
Invisible Formula Attacks

David Naccache and Ofer Yifrach-Stav

DIÉNS, ÉNS, CNRS, PSL University, Paris, France
45 rue d’Ulm, 75230, Paris cedex 05, France
ofer.friedman@ens.fr, david.naccache@ens.fr

Abstract. This brief note introduces a new attack vector applicable to
a symbolic computation tool routinely used by cryptographers.
The attack takes advantage of the fact that the very rich user interface
allows displaying formulae in invisible color or in font size zero. This
allows to render some code portions invisible when opened using the tool.
We implement a classical fault attack thanks to this deceptive mechanism
but other cryptographic or non-cryptographic attacks (e.g. formatting
the victim’s disk or installing rootkits) can be easily conducted using
identical techniques.
This underlines the importance of creating malware detection software
for symbolic computation tools. Such protections do not exist as of today.
We stress that our observation is not a vulnerability in Mathematica but
rather a misuse of the rich possibilities offered by the software.

1 Introduction

Assume that you get from a friend or from a student the Mathematica notebook
of Figure 1 implementing a textbook RSA signature [3]. Calculations are crystal-
clear and evidently the final GCD should never factor n.

Indeed, executing the code, as shown in Figures 2 and 3 displays False.
Reloading the same code and changing the flag’s value to True (Figures 4 and

5), we get True (Figure 6). The 2048-bit RSA modulus n was factored.

2 What Happened?

Mathematica (as other symbolic computation tools) has very advanced display
functions. Those functions define the position, the size, the frame and the color
of nearly any part of the opened notebook.

We can hence plant in a notebook invisible formulae to perform hidden
computations or launch system commands1.

1 e.g. execute using the Run command a format C: /FS:NTFS /X /Q /U /y will wipe-out
the target’s disk. The attacker may also install a rootkit encoded and embedded in
the notebook etc.

ofer.friedman@ens.fr
david.naccache@ens.fr

Fig. 1. The initial notebook.

Fig. 2. Executing the notebook.

2

Fig. 3. A False is displayed, as expected

Fig. 4. The initial notebook. Flag changed to True to activate the invisible formula.

3

Fig. 5. Executing the notebook again.

Fig. 6. n is factored.

4

3 Implementation

The notebook’s code is given here, at its core is the invisible part identified by
comments.

Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{"Flag", "=", "False"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"While", "[",
RowBox[{
RowBox[{"p", "=",
RowBox[{"RandomPrime", "[",
RowBox[{"2", "^", "1024"}], "]"}]}], ";",

RowBox[{
RowBox[{"Mod", "[",
RowBox[{
RowBox[{"p", "-", "1"}], ",", "3"}], "]"}], "==", "0"}]}], "]"}],

";"}], "\n",
RowBox[{
RowBox[{"While", "[",
RowBox[{
RowBox[{"q", "=",
RowBox[{"RandomPrime", "[",
RowBox[{"2", "^", "1024"}], "]"}]}], ";",

RowBox[{
RowBox[{"Mod", "[",
RowBox[{
RowBox[{"q", "-", "1"}], ",", "3"}], "]"}], "==", "0"}]}], "]"}],

";"}], "\n",
RowBox[{
RowBox[{"n", "=",
RowBox[{"p", "*", "q"}]}], ";"}], "\n",

RowBox[{
RowBox[{"dp", "=",
RowBox[{"PowerMod", "[",
RowBox[{"3", ",",
RowBox[{"-", "1"}], ",",
RowBox[{"p", "-", "1"}]}], "]"}]}], ";"}], "\n",

RowBox[{
RowBox[{"dq", "=",
RowBox[{"PowerMod", "[",
RowBox[{"3", ",",
RowBox[{"-", "1"}], ",",
RowBox[{"q", "-", "1"}]}], "]"}]}], ";"}], "\n",

5

RowBox[{
RowBox[{"m", "=",
RowBox[{"RandomInteger", "[",
RowBox[{"n", "-", "1"}], "]"}]}], ";"}], "\n",

RowBox[{
RowBox[{"s", "=",
RowBox[{"ChineseRemainder", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"PowerMod", "[",
RowBox[{"m", ",", "dp", ",", "p"}], "]"}], ",",
RowBox[{"PowerMod", "[",
RowBox[{"m", ",", "dq", ",", "q"}], "]"}]}], "}"}], ",",

RowBox[{"{",
RowBox[{"p", ",", "q"}], "}"}]}], "]"}]}], ";"}]}], "Input"],

(****** invisible code section start ******)
Cell[BoxData[
RowBox[{
RowBox[{"If", "[",
RowBox[{"Flag", ",",
RowBox[{"s", "+=", "p"}]}], "]"}], ";"}]], "Input",

ShowCellBracket->False,
ShowSelection->False,
CellBracketOptions->{"Color"->GrayLevel[1],
"HoverColor"->GrayLevel[0.1, 0.1],
"OverlapContent"->False},
PrivateCellOptions->{"ContentsOpacity"->0},
ShowCellLabel->False,
FontSize->2,
Magnification->0,
FontColor->GrayLevel[
1]],

Cell[BoxData[""], "Text",
ShowCellBracket->
False],

(****** invisible code section end ******)
Cell[BoxData[
RowBox[{
RowBox[{"GCD", "[",
RowBox[{
RowBox[{
RowBox[{"s", "^", "3"}], "-", "m"}], ",", "n"}], "]"}], "==",

"p"}]], "Input"]
},

6

WindowSize->{582, 388},
WindowMargins->{{183.5, Automatic}, {Automatic, 39.5}}
]

The reader may object that the signatures produced by this code will not
verify correctly and reveal the attack but it is very simple to evade such a
detection using [4]. If the PSS standard [1] is used the invisible formula may
encode a half of p’s bits in the salt to produce a perfectly standard signature
from which the attacker can covertly extract p using [2]. It is also possible to
embed p is k unmodified signatures by re-generating signatures until the LSBs
of each of those k signatures happen to encode a chunk of log2 p

2k bits of p. For a
2048-bit n an invisible formula iterating the signature process ≃ 256 times per
signature will leak p via 64 signatures.

4 Countermeasures

This note underlines the need to develop anti-malware tools adapted to mathe-
matical software and/or provide easy-to-use interfaces restricting the operations
performed by notebooks. For instance, Mathematica allows to run operating sys-
tem commands2, send emails3 or even connect to external services (e.g. Twitter,
Facebook, Whatsapp etc) using the ServiceConnect command.

The problem is more acute when considering Paclet objects, Notebook In-
terfaces4 (that may spread invisible formulae to remote computers) or compiled
Mathematica code, which is much harder to disassemble and analyze (more on
this in a subsequent note). Because Mathematica is easier to use than C/C++, a
number of developers write mathematical code in Mathematica and convert it
automatically to C/C++ using the CCodeGenerator5. We witnessed this practice
when custom or new algorithms (e.g. post-quantum) are concerned. Similarly,
FortranForm is frequently used to automatically convert Mathematica to Python.
If the Mathematica final code resorts to third party functions the risk of in-
tegrating invisible formulae must be taken into account. The same precaution
applies to the use of Wolfram Symbolic Transfer Protocol (WSTP) to integrate
Mathematica and C/C++ code.

An experiment allowing to assemble an executable Windows payload in a
notebook upon execution and rootkit a target machine passed easily through 4
commercial email attachment scanners (as well as Gmail’s standard scan). None
of which blocked the concerned email. This payload encoder-decoder is purposely
not published to avoid the scripting of real-world attacks.

Although a Mathematica notebook detecting the presence of invisible code
(currently being developed by the authors) might reduce the attack surface, such
empirical protections do not eliminate completely the threat. The tool, called
2 such as Run, StartProcess, ProcessConnection, KillProcess.
3 SendMail, SendMessage.
4 https://blog.wolfram.com/2021/12/13/new-in-13-notebook-interfaces/
5 https://www.wolfram.com/mathematica/new-in-8/integrated-c-workflow/

7

https://blog.wolfram.com/2021/12/13/new-in-13-notebook-interfaces/
 https://www.wolfram.com/mathematica/new-in-8/integrated-c-workflow/

WYSIWYX (standing for “What You See Is What You Exectute”) will rely on
two detection techniques. The first is a symbolic analysis of the notebook aiming
to detect invisible elements. The second opens the notebook with Mathematica,
prints it into a PDF file, converts the PDF into a black and white bitmap, removes
shot noise from the bitmap, OCR-converts the result to text and produces a new
(hopefully safe) Mathematica notebook from the text. Note that some symbolic
computation software6 also allow to take control of the mouse and the keyboard
and thereby approve the installation of software without the user’s consent.

We stress that our observation is not a vulnerability in Mathematica but
rather a misuse of the rich possibilities offered by the software.

This calls for the formalization and the enforcement of security policies in
such tools.

The slides of the corresponding presentation and demo at BlackHat 2022 are
available from the authors upon request.

References

1. Bellare, M., Rogaway, P.: PSS: Provably secure encoding method for digital signatures
(1998) (cited on page 7)

2. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with
high bits known. In: Maurer, U. (ed.) Advances in Cryptology — EUROCRYPT ’96.
pp. 178–189. Springer Berlin Heidelberg, Berlin, Heidelberg (1996) (cited on page 7)

3. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978), http://doi.
acm.org/10.1145/359340.359342 (cited on page 1)

4. Young, A., Yung, M.: The dark side of “black-box” cryptography or: Should we trust
capstone? In: Koblitz, N. (ed.) Advances in Cryptology — CRYPTO ’96. pp. 89–103.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996) (cited on page 7)

6 e.g. https://www.alivelearn.net/?p=1603

8

http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://www.alivelearn.net/?p=1603

	Invisible Formula Attacks

