
Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls

Chengjun Cai
City University of Hong Kong
Dongguan Research Institute

Yichen Zang
City University of Hong Kong

Cong Wang
City University of Hong Kong

Xiaohua Jia
City University of Hong Kong

Qian Wang
Wuhan University

ABSTRACT
Owner-centric control is a widely adopted method for easing own-
ers’ concerns over data abuses and motivating them to share their
data out to gain collective knowledge. However, while many control
enforcement techniques have been proposed, privacy threats due
to the metadata leakage therein are largely neglected in existing
works. Unfortunately, a sophisticated attacker can infer very sensi-
tive information based on either owners’ data control policies or
their analytic task participation histories (e.g., participating in a
mental illness or cancer study can reveal their health conditions).
To address this problem, we introduce Vizard, a metadata-hiding
analytic system that enables privacy-hardened and enforceable con-
trol for owners. Vizard is built with a tailored suite of lightweight
cryptographic tools and designs that help us efficiently handle an-
alytic queries over encrypted data streams coming in real-time
(like heart rates). We propose extension designs to further enable
advanced owner-centric controls (with AND, OR, NOT operators)
and provide owners with release control to additionally regulate
how the result should be protected before deliveries. We develop
a prototype of Vizard that is interfaced with Apache Kafka, and
the evaluation results demonstrate the practicality of Vizard for
large-scale and metadata-hiding analytics over data streams.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Secure data analytics; End-to-End control; Metadata privacy

1 INTRODUCTION
In today’s society, healthcare, business decisions, and government
operations all heavily rely on the availability of data and advanced
analytic tools for accurate decision-making. However, data is of-
ten fragmented and stored locally by individuals, and the raising
concerns over data leakage and unauthorized sharing [51, 87] have
made it very difficult to motivate individuals to share their sensi-
tive data. Traditionally, once the data is shared out, it goes out of
the hands of the owners, and it can be copied, traded, or abused
in uncontrollable manners. In a recent Pew Research survey [64],
80% and 64% respondents have concerns about how companies and
governments use their data. Most respondents feel that they have
little or no control over how their data is used. To remedy this se-
vere problem, a long line of works [39, 60, 69, 76] has been devoted
to constructing privacy frameworks that allow owners to define

their privacy preferences and regulate data usage. But most works
above need the deployment of trusted hardwares to enforce owners’
policies. For many real-world data processing systems that do not
apply trusted hardwares (like Apache Kafka [54]), they would still
operate in a notice and consent mode [19] and rely on centralized
trusted authorities for policy enforcement. However, many con-
cerning data breach and misuse incidents are due to the abuse of
such trusted authorities, as reported in [75].

Apart from the lack of privacy-preserving and enforceable data
analytic tools that do not rely on centralized trust, it is also worth
pointing out that those data policies would enlarge the attack sur-
face and help an attacker infer owners’ sensitive data. Consider an
owner Alice decides to authorize his data to an analytic task 𝑞. Even
though Alice can encrypt his data for confidentiality protections,
with side information that 𝑞 is initiated by a psychiatrist (possibly
by looking up information about 𝑞 on social media or the Internet),
an attacker can readily learn that Alice’s data will be used by a
psychiatrist and thus Alice might suffer from mental illness. The
first attempt to hide such policy-related metadata is to encrypt the
data policies and later adopt secure computation techniques on the
server side (e.g., outsourced multi-party computation [6, 12, 62]) to
privately decrypt and use the data policy. However, this approach
can only preserve the confidentiality of the underlying computation
process. A curious server can still determine whether an owner’s
data have been used for a given task by observing other metadata
like data access patterns, and infer the same amount of sensitive
information about the owner as before [25, 52].

The above metadata leakage problem relates to a line of security
works that strike to preserve oblivious data access - hiding which
data have been accessed or used for a query execution. Traditionally,
we can attach oblivious RAM (ORAM) [46] with secure computation
techniques [1, 34, 56] to fulfill our privacy goals for both the data and
its metadata. However, most ORAM constructions existed today
focus only on a single owner setting or would rely on trusting
a proxy to maintain the encrypted RAM storage. Those ORAM
constructions that support multi-owner settings [57, 58] would
generally incur heavy computation costs, making them difficult to
adopt in real deployments. We note that a recent work from Chen et
al. [25] has vastly improved the performance, but they still require
a few seconds to handle each oblivious data access request.

In this paper, we present Vizard1, an efficient and metadata-
hiding data analytic system that provides full-fledged privacy preser-
vation and enforceable control to data owners. Vizard makes cus-
tomized use of a suite of lightweight cryptographic techniques

1Vizard is a type of mask used in the 16th century for disguise or protection.

Conference’17, July 2017, Washington, DC, USA Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, and Qian Wang

to meet the above goals, and proposes new designs to further ac-
commodate the needs of practical data stream processing systems
that are emerging today. According to our evaluations, the newly
added metadata-hiding feature in Vizard only brings around 1.12×
to 1.26× overhead compared to Zeph [19], which is a state-of-the-
art privacy-enforced and real-time data stream analytic system
without metadata protections. Overall, it would take around 4.6𝑠 in
Vizard to securely handle a policy-controlled analytic query over
10𝑘 owners and a time-window of 100 data stream ciphertexts. We
further integrate Vizardwith Apache Kafka [54] to boost our ability
to handle large-scale stream submissions, and this new architecture
improves system performance up to 1.8× compared to the baseline.
Vizard’s Architecture. Vizard considers a classic setting where
each owner communicates with two non-colluding servers [12, 25,
27, 34, 62] to outsource their data submissions and execute the
analytic tasks. Like previous works, we protect the confidentiality
of owners’ data and policies as long as an attacker can compro-
mise at most one server. Here to further fulfill end-to-end controls,
Vizard enables release policies for the query results given by the
two servers and enforces them through a decentralized byzantine-
secure committee (as inspired by a recent secure data analytic
framework [66]). Finally, data consumers will contact the commit-
tee for result retrievals and obtain the policy-enforced results.

Importantly, note that Vizard aims only to hide metadata leakage
during the query execution phase but not the data stream submis-
sion phase. We thus need all owners to upload their data streams
at a fixed frequency to avoid other timing-related pattern leak-
ages [40]. Fortunately, this is readily achievable in our targeted
data stream setting with synchronized epochs, and each server will
order owners’ data submissions based on the epoch number.

1.1 Overview of Our Techniques
We now sketch the technical ideas behind the constructions of
Vizard. Our first observation is that our targeted problem relates to
a simpler but independent problem that studies how to compute
private subset histogram, as inspired by Boneh et al. [12]. In this
problem, each owner 𝑖 holds a string 𝑥 and the servers hold a
small set 𝑄 of strings. The technique for computing private subset
histogram reveals, for each string 𝜎 ∈ 𝑄 , how many owners hold 𝜎
without leaking each owner’s secret string. Recent works [12, 15]
have explored a very efficient and metadata-hiding way to solve
this problem with the help of a cryptographic tool called distributed
point function (DPF) [14], which is essentially a secret-shared and
compressed point function that has only one non-zero output (e.g.,
the output equals 1 for computing subset histogram).

Intuitively, by setting the non-zero output in a pair of DPF keys
as each owner’s data and utilizing the string 𝑥 for recording each
owner’s policy descriptions (e.g., which query task can use his data),
we can thus achieve policy-controlled and metadata-hiding analytic
from theDPF-based private subset histogram process above. Now, to
aggregate all policy-matched owners’ data, the servers need only to
use the associated description string of an incoming query (e.g., its
task name) as input to evaluate all owners’ DPF keys and aggregate
the outputs. Despite being feasible, this basic construction is far
from practical for real deployments. In particular, we need to solve
the following three challenging problems.

Challenge 1: Data Stream Support with DPF. Current DPF
schemes only allow each owner to embed one specific output in a
pair of DPF keys. Therefore, the basic construction above would
incur continuous (and burdening) DPF key construction costs on
the owner side if we directly apply it for handling data streams.
Our Solution: Observing that, unlike the data values which will
change at every epoch, the data policy specified by each owner
might remain unchanged for a long time, meaning that most parts
of the DPF key generation process (except the embedded data) are
“redundant”. In view of this, Vizard starts by decoupling data values
from the DPF keys. Because the data values are stored outside of
the DPF keys, we can allow the two servers to self-aggregate the
requested data values in advance (e.g., for a time-window covering
several epochs), so that only a single data value will be used as input
for each owner in subsequent analytics.Vizard stores a single pair of
DPF keys for each owner (as long as an owner’s data policy remains
unchanged) and only uses them to secretly embed controlling values
of 0 or 1 when we go through all owners’ data values. Ideally,
assuming there are𝑈 owners, and the data value and controlling
value of owner 𝑖 are𝑑∗

𝑖
and𝑇𝑖 respectively, what we need to compute

is thus
∑𝑈
𝑖 𝑇𝑖 · 𝑑∗𝑖 . This resulting value is equal to the summation

of all policy-matched owners’ data values, since 𝑇𝑖 = 1 only if the
query matches owner 𝑖’s policy.

The above idea is inspired by recent DPF-based private infor-
mation retrieval schemes [40, 77] that require identical copies of
a plaintext database on the two servers. To utilize it in our setting
where data confidentiality should also be protected, Vizard crafts a
new two-server homomorphic stream encryption scheme (in Sec-
tion 4.1) to encrypt those data values with a secret key that is jointly
generated by the two servers (but is not known to either server),
as inspired by Doerner et al. [34]. Our encryption scheme outputs
encrypted (but additive) database copies on the two servers, and
we can apply the same technique as above to efficiently conduct
secure policy-controlled analytics over data streams.
Challenge 2: Rich Data Policy Supports. Supporting a simple
policy condition, i.e., 𝑥 = 𝜎 , is not enough. In reality, owners might
want to construct more fine-grained policies by combining multiple
conditions with various operators like AND, OR, and NOT. For
example, an owner might want to authorize his data to consumers
that are 1) type= hospitals AND 2) region=EU.
Our Solution. Vizard enables support for all those three essential
operators. Vizard starts by following a DPF-based query frame-
work [77] (which supports secure AND and OR queries over plain-
text database) to modify the policy constructions of each owner,
so that the controlling value (i.e., 1 or 0) can properly reflect the
policy logic defined by the underlying operators. Vizard improves
upon prior work [77] and reduces the computation costs when
evaluating policies defined with AND and OR operators (via the use
of hash digests and cuckoo hashing, as shown in Section 4.3). Our
optimized designs ensure that the two servers can only evaluate
a constant amount of DPF keys even when the number of policy
conditions scales. In addition, Vizard further supports NOT oper-
ator for owners to conveniently rule out infamous or unwanted
consumers, which is done by securely inverting the controlling
values with secret shares of the value 1.

Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls Conference’17, July 2017, Washington, DC, USA

Consumer

Analytic Queries

Result

Online
Query

Interface
Secure Data

Processing Pipeline

Server 1 Server 2

Result Release Control

Data Policy

Data
Upload

Interface

Encrypted Data
Streams

Release Policy

Data Owner Output

Figure 1: The architectural vision of Vizard.

Challenge 3: End-to-End Controls. In addition to enabling own-
ers to define data policies that privately regulate how their data
should be used, providing meaningful controls on how the analytic
results should be released [86] is also desirable for enhancing owner
protection. The challenge, however, is to enforce the result release
control process without centralized trust.
Our Solution. Here in our current implementations, we have iden-
tified and provided three new types of release policies to owners,
i.e., 1) integrity-based release policy that attests policy enforcement
and result integrity via correctness proofs given by the servers;
2) privacy-based release policy that adds an appropriate amount of
noises to the result for differential privacy (DP); and 3) payment-
based release policy that enforces monetary rewards for the owners
before releasing the results. Here to avoid allocating trust in a cen-
tralized third party, Vizard follows an emerging trend and relies
on a decentralized committee (with honest majority) to jointly en-
force the policies above [66, 67]. Each trustee in the committee
will execute policy-specific and byzantine-secure operations to in-
dependently conduct result release controls, and data consumers
will obtain the results only if the majority of trustees approve their
requests.

1.2 Summary of Contributions
The main contributions made in this paper are as the following:
• A new metadata-hiding and policy-controlled analytic system in
the two-server setting.
• Optimized extension methods to support rich data policies (i.e.,
with AND, OR, and NOT operators).
• Decentralized result release control and lightweight construc-
tions for integrity, privacy, and payment related release policies.
• Implementation and evaluation of a prototype of Vizard that is
interfaced with Apache Kafka [54].

2 PROBLEM STATEMENT
This section describes Vizard’s system model, threat assumptions,
and goals.

2.1 System Model
As depicted in Figure 1, there are four types of logical parties in
Vizard, i.e., data owner, data consumer, a secure data processing
pipeline, and a result release control committee (RRC).
• Data owners are contributors who will continuously send en-
crypted data streams to Vizard (e.g., heart rates from a wearable

device) for collective analytics. Along with their data, data own-
ers can specify data policy to regulate the data usage and define
release policy that jointly regulates the result release process.
• Data consumers are players who aim to learn collective knowl-
edge (e.g., daily averaged heart rates in a specific region) by
making queries to our system. Vizard’s goal is to generate such
knowledge in a policy-controlled and private manner.
• The secure data processing pipeline is a core computational
component in Vizard, which securely operates on owners’ data
streams and generates the requested analytic results.
• The result release control committee (RRC) is formed by a set of
stakeholders (e.g., owners, government agencies, or other third
parties) to enforce data owners’ release policies.

2.2 Threat Assumptions
Our secure data processing pipeline follows the emerging secure
two-party computation threat model [12, 25, 40] (to list just a few)
and assumes two service servers that will not collude with each
other or any other party in Vizard (e.g., servers from two different
cloud providers). But beyond the non-colluding assumptions, the
two servers might try to independently infer or learn sensitive infor-
mation about each data owner’s data due to various interests. For
honesty assumptions, rather than following a semi-honest setting
and assuming totally correct executions from those two servers,
we consider that they are rational economic players whose execu-
tion correctness could be questioned [30, 47, 72]. For example, they
might be “lazy” servers that could avoid paying CPU and storage
costs associated with our query process and return only partial or
entirely incorrect results. For data consumers that aim to obtain
useful insights over the collected data streams, they might also be
interested in learning each data owner’s sensitive information (like
data or metadata).

Data owners are the contributors and beneficiaries (if we con-
sider payment rewards from the consumers) in Vizard, and thus
we assume that they will behave honestly to retain Vizard’s reputa-
tion (so as to compete with other analytic services in the market).
We will further discuss in Section 8 on how to effectively address
potentially malicious data owners who would intentionally upload
malformed (out-of-range) data inputs [12, 27]. For the RRC that is
operated in a federated manner by a group of trustees, we assume
a standard Byzantine security setting where, at any given time,
at least 𝑡 = 2/3 of the trustees are honest and not compromised
by an attacker [55, 83]. Compromised trustees might deviate from
the protocol and conduct arbitrary behaviors to jeopardize our
enforcement on data owners’ release policies.

In Vizard, we also assume a secure channel (e.g., TLS) and the ex-
istence of a public-key infrastructure (PKI) for each data owner and
consumer to establish secure connections with Vizard. Data owners
can further utilize existing anonymity networks (e.g., Tor [33] or a
trusted VPN proxy) to hide their IP addresses and achieve better
anonymity protections. Lastly, we assume there are out-of-bound
secure communication channels between any two parties in our
system for exchanging data secrets whenever needed.

Conference’17, July 2017, Washington, DC, USA Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, and Qian Wang

2.3 System Goals
We aim to bring effective data analytic services to data consumers
while assuring full-fledged privacy and control for data owners. In
particular, we want to achieve the following system goals in Vizard:
• Data Confidentiality. No party except the corresponding data
owners can learn the contributed raw data streams, and the data
consumer who initiated the query can only learn about an aggre-
gated view of those raw data streams.
• Metadata Protection. Given a query request from a data con-
sumer, we want to hide the data access pattern during the query
executions, i.e., no party can know which data owners’ data
streams have been used to generate the result.
• Release Policy Enforcements. Given a release policy that is
jointly defined by data owners, Vizard aims to enforce that every
query result is released to the data consumer only if it fulfills the
release policy.
• Data Stream Support. Vizard aims to efficiently support data
streams that are continuously generated from data owners, and
enable time-window-based analytic queries for data consumers.
• Rich Data Policies.We also want to support a variety of flexible
owner-centric data policies and ensure that they can work effec-
tively and efficiently with our secure data processing pipeline.

3 BACKGROUND
This section introduces the background of existing techniques that
we leverage to craft our solutions. Consider the following simplified
setting: there are𝑈 data owners, and each owner 𝑖 holds a data 𝑑𝑖
and a policy string 𝑃𝑖 that indicates the owner’s preferences on data
usage regulations. (For example, a data owner can specify that only
a consumer located in the EU can use his data.) Now, a consumer
can make an analytic query 𝑞 (together with a description string 𝜎 ,
e.g., his location) to our system. Given 𝑞, we want to privately find
the policy-matched owners and aggregate their data.
Distributed Point Function (DPF). DPF is an emerging and
privacy-aware solution for accomplishing the above requirement.
At a high level, DPF is constructed by secret sharing a point function
𝑓 (which evaluates to zero only except one single secret element)
into two function shares (say 𝑓𝐴 and 𝑓𝐵), and each of them is given
to one of the two servers. Each function share will not reveal the
secret element anchored in 𝑓 , but the summation of their outputs
at any point is the corresponding output value of 𝑓 .

More formally, let 𝑓𝛼,𝛽 : [𝑁] → F be a point function such that
𝑓 (𝛼) = 𝛽 and 𝑓 (·) equals zero at any other points. A DPF consists
of two algorithms (Gen, Eval). 1) DPF.Gen(𝛼, 𝛽) → (𝑘0, 𝑘1): Given
inputs 𝛼 and 𝛽 , generates two DPF keys 𝑘0 and 𝑘1 that define the
two function shares of the point function 𝑓 ; 2) DPF.Eval(𝑏, 𝑘𝑏 , 𝜎 ∈
[𝑁]) → F: Given an input string 𝜎 , outputs value of the function
share (for 𝑏 ∈ {0, 1}) indexed by 𝜎 . DPF guarantees that for any
correctly constructed keys (𝑘0, 𝑘1):
• DPF.Eval(𝑘0, 𝜎) + DPF.Eval(𝑘1, 𝜎) = 𝛽 only if 𝜎 = 𝛼 , and the
output equals zero otherwise.
• Any attacker that compromises only one of the two servers can
learn nothing about the secret index 𝛼 or the value 𝛽 embedded
in the DPF key shares.
Here, we will use the latest DPF construction by Boyle et al. [15]

as a black-box tool in our designs for its effectiveness. We can

further adopt system-level optimization techniques like parallel
sub-tree traversing [32] and one-way compression functions [77]
to boost the evaluation process.
From DPF to Policy-Controlled Private Summations. The
powerful DPF primitive above can readily help us build a private
summation service that not only protects both the data values and
policies, but also hides the data access metadata (i.e., which owners
participate in a given query).

Specifically, consider now for the data owner 𝑖 ∈ {1, . . . ,𝑈 } that
holds data 𝑑𝑖 and policy 𝑃𝑖 as we described before, owner 𝑖 can
generate a pair of DPF keys with string 𝑃𝑖 as the secret index and 𝑑𝑖
as the corresponding value, via (𝑘0𝑖 , 𝑘1𝑖) ← DPF.Gen(𝑃𝑖 , 𝑑𝑖). Each
data owner then gives DPF key 𝑘0𝑖 to server 0 and key 𝑘1𝑖 to server
1. This DPF ensures that the sum of two servers’ outputs is the
embedded value 𝑑𝑖 only at the position indexed by 𝑃𝑖 , and will
equal zero at any other positions.

Therefore, to compute the summation of policy-matched owners’
data values, for each query 𝑞, server 𝑏 (𝑏 ∈ {0, 1}) first fetches the
task description 𝜎 , and then evaluates all data owners’ DPF values
shared at position indexed by 𝜎 , via

sum𝑏 ←
𝑈∑︁
𝑖

DPF.Eval(𝑘𝑏𝑖 , 𝜎) ∈ F.

Server 𝑏 can then publish the value share sum𝑏 to the other server.
It is easy to understand that the sum of the values published by the
two servers, i.e., sum0 + sum1, is the result we desired for query 𝑞.
Thanks to DPF’s inherent protections for both the value and the
secret index, any attacker that can compromise at most one of the
two servers can learn nothing about each owner’s data submission
and which owners have participated in a given query. Based on this
simple yet efficient construction, we then show how we can extend
it to support data streams and other enriched functionalities:

(a) In Section 4.1, we propose a refined construction to enable
more effective data stream supports and show how to enable
other aggregation functions (like variance, median, max, min)
with owner-side encoding techniques.

(b) In Section 4.3, we show how to enable enriched data policies
other than the simple exact match relation (e.g., 𝑃 = 𝜎) shown
above (by supporting AND, OR, and NOT operators).

(c) In Section 5, we further enable owners to jointly define release
policies that control how the result should be released and
show how to enforce them with decentralized trust.

4 METADATA-HIDING ANALYTICS OVER
DATA STREAMS

Here to support policy-controlled private summations over data
streams (e.g., {𝑑0

𝑖
, 𝑑1

𝑖
, . . . , 𝑑

𝑗
𝑖
}, where 𝑗 represents the epoch number)

based on our previous initial design, a straightforward idea is to
create a pair of DPF keys for every streamed data in the pipeline,
and let the two servers manually select the corresponding DPF
keys for query executions. For example, given a stream of DPF keys
{𝑘𝑡0

𝑏𝑖
, 𝑘

𝑡1
𝑏𝑖
. . . , 𝑘

𝑡 𝑗

𝑏𝑖
}, 𝑏 ∈ {0, 1} from owner 𝑖 and a query 𝑞 that asks

for data at epoch 𝑡𝑚 , each server 𝑏 can fetch all DPF keys associated
with epoch 𝑡𝑚 and execute the DPF evaluation process accordingly.

Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls Conference’17, July 2017, Washington, DC, USA

DPF Key Share 𝑘 𝐶 𝐶
…

Data Stream Ciphertexts

𝑡 𝑡 𝑡…

Timeline

Policy Control

𝐶

…
Server 𝑏

Client 𝑖

Figure 2: Our refined data storage structure (for data streams
contributed by owner 𝑖) at each service server.

While being feasible, this straightforward idea would become
highly inefficient if a query asks for data values in a longer time-
window (e.g., 𝑒 = 100 epochs), as the DPF evaluation costs grow
linearly with the underlying time-window size (i.e., needs 𝑒 · 𝑈
times of DPF evaluations). Besides, data owners need to bear the
continuous DPF key generation costs during every data submission
process, which would also be highly undesirable.

4.1 Our Refined Construction for Data Streams
For the challenging issue above, our observation is that while the
data stream values change over time, the data policies defined by
each data owner could remain unchanged for a very long period
(after an initial setup process). Therefore, the secret index of the
DPF keys generated over different epochs might remain the same.
Based on this important observation, our key idea is to decouple
data values from the DPF keys and construct a refined storage
structure for better managing each owner’s data submissions (and
facilitating subsequent analytic process).

As shown in Figure 2, each server will store only the latest DPF
key share from every owner, and the data streams contributed by
the owner are ordered by their epoch numbers and stored directly
on the server. That is, the DPF keys are used now only as a secure
indicator for matching the embedded data policy with analytic
queries, but not for embedding the actual data stream values any-
more. Here for those data stream values, we follow a highly-scalable
ROM structure [34] and store encrypted copies of data stream val-
ues on the two servers (i.e., both servers store encrypted data stream
values {𝐶0

𝑖
, . . . ,𝐶

𝑗
𝑖
}). Next, we describe how to construct this re-

fined storage structure via our lightweight encryption construction
below, and how to further enable efficient and policy-controlled
summation queries atop this refined storage structure.
Two-server Homomorphic Stream Encryption.We build our
solution by following an existing symmetric homomorphic stream
encryption (SHSE) scheme [18] that can preserve data confidential-
ity while allowing direct operations over the stream ciphertexts.

Specifically, the SHSE scheme works as the following. Consider
stream data values {𝑑0, 𝑑1, . . . , 𝑑 𝑗 , 𝑑 𝑗+1} are submitted for epoch
{𝑡0, 𝑡1, . . . , 𝑡 𝑗 , 𝑡 𝑗+1} respectively, and they are integers modulo 𝑀
(e.g., with size 264). Now, given a master key 𝑔∗ and a secure keyed
pseudo-random function (PRF) 𝐹𝑔∗ that maps each epoch number
𝑡 𝑗 to a random key 𝑔∗

𝑗
in the range [0, 𝑀 − 1], we can then encrypt

each data 𝑑 𝑗 (annotated with epoch 𝑡 𝑗) via

𝐸𝑛𝑐 (𝑔∗, 𝑡 𝑗−1, 𝑡 𝑗 , 𝑑 𝑗) = (𝑡 𝑗 , 𝑡 𝑗−1, 𝑑 𝑗 + 𝐹𝑔∗ (𝑡 𝑗) − 𝐹𝑔∗ (𝑡 𝑗−1))
= (𝑡 𝑗 , 𝑡 𝑗−1, 𝑑 𝑗 + 𝑔∗𝑗 − 𝑔

∗
𝑗−1 mod𝑀).

In the rest of this paper, we will deduct the epoch number 𝑡 𝑗 and
𝑡 𝑗−1 in the ciphertexts generated by SHSE as far as the context is

Server 0 Server 1Client 𝑖

𝑡 , 𝑑

𝑑 , 𝑑 ← 𝑆𝑆(𝑑)

𝑑

Choose 𝑔 Choose 𝑔

𝑑

𝐶 ≔ 𝐶 + 𝐶𝐶 ≔ 𝐶 + 𝐶

𝐶 ≔ 𝐸𝑛𝑐 (𝑔 , 𝑡 , 𝑡 , 𝑑) 𝐶 ≔ 𝐸𝑛𝑐 (𝑔 , 𝑡 , 𝑡 , 𝑑)

𝐶𝐶
𝑘

𝐶

𝐶

𝐶

…

𝑘

𝐶

𝐶

𝐶

…

𝑡

𝑡

𝑡

…

𝑡

𝑡

𝑡

…

Figure 3: Diagram of our two-server homomorphic stream
encryption construction.

clear. Note that the ciphertexts outputted from this SHSE scheme
are additive via modular additions. Therefore, to compute a query
𝑞𝑚 that covers epochs [𝑡 𝑗 , 𝑡𝑙], we can now significantly reduce the
cost by asking each server to first locally aggregate each owner’s
corresponding encrypted data values. Also, we can decrypt the
aggregated ciphertext for time-window [𝑡 𝑗 , 𝑡𝑙] by computing only
𝑘 𝑗−1 = 𝐹𝑔∗ (𝑡 𝑗−1) and 𝑘𝑙 = 𝐹𝑔∗ (𝑡𝑙), as the inner keys cancel out [19].

But how to use this effective SHSE scheme in a two-server set-
ting? At first glance, it might appear that we can readily ask each
data owner to generate a random PRF master key in the setup stage
and use that key to encrypt the data stream values before sending
them to the two servers. However, this idea would apparently cause
problems when aggregating (and decrypting) over ciphertext values
uploaded from different owners (as the PRF keys are different). Be-
sides, the symmetric nature of this SHSE scheme naturally prevents
us from allowing owners to jointly agree on a universal PRF master
key (e.g., through a third-party provider [19]), as any compromised
party can lead to disastrous privacy incidents.

With those concerns in mind, we thus propose to encrypt those
values with a key jointly generated by the two servers. At a high
level, inspired by the “stash-and-refresh” technique in [34], we
construct our encryption process via the following two steps: 1)
split data value into additive shares for each server; and 2) encrypt
each share with a server’s secret key and combine their outputs,
as shown in Figure 3. Accordingly, we first ask each data owner to
secretly share his data stream value to each server. In more detail,
given a data value 𝑑 , a data owner splits it into two shares 𝑑0 and
𝑑1 by randomly choosing 𝑑0 ∈ 𝑀 and computing 𝑑1 = 𝑑 − 𝑑0 ∈ 𝑀 ,
where 𝑀 is a finite field with large group size (we denote this
additive secret-sharing scheme as 𝑆𝑆 (·)). Data share 𝑑0 is later
given to server 0 and 𝑑1 is given to server 1.

Next, to avoid the secure two-party computation (S2PC) over-
head for PRF key generation and SHSE encryption, we thus perform
the SHSE process independently at each server with a PRF key gen-
erated by the server itself, as shown in Protocol 1. They transmit
their locally encrypted ciphertext share to the other party, and both
parties can then add those shares together. The resulting ciphertext
is thus the (SHSE) encryption of 𝑑 𝑗

𝑖
(the original data stream value

Conference’17, July 2017, Washington, DC, USA Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, and Qian Wang

Protocol 1: Two-server Homomorphic Stream Encryption. There
are two servers and𝑈 data owners. Each data owner 𝑖 holds a stream
of data values {𝑑0

𝑖
, 𝑑1

𝑖
, . . . , 𝑑

𝑗

𝑖
, . . .}, and each server 𝑏 ∈ {0, 1} holds a

secret PRF key 𝑔PRF
𝑏

. The protocol uses a finite field𝑀 with a large group
size. For each epoch 𝑡 𝑗 , each owner 𝑖 wants to encrypt his value 𝑑 𝑗

𝑖
using

the keys 𝑔PRF
𝑏

, for 𝑏 ∈ {0, 1}, and replicate the result ciphertext to the
two servers.
The protocol executes as the following at epoch 𝑡 𝑗 ∈ 𝐼 :

(1) Each data owner 𝑖 ∈ {1, . . . ,𝑈 } secretly splits his prepared data
value 𝑑 𝑗

𝑖
into two shares via an additive secret-sharing scheme,

i.e., (𝑑 𝑗

0𝑖 , 𝑑
𝑗

1𝑖) ← 𝑆𝑆 (𝑑 𝑗

𝑖
) . The owner sends 𝑑 𝑗

0𝑖 to server 0 and
𝑑
𝑗

1𝑖 to server 1.
(2) For every shared data value 𝑑 𝑗

𝑏𝑖
, each server 𝑏 encrypts the value

using 𝑔PRF
𝑏

via the SHSE scheme:

𝐶
𝑗

𝑏𝑖
= 𝑑

𝑗

𝑏𝑖
+ 𝐹

𝑔PRF
𝑏

(𝑡 𝑗) − 𝐹
𝑔PRF
𝑏

(𝑡 𝑗−1)

= 𝑑
𝑗

𝑏𝑖
+ 𝑔𝑏𝑗 − 𝑔𝑏𝑗−1 mod𝑀

where 𝐹
𝑔PRF
𝑏

: 𝐼 → [0, 𝑀 − 1] is a pseudo-random function.
(3) Each server 𝑏 ∈ {0, 1} then sends the ciphertext shares
(𝐶 𝑗

𝑏0,𝐶
𝑗

𝑏1, . . . ,𝐶
𝑗

𝑏𝑈
) to the other server.

(4) Finally, for each owner 𝑖 , the two servers can obtain the result
ciphertext𝐶 𝑗

𝑖
by computing𝐶 𝑗

0𝑖 +𝐶
𝑗

1𝑖 mod𝑀 .

prepared by client 𝑖 for epoch 𝑡 𝑗) using two keys 𝑔PRF0 and 𝑔PRF1
(from server 0 and server 1, respectively), since

𝐶
𝑗
𝑖
= 𝐶

𝑗

0𝑖 +𝐶
𝑗

1𝑖 = 𝑑
𝑗

0𝑖 + 𝑑
𝑗

1𝑖 + 𝑔
0
𝑗 + 𝑔

1
𝑗 − 𝑔

0
𝑗−1 − 𝑔

1
𝑗−1

= 𝑑
𝑗
𝑖
+ (𝑔0𝑗 + 𝑔

1
𝑗) − (𝑔

0
𝑗−1 + 𝑔

1
𝑗−1) mod𝑀.

Therefore, it is easy to understand that our new two-server ho-
momorphic stream encryption design can still preserve homomor-
phism for its ciphertexts. For decrypting the ciphertexts aggregated
for a time-window [𝑡 𝑗 , 𝑡𝑙], we can also ask each server 𝑏 ∈ {0, 1} to
only generate 𝐹𝑔PRF

𝑏
(𝑡 𝑗−1) and 𝐹𝑔PRF

𝑏
(𝑡𝑙) as the decryption keys.

DPF-based Policy Control. With two identical stream ciphertext
storage at the two servers, we are now ready to introduce how we
can privately conduct data control with owners’ DPF keys, so that
only those matched ciphertexts will be used in a query. Recall that
in addition to the list of stream ciphertexts, each server 𝑏 ∈ {0, 1}
is also given a DPF key 𝑘𝑏𝑖 that encodes owner 𝑖’s data policy 𝑃𝑖 ,
so that only when the evaluation input 𝜎 = 𝑃𝑖 , then the sum of the
two servers’ DPF evaluation equals 𝛽 (which is the value embedded
by owner 𝑖). What we do is to ask owners to embed a control value
“1” at the secret position that is indexed by each of their data policy,
so that, given a policy 𝑃𝑖 from owner 𝑖 and a query described by 𝜎 ,
DPF.Eval(𝑘0𝑖 , 𝜎) + DPF.Eval(𝑘1𝑖 , 𝜎) = 1 only if 𝜎 = 𝑃𝑖 .

Now, consider a query (with description string 𝜎) that asks for
the summation over data values submitted during a time-window
[𝑡 𝑗 , 𝑡𝑙]. Let 𝑇𝑏𝑖 ← DPF.Eval(𝑘𝑏𝑖 , 𝜎) be the DPF evaluation output
from server 𝑏 ∈ {0, 1} for owner 𝑖 , server 𝑏 can 1) locally compute
owner 𝑖’s ciphertext for time-window [𝑡 𝑗 , 𝑡𝑙] via 𝐶∗𝑖 ←

∑𝑙
𝑡=𝑗 𝐶

𝑡
𝑖
,

and 2) compute its summation ciphertext share as

C𝑏 ←
𝑈∑︁
𝑖

𝑇𝑏𝑖 ·𝐶∗𝑖 mod𝑀.

(As we will prove later, the sum of 𝐶0 and 𝐶1 is the summation
ciphertext we desired for the query.)

Next, we consider how to construct the associated decryption
key for the summation ciphertext above. Recall that each ciphertext
is encrypted by keys 𝑔𝑏

𝑙
and 𝑔𝑏

𝑗−1 (𝑏 ∈ {0, 1}) from the two servers.
Therefore, assume that there are 𝑢 owners’ data values have been
matched and used in the summation, each server 𝑏 should compute
𝑢 ·𝐾𝑏 mod𝑀 (where 𝐾𝑏 = 𝑔𝑏

𝑙
−𝑔𝑏

𝑗−1 mod𝑀) as its decryption key.
Here to preserve privacy, each server 𝑏 will compute 𝑢𝑏 ←

∑𝑈
𝑖 𝑇𝑏𝑖 ,

and then use (𝑢𝑏 , 𝐾𝑏) (for 𝑏 ∈ {0, 1}) as secret inputs to a secure
two-party computation (S2PC) process to calculate

𝐷 ← (𝑢0 + 𝑢1) · (𝐾0 + 𝐾1) mod𝑀.

The output will then be securely split into two additive shares (i.e.,
𝐷0 for server 0 and 𝐷1 for server 1). After obtaining the materials
above, each server 𝑏 can then compute out𝑏 = 𝐶𝑏 − 𝐷𝑏 mod 𝑀 .
By obtaining out𝑏 (𝑏 ∈ {0, 1}), we can learn the summation of the
data values of policy-matched owners for a given query 𝑞 (with
description 𝜎 and time-window [𝑡 𝑗 , 𝑡𝑙]).

Correctness holds since

out0 + out1 =
𝑈∑︁
𝑖

𝑇0𝑖 ·𝐶∗𝑖 +
𝑈∑︁
𝑖

𝑇1𝑖 ·𝐶∗𝑖 − 𝑢 · (𝐾
0 + 𝐾1)

=

𝑈∑︁
𝑖

𝐶∗𝑖 · (𝑇0𝑖 +𝑇1𝑖) + 𝑢 · (−𝐾
0 − 𝐾1)

=

𝑈∑︁
𝑖

(𝐶∗𝑖 − 𝐾
0 − 𝐾1){𝑃𝑖 = 𝜎}

=

𝑈∑︁
𝑖

𝑑∗𝑖 {𝑃𝑖 = 𝜎}

where 𝑑∗
𝑖
:=

∑𝑙
𝑡=𝑗 𝑑

𝑡
𝑖
is the aggregated sum of owner 𝑖’s stream data

values for [𝑡 𝑗 , 𝑡𝑙]. The generated result shares can then be delivered
to the corresponding data consumer to finish the query process,
and the consumer needs only to conduct a local summation process
to combine the result shares and obtain the final result. Here in
Vizard, the generated result shares can also be securely sent to the
result release control committee (RRC) for an additional release
control process (which will be introduced in Section 5).
Proof Sketch. Given that each server that will not reveal its secret
DPF and PRF keys to the other server, our refined private summation
design ensures the privacy of data owners’ submissions (i.e., both
the data streams and policies) and securely hides their access (or
participation) histories for any given queries.

To start with, the security proof for policies andmetadata (caused
by data access leakage) directly follows from the security guarantee
of DPF. Observe that each owner’s policy is securely embedded
in the DPF keys and a query process will access all owners’ keys,
which ensures that each server cannot know which owners are
matched and used in the analytics [12, 34]. In the meantime, as the
SHSE scheme encrypts each data value with a key jointly generated
by the two servers (which cannot be learned by either server), it is
apparent that the security proof for data privacy protection follows
from the security guarantee of SHSE, which is based on the security
of the underlying PRF [18]. Moreover, each server 𝑏 cannot recover

Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls Conference’17, July 2017, Washington, DC, USA

each owner’s (aggregated) stream values from ciphertexts {𝐶∗
𝑖∈𝑈 }

during the query process, as it cannot learn the decryption key
𝐾1−𝑏 of the other server from 𝐷𝑏 (which is randomly generated
with a secure nonce known only in the S2PC process).
Complexity. Recall that the initial construction (which directly
embeds data values in DPF keys) would require the owner to con-
tinuously generate DPF keys at every epoch, causing roughly _ · 𝑁
bits of communication for each server (using a PRG with _-bit keys
and 𝑁 as the length of the underlying point function). In contrast,
our refinement design for data streams generates only a single DPF
key for each data policy and incurs |𝑀 | bits of communication cost
for transmitting a data share to each server. After receiving own-
ers’ data submissions, each server would need 𝑈 rounds of SHSE
encryption costs and a constant |𝑀 |-bit of communication to the
other server for transmitting the ciphertext share.

For executing a given query, each server can locally aggregate
ciphertexts of the identified time-window (e.g., (𝑙 − 𝑗 + 1) rounds of
aggregation for [𝑡 𝑗 , 𝑡𝑙]),𝑈 rounds of DPF evaluations and ciphertext
constructions, and one round of S2PC-based multiplication process
for calculating the decryption share. Here, such S2PC-based multi-
plication can be facilitated by owner-aided Beaver’s triplet tricks [6]
to avoid server interactions, although it would result in an extra
(amortized) 3log|𝑀 | bits sent to each server.

4.2 Aggregation Statistics beyond Summation
Vizard can support many other aggregate statistics beyond summa-
tion. Below we sketch some useful examples.

We first consider how to compute the mean of a set of policy-
matched stream values. As Vizard naturally can compute the num-
ber of matched owners by calculating a private subset histogram,
i.e., by asking each server 𝑏 to output 𝑢𝑏 ←

∑𝑈
𝑖 𝑇𝑏𝑖 and compute

their sum, we can thus obtain the mean by dividing our summation
result by the number of matched owners. To support analytic func-
tions other than mean, we can readily leverage existing owner-side
encoding techniques [18, 19, 27, 77] (to list a few) to map a data
value to a vector with different statistics (e.g., variance) and execute
element-wise additions to obtain our desired results. For example,
by asking each owner 𝑖 to encode his value as (𝑑𝑖 , 𝑑2𝑖), we can thus
compute the variances of a set of policy-matched data stream values
by calculating

∑𝑈
𝑖 (𝑑2𝑖) −

∑𝑈
𝑖 (𝑑𝑖)2.

While for non-additive statistics (e.g., max, min, median, range),
we can further follow a seminal work by Corrigan-Gibbs et al. [27]
and ask each data owner 𝑖 to represent his value 𝑑𝑖 as a length-𝐷
vector of bits (𝑏0, . . . , 𝑏𝐷−1), where 𝐷 is the range of the data value
(e.g., 0-200 km/h for traffic monitoring) and 𝑏 𝑗 = 1 if and only if
𝑑𝑖 = 𝑗 . Then, the secure element-wise summation of those bits can
thus reveal the required max, min, median, range, and many other
useful statistics. We refer readers to [27] for optimizations of data
values with a large range and more advanced techniques for linear
model training that can be supported in Vizard.

4.3 Supporting Rich Data Policies
In our above designs, we only allow owners to specify a DPF-based
policy function that only matches one specific query description
string, e.g., “region = EU”. But in reality, we observe that owners
might want to specify a data policy function that can utilize multiple

conditions and the essential AND, OR, NOT operators. For example,
an owner contributing his daily heart rates might want to authorize
the usage to a consumer whose “type=hospital” AND “region=EU”,
so that he can authorize data usage rights to hospitals in the EU
only. We start with a prior work from Wang et al. [77] that tries to
achieve a similar goal by using multiple DPF keys.
PriorWork: Conditioned PrivateQuery viaDPFs.Wang’s work
has explored how to let data consumers privately define SQL-like
conditions for controlling the outputs of their private queries over a
plaintext public database. For example, they can let a data consumer
privately query data values associated with a set of secret labels
(e.g., age=“18” and job=“lawyer”). Similar to us, they achieve this by
assuming identical storage on the two servers and constructing DPF
keys whose summation evaluates to 1 only when the conditions
are matched. By modifying this basic construction, they are able to
enable two types of enriched conditions below2:
• AND conditions. For conditions of the form 𝑐1 = 𝑠𝑒𝑐𝑟𝑒𝑡1 AND
𝑐2 = 𝑠𝑒𝑐𝑟𝑒𝑡2 AND . . . AND 𝑐𝑛 = 𝑠𝑒𝑐𝑟𝑒𝑡𝑛 , they concatenate those
secret strings 𝑠𝑒𝑐𝑟𝑒𝑡1 | |𝑠𝑒𝑐𝑟𝑒𝑡2 | | . . . | |𝑠𝑒𝑐𝑟𝑒𝑡𝑛 and use it as input
to the DPF key generation process. Only when all associated
conditions in a query are matched, then the controlling value
will be equal to 1.
• OR conditions. For conditions of the form 𝑐1 = 𝑠𝑒𝑐𝑟𝑒𝑡1 OR 𝑐2 =

𝑠𝑒𝑐𝑟𝑒𝑡2 OR . . . OR 𝑐𝑛 = 𝑠𝑒𝑐𝑟𝑒𝑡𝑛 , they generate 𝑛 DPF keys, with
each embedding a secret string. The controlling value is calcu-
lated by

∑
𝑏∈{0,1}

∑𝑛
𝑗=1 DPF.Eval(𝑘

𝑗

𝑏
), and it is equal to 1 if only

one of the conditions is matched.
Their condition designs above can be directly adopted in Vizard

for supporting enriched data policies. However, it falls short in
performance if an owner aims to define a larger set of conditions. For
example, the DPF key size for the AND operator and the evaluation
costs for the OR operator will grow linearly with the number of
conditions. Besides, it cannot support the NOT operator, making it
difficult for an owner to efficiently filter out some infamous data
consumers or unwanted query tasks.

4.3.1 Our Refined Design for Data Usage Control. In Vizard, we
want to support those three essential operators (i.e., AND, OR, and
NOT) while keeping the costs affordable even with a large set of
conditions. We start with the AND operator.
AND Operators. Here to reduce the DPF key sizes when han-
dling a large set of condition inputs, our key idea is thus to add
an extra secure function for mapping owners’ policy conditions to
a smaller size digest. For example, we can use a cryptographic
hash function 𝐻 for compressing the secret input strings (e.g.,
𝑠𝑒𝑐𝑟𝑒𝑡1 | |𝑠𝑒𝑐𝑟𝑒𝑡2 | | . . . | |𝑠𝑒𝑐𝑟𝑒𝑡𝑛 from owner 𝑖) into a hash digest dig𝑖 ,
and later generate the DPF keys using dig𝑖 as the input. Consider
that 𝐻 is a publicly known function (e.g., SHA256), each of the two
servers can fetch associated description strings from a query, gen-
erate a hash digest, and finally use the digest for DPF evaluations.
OR Operators. It might appear that the above idea can be gen-
eralized to OR operators. For example, given a set of conditions

2We note [77] can also enable range conditions, but it requires an extended DPF
function for representing an interval function [14], and thus we omit the design for
range conditions here for simplicity. We will explore extending DPF to other advanced
function secret sharing (FSS) constructions [13] in our future works.

Conference’17, July 2017, Washington, DC, USA Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, and Qian Wang

𝑐1 = 𝑠𝑒𝑐𝑟𝑒𝑡1 OR 𝑐2 = 𝑠𝑒𝑐𝑟𝑒𝑡2 OR . . . OR 𝑐𝑛 = 𝑠𝑒𝑐𝑟𝑒𝑡𝑛 , we can gener-
ate an index digest for each input via ind𝑗 ← 𝐻 (𝑠𝑒𝑐𝑟𝑒𝑡 𝑗), and use
ind𝑗 to label the DPF keys embedding 𝑠𝑒𝑐𝑟𝑒𝑡 𝑗 . Therefore, with the
labeled DPF keys from owner 𝑖 , i.e., (𝑘 ind1

𝑏𝑖
, ..., 𝑘

ind𝑛
𝑏𝑖
) for 𝑏 ∈ {0, 1},

each server 𝑏 can first hash the description string to obtain an index
digest, and then find the corresponding key for subsequent DPF
evaluation process. Although this design can effectively achieve
𝑂 (1) DPF evaluation costs, now the two servers can reveal the
secret input embedded in every DPF key via off-line hash searches,
which obviously violates DPF security.

Here to remedy this threat, our key idea is to always identify a
fixed amount of DPF keys for the servers to evaluate, so as to hide
1) whether there is a matched DPF key and 2) which DPF key is
matched. Specifically, given a description string 𝜎 and 𝑛 DPF keys
generated by an owner, each server will be instructed to evaluate
𝑝 (with 𝑝 ≤ 𝑛) DPF keys. Those keys can consist of 𝑝 dummy
keys randomly selected from the 𝑛 keys, or a matched key and
𝑝 − 1 dummy keys. To prevent the two servers from distinguishing
these two settings, our design further follows the idea of Castro et
al. [31] and constructs a set of random mapping functions for key
selections.

Let RM : {0, 1}_ × {0, 1}𝑁 → [𝑚] be a “string-to-integer” ran-
dom mapping seeded by \ ← {0, 1}_ , which can be constructed
(given string 𝑠𝑒𝑐𝑟𝑒𝑡 𝑗) as id ← 𝐻 (\, 𝑠𝑒𝑐𝑟𝑒𝑡 𝑗) mod (𝑚 + 1), where
𝐻 is a cryptographic hash function salted by \ and𝑚 ≥ 𝑛. If we
generate different salts {\1, . . . , \𝑝 }, for each input string 𝑠𝑒𝑐𝑟𝑒𝑡 𝑗 ,
we can thus obtain 𝑝 different indexes. But instead of putting the
DPF key generated for 𝑠𝑒𝑐𝑟𝑒𝑡 𝑗 in all those 𝑝 indexes, an owner
can randomly pick one and insert the key to that position (if all
positions are filled, the cuckoo hash rule can be adopted to kick and
reinsert an existing key). The positioning of those generated DPF
keys will be finalized if all keys are inserted, and the rest positions
will be filled with fake DPF keys (e.g., using 0 as their secret in-
puts). All the keys (together with the salts) will be given to the two
servers. (In Appendix B, we will show how to properly choose the
parameters 𝑝 and𝑚 to maintain an acceptable success probability
for this positioning task).

Now, for each description string input 𝜎 , each server first com-
putes 𝑝 buckets that 𝜎 could lie, i.e., id∗ ← RM(𝜎) with all 𝑝 salts.
Finally, each server 𝑏 will evaluate the 𝑝 DPF keys identified by
{id∗1, . . . , id

∗
𝑝 } using 𝜎 and compute the controlling value 𝑇𝑏𝑖 (for

client 𝑖) as

𝑇𝑏𝑖 ←
∑︁
𝑗∈[𝑝]

DPF.Eval(𝑘
id∗𝑗
𝑏𝑖
, 𝜎) mod𝑀.

NOTOperators.Achieving the support for NOT operators requires
exactly the opposite of what we can get from the DPF evaluation
process, i.e., output zero if the owner’s policy matches, and 1 other-
wise. A straightforward idea to achieve this is to craft let owners
create a large amount of (popular) conditions with the OR operators.
While we can achieve constant evaluation cost even though the
number of DPF keys are large (thanks to our optimized design above
for OR operators), it would still incur enormous costs on the owner
side for generating and transmitting those DPF keys. In contrast,
our key idea is to design a simple transformation to let the DPF key
evaluation results output the opposite value. Specifically, for a pair

of DPF keys from owner 𝑖 that emulates the point function 𝑓𝑃𝑖 ,1 (i.e.,
it outputs 1 only on a secret index 𝑃𝑖 and equals zero otherwise),
what we do is to let the two servers evaluate 𝑖’s controlling value
𝑇𝑖 as 𝑇𝑖 ← 1 − (DPF.Eval(𝑘0𝑖 , 𝜎) + DPF.Eval(𝑘1𝑖 , 𝜎)), so that

𝑇𝑖 =

{
0 if 𝑃𝑖 = 𝜎
1 otherwise

,

which is the results we want for NOT operators. To fulfill this idea,
we can let the two servers jointly create additive shares of the value
1, e.g., via (𝑣0, 𝑣1) ← 𝑆𝑆 (1). In this way, each server 𝑏 can compute
𝑇𝑏𝑖 = 𝑣𝑏 − DPF.Eval(𝑘𝑏𝑖 , 𝜎) mod 𝑀 for owner 𝑖 . Since 𝑣0 and 𝑣1
are additive shares of 1, 𝑇0𝑖 +𝑇1𝑖 is thus the controlling value we
desired for NOT operators.
Remarks. From our refined designs for AND, OR, and NOT opera-
tors above, it is clear that each type of operator requires a unique
process for correct executions. Hence owners should clearly specify
the underlying operator type for each generated DPF key, so that
the two servers can select the proper process for query handling.
Besides, instead of using each operator separately, we can also sup-
port mixed use of the operators, e.g., NOT in (𝑠𝑒𝑐𝑟𝑒𝑡1 AND 𝑠𝑒𝑐𝑟𝑒𝑡2),
by properly combining the process of AND and NOT operators.

5 RELEASE POLICY ENFORCEMENTS
Recall that after processing a query, each server𝑏 will obtain a result
share out𝑏 . In this section, we will illustrate our next step that aims
to enable result release policies and their enforcement during the
executions. As introduced before, Vizard relies on a committee of
trustees to handle the release policies. To deliver a result, the result
share from each server will be securely given to each trustee via a
threshold secret sharing scheme (e.g., Shamir’s scheme [70]), and
the result can be recovered if a majority of trustees (e.g., more than
2/3) agree to hand out their local shares.

5.1 Committee and Policy Settings
Committee Setups. The committee for release policy enforce-
ments, denoted as RRC, is comprised of volunteering nodes from
various sectors that want to join and enforce release policies. Each
volunteering node will first register to our system, and then, we
will periodically select a group of volunteering nodes as trustees
to form RRC. Any secure node selection methods (that can ensure
byzantine security) can be utilized to form RRC. Here to prevent
targeting attacks (where an attacker knows which nodes will be
selected and compromise them in advance) that will weaken the
security of RRC, we can further adopt a verifiable random function
(VRF) based approach [45, 66] for randomized node selections. After
a predefined period (e.g., three months), a new batch of trustees
can be selected for security.
Aggregated Release Policies. The results given from our system
are collective insights contributed by data owners. Therefore, it is
desirable to respect the release policies specified by each data owner.
But instead of directly following each of those policies (which
could be very diverse and lead to conflicting results), our idea is to
narrow down the policy choices and generate an aggregated view
that properly reflects all owners’ policy preferences. Specifically,
Vizard carefully selects and supports the following three essential
types of release policies in our current implementations. They are:

Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls Conference’17, July 2017, Washington, DC, USA

Name: Heart rate sensor
Metadata attributes:

‒ Age group: Middle-aged
‒ Country: Singapore

Data policy:
𝐶 - Consumer: NA.
𝐶 - Consumer type: Hospitals
𝐶 - Region: EU
𝐶 - Operation: NA.
𝐶 - Purpose: CVD studies
Description: 𝐶 AND 𝐶 AND 𝐶

Owner ID: 123456789
Stream ID: sensor-01
Metadata attributes:

‒ Type: Heart rate
‒ Age group: Middle-aged
‒ Country: Singapore

Data policy:
‒ DPF Keys
Description: 𝐶 AND 𝐶 AND 𝐶

Figure 4: Example of the data stream descriptions for a heart
rate sensor (left) and our secure transformation for its data
policies (right). Vizard preserves public metadata attributes
(e.g., age group and country in this example) to facilitate
grouping and filtering of different data streams.

Consumer ID: 1456164
Data requirements: [Health care data; Middle-aged; Southeast Asia]
Time window: From [2020-8-28] to [2021-10-12]
Description: [1456164; Hospitals; EU; Summation; CVD studies]

𝐶 𝐶 𝐶 𝐶

Figure 5: Example of an analytic query. In addition to query
information (e.g., data requirements and time-window) that
help locating the demanded data streams, a description string
corresponding to options {𝐶1, . . . ,𝐶5} will also be included.

1) Integrity-based policies that ensure result correctness and data
policy enforcement; 2) Privacy-based policies that address the severe
privacy leakage problem caused by the results [12, 66, 67]; and 3)
Payment-based policies that bring fair incentives for owners and
motivate active data contributions [21, 74].

For each policy choice above, we can aggregate the parameter
preferences of all owners (e.g., the privacy budget on the result and
the payment rates) and generate a unified release policy. Due to
space limits, we only present the design ideas of each release policy
above, and readers can refer to Appendix C for the details.

5.2 Integrity-based Release Policies
Recall that owners’ data policies are privately embedded (in the
form of DPF keys) in the secure computation process between the
two servers. Therefore, in order to enforce that owners’ policies are
respected during the analytic process, we only need to ensure that
the two servers have faithfully executed our computation protocols.

There are many existing solutions to fulfill the above goals. For
example, we can leverage the lightweight “ringer” technique [47]
to effectively enforce result integrity in a probabilistically-secure
way (under the weaker “lazy-but-honest” server setting). In the
malicious setting, we can also leverage publicly verifiable multi-
party computation (verifiable MPC) techniques [30, 73] (to list just
a few) to check the integrity of the results given by the two servers.

5.3 Privacy-based Release Policies
Apart from enforcing execution correctness of the two servers, en-
dowing the aggregate statistics with differential privacy (DP) is also
highly desirable. With the enforcement of such an essential policy,
owners might be more willing to contribute data as their privacy is
better protected against sophisticated statistical attacks [86].

Vizard follows the security framework in [66, 67] and relies on
the RRC to correctly generate DP noises. Specifically, each trustee
will generate a DP noise locally, and a secure computation process
(initiated by the trustees or the servers) will then privately sum
every trustee’s noise and add the noise to the result. Achieving this
requirement in the byzantine setting is non-trivial, since we need to
ensure that the summation of all trustees’ noises follows the privacy
budget (𝜖, 𝛿) that is jointly decided by data owners. In Vizard, we
address this by adopting a byzantine-secure decentralized noise
addition scheme [71] to generate the noises, so as to enforce that
every result is protected with a pre-defined amount of DP noises.

5.4 Payment-based Release Policies
This policy aims to enforce that the result is revealed to the con-
sumer only if the consumer has made the required payment. Vizard
relies on the blockchain (e.g., Ethereum [80]) to form a transparent
payment log which all trustees in the RRC can agree upon, so that
they can later locally decide whether to help the consumer recover
the result or not. This ensures that the consumer can recover the
result only if it has paid, as the consumer cannot fraudulently claim
that it has paid on the blockchain and convince the majority of
trustees in the RRC. (To boost confidence on a payment, each trustee
might need to wait for a few confirmation time, e.g., 6 blocks, before
making decisions.)

6 SYSTEM IMPLEMENTATION
Vizard aims to provide full-fledged protections and rich policy sup-
ports to the data owners while allowing effective data analytic
services. Here to facilitate practical deployment of Vizard in real
scenarios, below we show some of our designs on the implemen-
tation sides that focus on 1) data policy preferences and query
formats, and 2) our integrated data stream processing pipeline that
is interfaced with Apache Kafka [54].

6.1 Data Policy and Analytic Queries
Vizard allows owner-centric data policies and respects them in a
privacy-preserving manner. While there are many policy options
that an owner can specify, we suggest and provide a sensible and
public set of options in our current implementation for demonstra-
tion purposes. Specifically, each owner can specify his preferences
for the following five options: 1) 𝐶1: Consumer. This option spec-
ifies which consumer can (or can’t, by using the NOT operator)
compute on his data (e.g., via the public consumer IDs); 2)𝐶2: Con-
sumer types. This option is a relaxed version of𝐶1, which specifies
the allowed type of consumers; 3)𝐶3: Region. This option specifies
the region requirement of the consumer; 4) 𝐶4: Operation. This
option specifies the allowed operations (e.g., summation, variance,
etc.); 5)𝐶5: Purpose. This option specifies the allowed usage of his
data. (Strings used to fill in each option above are standardized to
facilitate the owner-consumer matching.)

The above options will be securely transformed to DPF keys
together with a description that illustrates how those options will
be processed on the server side. For example, as shown in Figure
4, a data owner can specify that he only allows hospitals in the
European Union to do cardiovascular disease (CVD) studies over his
contributed data streams. It is done by filling in associated options

Conference’17, July 2017, Washington, DC, USA Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, and Qian Wang

Server 1
Shared Data
Stream Homomorphic

Stream Enc.

Server 2

Ciphertext
Share

Backend
Storage

Query Process

Query Process
Result Release
Control

Result Share
Shared Data
Stream

Figure 6: Architectural vision of Vizard’s integration with
the Kafka data stream pipeline.

(and neglecting irrelevant options), generating DPF keys according
to the underlying operators (e.g., AND operator in this example),
and describing their relations as “𝐶2 AND 𝐶3 AND 𝐶5”.

In order to allow the two servers to correctly match query to
those specified data policies, a consumer will provide a description
string denoting their answers to those options ({𝐶1, . . . ,𝐶5}) in their
query, and these strings will be used as inputs for DPF evaluations
when processing each owner’s encrypted data values. For example,
“Hospital”, “EU”, and “CVD studies” will be fetched from a query
shown in Figure 5 when processing the data policy above (i.e.,
“𝐶2 AND 𝐶3 AND 𝐶5”). (Note that the description string from a
consumer will be authenticated before it can be used in Vizard).

6.2 Integration with Apache Kafka
Apache Kafka [54] is one of themost popular data stream processing
platforms that can preserve good load-balancing and fault-tolerant
protection. However, despite its ability to handle large-scale data
streams, Kafka normally operates in a centralized setting with plain-
text data streams. Our goal here is to integrate Vizard with Kafka,
so that we can enjoy efficient processing speed while providing
sufficient privacy protection to data owners.

Here in Vizard, we run an independent Kafka cluster on each
server as its interface for handling data submission and retrieval
requests, as in Figure 6. Specifically, Kafka will be used 1) as a
data pipeline for buffering (shared) data streams submitted by data
owners; 2) as a ciphertext assembly pipeline to push the gener-
ated ciphertext shares to the other server (i.e., for completing the
two-server stream homomorphic encryption process); and 3) as a
gateway for securely delivering result shares to each trustee in the
RRC. Each party (including owners and servers) will interact with
the two Kafka clusters respectively via inherent Kafka APIs, and
we will enable broker replications to boost the performance.

6.3 Implementation Details
Our prototype of Vizard is implemented on top of the Spring frame-
work [43] (which is an open and flexible framework for Java devel-
opment) and Apache Kafka [54], consisting of roughly 3000 SLOC.
We used Java in most of our implementations, but we also used
native codes in C++ for DPF and PRF functions via the Java native
interface. Specifically, we adopted the DPF implementation from
Kales et al. [53] and used AES with 128-bit keys to implement PRF
protocols (and PRG inside DPF), along with CPU-based AES-NI and

DPF Sum Avg Var Hist
0

10
20
30
40

C
om

pu
ta

io
n

(μ
s) Figure 7: Owner cost for

generating DPF keys and
shares for different stream
encodings: sum, average,
variance, and histogram
(with ten buckets).

other intrinsic instructions for boosting speed. We implemented a
standard additive sharing scheme with a finite field of group size
264. We used an integrated framework [42] for communicating
with each server’s Kafka cluster. For result release control, we uti-
lized existing cryptographic libraries for Pedersen commitment and
Shamir’s secret sharing, and realized a standard geometric distribu-
tion tool in Java for noise generation. We also implemented a basic
version of Zeph [19] (with one privacy controller) for comparisons.

7 EVALUATIONS
We evaluate the effectiveness of Vizard by focusing on its ability to
handle large-scale data streams. The experimental evaluation con-
sists of three parts that test the performance on the data submission,
data processing, and result release stages respectively.
Experiment Setup.We run the benchmarks for owners, servers,
RRC trustees, and consumers on Amazon EC2 instances (m5.xlarge,
4 vCPU, 16 GiB, Ubuntu Server 20.04 LTS). Additionally, we leverage
Amazon MSK [41] to enable a Kafka cluster for each server on an
instance with the same configuration above, and further employ
an additional Amazon RDS server (m5.xlarge with 100GB gp2 SSD)
as each server’s MySQL database instance for hardening system
security. Servers are deployed on two EC2 instances spread over two
availability zones in the Asia Pacific (Hong Kong) region, and RRC
trustees are placed in different availability zones in this region also
to simulate federations. This configuration helps us to benchmark
in a controlled environment where network fluctuations are less
likely. Based on our evaluations, the bandwidth of each instance in
this environment is 5Gbps and the round trip time (RTT) between
any two instances is around 0.58𝑚𝑠 . We employ the Java micro-
benchmark harness tool [9] for performance evaluations.

7.1 Data Owner
Computation. We start with the computation costs for a data
owner to create data stream submissions, which include the con-
struction of DPF keys and data shares. From Figure 7, we can see
that both procedures above are efficient, which need only around
3.6 `s to generate a pair of DPF keys for a data policy and around 3.7
`s for additive share generations. We also test the speed for differ-
ent encodings (i.e., average, variance, and histogram), and we can
observe that the throughput ranges from 25k to 130k submission
per second, depending on the underlying encoding.
Bandwidth. The submission size for each server will be deter-
mined by the number of DPF keys and the number of data elements
in the encoding. But overall, it only requires around 26.76 KB to
simultaneously transmit 100 shared data elements and 10 DPF keys
(each takes 1020 Bytes), which we think is affordable for both PC
users and mobile phone users.

Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls Conference’17, July 2017, Washington, DC, USA

Table 1: Throughput (r/s) vs. Kafka stream partitions and
broker replications (partition=1 is the comparison baseline).
𝑅 represents the replication factor.

Partition
Numbers

Submission = 1𝑘 Submission = 1𝑀

𝑅 = 1 𝑅 = 3 𝑅 = 1 𝑅 = 3

1 2.85𝑘 2.78𝑘 301.93𝑘 212.72𝑘
3 0.99× 0.98× 1.42× 1.16×
5 1.02× 0.99× 1.40× 1.51×
10 1.06× 1.02× 1.41× 1.84×

Table 2: Microbenchmark on each server for conducting two-
server homomorphic encryption.

Submissions Enc. Comm. Add. Database (opt.)

100 0.5 ms 68 ms 0.1 ms 0.3 s
1𝑘 6.3 ms 74 ms 0.1 ms 1.9 s
10𝑘 54.3 ms 118 ms 1.1 ms 12.3 s
100𝑘 555.1 ms 321 ms 11.6 ms 120.5 s

7.2 Data Processing Pipeline
Throughput for Handing Submissions. Recall that after gener-
ating their submission shares, data owners will stream each share
to one server for processing via its Kafka cluster. The Kafka cluster
is used as a buffer for coping with large-scale data stream submis-
sions. At its core, it comprises two main APIs: a producer API that
imports data stream to the cluster and a consumer API that exports
the requested streams from the cluster. From Figure 8, we can see
that it can nicely scale to handle around 10 million stream submis-
sions, and the performance bottleneck is on the front end where
the Kafka cluster imports and handles submission shares from data
owners.

Next, we explore how this submission handling throughput
evolves when we consider submission partitions and broker repli-
cations (for distributing the load and fault-tolerant protection, re-
spectively). Table 1 shows the results in different submission scales.
From the table, we can learn that increasing both the partition
and broker numbers can help boost the performance when the
submission scale is large enough (e.g., 1 million submissions per
second), and the trade-off between robustness and performance is
also acceptable for real deployments.
Two-server Homomorphic Encryption. Each server will con-
sume data streams from its Kafka cluster and conduct the encryp-
tion process for generating all owners’ stream ciphertexts. We plot
the costs for computation (i.e., local encryption and ciphertext share
addition) and communication between the two servers in Table 2.
From the table, we can observe that the main bottlenecks are the
time costs for encryption and ciphertext share transmissions (which
are conducted through monitoring the other server’s Kafka cluster).
But overall, it only takes less than a second for the two servers
to jointly encrypt 100𝑘 shares. The generated stream ciphertexts
could be stored in an SQL-enabled database to facilitate subsequent
queries, which takes an additional and linearly growing time costs
for database insertions (e.g., 12.3𝑠 for inserting 10𝑘 records).
Query Cost. Once an analytic query process is triggered, each
server will 1) locally aggregate all specified ciphertexts (i.e., based
on the time-window), 2) securely evaluate all owners’ DPF keys, and

1 5
Number of submissions 1e7

0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (r

/s
) 1e6

Producer API

Consumer API

Figure 8: Kafka throughput
for data stream submissions.

1 25 50
Number of conditions

0.2
0.4
0.6
0.8

C
os

t (
m

s)

Linear
Cuckoo

Figure 9: The DPF key evalua-
tion cost for OR operators.

1k 2k 5k 10k
0
2
4
6
8

Q
ue

ry
 c

os
t (

s)

Time window=10
Basic
Ours

1k 2k 5k 10k

Time window=50

1k 2k 5k 10k

Time window=100

Number of owners

2x 1.9x 1.8x 1.7x 2.07x 2.26x

Figure 10: The time cost for conducting secure queries w.r.t.
the number of owners and the time-window length.

1k 10k 20k 40k 60k 80k 100k
Number of owners

2

4

6

Q
ue

ry
 c

os
t (

s) Plaintext Zeph Ours

Figure 11: Query cost comparison with plaintext queries and
Zeph [19] (with a time-window of 10 ciphertexts).

3) jointly decrypt and generate a share of the result. Figure 10 shows
our evaluation result and its comparison with the basic solution
illustrated in Section 3 (which readily embeds data in the DPF keys).
It turns out that our query cost scales with the owner numbers and
the time-window length (for retrieving more ciphertexts from the
database). But overall, it takes only around 4.6𝑠 to query over 10𝑘
owners with a time-window of 100 ciphertexts, which is 1.7× less
than the basic construction. We observe that such performance gain
will moderately decrease when the number of owners grows (as we
require additional processing steps other than DPF key evaluations),
but in our evaluations it can still achieve 1.4× less time cost with
100𝑘 owners (and a time-window of 10 ciphertexts), and the gain
will grow noticeably when we query a larger window of ciphertexts.

We further compareVizard’s query processwith that in Zeph [19],
which is a state-of-the-art data analytic system that enforces pri-
vacy control but does NOT provide metadata (or policy) protection,
in Figure 11. The figure shows that Vizard only incurs an additional
1.12× to 1.26× latency overhead compared to Zeph, which we think
is an affordable security trade-off for the query process.

Finally, we zoom in to focus on the DPF key evaluation pro-
cess and evaluate the cost for supporting enriched policies (i.e.,
with AND, NOT, and OR operators). From the results, we find out
that the execution of AND and NOT operators adds a very slight
cost (< 0.1𝑚𝑠) to the evaluation process. Figure 9 further compares
our optimized approach for the OR operator with the standard ap-
proach that linearly evaluates DPF keys, and the results confirm
the performance gain of our approach (e.g., 2.17× less for 50 OR
conditions).

Conference’17, July 2017, Washington, DC, USA Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, and Qian Wang

7.3 Result Release Control
Lastly, we evaluate the release control cost for delivering one result
with an RRC consisting of 10 to 30 trustees. Here for simplicity, we
omit the initialization time cost for RRC formations and focus only
on the added cost for each trustee and the two servers due to our
release controls. We start with the result share splitting process on
each server. In our evaluation, it requires less than 0.6𝑚𝑠 to compute
shares for an RRC of 30 trustees and less than 1𝑚𝑠 to deliver each
share to one trustee via its Kafka cluster, which is efficient to ensure
a smooth delivery process.
Cost for Release Policy Executions. We evaluate the perfor-
mance of Vizard’s release policies with “lazy-but-honest” servers.
Our integrity-based policy follows the widely adopted “ringers” [47]
technique to check servers’ integrity in a probabilistically-secure
way. That is, we insert challenge queries and their commitment
tokens (which are prepared in advance by owners) in a batch of new
queries and secretly share the answer (e.g., the challenge queries’
ids) to each trustee in the RRC. This technique can vastly ease the
cost on the server sides for integrity proof generations (i.e., finding
which queries in the given batch are the challenge queries, as shown
in Appendix C.1). In our evaluation, it only adds around 2.25𝑚𝑠
per query for the two servers. Once the servers output their proofs,
answer recovery is required for each trustee to validate the proof.
Although the recovery cost grows with the number of trustees, the
overall cost remains moderate (e.g., less than 0.25s for 30 trustees).

Our decentralized DP-based release policy is output perturbation-
based [86], which asks each trustee to sample byzantine-secure
noise locally. We evaluate the noise addition cost with a secure
computation process initiated by the two servers, i.e., each sampled
noise will be treated as a data submission for the two servers and
added during the query process. From Table 3, we can see that both
the noise generation and addition process are at the microsecond
scale, which are very efficient. Last but not least, for the payment-
based policy that asks each trustee to check against a consumer’s
payment proof on a public ledger like Ethereum, we evaluate the
proof checking cost using a popular infrastructure named Block-
Cypher [11]. The result shows that each trustee requires around 1.5s
to complete the check, which is acceptable given that a consumer
can make a batch payment for a large number of queries.

Here we omit the cost for result delivery from RRC to a consumer,
as it largely depends on the location and network condition of the
consumer and trustees. After collecting all required shares from
the RRC trustees, our release process would bring an additional 1.7
to 272 ms computation cost for the consumer to recover the result
(or DP-protected result), depending on the RRC size.

8 EXTENSIONS
In this section, we discuss some extension opportunities for Vizard.
AddressingMaliciousOwners.We can provide protections against
malicious owners that might inject carefully crafted inputs (e.g.,
out-of-range data inputs) to Vizard in order to influence the analytic
outputs more than they should. Fortunately, this problem has been
extensively studied in the multi-server settings since the seminal
Prio system [27], and it is covered in recent efforts that aim to
provide verifiability to the generated DPF keys (in either the semi-
honest [15] or the fully malicious server setting [12]). Vizard can

Table 3: Computation Cost for Release Control vs. RRC Size.

RRC
Size

Integrity (batch=20) Privacy Payment

Proof Gen. Check Noise Gen. Add. Check

10 45 ms 1.83 ms 3.9 `s 0.1 `s ∼1.5s
20 45 ms 30.62 ms 3.9 `s 0.1 `s ∼1.5s
30 45 ms 242.06 ms 3.9 `s 1 `s ∼1.5s

adopt those techniques to strengthen our defense against malicious
clients, ensuring that 1) their data shares are within a valid range,
and 2) their DPF keys indeed evaluate to a correct point function
that has at most one non-zero component.
Parallel Accesses. One performance setback in Vizard is the linear
DPF key evaluation costs: namely, each server needs to go through
all clients’ keys to obtain the correct results. While we note that
this is a security trade-off for providing metadata protections, we
can boost the performance by letting each server evaluate every
owner’s DPF keys in parallel. Also, the two servers can create
multiple instances, so that each pair of instances can handle a
query request in parallel and boost the batch query performance.

9 RELATEDWORKS
Now we give a summary of some closely related works.
Data Analytics with Enforced Privacy. Enabling data analytics
while protecting the privacy of the underlying data is a well-studied
topic. Throughout the years, many practical solutions, which base
on 1) a centralized server and advanced cryptographic encryption
schemes [3, 66, 67, 71], 2) non-colluding servers and MPC-based
secure computations [27, 50, 62], or 3) trusted hardwares [35, 65,
85], are proposed. Although data confidentiality is well preserved
in existing works, the importance of metadata privacy of those
participated data owners during the query process is not effectively
explored. (For those who did enable analytic obliviousness [65, 81,
85], they mainly rely on trusted hardwares and focus on improving
security by addressing advanced side-channel problems therein.)
The property of metadata-hiding in Vizard is inspired by emerging
oblivious storage or file sharing systems [25, 34, 40, 52] that aim to
hide the file access and sharing patterns. But different from their
focus, Vizard only delegates usage rights of those outsourced data,
and the consumers can only obtain an aggregated and metadata-
hiding view of those contributed data.

Another line of works focuses on enabling owner-centric privacy
policies (i.e., data policies in Vizard), so that owners can better en-
force the usage of their data against a distrustful party. While most
existing works enforce such policies via trusted parties or hard-
wares, Burkhalter et al. [19] explore to cryptographically enforce
those privacy policies via a separate control layer that is comprised
of decentralized committee nodes. They enforce that a given re-
sult can be correctly decrypted only if the underlying computation
layer behaves faithfully and enforces all owners’ privacy policies.
However, they have not considered protection for the policies and
thus could incur severe security threats due to metadata leakage
(e.g., which owners are involved in a sensitive task.)
DPF-based Oblivious Systems. Since the introduction of func-
tional secret sharing (FSS) and the effective distributed point func-
tion (DPF) constructions [14, 15], DPF has been widely studied to

Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls Conference’17, July 2017, Washington, DC, USA

build oblivious messaging systems [28, 40], new private information
retrieval (PIR) schemes [77], new scalable ORAM executions [34],
and many others [12, 32, 61]. Vizard extends the scalable ORAM
design proposed in [34] to craft optimized storage structures for
data streams and explores other enriched policy control supports
to improve Vizard’s functionalities.
Release Policy Enforcements. Controlling when a generated
result can be released has its necessity in various scenarios where
owners want an extra layer of protection besides data confiden-
tiality (e.g., execution correctness and result privacy), as firstly
introduced by Zheng et al. [86] for machine learning tasks. But
while today’s works on verifiable computation [7, 8, 63, 68] and
differential privacy [12, 24, 35, 84] can provide such a layer of pro-
tection, they usually rely on centralized trust (via one or few trusted
auditors and noise generators) for determining whether the release
policies are fulfilled or not. In contrast, Vizard designs useful release
policies for private analytics and enforces them with decentralized
trust using a byzantine-secure committee.

10 CONCLUSION
Vizard is a metadata-hiding data analytic system that allows data
owners to share their data for collective knowledge in a streamlined,
privacy-preserving, and fully-controlled manner. We hope this new
system can help break the troublesome data silos problem today
and facilitate large-scale data stream analytic services. Vizard’s
code is available on https://github.com/arimitx/vizard.

ACKNOWLEDGMENTS
We sincerely thank all anonymous reviewers for their useful com-
ments and instructions. This work was funded in part by the Re-
search Grants Council of Hong Kong under Grants CityU 11217819,
11217620, 11218521, 11202419, N_CityU139/21, RFS2122-1S04, C2004-
21GF, R1012-21, and R6021-20F, and by the National Natural Science
Foundation of China under Grants U20B2049 and U21B2018, by
InnoHK initiative, the Government of the HKSAR, and Laboratory
for AI-Powered Financial Technologies.

REFERENCES
[1] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung

Lee. 2018. OBLIVIATE: A Data Oblivious Filesystem for Intel SGX.. In Proc. of
NDSS.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with
Compressed Queries and Amortized Query Processing. In Proc. of IEEE S & P.

[3] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE TIFS 13,
5 (2017), 1333–1345.

[4] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. 2020. Private Summation
in the Multi-Message Shuffle Model. In Proc. of ACM CCS.

[5] Raef Bassily and Adam Smith. 2015. Local, private, efficient protocols for succinct
histograms. In Proc. of ACM STOC.

[6] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.
In Proc. of CRYPTO.

[7] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. 1994.
Efficient probabilistic checkable proofs and applications to approximation. In
Proc. of ACM STOC.

[8] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge. In Proc. of CRYPTO.

[9] Java Micro benchmark Harness. 2021. (2021). Online at: https://openjdk.java.net
/projects/code-tools/jmh/.

[10] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.
2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware.
In Proc. of ACM CCS.

[11] Blockcypher. 2021. (2021). Online at: https://www.blockcypher.com/.
[12] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2021. Lightweight Techniques for Private Heavy Hitters. In Proc. of IEEE S&P.
[13] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant

Kumar, and Mayank Rathee. 2021. Function Secret Sharing for Mixed-Mode and
Fixed-Point Secure Computation. In Proc. of EUROCRYPT.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In Proc.
of EUROCRYPT.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-
ments and Extensions. In Proc. of ACM CCS.

[16] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. 2018.
Foundations of Homomorphic Secret Sharing. In Proc. of ITCS.

[17] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. 2020. Flyclient:
Super-Light Clients for Cryptocurrencies. In Proc. of IEEE S&P.

[18] Lukas Burkhalter, Anwar Hithnawi, Alexander Viand, Hossein Shafagh, and
Sylvia Ratnasamy. 2020. TimeCrypt: Encrypted Data Stream Processing at Scale
with Cryptographic Access Control. In Proc. of USENIX NSDI.

[19] Lukas Burkhalter, Nicolas Küchler, Alexander Viand, Hossein Shafagh, andAnwar
Hithnawi. 2021. Zeph: Cryptographic Enforcement of End-to-End Data Privacy.
In Proc. of OSDI.

[20] Chengjun Cai, Lei Xu, Anxin Zhou, Ruochen Wang, Cong Wang, and Qian Wang.
2020. EncELC: Hardening and Enriching Ethereum Light Clients with Trusted
Enclaves. In Proc. of IEEE INFOCOM.

[21] Chengjun Cai, Yifeng Zheng, Anxin Zhou, and Cong Wang. 2019. Building a
Secure Knowledge Marketplace over Crowdsensed Data Streams. IEEE TDSC 1, 1
(2019), 1–1.

[22] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Specu-
lative Execution. In Proc. of IEEE Euro S & P.

[23] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya P. Razenshteyn,
and M. Sadegh Riazi. 2020. SANNS: Scaling Up Secure Approximate k-Nearest
Neighbors Search. In Proc. of USENIX Security.

[24] Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. 2015. Differentially Private
High-Dimensional Data Publication via Sampling-Based Inference. In Proc. of
ACM SIGKDD.

[25] Weikeng Chen and Raluca Ada Popa. 2020. Metal: AMetadata-Hiding File-Sharing
System. In Proc. of NDSS.

[26] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and
Flavio D. Garcia. 2021. VoltPillager: Hardware-based fault injection attacks
against Intel SGX Enclaves using the SVID voltage scaling interface. In Proc. of
USENIX Security.

[27] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics. In Proc. of USENIX NSDI.

[28] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte: An
Anonymous Messaging System Handling Millions of Users. In Proc. of IEEE S&P.

[29] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive (2016). https://eprint.iacr.org/2016/086

[30] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter
Scholl, and Nikolaj Volgushev. 2019. New Primitives for Actively-Secure MPC
over Rings with Applications to Private Machine Learning. In Proc. of IEEE S&P.

[31] Leo de Castro and Antigoni Polychroniadou. 2021. Lightweight, Verifiable Func-
tion Secret Sharing and its Applications. IACR Cryptol. ePrint Arch. (2021).
https://eprint.iacr.org/2021/580

[32] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. 2018. PIR-PSI: Scaling
Private Contact Discovery. PoPETs 2018, 4 (2018), 159–178.

[33] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The Second-
Generation Onion Router. In Proc. of USENIX Security.

[34] Jack Doerner and Abhi Shelat. 2017. Scaling ORAM for Secure Computation. In
Proc. of ACM CCS.

[35] Huayi Duan, Yifeng Zheng, Yuefeng Du, Anxin Zhou, Cong Wang, and Man Ho
Au. 2019. Aggregating crowd wisdom via blockchain: A private, correct, and
robust realization. In Proc. of IEEE PerCom.

[36] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. 2013. Local privacy and statistical
minimax rates. In Proc. of IEEE FOCS.

[37] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.
In Proc. of EUROCRYPT.

[38] Stefan Dziembowski, Grzegorz Fabiański, Sebastian Faust, and Siavash Riahi.
2021. Lower bounds for off-chain protocols: Exploring the limits of plasma. In
Proc. of ITCS.

[39] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and
Peter Druschel. 2016. Thoth: Comprehensive Policy Compliance in Data Retrieval
Systems. In Proc. of USENIX Security.

[40] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. 2021.
Express: Lowering the Cost of Metadata-hiding Communication with Crypto-
graphic Privacy. In Proc. of USENIX Security.

[41] Amazon Managed Streaming for Apache Kafka. 2021. (2021). Online at: https:
//aws.amazon.com/msk/.

https://github.com/arimitx/vizard
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/
https://www.blockcypher.com/
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2021/580
https://aws.amazon.com/msk/
https://aws.amazon.com/msk/

Conference’17, July 2017, Washington, DC, USA Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, and Qian Wang

[42] Spring for Apache Kafka Framework. 2021. (2021). Online at: https://spring.io/
projects/spring-kafka.

[43] Spring Framework. 2021. (2021). Online at: https://spring.io/.
[44] BadihGhazi, PasinManurangsi, Rasmus Pagh, andAmeyaVelingker. 2020. Private

Aggregation from Fewer Anonymous Messages. In Proc. of EUROCRYPT.
[45] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In Proc. of
SOSP.

[46] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.

[47] Philippe Golle and Ilya Mironov. 2001. Uncheatable Distributed Computations.
In Proc. of CT-RSA.

[48] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. 2012. Secure two-party computation in
sublinear (amortized) time. In Proc. of ACM CCS.

[49] Slawomir Goryczka and Li Xiong. 2017. A Comprehensive Comparison of Multi-
party Secure Additions with Differential Privacy. IEEE Trans. Dependable Secur.
Comput. 14, 5 (2017), 463–477.

[50] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath T. V. Setty, Lorenzo
Alvisi, and Michael Walfish. 2016. Scalable and Private Media Consumption with
Popcorn. In Proc. of USENIX NSDI.

[51] Michael Hill and Dan Swinhoe. 2021. The 15 biggest data breaches of the 21st
century. (2021). Online at: https://www.csoonline.com/article/2130877/the-
biggest-data-breaches-of-the-21st-century.html.

[52] Yuncong Hu, Sam Kumar, and Raluca Ada Popa. 2020. Ghostor: Toward a Secure
Data-Sharing System from Decentralized Trust. In Proc. of USENIX NSDI.

[53] DPF implementation. 2019. (2019). Online at: https://github.com/dkales/dpf-cpp.
[54] Apache Kafka. 2021. (2021). Online at: https://kafka.apache.org/.
[55] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding. In Proc. of IEEE S&P.

[56] Steve Lu and Rafail Ostrovsky. 2013. Distributed Oblivious RAM for Secure
Two-Party Computation. In Proc. of TCC.

[57] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. 2015.
Privacy and Access Control for Outsourced Personal Records. In Proc. of IEEE
S&P.

[58] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. 2017.
Maliciously Secure Multi-Client ORAM. In Proc. of ACNS.

[59] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame,
and Srdjan Capkun. 2019. BITE: Bitcoin Lightweight Client Privacy using Trusted
Execution. In Proc. of USENIX SECURITY.

[60] Miti Mazmudar and Ian Goldberg. 2020. Mitigator: Privacy policy compliance
using trusted hardware. PoPETs 2020, 3 (2020), 204–221.

[61] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for Neural
Networks. In Proc. of USENIX Security.

[62] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable
privacy-preserving machine learning. In Proc. of IEEE S&P.

[63] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:
Nearly Practical Verifiable Computation. In Proc. of IEEE S&P.

[64] Pew Research Center. 2019. Americans and Privacy: Concerned, Confused and
Feeling Lack of Control Over Their Personal Information. (2019). Online at:
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-
concerned-confused-and- feeling- lack-of -control-over- their-personal-
information/.

[65] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and
Raluca Ada Popa. 2020. Visor: Privacy-Preserving Video Analytics as a Cloud
Service. In Proc. of USENIX Security.

[66] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen. 2019.
Honeycrisp: large-scale differentially private aggregation without a trusted core.
In Proc. of ACM SOSP.

[67] Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C. Pierce. 2020.
Orchard: Differentially Private Analytics at Scale. In Proc. of USENIX OSDI.

[68] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In Proc. of IEEE S&P.

[69] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Y. Tsai,
and Jeannette M. Wing. 2014. Bootstrapping Privacy Compliance in Big Data
Systems. In Proc. of IEEE S&P.

[70] Adi Shamir. 1979. How to share a secret. CACM 22, 11 (1979), 612–613.
[71] Elaine Shi, TH Hubert Chan, Eleanor Rieffel, Richard Chow, and Dawn Song.

2011. Privacy-preserving aggregation of time-series data. In Proc. of NDSS.
[72] Radu Sion. 2005. Query Execution Assurance for Outsourced Databases. In Proc.

of ACM VLDB.
[73] Markus Stadler. 1996. Publicly Verifiable Secret Sharing. In Proc. of EUROCRYPT.
[74] Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine

Shi. 2017. Sealed-Glass Proofs: Using Transparent Enclaves to Prove and Sell
Knowledge. In Proc. of IEEE EuroS&P.

1.2 1.3 1.4 1.5 1.6 1.7 1.8
Expansion factor (e)

0
100
200
300
400
500

N
um

be
r o

f D
PF

 k
ey

s (
n)

λ = 20 λ = 40 λ = 60 λ = 80

Figure 12: Given 𝑝 = 3 salted random mapping functions,
this figure shows the requirement on the expansion factor
𝑒 to achieve security with varying parameter settings, i.e.,
_ = 40, 60, 80, and 100.

[75] U.S. Department of Health and Human Services Office for Civil Rights. 2021.
Breach Portal: Notice to the Secretary of HHS Breach of Unsecured Protected
Health Information. (2021). Online at: https://ocrportal.hhs.gov/ocr/breach/bre
ach_report.jsf .

[76] Frank Wang, Ronny Ko, and James Mickens. 2019. Riverbed: Enforcing User-
defined Privacy Constraints in Distributed Web Services. In Proc. of USENIX
NSDI.

[77] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and Matei
Zaharia. 2017. Splinter: Practical Private Queries on Public Data. In Proc. of
USENIX NSDI.

[78] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin,
Junbum Shin, and Ge Yu. 2019. Collecting and analyzing multidimensional data
with local differential privacy. In Proc. of IEEE ICDE.

[79] T. Wang, J. Blocki, N. Li, and S. Jha. 2017. Locally differentially private protocols
for frequency estimation. In Proc. of USENIX Security.

[80] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014), 1–32.

[81] Min Xu, Antonis Papadimitriou, Ariel Feldman, and Andreas Haeberlen. 2018.
Using Differential Privacy to Efficiently Mitigate Side Channels in Distributed
Analytics. In Proc. of the 11th European Workshop on Systems Security, (EuroSec).

[82] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David
Evans, and Jonathan Katz. 2016. Revisiting Square-Root ORAM: Efficient Random
Access in Multi-party Computation. In Proc. of IEEE S&P.

[83] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:
Scaling Blockchain via Full Sharding. In Proc. of ACM CCS.

[84] Xiaojian Zhang, Rui Chen, Jianliang Xu, Xiaofeng Meng, and Yingtao Xie. 2014.
Towards Accurate Histogram Publication under Differential Privacy. In Proc. of
SIAM International Conference on Data Mining.

[85] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In Proc. of USENIX Symposium on Networked Systems Design
and Implementation, NSDI.

[86] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit Panda, and
Ion Stoica. 2021. Cerebro: A Platform forMulti-Party Cryptographic Collaborative
Learning. In Proc. of USENIX Security.

[87] Shoshana Zuboff. 2019. The Age of Surveillance Capitalism. Profile Books (2019).

A ALTERNATIVE SOLUTIONS
Below we discuss some potentially feasible alternative solutions
that can fulfill Vizard’s security goals.
Generic MPC with ORAM. One apparent solution to fulfill our
goal of a policy-controlled metadata-hiding data analytic system is
to leverage existing generic-purpose secure two-party computation
(S2PC) for RAM programs (e.g., [23, 25, 34, 48, 56, 82]). Each owner
sends a share of his data and policy to each server, and then the
two servers can jointly run an S2PC process of a RAM program to
1) combine the shares; 2) securely find out the matching data based
on the policy and query request; and 3) aggregate the matched
data and output the result. However, in order to preserve metadata
(i.e., access pattern) protection against the two servers, we have

https://spring.io/projects/spring-kafka
https://spring.io/projects/spring-kafka
https://spring.io/
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://github.com/dkales/dpf-cpp
https://kafka.apache.org/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf

Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls Conference’17, July 2017, Washington, DC, USA

to additionally construct an ORAM client inside the S2PC, which
would incur substantial costs and affect efficiency when handling a
large amount of data [34]. In contrast, although our approach falls
in the same two-server setting, we design non-trivial optimizations
to boost the efficiency of the S2PC process and avoid the need of
an S2PC-based ORAM client for hiding data access patterns.
Secure Aggregation with DP Privacy. Another line of works on
privacy-preserving data analytics has extensively explored comput-
ing statistics in either the local model [5, 36, 78, 79] (to list just a
few) or the shuffle/anonymous model [4, 44] of differential privacy
(DP). Each owner sends his data (with DP protections) to the data
consumers, who can then obtain the desired results (e.g., summa-
tions) by readily computing on those (noisy) data. But while they
can construct protocols without the need of non-colluding servers,
they would either leak a non-negligible amount of private infor-
mation about the data owner’s data streams or could largely affect
the accuracy of the results [12]. In contrast, our solution provides
much stronger privacy guarantees for the data owners, and we can
also enforce DP privacy (as part of the release policy) for the result
outputs.
Trusted Hardwares. The use of trusted hardwares (e.g., Intel
SGX [29]) for secure data analytics [35, 68] has its unreachable ad-
vantages on efficiency. Each owner securely sends his data streams
and policies to the enclave through an encrypted channel, and the
enclave can process them as plaintext for generating the results
(along with integrity guarantees from the trusted hardware itself).
Due to self-limited memory sizes, the uploaded data streams might
be stored outside the enclave, and thus we need to establish an ad-
ditional ORAM client inside the enclave [1] for securely accessing
the outside storage. Besides, recent attacks have also shown poten-
tial confidentiality leakages through measuring enclave execution
patterns [22] or other hardware-based measurements [26], which
could largely undermine enclave security. In contrast, our solution
does not rely on trusted hardwares.

B ANALYSIS FOR OR OPERATORS
Recall that in our construction for supporting OR operators, we
propose to leverage a random mapping function RM : {0, 1}_ ×
{0, 1}𝑁 → [𝑚] with 𝑝 different salts to securely place 𝑛 DPF keys,
so that later the server will need only to evaluate 𝑝 DPF keys
to compute the controlling value. With this setting, it is readily
understood that we want to reduce the parameter 𝑝 , so that each
server will do fewer computations (which is also the goal wewant to
achieve in the first place). However, given that we only have 𝑝 (𝑝 ≤
𝑛) salted random mapping functions to place those 𝑛 keys, a smaller
number of 𝑝 would inevitably increase the failure probability (i.e.,
we cannot successfully find positions for all those𝑛 keys). In essence,
this failure probability problem has been extensively studied in
the cuckoo hashing paradigm. Below we will sketch some of the
recent results from Demmler et al. [32] to justify our choice of
the parameters 𝑝 and 𝑚. Let 𝑒 be an expansion factor such that
𝑚 = 𝑒 · 𝑛, and _ be a security parameter such that we will have 2−_
probability of failure in the above key inserting task. The empirical
analysis from [32] demonstrates that

_ = 𝑎𝑛 · 𝑒 + 𝑏𝑛,

where 𝑎𝑛 ≈ 123.5 and 𝑏𝑛 ≈ −130 − log2𝑛, for 𝑛 ≤ 512 and 𝑝 = 3.
From Figure 12, we can see that, in order to maintain constant
computation cost on the server sides, the expansion factor 𝑒 would
grow with the increase of the security parameter _ that we want to
achieve. This indicates that a data owner might need to create more
fake DPF keys to fill in the unfilled positions in those𝑚 buckets,
which would incur an increase of the communication cost for key
transmission.

But we can observe that the increase of the underlying DPF
keys to be placed (i.e., value 𝑛) does not impact too much on the
expansion factor, which indicates that our solution would bring
a constant scale of fake DPF keys overhead even though we are
dealing with an increased number of DPF keys. Here in our system,
we will allow a maximum of 𝑛 = 50 OR operations per data policy
(which we think should be enough) and adopt _ = 40 as our security
parameter [2] for 𝑝 = 3 salted random mapping functions. Accord-
ingly, the total buckets sent to the two servers for OR operators
will be𝑚 = 1.5 · 𝑛, where 𝑛 is the number of DPF keys an owner
wants to insert.

C RELEASE POLICY CONSTRUCTIONS
In this section, we will demonstrate the design details of the result
release policies that can be supported in Vizard.

C.1 Integrity-based Release Policies
Here, we will only focus on a “ringer”-based integrity checking
design in this section and omit the concrete designs via publicly
verifiable MPCs (as existing designs can be readily adopted in our
two-server setting for checking output results [12]). Now, we first
summarize how the “ringer” technique works using a basic scheme
proposed in [72] that aims to bring execution assurance for an
outsourced database.
BasicRingerConstructions.Consider a set of queries {𝑞1, . . . , 𝑞𝑘 }
that should be executed via a function 𝐹 (·), we first randomly select
a secret query (e.g., 𝑞𝑚,𝑚 ∈ [𝑘]) and compute a challenge token
(named “ringer”) from the selected query as 𝐻 (𝐹 (𝑞𝑚)), where 𝐻 is
a one-way function like cryptographic hash. Then, the challenge
token and the set of queries will be sent to a service provider. To
prove it has correctly performed the required function 𝐹 (·) for all
queries, in addition to the query results, it also needs to return a
proof𝑚∗ for integrity checking. Thanks to the one-way property
of 𝐻 (·), if 𝑚∗ = 𝑚, we can assure that the service provider has
correctly processed this set of queries.
Our Treatments. Observe that there is no easy way for the RRC
to calculate a challenge token, as owners’ data policies and data
values are not shared with the RRC, we thus turn our focus to
explore owner-assist approaches. Here, our idea is to let owners
periodically and randomly select a representative that will insert a
specially-crafted query 𝑞∗, whose challenge token is pre-computed
by all owners, to Vizard for integrity checking. Specifically, for each
selected representative, our treatment works in two consecutive
stages, i.e., pre-computation and challenge.

At a high level, in the pre-computation stage, the representative
will generate a large number of challenge queries to the owners and
obtain their associated challenge tokens. Then, the representative
will periodically inject a randomly selected challenge query to a

Conference’17, July 2017, Washington, DC, USA Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, and Qian Wang

batch of queries that will be executed by the two servers and secretly
share his true answer to the RRC. Finally, each trustee in the RRC
can verify the integrity of the results delivered by the two servers
by 1) recovering the true answer given by the representative, and 2)
checking whether the two servers have correctly found the “ringer”
query or not. Below are some security concerns we need to further
address on top of this treatment workflow.
SecurityConsiderations. Firstly, for a large set of queries {𝑞∗1, 𝑞

∗
2, . . .}

generated by a randomly selected owner representative, each owner
𝑖 will be able tomatch his data policy 𝑃𝑖 to each query and determine
whether they should participate or not. But apparently, the absence
of data value of a given query will leak information about his data
policy to the representative, so we ask each owner to submit homo-
morphic commitments of his data value and submit a commitment
of zero if the data is not involved in a given query. Since the commit-
ments submitted by all owners are additive, the representative can
readily generate the challenge token of a query 𝑞∗ in the form of
Com(𝐹 (𝑞∗)) (where Com is a homomorphic commitment scheme
like Pedersen commitment) by combining all owners’ commitments.
Besides, it allows the two servers to securely evaluate whether a
query result matches Com(𝐹 (𝑞∗)) (so as to find the “ringer” query)
by locally computing a commitment of its result output and sending
it to the other server.

Secondly, it is well understood that the integrity checking treat-
ment above relies on the secrecy of those challenge queries (i.e.,
the two servers do not know which one is the challenge query
in advance). Therefore, the answer to a challenge token will be
sent to the RRC in secret sharing forms, so that the two servers
cannot learn about the answer without correctly executing those
queries (e.g., by compromising a small set of trustees inside the
RRC). Specifically, we will share those secrets using Shamir’s secret
sharing scheme [70] and set the recovery threshold as 𝑡 = 2/3
(which meets the security threshold we illustrated in Section 2.2).

Lastly, to avoid being detected as a representative that will per-
form integrity checking, the selected owner might need to create
consumer accounts for submitting his challenge queries, or it can
contact some existing consumers to help them insert those chal-
lenge queries. To ease their operation costs, Vizard can provide
a trusted shuffling service (e.g., through a mixed net enabled by
the RRC) to break the links between queries and their submitters.
Here to keep our protocol concise and clear, we adopt the basic
construction (i.e., let the representative create consumer accounts)
in our implementations for demonstration purposes.
Fake Challenge Tokens. One obvious problem of our approach is
that it can only achieve probabilistically-secure integrity checking,
and the two servers can still stop processing as soon as they have
found the “ringer” query inside. One strategy to reduce the false
positive (FP) rate defined above is to ask the representative to send
multiple challenge queries and tokens to the two servers. Besides,
we can also let the representative generate fake challenge tokens
and send them to the two servers. Fake challenge tokens do not
match any result in the batch of queries to be executed, and they
are just random values generated by the representative. Therefore,
the cost for fake challenge token generation is very cheap.

The existence of more challenge tokens (thanks to those cheap
fake challenge tokens) makes the two servers more hesitant to stop
even they have found some “ringers”, as they don’t know whether

there are other true “ringers” in the remaining challenge tokens.
As illustrated in [72], given a batch of 20 queries that consist of
2 ringers and 4 fake challenge tokens, the server will have a low
success rate (less than 20%) even after executing 16 queries.

C.2 Privacy-based Release Policies
Recall that in Vizard, we also allow privacy-based release policies
that aim to correctly generate differential privacy noise and add it to
a query result, i.e., out0+out1+noise, before deliveries. Specifically,
the generated noise can be added to the result during the query
process by the two servers, or by trustees in the RRC after receiving
result shares given by the two servers. But since Shamir’s secret
sharing scheme does not support homomorphic operations on the
shares, in Vizard we adopt the former approach and add noise to
the result during the query process. The generated (DP-noised)
result share on each server will also be split and shared to trustees
in the RRC for deliveries, so that we can enforce other policies (e.g.,
integrity and payment) at the same time.

We note that some recent works have proposed homomorphic
secret sharing schemes (HSS) [16] that allow share operations, but
their current constructions would require expensive overhead for
both share generations and recoveries, making them impractical
to be used for handling large-scale queries. We leave a concrete
and optimized design that is based on HSS (on the RRC side) in our
future works.
Concrete Design.Our goal here is to enforce that a correct amount
of DP noises (i.e., fits the (𝜖, 𝛿) privacy budget that is jointly defined
by owners) will be added during the query process with the help of
a decentralized committee. Fortunately, we can follow the line of
byzantine-secure distributed noise generation works [37, 71] and
let each trustee locally generate noise. Specifically, each trustee
generates a noise drown from a carefully-parameterized geomet-
ric distribution (i.e., Geom(exp(𝜖

𝑆𝑅
)), with probability 1

𝑡 ·𝑊 log 1
𝛿
),

where 𝑆𝑅 is the share output range of the underlying secret sharing
scheme and 𝑡 (𝑡 = 2/3 in Vizard) is the byzantine threshold. Each
generated noise will be securely split and given to the two servers,
where every trustees’ noise shares will be accumulated on each
server and added to its result share for protection. Each server will
then securely split its result share to each trustee in the RRC (along
with integrity proofs) as we demonstrated before for the release
process. This method can achieve (𝜖, 𝛿)-DP privacy for the query

result (with a small error of roughly𝑂 (𝑆𝑅𝜖
√︃

1
𝑡) if 𝑡 = 2/3 trustees in

RRC are honest). We note recent works [4, 49] have further reduced
the total noise needed, and their constructions are also applicable
to Vizard.
Remarks on Privacy Budget. When the budget is exhausted, no
more query should be conducted for avoiding unintended privacy
leakage. This indicates that we might need to replenish the budget
regularly (e.g., daily) to keep our query service operational. But we
also note that a recent work [66] has explored to use the Sparse-
Vector technique to stretch a given privacy budget. It would be
interesting to explore whether this technique can be used in Vizard
to prolong the life-circle of our query service, and we leave such
exploration in our future works.

Vizard: A Metadata-hiding Data Analytic System
with End-to-End Policy Controls Conference’17, July 2017, Washington, DC, USA

C.3 Payment-based Release Policies
Vizard allows data owners to specify payment-based release poli-
cies that enforce monetary rewards for them before the result is
delivered to the consumers. Here, given the fact that the result is
secret shared and requires the majority of trustees (e.g., 2/3) to
recover, an apparent idea is thus to ask each trustee in the RRC
to serve as an arbiter to enforce payment-based result delivery, so
that a malicious consumer cannot obtain enough result shares to
recover the result if he has not faithfully made a payment. Here to
ensure that the payment record can be publicly verifiable by each
trustee, Vizard turns to the emerging blockchain technologies and
crafts a smart contract-based payment channel on Ethereum [80]
for consumers to make payments and show proofs to trustees in
the RRC. The process executes as follows:
(a) Vizard will initialize a smart contract SC, and ask data owners

to create on-chain accounts and record their accounts to SC
for receiving the payments.

(b) Data owners can then jointly decide their payment policies
(e.g., deciding $Price for each specific type of query task).

(c) After making a query to our system, each consumer will ob-
tain a query id qid that will be used to associate his on-chain
payments.

(d) To make a payment, the consumer will send a payment transac-
tion that records (“qid”, “$Price”) to pay a pre-defined amount
of money to SC, and this payment will be evenly split to all
registered data owners. (To support more fine-grained pay-
ment strategies, e.g., quality-based, without leaking the reward
distributions, we can further adopt off-chain payment chan-
nels [10, 38] to deliver owners’ rewards.)

(e) The consumer can now contact each trustee in the RRC with a
payment proof for result retrievals, and each trustee will check
the proof and (if the proof is validated) deliver its local result
share to the consumer.

Remarks. The use of blockchain to construct an on-chain payment
channel can ensure public verifiability, but it would also incur
enormous blockchain maintenance overhead for each trustee (e.g.,
require storing over hundreds of GBs of data to become a full node).

To relieve such maintenance overhead, we can further leverage
existing light client designs, which store only lightweight block
headers and rely on an existing full node for transaction retrievals.
Here in Vizard, we will ask each trustee to use existing blockchain
infrastructure (e.g., Infura for Ethereum) for simplicity, and we are
aware that additional integrity hardening techniques (e.g., [17, 20,
59]) can be further adopted to enforce security.

	Abstract
	1 Introduction
	1.1 Overview of Our Techniques
	1.2 Summary of Contributions

	2 Problem Statement
	2.1 System Model
	2.2 Threat Assumptions
	2.3 System Goals

	3 Background
	4 Metadata-hiding Analytics over Data Streams
	4.1 Our Refined Construction for Data Streams
	4.2 Aggregation Statistics beyond Summation
	4.3 Supporting Rich Data Policies

	5 Release Policy Enforcements
	5.1 Committee and Policy Settings
	5.2 Integrity-based Release Policies
	5.3 Privacy-based Release Policies
	5.4 Payment-based Release Policies

	6 System Implementation
	6.1 Data Policy and Analytic Queries
	6.2 Integration with Apache Kafka
	6.3 Implementation Details

	7 Evaluations
	7.1 Data Owner
	7.2 Data Processing Pipeline
	7.3 Result Release Control

	8 Extensions
	9 Related Works
	10 Conclusion
	Acknowledgments
	References
	A Alternative Solutions
	B Analysis for OR operators
	C Release Policy Constructions
	C.1 Integrity-based Release Policies
	C.2 Privacy-based Release Policies
	C.3 Payment-based Release Policies

