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Abstract
COQCRYPTOLINE is an automatic certified verification tool
for cryptographic programs. It is built on OCAML programs
extracted from algorithms fully certified in COQ with SS-
REFLECT. Similar to other automatic tools, COQCRYPTO-
LINE calls external decision procedures during verification.
To ensure correctness, all answers from external decision
procedures are validated by certified certificate checkers in
COQCRYPTOLINE. We evaluate COQCRYPTOLINE on cryp-
tographic programs from BITCOIN, BORINGSSL, NSS, and
OPENSSL. The first certified verification of the reference
implementation for number theoretic transform in the post-
quantum key exchange mechanism KYBER is also reported.

1 Introduction

Cryptographic programs are crucial to computer security,
but they are notoriously difficult to develop. On the one
hand, cryptographic programs perform tedious computation
over complex algebraic structures. They also need to be ex-
tremely efficient for frequent uses on the other. Such are
the foremost challenges in developing cryptographic pro-
grams. In order to improve qualities of cryptographic pro-
grams, novel verification techniques have been developed in
various projects [4, 5, 8, 12, 13, 15, 17, 23, 32, 38]. Among
them, interactive techniques employ proof assistants and pre-
sumably offer better guarantees. They nonetheless require
significant human intervention and might not be ideal for
daily developments. Automatic techniques on the other hand
employ sophisticated decision procedures and thus need little
human guidance. However, they might not be very trustful
due to possibly unknown errors in complicated decision pro-
cedures. An automatic technique with high assurance would
be most useful for developing cryptographic programs.

COQCRYPTOLINE is an automatic verification tool for
cryptographic programs with pretty good assurance. Like
other automatic techniques, COQCRYPTOLINE reduces verifi-
cation tasks to various computational problems solved by ex-

ternal decision procedures. Unlike other techniques, proof as-
sistants are used to certify COQCRYPTOLINE to attain higher
assurance. Instead of cryptographic programs, we use proof
assistants to certify the correctness of the COQCRYPTOLINE
verification tool once and for all. Results from external deci-
sion procedures are also validated by certificate checkers. To
further improve assurance, these certificate checkers are them-
selves certified by proof assistants. With certified verification
algorithms and validated answers from decision procedures,
COQCRYPTOLINE automatically performs verification tasks
with better assurance than other automatic tools.

More precisely, we formalize semantics for the typed CRYP-
TOLINE language and its specification verification problem
in [17]. We then specify our verification algorithm and certify
its proof of correctness in COQ [11]. Our algorithm transforms
the specification verification problem to two computational
problems via algebraic and bit-vector reductions. The alge-
braic reduction is designed for checking non-linear (modu-
lar) equations in cryptographic programs through the root
entailment problem. The bit-vector reduction is designed
for bit-accurate analysis through the SMT problem over the
Quantifier-Free Bit-Vector (QF_BV) theory.

For algebraic reduction, we formalize the root entailment
problem in COQ and prove the soundness theorem for our
reduction. Our soundness theorem for algebraic reduction re-
quires soundness conditions on input cryptographic programs.
These conditions in turn demand bit-accurate analysis. They
are formally specified in our proof and checked by external
SMT QF_BV solvers. For bit-vector reduction, we adopt the
formal SMT QF_BV theory in [34] and establish the sound-
ness theorem for our reduction. With the soundness theorems
for both reductions, certified techniques for solving the root
entailment problem and the SMT problem over the QF_BV
theory are employed. COQCRYPTOLINE is built on OCAML
programs extracted from the certified COQ algorithm. Overall,
COQCRYPTOLINE contains≈ 68k lines of OCAML programs
extracted from ≈ 24k lines of COQ proof scripts.

For evaluation, 52 cryptographic functions in the secu-
rity libraries BITCOIN [35], BORINGSSL [19], NSS [25] and
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OPENSSL [31] are verified by COQCRYPTOLINE. They are
implementations for field and group operations in the ellip-
tic curves secp256k1 (BITCOIN) and Curve25519 (others).
These functions have been verified by other automated tools
without certificates [17, 24]. Verification results are now cer-
tified by COQCRYPTOLINE. We also verify the reference
implementation of the number-theoretic transform in the post-
quantum key exchange mechanism scheme KYBER from
PQCLEAN [33]. To the best of our knowledge, ours is the
first verification result on the reference implementation and
with certificates. We have the following contributions:

1. We propose a methodology for building automatic veri-
fication tools with pretty good assurance;

2. We develop the automatic certified verification tool CO-
QCRYPTOLINE for cryptographic programs; and

3. We report the first certified verification on programs in
industrial security libraries and the reference implemen-
tation of the number-theoretic transform in KYBER.

Related Work. Projects such as HACL* [38], JASMIN [4]
and FIAT-CRYPTO [15] apply the correct-by-construction
method to construct correct cryptographic programs, whilst
EASYCRYPT [5] and CRYPTOVERIF [23] construct machine-
checked proofs characterizing probabilistic security proper-
ties. Our work on the other hand focuses on verifying pro-
grams in existing security libraries. Various cryptography
primitives have been formalized and manually verified in
proof assistants (for instance, [1–3, 6, 10, 26, 27, 37]). CO-
QCRYPTOLINE in contrast is automatic and thus requires
much less human intervention. The first semi-automatic veri-
fication on real-world cryptographic assembly programs was
proposed in [13]. An SMT solver as well as a proof assistant
is used to verify an extensively annotated assembly program.
VALE [12, 16] provides a high-level language for specifying
assembly programs. Its verification technique is based on
SMT solvers and sometimes needs manually added lemmas.
CRYPTOLINE [17, 32] is also a tool designed for the specifi-
cation and verification of cryptographic assembly codes. Its
verification algorithm utilizes computer algebra systems in
addition to SMT solvers. CRYPTOLINE is also leveraged to
verify cryptographic C programs [24]. However, none of the
aforementioned automatic techniques is certified. Correctness
of these verification tools need to be trusted. The most relevant
work is BVCRYPTOLINE [36], which is the first automatic and
partly certified verification tool for cryptographic programs.
COQCRYPTOLINE nonetheless possesses three essential ad-
vantages: (i) BVCRYPTOLINE only supports the unsigned
integer representation but COQCRYPTOLINE supports both
signed and unsigned representations; (ii) the SMT-based tech-
nique in BVCRYPTOLINE is not certified whereas COQCRYP-
TOLINE certifies both algebraic and SMT-based techniques;
(iii) COQCRYPTOLINE is a standalone tool built on extracted

OCAML programs but BVCRYPTOLINE is a proof script and
hence less efficient. Among automatic certified verification
tools, the authors in [22] formalized and certified a Dijkstra-
style verification condition generator for a small language in
COQ. It was not designed for cryptography verification and no
real-world case studies were reported. The verification condi-
tion generator of the cryptography verification tool VALE/F?

is also certified [16]. VALE/F? however uses the SMT solver
Z3 and F? programming language. These external tools must
be trusted.

This paper is organized as follows. Section 2 reviews pre-
liminaries. Illustrations of COQCRYPTOLINE are briefed in
Section 3. An overview of COQCRYPTOLINE is given in Sec-
tion 4. It is followed by our formal semantics of the typed
CRYPTOLINE language (Section 5). Section 6 highlights our
proof of correctness for the verification algorithm. Experi-
mental results are reported in Section 7.

2 Preliminaries

The coq-nbits Theory. coq-nbits is a formal bit-vector the-
ory in COQ [34]. In the theory, a bit vector is formalized as
a Boolean sequence of the type bits in the least significant
bit first order. It provides the following bit-vector functions:
arithmetic functions — addition addB, subtraction subB, half-
multiplication mulB of the type bits→ bits→ bits; addi-
tion with carry adcB and subtraction with borrow sbbB of the
type bool→ bits→ bits→ bool∗bits; arithmetic right
shift function sarB of the type nat→ bits→ bits; logi-
cal functions — bitwise complement invB : bits→ bits;
bitwise conjunction andB : bits→ bits→ bits; left shift
function shlB and logical right shift shrB function of the
type nat→ bits→ bits; arithmetic predicates — signed
and unsigned comparisons including sltB, sleB, sgtB, sgeB,
ltB, leB, gtB and geB of the type bits→ bits→ bool.

COQQFBV. Given a Boolean formula over Boolean vari-
ables, the formula is satisfiable if there is an assignment to
Boolean variables so that the formula evaluates to true. The
Boolean Satisfiability (SAT) problem is to decide whether
a given Boolean formula is satisfiable. Satisfiability Modulo
Theories (SMT) extends Boolean satisfiability with various
theories [9]. In the Quantifier-Free Bit-Vector (QF_BV) the-
ory, QF_BV predicates on QF_BV expressions are admit-
ted. COQQFBV is a certified solver for the SMT QF_BV
theory [34]. It formalizes the SMT QF_BV theory using
the coq-nbits theory. In the formal theory, QF_BV expres-
sions are of the type QFBV.exp. QF_BV variables qfbv_var
and constants qfbv_const bits are of the type QFBV.exp.
COQQFBV moreover provides QF_BV operations such as
qfbv_add exp exp, qfbv_sub exp exp, qfbv_mul exp exp;
bitwise logical operations qfbv_not exp, qfbv_and exp exp;
logical shift operations qfbv_shl exp n, qfbv_lshr exp n;
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the arithmetic right shift operation qfbv_ashr exp n.
QF_BV predicates are of the type QFBV.bexp in

COQQFBV. They include: equality qfbv_eq exp exp,
signed and unsigned less than predicates qfbv_slt exp
exp and qfbv_ult exp exp respectively; logical negation
qfbv_lneg bexp, conjunction qfbv_conj bexp bexp, implica-
tion qfbv_imp bexp bexp. Finally, the COQQFBV expression
qfbv_ite bexp exp0 exp1 evaluates to exp0 if the QF_BV
predicate bexp is true and exp1 otherwise. A COQQFBV
query is a sequence of QF_BV predicates. An assignment
to QF_BV variables satisfies a predicate if it evaluates the
predicate to true; an assignment satisfies a COQQFBV query
if it satisfies every predicate in the query. A COQQFBV query
is satisfiable if there is an assignment to QF_BV variables
satisfying the query. The SMT QF_BV problem is to decide
whether a given COQQFBV query is satisfiable.

Polynomial Modular Equations. Let N be the set of non-
negative integers, Z the set of integers, x a set of variables and
Z[x] the set of multivariate polynomials in x with integral co-
efficients. Let f0, f1, f2 ∈ Z[x]. f0(x) = f1(x) is a polynomial
equation; f0(x)≡ f1(x) mod f2(x) is a polynomial modular
equation. A (modular) equation is a polynomial equation
or a polynomial modular equation. A root of a polynomial
equation f0(x) = f1(x) is a sequence z of integers such that
f0(z)− f1(z) = 0. A root of a polynomial modular equation
f0(x)≡ f1(x) mod f2(x) is a sequence z of integers such that
f2(z) divides f0(z)− f1(z). A system of (modular) equations
is a set of (modular) equations. A root of a system of (modu-
lar) equations is a sequence z of integers such that z is a root
of every (modular) equation in the system. Given two systems
Π and Π′ of (modular) equations, Π entails Π′ if all roots
of Π are also roots of Π′. The root entailment problem is to
decide whether Π entails Π′.

3 COQCRYPTOLINE

COQCRYPTOLINE is an automatic certified verification
tool for cryptographic programs. To illustrate how CO-
QCRYPTOLINE is used, the x86_64 assembly subroutines
ecp_nistz256_add and ecp_nistz256_mul_montx from
OPENSSL are verified as examples.

Figure 1 shows the input for COQCRYPTOLINE. It con-
tains a CRYPTOLINE specification for the assembly subrou-
tine ecp_nistz256_add. The original subroutine is marked
between the comments ecp_nistz256_add STARTS and
ecp_nistz256_add ENDS, which is obtained automatically
from the Python script provided by CRYPTOLINE [32]. The
left column contains the parameter declaration, pre-condition,
and variable initialization. More precisely, three 256-bit un-
signed integers are declared as inputs. Each 256-bit input
integer is denoted by four 64-bit unsigned integer variables
in the least significant bit first representation. The expression

limbs n [d0, d1, ..., dm] is short for d0 + d1*2**n
+ ... +dm*2**(m*n). The 256-bit integer represented by
m’s is the prime p256 = 2256−2224 +2192 +296−1 from the
NIST curve. The 256-bit integers represented by a’s and b’s
are less then the prime. The inputs and constants are then put
in the variables for memory cells with the MOV instructions.

The right column contains the post-condition of the sub-
routine ecp_nistz256_add. After the subroutine ends, the
256-bit result is moved to the variables c’s. The post-condition
specifies two properties about the subroutine. Firstly, the 256-
bit integer represented by c’s is the sum of the input integers
represented by a’s and b’s modulo the prime p256 represented
by m’s. Secondly, the output integer is less than the prime. Ob-
serve that the extended 320-bit sum of the 256-bit integers
represented by a’s and b’s is computed in the modular equa-
tion. Since input integers in the specified range may induce
overflow when computing 256-bit sums, the modular equation
would not hold for 256-bit sums.

Using eight threads, COQCRYPTOLINE verifies all inputs
satisfying the pre-condition must result in outputs satisfying
the post-condition in 136 seconds with the transcript below:
$ run_coqcryptoline ecp_nistz256_add.cl
Parsing Cryptoline file: [OK] 0.000588 seconds
Checking CNF formulas (3):

CNF #0: [UNSAT] 0.429629 seconds
[CERTIFIED] 0.602632 seconds

CNF #1: [UNSAT] 0.722745 seconds
[CERTIFIED] 0.850775 seconds

CNF #2: [UNSAT] 32.176368 seconds
[CERTIFIED] 82.114442 seconds

Results of checking CNF formulas: [OK] 114.669136 seconds
Finding polynomial coefficients
Finished finding polynomial coefficients 0.000012 seconds
Verification result: [OK] 135.276716 seconds

The annotation is almost minimal in Figure 1. In order to
verify cryptographic programs, input assumptions and output
requirements need be specified by verifiers manually. Vari-
ables for memory cells are initialized straightforwardly. No
further human intervention is needed in this case.

The assembly subroutine ecp_nistz256_mul_montx is
similar. It takes two 256-bit unsigned integers represented by
64-bit variables a’s and b’s. Recall the variables m’s denote
the 256-bit prime p256 for the curve. We have a similar pre-
condition as for ecp_nistz256_add.

and [ m0=0xffffffffffffffff, m1=0x00000000ffffffff,
m2=0x0000000000000000, m3=0xffffffff00000001 ]

&&
and [ m0=0xffffffffffffffff@64, m1=0x00000000ffffffff@64,

m2=0x0000000000000000@64, m3=0xffffffff00000001@64,
limbs 64 [a0,a1,a2,a3] <u limbs 64 [m0,m1,m2,m3],
limbs 64 [b0,b1,b2,b3] <u limbs 64 [m0,m1,m2,m3] ]

The first part of the pre-condition is for the algebraic reduc-
tion; the second part is for the bit-vector reduction.

The output 256-bit integer represented in the variables c’s
has two requirements. Firstly, the output integer multiplied
by 2256 is equal to the product of the input integers modulo
the prime. Secondly, the output integer is less than the prime
p256. Formally, we have the following post-condition:
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proc main
(uint64 a0, uint64 a1, uint64 a2, uint64 a3,
uint64 b0, uint64 b1, uint64 b2, uint64 b3,
uint64 m0, uint64 m1, uint64 m2, uint64 m3) =

{ true
&&
and [ m0=0xffffffffffffffff@64,

m1=0x00000000ffffffff@64,
m2=0x0000000000000000@64,
m3=0xffffffff00000001@64,
limbs 64 [a0, a1, a2, a3] <u

limbs 64 [m0, m1, m2, m3],
limbs 64 [b0, b1, b2, b3] <u

limbs 64 [m0, m1, m2, m3] ] }

mov L0x7fffffffd9c0 a0; mov L0x7fffffffd9c8 a1;
mov L0x7fffffffd9d0 a2; mov L0x7fffffffd9d8 a3;
mov L0x7fffffffd9e0 b0; mov L0x7fffffffd9e8 b1;
mov L0x7fffffffd9f0 b2; mov L0x7fffffffd9f8 b3;

mov L0x55555557c000 0xffffffffffffffff@uint64;
mov L0x55555557c008 0x00000000ffffffff@uint64;

mov L0x55555557c010 0x0000000000000000@uint64;
mov L0x55555557c018 0xffffffff00000001@uint64;

(* ecp_nistz256_add STARTS *)
mov r8 L0x7fffffffd9c0;
mov r13 0@uint64;
mov r9 L0x7fffffffd9c8;
mov r10 L0x7fffffffd9d0;
mov r11 L0x7fffffffd9d8;
adds carry r8 r8 L0x7fffffffd9e0;
adcs carry r9 r9 L0x7fffffffd9e8 carry;
mov rax r8;
adcs carry r10 r10 L0x7fffffffd9f0 carry;
adcs carry r11 r11 L0x7fffffffd9f8 carry;
mov rdx r9;
adc r13 r13 0@uint64 carry;
subb carry r8 r8 L0x55555557c000;
mov rcx r10;
sbbs carry r9 r9 L0x55555557c008 carry;
sbbs carry r10 r10 L0x55555557c010 carry;
mov r12 r11;
sbbs carry r11 r11 L0x55555557c018 carry;

sbbs carry r13 r13 0@uint64 carry;
cmov r8 carry rax r8;
cmov r9 carry rdx r9;
mov L0x7fffffffda00 r8;
cmov r10 carry rcx r10;
mov L0x7fffffffda08 r9;
cmov r11 carry r12 r11;
mov L0x7fffffffda10 r10;
mov L0x7fffffffda18 r11;
(* ecp_nistz256_add ENDS *)

mov c0 L0x7fffffffda00; mov c1 L0x7fffffffda08;
mov c2 L0x7fffffffda10; mov c3 L0x7fffffffda18;

{ true
&&
and [ eqmod limbs 64 [c0, c1, c2, c3, 0@64]

limbs 64 [a0, a1, a2, a3, 0@64] +
limbs 64 [b0, b1, b2, b3, 0@64]

limbs 64 [m0, m1, m2, m3, 0@64],
limbs 64 [c0, c1, c2, c3] <u

limbs 64 [m0, m1, m2, m3] ] }

Figure 1: CRYPTOLINE Specification for ecp_nistz256_add

eqmod limbs 64 [0, 0, 0, 0, c0, c1, c2, c3]
limbs 64 [a0, a1, a2, a3] * limbs 64 [b0, b1, b2, b3]
limbs 64 [m0, m1, m2, m3]

&&
limbs 64 [c0, c1, c2, c3] <u limbs 64 [m0, m1, m2, m3]

Here, we employ the algebraic reduction to verify the non-
linear modular equality. The bit-vector reduction is used to
verify that the output integer is in the proper range.

For ecp_nistz256_mul_montx, more annotations are
needed however. These annotations are additional hints for
COQCRYPTOLINE to verify the post-condition. For instance,
consider adding two 256-bit integers represented by 64-bit
variables. A chain of four 64-bit additions is performed and
carries are propagated. At the end of the addition chain, the
last carry is almost certainly zero or the 256-bit sum is incor-
rect. In ecp_nistz256_mul_montx, two addition chains are
running interleavingly. One uses the carry flag for carries; the
other uses the overflow flag. To tell COQCRYPTOLINE about
the last carries, the following annotation is added at the end
of two interleaving addition chains:

assert true && and [ carry=0@1, overflow=0@1 ];
assume and [ carry=0, overflow=0 ] && true;

The ASSERT instruction verifies both carry and overflow
flags are zeroes through the bit-vector reduction. The AS-
SUME instruction then passes the information to the algebraic
reduction. Effectively, COQCRYPTOLINE checks both flags
must be zeroes for all inputs satisfying the pre-condition. The
facts are then used as lemmas to verify the post-condition
with the algebraic reduction.

The full specification for ecp_nistz256_mul_montx is
listed in Appendix A. Out of 230 lines, 50 lines of annotations
are added manually. Among the 50 lines of annotations, about
20 of them are for variable declaration, pre-condition, variable

initialization, and post-condition. As in ecp_nistz256_add,
they are added rather straightforwardly. The remaining 30
lines of annotations give more hints to COQCRYPTOLINE.
With all 50 lines of annotations, COQCRYPTOLINE verifies
the post-condition in 189 seconds with eight threads.

These examples illustrate the typical verification flow. In
order to verify a cryptographic program, verifiers first con-
struct a CRYPTOLINE specification. The pre-condition for
program inputs, the post-condition for outputs, and variable
initialization need be specified manually. Additional annota-
tions may be added as hints. Notice that all hints only tell
COQCRYPTOLINE what properties should hold. They do not
explain why properties should hold. Proofs of annotated hints
and the post-condition are found by COQCRYPTOLINE auto-
matically. Consequently, manual annotations are minimized
and verification efforts are reduced significantly.

4 Technology Overview

Figure 2 outlines the components in COQCRYPTOLINE. In
the figure, dashed components represent external tools. Rect-
angular boxes are certified components and rounded boxes
are uncertified. We use the proof assistant COQ with SSRE-
FLECT to certify components in COQCRYPTOLINE [11, 18].
Note that all our proof efforts are transparent to verifiers. No
COQ proof is needed from verifiers during verification of
cryptographic programs with COQCRYPTOLINE (Section 3).

A CRYPTOLINE specification contains a CRYPTOLINE
program with pre- and post-conditions. A CRYPTOLINE spec-
ification is valid if every program execution starting from a
program state (called store) satisfying the pre-condition ends
in a store satisfying the post-condition. From a CRYPTOLINE
specification text, the COQCRYPTOLINE parser translates the
text into an abstract syntax tree defined in the COQ module
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COQCRYPTOLINE parser

DSL

SSASSA2ZSSA SSA2QFBV

Validator

computer algebra system

SMT QF_BV solver

solve
solve

solve
validate

trusted
verified

untrusted

certified module
certified external solver

uncertified module
uncertified external solver

Figure 2: Overview of COQCRYPTOLINE

DSL. The module gives formal semantics for the typed CRYP-
TOLINE language in [17]. Validity of CRYPTOLINE specifica-
tions is also formalized (Section 5). Similar to most program
verification tools, COQCRYPTOLINE transforms CRYPTO-
LINE specifications to the static single assignment (SSA)
form. The SSA module gives our transformation algorithm. It
moreover shows that validity of CRYPTOLINE specifications
is preserved by the SSA transformation.

COQCRYPTOLINE then reduces specifications in SSA
form via two reductions. The SSA2ZSSA module contains
our algebraic reduction to the root entailment problem (Sec-
tion 6.1). Concretely, a system of (modular) equations is con-
structed from the given program so that program executions
correspond to roots of the system of (modular) equations.
To verify post-conditions, it suffices to check if roots for ex-
ecutions are also roots of (modular) equations in the post-
condition. However, program executions can deviate from
roots of (modular) equations when over- or under-flow occurs.
COQCRYPTOLINE generate soundness conditions to ensure
executions correspond to roots of (modular) equations. The
verification problem is thus reduced to the root entailment
problem provided that soundness conditions hold.

The SSA2QFBV module gives our bit-vector reduction to the
SMT QF_BV problem. It constructs a COQQFBV query to
check validity of the given CRYPTOLINE specification (Sec-
tion 6.2). Concretely, a COQQFBV query is built such that all
program executions correspond to satisfying assignments to
the query and vice versa. To verify post-conditions, it suffices
to check if satisfying assignments for the query also satisfy the
post-conditions. The verification problem is thus reduced to
the SMT QF_BV problem. Additional COQQFBV queries
are constructed to check soundness conditions for the alge-
braic reduction. We formally prove the equivalence between

soundness conditions and corresponding queries.
With the two certified reduction algorithms, it remains to

solve the root entailment problem and the SMT QF_BV
problem with external solvers. COQCRYPTOLINE improves
the techniques in [21, 36] to validate answers from an ex-
ternal computer algebra system (CAS). To solve instances
of the SMT QF_BV problem, COQCRYPTOLINE employs
the certified SMT QF_BV solver COQQFBV [34]. In all
cases, instances of the root entailment problem and the SMT
QF_BV problem are solved with certificates. To further im-
prove assurance, COQCRYPTOLINE employs certified certifi-
cate checkers to validate answers to the root entailment and
the SMT QF_BV problem problem.

The COQCRYPTOLINE tool is built on OCAML programs
extracted from certified algorithms in COQ with SSRE-
FLECT [11,18]. We moreover integrate the OCAML programs
from the certified SMT QF_BV solver COQQFBV [34]. Our
trusted computing base consists of (1) COQCRYPTOLINE
parser, (2) text interface with external SAT solvers (from
COQQFBV), (3) the proof assistant ISABELLE [29] (from
COQQFBV) and (4) the COQ proof assistant. Particularly,
sophisticated decision procedures in external CASs and SAT
solvers used in COQQFBV are not trusted.

5 Typed CRYPTOLINE

CRYPTOLINE is a domain specific language for modeling
cryptographic assembly programs [32,36]. Modern cryptogra-
phy relies on complicated computation over large finite fields
or groups. To improve efficiency, such computation is often
implemented by assembly programs in industrial security li-
braries like OPENSSL [31]. Moreover, signed and unsigned
numbers with different over- and under-flow bounds often co-
exist. A type system is added to CRYPTOLINE to distinguish
variables in different representations. We formalize the typed
CRYPTOLINE and its semantics in [17] into the DSL module
using the proof assistant COQ with SSREFLECT and coq-
nbits. Certain COQ notations and definitions may be unfolded
in our presentation.

5.1 Types, Variables, and Stores
Types in the CRYPTOLINE type system, or CL types for short,
are inductively defined as typ in COQ.

Inductive typ : Set :=
Tuint : nat → typ | Tsint : nat → typ.

Let w be a natural number of COQ’s type nat. Tuint w and
Tsint w are the CL types of bit-vectors of width w in the
unsigned and two’s complement signed representations re-
spectively.

Variables in CRYPTOLINE are typed under a type environ-
ment, which is a finite mapping from variables to CL types.
The type of variables is var and the type of type environments
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is env. Type environments evolve during program executions
as a variable may be assigned values of different CL types in
different program locations. Variables in CRYPTOLINE are
evaluated in a store, which is a finite mapping from variables
to bit-vectors. The type of stores is S.t. Let v be a variable,
bs be a bit-vector, and s and t are stores. S.acc v s denotes
the value of v in s. The COQ’s proposition S.Upd v bs s t
denotes that t is updated from s by mapping v to bs. Note
that there may be inconsistency between the width of the CL
type of a variable in a type environment and the width of the
bit-vector value of the variable in a store. This inconsistency is
prevented by conformity to be introduced later in Section 5.4.

5.2 Expressions and Predicates
CRYPTOLINE has two forms of expressions, of which one is
used to describe multivariate polynomials over integers and
the other is used to describe operations over bit-vectors. Both
forms of expressions are evaluated in a store.

Algebraic expressions in CRYPTOLINE are used to de-
scribe multivariate polynomials over integers such as the poly-
nomial a0 + a1*2**64 + a2*2**128 + a3*2**192 (or
equivalently limbs 64 [a0, a1, a2, a3]) mentioned in
Section 3. The type of algebraic expressions is eexp. An alge-
braic expression is inductively defined to be a variable Evar
v, an integer constant Econst n, a unary algebraic expres-
sion Eunop euop e, or a binary algebraic expression Ebinop
ebop e1 e2 where v is a variable, n is an integer of COQ’s
type Z, euop is a unary algebraic operator, ebop is a binary
algebraic operator, and e, e1, and e2 are algebraic expressions.
The unary algebraic operator Eneg (negation), and the binary
algebraic operators Eadd (addition), Esub (subtraction), and
Emul (multiplication) are supported.

An algebraic expression e is evaluated in a store s under a
type environment te to an integer eval_eexp e te s. Since
a store maps a variable to a bit-vector, the bit-vector has to be
converted to an appropriate integer in the evaluation. This is
done by the function bv2z which converts a bit-vector to an
integer by the coq-nbits functions to_Zpos (using unsigned
representation) and to_Z (using two’s complement represen-
tation) depending on the CL type of the variable in the type
environment.

Definition bv2z (t : typ) (bs : bits) : Z :=
match t with
| Tuint _ => to_Zpos bs
| Tsint _ => to_Z bs
end.

Algebraic operators Eneg, Eadd, Esub, and Emul are evalu-
ated using the COQ notations -, +, -, and * respectively for
unary negation, addition, subtraction, and multiplication over
integers.

Range expressions in CRYPTOLINE are used to describe
operations over bit-vectors and are designed as a subset of
QF_BV expressions in COQQFBV. More specifically, a

range expression is a variable Rvar v, a bit-vector constant
Rconst w bs, a unary range expression Runop w ruop e, a
binary range expression Rbinop w rbop e1 e2, a zero ex-
tension Ruext w e i, or a signed extension Rsext w e i
where v is a variable, bs is a bit-vector, ruop is a unary range
operator, rbop is a binary range operator, i is a natural num-
ber for the number of bits to be extended, w is a natural number
for the bit width of the arguments, and e, e1, and e2 are range
expressions. Two unary range operators Rnegb (negation)
and Rnotb (bitwise inversion) are supported. The supported
binary range operators include Radd (addition), Rsub (sub-
traction), Rmul (multiplication), Rumod (unsigned remainder),
Rsrem (signed remainder with sign follows dividend), Rsmod
(signed remainder with sign follows divisor), bitwise AND
(Randb), bitwise OR (Rorb), and bitwise XOR (Rxorb). The
type of range expressions is rexp.

A range expression e is evaluated in a store s to a bit-vector
eval_rexp e s. The definition of eval_rexp follows the
semantics of QF_BV expressions defined in COQQFBV. For
example, Radd is evaluated in the same way as qfbv_add in
COQQFBV. Note that type environments are not needed in
the evaluation of range expressions.

Same as expressions, CRYPTOLINE has two forms of pred-
icates, of which one is used to describe integer properties and
the other is used to describe bit-accurate properties.

Algebraic predicates in CRYPTOLINE are used to describe
integer properties. The type of algebraic predicates is ebexp.
An algebraic predicate is inductively defined to be an atomic
algebraic predicate or a conjunction (Eand) of algebraic pred-
icates. An atomic algebraic predicate is Etrue or a (modular)
equation over algebraic expressions of type eexp. Given al-
gebraic expressions e1, e2, and m, Eeq e1 e2 is the equality
of e1 and e2 while Eeqmod e1 e2 m is the congruence of e1
and e2 modulo m. For example, the congruence X ≡ 1 mod 2
can be defined as the algebraic predicate Eeqmod (Evar X)
(Econst 1) (Econst 2) assuming that X is a variable.

Given a store s and a type environment te, the seman-
tics of an algebraic predicate e in s under te is defined
as the proposition eval_ebexp e te s which holds if and
only if all atomic algebraic predicates in e hold in s under
te. The atomic algebraic predicate Etrue always holds. Eeq
e1 e2 holds if eval_eexp e1 te s = eval_eexp e2 te
s where = is the equality in COQ. Eeqmod e1 e2 m holds
if modulo (eval_eexp e1 te s) (eval_eexp e2 te s)
(eval_eexp m te s). For integers x, y, and p, modulo x y
p holds if and only if there exists some integer k such that x -
y = k * p.

Range predicates in CRYPTOLINE on the other hand are
used to describe bit-accurate properties and are designed as a
subset of QF_BV predicates in COQQFBV 1. More specif-
ically, a range predicate is an atomic range predicate or an
arbitrary Boolean expression (Rneg for Boolean NOT, Rand

1It is possible to define range predicates as QF_BV predicates although
the subset is sufficient for us to verify many cryptographic programs.
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for Boolean AND, and Ror for Boolean OR) over range predi-
cates. An atomic range predicate is Rtrue, an equality Req w
e1 e2, or a comparison Rcmp w rcop e1 e2 where rcop is
a comparison operator, e1 and e2 are range expressions, and
w is the width of the arguments. A comparison operator can
be Rult (unsigned less-than) or Rslt (signed less-than). For
example, testing whether an unsigned variable X is less than
an unsigned variable Y, written as X <u Y in the CRYPTO-
LINE text, is represented as the range predicate Rcmp w Rult
(Rvar X) (Rvar Y), assuming that both X and Y have width
w. The type of range predicates is rbexp.

A range predicate e is evaluated in a store s to a Boolean
eval_rbexp e s. The definition of eval_rbexp follows the
semantics of QF_BV predicates defined in COQQFBV. For
example, Rult is evaluated in the same way as qfbv_ult in
COQQFBV.

A predicate in CRYPTOLINE is composed of an alge-
braic predicate and a range predicate. The type of predi-
cates is bexp. The algebraic predicate and the range pred-
icate of a predicate e are obtained by eqn_bexp e and
rng_bexp e respectively. The evaluation of a predicate e
in a store s under a type environment te is defined as
the proposition eval_bexp e te s, which is the conjunc-
tion of eval_ebexp (eqn_bexp e) te s and eval_rbexp
(rng_bexp e) s.

5.3 Instructions and Programs
An atom is either Avar v or Aconst ty bs where v is a
variable, bs is a bit-vector, ty is the intended type of the
bit-vector. The function eval_atom evaluates an atom in a
store. Given a store s, a variable v, a bit-vector bs, and a type
ty, eval_atom (Avar v) s and eval_atom (Aconst ty
bs) s are defined as S.acc v s and bs respectively.

An instruction of type instr assigns destination variables
with values of source atoms.

Inductive instr : Type :=
Imov : var → atom → instr

| Iadd : ... | Iadds : ... | Iadc : ... | Iadcs : ...
| Isub : ... | Isubb : ... | Isbb : ... | Isbbs : ...
| Imul : ... | Imull : ... | Imulj : ...
| Ishl : ... | Icshl : ... | Ijoin : ... | Isplit : ...
| Inot : ... | Iand : ... | Ior : ... | Ixor : ...
| Icmov : ... | Inondet : ... | Icast : ...
...
| Iassume : bexp → instr.

Imov v a assigns the value of the source atom a to the
destination variable v. Arithmetic instructions such as ad-
dition (Iadd and Iadds), addition with carry (Iadc and
Iadcs), subtraction (Isub and Isubb), subtraction with bor-
row (Isbb and Isbbs), half-multiplication (Imul), and full
multiplication (Imull and Imulj) are supported. Additional
flags (such as carry and borrow flags) are set in Iadds, Iadcs,
Isubb, and Isbbs. Bitwise operations (Inot, Iand, Ior, and
Ixor), conditional moves (Icmov), shifting operations (Ishl

and Icshl), and splitting operations (Isplit) are also al-
lowed. The Ijoin v a1 a2 instruction concatenates values
of source atoms a1 and a2 and puts the concatenation in the
destination variable v. The Icast v t a instruction casts
the value of the source atom a into the designated type t.
The non-deterministic instruction Inondet v t assigns the
destination variable v an arbitrary value in the designated
type t. For verification purposes, COQCRYPTOLINE allows
programmers assumptions about executions. The Iassume e
instruction ensures that the designated predicate e holds in all
executions. A program is a sequence of instructions.

Executions of CRYPTOLINE programs are formalized by re-
lational semantics. Informally, our semantics of CRYPTOLINE
programs specifies how stores are changed by instructions
in a program. Consider a type environment te, stores s, t
and an instruction i. The inductive proposition eval_instr
te i s t denotes that the successor store t can be reached
by executing i at s. For example, eval_instr te (Imov
v a) s t holds if S.Upd v (eval_atom a s) s t holds,
that is, t is updated from s by mapping v to the value of a in s.
For the addition instruction Iadd, eval_instr te (Iadd v
a1 a2) s t holds if S.Upd v (addB (eval_atom a1 s)
(eval_atom a2 s)) s t holds, that is, t is updated from s
by mapping v to the bit-vector sum of a1 and a2 in s.

The executions of Icast instructions are more complicated.
Let v be a variable, ty be a CL type, a be an atom, s be a store,
and bs be the evaluation of a in s. The execution of Icast v
ty a at s assigns bs represented in ty to v. Let size bs be
the width of bs and w be the width of ty. Depending on the
relation between size bs and w, the casted value may be bs,
its truncation, or its extension. If the CL type of a is unsigned,
the casted value assigned to v is ucastB bs w:

Definition ucastB (bs : bits) (w : nat) : bits :=
if w == size bs then bs
else if w < size bs then low w bs

else zext (w - size bs) bs.

where low w bs is the lower w bits of bs. Otherwise the
casted value is scastB bs w where scastB is defined same
as ucastB except that sext is used for extension instead of
zext. See Appendix B for more details of the semantics of
the instructions in typed CRYPTOLINE.

Given a type environment te, a program p, and stores s and
t, the proposition eval_program te p s t denotes that t
can be reached by executing p from the s under te. If p is an
empty sequence, denoted by [::], the store is unchanged, i.e.,
eval_program te [::] s s holds. If p is an instruction i
followed by a program p’, denoted by i::p’, eval_program
te (i::p’) s t holds if there is some store u such that
both eval_instr te i s u and eval_program te’ p’
u t hold where te’ is instr_succ_typenv i te. The type
environment updated from te after executing the instruction
i is formalized as the term instr_succ_typenv i te. Sim-
ilarly, type environment updated from te after executing the
program p is formalized as the term program_succ_typenv
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p te.
Compared to BVCRYPTOLINE, COQCRYPTOLINE offers

several new instructions such as Inondet, Icmov, Inot, Iand,
Ior, Ixor, Imulj, Icast, Ijoin, and Iassume. Bitwise op-
erations Iand and Ior are often used for bit masking, which is
commonly used in security libraries. The Iassume instruction
allows interchangeability between algebraic properties and
range properties. That is, for an algebraic property hard to be
proved by the CAS, we may prove its corresponding range
property by the SMT QF_BV solver and then assume that the
algebraic property holds, and vice versa. For example, as men-
tioned in Section 3, we prove carry = 0@1 in the range side
using an SMT QF_BV solver and then assume carry = 0 in
the algebraic side so that the external CAS knows carry = 0
when solving algebraic predicates. Such interchangeability is
not available in BVCRYPTOLINE.

5.4 Specifications
A specification s is formalized as a COQ record spec with
four fields, of which sinputs s is the initial type environ-
ment, spre s is the pre-condition, sprog s is the program,
and spost s is the post-condition. Both the pre-condition
and the post-condition are predicates.

Record spec : Type :=
{ sinputs : env; spre : bexp;
sprog : program; spost : bexp }.

To focus on the algebraic part and the range part of a specifi-
cation, we introduce another two forms of specifications.

Record espec :=
{ esinputs : env; espre : bexp;
esprog : program; espost : ebexp }.

Record rspec :=
{ rsinputs : env; rspre : rbexp;
rsprog : program; rspost : rbexp }.

The functions espec_of_spec and rspec_of_spec convert
a specification to an algebraic specification of type espec and
a range specification of type rspec respectively simply by
dropping either algebraic predicates or range predicates in the
pre- and post-conditions.

A store s is conformed to a type environment te, defined
as S.conform s te in COQ, if and only if for every variable
v in te, the type of v in te and the bit-vector value of v
in s have the same width. The validity of a specification s,
defined as the proposition valid_spec s, holds if and only
if the execution of sprog s from any store s1 conformed to
sinputs s and satisfying spre s terminates in a store s2
where spost s holds.

Definition valid_spec (s : spec) : Prop :=
∀ s1 s2 : S.t,
S.conform s1 (sinputs s) →
eval_bexp (spre s) (sinputs s) s1 →
eval_program (sinputs s) (sprog s) s1 s2 →
eval_bexp (spost s)
(program_succ_typenv (sprog s) (sinputs s)) s2.

The validity of an algebraic specification and the va-
lidity of a range specification are defined similarly as
valid_espec and valid_rspec respectively. We have the
lemma valid_spec_split for splitting the validity of a spec-
ification into the validity of its algebraic part and the validity
of its range part.

Lemma valid_spec_split (s : spec) :
valid_espec (espec_of_spec s) →
valid_rspec (rspec_of_spec s) → valid_spec s.

6 Certified Verification

Given a typed CRYPTOLINE specification text, the COQCRYP-
TOLINE parser translates the text into a term of type spec,
or more specifically DSL.spec (spec in the DSL module). A
specification of type DSL.spec is verified by the function
verify_dsl:

Definition verify_dsl (o : options) (s : DSL.spec) :=
verify_ssa o (SSA.ssa_spec s).

where SSA.ssa_spec is the SSA transformation. The SSA
form of the specification is then verified by the function
verify_ssa. The type of specifications in SSA is SSA.spec
(spec in the SSA module). The two modules DSL and SSA are
basically the same except that they have different types of
variables. Thus all the syntax and semantics defined in DSL
(Section 5) are also available in SSA. We may omit DSL. and
SSA. when it is clear in the context.

A specification in SSA is verified by the function
verify_ssa where the algebraic reduction (to the root en-
tailment problem) and the bit-vector reduction (to the SMT
QF_BV problem) are applied.

Definition verify_ssa (o : options) (s : SSA.spec) :=
(verify_rspec_algsnd s) && (verify_espec o s)

The algebraic reduction and the solving of root entailment
problems are performed in the function verify_espec. The
bit-vector reduction and the solving of SMT QF_BV queries
together with the soundness conditions are performed in the
function verify_rspec_algsnd. We detail verify_espec
and verify_rspec_algsnd in the following subsections.
While we present our verification algorithms defined in COQ,
the algorithms are extracted to OCAML code by COQ for
execution.

6.1 Algebraic Specification Verification
The function verify_espec applies the algebraic reduc-
tion to a specification in SSA through algred_espec and
then solves the resulting root entailment problems through
verify_rep or its parallel version verify_rep_list both
with answers verified by a validator.

Definition verify_espec (o : options) (s : SSA.spec) :=
(let rp : rep := (algred_espec o
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(new_svar_spec s) (espec_of_spec s)) in
if sequential_solving o
then (verify_rep o rp)
else (verify_rep_list o rp)).

A root entailment problem is formalized as a COQ’s record
rep where a system of (modular) equations is represented as
an algebraic predicate.

Record rep : Type :=
{ premise : SSA.ebexp; conseq : SSA.ebexp }.

Given a root entailment problem rp, we want to decide
whether valid_rep rp holds, that is, whether the premise
premise rp entails the consequence conseq rp, formalized
as entails (premise rp) (conseq rp).

Definition entails (f g : ebexp) : Prop :=
∀ s, eval_zbexp f s → eval_zbexp g s.

Definition valid_rep (rp : rep) : Prop :=
entails (premise rp) (conseq rp).

In a root entailment problem, algebraic expressions and al-
gebraic predicates are evaluated through eval_zexp and
eval_zbexp over integer stores, which are mappings from
variables to integer values. We formalize integer stores as the
type ZS.t in COQ. The evaluation functions eval_zexp and
eval_zbexp are the same as eval_eexp and eval_ebexp
respectively except that the conversion function bv2z is not
needed. bv2z is not used in the algebraic reduction because
the value of a variable in an integer store is already an integer.

The algebraic reduction algred_espec translates an alge-
braic specification s to a root entailment problem.

Definition algred_espec o avn (s : SSA.espec) : rep :=
let (_, eprogs) :=
algred_program (esinputs s) avn init_g (esprog s) in

{| premise := eand (eqn_bexp (espre s)) (eands eprogs);
conseq := espost s |}.

During the reduction, a system of (modular) equations is
represented as a sequence of algebraic predicates temporar-
ily. Intuitively, a system of (modular) equations eprogs is
constructed from the program esprog s so that program
executions correspond to roots of the system of (modular)
equations. We then check if eprogs conjuncted with the pre-
condition eqn_bexp (espre s) entails the post-condition
espost s of s. Here eand (and eands) is used to construct a
conjunction (Eand) from two algebraic predicates (and a list
of algebraic predicates respectively).

The function algred_program reduces a program instruc-
tion by instruction through algred_instr where an atom is
translated to an algebraic expression by algred_atom.

Definition algred_atom (a : SSA.atom) : SSA.eexp :=
match a with
| Avar v => Evar v
| Aconst ty bs => Econst (bv2z ty bs)
end.

Definition algred_instr te avn g (i : SSA.instr) : (N * seq
SSA.ebexp) :=

match i with
| Iadd v a1 a2 =>

let za1 := algred_atom a1 in
let za2 := algred_atom a2 in
(g, [:: Eeq (Evar v) (Ebinop Eadd za1 za2)])

| Icast v ty a => algred_cast avn g v ty a (atyp a te)
...
end.

Consider for example the instruction Iadd v a1 a2 where v
is a variable and a1 and a2 are two atoms. The execution of
the instruction assigns v the bit-vector sum of the values of a1
and a2 computed by addB. We translate this execution to the
equation Eeq (Evar v) (Ebinop Eadd za1 za2) where
za1 is algred_atom a1 and za2 is algred_atom a2. How-
ever, the execution does not correspond to roots of the equa-
tion when the bit-vector sum overflows. For example, consider
two constant atoms both of type Tuint 4. Assume they have
bit-vector values (1111)2 and (1000)2 (with least significant
bit first) respectively. The two constant atoms have unsigned
integer values 15 and 1 respectively. The bit-vector addition
results in (0000)2, which has an unsigned integer value 0.
Obviously 15+1 6= 0. Thus to make our algebraic reduction
sound, over- and under-flows must be avoided. We say that a
specification s is algebraically sound, defined as the proposi-
tion ssa_spec_algsnd s, if and only if there is neither over-
nor under-flow during the execution of the program in the
specification. As checking over- and under-flows requires bit-
accurate analysis, the establishment of ssa_spec_algsnd s
is carried out in our range reduction in Section 6.2.

Let v be a variable, ty be a CL type, a be an atom, te be
a type environment, and aty be the CL type of a under te.
Consider for another example the algebraic reduction of the
instruction Icast v ty a under te. Assume the target CL
type ty is Tuint wv and aty is Tuint wa where wv and wa
are two natural numbers. The execution of the instruction
is translated to the equation algred_cast avn g v ty a
aty where avn and g are used to generate fresh variables.

Definition algred_cast avn g v ty a aty :=
match ty, aty with
| Tuint wv, Tuint wa =>
if wv ≥ wa then (g, [:: Eeq (evar v) (algred_atom a)])
else let discarded := (avn, g) in

let g’ := N.succ g in
(g’, [:: algred_split discarded v (algred_atom a)

wv])
...
end.

If the width wv is greater than or equal to wa (wv >= wa),
then the value of a can be represented in the CL type ty per-
fectly and thus the equation Eeq (evar v) (algred_atom
a) must hold. Otherwise, only a part of the value can be
represented in ty. In the latter case, there must be some
value, denoted by the fresh variable discarded, such that the
polynomial equation a+ discarded× 2wv = v holds. This
polynomial equation is represented as the algebraic pred-
icate algred_split discarded v (algred_atom a) wv.
For example, consider casting a constant atom (1101)2 of
type Tuint 4 to a target type Tuint 2. The casted value is
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the lower 2 bits (11)2 of the atom (see ucastB in Section 5).
While the atom has the unsigned integer value 11, the casted
value is 3 in the unsigned representation. We have the equa-
tion 11+(−2)×22 = 3, that is, the integer value of discard
is −2 (which is the negation of the unsigned value of the
higher 2 bits (01)2 of the atom).

The correctness of our algebraic reduction is guaranteed
by the following soundness lemma:

Lemma algred_espec_sound (o : options) (s : SSA.spec) :
well_formed_ssa_spec s → ssa_spec_algsnd s →
valid_rep (algred_espec o
(new_svar_spec s) (espec_of_spec s)) →

valid_espec (espec_of_spec s).

where well_formed_ssa_spec checks if a specification
is a well-formed specification in SSA. The lemma
algred_espec_sound states that if a well-formed specifi-
cation s in SSA is algebraically sound (ssa_spec_algsnd
s) and the root entailment problem reduced from the
specification holds, i.e. valid_rep (algred_espec o
(new_svar_spec s) (espec_of_spec s)), then the al-
gebraic specification espec_of_spec s is valid. Well-
formedness ensures that the source atoms in an instruction
have compatible CL types. See [17] for more details of well-
formedness.

To prove this lemma, we have to construct an integer store
(of type ZS.t) from the terminating store (of type S.t) of the
program execution so that the premise of the root entailment
problem holds in the integer store. Such an integer store is
constructed by converting the bit-vector values of variables
in the store to an integer value through bv2z. However this is
not enough because there may be fresh variables created for
Icast instructions in the premise but neither in the specifi-
cation nor in the store. Extra proof effort is made to set the
integer values of the fresh variables properly. Our algebraic re-
duction is sound but incomplete because program executions
correspond to roots of the constructed system of (modular)
equations but not vice versa. It remains to show how to solve
a root entailment problem.

A root entailment problem of type rep is solved by
an external CAS in verify_rep (or its parallel version
verify_rep_list).

Definition verify_imp (ip : imp) : bool :=
let ’(_, _, ps, m, q) := zpexprs_of_imp ip in
let (cs, c) := ext_solve_imp ps q m in
validate_imp_answer ps m q cs c.

Definition verify_rep o (rp : rep) : bool :=
if rewrite_assignments o
then all verify_imp (imps_of_rep_simplified o rp)
else all verify_imp (imps_of_rep rp).

The function verify_rep converts a root entailment prob-
lem to ideal membership problems through imps_of_rep
(or imps_of_rep_simplified with rewriting) based on the
approach in [21, 36], invokes the external CAS to solve all
ideal membership problems through ext_solve_imp, and

then verifies the answers from the CAS through the valida-
tor validate_imp_answer. If the answers from the CAS
are successfully verified by validate_imp_answer, the root
entailment problem holds. The correctness of verify_rep
and its parallel version verify_rep_list is provided by the
following lemmas.

Lemma verify_rep_sound o (rp : rep) :
verify_rep o rp → valid_rep rp.

Lemma verify_rep_list_sound o (rp : rep) :
verify_rep_list o rp → valid_rep rp.

6.2 Range Specification Verification
The range reduction converts bit-accurate verification prob-
lems to SMT QF_BV queries. In verify_ssa, two bit-
accurate verification problems are reduced from a specifi-
cation in SSA and solved through verify_rspec_algsnd.
One bit-accurate verification problem is the validity of the
range part of the specification and the other is the algebraic
soundness of the specification. While the former problem is
reduced through rngred_rspec, the latter problem is reduced
through rngred_algsnd.

Definition rngred_rspec_algsnd (s : SSA.spec) : seq QFBV.
bexp :=

(rngred_rspec s) ++ (rngred_algsnd s).
Definition verify_rspec_algsnd (s : SSA.spec) : bool :=
let fE := program_succ_typenv (sprog s) (sinputs s) in
let es := simplify_bexp (rngred_rspec_algsnd s) in
let ’(_, _, _, cnfs) :=
bb_hbexps_cache fE (map QFBVHash.hash_bexp es) in

ext_all_unsat cnfs.

To get the benefit of parallel computation, instead of con-
structing a large SMT QF_BV query for both bit-accurate
verification problems, our range reduction constructs an SMT
QF_BV query for each of the atomic range predicates to be
verified and soundness conditions of instructions. The SMT
QF_BV queries are then solved by the certified SMT QF_BV
solver COQQFBV, which bit blasts a query into a satisfiabil-
ity problem, invokes a SAT solver to solve the satisfiability
problem, and then verifies the satisfiable assignments or proof
of unsatisfiability returned by the SAT solver. We observe
that solving SMT QF_BV queries one by one parallelly us-
ing COQQFBV is still very slow due to bit blasting multiple
times the same QF_BV expressions representing the program
execution of the specification. To prevent this bottleneck, we
bit blast all SMT QF_BV queries in bb_hbexps_cache and
store the results in a cache. For expressions and predicates
that have been bit blasted, we simply find the results from the
cache. During the reduction, SMT QF_BV queries are sim-
plified in simplify_bexp. It remains to show how the range
reduction is applied in rngred_rspec and rngred_algsnd.

The function rngred_rspec first converts the input spec-
ification s to a range specification rspec_of_spec s of
type rspec and then reduces the validity of rspec_of_spec
s to SMT QF_BV queries through functions bexp_rbexp
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and bexp_program. Intuitively, for an atomic range pred-
icate e in the post-condition of a range specification s,
rngred_rspec constructs a QF_BV predicate qpre equiva-
lent to rspre s through bexp_rbexp, QF_BV predicates
qprog equivalent to the execution of rsprog s through
bexp_program, a QF_BV predicate qpost equivalent to
e through bexp_rbexp, and then an SMT QF_BV query
checking if qpost is implied by the conjunction of qpre
and qprog. Since the range predicates in typed CRYPTO-
LINE are a subset of the QF_BV predicates in COQQFBV,
the conversion from rbexp to QFBV.bexp is straightforward.
The function bexp_program converts a program to QF_BV
predicates instruction by instruction through bexp_instr.
The function bexp_instr basically follows the semantics
of eval_instr but changes bit-vector operations to appro-
priate QF_BV expressions and makes equalities instead of
assignments. For example, consider the instruction Iadd v
a1 a2 where v is a variable and a1 and a2 are two atoms. The
execution of the instructions assigns v the bit-vector sum of
the values of a1 and a2 computed by the coq-nbits function
addB. The QF_BV predicate constructed by bexp_instr for
the instruction is then qfbv_eq (qfbv_var v) (qfbv_add
(qfbv_atom a1) (qfbv_atom a2)). Given a variable v, a
CL type ty, and a bit-vector n, qfbv_atom maps Avar v
and Aconst _ n to qfbv_var v and qfbv_const n respec-
tively.

The function rngred_algsnd reduces the soundness con-
ditions of a specification to SMT QF_BV queries. Each in-
struction in the specification has its soundness condition com-
puted by bexp_instr_algsnd and represented as a QF_BV
predicate. For each instruction in the specification, we con-
struct an SMT QF_BV query checking if the soundness con-
dition of the instruction is implied by qpre and qprog, where
qpre and qprog are constructed through bexp_rbexp and
bexp_program respectively in the same way as aforemen-
tioned.

Definition bexp_atom_uaddB_algsnd a1 a2 : QFBV.bexp :=
qfbv_lneg (qfbv_uaddo (qfbv_atom a1) (qfbv_atom a2)).

Definition bexp_atom_saddB_algsnd a1 a2 : QFBV.bexp :=
qfbv_lneg (qfbv_saddo (qfbv_atom a1) (qfbv_atom a2)).

Definition bexp_atom_addB_algsnd E a1 a2 : QFBV.bexp :=
let ’aty := atyp a1 E in
if Typ.is_unsigned aty then bexp_atom_uaddB_algsnd a1 a2
else bexp_atom_saddB_algsnd a1 a2.

...
Definition bexp_instr_algsnd E (i : instr) : QFBV.bexp :=
match i with
| Iadd _ a1 a2 => bexp_atom_addB_algsnd E a1 a2
...
end.

For addition, subtraction, multiplication, and shifting oper-
ations that have potential over- and under-flow issues, we
extend COQQFBV with over- and under-flow QF_BV predi-
cates and their bit blasting rules with correctness proof cer-
tified by COQ. Consider for example the instruction Iadd v
a1 a2 where the variable v, and the atoms a1 and a2 are of

the same unsigned CL type. The instruction Iadd v a1 a2 is
algebraically sound if the SMT QF_BV predicate qfbv_lneg
(qfbv_uaddo (qfbv_atom a1) (qfbv_atom a2)) holds
where qfbv_lneg constructs a logical negation in SMT
QF_BV. The function qfbv_uaddo constructs our extended
predicate for unsigned addition overflow, which states that
the carry of the unsigned addition equals one.

Our range reduction is sound and complete by the following
lemmas.

Lemma verify_rspec_algsnd_sound (s : SSA.spec) :
well_formed_ssa_spec s → verify_rspec_algsnd s →
valid_rspec (rspec_of_spec s) ∧ ssa_spec_algsnd s.

Lemma verify_rspec_algsnd_complete (s : SSA.spec) :
well_formed_ssa_spec s →
valid_rspec (rspec_of_spec s) → ssa_spec_algsnd s →
verify_rspec_algsnd s.

The soundness lemma verify_rspec_algsnd_sound states
that if verify_rspec_algsnd s is true for a well-formed
SSA specification s, then the range specification of s is
valid and s is algebraically sound. The completeness lemma
verify_rspec_algsnd_complete guarantees that a coun-
terexample found by an SMT QF_BV solver is indeed a vio-
lation of the specification. Note that BVCRYPTOLINE does
not provide any completeness.

6.3 Correctness
We build the correctness of our top-level verification
function verify_dsl. By valid_spec_split and
algred_espec_sound, we prove the following lemma.

Theorem algred_spec_sound (o : options) (s : SSA.spec) :
well_formed_ssa_spec s → ssa_spec_algsnd s →
valid_rspec (rspec_of_spec s) →
valid_rep (algred_espec o
(new_svar_spec s) (espec_of_spec s)) →

valid_spec s.

The lemma algred_spec_sound states that to verify a
well-formed specification in SSA, it is sufficient to verify
its algebraic soundness, validity of the range part, and the
validity of the algebraic part. By algred_spec_sound,
verify_rspec_algsnd_sound, verify_rep_sound, and
verify_rep_list_sound, we have the following sound-
ness theorem, guaranteeing the validity of a well-formed
specification in SSA if it is successfully verified by
verify_ssa.

Theorem verify_ssa_sound (o : options) (s : SSA.spec) :
well_formed_ssa_spec s → verify_ssa o s →
SSA.valid_spec s.

Additionally, our SSA transformation SSA.ssa_spec pre-
serves validity and well-formedness.

Theorem ssa_spec_sound (s : DSL.spec) :
SSA.valid_spec (SSA.ssa_spec s) → DSL.valid_spec s.

Theorem ssa_spec_well_formed (s : DSL.spec) :
DSL.well_formed_spec s →
well_formed_ssa_spec (SSA.ssa_spec s).
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Finally, by verify_ssa_sound, ssa_spec_sound, and
ssa_spec_well_formed, we prove the soundness of the
verification function verify_dsl.

Theorem verify_dsl_sound (o : options) (s : DSL.spec) :
DSL.well_formed_spec s → verify_dsl o s →
DSL.valid_spec s.

The main theorem verify_dsl_sound guarantees that the
input specification is valid if it is well-formed and verified by
verify_dsl.

7 Evaluation

We evaluate COQCRYPTOLINE on benchmarks from four in-
dustrial security libraries BITCOIN [35], BORINGSSL [15,19],
NSS [25] and OPENSSL [31]. A case study on the post-
quantum key encapsulation mechanism scheme KYBER is
also evaluated. We compare COQCRYPTOLINE against the
uncertified verification tool CRYPTOLINE [17]. Both tools
use the computer algebra system SINGULAR for the algebraic
technique [20], but CRYPTOLINE does not certify answers.
For the SMT-based technique, COQCRYPTOLINE invokes
the certified SMT QF_BV solver COQQFBV [34]. CRYPTO-
LINE however uses the efficient but uncertified SMT solver
BOOLECTOR [28]. BVCRYPTOLINE is not in our evalua-
tion because 43 out of the 52 benchmarks are not supported
by BVCRYPTOLINE. Evaluation is performed on an Ubuntu
20.04 machine with a 3.20GHz CPU and 1TB RAM. For
each benchmark, the external solvers SINGULAR and CO-
QQFBV run concurrently with 20 threads while other parts
run sequentially.

In this evaluation, 52 C implementations of field and
group operations for elliptic curves secp256k1 (BITCOIN)
and Curve25519 (BORINGSSL, NSS, OPENSSL) are veri-
fied. Moreover, the C program for KYBER Number-Theoretic
Transform (NTT) in PQCLEAN [33] is verified.

Field and Group Operations in Security Libraries The
52 programs for various field and group operations in
secp256k1 and Curve25519 were reported in [17]. For those
written in assembly, we obtain CRYPTOLINE programs by
automatic extraction (Section 3). For others written in C,
we did not verify their C source codes. Rather, we extract
CRYPTOLINE programs from compiler intermediate repre-
sentations after machine-independent optimizations automati-
cally [24]. Subsequently, these CRYPTOLINE programs reflect
actual computation more accurately than original C source
codes. We verify whether every function correctly imple-
ments the corresponding field or group operation and outputs
results in expected bounds. Annotations for these programs
are mostly straightforward. COQCRYPTOLINE verifies al-
most all programs with certificates. Some group operations
(x25519_scalar_mult_generic, point_add_and_double, and
x25519_scalar_mult) are verified but not fully certified. Each

Table 1: Experimental Results

Fcn LCL TCCL TCL Fcn LCL TCCL TCL
bitcoin/asm/secp256k1_fe_*

mul_inner 158 76.6 3.6
sqr_inner 138 37.1 2.2

bitcoin/field/secp256k1_fe_*
add 8 0.1 0.2 mul_inner 123 87.3 3.0

cmov 45 3.1 0.5 mul_int 9 2.4 0.2
negate 13 1.0 0.3 sqr_inner 111 57.7 2.0

from_storage 27 0.4 0.3
normalize 41 169.1 65.5

normalize_var 47 132.3 61.6
normalize_weak 14 81.2 16.2

secp256k1_fe_normalizes_to_zero 47 190.0 62.3
bitcoin/group/

secp256k1_ge_neg 29 0.5 0.5
secp256k1_ge_from_storage 51 1.0 0.5

secp256k1_gej_double_var.part.14 871 2435.4 34.3
bitcoin/scalar/secp256k1_scalar_*

add 111 3.8 1.4 mul_512 296 132.0 5.3
eq 30 0.7 0.1 negate 40 32.6 0.6

mul 808 456.0 13.9 reduce 103 2.5 1.0
sqr 820 353.2 12.4 sqr_512 308 52.7 5.4

secp256k1_scalar_reduce_512 515 124.7 5.6
boringssl/fiat_curve25519/fe_*

add 8 0.1 0.2 mul_impl 106 68.1 3.1
sub 13 0.2 0.3 sqr_impl 88 30.7 1.7

fe_mul121666 50 1.7 0.7
x25519_scalar_mult_generic 965 3317.2 341.0

boringssl/fiat_curve25519_x86/fe_*
add 13 0.2 0.5 mul_impl 348 208.8 6.6
sub 23 0.4 0.8 sqr_impl 272 86.9 4.9

fe_mul121666 87 2.8 1.3
x25519_scalar_mult_generic 3008 14164.5 1106.7

nss/Hacl_Curve25519_51/
fadd0 8 0.2 0.3 fsub0 13 0.3 0.4
fmul0 120 175.2 34.3 fmul1 60 18.3 0.8
fsqr0 91 95.1 4.2 fsqr20 179 258.7 6.1

fmul20 221 590.7 24.0
point_add_and_double 1057 7507.4 1302.5

point_double 524 1936.8 53.3
openssl/curve25519/fe51_*

add 8 0.1 0.3 sub 18 0.2 0.2
mul 104 107.8 2.5 sq 86 51.8 1.4

fe51_mul121666 51 1.7 0.7
x25519_scalar_mult 948 5669.9 614.8

PQClean/kyber/NTT
PQCLEAN_KYBER512_CLEAN_ntt 5421 122931.6 741.5

of them has three algebraic post-conditions; COQCRYPTO-
LINE verifies all three algebraic post-conditions but only cer-
tifies two of them. Stack overflow exception is raised when
our certificate checker validates answers from SINGULAR.

KYBER and NTT (Number Theoretic Transform) multi-
plications Crystals-KYBER [7], a round 3 finalist key es-
tablishment method (KEM) of the NIST postquantum stan-
dardization process [30] is a lattice-based cryptosystem. In
such KEMs, aside from symmetric-key primitives (e.g. SHA-
3), the critical steps are modular polynomial multiplications,
which are conducted using the NTT. This is an analogue of
fast-Fourier transform (FFT) for finite fields.

NTTs are based on the isomorphism from Fq[X ]/(X2n−c2)
to Fq[X ]/(Xn− c)×Fq[X ]/(Xn + c), or f (X) +Xng(X) 7→
( f (X) + cg(X), f (X)− cg(X)) for deg f ,g < n. This splits
into many ( fi,gi) 7→ ( fi+cgi, fi−cgi) maps — Cooley-Tukey
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butterflies [14]. This repeats with a square root for c in Fq.
The usual textbook NTT concludes at linear X−ω factors.

And multiplication between two images of the NTT map
is just pairwise multiplication in Fq ∼= Fq[X ]/(X −ω). In
KYBER, the ring is Z3329[X ]/(X256 +1) where −1 has a 128-
th but no 256-th principal root. So via 7 layers of in-place CT
butterflies [14], the KYBER NTT maps a polynomial of degree
255, to 128 linear polynomials (each modulo a different X2−
ζ j, where ζ j’s are the principal 256-th roots of unity):

Zq[X ]/(X256+1) NT T↔ Zq[X ]/(X2−ζ0)×·· ·×Zq[X ]/(X2−ζ127)

This is called an “incomplete NTT”. One can compute a
modular polynomial product via two such incomplete NTTs, a
pairwise product of linear polynomials modulo various X2−
ω, and then applying an inverse incomplete NTT.

In KYBER, polynomial coefficients are elements from the
residue system modulo q= 3329. Addition and multiplication
in KYBER NTT are therefore modular arithmetic over the
residue system. Multiplying by a constant c in KYBER is
usually “signed Montgomery”: ac≡ (ac′−(ac′′ mod R)q)/R
(mod q), with R a power of 2 (usu. 216), c′ = cR mod q, and
c′′ = c′(q−1 mod R) mod R. The division is exact because
ac′′q≡ ac′ (mod R), for a result between ±q if |a|< q/2.

We verify whether the reference C implementation of KY-
BER NTT correctly computes 128 linear polynomials for any
input polynomial of degree 255 with coefficients in the residue
system modulo q. Let F = ∑

255
k=0 fkXk denote the input to the

KYBER NTT, each coefficient fk < q represented as a 16-bit

signed integer in an array of size 256. Let ∑
256/2i+1−1
k=0 gi, j,kXk

be the j-th polynomial obtained at the end of layer i with
0≤ i≤ 6 and 0≤ j < 2i+1. Using signed Montgomery multi-
plications, we need no mod-q reductions during 7 layers of CT
butterflies. We verify that each layer correctly implements CT
butterflies by specifying algebraic and range post-conditions.

The following algebraic post-conditions are verified at the
end of layer 0, with 0≤ k < 128:

g0,0,k ≡ fk +ζ0,0 fk+128 mod q,

and g0,1,k ≡ fk−ζ0,0 fk+128 mod q.

And at the end of layers 1 to 6, we specify the post-conditions

gi,2 j,k ≡ gi−1, j,k +ζi, jgi−1, j,k+256/2i+1 mod q,

and gi,2 j+1,k ≡ gi−1, j,k−ζi, jgi−1, j,k+256/2i+1 mod q,

with 0 ≤ j < 2i and 0 ≤ k < 256/2i+1. ζi, j’s are the factors
used by CT butterflies at layer i. The range pre-condition
−q≤ fk < q is specified for layer 0. At the end of layer i, the
range post-conditions we verified are

−(3+ i)q≤ gi, j,k < (3+ i)q,

for 0 ≤ j < 2i+1 and 0 ≤ k < 256/2i+1. And the range
post-conditions of layer i− 1 are required as the range pre-
conditions for layer i with 1≤ i≤ 6.

Results Table 1 shows evaluation results. The column LCL
denotes the number of CRYPTOLINE instructions. TCCL and
TCL are respectively the running time of COQCRYPTOLINE
and CRYPTOLINE in seconds. Most functions are verified by
COQCRYPTOLINE within 10 minutes. The hardest one, KY-
BER NTT, is also verified. CRYPTOLINE verifies KYBER NTT
in 741.5 seconds (≈13 minutes) but COQCRYPTOLINE needs
122931.6 seconds (≈1.5 days). In all cases, external solvers
take much more time than COQCRYPTOLINE OCAML pro-
gram does. Between external solvers, the verification of alge-
braic properties in KYBER NTT calls SINGULAR 1792 times
and takes 96.23% of the time; the verification of range proper-
ties invokes COQQFBV 8064 times and spends 3.70% of the
time. In contrast, the other 52 functions call SINGULAR 60
times in total and takes only 0.13% of the time; they invoke
COQQFBV 7074 times using 99.78% of the time.

8 Conclusion

Adopting recent developments in certified verification, we
build the certified automated verification tool COQCRYPTO-
LINE for cryptographic programs. We certify our proof of
correctness for the COQCRYPTOLINE verification algorithm
fully in COQ with SSREFLECT. For efficiency, COQCRYPTO-
LINE employs external tools and validates their answers with
certificates. We evaluate COQCRYPTOLINE on benchmarks
from industrial security libraries (BITCOIN, BORINGSSL,
NSS, OPENSSL) and a post-quantum cryptography standard
finalist (KYBER). Certified verification needs to validate its
results and hence can be less efficient. In our experiments, CO-
QCRYPTOLINE verifies most cryptographic programs with
certificates in reasonable time (10 minutes). The most com-
plicated benchmark on KYBER number-theoretic transform
needs 1.5 days and may still be faster than certified manual
proofs. To our knowledge, this is the first certified verification
on operations of the elliptic curve secp256k1 used in BIT-
COIN, and the reference implementation of KYBER number-
theoretic transform. Certified verification with COQCRYPTO-
LINE is perhaps useful for real cryptographic programs.
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A ecp_nistz256_mul_montx

Figure 3 shows the complete CRYPTOLINE specification
for the assembly subroutine ecp_nistz256_mul_montx in
OPENSSL.

B Typed CRYPTOLINE

CRYPTOLINE is a domain specific language for modeling
cryptographic assembly programs [17, 32, 36].

B.1 Syntax
Figure 4 gives the formal CRYPTOLINE syntax in COQCRYP-
TOLINE. A type is represented by Tuint w or Tsint w for a
natural number w in COQCRYPTOLINE An atom is of the form
Avar var or Aconst t bits where var is a variable, t is a
type, and bits a bit-vector. Imov v a assigns the value of the
source atom a to the destination variable v. The conditional
move instruction Icmov v c a1 a2 assigns the destination
variable v the value of either source atoms a1 and a2 by the
flag c. Arithmetic instructions such as addition (Iadd and
Iadds), addition with carry (Iadc and Iadcs), subtraction
(Isub and Isubb), subtraction with borrow (Isbb and Isbbs),
subtraction with carry (Isbc and Isbcs), half-multiplication
(Imul), and full multiplication (Imull and Imulj) are sup-
ported. Additional flags (such as carry and borrow flags)
are set in Iadds, Iadcs, Isubb, Isbbs, and Isbcs. While
Imull vh vl a1 a2 splits the result of a full multiplica-
tion of a1 and a2 into the high bits vh and the low bits vl,
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proc main
(uint64 a0, uint64 a1, uint64 a2, uint64 a3,
uint64 b0, uint64 b1, uint64 b2, uint64 b3,
uint64 m0, uint64 m1, uint64 m2, uint64 m3) =

{ and [ m0 = 0xffffffffffffffff,
m1 = 0x00000000ffffffff,
m2 = 0x0000000000000000,
m3 = 0xffffffff00000001 ]

&&
and [ m0 = 0xffffffffffffffff@64,

m1 = 0x00000000ffffffff@64,
m2 = 0x0000000000000000@64,
m3 = 0xffffffff00000001@64,
limbs 64 [a0, a1, a2, a3] <u

limbs 64 [m0, m1, m2, m3],
limbs 64 [b0, b1, b2, b3] <u

limbs 64 [m0, m1, m2, m3] ] }

mov L0x7fffffffd9b0 a0; mov L0x7fffffffd9b8 a1;
mov L0x7fffffffd9c0 a2; mov L0x7fffffffd9c8 a3;
mov L0x7fffffffd9d0 b0; mov L0x7fffffffd9d8 b1;
mov L0x7fffffffd9e0 b2; mov L0x7fffffffd9e8 b3;

mov L0x55555557c000 0xffffffffffffffff@uint64;
mov L0x55555557c008 0x00000000ffffffff@uint64;
mov L0x55555557c010 0x0000000000000000@uint64;
mov L0x55555557c018 0xffffffff00000001@uint64;

(* ecp_nistz256_mul_montx STARTS *)
mov rdx L0x7fffffffd9d0;
mov r9 L0x7fffffffd9b0;
mov r10 L0x7fffffffd9b8;
mov r11 L0x7fffffffd9c0;
mov r12 L0x7fffffffd9c8;
mull r9 r8 rdx r9;
mull r10 rcx rdx r10;
mov r14 0x20@uint64;
mov r13 0@uint64;
clear carry;
clear overflow;
mull r11 rbp rdx r11;
mov r15 L0x55555557c018;
adcs carry r9 r9 rcx carry;
mull r12 rcx rdx r12;
mov rdx r8;
adcs carry r10 r10 rbp carry;
assert r14=32 && true;
split ddc rbp r8 32;
shl rbp rbp 32;
adcs carry r11 r11 rcx carry;
assert r14=32 && true;
split rcx dc r8 32;

assert true && rcx=ddc;
assume rcx=ddc && true;

adc r12 r12 0x0@uint64 carry;
adds carry r9 r9 rbp;
adcs carry r10 r10 rcx carry;
mull rbp rcx rdx r15;
mov rdx L0x7fffffffd9d8;
adcs carry r11 r11 rcx carry;
adcs carry r12 r12 rbp carry;
adc r13 r13 0x0@uint64 carry;

mov r8 0@uint64;
clear carry;
clear overflow;
mull rbp rcx rdx L0x7fffffffd9b0;
adcs carry r9 r9 rcx carry;
adcs overflow r10 r10 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9b8;
adcs carry r10 r10 rcx carry;
adcs overflow r11 r11 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c0;
adcs carry r11 r11 rcx carry;
adcs overflow r12 r12 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c8;
mov rdx r9;

adcs carry r12 r12 rcx carry;
assert r14=32 && true;
split ddc rcx r9 32;
shl rcx rcx 32;
adcs overflow r13 r13 rbp overflow;
assert r14=32 && true;
split rbp dc r9 32;

assert true && rbp=ddc;
assume rbp=ddc && true;

adcs carry r13 r13 r8 carry;
adcs overflow r8 r8 r8 overflow;

assert true && and [carry=0@1,overflow=0@1];
assume and [carry=0,overflow=0] && true;

adc r8 r8 0x0@uint64 carry;
adds carry r10 r10 rcx;
adcs carry r11 r11 rbp carry;
mull rbp rcx rdx r15;
mov rdx L0x7fffffffd9e0;
adcs carry r12 r12 rcx carry;
adcs carry r13 r13 rbp carry;
adc r8 r8 0x0@uint64 carry;

mov r9 0@uint64;
clear carry;
clear overflow;
mull rbp rcx rdx L0x7fffffffd9b0;
adcs carry r10 r10 rcx carry;
adcs overflow r11 r11 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9b8;
adcs carry r11 r11 rcx carry;
adcs overflow r12 r12 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c0;
adcs carry r12 r12 rcx carry;
adcs overflow r13 r13 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c8;
mov rdx r10;
adcs carry r13 r13 rcx carry;
assert r14=32 && true;
split ddc rcx r10 32;
shl rcx rcx 32;
adcs overflow r8 r8 rbp overflow;
assert r14=32 && true;
split rbp dc r10 32;

assert true && rbp=ddc;
assume rbp=ddc && true;

adcs carry r8 r8 r9 carry;
adcs overflow r9 r9 r9 overflow;

assert true && and [carry=0@1,overflow=0@1];
assume and [carry=0,overflow=0] && true;

adc r9 r9 0x0@uint64 carry;
adds carry r11 r11 rcx;
adcs carry r12 r12 rbp carry;
mull rbp rcx rdx r15;
mov rdx L0x7fffffffd9e8;
adcs carry r13 r13 rcx carry;
adcs carry r8 r8 rbp carry;
adc r9 r9 0x0@uint64 carry;
mov r10 0@uint64;
clear carry;
clear overflow;
mull rbp rcx rdx L0x7fffffffd9b0;
adcs carry r11 r11 rcx carry;
adcs overflow r12 r12 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9b8;
adcs carry r12 r12 rcx carry;
adcs overflow r13 r13 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c0;
adcs carry r13 r13 rcx carry;
adcs overflow r8 r8 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c8;
mov rdx r11;

adcs carry r8 r8 rcx carry;
assert r14=32 && true;
split ddc rcx r11 32;
shl rcx rcx 32;
adcs overflow r9 r9 rbp overflow;
assert r14=32 && true;
split rbp dc r11 32;

assert true && rbp=ddc;
assume rbp=ddc && true;

adcs carry r9 r9 r10 carry;
adcs overflow r10 r10 r10 overflow;

assert true && and [carry=0@1,overflow=0@1];
assume and [carry=0,overflow=0] && true;

adc r10 r10 0x0@uint64 carry;
adds carry r12 r12 rcx;
adcs carry r13 r13 rbp carry;
mull rbp rcx rdx r15;
mov rbx r12;
mov r14 L0x55555557c008;
adcs carry r8 r8 rcx carry;
mov rdx r13;
adcs carry r9 r9 rbp carry;
adc r10 r10 0x0@uint64 carry;

nondet r12o@uint64; nondet r13o@uint64;
nondet r8o@uint64; nondet r9o@uint64;
nondet r10o@uint64;
assume and [ r12o=r12, r13o=r13, r8o=r8,

r9o=r9, r10o=r10 ]
&& and [ r12o=r12, r13o=r13, r8o=r8,

r9o=r9, r10o=r10 ];

mov eax 0@uint64;
clear carry;
clear overflow;
mov rcx r8;
sbbs carry r12 r12 0xffffffffffffffff@uint64 carry;
sbbs carry r13 r13 r14 carry;
sbbs carry r8 r8 0x0@uint64 carry;
mov rbp r9;
sbbs carry r9 r9 r15 carry;
sbbs carry r10 r10 0x0@uint64 carry;
cmov r12 carry rbx r12;
cmov r13 carry rdx r13;
mov L0x7fffffffd9f0 r12;
cmov r8 carry rcx r8;
mov L0x7fffffffd9f8 r13;
cmov r9 carry rbp r9;

assert true &&
eqmod limbs 64 [r12, r13, r8, r9, 0@64]

limbs 64 [r12o, r13o, r8o, r9o, r10o]
limbs 64 [m0, m1, m2, m3, 0@64];

assume eqmod limbs 64 [r12, r13, r8, r9, 0]
limbs 64 [r12o, r13o, r8o, r9o, r10o]
limbs 64 [m0, m1, m2, m3, 0] && true;

mov L0x7fffffffda00 r8;
mov L0x7fffffffda08 r9;
(* ecp_nistz256_mul_montx ENDS *)

mov c0 L0x7fffffffd9f0;
mov c1 L0x7fffffffd9f8;
mov c2 L0x7fffffffda00;
mov c3 L0x7fffffffda08;

{ eqmod limbs 64 [0, 0, 0, 0, c0, c1, c2, c3]
limbs 64 [a0, a1, a2, a3] *
limbs 64 [b0, b1, b2, b3]
limbs 64 [m0, m1, m2, m3]

&&
limbs 64 [c0, c1, c2, c3] <u

limbs 64 [m0, m1, m2, m3] }

Figure 3: CRYPTOLINE Model for ecp_nistz256_mul_montx
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Inductive typ : Set :=
| Tuint : nat → typ | Tsint : nat → typ.
Inductive atom : Type :=
| Avar : var → atom | Aconst : typ → bits → atom.
Inductive instr : Type :=
| Imov : var → atom → instr
| Icmov : var → atom → atom → atom → instr
| Iadd : var → atom → atom → instr
| Iadds : var → var → atom → atom → instr
| Iadc : var → atom → atom → atom → instr
| Iadcs : var → var → atom → atom → atom → instr
| Isub : var → atom → atom → instr
| Isubc : var → var → atom → atom → instr
| Isubb : var → var → atom → atom → instr
| Isbb : var → atom → atom → atom → instr
| Isbbs : var → var → atom → atom → atom → instr
| Isbc : var → atom → atom → atom → instr
| Isbcs : var → var → atom → atom → atom → instr
| Imul : var → atom → atom → instr
| Imull : var → var → atom → atom → instr
| Imulj : var → atom → atom → instr
| Inot : var → typ → atom → instr
| Iand : var → typ → atom → atom → instr
| Ior : var → typ → atom → atom → instr
| Ixor : var → typ → atom → atom → instr
| Ishl : var → atom → nat → instr
| Isplit : var → var → atom → nat → instr
| Ijoin : var → atom → atom → instr
| Icshl : var → var → atom → atom → nat → instr
| Icast : var → typ → atom → instr
| Ivpc : var → typ → atom → instr
| Inondet : var → typ → instr
| Inop : instr | Iassume : bexp → instr.

Figure 4: CRYPTOLINE Types, Instructions and Programs

Imulj v a1 a2 stores the result in one variable v of a wider
width. Moreover, bitwise logical operations Inot, Iand, Ior,
and Ixor are allowed. The Ishl v a n instruction shifts the
bit vector value a to the left by n. The Isplit vh vl a n
instruction decomposes the value of the source atom a at po-
sition n, stores the resulting high bits in vh, and stores the
resulting low bits in vl. The Ijoin v a1 a2 instruction con-
catenates values of source atoms a1 and a2 and puts the con-
catenation in the destination variable v. The concatenate-shift-
left instruction Icshl vh vl a1 a2 n concatenates values
of source atoms a1 and a2, shifts the concatenated value to
the left by n, and decomposes the result into two destina-
tion variables vh and vl. The Icast v t a instruction casts
the value of the source atom a into the designated type t.
The value-preserving cast Ivpc v t a also casts the value
of a to t but requires the value is preserved after casting.
The non-deterministic instruction Inondet v t assigns the
destination variable v an arbitrary value in the designated
type t. For verification purposes, COQCRYPTOLINE allows
programmers assumptions about executions. The Iassume e
instruction ensures that the designated predicate e hold in
all executions. Inop is the null instruction. A program is a
sequence of instructions.

Inductive eunop : Set := Eneg.
Inductive ebinop : Set := Eadd | Esub | Emul.
Inductive eexp : Type :=
| Evar : var → eexp | Econst : Z → eexp
| Eunop : eunop → eexp → eexp
| Ebinop : ebinop → eexp → eexp → eexp.
Inductive ebexp : Type :=
| Etrue | Eeq : eexp → eexp → ebexp
| Eeqmod : eexp → eexp → eexp → ebexp
| Eand : ebexp → ebexp → ebexp.

Inductive runop : Set := Rnegb | Rnotb.
Inductive rbinop : Set :=
| Radd | Rsub | Rmul | Rumod | Rsrem | Rsmod
| Randb | Rorb | Rxorb.
Inductive rcmpop : Set :=
| Rult | Rule | Rugt | Ruge | Rslt | Rsle | Rsgt | Rsge.
Inductive rexp : Type :=
| Rvar : var → rexp | Rconst : nat → bits → rexp
| Runop : nat → runop → rexp → rexp
| Rbinop : nat → rbinop → rexp → rexp → rexp
| Ruext : nat → rexp → nat → rexp
| Rsext : nat → rexp → nat → rexp.
Inductive rbexp : Type :=
| Rtrue | Req : nat → rexp → rexp → rbexp
| Rcmp : nat → rcmpop → rexp → rexp → rbexp
| Rneg : rbexp → rbexp | Rand : rbexp → rbexp → rbexp
| Ror : rbexp → rbexp → rbexp.

Definition bexp : Type := ebexp * rbexp

Figure 5: CRYPTOLINE Algebraic and Range Predicates

The formal syntax of a predicate bexp in Iassume is shown
in Figure 5. An algebraic expression eexp in algebraic pred-
icates is a variable (Evar var), a constant (Econst z), the
negation of an algebraic expression (Eneg), the sum (Eadd),
difference (Esub), or product (mul) of two algebraic expres-
sions. Note that the constant z in an algebraic expression
has type Z, which is the type of unbounded integers in COQ.
Atomic algebraic predicates include equality (Eeq e1 e2)
and modular equality (Eeqmod e1 e2 m) over algebraic ex-
pressions e1, e2, and m. An atomic algebraic ebexp is an
atomic algebraic predicate or a conjunction (Eand) of alge-
braic predicates.

A range expression rexp is a variable (Rvar), a constant
(Rconst n bits), the arithmetic negation (Rneg), bitwise
inversion (Rnot), addition (Radd), subtraction (Rsub), mul-
tiplication (Rmul), unsigned remainder (Rumod), signed re-
mainder (Rsrem and Rsmod), bitwise AND (Rand), bitwise
OR (Ror), or bitwise XOR (Rxor) over range expressions.
Constants in range expressions are bit-vectors of bounded
lengths. Atomic range predicates are equality (Req), signed or
unsigned comparisons (Rcmp) over range expressions rexp.
A range predicate rbexp is an arbitrary Boolean expression
(Rneg, Rand, and Ror) over atomic range predicates.
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B.2 Semantics

Figure 6-8 show the formal semantics of instructions
and predicates defined in COQCRYPTOLINE. Recall that
eval_atom a s evaluates the atom a on the store s. Let
v, v’ be variables, bits, bits’ bit-vectors, and s, t stores.
The proposition S.Upd v bits s t denotes that the store t
is obtained by updating the value of the variable v with the bit
vector bits in the store s; S.Upd2 v bits v’ bits’ s t
denotes that the store t is obtained by updating the values of
the variables v and v’ with the bit-vectors bits and bits’ in
the store s.

Because of Inondet, our formal semantics is rela-
tional. The predicate eval_instr te i s t denotes
that the store t can be reached from the store s after
executing the instruction i in the type environment
te. Concretely, eval_instr te (Imov v a) s t
holds if S.Upd v (eval_atom a s) s t holds. That
is, t is obtained by updating the variable v with the
value of the atom a in the s. There are two cases for
the Icmov v c a1 a2 instruction. If eval_atom c s
is true and v is updated with eval_atom a1 s in
t, then eval_instr te (Icmov v c a1 a2) s t
holds (EIcmovT). If eval_atom c s is false, v needs
to be updated with eval_atom a2 s in t (EIcmovF).
eval_instr te Inop s s always holds.

The instruction Iadd v a1 a2 uses the bit-vector
function addB from coq-nbits to update v with the
sum of the eval_atom a1 s and eval_atom a2 s.
Iadds c v a1 a2 moreover sets the bit variable c to the
carry of the sum. The coq-nbits function carry_addB
computes the carry. The instruction Iadc v a1 a2 y
uses the bit-vector function adcB to compute the sum
of eval_atom a1 s and eval_atom a2 s with carry
eval_atom y s. The adcB function returns a tuple (c, s)
where c is the carry and s is the sum. The semantics for
Iadcs c v a1 a2 is similar. The semantics for various
subtraction instructions use the bit-vector functions subB and
sbbB as well.

For Imul v a1 a2, the function mulB computes the
half-product of eval_atom a1 s and eval_atom a2 s.
For unsigned full multiplication Imull vh vl a1 a2,
eval_atom a1 s and eval_atom a2 s are extended by ze-
ros zext. The high bits of the extended product are computed
by the coq-nbits function high and stored in vh. The low bits
are in vl are computed by low and stored in vl. The signed
full-multiplication uses the sign-extension function sext in-
stead. Imulj v a1 a2 updates v with the full product.

The instruction Ishl v a i uses the bit-vector function
shlB to shift eval_atom a s to the left by i bits and stores
the shifted result in v. Icshl vh vl a1 a2 i concatenates
eval_atom a1 s and eval_atom a2 s and shifts the con-
catenation to the left by i bits. The variable vh is updated with
the high bits of the shifted concatenation. The low bits of the

shifted concatenation is shifted to the right by i bits and stored
in vl.

The Inondet v ty updates the variable v with the bit-
vector n of the same size as the type ty. Ijoin v ah al
updates v with the concatenation of eval_atom ah s and
eval_atom al s. The unsigned Isplit vh vl a n in-
struction shifts eval_atom a s to the right by n bits (shrB)
and stores the shifted result in vh. The variable vl is up-
dated with the low n bits of eval_atom a s. The signed
Isplit vh vl a n uses the arithmetic right-shift func-
tion sarB to compute the value of vh instead. The bit-
wise logical instructions Inot, Iand, Ior, and Ixor use the
coq-nbits functions invB, andB, orB, and xorB respectively.
Both Icast v ty a and vpc v ty a use the auxiliary
tcast function. eval_instsr (Iassume e) s s holds if
eval_bexp e te s is true.

For the semantics of algebraic predicates, bv2z t bits
converts the bit-vector bits to Z by the type t and
acc2z te v s returns the integer value of the variable
v in the store s under the type environment te. The se-
mantics of algebraic expressions is defined by correspond-
ing integer functions in COQ (eval_eexp). For algebraic
predicates, Etrue evaluates to True. Eeq e1 e2 checks
if the algebraic expressions e1 and e2 evaluate to the
same integer. Eeqmod e1 e2 p checks if the difference of
eval_eexp e1 te s and eval_eexp e2 te s is divided
by eval_eexp p te s.

The semantics of range expressions use the corresponding
coq-nbits functions in eval_rexp. For arithmetic range ex-
pressions, the bit-vector functions negB, addB, subB, mulB,
uremB, sremB, and smodB are used for Rnegb, Radd, Rsub,
Rmul, Rumod, Rsrem, and Rsmod respectively. For bitwise
range expressions, invB, andB, orB, and xorB are used for
Rnotb, Randb, Rorb, Rxorb respectively. Range predicates
also use the corresponding predicates (eval_rbexp). Finally,
a predicate evaluates to true if both of its algebraic and range
predicates evaluate to true (eval_bexp).
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Definition eval_atom (a : atom) (s : S.t) : bits :=
match a with | Avar v => S.acc v s | Aconst _ n => n end.

Inductive eval_instr (te : TE.env)
: instr → state → state → Prop :=

| EImov v a s t : S.Upd v (eval_atom a s) s t
→ eval_instr te (Imov v a) s t

| EIcmovT v c a1 a2 s t : to_bool (eval_atom c s) →
S.Upd v (eval_atom a1 s) s t
→ eval_instr te (Icmov v c a1 a2) s t

| EIcmovF v c a1 a2 s t : ¬ to_bool(eval_atom c s) →
S.Upd v (eval_atom a2 s) s t
→ eval_instr te (Icmov v c a1 a2) s t

| EInop s : eval_instr te Inop s s
| EIadd v a1 a2 s t :

S.Upd v (addB (eval_atom a1 s)(eval_atom a2 s)) s t
→ eval_instr te (Iadd v a1 a2) s t

| EIadds c v a1 a2 s t :
S.Upd2 v (addB (eval_atom a1 s) (eval_atom a2 s))

c (1-bits of bool
(carry_addB (eval_atom a1 s)

(eval_atom a2 s))) s t
→ eval_instr te (Iadds c v a1 a2) s t

| EIadc v a1 a2 y s t :
S.Upd v (adcB (to_bool (eval_atom y s))

(eval_atom a1 s)
(eval_atom a2 s)).2 s t

→ eval_instr te (Iadc v a1 a2 y) s t
| EIadcs c v a1 a2 y s t :

S.Upd2 v (adcB (to_bool (eval_atom y s))
(eval_atom a1 s)
(eval_atom a2 s)).2

c (1-bits of bool
((adcB (to_bool (eval_atom y s))

(eval_atom a1 s)
(eval_atom a2 s)).1)) s t

→ eval_instr te (Iadcs c v a1 a2 y) s t
| EIsub v a1 a2 s t :

S.Upd v (subB (eval_atom a1 s)(eval_atom a2 s)) s t
→ eval_instr te (Isub v a1 a2) s t

| EIsubc c v a1 a2 s t :
S.Upd2 v ((adcB true (eval_atom a1 s)

(invB (eval_atom a2 s))).2)
c (1-bits of bool

((adcB true (eval_atom a1 s)
(invB (eval_atom a2 s))).1)) s t

→ eval_instr te (Isubc c v a1 a2) s t
| EIsubb b v a1 a2 s t :

S.Upd2 v (subB (eval_atom a1 s) (eval_atom a2 s))
b (1-bits of bool

(borrow_subB (eval_atom a1 s)
(eval_atom a2 s))) s t

→ eval_instr te (Isubb b v a1 a2) s t
| EIsbc v a1 a2 y s t :

S.Upd v (adcB (to_bool (eval_atom y s))
(eval_atom a1 s)
(invB (eval_atom a2 s))).2 s t

→ eval_instr te (Isbc v a1 a2 y) s t
| EIsbcs c v a1 a2 y s t :

S.Upd2 v (adcB (to_bool (eval_atom y s))
(eval_atom a1 s)
(invB (eval_atom a2 s))).2

c (1-bits of bool
((adcB (to_bool (eval_atom y s))

(eval_atom a1 s)
(invB (eval_atom a2 s))).1)) s t

→ eval_instr te (Isbcs c v a1 a2 y) s t

| EIsbb v a1 a2 y s t :
S.Upd v (sbbB (to_bool (eval_atom y s))

(eval_atom a1 s)
(eval_atom a2 s)).2 s t

→ eval_instr te (Isbb v a1 a2 y) s t
| EIsbbs b v a1 a2 y s t :

S.Upd2 v (sbbB (to_bool (eval_atom y s))
(eval_atom a1 s) (eval_atom a2 s)).2

b (1-bits of bool
((sbbB (to_bool (eval_atom y s))

(eval_atom a1 s)
(eval_atom a2 s)).1)) s t

→ eval_instr te (Isbbs b v a1 a2 y) s t
| EImul v a1 a2 s t :

S.Upd v (mulB (eval_atom a1 s)(eval_atom a2 s)) s t
→ eval_instr te (Imul v a1 a2) s t

| EImullU vh vl a1 a2 s t : is_unsigned (atyp a1 te) →
S.Upd2 vl (low (size (eval_atom a2 s))

(mulB (zext (size (eval_atom a1 s))
(eval_atom a1 s))

(zext (size (eval_atom a1 s))
(eval_atom a2 s))))

vh (high (size (eval_atom a1 s))
(mulB (zext (size (eval_atom a1 s))

(eval_atom a1 s))
(zext (size (eval_atom a1 s))

(eval_atom a2 s)))) s t
→ eval_instr te (Imull vh vl a1 a2) s t

| EImullS vh vl a1 a2 s t : is_signed (atyp a1 te) →
S.Upd2 vl (low (size (eval_atom a2 s))

(mulB (sext (size (eval_atom a1 s))
(eval_atom a1 s))

(sext (size (eval_atom a1 s))
(eval_atom a2 s))))

vh (high (size (eval_atom a1 s))
(mulB (sext (size (eval_atom a1 s))

(eval_atom a1 s))
(sext (size (eval_atom a1 s))

(eval_atom a2 s)))) s t
→ eval_instr te (Imull vh vl a1 a2) s t

| EImuljU v a1 a2 s t : is_unsigned (atyp a1 te) →
S.Upd v (mulB (zext (size (eval_atom a1 s))

(eval_atom a1 s))
(zext (size(eval_atom a1 s))

(eval_atom a2 s))) s t
→ eval_instr te (Imulj v a1 a2) s t

| EImuljS v a1 a2 s t : is_signed (atyp a1 te) →
S.Upd v (mulB (sext (size (eval_atom a1 s))

(eval_atom a1 s))
(sext (size(eval_atom a1 s))

(eval_atom a2 s))) s t
→ eval_instr te (Imulj v a1 a2) s t

| EIshl v a i s t : S.Upd v (shlB i (eval_atom a s)) s t
→ eval_instr te (Ishl v a i) s t

| EIcshl vh vl a1 a2 i s t :
S.Upd2 vl (shrB i (low (size (eval_atom a2 s))

(shlB i (cat (eval_atom a2 s)
(eval_atom a1 s)))))

vh (high (size (eval_atom a1 s))
(shlB i (cat (eval_atom a2 s)

(eval_atom a1 s)))) s t
→ eval_instr te (Icshl vh vl a1 a2 i) s t

| EInondet v ty s t n : size n = sizeof_typ ty →
S.Upd v n s t → eval_instr te (Inondet v ty) s t

| EInot v ty a s t : S.Upd v (invB (eval_atom a s)) s t
→ eval_instr te (Inot v ty a) s t

Figure 6: Semantics of CRYPTOLINE Instructions and Predicates
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| EIjoin v ah al s t :
S.Upd v (cat (eval_atom al s) (eval_atom ah s)) s t
→ eval_instr te (Ijoin v ah al) s t

| EIsplitU vh vl a n s t : is_unsigned (atyp a te) →
S.Upd2 vl (shrB ((size (eval_atom a s)) - n)

(shlB ((size (eval_atom a s)) - n)
(eval_atom a s)))

vh (shrB n (eval_atom a s)) s t
→ eval_instr te (Isplit vh vl a n) s t

| EIsplitS vh vl a n s t : is_signed (atyp a te) →
S.Upd2 vl (shrB ((size (eval_atom a s)) - n)

(shlB ((size (eval_atom a s)) - n)
(eval_atom a s)))

vh (sarB n (eval_atom a s)) s t
→ eval_instr te (Isplit vh vl a n) s t

| EIand v ty a1 a2 s t :
S.Upd v (andB (eval_atom a1 s)(eval_atom a2 s)) s t
→ eval_instr te (Iand v ty a1 a2) s t

| EIor v ty a1 a2 s t :
S.Upd v (orB (eval_atom a1 s) (eval_atom a2 s)) s t
→ eval_instr te (Ior v ty a1 a2) s t

| EIxor v ty a1 a2 s t :
S.Upd v (xorB (eval_atom a1 s)(eval_atom a2 s)) s t
→ eval_instr te (Ixor v ty a1 a2) s t

| EIcast v ty a s t :
S.Upd v (tcast (eval_atom a s) (atyp a te) ty) s t
→ eval_instr te (Icast v ty a) s t

| EIvpc v ty a s t :
S.Upd v (tcast (eval_atom a s) (atyp a te) ty) s t
→ eval_instr te (Ivpc v ty a) s t

| EIassume e s : eval_bexp e te s
→ eval_instr te (Iassume e) s s.

Figure 7: Semantics of CRYPTOLINE Instructions (continued)

Definition bv2z (t : typ) (bs : bits) : Z :=
match t with | Tuint _ => to_Zpos bs

| Tsint _ => to_Z bs end.
Definition acc2z (E : TE.env) (v : V.t) (s : S.t) : Z :=
bv2z (TE.vtyp v E) (S.acc v s).

Definition eval_eunop (op : eunop) (v : Z) : Z :=
match op with | Eneg => - v end.

Definition eval_ebinop (op : ebinop) (v1 v2 : Z) : Z :=
match op with | Eadd => v1 + v2 | Esub => v1 - v2

| Emul => v1 * v2 end.
Fixpoint eval_eexp (e : eexp)(te : TE.env)(s : S.t) : Z :=
match e with
| Evar v => acc2z te v s | Econst n => n
| Eunop op e => eval_eunop op (eval_eexp e te s)
| Ebinop op e1 e2 =>
eval_ebinop op (eval_eexp e1 te s) (eval_eexp e2 te s)

end.
Definition modulo (a b p : Z) := ∃ k : Z, a - b = k * p.
Fixpoint eval_ebexp (e : ebexp) (te : TE.env) (s : S.t)

: Prop :=
match e with
| Etrue => True
| Eeq e1 e2 => eval_eexp e1 te s = eval_eexp e2 te s
| Eeqmod e1 e2 p =>
modulo (eval_eexp e1 te s) (eval_eexp e2 te s)

(eval_eexp p te s)
| Eand e1 e2 => eval_ebexp e1 te s ∧ eval_ebexp e2 te s
end.

Definition eval_runop (op : runop) (v : bits) : bits :=
match op with | Rnegb => negB v | Rnotb => invB v end.

Definition eval_rbinop (op : rbinop) (v1 v2 : bits):bits :=
match op with
| Radd => addB v1 v2 | Rsub => subB v1 v2
| Rmul => mulB v1 v2 | Rumod => uremB v1 v2
| Rsrem => sremB v1 v2 | Rsmod => smodB v1 v2
| Randb => andB v1 v2 | Rorb => orB v1 v2
| Rxorb => xorB v1 v2
end.

Definition eval_rcmpop (op : rcmpop) (v1 v2 : bits):bool :=
match op with
| Rult => ltB v1 v2 | Rule => leB v1 v2
| Rugt => gtB v1 v2 | Ruge => geB v1 v2
| Rslt => sltB v1 v2 | Rsle => sleB v1 v2
| Rsgt => sgtB v1 v2 | Rsge => sgeB v1 v2
end.

Fixpoint eval_rexp (e : rexp) (s : S.t) : bits :=
match e with
| Rvar v => S.acc v s | Rconst w n => n
| Runop _ op e => eval_runop op (eval_rexp e s)
| Rbinop _ op e1 e2 =>
eval_rbinop op (eval_rexp e1 s) (eval_rexp e2 s)

| Ruext _ e i => zext i (eval_rexp e s)
| Rsext _ e i => sext i (eval_rexp e s)
end.

Fixpoint eval_rbexp (e : rbexp) (s : S.t) : bool :=
match e with
| Rtrue => true
| Req _ e1 e2 => eval_rexp e1 s == eval_rexp e2 s
| Rcmp _ op e1 e2 =>
eval_rcmpop op (eval_rexp e1 s) (eval_rexp e2 s)

| Rneg e => ¬ (eval_rbexp e s)
| Rand e1 e2 => (eval_rbexp e1 s) && (eval_rbexp e2 s)
| Ror e1 e2 => (eval_rbexp e1 s) || (eval_rbexp e2 s)
end.

Definition eval_bexp (e : bexp) (te : TE.env) (s : S.t)
: Prop :=

eval_ebexp (eqn_bexp e) te s ∧ eval_rbexp (rng_bexp e) s.

Figure 8: Semantics of CRYPTOLINE Predicates
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