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KEMTLS is a proposal for changing the TLS handshake to authenticate
the handshake using long-term key encapsulation mechanism keys instead
of signatures, motivated by trade-offs in the characteristics of post-quantum
algorithms. Prior proofs of security of KEMTLS and its variant KEMTLS-PDK
have been hand-written proofs in the reductionist model under computational
assumptions. In this paper, we present computer-verified symbolic analyses
of KEMTLS and KEMTLS-PDK using two distinct Tamarin models. In the
first analysis, we adapt the detailed Tamarin model of TLS 1.3 by Cremers et
al. (ACM CCS 2017), which closely follows the wire-format of the protocol
specification, to KEMTLS(-PDK). We show that KEMTLS(-PDK) has equi-
valent security properties to the main handshake of TLS 1.3 proven in this
model. We were able to fully automate this Tamarin proof, compared with
the previous TLS 1.3 Tamarin model, which required a big manual proving
effort; we also uncovered some inconsistencies in the previous model. In the
second analysis, we present a novel Tamarin model of KEMTLS(-PDK), which
closely follows the multi-stage key exchange security model from prior pen-
and-paper proofs of KEMTLS(-PDK). The second approach is further away
from the wire-format of the protocol specification but captures more subtleties
in security definitions, like deniability and different levels of forward secrecy;
it also identifies some flaws in the security claims from the pen-and-paper
proofs. Our positive security results increase the confidence in the design
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Figure 1: Simplified protocol diagrams of server-only authenticated versions of: (left)
the TLS 1.3 handshake, using signatures for authentication; and (right) the
KEMTLS handshake, using KEMs for authentication.

of KEMTLS(-PDK). Moreover, viewing these models side-by-side allows us
to comment on the trade-off in symbolic analysis between detail in protocol
specification and granularity of security properties.

1. Introduction

The Transport Layer Security (TLS) protocol is one of the most used cryptographic
protocols. In its most recent version, the TLS 1.3 [32] handshake employs an ephemeral
(elliptic-curve) Diffie–Hellman (DH) key exchange to establish session keys for confiden-
tiality. In the regular handshake, TLS 1.3 authenticates the server and optionally the
client using RSA or elliptic-curve signatures. It transmits the public keys to verify those
signatures during the handshake, in certificates signed by a certificate authority (CA).

KEMTLS [33] is an alternative proposal for a post-quantum TLS 1.3 [32] handshake. It
avoids using handshake signatures, which typically authenticate the TLS 1.3 handshake,
replacing them with end-entity authentication based on key encapsulation mechanisms
(KEMs) following well-established techniques for implicitly authenticated key exchange.
As post-quantum KEMs are typically more efficient than the post-quantum signature
schemes, either in bytes on the wire or computational efficiency, this saves resources.
KEMTLS-PDK (“pre-distributed public key”) [35] is a variant of KEMTLS that offers a
more efficient handshake if the client already has the server’s long-term public key. The
authentication mechanisms from KEMTLS and KEMTLS-PDK have been proposed for
standardisation to the Internet Engineering Task Force (IETF) TLS working group [13].
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Figure 1 shows the cryptographic core of the unilaterally authenticated TLS 1.3 and
KEMTLS handshakes. KEMTLS replaces the TLS 1.3 Diffie–Hellman-based ephemeral
key exchange by KEM operations. Most importantly, whereas in TLS 1.3 the server
authenticates by signing the transcript using the key from the server’s certificate, in
KEMTLS the client encapsulates against the KEM public key in the server’s certificate.
KEMTLS then combines both KEM shared secrets—one from the ephemeral key exchange
and one from the server’s long-term key—to derive a key that is implicitly authenticated,
meaning only the intended server will be able to derive the secret. The client can then
use the derived key to transmit application data.

At many levels, the KEMTLS handshake is similar to the TLS 1.3 handshake. However,
due to the usage of KEMs, the order of messages in TLS 1.3 has been significantly
changed. Additionally, the server can no longer send data in its first response to the
client. However, KEMTLS preserves the client’s ability to send its message after receiving
the first flight from the server.

As KEMTLS is a novel way to achieve authentication in the TLS 1.3 handshake, the
security of its design should be carefully checked not only with pen-and-paper proofs
but with a computer-assisted formal analysis of it to provide stronger evidence of its
soundness to adopters and standarization bodies like the IETF.

1.1. Related work

Analysis of TLS 1.3. During the development process of TLS 1.3, there was a strong
collaboration between the standardisation community with the academic research com-
munity. Initial TLS 1.3 protocol designs were based on academic designs [29], and it
was explicit goal of the TLS 1.3 process to incorporate academic security analysis of new
designs before continuing with standarisation. Paterson and van der Merwe described
this as a “design-break-fix-release” process rather than the “design-release-break-patch”
cycle that was found on prior versions of the standarisation and usage of TLS [31]. Many
of the security analyses of TLS 1.3 used the reductionist security paradigm [19–21,28,29].
Complementing this manual proof work, computer-aided cryptography [1] was also instru-
mental in checking TLS 1.3. Analyses were done using the Proverif [7] and Tamarin [14,15]
symbolic analysis tools, as well as a verified implementation in F∗ [16].

Analysis of KEMTLS. The initial KEMTLS and KEMTLS-PDK papers included reduc-
tionist security proofs [33, 35], adapting the multi-stage key exchange approach used
by Dowling et al. [19,20] for TLS 1.3. Subsequently, Towa et al. proposed and proved
an alternative abbreviated handshake, with additional short-lived static keys [25], and
found a few minor mistakes in the original security proofs, which were subsequently fixed
in online versions of the original papers [34,36]. All these proofs treat protocol modes
independently—one-at-a-time—and do not consider the presence of the other protocol
modes.
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1.2. Contributions

In this work, we present two security analyses of all four variants of KEMTLS (the base
KEMTLS protocol, with server-only or mutual authentication, and the pre-distributed
public keys variant KEMTLS-PDK, also with server-only or mutual authentication) using
Tamarin [3,30]. The source code of our models is available at https://github.com/kemtls/.

Our first model, presented in Section 3, is based on the Tamarin analysis of TLS 1.3 by
Cremers et al. [14]. This is a highly detailed model in terms of the protocol specification,
closely following the TLS 1.3 wire format. In this model, we show that all four KEMTLS
variants have equivalent security properties to the main handshake of TLS 1.3 without
extensions. In implementing this model for KEMTLS, we were able to fully automate the
proof, unlike the original model which required significant manual effort.

Our second model, presented in Section 4, is a novel Tamarin model developed from
scratch that closely follows the multi-stage key exchange security model used in the
pen-and-paper proofs [33,35]. This model focuses on the “cryptographic core”, meaning
that it is further away from the wire specification and does not model details like message
encryption or the record layer. However, it captures more details in the security definitions,
using the more granular definitions of forward secrecy from [33,35] as well as including
an analysis of deniability. This model allows us to symbolically verify the reductionist
security claims from the pen-and-paper proofs, but goes further by considering all four
KEMTLS variants simultaneously. This Tamarin model allowed us to identify some minor
flaws in the properties stated based on pen-and-paper proofs.

In Section 5, we compare the features of our two Tamarin models. Having these two
models side-by-side illustrates the trade-off between detail of protocol specification and
granularity of security properties. Ideally, of course, one would achieve both levels of
detail simultaneously, but such complexity is challenging both for the humans reading and
writing pen-and-paper proofs or authoring Tamarin models, and for computers checking
such Tamarin models (where runtime typically scales exponentially with the complexity
of the model). Our side-by-side approach with two very different perspectives still yields
significant confidence in the soundness of the KEMTLS protocol design and each provides
insight into flaws in the earlier models that it was based on.

2. Background on symbolic analysis

One approach to proving the security properties of protocols is symbolic analysis, which
uses formal logic to reason about the properties of an algebraic model of a protocol.
Computational tools, such as Tamarin [3,30] or ProVerif [9], can then be used to check
whether certain properties hold in the symbolic model.

In symbolic analysis, generic symbols replace specific values. Operations like encryption
are also modelled symbolically: for example, senc(a,b) represents the value a being
symmetrically encrypted with the key b. In symbolic analysis, cryptographic operations
are perfect, meaning the adversary can learn nothing about an encrypted message without
the correct key. The operations that describe a protocol in a symbolic model take
messages and state information, and transform them into the next state or emit another
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protocol message. A tool can then use all operations and symbols to generate every
possible protocol run.

Many symbolic analyses of protocols use the Dolev–Yao [18] attacker model, in which
an attacker can manipulate all messages at will, e.g. by redirecting them, replaying them,
dropping them, or manipulating their contents. It can also construct new messages from
information previously learnt. However, as the cryptography is assumed to be perfect,
the attacker can not read or modify encrypted or authenticated messages if it does not
have the right keys.

Symbolic models can also be extended to give the attacker special extra abilities. For
example, one can allow the attacker to reveal private keys or state information of parties
by performing queries to a reveal oracle. We record when the attacker uses this oracle,
so reveal queries become part of the trace of execution.

Security properties are modelled as predicates over execution traces. In Tamarin,
during the execution of the rules of the protocol, we can emit action facts. We use these
action facts to record, for example, the session’s impression of the authentication status
or the current keys. We then write lemmas representing security properties as predicates
over action facts: for example, that any key recorded in a certain type of action fact must
not be known to the adversary, unless the adversary cheated by revealing keys. A model
checker like Tamarin can then be used to check if the protocol maintains the required
security property. Assuming soundness of the tool, either the tool will give a proof that
the protocol has the required property, find a counter-example, or fail to terminate.

3. Model #1: high-resolution protocol specification

In this section, we discuss the natural approach of taking one of the TLS 1.3 models and
adapting it to KEMTLS(-PDK). Our work demonstrates that KEMTLS provides security
guarantees at least equivalent to those proven by Cremers et al. for the main handshake
of TLS 1.3.

3.1. Cremers et al.’s Tamarin TLS 1.3 model

The Tamarin model of TLS 1.3 [14] is very high-resolution in terms of its modelling of
protocol details and adherence to the protocol specification. It covers the cryptographic
computations such as the key exchange and the key schedule; for example, calls to HKDF
are decomposed into hash function calls. This model also includes the extensions to the
basic TLS 1.3 handshake, such as the HelloRetryRequest mechanism, pre-shared keys,
and resumption via session tickets. Additionally, it models the encryption of handshake
messages, the syntax of the protocol messages, and mechanics such as TLS 1.3 extensions.

In terms of security properties, the Cremers et al. model extends Tamarin’s basic
Dolev–Yao attacker with the ability to recover secrets from Diffie–Hellman key shares
and reveal the long-term keys of participants. TLS 1.3 is not secure against an attacker
who can use these attacks freely, but aims to provide confidentiality and integrity against
an attacker who is restricted from revealing secrets of the target session. Cremers et
al. were able to encode lemmas capturing most of the security properties claimed by
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the TLS 1.3 specification [32, Appendix E.1]. They report that proving all lemmas in
their model took about a week. Much of this time was spent on manual interaction with
Tamarin’s prover to guide it to prove some of the more complex lemmas. Verifying the
generated proof requires “about a day” and “a vast amount of RAM” [14].

3.2. Representing KEMTLS in the model

We now describe how we modified the existing TLS 1.3 model to represent both KEMTLS
and its variant with pre-distributed keys, KEMTLS-PDK. The original model is highly
modular, which made it relatively easy to modify.

3.2.1. Modeling KEMs

Tamarin does not have a built-in interface to model KEMs. They can be described
using Tamarin’s asymmetric encryption primitives, as was done in [26]. We choose
to model the KEM interface using Tamarin’s function API. As the TLS 1.3 model
has some support for cryptographic agility in the ephemeral key exchange, we add a
public algorithm identifier symbol to each operation. We use fresh values to resemble
KEM secret keys, and a function kempk/2 to represent the public key for the specified
algorithm. Tamarin’s functions are just symbols and do not describe functionality. Any
functionality is handled by writing equations over the symbols. As such, we can not
return two values or generate fresh values in the encapsulate operation. We resolve
this by providing a shared secret as an input to the encapsulate operation. The shared
secret is defined through kemss/2 and also contains the algorithm symbol. We define
kemencaps/3 over the algorithm, the shared secret and the public key. The resulting
ciphertext can be provided to kemdecaps/3 with the algorithm and the secret key. We
model the functionality of kemencaps and kemdecaps by the following equation, where
alg represents the KEM algorithm, and seed and sk are the fresh input values:

equations:
kemdecaps(alg,

kemencaps(alg,
kemss(alg, seed),
kempk(alg, sk)),
sk)

= kemss(alg, seed)

3.2.2. Modelling KEMTLS

The model of Cremers et al. represents TLS 1.3 through rules that manipulate a specific
state object, which keeps of many protocol variables, such as keys, authentication status,
and the currently active handshake mode. Tamarin rules create transitions between these
states. Where the protocol branches, such as when the server requests client authentication
by sending CertificateRequest, there are two rules that end up in the same next state;
for example, they would set the cert_req variable differently. The server later uses this
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variable to decide which of the rules recv_client_auth or recv_client_auth_cert to
use; the latter expects the Certificate, CertificateVerify, and Finished messages,
while the former only expects Finished. We handle the public key infrastructure (PKI)
for KEM public keys in the same way as [14]: we do not model CA certificates, and
assume an out-of-band binding between public keys and identities.

Ephemeral key exchange in the TLS 1.3 model uses Tamarin’s Diffie–Hellman function-
ality. It also allows the negotiation of two different DH groups. During the handshake,
the client and server generate ephemeral DH secrets for the chosen group. If the server
rejects the client’s choice of DH group, it falls back to another group through the Hello-
RetryRequest mechanism. To model the post-quantum ephemeral key exchange in
KEMTLS, we replaced the Diffie–Hellman operations by kemencaps (KEM encapsulation)
in place of the server’s DH key generation. The client then computes the shared secret
via kemdecaps (KEM decapsulation).

The authentication rules and states required more careful consideration. In the TLS 1.3
model, the Certificate, CertificateVerify, and Finished messages were sent and
received simultaneously. In KEMTLS, we split the handling of these messages, as the
peer that is authenticating needs to first receive a ciphertext to decapsulate. Doing this
requires more states. Additionally, in KEMTLS the client sends Finished before the
server, which deviates from TLS 1.3.

To finish our integration of KEMTLS, we made changes to the key schedule to include
the computation of KEMTLS’ Authenticated Handshake Secret (AHS) and use the correct
handshake traffic encryption keys. We also modified the action facts emitted in the
various rules to match our KEM operations; lemmas that made use of these action facts
were also updated. We disabled the PSK and session ticket features of the original model.

3.2.3. Modeling KEMTLS-PDK

In KEMTLS-PDK, the client has the server’s long-term public key beforehand. Access to
the public key allows the client to send a ciphertext in the initial ClientHello message.
Additionally, the client may attempt client authentication proactively and thus transmit
its Certificate before receiving ServerHello from the server. We model this through
an additional initial state for the KEMTLS-PDK client. From this state, there are two
rules which set the state variable that will decide if the client will send its certificate.
KEMTLS-PDK is otherwise implemented as a mostly separate sequence of states and
rules, as the key schedule and order of messages are quite different. The client and server
still transition through a state shared with KEMTLS, so they can fall back to the “full”
handshake.

3.3. Security properties

We adapt the lemmas from the Cremers et al. model for TLS 1.3. Many core lemmas are
constructed around the SessionKey fact: the client and the server record this fact when
the handshake concludes. SessionKey contains the actor’s final understanding of its and
its peer’s identities, authentication statuses, and the application traffic keys. We prove
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lemma secret_session_keys:
"All tid actor peer kw kr pas #i.

SessionKey(tid, actor, peer, <pas, ’auth’>, <kw, kr>)@#i &
not(Ex #r.RevLtk(peer)@#r & #r < #i) &
not(Ex tid3 esk #r.RevEKemSk(tid3, peer, esk)@#r & #r < #i) &
not(Ex tid4 esk #r.RevEKemSk(tid4, actor, esk)@#r & #r < #i)
==> not Ex #j. K(kr)@#j"

Listing 1: The secret_session_keys lemma proves application traffic keys are secret.

all security properties discussed in [14], and briefly explain the most important of these
below.

3.3.1. Adversary compromise of secrets

First, we note the extent to which the adversary can compromise ephemeral or long-term
secrets. KEMTLS uses ephemeral KEM keys for ephemeral secrecy and long-term KEM
keys for authentication. The adversary can reveal actors’ long-term secret keys; this
records the RevLtk($actor) fact. We also allow revealing the ephemeral secret key in
individual sessions, recording the RevEKemSk(tid, $actor, esk) fact. Variables tid
(“thread identifier”) and esk track the specific session and secret key.

KEMs are not “symmetric” in the same way that Diffie–Hellman key exchange is. Only
one party in each KEM key exchange has a secret key that can be targeted by a reveal
query. We do not model revealing the shared secret from the ciphertext.

Intermediate session keys, like the Main Secret (MS), can not be revealed directly. This
follows from the design of the original model: in TLS 1.3, these secrets only depend on the
ephemeral key exchange, so revealing the ephemeral key exchange in sessions not targeted
by a lemma still allows the adversary to obtain those sessions’ intermediate session keys.
In KEMTLS, this is no longer the case: we mix the shared secrets encapsulated against
long-term keys into the key schedule; as a result, our attacker is slightly weaker. The
model discussed in Section 4 does directly allow session key reveal.

3.3.2. (Forward) secrecy of session keys

The outputs of the handshake, as recorded in the SessionKey fact, are the application
traffic read and write keys kr and kw. We require these keys to remain secret against
various forms of attacks. Forward secrecy requires that if the long-term keys (but not the
ephemeral keys) were compromised after the session completes, the session keys remain
secure.

We model this in the secret_session_keys lemma as shown in Listing 1. This lemma
considers a client or server that believes it has authenticated its peer, where the attacker
has not revealed the ephemeral KEM secret keys. We allow the attacker to reveal the peer’s
long-term secret key, but only after the SessionKey fact was emitted; this is the “forward”
secrecy aspect. The attacker should not be able to learn (not Ex #j. K(kr)@#j) the
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lemma secret_session_keys_ephem_reveal:
"All tid actor peer kw kr pas #i.

SessionKey(tid, actor, peer, <pas, ’auth’>, <kw, kr>)@#i &
not (Ex #r. RevLtk(peer)@#r) &
==> not Ex #j. K(kr)@#j"

Listing 2: The secret_session_keys_ephem_reveal lemma proves application traffic
keys are secret even if ephemeral keys are revealed.

target’s read key kr under these constraints. We similarly prove forward secrecy for each
of the intermediate keys in the key schedule: the Handshake Secret (HS), AHS and MS.

Note that in KEMTLS, the session keys are derived from not just the ephemeral key
exchange as in TLS 1.3, but also include the secret encapsulated during the authentication
phase of the handshake. This implies that both the ephemeral key and the server’s
long-term key need to be compromised in client sessions, and the ephemeral key and the
server’s long-term key in server sessions with mutual authentication. We prove this in
our model through a variant of the secret_session_keys lemma that allows ephemeral
key compromise, as long as the peer’s long-term key is never revealed. This lemma is
shown in Listing 2.

3.3.3. Authentication

We model the authentication properties of KEMTLS in the same way as they were
modelled for TLS 1.3. The client and server are partnered via the nonces exchanged in
the initial messages. The entity_authentication lemma captures that if the client, at
the end of the handshake protocol, has authenticated their peer, and the peer’s long-term
keys have not been revealed, then there must be a peer session that started with the same
nonces. This lemma is shown in Listing 3. The lemma mutual_entity_authentication
states the same, but with the roles of client and server reversed. As these lemmas allow
revealing the targeted actor’s long-term keys, these properties also cover key-compromise
impersonation attacks. Similarly, in the lemma transcript_agreement, we prove that
when the client, after receiving the server’s Finished message, commits to a transcript,
there exists a server that is running with the same transcript (or their long-term keys
have been revealed). The mutual_transcript_agreement lemma states the same but
with the roles reversed.

In TLS 1.3, the verification of the handshake signature immediately ensures authentic-
ation. In KEMTLS authentication is only made explicit when the Finished messages are
verified. However, the lemmas in the original model already only captured authentication
through the Finished messages.

3.4. Results

After adding relevant helper lemmas, Tamarin was able to auto-prove all the correct-
ness and security lemmas for Model #1, with all four KEMTLS variants supported
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lemma entity_authentication [use_induction]:
"All tid actor peer nonces cas #i.

commit(Nonces, actor, ’client’, nonces)@i &
commit(Identity, actor, ’client’, peer, <cas, ’auth’>)@i &
not (Ex #r. RevLtk(peer)@r & #r < #i)
==> (

Ex tid2 #j_ea.
running2(Nonces, peer, ’server’, nonces)@j_ea
& #j_ea < #i

)"

Listing 3: The entity_authentication lemma proves that if a client commits to a set
of nonces, there is a server that’s running with the same nonces.

simultaneously. Run-times are shown in Appendix C.

3.4.1. Auto-proving and helper lemmas

Many of the lemmas in Cremers et al.’s model of TLS 1.3 were not able to be auto-proved
by Tamarin; instead, the authors had to manually guide Tamarin through parts of the
proof. Our goal was to improve the model so that it could be proved automatically, with
no manual intervention required.

To help the automated prover, Cremers et al. introduced many intermediate lemmas,
many of which state properties of earlier keys or more limited message exchanges.
Inheriting these lemmas proved to be both helpful as well as distracting. Incrementally
proving and adjusting the intermediate lemmas to apply to KEMTLS(-PDK) helped us
spot bugs and make progress. But starting from their helper lemmas often left us unclear
as to why particular intermediate lemmas were necessary to prove the final security
properties.

In our experience, Tamarin does not find counterexamples very easily in big models.
As a result, we wrote increasingly “smaller” lemmas whenever we ran into a lemma that
was hard to prove. This greatly expanded the number of helper lemmas available. While
we believe that this helped auto-prove the model, it also resulted in cases where the
helper lemmas interacted in bad ways and had to be ignored. (Replacing Diffie–Hellman
by KEM, thus avoiding Tamarin’s algebraic analysis of DH group operations, may also
have eased analysis.) Additionally, the model of [14] is carefully split over different files
to avoid certain helper lemmas from interacting. With much less experience, we joined
together most of those files, which in many cases lead to Tamarin getting distracted by
helper lemmas. Many hours in the manual prover helped us determine which lemmas
needed to be marked by ignore_lemma annotations. While doing this, it was often helpful
to rename lemma variables to be distinguishable, as Tamarin does not indicate what
lemmas it tries to apply. For example, to identify the lemma entity_authentication,
we renamed a time variable #j to #j_ea.
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3.4.2. A bug in Cremers et al.’s TLS 1.3 lemmas

While working on the proof, we found that one of the core lemmas in [14]’s TLS 1.3 model
seems to have changed after creating the proof. The lemma session_key_agreement
tried to prove that the client’s and servers values of keys in the SessionKey fact matched.
However, variable keys is a tuple <kr, kw> of the reading and writing keys of each peer.
As the server’s writing key should match the client’s reading key and not the client’s
writing key, this lemma did not hold. The rendered proofs included in the repository
alongside the model and lemmas revealed that in the executed proof, keys was split into
its elements and equated correctly. We disclosed the bug to the authors.

It is not hard to imagine how such a mistake slips into a model if re-proving the
smallest changes requires days of manual proving effort. We view this as evidence of the
value of auto-proving models: being able to let the computer “do its thing” allows us to
make changes more confidently.

3.5. Limitations

Although the model is very granular in its description of KEMTLS(-PDK), we do have
some limitations. As discussed in Section 3.3.1, we do not model intermediate session
key reveal. We also have not modelled session resumption or pre-shared key modes with
KEMTLS. Finally, we have not attempted to model deniability, which we will model in
Section 4.

4. Model #2: multi-stage key exchange model

The security properties shown in the original KEMTLS paper [33] and the KEMTLS-PDK
paper [35] are stated using the reductionist security paradigm, via the multi-stage key

exchange model [24], which was adapted for proofs of the TLS 1.3 handshake [19,20]. Our
goal in this section is to translate the reductionist security properties in this model—match
security, session key indistinguishability, and authentication—from a pen-and-paper model
to being encoded in Tamarin, then have the Tamarin prover confirm these properties
hold. Notably, this model discriminates between the several keys established within a
single KEMTLS handshake, associating distinct security properties with individual stage
keys.

4.1. Reductionist security model for TLS 1.3 and KEMTLS

The multi-stage key exchange security model, first introduced by Fischlin and Gün-
ther [24], is an extension of the Bellare–Rogaway (BR) model [6] for proving security of
authenticated key exchange in the reductionist security paradigm. In the BR model, the
adversary is in control of all communications between honest parties, so the adversary can
activate honest parties to send their next protocol message, and can also modify, delay,
drop, replay, or create messages. Each honest party can run multiple simultaneous or
sequential executions of the protocol (each execution at a party is called a session) sharing
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a single long-term key pair across their sessions. Within each session, a party maintains
several variables, including the execution status, a session identifier, an identifier for the
peer (if the peer is to be authenticated), and a session key. The adversary interacts with
the honest parties via oracles, including oracles for starting a new session at a party
(the NewSession oracle) and message delivery and response (Send), as well as letting the
adversary learn an honest party’s long-term key (Corrupt) or the session key of a particular
session (Reveal). The adversary may choose one session as a challenge session and, via
a call to the Test oracle, receive an indistinguishability game challenge. This challenge
is either the real session key established in that session or a value, chosen uniformly at
random, from the space of all session keys. The adversary’s task is to distinguish whether
it was given a real or random value in the Test query, under the condition that the tested
session remains fresh, meaning certain combinations of reveal queries were not used. The
freshness condition can be tweaked to capture different characteristics such as forward
secrecy. The BR model can also include an explicit authentication property, which checks
whether the adversary can cause one party to accept a session as authenticated with a
particular intended peer, without, under some conditions, that peer having participated
in a corresponding session.

There are many extensions to the BR model to capture different functionality and
security properties; see [10, Ch. 2] for a summary. One important extension is the
formalisation by Brzuska et al. [11, 12] which introduces a property called match security.
This checks the technical condition that the session identifiers specified by the protocol
effectively match the partnered sessions. Among other benefits, match security helps
with composition theorems involving AKE protocols.

In real-world protocols like QUIC and TLS, as well as KEMTLS, multiple keys are
established in each session for different purposes. Fischlin and Günther [24] created
the multi-stage key exchange model, an extension of the BR model in which a single
session can have multiple stages, each of which establishes a key with certain security
characteristics; they used this approach to analyse QUIC. It was also used by Dowling et
al. [19,20] to analyse the TLS 1.3 handshake. As KEMTLS is an alternative realization of
the TLS 1.3 handshake, it is natural to similarly use this model for analyzing KEMTLS,
as done in [33].

We now present the technical components of the multi-stage key exchange security
model as used in KEMTLS [33] and KEMTLS-PDK [35]. Our presentation here will be
somewhat abbreviated; for full details, see the full versions of [33,35].

4.1.1. Partnering

For the proof of KEMTLS(-PDK), we need to keep track of the pairs of sessions that are
(supposedly) communicating. Each session keeps track of per-stage session identifiers,
each of which is a distinct label for the stage followed by all plaintext messages transmitted
up until that point in the protocol; for KEMTLS-PDK, this also includes the implicit
ServerCertificate message. We call two sessions partners if their session identifiers
match.
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4.1.2. Adversary interaction

The oracles and variables stated in Section 4.1 suffice for modelling the various properties
of match-security. To model key indistinguishability, the multi-stage model includes an
oracle Test(π, i) which challenges the adversary to distinguish the ith stage key of session
π from random.

4.1.3. Match security

There are six specific properties in the multi-stage match security definition used for
KEMTLS [33]. For distinct sessions π, π′ which are partnered in some stage i:

1. π and π′ agree on the same key at every stage j ≤ i;

2. π and π′ have opposite roles;

3. π and π′ are also contributive partners in stage i;

4. for stages j ≤ i of π which are considered explicitly authenticated if stage i has
accepted, the identity of π’s peer is correct;

5. in any two (not necessarily distinct) sessions, distinct stages have distinct session
identifiers;

6. there is not a third distinct session that is also partnered to π and π′ in stage i.

Match security properties are often proved information-theoretically rather than under
cryptographic assumptions, as the structure of a well-designed protocol and its instan-
tiation within the formalism usually quite naturally yields the desired match security
properties.

4.1.4. Multi-stage security and malicious acceptance

Multi-stage security models secrecy of each stage key under specific forward secrecy
properties. These properties include implicit and explicit authentication. The model is
parameterized by values indicating the expected security properties of particular stage
keys. [33,35] define four levels of forward secrecy:

• No forward secrecy (0);

• Weak forward secrecy level 1 (wfs1): the key is confidential against passive adversar-
ies. This level allows the adversary to access the peer’s long-term keys. Keys with
this level of forward secrecy have no authentication.

• Weak forwards secrecy level 2 (wfs2): the key is confidential against passive ad-
versaries (wfs1) and against active adversaries who never corrupted the peer’s
long-term key. In the latter case, the key is implicitly authenticated.
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• Forward secrecy (fs): the key is confidential against passive adversaries (wfs1) and
against active adversaries who did not corrupt the peer’s long-term key before the
stage accepted. Keys with forward secrecy level fs are implicitly authenticated.

As the protocol is executed, the security level of a particular stage key may be upgraded
once a later stage acceptsthe server’s security levels are different if mutual authentication
is used.

In Eq. (1), FSi,j gives the expected forward secrecy security of a KEMTLS client session’s
stage i key, assuming that stage j has accepted.

FS =



wfs1 wfs1 wfs1 wfs1 wfs1 fs
wfs1 wfs1 wfs1 wfs1 fs

wfs2 wfs2 wfs2 fs
wfs2 wfs2 fs

wfs2 fs
fs


(1)

Explicit authentication, which is e.g. achieved by the Finished messages, is modelled
through malicious acceptance: an adversary should not be able to cause a supposedly
explicitly authenticated stage to accept without a partner stage.

4.1.5. Deniability

Roughly speaking, deniability is the property that a party cannot provide proof to a
judge that a peer participated in a particular protocol execution, even if they did. First
introduced in general by Dwork, Naor, and Sahai [23] and in the context of key exchange
by Di Raimondo, Gennaro, and Krawczyk [17], there are many flavours and variations
of deniability; see e.g. [27] for a classification. Offline deniability is the inability of a
judge to distinguish between a transcript generated by honest parties and a transcript
generated by a simulator. The form of deniability offered by KEMTLS and KEMTLS-PDK
(following the terminology of [27]) is that it provides offline deniability in the universal

deniability setting (meaning the simulator only has access to parties’ long-term public
keys) against an unbounded judge with full corruption powers (meaning the judge gets
the parties’ long-term secret keys as well as any per-session coins).

4.1.6. Pen-and-paper proofs

The KEMTLS and KEMTLS-PDK papers [33,35] provide theorems and give proofs that
their respective protocols satisfy the match-security and multi-stage security properties;
they do not include any proofs for offline deniability. The match-security properties
are shown information-theoretically, with terms depending on the number of sessions,
the correctness probability of the KEMs, and the size of the TLS nonce space. The
multi-stage security properties are shown under the following computational assumptions:
hash function collision resistance, IND-1CCA security of KEMe, PRF and dual-PRF
security of HKDF.Extract, PRF-security of HKDF.Expand, EUF-CMA security of HMAC,
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and IND-CCA security of KEMc and KEMs. There is a tightness loss proportional to the
number of sessions squared.

4.2. Formalizing the reductionist security model in Tamarin

We formalized all four KEMTLS variants (regular and PDK, server-only and mutually
authenticated) in Tamarin, along with lemmas capturing correctness, match security,
multi-stage security, and deniability, analogous to the definitions from Section 4.1. We
now describe the formalization in more detail.

4.2.1. Protocol description

This Tamarin formulation of the four KEMTLS variants focuses on the “cryptographic
core” of the protocol. Roughly speaking, this is the protocol as formulated in figures in
the original papers [33,35], which includes cryptographic operations involved in the key
exchange, but does not include extra fields and operations arising from the integration of
the cryptographic operations into a network protocol. We only address the handshake
protocol and exclude TLS message formatting, algorithm negotiation, and data structures
such as certificates. We exclude extensions such as TLS 1.3 session resumption or pre-
shared key handshakes. We assume that long-term public keys are reliably distributed
out-of-band. We omit modelling handshake encryption: while the various handshake
traffic secrets are established and recorded as accepted in each stage of the protocol,
subsequent handshake messages are sent in plaintext. The various primitives based
on hash functions (HMAC, HKDF.Extract, HKDF.Expand) are modelled as independent
opaque functions, rather than relying on each other and ultimately on a common hash
function. As in the pen-and-paper proofs, there are three KEMs, KEMe, KEMc, and
KEMs, for ephemeral key exchange, client authentication, and server authentication,
respectively. The KEMs are modelled as distinct primitives, meaning that a party cannot
use its long-term credential to act as both a client and a server.

4.2.2. Adversary interaction

Among the oracles stated in Section 4.1, the NewSession and Send oracles are not needed,
since the Tamarin model includes rules for each protocol step. The Tamarin model does
include Corrupt and Reveal oracles. Because key security in Tamarin is modelled not
using indistinguishability but key recovery (the K(. . . ) fact in Tamarin lemmas), there is
no need for the Test query in the Tamarin model.

4.2.3. Definition of cryptography

For each KEM KEMx, the following functions are defined in Tamarin: KEM_x_PK/1 (to
generate a public key from a secret key), KEM_x_Encaps_ct/2 (to generate a ciphertext
from a public key and random coins), KEM_x_Encaps_ss/2 (to generate, during encapsu-
lation, a shared secret from a public key and random coins), and KEM_x_Decaps/2 (to
decapsulate a ciphertext using a secret key to recover a shared secret). (Two Encaps
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functions are provided because functions in Tamarin only output a single value, so we
need two functions to represent the two outputs from encapsulation.) Rewriting rules are
provided to model that decapsulation with the appropriate values arrives at the same
shared secret as encapsulation.

There are distinct functions for HKDF (HKDFExtract/2 and HKDFExpand/3), HMAC
(HMAC/2), and the hash function (H/1). We do not attempt to model the fact that HKDF
is built from HMAC and that HMAC uses the same hash function H; they are all assumed
to be independent. The HKDF API is simplified to not include a length parameter as
input.

4.2.4. Correctness lemmas

We include a collection of “reachability” lemmas which check that, for every stage in all
4 protocol variants, it is possible to arrive at that stage, with honest client and server
sessions having correct owner and peer information, matching contributive and session
identifiers, and correct expectations on authentication, forward secrecy, and replayability;
the reachability lemmas include checking retroactive upgrading of properties. These
lemmas are implemented using Tamarin’s exist-trace feature. There are 47 reachability
lemmas in total, generated from a template using the M4 macro language.

We also include lemmas that check that the attacker works, in the sense that the
attacker can successfully compute session keys of all stages by using the corruption
oracles.

4.2.5. Security and authentication lemmas

The match security lemmas from Definition B.1 of [33], plus the adjustments for replayabil-
ity in [35], are directly translated into Tamarin. The lemmas are basically predicates over
the session-specific variables defined in the model syntax, and can be stated analogously
since the Tamarin model includes action facts for each session-specific variable.

Session key security in Tamarin is modelled based on infeasibility of session key recovery,
rather than indistinguishability of a session key from random. We have lemmas for each
type of forward secrecy a stage key can have, directly translating the freshness conditions
of [33, Defn. B.3] and [35, Defn. B.5].

We have a lemma for explicit authentication analogous to [35, Defn. B.5 3], including
not requiring uniqueness of the replayable KEMTLS-PDK stage 1.

4.2.6. Deniability lemmas

Whereas the lemmas for the above properties all share the same Tamarin protocol
description as explained above, the deniability lemmas use a re-statement of the protocol
description. To formulate a deniability lemma, we need two versions of the protocol
description: honest execution of the protocol using long-term secrets, and simulation
using only public keys. The judge in the offline deniability game is passive and receives
only transcripts, so we can collapse the multiple rules for each client and server action into
a single rule that generates a full transcript including both client and server operations.
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The deniability lemmas use Tamarin’s observational equivalence feature [4] to check that
the real and simulated transcripts are indistinguishable.

Deniability for each of the 4 KEMTLS protocol variants is dealt with separately. For
each variant (e.g., KEMTLS with server-only authentication), we have one rule that
generates real transcripts using long-term secret keys (e.g., KEMTLS_SAUTH_real) and one
rule that generates simulated transcripts without long-term secret keys (e.g., KEMTLS_-
SAUTH_simulated). Finally, the adversary has access to a rule real_vs_simulated
which takes as input one real transcript and one simulated transcript. It returns one of
these to the adversary using Tamarin’s diff operator for observational equivalence. By
the running Tamarin prover with the --diff option to activate observational equivalence
mode, Tamarin will check that it is not possible to distinguish which was given to the
adversary.

Our definition of deniability is offline deniability in the universal deniability setting
against an unbounded judge with full corruption powers. Consequently, the transcripts
output includes the parties’ long-term secret keys, the session keys computed in the
real/simulated transcript, and the random coins allegedly used in the real/simulated
transcript.

Using Taramin’s observation equivalence feature causes a substantial increase in state
space, so for efficiency reasons, we provide an option (using M4 macros) to omit portions
of the transcript that are deterministically generated from earlier parts of the transcript
and thus (from a mathematical perspective) could not help a distinguisher.

4.3. Comparison of pen-and-paper and Tamarin models

In principle, if the same security properties have been encoded in both a pen-and-paper
reductionist security model and in a Tamarin model, a full and correct proof in the
reductionist security model yields everything that a Tamarin proof could, and potentially
more. In particular, reductionist security proofs do not idealize cryptographic primitives
as much as Tamarin does. Moreover, a reductionist security proof can be done in
the “concrete setting” [5], yielding a precise (non-asymptotic) relationship between the
runtime and success probability of an adversary against the protocol versus the runtime
and success probability of breaking the underlying cryptographic assumption. While
it would be possible to encode the pen-and-paper proofs of KEMTLS from the original
papers into a computer verification tool such as EasyCrypt [2], that would also require
the cryptographer to manually write all game hops and reductions, a massive undertaking.
To date, there are no proofs of KEMTLS using a computer-aided verification tool for
reductionist proofs.

Tamarin does not lend itself to writing security properties in exactly the same way as
would be used in reductionist security models. Although there is no way to objectively
justify how close the pen-and-paper and Tamarin models of this section are to each other,
subjectively we think they are quite close:

• The protocol specification in Tamarin maps nearly line-for-line onto the protocol
figures in the original papers, using the same function interfaces, same key schedule,
and same session identifiers.
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• The session-specific variables in the pen-and-paper model correspond nearly one-
for-one to action facts in the Tamarin model.

• There are Tamarin lemmas for each security property in the pen-and-paper model,
and there is a clear mapping between the clauses in the predicates in the pen-and-
paper model and the Tamarin model.

The main gap in modelling, as mentioned earlier, is that session key security is modelled
via indistinguishability in the pen-and-paper models but via infeasibility of key recovery
in the Tamarin model. Though it is possible to verify indistinguishability through
Tamarin’s observational equivalence features, the effect on the state space as discussed in
Section 4.2.6 makes this impractical.

One other nice feature of our Tamarin models is that there is a fairly clean separation
between protocol definition and security properties: files containing lemmas for match-
security, multi-stage security, and authentication are phrased solely in terms of the action
facts of the generic security model (similar to how a good pen-and-paper security model
refers abstractly to the protocol API and model variables, rather than mixing in details
of protocol instantiation), so these lemmas could be applied to any protocol in the same
security model.

4.4. Results

Tamarin was able to auto-prove all the lemmas for correctness, reachability, match
security, multi-stage session key security, authentication, and deniability in Model #2,
with all four KEMTLS variants supported simultaneously. We did not need to create any
helper lemmas for Tamarin. Run-times are shown in Appendix F.

4.4.1. Bugs in the original papers’ security properties

When translating the models into Tamarin, we identified minor mistakes in some of the
forward secrecy and authentication properties listed in the original KEMTLS [33] and
KEMTLS-PDK [35] papers, highlighting the value of formal verification. We summarize
the corrected properties in Appendix A.

4.5. Limitations

As noted above, the design of the model in this section imposes some limitations. Unlike
in Section 3, we generally did not model non-cryptographic details of the handshake,
such as TLS handshake messages, extensions, or the record layer. We also did not model
handshake encryption or algorithm negotiation.

We also had, unlike in Section 3, three distinct KEMs for ephemeral key exchange, server
authentication and client authentication. This implicitly assumes the same certificate
is not used for both purposes, which was the basis of the Selfie attack [22]. Without
this limitation, we observe a state-space explosion with a major impact on performance.
For example, if KEMc = KEMs, the first 10 out of 11 reachable_* lemmas take over 8
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Feature Model #1 Model #2

Protocol modelling

Encrypted handshake messages
HKDF and HMAC decomposed into hash calls
Key exchange and auth. KEMs are the same algorithm
TLS message structure
Algorithm negotiation
Security properties

Adversary can reveal long-term keys
Adversary can reveal ephemeral keys
Adversary can reveal intermediate session keys
Secrecy of handshake and application traffic keys
Forward secrecy
Multiple flavours of forward secrecy
Explicit authentication
Deniability

Table 1: Comparison of features in our two Tamarin models of KEMTLS

hours, and the last reachable_* did not terminate after 45 hours, compared to all 11
reachable_* lemmas taking just over 1 minute with distinct KEMc and KEMs.

Our deniability lemmas are for abbreviated transcripts (without messages generated
deterministically from earlier parts of transcript) and omit ephemeral coins. Again,
without this limitation, there is a major impact on performance. For example, including
full transcripts for KEMTLS-sauth increases run-time from 1 minute to 16 hours, whereas
including ephemeral coins increases runtime from 1 minute to 110 minutes.

5. Comparison of models

We discussed two very different models of KEMTLS(-PDK) in the previous sections. These
models are examples of how we can view modelling as the art of replacing specifics with
generalities. Model #1 stays very close to the wire format of TLS 1.3 and phrases the
security properties in terms of attacks on the ephemeral and long-term keys. It contains
more implementation details such as algorithm negotiation, message framing, encryption
of handshake messages, and even application data. Model #2 is more abstract in its
representation of protocol messages. However, it models the cryptographic properties in
a more granular fashion. This more abstract description closely follows the multi-stage
pen-and-paper proofs of KEMTLS and KEMTLS-PDK, and allowed verifying the properties
claimed in the pen-and-paper proofs. Table 1 summarizes differences between the two
models, a few aspects of which we discuss further below.
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5.1. Modelling KEMs

The two models differ in the way that they model the KEMs in the protocol. Model
#1 uses the same functions for all KEM modes in the protocol (key exchange, server
authentication and client authentication). Model #2 has three separate sets of functions
for the three different KEM modes; this means the attacker can not copy ciphertexts
or public keys from one of the modes to another, which should make proving the
protocol easier. Interestingly, we saw significantly different performance between these
two approaches. The second model proves in very short time with the three separate
KEMs, but runtime blows up if we define all three KEM modes with the same functions;
we did not attempt to generate the full proof because it took so long as discussed in
Section 4.5. This suggests that splitting the three KEM modes in the first model could
result in a speed-up. However, splitting the KEMs in Model #1 did not improve the time
to auto-prove lemmas; in fact, a few lemmas even stopped being auto-provable. Ideally,
this puzzle would be resolved with a justification that there is a way of safely separating
uses of KEMs, allowing us to use whichever form happens to be easier for Tamarin to
prove.

5.2. Threat model

Both models use Dolev–Yao attackers, but give the attackers slightly different extra
abilities as noted in the bottom half of Table 1. Consequently, the results hold in slightly
different circumstances. The attacker in Model #1 can compromise ephemeral keys and
long-term keys, but not session keys, whereas the attacker in Model #2 can compromise
intermediate session keys and long-term keys, but not ephemeral keys. Revealing the HS
intermediate session key allows the second attacker to simulate the abilities of the first,
but the reverse does not hold; the attacker in Model #2 is thus slightly stronger.

5.3. Ease of use

Work on each of our two models was done by separate authors of this paper, neither
of whom had written a paper using Tamarin before and who had only had a basic
introduction to Tamarin prior to this work. Surprisingly to us, creation of Model #2
from scratch was simpler and proceeded faster than the work in Model #1 adapting
Cremers et al.’s TLS 1.3 model to KEMTLS. We attribute this to the higher fidelity of
the protocol model in Cremers et al., requiring more code to model our changes, and the
higher difficulty in proving.

6. Conclusion

We presented two Tamarin models checking security properties of KEMTLS and its variant
protocol KEMTLS-PDK. Model #1 is highly detailed in implementation characteristics,
close to the wire-format of the protocol. Model #2 presents the protocol at a higher
level but provides a more precise characterization of security properties. We prove that

20



KEMTLS(-PDK) is secure in both models; importantly these analyses include all four
KEMTLS variants supported simultaneously. Additionally, we proved offline deniability
of KEMTLS(-PDK) in Model #2.

Overall, comparing these two analyses is something of an apples-to-oranges comparison.
The two very different approaches allow us to model and test different properties of the
protocol. Model #1 is closer to what an implementation would be like, and verifies the
security properties in such a scenario. Adopting the Cremers et al. TLS 1.3 model [14]
also allowed us to quickly adapt the security claims of TLS 1.3 to our protocols. Model
#2, on the other hand, is an adaptation of the multi-stage authenticated key exchange
model from the pen-and-paper proofs in [33,35]. As such, Model #2 in a sense checks
the claims in the pen-and-paper proofs, and in fact uncovered some minor mistakes in
those proofs.

Our two models illustrate a common trade-off in formal analysis between the detail of
the protocol specification and the granularity of the security properties we can prove. A
similar observation was also made by Cremers et al. [14], who commented computational
analyses could only look at parts of TLS 1.3, rather than considering all the modes at
once.

While we proved certain privacy properties, such as deniability, our models can be
further expanded to include other privacy properties, such as the proposed Encrypted
Client Hello extension (previously called ESNI). These properties have only been proven
by using the symbolic protocol analyzer ProVerif [8].
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A. Errors identified in the stated properties of KEMTLS(-PDK)

We identified minor mistakes in some of the forward secrecy and authentication properties
listed in the original KEMTLS [33] and KEMTLS-PDK [35] papers. See the original
papers for the definition of the symbols.

• In KEMTLS-mutual: authS
3 = 3 and authS

4 = 4 both should have been set to 5;
FSS

3,3 = FSS
3,4 = FSS

4,4 = wfs2 should all have been wfs1; and authS
6 = 6 should have

been authS
6 =∞.

• In KEMTLS-PDK-sauth: FSC
1,j and FSS

1,j should have been 0 for all j; authC
5 = 5

should have been authC
5 =∞; and FSS

i,4 should have been wfs1 for i = 2, 3, 4.

• In KEMTLS-PDK-mutual: the message SKC should have been included in the SF
MAC computation and SF should have been included in the CF MAC computation;
FSC

1,j and FSS
1,j should have been 0 for all j; authC

5 = 5 should have been authC
5 =∞;

and FSS
4,4 = wfs1 should have been wfs2.

The online versions [34,36] of the source papers have been updated with our corrections.

B. State diagram of the model of Section 3

The ephemeral key exchange is changed to use kemencaps and kemdecaps. The authen-
tication is handled using the same KEM functions. However, KEMTLS does not send
CertificateVerify messages. Instead, the peer that receives a Certificate message
sends back a KEMCiphertext message with the ciphertext. We modified the relevant
rules to implement both server authentication and mutual authentication, and updated
the state machine. The new state machine for the KEMTLS handshake is visible in Fig. 2,
on the left-hand side. In this figure, the states are the set of variables passed along and
modified by the rules that form the transitions between them. The protocol messages
exchanged between the client and server state machines are also pictured.

We disabled the PSK and session ticket features of the original model.

C. Performance of the model of Section 3

We ran the model on a server that has two 20-core Intel Xeon Gold 6230 CPUs, which
after hyperthreading gives us 80 threads. The server has 192 GB of RAM.

Tamarin runs through all of the lemmas in our proof in 28 hours. We note that
communication bottlenecks between cores prevent fully utilising all resources. The model
requires 121 GB of RAM to prove all the lemmas, though most individual lemmas need
much less memory. In Table 2 we show some of the lemmas that consumed the most time.
Note that it is likely possible to prove them in less time, by hiding more “distracting”
helper lemmas or writing smarter oracles, but we did not optimise for this.
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Figure 2: Rules and state transitions in the Section 3 model of KEMTLS and KEMTLS-
PDK based on the TLS 1.3 model by [14].

D. State diagram of the model of Section 4

Figure 3 shows the state machine for all rules in this model. As an example, we present
a walk-through of the rules associated with an execution of KEMTLS-sauth. This may be
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Lemma Steps Runtime Memory

session_key_auth_agreement 29116 06:42:01 16 GB
session_key_agreement 57680 13:56:04 32 GB
handshake_secret 29390 04:40:52 12 GB
master_secret_pfs 29535 02:53:11 76 GB

Table 2: Runtime and memory usage of a selection of lemmas from the model described
in Section 3

best read in conjunction with Tamarin source code in the files indicated.

• rule KEMTLS_KEM_s_KeyGen:1 Generate a long-term key pair and register it for a
server B; output public key and save secret key.

• rule OCorruptLTK:2 Reveal long-term secret key for a particular party.

• rule ORevealSessionKey:2 Reveal the stage key for a selected session and stage.

• rule KEMTLS_SAUTH_OR_MUTUAL_ClientAction1:3 Generate and send the client’s
first outgoing message (ClientHello) in a KEMTLS-sauth or KEMTLS-mutual
execution (these have the same first flow). Record action facts for this instance’s
Role and the contributive identifier (CID) for stage 1.

• rule KEMTLS_SAUTH_ServerAction1:4 Upon receipt of a ClientHello, generate
the server’s two first outgoing message (ServerHello, ServerCertificate). Com-
pute stage 1 and 2 keys (CHTS, SHTS). Record action facts for: this instance’s
Role; Owner; Peer = anonymous; contributive and session identifiers (CID, SID)
for stage 1 and 2 keys; status Accept of stage 1 and 2; ProtocolMode = sauth_-
or_mutual for stage 1 and 2; the stage keys of stage 1 and 2 (SK); and the claimed
forward secrecy properties (FS) of the stage 1 and 2 keys as of stage 1 and 2
acceptance.

• rule KEMTLS_SAUTH_ClientAction2:5 Using the internal state saved by KEMTLS_-
SAUTH_OR_MUTUAL_ClientAction1, and upon receipt of ServerHello, Server-
Certificate, with ServerCertificate containing a public key registered by
KEMTLS_KEM_s_KeyGen for a server B, decapsulate the ephemeral shared secret,
encapsulate against the server’s long-term public key, and generate the client’s
outgoing messages ClientKEMCiphertext, ClientFinished. Compute stage 3,
4, and 5 keys (CAHTS, SAHTS, CATS). Record action facts for: this instance’s
Owner = anonymous; Peer = B; contributive and session identifiers (CID, SID) for

1Source code protocol/kemtls_keygen.spthy
2Source code model/oracles.spthy
3Source code protocol/kemtls_sauth_or_mutual_client.spthy
4Source code protocol/kemtls_sauth_server.spthy
5Source code protocol/kemtls_sauth_client.spthy
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stage 1–5 keys; status Accept of stages 1–5; ProtocolMode = sauth_or_mutual
for stages 1–4 and sauth for stage 5; the stage keys of stages 1–5 (SK); and the
claimed forward secrecy properties (FS) of the stage 1–5 keys as of acceptance of
stages 3–5.

• rule KEMTLS_SAUTH_ServerAction2Part1:4 This server action rule is split in two:
part 1 takes as input ClientKEMCiphertext, part 2 takes as input ClientFinished
but requires that ClientFinished be authentic; by splitting the rule we allow the
stage 3 and 4 keys to be accepted even if stage 5 rejects due to an invalid Client-
Finished. Using the internal state saved by KEMTLS_SAUTH_ServerAction1, and
upon receipt of ClientKEMCiphertext, decapsulate using the server’s long-term
secret key. Compute stage 3 and 4 keys (CAHTS, SAHTS). Record action facts for:
contributive and session identifiers (CID, SID) for stage 3, 4 keys; status Accept of
stages 3, 4; ProtocolMode = sauth_or_mutual for stages 3, 4; the stage keys of
stages 3, 4 (SK); and the claimed forward secrecy properties (FS) of the stage 3, 4
keys as of acceptance of stages 3, 4.

• rule KEMTLS_SAUTH_ServerAction2Part2:4 Using the internal state saved by
KEMTLS_SAUTH_ServerAction2Part1, and upon receipt of a valid ClientFinished,
generate the server’s outgoing message ServerFinished. Compute stage 5 and 6
keys (CATS, SATS). Record action facts for: contributive and session identifiers
(CID, SID) for stage 5, 6 keys; status Accept of stages 5, 6; ProtocolMode = sauth
for stages 1–6; the stage keys of stages 5, 6 (SK); and the claimed forward secrecy
properties (FS) of the stage 1–6 keys as of acceptance of stages 5, 6.

• rule KEMTLS_SAUTH_ClientAction3:5 Using the internal state saved by KEMTLS_-
SAUTH_OR_MUTUAL_ClientAction2, and upon receipt of a valid ServerFinished.
Compute stage 6 key (SATS). Record action facts for: contributive and session
identifiers (CID, SID) for stage 6 key; status Accept of stage 6; ProtocolMode =
sauth for stages 1–6; the stage key of stage 6 (SK); the claimed forward secrecy
properties (FS) of the stage 1–6 keys as of acceptance of stage 6; and the explicit
authentication (AUTH) of stages 1–6 as of acceptance of stage 6.

Notice the retroactive upgrading of certain properties such as protocol mode and
forward secrecy once later stages accept, for example in ServerAction2Part2 and
ClientAction3.

E. Multi-stage security definitions of KEMTLS(-PDK)

Tables 3 and 4 show the instantiation of the forward secrecy parameters for the KEMTLS
and KEMTLS-PDK protocol modes under consideration.

• authC ∈ {1, . . . , M,∞}M : at which stage each stage in a client session is considered
authenticated, or never (∞) (e.g., if authC [3] = 6, then stage 3 is considered
authenticated once stage 6 accepts;
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Figure 3: States and transitions for Tamarin KEMTLS model of Section 4.

Legend: Party state: Input/output message: SCRT Session key:
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KEMTLS KEMTLS
Parameter Server-only auth. Mutual auth.

authC (6×6) same as server-only auth.
authS (∞×6) (5×5,∞)

FSC



wfs1 wfs1 wfs1 wfs1 wfs1 fs
wfs1 wfs1 wfs1 wfs1 fs

wfs2 wfs2 wfs2 fs
wfs2 wfs2 fs

wfs2 fs
fs


same as server-only auth.

FSS FSS
i,j = wfs1 for all j ≥ i



wfs1 wfs1 wfs1 wfs1 fs fs
wfs1 wfs1 wfs1 fs fs

wfs1 wfs1 fs fs
wfs1 fs fs

fs fs
fs


replay (nonreplayable×6) same as server-only auth.

Table 3: Model parameters for KEMTLS

• authS ∈ {1, . . . , M,∞}M : similar to authC , but for server sessions;

• FSC ∈ {0, wfs1, wfs2, fs}M×M : FSC
i,j is the type of forward secrecy expected in a

client session’s stage i assuming stage j has accepted;

• FSS ∈ {0, wfs1, wfs2, fs}M×M : similar to FSC , but for server sessions;

• replay ∈ {nonreplayable, replayable}M : whether a stage is expected to be unique
against replay attacks or not.

A protocol satisfies the multi-stage security model for particular model parameters as
above if, after interacting with honest parties via the oracles above, either:

(a) all tested sessions remain fresh, and the adversary correctly guesses the hidden bit
b used in the Test oracle; or

(b) some non-replayable stage at an honest party has maliciously accepted, meaning
the stage has accepted but there does not exist a unique partner session, and the
intended peer’s long-term key was not revealed via Corrupt before the stage was
considered authenticated as indicated by the auth vector.

The definition of fresh in clause (a) is specialized based on the FS and replay parameters
of the model. As per [35, Defn. 2], stage i of a session π is considered fresh if:

1. the stage i key was not revealed (no Reveal(π, i) query); and

2. the stage i key of the partner session, if it exists, was not revealed; and

3. if stage i is replayable: the peer’s long-term key was never corrupted (no Corrupt(π.pid));
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KEMTLS-PDK KEMTLS-PDK
Parameter Server-only auth. Mutual auth.

authC (4×4,∞) (4×4,∞)
authS (∞×5) (5×5)

FSC


0 0 0 0 0

wfs2 wfs2 fs fs
wfs2 fs fs

fs fs
fs

 same as server-only auth.

FSS


0 0 0 0 0

wfs1 wfs1 wfs1 wfs1
wfs1 wfs1 wfs1

wfs1 wfs1
wfs1




0 0 0 0 0

wfs1 wfs1 wfs1 fs
wfs1 wfs1 fs

wfs2 fs
fs


replay (replayable, nonreplayable×4) same as server-only auth.

Table 4: Model parameters for KEMTLS-PDK

4. and, based on the expected FS value for this stage:
a) no forward secrecy: the peer’s long-term key was never corrupted;
b) weak forward secrecy 1: some stage j ≥ i of π has accepted and has FSi,j = wfs1,

and π has a contributive partner at stage i;
c) weak forward secrecy 2: some stage j ≥ i of π has accepted and has FSi,j =

wfs2, and either (i) π has a contributive partner at stage i or (ii) the peer’s
long-term key was never corrupted;

d) forward secrecy: some stage j ≥ i of π has accepted and has FSi,j = fs, and
either (i) π has a contributive partner at stage i or (ii) the peer’s long-term
key was not corrupted before π accepted stage j.

F. Performance of the model of Section 4

Table 5 shows the run-time for the various lemmas, for each KEMTLS variant on its own,
and when all four KEMTLS variants are run simultaneously Tamarin was restricted to
using 16 cores, and the times shown are wall-clock time. Total CPU time will be greater
than the wall-clock time, but typically less than 16× wall-clock time since Tamarin hits
communication bottlenecks preventing it from loading all cores to 100%. Results are
measured on the same system as in Appendix C, with tamarin-prover version 1.16.1.

Appendix C clearly shows that the mutual versions of the protocols require a bit more
work for Tamarin than the server-authenticated protocols. Interestingly, this difference is
more pronounced for KEMTLS than it is for KEMTLS-PDK. This might be because in
KEMTLS, mutual authentication requires the exchange of significantly more messages.
We also see how deniability for mutual authentication is much harder to prove than

31



Lemma KEMTLS KEMTLS-PDK All 4

sauth mutual both sauth mutual both variants

reachable_* 01:17 01:20 04:32 01:46 01:36 04:40 13:25
attacker_works_* 00:17 00:46 01:16 00:17 00:23 00:53 12:04
match_* 01:02 01:22 02:55 00:55 01:14 02:46 09:53
sk_sec_nofs_client 00:05 00:07 00:16 00:05 00:05 00:14 00:41
sk_sec_nofs_server 00:05 00:06 00:12 00:05 00:06 00:14 00:40
sk_sec_wfs1 00:21 00:10 01:05 00:17 00:18 00:41 03:00
sk_sec_wfs2 00:36 00:28 01:30 00:28 00:22 01:23 24:28
sk_sec_fs 01:20 03:05 06:38 01:21 01:33 05:07 1:39:58
malicious_accept. 00:13 01:40 04:13 00:17 00:22 01:39 27:29:37
deniability (abbr.) 01:02 12:15 — 00:24 29:10 — —
Total (excl. den.) 05:16 09:05 22:38 05:30 06:00 17:38 30:13:46

Table 5: Wall-clock run-time (hh:mm:ss) for Tamarin proofs of lemmas from Section 4

deniability of unilaterally authenticated KEMTLS(-PDK). Finally, proving the security
properties for more than a single protocol has a large effect on the runtime, as we expect
given the opportunities for cross-protocol interaction.
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