shown that with only one plaintext/ciphertext pair, an attacker
can recover the key with a very easy and straightforward procedure. The

attack is memoryless and, as for time, it is equivalent to a single encryp-
tion or decryption with Panther.

Proof that F is a permutation Let

I = P18|| · · · ||P0||Q19|| · · · ||Q0||S20|| · · · ||S0||R21|| · · · ||R0 ∈ F328
2

be an input to F , and let

O = P ′18|| · · · ||P ′0||Q′19|| · · · ||Q′0||S′20|| · · · ||S′0||R′21|| · · · ||R′0
be its image by F . We show that I is uniquely determined by O.

First, note that all Pi, 0 < i ≤ 18, Qj , 0 < j ≤ 19, Rk, 0 < k ≤ 20 and
S`, 0 < ` ≤ 21 are uniquely determined by O since

Pi = P ′i−1 for 0 < i ≤ 18

Qj = Q′j−1 for 0 < j ≤ 19

Rk = R′k−1 for 0 < k ≤ 20

S` = S′`−1 for 0 < ` ≤ 21

Thus, we now only need to show that P0, Q0, R0 and S0 are uniquely
determined by O. First, note that (P ′18, Q

′
19, R

′
20, S

′
21) uniquely determines

the value of

`1 = P0 ⊕ P7 ⊕ P10 ⊕ P6 ⊗ P18 ⊕Q9 ⊕R10 ⊕ S12 ⊕ rc1

`2 = Q0 ⊕Q4 ⊕Q6 ⊕Q7 ⊕Q15 ⊕Q3 ⊗Q7 ⊕ P4 ⊕R2 ⊕ S5 ⊕ rc2

`3 = R0 ⊕R1 ⊕R15 ⊕R17 ⊕R19 ⊕R13 ⊗R15 ⊕ P12 ⊕Q11 ⊕ S16 ⊕ rc3

`4 = S0 ⊕ S1 ⊕ S4 ⊗ S10 ⊕ S11 ⊗ S18 ⊕ P16 ⊕Q17 ⊕R2 ⊕ rc4

as both the matrix Tp and the S-box Sb are invertible (Tp being MDS).
Since the Pi, 0 < i ≤ 18, Qj , 0 < j ≤ 19 Rk, 0 < k ≤ 20 and S`, 0 < ` ≤ 21
are also uniquely determined by O as shown just above, it comes that

P0 = `1 ⊕ P7 ⊕ P10 ⊕ P6 ⊗ P18 ⊕Q9 ⊕R10 ⊕ S12 ⊕ rc1

Q0 = `2 ⊕Q4 ⊕Q6 ⊕Q7 ⊕Q15 ⊕Q3 ⊗Q7 ⊕ P4 ⊕R2 ⊕ S5 ⊕ rc2

R0 = `3 ⊕R1 ⊕R15 ⊕R17 ⊕R19 ⊕R13 ⊗R15 ⊕ P12 ⊕Q11 ⊕ S16 ⊕ rc3

S0 = `4 ⊕ S1 ⊕ S4 ⊗ S10 ⊕ S11 ⊗ S18 ⊕ P16 ⊕Q17 ⊕R2 ⊕ rc4

are also uniquely determined by O. We’ve shown that F is injective which
is sufficient to prove that it is a permutation. Further, it is easy to see
from this proof how to invert F .

4.2 Plaintext-recovery attack with one known ciphertext

In this section, we show how our observation on F 4 also allows one to
mount attacks in a known ciphertext only setting. Even if this attack does
not recover the secret key, it is nevertheless devastating as it allows the
attacker to recover full plaintext blocks. More precisely, for any padded
message M = M0|| · · · ||Mn−1 where |Mi| = 64 for all i and such that
n ≥ 6, one can fully recover all plaintext blocks from the seventh on.

As shown in the previous sections, knowing the six first ciphertext
blocks allows one to recover the full state. Thus, the attacker also knows
the full state after another application of F 4, that is when the rest of
the plaintext blocks Mi, i ≥ 6 are absorbed. To recover these blocks, the
attacker only needs to XOR the known ciphertext block Ci, i ≥ 6 to
the outer part of the state after each application of F 4. With only known
ciphertext of sufficient length, an attacker can recover the whole plaintext
except for the first 384 bits. This attack is also memoryless and requires
only one ciphertext. Concerning the time complexity, it is striking that
this attack is more efficient than a decryption since one does not need to
go through the initialisation phase and the absorption of the associated
data.

4.3 Forging attacks

Last but not least, our observation on F 4 can also allow one to launch
forging attacks both in a known plaintext and in a known ciphertext only
setting.

To begin, an attacker with access to plaintext/ciphertext pairs can
recover the key with the method described in Section 4.1. Thus, she can
generate a valid tag for any chosen plaintext and any chosen ciphertext.

In the known ciphertext only setting, let us consider a ciphertext C
composed of n blocks of 64 bits with n ≥ 6 and let T be the valid tag
for C. As explained in Section 3.2, when six consecutive ciphertext blocks
are outputted, the full state is known by the attacker. In particular, the
value of the last six ciphertext blocks fully determines the state at the
end of the absorption phase. Thus, for any ciphertext C ′ composed of m
blocks such that m ≥ 6, if the six last blocks of C ′ are equal to those of
C, the two states will fully collide at the end of the ciphertext generation
phase, and thus at the beginning of the tag generation phase. It stems
that T is also a valid tag for C ′.

As the other attacks presented above, this forging attack is very pow-
erful as it is memoryless and requires only one valid ciphertext/tag pair.

The time complexity is also negligible, as the attacker does not even need
to apply F once. The forged ciphertexts can have any length as long as
they have at least 6 blocks, and only the last 6 blocks are constrained.
As a consequence, one can build as many valid ciphertext/tag pairs as
they wish. Forging is thus not only possible but also very easy and with
a large degree of freedom for the attacker.

5 Implementation

All of the described attacks need negligible memory and computational
ressources and can thus easily be implemented. Therefore, we imple-
mented all of them in C in order to confirm their validity. Our code is
accessible online1.

Our program works in the following way. First, a random 128-bit key,
a random 128-bit initial value (IV) and a random 512-bit plaintext are
generated. Since Panther has a rate of 64 bits, the plaintext is processed
in 8 blocks. The code does not generate associated data as our attacks
work regardless. The plaintext is then encrypted with the key and IV and
the corresponding ciphertext and tag are returned. The three attacks are
then launched.

Key recovery. First, we implemented a function that takes as input
the plaintext/ciphertext pair and returns the secret key. The program
verifies that the key returned matches with the random secret key that
was generated.

Plaintext recovery. Second, we implemented a function that takes as
input the ciphertext and returns all plaintext blocks but the first six.
Once the plaintext blocks are recovered, the program verifies that they
match the actual plaintext encrypted.

Forge. Lastly, we implemented a function that takes as input the ci-
phertext and returns a forged ciphertext which has the same tag. We
then implemented a function that checks whether the forged ciphertext
is valid. This function takes as input the key and the IV. It works as a
decryption function on the forged ciphertext and returns the valid 128-bit
tag for the forged ciphertext. The program then verifies that the forged
ciphertext tag matches the initial ciphertext tag.

1https://github.com/panthercryptanalyst/Panther-cryptanalysis

5.1 Repairing Panther

The main problem in the cipher’s design comes from the fact that the
number of rounds that the function F needs to be iterated in the middle
computation was wrongly estimated. While determining the least number
of rounds for the cipher to resist all known attacks is not an easy task, a
minimum requirement is that the function F r provides full diffusion, in
the sense that at the end of the computation every output bit depends on
all input bits. Computing the minimal round r ensuring a full diffusion
for F r is an easy procedure that we implemented. The code can be found
together with the attacks code. This simple computation permitted us to
affirm that the minimal number of rounds for reaching full diffusion is 46.

We can therefore conclude that at least 46 rounds are needed in the
middle part of the cipher in order to resist the presented attacks. Of
course, this minimal number of rounds does not necessarily guarantee the
resistance of the cipher against other attacks, for example those exploiting
a low algebraic degree. To determine this, a more in-depth analysis of the
structure of F is required but such an analysis is out-of-scope of the
current article.

.

6 Conclusion

In this paper we showed several devastating attacks in different scenarios
against the AEAD scheme Panther. All of our attacks are extremely
powerful as they are memoryless, require a single plaintext/ciphertext or
a single ciphertext and have negligible execution time. This work shows
that this design cannot be used in its current form to securely transmit
data. We also demonstrate that special care is required when combin-
ing the sponge construction with an NFSR-based update function. More
precisely, the inner part should always remain secret in sponge-like con-
structions, hence, when using shift registers, the number of rounds should
at least be the size of the register, so that all bits in the inner part cannot
be deduced from the ciphertext.

We believe that modifying Panther in order for it to resist our at-
tacks requires to greatly increase the number of rounds of the update
function (from 4 to at least 46) in order to get full diffusion. However, in
this scenario, the lightweight character of the cipher will very probably
not be ensured any more, limiting thus the interest of someone to use it.

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge Func-
tions. Ecrypt Hash Workshop 2007 (May 2007), available at
https://keccak.team/files/SpongeFunctions.pdf

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions
(2011), https://keccak.team/files/CSF-0.1.pdf

3. Bhargavi, K.V.L., Srinivasan, C., Lakshmy, K.V.: Panther: A sponge based
lightweight authenticated encryption scheme. In: Adhikari, A., Küsters, R., Pre-
neel, B. (eds.) INDOCRYPT 2021. Lecture Notes in Computer Science, vol. 13143,
pp. 49–70. Springer (2021)

